Effects of past climate variability on fire and vegetation in the cerrãdo savanna of the Huanchaca Mesetta, NE Bolivia

K-REx Repository

Show simple item record

dc.contributor.author Maezumi, S. Y.
dc.contributor.author Power, M. J.
dc.contributor.author Mayle, F. E.
dc.contributor.author McLauchlan, Kendra K.
dc.contributor.author Iriarte, J.
dc.date.accessioned 2016-04-04T22:46:15Z
dc.date.available 2016-04-04T22:46:15Z
dc.identifier.uri http://hdl.handle.net/2097/32312
dc.description Citation: Maezumi, S. Y., Power, M. J., Mayle, F. E., McLauchlan, K. K., & Iriarte, J. (2015). Effects of past climate variability on fire and vegetation in the cerrãdo savanna of the Huanchaca Mesetta, NE Bolivia. Climate of the Past, 11(6), 835-853. doi:10.5194/cp-11-835-2015
dc.description Cerrãdo savannas have the greatest fire activity of all major global land-cover types and play a significant role in the global carbon cycle. During the 21st century, temperatures are projected to increase by ? 3 °C coupled with a precipitation decrease of ? 20%. Although these conditions could potentially intensify drought stress, it is unknown how that might alter vegetation composition and fire regimes. To assess how Neotropical savannas responded to past climate changes, a 14 500-year, high-resolution, sedimentary record from Huanchaca Mesetta, a palm swamp located in the cerrãdo savanna in northeastern Bolivia, was analyzed with phytoliths, stable isotopes, and charcoal. A non-analogue, cold-adapted vegetation community dominated the Lateglacial-early Holocene period (14 500-9000 cal yr BP, which included trees and C3 Pooideae and C4 Panicoideae grasses. The Lateglacial vegetation was fire-sensitive and fire activity during this period was low, likely responding to fuel availability and limitation. Although similar vegetation characterized the early Holocene, the warming conditions associated with the onset of the Holocene led to an initial increase in fire activity. Huanchaca Mesetta became increasingly fire-dependent during the middle Holocene with the expansion of C4 fire-adapted grasses. However, as warm, dry conditions, characterized by increased length and severity of the dry season, continued, fuel availability decreased. The establishment of the modern palm swamp vegetation occurred at 5000 cal yr BP. Edaphic factors are the first-order control on vegetation on the rocky quartzite mesetta. Where soils are sufficiently thick, climate is the second-order control of vegetation on the mesetta. The presence of the modern palm swamp is attributed to two factors: (1) increased precipitation that increased water table levels and (2) decreased frequency and duration of surazos (cold wind incursions from Patagonia) leading to increased temperature minima. Natural (soil, climate, fire) drivers rather than anthropogenic drivers control the vegetation and fire activity at Huanchaca Mesetta. Thus the cerrãdo savanna ecosystem of the Huanchaca Plateau has exhibited ecosystem resilience to major climatic changes in both temperature and precipitation since the Lateglacial period. © Author(s) 2015.
dc.relation.uri https://doi.org/10.5194/cp-11-835-2015
dc.rights Attribution 3.0 Unported (CC BY 3.0)
dc.rights.uri http://creativecommons.org/licenses/by/3.0/
dc.subject Cerrado
dc.subject Fire History
dc.subject Grass
dc.subject Holocene
dc.subject Land Cover
dc.subject Paleoclimate
dc.title Effects of past climate variability on fire and vegetation in the cerrãdo savanna of the Huanchaca Mesetta, NE Bolivia
dc.type Article
dc.date.published 2015
dc.citation.doi 10.5194/cp-11-835-2015
dc.citation.epage 853
dc.citation.issn 1814-9324
dc.citation.issue 6
dc.citation.jtitle Climate of the Past
dc.citation.spage 835
dc.citation.volume 11
dc.contributor.authoreid mclauch


Files in this item

This item appears in the following Collection(s)

Show simple item record

Attribution 3.0 Unported (CC BY 3.0) Except where otherwise noted, the use of this item is bound by the following: Attribution 3.0 Unported (CC BY 3.0)

Search K-REx


Advanced Search

Browse

My Account

Statistics








Center for the

Advancement of Digital

Scholarship

118 Hale Library

Manhattan KS 66506


(785) 532-7444

cads@k-state.edu