Life habits, hox genes, and affinities of a 311 million-year-old holometabolan larva

K-REx Repository

Show simple item record

dc.contributor.author Haug, J. T.
dc.contributor.author Labandeira, C. C.
dc.contributor.author Santiago-Blay, J. A.
dc.contributor.author Haug, C.
dc.contributor.author Brown, Susan J.
dc.date.accessioned 2016-04-04T22:13:50Z
dc.date.available 2016-04-04T22:13:50Z
dc.identifier.uri http://hdl.handle.net/2097/32242
dc.description Citation: Haug, J. T., Labandeira, C. C., Santiago-Blay, J. A., Haug, C., & Brown, S. (2015). Life habits, hox genes, and affinities of a 311 million-year-old holometabolan larva. Bmc Evolutionary Biology, 15, 10. doi:10.1186/s12862-015-0428-8
dc.description Background: Holometabolous insects are the most diverse, speciose and ubiquitous group of multicellular organisms in terrestrial and freshwater ecosystems. The enormous evolutionary and ecological success of Holometabola has been attributed to their unique postembryonic life phases in which nonreproductive and wingless larvae differ significantly in morphology and life habits from their reproductive and mostly winged adults, separated by a resting stage, the pupa. Little is known of the evolutionary developmental mechanisms that produced the holometabolous larval condition and their Paleozoic origin based on fossils and phylogeny. Results: We provide a detailed anatomic description of a 311 million-year-old specimen, the oldest known holometabolous larva, from the Mazon Creek deposits of Illinois, U.S.A. The head is ovoidal, downwardly oriented, broadly attached to the anterior thorax, and bears possible simple eyes and antennae with insertions encircled by molting sutures; other sutures are present but often indistinct. Mouthparts are generalized, consisting of five recognizable segments: a clypeo-labral complex, mandibles, possible hypopharynx, a maxilla bearing indistinct palp-like appendages, and labium. Distinctive mandibles are robust, triangular, and dicondylic. The thorax is delineated into three, nonoverlapping regions of distinctive surface texture, each with legs of seven elements, the terminal-most bearing paired claws. The abdomen has ten segments deployed in register with overlapping tergites; the penultimate segment bears a paired, cercus-like structure. The anterior eight segments bear clawless leglets more diminutive than the thoracic legs in length and cross-sectional diameter, and inserted more ventrolaterally than ventrally on the abdominal sidewall. Conclusions: Srokalarva berthei occurred in an evolutionary developmental context likely responsible for the early macroevolutionary success of holometabolous insects. Srokalarva berthei bore head and prothoracic structures, leglet series on successive abdominal segments - in addition to comparable features on a second taxon eight million-years-younger - that indicates Hox-gene regulation of segmental and appendage patterning among earliest Holometabola. Srokalarva berthei body features suggest a caterpillar-like body plan and head structures indicating herbivory consistent with known, contemporaneous insect feeding damage on seed plants. Taxonomic resolution places Srokalarva berthei as an extinct lineage, apparently possessing features closer to neuropteroid than other holometabolous lineages.
dc.relation.uri https://doi.org/10.1186/s12862-015-0428-8
dc.rights Attribution 4.0 International (CC BY 4.0)
dc.rights.uri http://creativecommons.org/licenses/by/4.0/
dc.subject Abdominal-A
dc.subject Caterpillar
dc.subject Distalless
dc.subject Endopterygote
dc.subject Eruciform
dc.subject Late
dc.title Life habits, hox genes, and affinities of a 311 million-year-old holometabolan larva
dc.type Article
dc.date.published 2015
dc.citation.doi 10.1186/s12862-015-0428-8
dc.citation.issn 1471-2148
dc.citation.jtitle Bmc Evolutionary Biology
dc.citation.spage 10
dc.citation.volume 15
dc.contributor.authoreid sjbrown


Files in this item

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International (CC BY 4.0) Except where otherwise noted, the use of this item is bound by the following: Attribution 4.0 International (CC BY 4.0)

Search K-REx


Advanced Search

Browse

My Account

Statistics








Center for the

Advancement of Digital

Scholarship

118 Hale Library

Manhattan KS 66506


(785) 532-7444

cads@k-state.edu