An analytic solution for groundwater uptake by phreatophytes spanning spatial scales from plant to field to regional

K-REx Repository

Show simple item record

dc.contributor.author Steward, David R.
dc.contributor.author Ahring, Trevor S.
dc.date.accessioned 2014-03-12T19:43:39Z
dc.date.available 2014-03-12T19:43:39Z
dc.date.issued 2008-11-18
dc.identifier.uri http://hdl.handle.net/2097/17218
dc.description.abstract Phreatophytes are important to the overall hydrologic water budget, providing pathways from the uptake of groundwater with its nutrients and chemicals to subsequent discharge to the root zone through hydraulic lift and to the atmosphere through evapotranspiration. An analytic mathematical model is developed to model groundwater uptake by individual plants and fields of plant communities and the regional hydrology of communities of fields. This model incorporates new plant functions developed through aid of Wirtinger calculus. Existing methodology for area-sinks is extended to fields of phreatophytes, and Bell polynomials are employed to extend existing numerical methods to calculate regional coefficients for area-sinks. This model is used to develop capture zones for individual phreatophytes and it is shown that the functional form of groundwater uptake impacts capture zone topology, with groundwater being extracted from greater depths when root water uptake is focused about a taproot. While individual plants siphon groundwater from near the phreatic surface, it is shown that communities of phreatophytes may tap groundwater from greater depths and lateral extent as capture zones pass beneath those of upgradient phreatophytes. Thus, biogeochemical pathways moving chemical inputs from aquifer to ecosystems are influenced by both the distribution of groundwater root uptake and the proximity of neighboring phreatophytes. This provides a computational platform to guide hypothesis testing and field instrumentation and interpretation of their data and to understand the function of phreatophytes in water and nutrient uptake across plant to regional scales. en_US
dc.language.iso en_US en_US
dc.relation.uri http://doi.org/10.1007/s10665-008-9255-x en_US
dc.rights This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). en_US
dc.rights.uri https://rightsstatements.org/page/InC/1.0/?language=en
dc.subject Phreatophytes en_US
dc.subject Groundwater en_US
dc.title An analytic solution for groundwater uptake by phreatophytes spanning spatial scales from plant to field to regional en_US
dc.type Text en_US
dc.date.published 2008 en_US
dc.citation.doi 10.1007/s10665-008-9255-x en_US
dc.citation.epage 103 en_US
dc.citation.issue 2 en_US
dc.citation.jtitle Journal of Engineering Mathematics en_US
dc.citation.spage 85 en_US
dc.citation.volume 64 en_US
dc.contributor.authoreid steward en_US
dc.description.version Article (publisher version)


Files in this item

This item appears in the following Collection(s)

Show simple item record

This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). Except where otherwise noted, the use of this item is bound by the following: This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).

Search K-REx


Advanced Search

Browse

My Account

Statistics








Center for the

Advancement of Digital

Scholarship

cads@k-state.edu