Enteric methane emissions from dairy and beef cattle: a meta-analysis

Date

2014-08-04

Journal Title

Journal ISSN

Volume Title

Publisher

Kansas State University

Abstract

This study reviewed state-of-the-art cattle enteric methane (CH4) emissions with three reported measuring units: g/head/d, g/kg DMI (dry matter intake), and %GEI (gross energy intake). Cattle emissions studies included in this meta-analysis were reported from 1995 to 2013. Fifty-five published studies were analyzed with specific objectives: (1) to gain basic information regarding magnitudes and distributions of enteric CH4 emission rates with various units, regions, cattle types and feed situations; (2) to identify and evaluate effects of influence factors or diet mitigation techniques on enteric CH4 emissions; and (3) to evaluate Intergovernmental Panel on Climate Change (IPCC) approaches to estimate enteric CH4 emissions. Emissions data (n=165) with the unit of g/head/d had large variances and non-normal distribution, and were not homogeneous across the studies. Emissions data (n=134) with the unit of g/kg DMI were not homogeneous across the studies, while emissions data (n=76) with the unit of %GEI had small variances and normal distribution, and were homogeneous across the studies. Therefore, data with the unit of %GEI may be better for meta-analysis compared to data with the units of g/head/d and g/kg DMI; however, the number of data with the unit of %GEI was small relative to the number of data with the units of g/head/d and g/kg DMI. Enteric CH4 emissions with the unit of g/head/d are significantly influenced by geographic region, cattle classification, sub-classification, humidity, temperature, body weight, and feed intake. Emissions and feed intake had a strong positive linear relationship with R2 of 0.75 (n=148). Emissions with the unit of g/kg DMI are significantly affected by humidity, body weight, and feed intake. The relationship between emissions and feed intake is positive. Emissions with the unit of %GEI are significantly associated with humidity, production stage, and body weight. IPCC Tier 1 and Tier 2 estimated emissions were approximate to most of the measured enteric CH4 emissions; however, the residuals were not normally distributed. Based on results from PRD method and paired t-tests, IPCC Tier 1 overestimated emissions in Asian studies, underestimated emissions in European studies for beef cattle, and underestimated emissions in Oceanian studies for dairy cattle. IPCC Tier 2 underestimated emissions in Asian studies for beef cattle. The underestimated emissions of IPCC Tier 2 in Asian studies might result from no consideration of effects from production stage and body weight.

Description

Keywords

Enteric CH4 emission, Cattle, GHGs

Graduation Month

August

Degree

Master of Science

Department

Department of Biological and Agricultural Engineering

Major Professor

Zifei Liu

Date

2014

Type

Thesis

Citation