On deformations of pasting diagrams

K-REx Repository

Show simple item record

dc.contributor.author Yetter, David
dc.date.accessioned 2015-04-17T16:43:28Z
dc.date.available 2015-04-17T16:43:28Z
dc.date.issued 2015-04-17
dc.identifier.uri http://hdl.handle.net/2097/18936
dc.description.abstract We adapt the work of Power to describe general, not-necessarily composable, not-necessarily commutative 2-categorical pasting diagrams and their composable and commutative parts. We provide a deformation theory for pasting diagrams valued in the 2-category of k-linear categories, paralleling that provided for diagrams of algebras by Gerstenhaber and Schack, proving the standard results. Along the way, the construction gives rise to a bicategorical analog of the homotopy G-algebras of Gerstenhaber and Voronov. en_US
dc.language.iso en_US en_US
dc.relation.uri http://www.tac.mta.ca/tac/volumes/22/2/22-02abs.html en_US
dc.subject Pasting diagrams en_US
dc.subject Pasting schemes en_US
dc.subject Deformation theory en_US
dc.title On deformations of pasting diagrams en_US
dc.type Article (publisher version) en_US
dc.date.published 2009 en_US
dc.citation.epage 53 en_US
dc.citation.issue 2 en_US
dc.citation.jtitle Theory and Applications of Categories en_US
dc.citation.spage 24 en_US
dc.citation.volume 22 en_US
dc.contributor.authoreid dyetter en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search K-REx


Advanced Search

Browse

My Account

Statistics








Center for the

Advancement of Digital

Scholarship

118 Hale Library

Manhattan KS 66506


(785) 532-7444

cads@k-state.edu