Comments on the optical lineshape function: Application to transient hole-burned spectra of bacterial reaction centers

K-REx Repository

Show simple item record

dc.contributor.author Reppert, M.
dc.contributor.author Kell, A.
dc.contributor.author Pruitt, T.
dc.contributor.author Jankowiak, Ryszard J.
dc.date.accessioned 2016-04-04T22:24:01Z
dc.date.available 2016-04-04T22:24:01Z
dc.date.issued 2015-03-04
dc.identifier.uri http://hdl.handle.net/2097/32263
dc.description Citation: Reppert, M., Kell, A., Pruitt, T., & Jankowiak, R. (2015). Comments on the optical lineshape function: Application to transient hole-burned spectra of bacterial reaction centers. Journal of Chemical Physics, 142(9), 7. doi:10.1063/1.4913685
dc.description The vibrational spectral density is an important physical parameter needed to describe both linear and non-linear spectra of multi-chromophore systems such as photosynthetic complexes. Low-temperature techniques such as hole burning (HB) and fluorescence line narrowing are commonly used to extract the spectral density for a given electronic transition from experimental data. We report here that the lineshape function formula reported by Hayes et al. [J. Phys. Chem. 98, 7337 (1994)] in the mean-phonon approximation and frequently applied to analyzing HB data contains inconsistencies in notation, leading to essentially incorrect expressions in cases of moderate and strong electron-phonon (el-ph) coupling strengths. A corrected lineshape function L(omega) is given that retains the computational and intuitive advantages of the expression of Hayes et al. [J. Phys. Chem. 98, 7337 (1994)]. Although the corrected lineshape function could be used in modeling studies of various optical spectra, we suggest that it is better to calculate the lineshape function numerically, without introducing the mean-phonon approximation. New theoretical fits of the P870 and P960 absorption bands and frequency-dependent resonant HB spectra of Rb. sphaeroides and Rps. viridis reaction centers are provided as examples to demonstrate the importance of correct lineshape expressions. Comparison with the previously determined el-ph coupling parameters [Johnson et al., J. Phys. Chem. 94, 5849 (1990); Lyle et al., ibid. 97, 6924 (1993); Reddy et al., ibid. 97, 6934 (1993)] is also provided. The new fits lead to modified el-ph coupling strengths and different frequencies of the special pair marker mode, omega(sp), for Rb. sphaeroides that could be used in the future for more advanced calculations of absorption and HB spectra obtained for various bacterial reaction centers. (c) 2015 AIP Publishing LLC.
dc.relation.uri https://doi.org/10.1063/1.4913685
dc.rights This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
dc.rights.uri https://rightsstatements.org/page/InC/1.0/?language=en
dc.subject 2-Dimensional Electronic Spectroscopy
dc.subject Excitation-Energy Transfer
dc.subject Rhodobacter-Sphaeroides
dc.subject Antenna Complex
dc.subject Green Plants
dc.subject Donor State
dc.title Comments on the optical lineshape function: Application to transient hole-burned spectra of bacterial reaction centers
dc.type Article
dc.date.published 2015
dc.citation.doi 10.1063/1.4913685
dc.citation.issn 0021-9606
dc.citation.issue 9
dc.citation.jtitle Journal of Chemical Physics
dc.citation.spage 7
dc.citation.volume 142
dc.citation Reppert, M., Kell, A., Pruitt, T., & Jankowiak, R. (2015). Comments on the optical lineshape function: Application to transient hole-burned spectra of bacterial reaction centers. Journal of Chemical Physics, 142(9), 7. doi:10.1063/1.4913685
dc.contributor.authoreid ryszard


Files in this item

This item appears in the following Collection(s)

Show simple item record

This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). Except where otherwise noted, the use of this item is bound by the following: This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).

Search K-REx


Advanced Search

Browse

My Account

Statistics








Center for the

Advancement of Digital

Scholarship

cads@k-state.edu