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Abstract

This research project investigates the difficulsasdents encounter when solving physics
problems involving the integral and the area unldercurve concepts and the strategies to
facilitate students learning to solve those tydgzroblems. The research contexts of this project
are calculus-based physics courses covering mamshand electromagnetism.

In phase | of the project, individual teaching/léag interviews were conducted with 20
students in mechanics and 15 students from the sahwat in electromagnetism. The students
were asked to solve problems on several topicsemhigmnics and electromagnetism. These
problems involved calculating physical quantitiegy( velocity, acceleration, work, electric field,
electric resistance, electric current) by integr@ior finding the area under the curve of functions
of related quantities (e.g. position, velocity,der charge density, resistivity, current density).
Verbal hints were provided when students made 1&m er were unable to proceed. A total
number of 140 one-hour interviews were conducteatisiphase, which provided insights into
students’ difficulties when solving the problemsoltving the integral and the area under the
curve concepts and the hints to help students owegdhose difficulties.

In phase Il of the project, tutorials were credteéhcilitate students’ learning to solve
physics problems involving the integral and theaareder the curve concepts. Each tutorial
consisted of a set of exercises and a protocoirbatporated the helpful hints to target the
difficulties that students expressed in phasethefproject. Focus group learning interviews
were conducted to test the effectiveness of thegials in comparison with standard learning
materials (i.e. textbook problems and solutionsjer@ll results indicated that students learning
with our tutorials outperformed students learninthwtandard materials in applying the integral
and the area under the curve concepts to physatdgons.

The results of this project provide broader andode@sights into students’ problem
solving with the integral and the area under thee&wgoncepts and suggest strategies to facilitate
students’ learning to apply these concepts to physioblems. This study also has significant

implications for further research, curriculum deyhent and instruction.
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Chapter 1 - Introduction

1.1 Motivation

Mathematics has often been considered the langafggeysics and other natural
sciences for several centuries, as Galileo sdmk Biook of nature is written in the language of
mathematics.” A well-established mathematics bamlgd is the foremost condition for
understanding and communicating physics ideas. &madltics also provides a useful toolbox for
solving physics problems. For these reasons, niosigs courses have mathematics pre-
requisites. Despite this fact, students in intradycphysics still struggle with applying their
mathematics knowledge to physics problems. Siganticesearch efforts have been devoted in
diagnosing students’ difficulties in applying mathegics to physics and developing instructional
strategies to help students overcome those diffe=ul(J Tuminaro, 2004)

Integration is among the mathematical conceptsateatvidely used in physics. Many
physics problems require calculating a physicahtiiafrom other non-constant quantities using
integration. Unlike mathematics problems in which integrals are provided and the students
only have to compute the integrals, most physioblpms do not have pre-determined integrals.
Instead, students have to set up an integral frenphysics situation described in the problem
statement and compute it. This process could bieebrap into four steps:

Step 1: recognize the need for an integral

Step 2: set up the expression for the infinitesiquantity
Step 3: accumulate the infinitesimal quantities

Step 4: compute the integral

An integral can be computed in several ways (exgiding integral techniques,
evaluating a Riemann sum, calculating the arearnuhéecurve). The most common methods for
calculating integrals in introductory physics piols are using integral techniques and
calculating the area under the curve. Previoudesud physics education research have
investigated students’ use and interpretation efittegral and the integral-area relation in
physics (Cui, 2006; Manogue, Browne, Dray, & Edvea2D06; L. C. McDermott, Rosenquist,
& van Zee, 1986; Meredith & Marrongelle, 2008; Bok, Thompson, & Mountcastle, 2007;
Wallace & Chasteen, 2010). These studies investigfadents’ conceptual understanding of the

area under the curve (L. C. McDermott, et al., 398&idents’ application of the integral-area
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relation (Pollock, et al., 2007), the resourceslstus use to cue integration (Meredith &
Marrongelle, 2008), students’ application and selffidence in setting up the integrals in
physics problems (Cui, Bennett, Fletcher, & Rehéll@a06), and students’ difficulties in
interpreting and calculating the integral in Ampeiaw equation (Manogue, et al., 2006;
Wallace & Chasteen, 2010). However, there is ndyswhich investigates in detail the
difficulties students encounter at each of thestmwve, especially steps 2 and 3, and the
difficulties students have with calculating an g using the area under the curve. Moreover,
despite the results of many studies that studeaus hignificant difficulties with integration in
physics problem solving, there have been no instnial materials developed to facilitate
students learning to apply integration in physigshpems. As an effort to fill out these missing
pieces of research, we conducted a research prech aimed at providing a complete
description of the common difficulties students@ntter at each of the steps above and creating

tutorials to facilitate students’ learning to sopteysics problems involving integration.

1.2 Context of the research

The studies in this research project were condumtestudents enrolled in the
Engineering Physics course sequence at Kansas\Btatersity. This sequence consists of two
courses of introductory calculus-based physicdedst one semester of calculus is the pre-
requisite for enrolling in the Engineering Physlcsourse, which covers mechanics and
thermodynamics. At least two semesters of calcataghe pre-requisites for enrolling in the
Engineering Physics 2 course, which covers elegtand magnetism, geometric and physical
optics. The problems used in this research prajextn mechanics and electricity.

The courses are taught in the Studio format whmchudes two 50-minute lectures each
week, and two two-hour long Studio sessions (SemnShurukian, Maleki, & Zollman, 2006)
in which students work on problems, go over homévemrd complete laboratory exercises. The
Studios are facilitated by a primary instructor,ont typically an advanced graduate student,
faculty member or post-doc and a secondary ingtruatho is typically a beginning graduate
student or undergraduate student.



1.3 Research gquestions

In phase | of the project, we investigate studedifficulties in applying the integral and
the area under the curve concepts in physics probtdving. Specifically, we address the
following research questions:

To what extent did students recognize the useepirttegral in physics problems?
To what extent did students understand what qyantts being accumulated
when calculating an integral?

What were the common difficulties that studentsoaimtered when setting up and
computing an integral algebraically in a physiosighem?

What verbal hints might help students overcomeselifficulties?

To what extent did students recognize the useeatha under the curve in
physics problems?

To what extent did students understand what qyantts being accumulated
when calculating the area under the curve?

To what extent did students understand the relsiipnbetween a definite
integral and the area under a curve?

In phase Il of the project, we created tutorialfatalitate students’ learning to apply the
integral and the area under the curve conceptbyrigs problems on work-energy and
electricity. The research questions in this phdsbeproject are:

To what extent did our tutorials on work-energyh&ludents improve their
ability to apply the integral and the area underdtrve concepts in work —
energy problems, compared to standard instructiengample problems and
solutions)?

To what extent did our tutorials on electricity fnstudents improve their ability
to apply the integral and the area under the cooneepts in electricity problems,
compared to standard instruction (i.e. sample prabland solutions)?

1.4 Research strategies overview
In phase | of the project, we investigated studexgplication of the integral and the area
under the curve concepts in physics problem solwig were interested in not only the

difficulties students encountered but also thediihat might help students overcome those
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difficulties. So we conducted individual teachimgitning interviews with each of the 20
students recruited from the course. The teachiagfieg interview format allows us to not only
probe students’ understanding but also facilittddents’ learning. (Engelhardt, Corpuz,
Ozimek, & Rebello, 2003; Steffe, 1983; Steffe & fiqmson, 2000) The difficulties students
encountered and the hints provided by the intergreduring the interviews were recorded, and
were studied to find the emergent themes.

In phase Il of the project, we created our tutsrizdsed on the findings from phase I. The
tutorials were implemented on students during tloei$ group learning interviews. In this
interview, students worked in group of three torfon the worksheets provided by us. Students
were asked to check in with the facilitator afteeyt completed each exercise on the worksheet.
The format of the focus group learning intervieth®refore, simulates the learning environment
of a real recitation classroom. A pre-test and stpest were implemented before and after the
students received the treatments. Students’ woektslomn the pre-test, post-test and the
treatments were collected. The pre-tests and pssi-tvere then graded and statistical tests were

employed to test the significance of the differeimcscores between the groups.

1.5 Road map of dissertation

This dissertation consists of three major part® fiitst part (including chapters 3 and 4)
describes two studies in phase | of the projeetstindies on students’ difficulties with the
integral and the area under the curve conceptseirhanics and electricity. The second part
(including chapters 5 and 6) describes two stuidigghase Il of the project: the studies on the
tutorials in mechanics and electricity. The thiattgchapter 7) presents a pilot study on an
attempt to use the transfer in pieces framewotkaitk the development of students’ application
of the integral and the area under the curve cdagepmechanics problems.

In chapter 2, we review the previous research agleto our studies. The relevant topics
include students’ difficulties with calculus contepn mathematics and physics courses, transfer
of learning, and tutorials in physics. In chaptew® discuss the methodology, rationale, and
results of the study on students’ application efititegral concept in mechanics and electricity
problems. Chapter 4 discusses the same issueadaenst application of the area under the curve
concept. In chapter 5, we describe the creatiopldmentation, and results of the tutorials on

helping students learn to apply the integral amdaiea under the curve concepts in mechanics
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problems. Chapter 6 discusses the creation, impiatien, and results of the tutorials on
helping students learn to apply the integral cohgeplectricity problems. In chapter 7, we
present two case studies in which we follow twaletis and they progress through our
interviews in a semester period to trace the d@reént of them in applying the integral and
area under the curve. Chapter 8 summarizes the megjolts of the studies and discusses the
implications for calculus and physics instructiaweell as implications for further research on

the topics.



Chapter 2 - Literature review

2.1 Chapter overview

In this chapter, we review the previous studies @in@ relevant to our research.
Specifically, we review the literature on studenisterstanding and application of mathematical
concepts in physics problem solving, the instruclanaterials that have been developed to
facilitate this process, and the theoretical framoek we will use in analyzing students’
application of mathematical concepts in physicdfam solving.

Students participating in our interviews were rgedifrom several calculus-based
physics courses. At least one or two semesteralotfilts were the pre-requisites of these
courses. So we start with a review of previousisgith mathematics education research on
students’ understanding of basic concepts. Theskest might provide an idea on the common
conceptions and misconceptions students hold wesamnihg about calculus concepts. We first
discuss students’ understanding of basics concégtsculus (e.g. function, limit,
differentiation, integration) in calculus in subzgBen 2.2.1 and then narrow down our discussion
to students’ understanding of the integral conegk the integral-area relation in calculus in
sub-section 2.2.2.

Understanding a mathematical concept and beingtalgerform computation relevant to
that concept are usually the criteria to measwteident’s mastery of that concept. However,
there have been many studies indicating that stadea usually very fluent at computation
while possessing very little conceptual understagdif the concepts underlying the
computation. Obviously, this unbalance between eptual knowledge and procedural
knowledge will hurt students a lot when they havege their mathematical knowledge in other
disciplines, where the mathematical concepts ataeeied in the a variety of contexts and
students are not given pre-determined mathemadroblem to solve. For example, most physics
problems involving integral do not provide a preesimined integral for students to compute.
Instead, students have to set up the integral frenphysical situation described in the problem
statement. Students with little conceptual undeditay about the integral might find task a very
difficult or even impossible task. For this reasae, were interested in considering the state of

the conceptual knowledge and procedural knowleageasic calculus concepts that students



passing calculus courses possess before theymntsics courses. This topic will be discussed
in sub-section 2.2.3.

In section 2.3, we discuss previous studies in ipBysducation research on how students
use math in physics. We start with a review onistithat focus on students’ application of
mathematics in physics in general. Then we narrowrdour discussion to the studies on
students’ understanding and application of thegirsteand the area under the curve concepts
because these concepts are the focus of our aelwvill briefly summarize each of the studies
and relate it to our current study.

The literature on transfer of learning is discusseskction 2.4. Transfer of learning
refers to the application of the knowledge learimedne context to other contexts, so it is closely
related to our study which focused on the applicatf mathematical concepts in physical
contexts. We will discuss both the traditional @odtemporary models of transfer of learning, as
well as a model that consolidate traditional angtemporary perspectives. We also introduce
the transfer in pieces framework propose by Wa{Wweargner, 2006) which will be used for
analyzing the students’ application of the integnadl the area under the curve in physics
problems.

One of the objectives of our research project wadet/elop tutorials to facilitate
students’ learning to apply the integral and theaarmnder the curve concepts in physics problem
solving. So in section 2.5, we discuss some ofuterials that have been developed to facilitate
students’ learning in introductory physics. Tha#erials focus on improving students’
conceptual understanding of physics concepts byigirag more opportunity for students to
explore the concepts and resolve the conflicts éetwtheir intuitive models and the Newtonian
models of the concepts. Our tutorials, insteadgdiat improving students’ mathematical skills
in physics problem solving. The chapter concludil & summary of the literature discussed in

the sections.
2.2 Research in mathematics education

2.2.1 Students’ understanding of basics conceptsaitulus
There have been several studies in mathematicatdocesearch on students’

understanding of basics concepts of calculus. Antbagearliest research was the work of Orton



(Orton, 1983). In that study, 110 British studesged 16 — 22 were interviewed on several tasks
involving the concepts of limit and integration. Meof these tasks involved finding the area
under a curve using the Riemann sum method andlatitg the limit of that Riemann sum.
Some other tasks asked students to prove basienpiegpof integration (such as the integral of a
sum was the sum of integrals) using area undecuhe. Orton found that students’ errors with
these basic concepts of calculus could be cladsifgestructural (fundamental or conceptual),
executive (operational and procedural), or arbjtr&tructural errors were the errors “which
arose from some failure to appreciate the relatigssinvolved in the problem or to grasp some
principle essential to solution.” Executive erroczurred when students failed to carry out the
calculations although they might have understoedptinciple involved in the problem.

Arbitrary errors were made when students followesitieary strategy for solving the problem
that violated the constraints set up by the givdarmation in the problem. For example, in a

problem in Orton’s study, the students were askezl/aluate the area under the curveyef X’

from x=0 to x=a using the staircase method (i.e. approximate i@ ander the curve as a
sum of the areas of several rectangles). The prollas divided into three questions. The first
guestion asked students to calculate the widttach eectangle if the area was divided into six
rectangles. The second question asked studensdcidate the heights of each rectangle. The
third question asked students to calculate theé &oéa under the curve. Thirteen students made
errors in this first task, but eventually were afol@btaina/6 for the width. Three students were
then unable to find the height of the rectangldsesE three students were said to make structural
error because they did not recognize that theiogiship between the width and the height of the
rectangles was also the relationship between tedues and the y-values on the curve. The
other 10 students were able to recognize thisioglstiip but then failed to get the correct height
of the rectangles because of the errors in comiputathese errors were executive errors.

Orton also found that the majority of students mld view the integral as the limit of a
Riemann sum and talked about such limit as an appedion, not as an exact answer, although
they had no difficulty evaluating a given Riemamims Investigating students’ conceptual versus
procedural abilities, Orton found that most of $ihedents in his study were able to carry out the
procedures and techniques of integration althobgk might not have good understanding of the

underlying concepts.



Ferrini-Mundy and Graham (Ferrini-Mundy & Grahar®94%) interviewed a group of six
students in calculus to reveal students’ understgnaf basic concepts of calculus (e.g. function,
limit, continuity, derivative, and integral) andetinterrelationships among those concepts. They
investigated in details the performance of oneettid Sandy — in the interviews. They found
that Sandy and many other students in the studgrfineted the integral as a signal to ‘do
something’.” She perceived the definite integratths area between the graph of the function
and the x-axis.” while thinking of the sum of threas of the small rectangles under the curve as

the “proof” for that fact.

2.2.2 Students’ understanding of the integral coptend the integral-area relation

Rasslan and Tall (Rasslan & Tall, 2002) investidgdte definition and images of the
definite integral held by high school students K. OThey found that “the majority do not write
meaningfully about the definition of definite intady and have difficulty interpreting problems
calculating areas and definite integrals in widantexts.” They suggested strategies for teaching
the definite integral concept. The strategy wastimduce the concept as “cases extended the
students’ previous experience” and let the studexp®rience it in use through a variety of
examples covering a wide contextual range.

Sealey (Sealey, 2006) investigated students’ proldolving on “real world problems”
involving integration in a calculus class. The ‘fre@arld problems” in this study were physics
problems in which physical quantities were caledatising integration. She found that students
might be proficient in dealing with the area undeurve but they might not be able to relate
such an area to the structure of a Riemann sumc&@iwuded that the area under the curve
method could be a powerful tool to evaluate a defimtegral only when students understood
the structure of the definite integral.

Also emphasizing on the importance of understanthiegstructure of the definite
integral, Thompson and Silverman (Thompson & Sitvan, 2007) pointed out that for students
to perceive the area under a curve as represeamtjpgntity other than area (e.g. velocity, work),
it was important that students considered the dyanting accumulated as a sum of
infinitesimal bits that were formed multiplicatiyelThompson and Silverman proposed the
accumulation model which considered integratioaraaccumulation of the bits that were made

of two multiplicative quantities. This model empizasl the two “layers” of integration: the
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multiplicative layer when the bits were formed dahd accumulative layer when the bits were
accumulated.

In our study, we found evidence of students’ falur interpreting the meaning of the
area under the curve when they did not perceige & Riemann sum and did not understand the
structure of the Riemann sum. We also used thetsteiof the Riemann sum as hints to help

students set up the correct integral or recogfearieaning of the area under the curve.

2.2.3 Students’ procedural knowledge and conceptikaabwledge in calculus

As mentioned in the previous section, studentsiaoally very fluent in computing a
mathematical task while having very little concegptunderstanding of the concepts underlying
that computation. This unbalance between conceptuhprocedural knowledge will lead to
students’ difficulties in applying their mathemaii&nowledge to physics, which will be
revealed in our study.

There have been a number of research studies imematics education on students’
conceptual versus procedural knowledge on basiceqin of calculus (Artigue, 1991; Chapell
& Killpatrick, 2003; Engelbrecht, Harding, & Potges, 2005; Hiebert & Lefevre, 1986; Mahir,
2008). A student is said to have conceptual knogédtithe student possesses the knowledge
and recognizes its connection to other pieces oikedge. In this sense, the connection between
the pieces of knowledge is as important as the keaye itself. Procedural knowledge refers to
the rules, algorithms, and techniques that are tesedlve mathematics problems. (Hiebert &
Lefevre, 1986) Artigue investigated calculus studeanderstanding of differentiation and
integration. He found that although most of thedstus could perform routine procedures for
finding the area under a curve, rarely could thgylan their procedures. Some students did not
even realize why they were doing it. (Artigue, 1p%his finding is shared by the study of Oaks
(1987). He found that “some students are not ewarathat there are concepts underlying the
procedures they use.” (Oaks, 1987)

Mahir (2008) investigated the conceptual and pracadknowledge of 62 students who
had successfully completed a one-year calculusseodihese students were asked to solve five
calculus problems relating the concepts of integnéégral — are relation, integral as a sum of
areas, and the fundamental theorem of calculusfiidtéwo problems (1 and 2) could be solved

using integral formulas and techniques, so thesbl@ms could evaluate students’ procedural
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knowledge. The next two problems (3 and 4) coulddieed by using either the integral — area
relation or integral techniques. The last probl@nolflem 5) was more complicated and required
the students to combine many concepts, so it séovedaluate students’ conceptual knowledge.
Mabhir found that the majority of the students sisstelly solved the first two problems (92% on
problem 1 and 74% on problem 2) while there way @4P6 of the students succeeded in
problem 5 and 40% of the students did not resportdis problem. On problems 3 and 4, the
majority of the students followed the procedurghaach and there was only a small portion of
the students followed the conceptual approach.pEneentages of students following the
conceptual approach and obtained the correct assmarne 100% on problem 3 and 71% on
problem 4, while these percentages of the studembsfollowed the procedural approach were
11% and 16% on corresponding problems. Mahir cateduhat the students in his study did not
have satisfactory conceptual understanding of tmeepts being tested. He also concluded that
the students following the conceptual approach péstormed satisfactorily on procedural
calculations and had a higher success rate thastikents following the procedural approach.
He suggested that concept-based instruction miglpttb improve students’ conceptual
understanding in calculus. This suggestion was aie@ by the study of Chapell and Killpatrick
which found that “the students exposed to the gobased learning environment scored
significantly higher than the students in procettbesed environment on assessment that
measures conceptual understanding as well as pradeskills.” (Chapell & Killpatrick, 2003)
Students’ inclination to use procedural knowledagher than conceptual knowledge
might be explained by their reluctance to visuatlee mathematics problems. Eisenberg and
Dreyfus (1985) pointed out that “students had ergitendency to think algebraically rather than
visually ... even if they are explicitly and forcefupushed towards visual processing.” This
finding was supported by the studies other reseasciMonk, 1988; Mundy, 1984; Swan, 1988;
Vinner, 1989). One reason for this was pointedoyuEisenberg and Dreyfus (1991): there is a
common belief among mathematicians, teachers, tadests that “mathematics is non-visual,
regardless of whether or not a visual represemtasgiat the base of an idea.” (p. 30) This reason
was also mentioned in the study of Aspinwell andevi{Aspinwell & Miller, 1997) for the case
of calculus: “students regard computation as tisersal outcome of calculus and thus end their

study of calculus with little conceptual understisugd’
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2.3 Research in physics education

2.3.1 Students’ difficulties with mathematics in pbics

Research in physics education indicates that stadgmounter significant difficulties
when applying their mathematical knowledge andskal physics problem solving. The major
cause of these difficulties is not the studentsk laf the required mathematical knowledge to
solve the problems, but their inability to applgithmathematical knowledge to physics
problems. (J. Tuminaro & Redish, 2004) Even whedents are able to apply a particular
mathematical concept to a physics problem, theyntmgt conceptually understand the
mathematical processes although they can easily oat the calculations. (L. C. McDermott,
2001)

Yeatts and Hundhausen (Yeatts & Hundhausen, 1888gd on their teaching
experience, classified students’ difficulties wheansferring from calculus to physics in three
categories. The first category - “notation and sghsim” - included difficulties that arose from
students’ rote memory of, and hence, reliance ersyimbols used in each context. Mathematics
and physics might use the same notation or synobimlgan different things, thus causing
difficulties to students. The second category €falilty - “the distraction factor” - occurred
when the surface features of the problem prevestigdents from seeing the underlying
mathematical process in a physics problem. Thd tategory was “compartmentalization of
knowledge,” which occurred when students stored\tedge of different disciplines in different
“cabinets” and activated knowledge in each “caliinaty in the corresponding discipline.

Tuminaro (2004) investigated the reasons for sttsd@oor performance on
mathematical related tasks in physics problem eglaind the strategy for improving the
situation. He provided evidence that the major edas students’ failure in applying
mathematical knowledge to physics problem solviag wot the lack of the necessary
knowledge but the inability to apply that knowledge physics context. He proposed a
theoretical framework for analyzing students’ apgiion of mathematics in physics. This
framework identifies three levels of cognitive stiures relevant to mathematical thinking and
physics problem solving: mathematical resourceist@mic games, and frames. Using his
framework, Tuminaro cited a number of reasons tiedents’ failure to apply mathematics to
physics. These included using an inappropriateusey using an appropriate resource but
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mapping it to physics context inappropriately, jtaythe appropriate epistemic game but
making wrong moves within the game, playing theprapriate epistemic game due to incorrect
framing of the problem. He suggested reframingresféective instructional strategy that might
help students activate different resources andespis games to solve physics problems.

Bing and Redish (Bing & Redish, 2008) proposed a@hor the association of
knowledge in mathematics and physics to make sefrs@hysics equation or idea. They called
this association “the cognitive blending of mathéosaand physics knowledge.” They adopted
two types of blending described by Fauconnier amch@r (Fauconnier & Mark, 1998) to
investigate the combination of mathematical andsptaf knowledge and reasoning. These two
types of blending are called single-scope and deabbpe blends. A single-scope blend imports
knowledge elements from one input mental spacetfieeknowledge elements and patterns that
one has on a specific topic) into the organizirgre of the other mental space. A double-scope
blend “displays a blending of the organizing fraroéthe input mental spaces.” (Bing & Redish,
2008) The cognitive blending framework “emphasittessdemands students face concerning the
integration of their mathematical and physical ktemge.” and may help instructors understand
students’ thinking and provide scaffolding to prdrefudents to blend their knowledge in a
productive way for the situation at hand. Facilitgtstudents to blend their mathematical and

physical knowledge is also the ultimate goal ofttiterials we developed in our study.

2.3.2 Students’ application of the integral concaptphysics

Cui et al. (2006) investigated students’ retentiod transfer from calculus to physics.
They found that students had significant difficestidistinguishing variables and constants in an
integral as well as determining the limits of ategral. They also found that four out of seven
interviewees recognized the use of integral inysms problem by recalling the strategy they
had learned from in-class examples while the dtiere students had a rough idea of an integral
as a sum of an infinite number of small elements.

Meredith and Marrongelle (2008) investigated thsoteces that students used to cue
integration in electrostatics problems. They usedrotion of Sherin’s symbolic forms to
describe these resources. (Sherin, 2001) A symfwlic is a cognitive mathematical primitive
which allows students to “associate a simple cotuz@chema with an arrangement of symbols

in an equation.” (p. 482) Meredith and Marrongdlentified three symbolic forms that students
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used to cue integration, namely, the recall cuedipendence cue, and the parts-of-a-whole cue.
Recall is not a symbolic form because it does aotha mathematical structure, but it is
commonly used in cueing integration. The recall isudentified when students recall a
previously learned strategy when solving a probl&he dependence symbolic form is described
as “a whole depends on the quantity associatedamitindividual symbol.” The dependence cue
is identified when students decide to integrateabee there is a quantity that depends on another
guantity. The parts-of-a-whole symbolic form is ciésed as “amounts of generic substance,
associated with terms that contribute to a whdlgérpreting an integral as an accumulation of
infinitesimally small elements indicates the usgaiffts-of-a-whole cue. Meredith and

Marrongelle also found that the dependence cuemae commonly used by students than the
parts-of-a-whole cue, although “the use of the ddpace symbolic form led to inaccuracies if

the quantity being integrated was not a rate agresitly.” (p. 577) They suggested that the parts-
of-a-whole symbolic form was a more powerful arekible resource to cue integration and
proposed instructional strategies to promote stisdese of the parts-of-a-whole resource to cue
integration in physics problems.

Most recently, Wallace and Chasteen (2010) fouat phart of students’ difficulties with
Ampeére’s law was due to students not viewing thegral in Ampere’s law as representing a
sum, which aligned with the work of Manogue et(2008) on the same topic.

In our point of view, the application of integraticn a physics problem can be divided
into four steps:

Step 1: recognize the need for an integral

Step 2: set up the expression for the infinitesiquantity
Step 3: accumulate the infinitesimal quantities

Step 4: compute the integral

The work by Meredith and Marrongelle (2008) invgated the first step. Although they
did mention that students might misapply the synatfokms in setting up an integral, they did
not investigate this misapplication in details. ek of Cuiet al. (2006) mentioned some of
the difficulties students had when applying intégnghysics (i.e. step 2) but did not discuss
them in any significant detail. Our current studigla the missing piece to the picture. We
investigate students’ difficulties in all four sgepf the process, especially those in steps 2 and 3

which have previously not been discussed in daetdhe literature
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2.3.3 Students’ application of the area under theree concept in physics

There have been a few studies in physics educeggmarch that focus on how students
apply the area under a curve method in evaluatiteggrals in physics problems. McDermott et
al. (1986) investigated students’ difficulties imnmecting graphs and physics in the context of
kinematics. They identified two categories of diffity students had with graphs. First, students
had difficulties in connecting graphs to physica@epts, including discriminating between the
slope and height of a graph, interpreting changéwight and changes in slope, relating one
type of graph to another, matching narrative infation with relevant features of a graph, and
interpreting the area under a graph. Second, stadead difficulties in connecting graphs to the
real world, including representing continuous motiy a continuous line, separating the shape
of a graph from the path of the motion, represgnéimegative velocity on a/“vs. t” graph,
representing constant acceleration oraavs. t” graph, and distinguishing among different
types of motion graphs.

In a problem involving finding displacement frongi@ph of v vs.t”, students had to
find the area under the curve by counting the nurobsquares bounded by the curve and the
v=0 axis and then multiplied it by the displacemerstt tsach square represented. They found
that most of the difficulties students had weredily related to their “inability to visualize the
motion depicted by the velocity versus time gragp.”506) Students did not know which square
they should include in the “area under the curge,they counted all of the squares from under
the curve all the way to the bottom line of thedgsihere the horizontal axis was labeled. That
led to students’ difficulties in distinguishing pidge and negative areas, as well as associating
them with displacement in positive and negativeation respectively.

More recently, Pollock et al. (2007) investigatéadents’ understanding of the physics
and mathematics of process variables in P-V diagianthermodynamics. On a question asking

students to compare the work done by a gas talnogltfferent paths on the P-V diagram, they

found that successful students were those who reved that work was PdV and that this

integral equaled the area under the path.

2.4 Transfer of learning
Transfer of learning is defined as the ability pply the knowledge one has learned in

one situation to another situation. (Reed, 1998¢I8y & Anderson, 1989) Transfer of learning
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during problem solving involves the applicationtloeé knowledge and problem solving technique
one has learned in a particular problem to angthaslem. In physics problem solving, the
instructor usually solves a sample problem to destrate how a physical principle applies in a
particular or a general problem. Students are éx@ected to solve other problems involving
that principle, i.e. to transfer the problem sofytechnique they learn from the sample problem

to other problems.

2.4.1 Traditional models of transfer

The traditional models of transfer (Adams et é#988; Bassok, 1990; Brown & Kane,
1988; Chen & Daehler, 1989; Nisbett, Fong, Lehm&@heng, 1987; Novick, 1988; Perfetto,
1983; Reed, Ernst, & Banerji, 1974; Throndike & Wamrth, 1901; Wertheimer, 1959)
considered transfer from the researcher’s perspedh this perspective, transfer is a passive,
static process in which students apply the knowdetigy learn in one situation to another
situation. Transfer, therefore, depends on howlaithe learning situation is to the transfer
situation. According to Thorndike’s theory of ideatl elements, transfer from one activity to
another occurs only if the activities share commoriace features. (Throndike, 1906) On the
other hand, Judd’s theory of deep structure trarssfggest that transfer depends on how much
of the underlying principles (i.e. deep structuae) noticed by the learner. (Judd, 1908) Despite
the difference in what causes transfer to happeset two theories share a common point: the
knowledge to be transferred between situationdbas pre-defined by the researcher.

2.4.2 Contemporary models of transfer

Transfer researchers have changed their perspeditreey recognized a severe lack of
evidence supporting the previous models of trangferSanjay Rebello, 2007) Contemporary
models of transfer consider transfer from the ledsperspective. In this perspective, transfer is
an active, dynamic process in which the learnestants a new knowledge structure in the new
situation. These models focus not only on the dognaspect but also on the socio-cultural
aspect of transfer.

Lobato actor-oriented transfer (AOT) model (Lob&003) conceives transfer as the
personal construction of similarities between atés. In this model, the researcher does not
define the knowledge which the learner is expetaeidansfer. Instead, the knowledge to be

transferred depends on what the learner perces/esralar between the situations. In this sense,
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the AOT model examines transfer from the learngoisit of view rather than the researcher’s
point of view. The role of the research is to foa what students transfer and investigate the
mediating factors.

Bransford and Schwartz (Bransford & Schwartz, 1998)sider transfer from the
preparation for future learning point of view. Thee interested in whether the learners can
learn to solve problems in the new contexts. Thalietse that transfer is likely to occur if the
learners reconstruct their learning in the new exinin the same way as they did in the learning

context.

2.4.3 Consolidating traditional and contemporary mhels of transfer

Based upon Redish’s two-level framework (Redisi®f0Rebello (N. S. Rebello, Cui,
Bennett, Zollman, & Ozimek, 2007) developed a neamfework that consolidates both the
traditional and contemporary perspectives aboutste in such a way that both of these two
types of transfer are valued and promoted in legrnThis framework considers transfer as the
dynamic creation of associations between prior Kedge and read-out information from a
given situation. According to this framework, thare two kinds of associations that a learner
can make. The first kind of association occurs wadégarner assigns information read out from
the situation to an element in his or her own pkimowledge. The second kind of association
occurs when the learner establishes a link betwe=neadout information and an element of
their prior knowledge structure.

These associations are related to two differenstea processes: horizontal and vertical
transfer. Horizontal transfer involves the appiiwatof a well developed knowledge to new
situations. A learner possesses a well developeehsa for solving a problem which is invoked
when the problem is encountered. The learner $inginformation from the problem into the
schema. An example of horizontal transfer occuremgolving a simple ‘plug-n-chug’ problem.
Vertical transfer occurs when a learner encourdgmoblem that cannot be solved using an
existing schema. Then they must adapt and recandgtreir schema to incorporate new
knowledge to solve the problem. Scaffolding i®nfheeded to facilitate vertical transfer. The
ability of a learner to creatively adapt to a nawlgem is called the adaptive expertise.

(Schwartz, Bransford, & Sears, 2005) To gain adapxpertise a learner must navigate a
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sequence learning experiences involving verticdl laorizontal transfer as presented in Figure
2.1 below.

Figure 2.1 Theoretical framework showing sequences of vécal and horizontal transfer

needed to achieve adaptive expertise

The tutorials we developed to facilitate studeafglication of the integral and the area
under the curve concepts in work-energy problenbigstudy followed the horizontal and
vertical aspects of transfer. The sequence of redtamath and physics exercises in the tutorial
was intended to facilitate both horizontal and i¢atttransfer in problem solving. The math
exercises provided the opportunities to developesgntational models of the mathematical
concept, so they involve vertical transfer. Thegby exercises provided the opportunity to

apply these models in physics contexts, so theglwevhorizontal transfer.

2.4.4 The transfer in pieces framework
In our study, we also employ the transfer in pidcasmework proposed by Wagner
(Wagner, 2006) to interpret and trace the developroestudents’ application of the integral and

the area under the curve concepts in physics probtdving. This framework was developed
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based on diSessa’s knowledge-in-pieces epistemo{diiessa, 1993) In diSessa’s framework,
knowledge consists of fine-grained pieces calleghpimenological primitives (p-prims). A p-
prim is an elementary piece of knowledge whichei§-explanatory and is neither right nor
wrong. Students may explain or interpret a phygiteinomenon by activating different p-prims.
Different aspects of the same phenomenon mightteegreted by different combinations of p-
prims. For students who perceive physics as aatalle of facts, their physics p-prims are
usually not organized and the relation betweerpthems is not attended. Therefore, these
students might employ very different p-prims to lexp phenomena having different contextual
features although they share common physical piesi

diSessa also proposed a model for a particulardfgencept — a coordination class —
which is “systematically connected ways of getimigrmation from the world.” (diSessa &
Sherin, 1998) A coordination class has two majarcstiral components: the readout strategies
and the causal net. The readout strategies determonv the characteristic attributes of a concept
are seen or “read out” from a given situation. Thasal net is a class of knowledge and
reasoning strategies that determine when and havbservation is related to the desired
information. Different readout and coordinatioraggies might be required to perceive and
interpret the same concept embedded in differemtesds.

Wagner introduced the term concept projection wiscla specific combination of
knowledge resources and cognitive strategies ugeah lindividual to identify and make use of a
concept under particular contextual conditions.’a@iler, 2006) These contextual conditions
may be any surface features of the problem sucbpesentation or the cover story in which the
concept is embedded. So an individual’'s understendi a particular concept might be
supported by several different concept projectmosesponding to different situations in which
the concept is applicable. These different conpepections might share some common
knowledge resources but also contain their own kedge resources that make them applicable
in certain situations but not in others. The spla concept projection is defined as the range of
contexts across which that concept projection usmitbto be applicable (Wagner, 2006).
According to the concept projection framework, fiséer is understood not as the all-or-nothing
transportation of an abstract knowledge structaress situations, but as the incremental
growth, systematization, and organization of knalgkeresources that only gradually extend the
span of situations in which a concept is perceagdpplicable.” (Wagner, 2006, p. 10) This
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framework emphasizes the difference between havicgncept and being able to apply that
concept in different situations.

In chapter 7 of this dissertation, we will analyae performance of two students over a
semester on several problems involving the integndl the area under the curve concepts in the
light of the transfer in pieces framework. We willerpret students’ application of these two
concepts in terms of the concept projections thatents build for them and how those concept

projections are related to students’ success luréon the tasks.

2.5 Tutorials to facilitate students’ learning in ntroductory physics

As students’ misconceptions about basic physicseuts are revealed by many
researchers, effort has been put into developisiguntional materials to help students correct
those misconceptions. These instructional mateaig@sisually in form of tutorials, which are
worksheets carefully designed for students to viloikmall groups on activities in which
students’ intuitive knowledge about a physical pipte is challenged and is eventually replaced
by formal knowledge. The students are usually tgmsubjects in this process. The instructor
only acts as a facilitator to help students worbtigh the process by asking questions to probe
students’ understanding of the topic, reveal thegconceptions, and provide scaffolding if
necessary. We will discuss some of the well-knowrtals in physics below.

TheTutorial in Introductory Physic§TIP) is a well-known instructional material
developed by the Physics Education Group at theedsity of Washington. (L. C. McDermott
& Shaffer, 1998) The TIP addresses students’ misgpiions through a three-step process:
elicit, confront, and resolve. Students are firgtsented with a situation in which students’
misconceptions are found to come into play. Oneentisconception has been brought up,
students are asked questions that might lead toitbagconflicts between students’ intuitive
knowledge and the actual situation at hand. Asthdents reconsider their ideas about the
situation, the tutorial provides scaffolding tostudents build formal knowledge about the
situation.

The Physics Education Research Group at the Uniy@&isMaryland has also developed
tutorials for introductory physics, which is knowa theActivity-based Tutorial§ABT).
(Wittmann, Steinberg, & Redish, 2004) The ABT males of hands-on experiments and

microcomputer-based data acquisition techniques witich students explore the principles of
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physics themselves. This group is also the autbiotfse Open-Source TutoriglOST) which

treats students’ intuitions about the world as &hla observations that might have been
misinterpreted. (Scherr & Elby, 2007) The OST theips students recognize that their
intuitions only apply to a limited number of sitigats or certain aspects of the situation at hand,
and modify these intuitions so that they cover@alder range of situations or take into account
all aspect of the situation at hand. In other wptlde OST helps students refine their “raw
intuitions” about the physical world.

These tutorials have been proven to have postngEcts on students’ conceptual
understanding in physics compared to traditionstruction. (L. C. McDermott, 2001; L. C.
McDermott & Redish, 1999) Smith and Wittmann (SndthVittmann, 2007) compared the
effectiveness of the three tutorials mentioned alin\helping students understand Newton’s
third law in an algebra-based physics course. Bathe tutorials was implemented to one-third
of the students in the same course during the aedutorial sessions of the course. Students’
understanding of Newton’s third law after the leetibefore and after the tutorial, in course
examinations, and on the Force and Motion Concépvauation (FMCE) was investigated.
They found that all three tutorials improved studennderstanding of Newton’s third law, but
the OST was more effective than the other two tater

All of the tutorials mentioned above use guidedding method to improve students’
conceptual understanding of basic concepts indoictory physics and minimize mathematical
problem solving. Nevertheless, problem solvingrnismaportant aspect of learning introductory
physics. Many researchers have reported on thieulifes students encounter when solving
physics problems, especially their poor performamtenathematical tasks in physics problems,
as discussed in section 2.2 of this chapter. Ma#hiesis an important tool in physics and being
able to apply mathematics knowledge and skillshigsjcs problems is one of the most crucial
goals of physics instruction. In our study, we depédutorials that aim at helping students learn
to apply the integral and the area under the cooweepts to physics problems. Our tutorials
focus not only on improving students’ conceptualenstanding of the mathematical and
physical concepts, but also on improving studeaitdity to apply the mathematical concepts in

physical contexts.
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2.6 Chapter summary
In this chapter, we have reviewed the literatutategl to our research. We discuss four
main topics:
Students’ understanding of the basic conceptsloules
Students’ application of mathematics in physicbpm solving
Transfer of learning from both traditional and @mnporary perspectives
Tutorials to help students learn physical concepts.

Research in mathematics education has shown tiagrsts did not have satisfactory
conceptual understanding of basics calculus cor@mn though they could perform the
calculations fluently. Students also expressedamgtpreference on algebraic method to
graphical (visualized) method in solving calculustgems.

Research in physics education have indicated thdests had significant difficulties
applying mathematics to physics. This is not duhéolack of the necessary mathematics
resources but due to students’ inability to acévibse resources in physics contexts. Even
when students are able to activate a mathemasosiree and carry out the calculation, there is
evidence that students do not understand the paceterlying that calculation. Students’
difficulties in applying the integral and the argader the curve concepts in physics problems are
also reported.

We examine some of the tutorials developed to erdatudents’ understanding of
physics concepts. Among the most well-known tutsrgse the Tutorials in Introductory Physics
(TIP) by University of Washington, the Activity-Bed Tutorials (ABT) and the Open-Source
Tutorial (OST) by University of Maryland. Thesedtials have been reported as more effective
than traditional instruction in helping studenein basic concepts of physics. The OST is
shown to be the most effective in teaching studebtait Newton’s third law. These tutorials
aim at improving students’ conceptual understandimgy minimize problem solving. The
tutorials we create in our study also aim at he@tudents improve their understanding of
mathematical and physical concepts, but more inapdst, our tutorials aim at facilitating
students’ application of the integral and the aneder the curve concepts in physics problem
solving.

We also discuss transfer of learning from bothttaditional and contemporary

perspectives, particularly the vertical and hortabaspects of transfer. We briefly describe the
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components of our tutorials and how they fit irfte tertical versus horizontal transfer
framework. We also describe the transfer in pid@@aework, which we will use to trace

students’ conceptual development throughout o@nrigws.
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Chapter 3 - Students’ application of the integral oncept in physics

problems

3.1 Introduction

In phase 1 of the project, we investigated studgetsormance on physics problems in
which parts of the information were given as matagcal functions in algebraic and graphical
representations. In this project, a function wassaered to be in algebraic representation if it
was defined by an equation, for exampféx) = 2x* - 3x+ 1. A function was considered to be in
graphical representation if it was defined by thepé of that function with respect to its
variable.

We conducted individual teaching — learning intews with several students on a variety
of problems in mechanics and electricity and magnetin each of these interviews, the
students were asked to solve two isomorphic problem algebraic problem (i.e. a problem
involving the algebraic representation of a funeliand a graphical problem (i.e. a problem
involving the graphical representation of a funajidn the algebraic problem, students had to
calculate a physical quantity by setting up and gotimg an integral algebraically (i.e.
performing the integration). In the graphical peahl the integral must be computed graphically
by evaluating the area under the curve. We invatgdjthe difficulties students encountered
when they set up and computed the integrals iretpesblems and the hints that might help
students overcome those difficulties.

In this chapter, we will investigate students’ peniance on the algebraic problems.
Specifically, we look at how students set up aegral representing a physical quantity from the
problem statement and how they computed that iatedgebraically.

The following research questions will be addressdtis chapter:

RQ1: Did students recognize the use of the intdagrphysics problems?

RQ2: Did students understand what quantity wasgoaatumulated when calculating an
integral?

RQ3: What were the common difficulties that studesricountered when setting up and

computing an integral algebraically in a physiosigem?
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RQ4: What verbal hints might help students overctimse difficulties?

In the spring semester of 2009, 20 students weeetee from 102 volunteers enrolled in
a first semester calculus-based physics (Engingé&thysics 1 or EP1). Students present at the

first lecture of the course were offered the opyitl/ to volunteer for this study. Students were

3.2 Methodology

3.2.1 The individual teaching — learning interview

selected based on how their availability matcheith Wiat of the interviewer. The selected

students were given monetary incentive for theftipi@ation. They were paid $40 for their

participation in a series of four interviews, eachhour long. Most of these students were
freshmen or sophomores in engineering majors adddken physics in high school. Three of

them were international students. Among these 2@esits, there were 13 males and 7 females.

Table 3.1 Demographics of student participants in the spng 2009 interviews

Code
D Year Major Semester | Physics Background
S1 1 Mechanical Engineering Spring 0P High Schduldits
S2 1 Mechanical Engineering Spring 0P High Schduldits
S3 2 Architectural Engineering Spring 09 High SdH@oysics
S4 1 Chemical Engineering Spring 09 High Schooldrtsy
S5 2 Chemistry Spring 09 None
S6 1 Electrical Engineering Spring 09 High Schdwoydtcs
S7 1 Electrical Engineering Spring 09 High Schdwoydtcs
S8 2 Electrical Engineering Spring 09 High Schdoysics
S9 1 Mechanical Engineering Spring 0P High Schduldics
S10 1 Mechanical Engineering Spring 09 High Scliriglsics
S11 1 Chemical Engineering Spring 0P High Schogisikis
S12 2 Civil Engineering Spring 09 High School Phgsi
S13 1 Environmental Engineering Spring 09 None
S14 1 Mechanical Engineering Spring 09 High Scliriglsics
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S15 1 Chemical Engineering Spring 0P High Schogisikis
S16 1 Electrical Engineering Spring 09 High Schelysics
S17 1 Mechanical Engineering Spring 09 High Scliriglsics
S18 1 Open Option Spring 09 High School Physics
S19 1 Electrical Engineering Spring 09 High Schelysics
S20 1 Civil Engineering Spring 09 High School Phgsi

Each of these 20 students was scheduled for foeshonr individual interviews during
the spring 2009 semester. We will label these vie@rs as interviews 1 through 4. Each
interview occurred within two weeks after an exanthe EP1 course. The topics of the
interview problems were those had been testedeimibst recent exam.

Interview 1: One-dimensional kinematics
Interview 2: Work and energy without friction
Interview 3: Work and energy with friction
Interview 4: Work and energy in rotational motion

In each interview, a student was asked to soleetbroblems:

Original problem: A problem from the most recenaex This problem was a
typical end-of-chapter problem, and was given tip students get familiar with
the physics principles covered in the interview.

Graphical problem: A modified version of the origliproblem in which part of
the information was given as a graph of a function.

Algebraic problem: A modified version of the origirproblem in which part of
the information was given as an algebraic expressia function.

In order to investigate the effect of the problemquence on students’ performance, in
each of the interviews 2 through 4, approximatellf bf the students were given the algebraic
problem before the graphical problem (which weezhthe A-G sequence), and the other half of
the students were given the graphical problem etoe algebraic problem (which we called the

G-A sequence). The number of students followindheserjuence is presented in TabBI2.
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Table 3.2 Number of students following each sequence ihd spring 2009 interviews

Interview | A-G sequencé G-A sequence  Total
2 9 11 20
3 11 9 20
4 11 9 20

In the fall semester of 2009, fifteen students fittva spring 2009 interviews, who were

enrolled in a second-semester calculus-based phgsiase (Engineering Physics 2 or EP2) at

that time, agreed to continue with our study ircegleity and magnetism. Among these 15

students, there were 9 males and 6 females. BabBleelow provides some basic demographic

information about the students participating infdde2009 interviews.

Table 3.3 Demographics of student participants in the spng 2009 interviews

Code
D Year Major Semester | Physics Background
S1 1 Mechanical Engineering Fall 2009 High Schduoldrcs
S2 1 Mechanical Engineering| Fall 2009 | High School Physics
S3 2 Architectural Engineering| Fall 2009 | High School Physics
S4 1 Chemical Engineering Fall 2009 | High School Physics
S5 2 Chemistry Fall 2009 None
S6 1 Electrical Engineering Fall 2009 | High School Physics
S7 1 Electrical Engineering Fall 2009 | High School Physics
S8 2 Electrical Engineering Fall 2009 | High School Physics
S9 1 Mechanical Engineering| Fall 2009 | High School Physics
S10 1 Mechanical Engineering| Fall 2009 | High School Physics
S11 1 Chemical Engineering Fall 2009 | High School Physics
S12 2 Civil Engineering Fall 2009 | High School Physics
S13 1 Environmental Engineering Fall 2009 None
S14 1 Mechanical Engineering| Fall 2009 | High School Physics
S15 1 Chemical Engineering Fall 2009 | High School Physics
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Each of these students went through another sequriour interviews (interviews 5
through 8) during the fall 2009 semester. The fdrafidhese interviews was similar to that of
the spring 2009 interviews, except that there vieue or five problems in each interview. These
problems included one problem with constant quigstiénd other problems with non-constant
guantities, the information of which was providednaathematical functions in algebraic and
graphical representations. Each graphical probtethe fall 2009 interviews contained three to
four graphs of related quantities. In this semesterdid not investigate the effect of the problem
sequence on students’ performance, so all stusents given the problems in the same
sequence (the A-G sequence) in all interviews. tdpe&s of each interview were:

Interview 5: Charge distribution and electric field
Interview 6: Resistance and capacitance
Interview 7: Current density and Ampere’s law
Interview 8: RLC circuit at resonance

In all interviews in both the spring and fall 2088mesters, students were asked to think
aloud as they solved the interview problems. Vehiatls were given by the interviewer
whenever students made an error or were unableteed. All students were able to obtain the
correct answers for all problems within the one+ouit of each interview. All interviews were
video-taped and audio-taped and were fully trabscki Students’ worksheets as well as the

interviewer's field notes were also collected.

Table 3.4 The similarities and differences between the gpg and fall 2009 interviews

Semester Spring 2009 interviews Fall 2009 interview

- Individual teaching/learning interviews
- Same cohort of students

- Problems with algebraic and graphical representatad functions

Similarities
- Students think aloud as they solve the problems
- Verbal hints are provided when students make ar errare unable
to proceed
Differences | - 20 students 15 students
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- 3 problems in each interview | - 4 or 5 problems in each
- A-G sequence vs. G-A sequence interview

- Only A-G sequence

3.2.2 Rationale of the interview problems
In this chapter, we will analyze students’ perfonoeon the algebraic problems in
interviews 2 through 7 in both the spring and 28109 semesters, because these problems
involved integration. The algebraic problem in mtew 1 involved calculating kinematics
guantities (i.e. velocity, acceleration) by compgtthe derivative of the position and velocity
functions. The algebraic problem in interview 8ahxed terms matching between a general
function with a specific function for the alternagicurrent in an RLC circuit to find the

corresponding quantities. So these two problemisnwtlbe discussed in this chapter.

3.2.2.1 Interviews 2 and 3
The algebraic problems in interviews 2 and 3 wargk problems involving the

integral concept. In these problems, students diadltulate the work done by non-constant

forces by integrating the force functions, i.e. pating F (x) dx. Prior to our interviews, the

students had been taught in the lecture that thie dane by a non-constant force could be
calculated by integrating the force function widspect to the displacement. However, there
were no homework or exam problems in which thisvkedge was required, so the students did
not have a chance to practice the method prioutorgerviews. So the algebraic problems in
interviews 2 and 3 helped us determine whetheobstudents could recognize the use of the
integral concept in physics problems after they Ibaeh taught it but had not practiced on it.

These problems helped us answer the research qué&sj1.
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Figure 3.1 The algebraic problem in interview 2

A 0.1 kg bullet is loaded into a gun (muzzle len@th m) compressing a spring to a maximu
of 0.2 m as shown. The gun is then tilted at agfleaof 30° and fired.

The only information you are given about the gutha the barrel of the gun is frictionless 4
that the gun contains a non-linear spring such wian the gun is held horizontally, the
force F (N) exerted on a bullet by the spring deaves the fully compressed position varie
a function of the spring compression x (m) as gilgn

F =100k + 3000k

What is the muzzle velocity of the bullet as itMea the gun, when the gun is fired at the
angle as shown above?

m

ind
net
5 as

30°

Figure 3.2 The graphical problem in interview 3

A 0.1 kg bullet is loaded into a gun compressirgpang which has spring constant k = 6(
N/m. The gun is tilted vertically downward and thdlet is fired into a drum 5.0 m deep, fill
with a liquid.

with depthx(m) as per the following function.

F =10x + 0.6X°

The bullet comes to rest at the bottom of the drum

The barrel of the gun is frictionless. The frictabriorce F(N) provided by the liquid chang¢

00
bd

What is the spring compressig@
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3.2.2.2 Interviews 4
There is a common convention about the integraluswally use the word “integral” to

imply “the integral of the function with respectite direct variable” unless otherwise indicated.

For example, when we say “the integral ofx) ,” we imply “the integral of f (x) with respect

to x,”i.e. f(x)dx. In physics, a physical quantity may be represkeatedifferent functions of

different variables. So when we talk about “thegral of a forceF ,” for example, we might

imply F(x)dx if the force F is given as a function of the displacementor F (t)dt if the

force F is given as a function of the tinte This convention has a consequence that if wéhteac

the students that “the work equals the integrdbofe,” without stating which variable the

integral should be taken over, then students ntlgtitn any integral of force such ag= (x) dx,

or F(g)dg,or F(t)dt as representing the work, while these integralscaisly represented

different physical quantities. Students might bkeab avoid this error if they think of the total
work as an accumulation of infinitesimal work onahsegmentds of the trajectory over
which the force can be considered constant.

The algebraic problem in interview 4 was createnhtestigate whether or not students
understand what quantity was being accumulated \pleiorming an integral. In this problem,

the force was provided as a function of angulapldisement instead of linear displacement. This

difference made the integral of force with resgedts variable F (q)dq no longer represent

the total work done by the force. The total workhis sum of the work on infinitesimal segment

of the trajectory, so it must be represented byrttegyral of force with respect to linear

displacement, i.e. F (q)ds, whereds= Rdy was an infinitesimal segment of length along the

circular track spanning an angtl®y . So to get the correct value of work in this pesh) students

had to not only integrate the force function, debanultiply the value of that integral by the

pl2
radius of the track. This procedure was equivaieealculating the integraR  F(g) dg which

0

PpRI/2
equaledto  F(g)ds. Therefore, this problem required more than jhstrecognition of the
0

integral concept in the problem. It also requiracduaderstanding of what quantity was being
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accumulated when computing an integral. This probklerefore, might help us answer the

research question RQ2.

Figure 3.3 The algebraic problem in interview 4

A sphere radius = 1 cm and mass = 2 kg is rolling at an initial speeg of 5 m/s along ji
track as shown. It hits a curved section (ratRus1.0 m) and is launched vertically at point] A.
The rolling friction on the straight section is figiple.

The magnitude of the rolling friction force,o (N) acting on the sphere varies as angle
(radians) as per the following function

— 2
FI‘O|| (C7) =- 0767 - 1267 + 45
What is the launch speed of the sphere as it |etlneesurve at point A?

As the students progressed through our intervidves, had become more and more
familiar with the use of the integral in physic®plems. However, they still had difficulties
setting up the integrals from the problem statesyezgpecially when the desired quantities were
not the integral of the function with respect ovariable (such as the integral in interview 4). S
in the fall 2009 interviews, we continued investigg further the difficulties students had in
setting up the integrals by providing them a var@tproblems which required more
sophisticated understanding of the integral ascanraulation process. The research questions
RQ3 will be answered based on the results of thisstigation.

Besides investigating students’ difficulties, weravalso interested in the hints that
helped students overcome each of the difficul&ssthe research question RQ4 will be

answered together with each of the other researektipns.

3.2.2.3 Interview 5
There were two algebraic problems in interview &jol will be referred to as the
charged arch problem and the charged rod problé charged arch problem involved
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calculating the electric field due to a chargedaatits center. The charge distribution on the
arch was provided as a function of the angulartfwrson the arch. Due to the symmetry of the
arch about its vertical axis, only the vertical gmment of the electric fieldE due to each
elementary charge on the arch contributed to tta ébectric field. So the net electric field
equaled the integral of the vertical component&f only, notdE as a whole.

The charged rod problem asked students to calcthlatelectric field due to a charged
rod on which the charge distribution was given &snation of position. Because the electric
field dE due to each charge element on the rod pointseisdme direction, the net electric field

is found by integratinglE as a whole.

Figure 3.4 The charged arch problem in interview 5

You are standing at the center of the arch asablpm 1 in a stormy day. There are negatiyely

charged clouds over the arch. The charge distohlition the arch now depends on the amgle
as per the function:

/(q)=/¢cosqg

wherel ¢ is a positive constant.

(0]

(a) Indicate the charge distribution on the fighetow.
(b) Find the magnitude and direction of the eledield at your feet (i.e. at a point O on the
ground directly below the top of the arch).
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Figure 3.5 The charged rod problem in interview 5

A straight metal rod of length is lying on the ground but is insulated from thewgrd. The
charge on the rod is distributed with charge dgrggiten as per the following function:

/(X)=a x°

where:a is a positive constantx™ is the position on the x-axis relative to the ori@ as
shown in the figure below.

X Y

(a) Indicate the charge distribution on the figoetow.
(b) Find the magnitude and direction of the eledigld at your feet, located at x =0

Y

O

3.2.2.4 Interview 6

There were three algebraic problems in interviemhéch will be referred to as the
cylindrical conductor problem, the truncated-conaductor problem, and the capacitor
problem. The conductor problem asked studentsitbthe resistance of a cylindrical conductor
whose resistivity was changing along its lengthisTdonductor could be considered as a series
combination of several conductors whose lengthweag small such that the resistivity could be

considered constant over that length. The totastasce of the conductor was then the integral
of the resistance of each infinitesimal condudter,R= dR. The capacitor problem asked
students to calculate the capacitance of a cirquite capacitor. The plates of this capacitor

were of different sizes and the separation betweemplates was comparable to the diameters of

the plates. Due to these conditions, the formulgéoallel-plate capacitance that students
. eA . : . :
learned in classC ZOT , was no longer applicable. Instead, this capaaitast be considered

as a series combination of capacitors made ofibas plates, the diameters of which were
equaled and were very large compared to their adpar Because the fictitious capacitors were
1

in series, the equivalent capacitance could therabrilated by the integragg = ac’
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Figure 3.6 The cylindrical conductor problem in interview 6

Find the resistance of a cylindrical conductor eridth L, diameter D. The resistivity(x) is
changing along the conductor as per the followingcfion:

r(x)=a x
wherex is the distance from the left end of the conductor.

Figure 3.7 The truncated-cone conductor problem in intenew 6

A conductor has diameter decreasing from D to @ @sdength L. The resistivity is constaml
along the length of this conductor. Find the resise of this conductor.

Figure 3.8 The capacitor problem in interview 6

A capacitor is made of two circular conducting ptabf diameter D and d. The permittivay
of the material filled between the plates is comistind the capacitance of this capacitor.

3.2.2.4 Interview 7
The algebraic problem in interview 7 involved fingdithe total current inside a

conducting wire, so it will be referred to as therent problem. The current density in the wire
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was given as a function of the radial distance ftbencenter of the wire. The total current could
be obtained by integrating the currents in thenitésimally thin rings on the cross-sectional area

of the wire. This problem involved integrating imd dimensions.

Figure 3.9 The current problem in interview 7

A cylindrical wire of radius R is carrying a curtesf densityj = a.r (a is a constant, is the
distance from the center of the wire). Find thaltotirrent in the wire.
PA
j=ar
3.2.3 Analysis

Many physics problems involve calculating a phylsigaantity from other non-constant
guantities. Unlike typical problems in calculus tsms in which students are given the integrals
to compute, physics problems usually do not haeedetermined integrals. The problem
statement does not indicate that integrals areetetxsolve the problems. Hence, students must
be able to recognize the need for an integral arset up the desired integral from the physics
scenario described in the problem statement. Fdrdason, the first important step in solving a
problem is to recognize whether or not a problequires integration. This step is not trivial for
most students because they usually apply the f@asfubm textbook without noticing the
conditions under which those formulas hold. Fomegie, the formula for the work done by a
forceW = F xd only holds for the case in which the forEeis constant over the whole distance

d. So if the force is not constant then the workedby the forceF must be calculated by the
integralW = F xdx. Similarly, the formula for resistande = r% is applicable only for a

conductor having constant resistivity and constant cross-sectional av®along its lengthL ,
soif r or A or both of them are not constant, then the integtest be employed to calculate
the resistance. Research by Meredith and Marramgesdl mentioned in the literature review,
reveals the resources that students invoke tontagration.

The central idea underlying the integral is accwatian, i.e. adding up infinitesimal

amounts of a physical quantity to obtain the tatabunt of that quantity (e.g. resistance) or
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adding up infinitesimal effects to obtain the ta#kct (e.g. work, electric field). So to obtain a
correct integral, students must have the corrgatession for the infinitesimal elements and add
up those elements in an appropriate manner (ectpnally, reciprocally). An integral is ready

to be computed only after all these steps are dorrectly.

In summary, the application of integration in plegsproblems can be divided into four

steps:
Step 1: recognize the need for an integral
Step 2: set up the expression for the infinitesief@ments
Step 3: accumulate the infinitesimal elements
Step 4: compute the integral

A common theme observed in our interviews was aliatudents, at some point during
the interviews, expressed their understanding oheagral as an accumulation of infinitesimal
elements. However, only one or two of them were &blcorrectly set up and accumulate the
infinitesimal quantity without assistance from theerviewer. All other students were not
confident in performing the steps and needed gueldmrough the process.

In this chapter, we will analyze the difficultiesidents encountered at each of the steps
mentioned above. We will start with a general desion of the difficulties, then present
examples of those difficulties in each of the pesb$ under investigation, and discuss the
possible implications from the difficulties.

For the spring 2009 interviews, we only investigaige performance of the students who

solved the algebraic problem before the graphioatblem (i.e. followed the A-G sequence).

3.3 Results — Spring 2009 — Mechanics
The algebraic problems in the spring 2009 intergi@wolved calculating the work done

by non-constant forces provided as functions gbldissment. The formula for the work done by
non-constant forcedly = F( x) xdx, was provided to students during the lecture withts
rationale being explicitly addressed. So the sttglenght not understand the accumulation of

the infinitesimal work although they could applgttormula to calculate the work.

In the algebraic problem in interviews 2 and 3,ftiree was provided as a function of

linear displacement, i.e= (x) , SO students only needed to recall the fornwila F( x) xdx to
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calculate the work. These problems demanded no tharethe recall of a previously learned
formula. Therefore, in interviews 2 and 3, we oinlyestigate whether or not students could
recognize the use of the integral formula in catioh the work (i.e. step 1).

The algebraic problem in interview 4 was more cooapéd because the force was

provided as a function of angular displacement. ifitegral of force F(g)>dq was not yet the
value of work. The correct integral for the totank wasW = F(q) xds in which ds= Rxdy,
so the integral could also be written\Ws= R F(q) xdg. So besides the strategy of thinking
about the total work as the sum of infinitesimakkgo(integrating F (q) xds), there was an

alternative strategy of integrating~ (q) xdg then multiplying by the radiuR of the track.

Because of this alternative strategy, studentsdcalslo get the correct value for work without

understand the structure of the integrand.

3.3.1 Interview 2
There were nine students following the A-G (algebragraphical) sequence, which
means they were presented with the algebraic probkfore being presented with the graphical
problem. Conversely, 11 students in this interviellowed the G-A (graphical — algebraic)
sequence, which means they were presented withrépdical problem before being presented

with the algebraic problem. Of the nine student®¥ang the A-G sequence:

Three students spontaneously recognized that wpréded F (x)dx.

The six remaining students attempted to calcuteentork either by finding the

spring constank _F =1000+ 300 to plug in the formula for the work done by
X

a springW =% k¥ or by using the formula for the work done by astant force

W = F.d where F was the value of force at maximum compressioncawds the

distance the bullet traveled. Of these six studehtse of them recognized that

W = F( x) dx after being provided the hint that the spring tanswas not a

constant, while the other three did not recogriz® rielationship until the

interviewer explicitly told them about it.
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3.3.2 Interview 3
There were 11 students following the A-G sequemckrane students following the G-A
sequence in this interview. Of the 11 student®flhg the A-G sequence:

Four students spontaneously recognize Whiat  F( x) dx.
Errors that the other seven students made incltiddohg work using
W = F.dwith F the maximum value of force (2 students), findingrkvat two

ends and averaging (1 student), finding “coeffitienfriction” from the algebraic

expression ofF (x) (1 student). The other three students said tlegt khew that

work was either the derivative or the integralarfcke but did not know

specifically which one. Of the seven students waao érrors, five recognized
W = F(x) dxafter being hinted by the interviewer, while twid dot recognize
it until they were explicitly told so by the inteewer. The hint provided in this

interview was to guide students to think of thaktetork as the sum of works on

small segments of the path.

3.3.3 Interview 4
There were 11 students following the A-G sequemckrane students following the G-A
sequence in this interview. Of the 11 student®ofaihg the A-G sequence:

All 11 students recognized that they had to integtlae force function.

Only one of them spontaneously recognized that st tmave F (g)dsinstead

of F(g)dg.
Five students calculated the integral of forde(g)dg and multiplied by the

total distance.

Five other students just calculateé (q) dg and claimed that it was the value of

work.

All of the 10 students who had errors were ableetmgnize that they had to either take

F (g)ds or convert the unit after takingF (¢) dg to get the correct value of work after
several hints were given by the interviewer. Fadsthts who did not know what to do with the
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force function or used it in an incorrect way, thiee hint was to guide them to think of the total

work as the sum of infinitesimal woW = Fxds. For students who integrated~ (q)>dq, the

interviewer let them continue along this path uthtdy got the value of the integral. The students
were then asked about the unit of their integnad, @hen they recognized that they did not have
the correct unit of work, the interviewer assistieeim in doing the unit conversion, during which

they recognized the need for the radius factor.

3.3.4 Conclusion from the spring 2009 interviews
The algebraic problems in the spring 2009 intergigwolved calculating the work done
by non-constant forces provided as a function gpldicement. We found that not many students
were able to recognize that the work equaled ttegal of force, although they had learned

about it in the course. Many of them attempteds® pre-derived formula for the work done by a
forceW = F xd or spring forceV :% k¥ even when these formulas did not apply. Even when

the students spontaneously recognized that woréleduhe integral of force, there was
evidence suggesting that they might just recditbitn what they learned in the course without an
understanding of the underpinning of the methodstFonly one student in interview 4
spontaneously recognized that the integral washsovalue of the work. The rest of the students
simply calculated the integral and claimed thatas the value of work, which might imply their
lack of understanding of how the work was accunedalathen they performed the integral.
Second, there were some students who realizedh#nahad to either differentiate or integrate
the function but did not know which one to do. Ttast indicated that most students simply
remembered the strategy without understanding iidenlying process of integration.

We answer the research questions RQ1, RQ2, andaR@lows.

RQ1: Did students recognize the use of the intagrphysics problems?

Most of the students were not able to recognizeitieeof the integral in calculating the
work done by non-constant forces. Instead, thesngited to use pre-derived formulas to
calculate the work. Students’ inability to recognthe use of the integral might be attributed to
their unfamiliarity with the task (since studentd dot have any problems involving integral
prior to our interviews) and their strong incliratito using the pre-derived formulas rather than

attempting an unfamiliar strategy or inventing svrstrategy.

40



RQ2: Did students understand what quantity wasgoaatumulated when calculating an
integral?

The fact that some students knew that they hadltulate the derivative or the integral
of force but did not know which one suggested thase students did not understand the
physical meaning of the operators. Therefore, stisd@pplication of the integral in finding
work might simply be the recall of the previousiained knowledge (i.e. the work equaled the

integral) rather than an understanding of how tbhekwvas being accumulated.

The fact that most of the students claimed thegnalle F (q)dq in interview 4 as the

value of force indicated that these students dicdunderstand what quantity was being
accumulated when they performed the integral.

RQ4: What verbal hints may help students overcdrosd difficulties?

For students who attempted to use pre-derived flasrthey learned from the course to
calculate the work, the hints were to help thenogedze that those formulas were not applicable

to the problems at hand. For example, when a stadgampted to find the spring constant using
k =5 to plug in the formulav :% k¥ , the hint was to ask them whether the spring eomst
was actually a constant, which helped them recegthat the concept of “spring constant” did
not apply for non-linear spring and hence the fdenW =% k¥ did not apply either. The hints

that guided students to think of the non-constamane of the force triggered students’ thinking
of integration. The hints on the accumulation & iffinitesimal work to get the total work also
helped some students to set up the correct intégréthe work in interview 4, although the hints

on units seemed to be easier to understand fattigents.

3.4 Results — Fall 2009 — Electricity and Magnetism
The use of the integral concept in electricity ampnetism (E&M) is more intensive and
complicated than in mechanics. There were no prizretbformulas for calculating E&M
guantities using the integral concept that studeatslearned from the lecture as there was for
work in mechanics. So to successfully set up thegial representing a quantity in E&M,

students must understand how the infinitesimal ftyais calculated and accumulated.
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In each of the following sub-sections, we will diss the difficulties students
encountered at each of the steps of applying ttegial concept to physics problems described
in the previous section:

Step 1: recognize the need for an integral
Step 2: set up the expression for the infinitesiel@ments
Step 3: accumulate the infinitesimal elements
Step 4: compute the integral
We will begin with a general description of thefiddilties and then present examples of

those difficulties in each of the problems undeestigation.

3.4.1 Students’ recognition of integration

Most of the students in our interviews did not haignificant difficulty recognizing the
need for the integrals in the interview problems Wserved that the non-constant physical
guantity given in the problem statement was theomaje for integration.

The charged arch probleffrigure3.4) andcharged rod problenfFigure3.5) were very
similar to some of the homework and exam problemntkeé course, so all students knew that they
had to use the integral to calculate the elecigid f

Onthe cylindrical conductor problerfirigure3.6), 12 out of 15 students stated, with
different levels of confidence, that an integrabweeded because the resistivity was changing
along the conductor. The reasoning provided byestu86 Sincer isn’t constant we’re going to

have to do an integralas typical for students who were confident wiitleir reasoning. On the
other hand, the question posed by student S13,stng up the expressid%;(\—L, “Do | have

to put an integral somewherkihdicated her uncertainty about the need forrdaagral. The
remaining three students also arrived at the exmnsa;—l‘ and claimed that it was the final

answer. When the interviewer hinted that the far@wer should not contaix, these students
were able to recognize that they needed an intefinal following excerpt was typical among

this group of students.

: . axkL .
Interviewer: Is this %] your final answer?
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S3: Uh ... yes.

Interviewer:But that answer contains which is changing.

S3: Okay ... so ... should | use integration?

The truncated-cone conductor problé¢Rigure3.7) followed the cylindrical conductor
problem in interview 6. Thirteen out of 15 studewtse able to recognize that they could use the
integral set up in the cylindrical conductor prablexcept that the area was then a variable. The
other two students wrote an integral widA — the infinitesimal cross-sectional area — as the
infinitesimal term, i.e. M

dA

The capacitor problenfFigure3.8) was the last problem in interview 6. Only 12 of
15 students got to this problem within the one-hHoue limit of the interview. All of them were
able to recognize the need for an integral to stitegoroblem.

The current problenfFigure3.9) was asked in interview 7. Thirteen out of ilents
stated that they needed to have an integral taleacthe total current. The other two students
attempted to find the total current by multiplyitige current density at the surface of the wire by
the total cross-sectional area of the wire.

In conclusion, we found that most of the studeotdd easily recognize the need for an
integral in the problem. The presence of the namstamt quantities was the hint for students to
think of using integration. This finding agreesmihe finding of Meredith and Marrongelle
(2008) that the dependence cue was most commoetylusstudents to cue integration in

physics problems.

3.4.2 Set up the expression for the infinitesimalantities
In order to calculate an integral, one must knoantariable of integration. One way to
do that is to look at the infinitesimal term (edx, dr, dg, ...) in the integral. This term also

carries a physical meaning that must be understdoleé setting up the integral. For example, if

F (x) is a function of force with respect to positianthen F (x) dx means integrating the

product of the force~ (x) at positionx and the corresponding infinitesimal distartbe in the
direction of the force to obtain the total work @asver the whole distance. On the other hand,

F(t)dt means integrating the product of the foﬁ:(at) at timet and the corresponding
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infinitesimal time intervaldt to obtain the total impulse due to the force dhertotal time
interval. In these exampledx and dt not only indicate the variable of integration higo have

their own physical meanings: infinitesimal distaacel infinitesimal time interval. So it is

mathematically incomplete and physically meaningteswrite the integral asF (x) .

However, it was observed that many students inrgarviews either set up the integral without
the infinitesimal term or simply appended it to thiegrand or to whatever quantity that was
changing. These actions essentially changed thgigaiyneaning of the integrand.

The charged arch probleffrigure3.4): Starting with the formula for the electrielti
q

—

due to a point chargg = all 15 students were able to write the elecigtdfdue to a

0
1 dg
4pe, r*

The charged rod probleiffrigure3.5): This problem followed the charged arch proble

charge elementlq asdE =

in the same interview. After doing the charged amadblem, all students knew that they had to

dq
4pe, 1’

integratedE =

The cylindrical conductor probleifrigure3.6): To solve this problem, one must set up

the expressiolR= r ( x)d—: for the infinitesimal resistance of a thin slidele conductor, then

L
. , . dx . .
integrate to find the total resistang&e= r ( X)K , where A is the constant cross-sectional area
0

of the conductor. Eight out of 15 students staviét the formula of resistancB = r% and

then set up the integrﬂ:% r(x) or R:% r (x) dx. The first integral was mathematically

incomplete and the second integral did not repttesmey physical quantity. Among the remaining
seven students, one student recognized that skleche@ infinitesimal lengtiL in place ofL

in the formula, three students recognized thig &fééng reminded of the meaning bfin the
integral, and the other three students were aldettap the integral only after detailed guidance

from the interviewer.
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The truncated-cone conductor probl¢Rigure3.7): Twelve out of 15 students stated that
they could use the integral set up in the cylinareonductor problem but with area being a
variable. These students could also recognizesthae there were two variables in that integral:
x and A, they had to write one variable in terms of theeotin order to integrate. All students
needed a lot of guidance from the interviewer ifting area A in terms ofx. One student set
up the correct integral but stated that the liraftgitegral were fromd to D because the
diameter was changing. Being hinted tdatindicated integration with respect 1q hence the
limits should be the range of, this student recognized that the limits were f@to L .
Therefore, we interpret this student’s wrong chatkmits as evidence that she did not

understand thatlx indicated the integration variable. Two other students set up the integral

2
p

N|o

for resistance aRk = ;—; . These students stated that because Areas changing, they
p

Nl

used the infinitesimal are@A. Obviously, the term%;\ did not represent the infinitesimal

resistance of a thin slice of the conductor.

The capacitor problenfFigure3.8): To solve this problem, students must thih& o
capacitor with large separation between the plases combination of several capacitors made of
fictitious plates separated by an infinitesimatam€edx. This strategy was novel to many
students, so they needed hints to recognize tlae idéer the hints were provided, 10 out of 12

students were able to set up the correct exprefsidhe capacitance of a capacitor with

e : A( X
infinitesimal separatiorx between the platestC = e#. The other two students used the
X

differential areadA and gotdC = edTA. This error was similar to the error observedhia t

: rL . . .
truncated-cone resistor problem, where studentsahgchs the infinitesimal resistance. This

type of error suggested that these students setnsaahply prefix “d ” to whatever quantity that
was changing (i.e. areA in these cases) without understanding the meafitige infinitesimal

term in the integral.
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The current problenfFigure3.9): The correct expression for the infinitesiroatrent in

the wire is j (r JdA, where j(r) is the current density at a distancérom the center of the wire

and dA is the area of an infinitesimally thin ring on ttr@ss-section of the wire. Thirteen out of

15 students made mistakes similar to those obsemvida@ cylindrical conductor problems: they

setupl =A j(r) orl =A j(r)dr, whereA was the total cross-sectional area of the wire.

When the interviewer reminded the students abautdimulal = j(r )dA, all of the students

agreed that they had seen it before but then ftaleell whatdA meant in that formula.

In conclusion, we found that students’ failure @ttig up the expression for the
infinitesimal quantity was due to their lack of @nstanding of the physical meaning carried by
the infinitesimal term (e.gdx, dr, dg ...). This lack of understanding caused studenigrtore
the infinitesimal term or to simply append it t@timtegrand, or even to preftk to whatever
guantity that was changing when setting up theesgon for the infinitesimal quantity. All of

these actions essentially changed the physical imgaithe expression being set up.

3.4.3 Accumulating the infinitesimal quantities

It was observed in our interviews that after hawangprrect expression for the
infinitesimal quantity, almost all of the studestarted integrating that expression without
attention to how these quantities should be adged u

The charged arch probleffrigure3.4): The electric field€lE due to the infinitesimal
elements of charge on the arch must be added vedtoEight out of 15 students in our
interview did not notice the vector natured and integratedlE as a whole, while the other
seven students used symmetry to argue that only-toenponent of the electric field due to
each charge element contributed to the total Aeld integrated only the y-componentdi .

The charged rod probleiffrigure3.5): The electric field€lE due to all infinitesimal

elements of chargdq on the rod were pointing in the same directiothsototal field could be

obtained by simply integratindE . So even though all of the students could dodtap, we
could not conclude whether they understood that Were adding vectors having the same
direction or just integrated the infinitesimal qtign
The cylindrical conductoandthetruncated-cone conductor problerfiigure3.6 and
Figure3.7): The slices that made up the conductor wenaetted in series, so the total
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resistance could be obtained by adding up theteesis of these slices. When the thickness of
each slice became infinitesimally small, this wescaplished by integratindR. Similarly, in
the current problenfFigure3.9), because the currents in all thin rings thatlenup the cross
section of the wire were in the same direction,tttal current could be obtained by integrating

the infinitesimal currentdl in each ring. In these cases, the total quantitez®e obtained by
simply integrating the infinitesimal quantitiex.iR= dR and| = dl, so we could not

conclude whether or not students really understwd the infinitesimal quantities should be
accumulated.

The capacitor problerfFigure3.8): The capacitor in this problem could be viewsd
series of capacitors whose plates were separatadsinall distance. The equivalent capacitance
could be found by adding the capacitance of eadivitlual capacitor reciprocally, i.e.

1.1 +—1 +... which becamei = d_lc when the separation between the plates became

Co G G C.,
infinitesimally small. This problem demanded mdrart just integrating the infinitesimal
guantities to obtain the total quantity. It alsqueed an understanding of integration in
association with the physical situation of the peah

Out of 12 students who attempted the capacitorlpnoponly two students recognized

that they had to integratgla. The other 10 students integraté@ and got the integral

LOA(X

C= dC= e#.These students immediately recognized that titeggral haddx in the

X
0

denominator, so they attempted to brihgto the numerator although they could not give a
reason why they could do that. The interviewer toagive hints to cue students’ attention to the
arrangement of the capacitors. The following excerpypical in this situation.

Aaron ... since L is going to turn intdx | think ... but to make that ... it should lokx

2

pd?

in the denominator ... [Wroteedi and then flipped the integrand]
X

0
Interviewer Why did you flip it?
Aaron Well, so thatdx is in the numerator.

Interviewer You must have a reason for flipping the integrand
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Aaron Oh, okay ...

Interviewer What does your integrand mean?

Aaron Like if you slice it up it's just one of the séis.

Interviewer Okay, but when you add up capacitance, you mustvkhow the capacitors
are connected, that is, in parallel or in series.

Aaron Um ... it doesn’t say.

Interviewer Look at how the plates are arranged.

Aaron Um ...

Interviewer You should draw some of the fictitious platesé@ how they are arranged.

Aaron [draws the plates] Okay ... so ... they are in seaesn’t they?

Interviewer Yes, and what is the equation for capacitoreies?

Aaron It's the one over thing.

Interviewer So how should you integrate in this problem?

Aaron Well ... because integral means sum ... and | hawso.the integral is ... [writes
1
E]

In this excerpt, Aaron indicated an understandinipn® meaning of the integrandf({ou
slice it up it’s just one of the slicgsthe structure of the integrand (i.éx must be in the
numerator), and the formula for capacitors in sefi#’s the one over thing. However, he was
not able to recognize that the capacitors wereiies until he drew the fictitious plates between
the two plates of the capacitor. Similar situatiats® occurred with other students who

integrateddC . This evidence suggested that students’ lacksafalization of the physical

scenario might account for their disregard of hbes quantity should be accumulated.

3.4.4 Computing the integral
The last step in applying integration to physiasigems is to compute the integral set up
in the previous three steps. This was expecte@ @mnbeasy task for students because they had
practiced computing integrals in their calculusrses. However, students still had some

difficulties with computing the integrals in outt@émview problems.
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The charged arch probleffrigure3.4): Upon having the integral for the electriddie
dg

4pe, ra

due to the arclE = cosg, 13 out of 15 students were unable to recall ¢tetion

dg =/ ds between the charge elematd and the lengthds of that element along the arch.

Eleven out of 15 students could not relate infsiiteal length of the arc to the infinitesimal angle

it subtended at the centeds= rdg . After the variable conversion, the resulting difrgxd

pl2
integral was  cos gdg . All 15 students needed to be given the equation
-pl2

cos g :%( 1+ cos Z) and two of them needed assistance in computingtegral explicitly.

The charged rod probleiffrigure3.5): Students’ difficulties with computing the égiral
in this problem were due to students’ inabilityriterpret the physical meaning of symbols.
Twelve out of 15 students interpretedn Coulomb’s law as “radius,” so they were unable
decide whether was a constant or a variable in the integral. Theeged rod problem came

right after the charged arch problem, so all sttslerere then able to writdq =/ ds, but then

11 of them were not able to recognize ttat dx in this problem.

The cylindrical conductor problelfrigure3.6): The integral in this problem was very
simple so all students were able to compute itoutrassistance from the interviewer.

The truncated-cone conductor and the capacitor f@ois(Figure3.7 and Figur&.8)
The most difficult part of computing this integraas to figure out the expression for the cross-

sectional area as a function of position. Howelecause it was not the purpose of the interview

to test students’ geometric skills, the expresﬁimnA(x) was provided to the students if they

L
failed to get it after a few attempts. The resgltsimplified integral was ddx 5 7
° D+—Zx

whereD, d, L were constants. Only two students succeeded ipebtng this integral using
substitution. Others needed to be given the resulte integral. In the truncated-cone conductor
problem, one student set the limits of the integeadl and D (i.e. the diameters of the

conductor at two ends) based on the fact thatidmaeter was changing. The same error was
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made by five students when solving the capacitoblem, including those who had the correct
limits for the integral in the truncated-cone coctmu problem.
The current problenfFigure3.9): The most difficult part of computing the igtal in this

problem was to write the differential cross-seaticareadA in terms of the distance from the

center of the wire. Asking students to take thévadive of the cross-sectional arde= pr?
helped students derive the expressildy= 2prdr. The resulting integral was very simple, so all
of the students were able to compute it.

In summary, we found that students encounteredr@beuof difficulties in computing
the integrals in physics problems. Some of theSeudlties could be attributed primarily to
students’ misunderstanding of the physical meaofrgymbols in the integrals. Other
difficulties arose when students could not recalib mathematical equations. A few students
still had difficulties determining the limits ofeéhintegrals. Many students were unable to

compute mathematical integrals.

3.4.5 Conclusion from the fall 2009 study

In this study, we took a close look at studentsiaglproblems involving integration in
the context of electricity. We found that studeriésiure in applying integration to our interview
problems occurred when students set up the expres®r the infinitesimal quantities and
accumulated those quantities using integral. Thi@§eulties might be attributed primarily to
students’ inability to interpret the meaning of thénitesimal termdx in the integral, and to
students’ disregard of how the quantities mustduied up. A few students still had difficulties
recognizing when an integral was needed in a pnob&udents also had difficulties in
computing the integrals they had set up, mostlyabse they were unable to interpret the
physical meaning of the symbols and to invoke basthematical equations.

We answer the research question RQ3: What areotihenon difficulties that students
encounter when solving problems in electricity ilwitag integration? Students generally did not
have significant difficulty recognizing the need fotegration in a problem. However, students
did have significant difficulties setting up andwouting the desired integral. These difficulties
included setting up an incorrect expression foritifi@itesimal quantity and/or accumulating the

infinitesimal quantities in an inappropriate manr2etermining the limits of the integrals,
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relating variables in an integral, and computing ititegrals algebraically were also the
difficulties faced by some of the students.

These findings align with those from other reseancistudents’ difficulties with
integration. We found that the non-constant quemjiken, either mathematically (e.g. resistivity
as a function of position, charge distribution darection of angle) or pictorially (e.qg. figure af
conductor with changing diameter), in the probleatesnent was the cue for most students to
think of integration in a problem. This finding saguts the conclusion of Meredith and
Marrongelle (2008) that the most common resouraedtudents use to cue integration is the
dependence cue. However, the dependence cue,rasgout by Meredith and Marrongelle, is
only helpful when the non-constant quantity is agiy or a rate of change. This finding also
aligns with the fact that many students in our gtizaled to set up the correct integral in
problems involving non-constant quantities whichreweot rates of change (e.g. resistivity,
diameter).

Although most of the students indicated an undedstey of integration as an
accumulating process, they were not confident myazg out the process and needed detailed
guidance from the interviewer. Some of the studbatsdifficulties determining the limits of
integral. These observations are similar to thesedbed by Cuet al. (2006).

Our study extends the literature on students’ disetegration in physics problem
solving. We found that the major difficulties studte encountered when attempting to set up an
integral in a physics problem were due to studdangility to understand the infinitesimal term
in the integral and failure to understand the motibaccumulation of an infinitesimal quantity.

Meredith and Marrongelle (2008) suggested thaptrés-of-a-whole symbolic form was
a more powerful and flexible resource to cue irdégn and proposed instructional strategies to
promote students’ use of this recourse as a cuatiegration in physics problems. Our study
pointed out that setting up a correct integral phgsics problem requires more than recognizing
the need for an integral. It also requires settipghe correct expression for the infinitesimal
guantity that each “part” represents and accummgatiat quantity in a correct manner. There
were several students in our interviews who meetiathe sum of infinitesimally small elements
(although they did not use that terminology) at sqroint while solving the problems, indicating
that they had a rough idea of the parts-of-a-wheéeurce, but then set up the incorrect
expression for the “part” or did not pay attenttorhow the “parts” should be added up. So we
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expand upon the conclusion of Meredith and Marrtiadbat although the parts-of-a-whole
symbolic form is the most powerful and flexible wiaythink of integration, it does not

guarantee the correctness of the integral thadtigs.

3.5 Limitations and future work

The research methodology used in both the spril0§ 20d fall 2009 studies was
individual interview. This method allowed us to gaietailed insight into students’ performance
on the problems and also enabled us to interviewstime students several times on different
topics during the two semesters. On the other hitwedndividual interview method limited the
number of student participants in the study. Thegee only 20 students in the spring 2009 study
and 15 students in the fall 2009 study compareddee than 200 students enrolled in each of the
courses from which the interviewees were recruibae to this fact, the major limitation of this
study is the generalizability of its findings.

Based on our interview findings, we plan to devdlaprial materials to address
students’ difficulties with integration in physipsoblems and implement them with all of the
students in the course (usually around 200+ stg)lémfuture semesters when the courses are
offered to test the effects of those materialsdalpimg students learn to solve physics problems

involving integration.
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Chapter 4 - Students’ application of the area undethe curve

concept in physics problems

4.1 Introduction
In this chapter, we investigate how students sphagsics problems in which part of the
information is given as a graph. Specifically, wel at how student use the area under the curve
concept to calculate a physical quantity. We exantie following research questions:
RQ1: To what extent did students recognize theofiliee area under the curve in
physics problems?
RQ2: To what extent did students understand whantiy was being
accumulated when calculating the area under a @urve
RQ3: To what extent did students understand tlaioelship between a definite
integral and the area under a curve?
We will analyze students’ performance on the greghproblems in interviews 2 through
7 in the spring and fall 2009 semesters. In intaxa 2 through 4, the graphical problems
involved calculating the work done by non-consfantes from the graphs force functions. In
interviews 5 through 7, the graphical problems lmgd computing pre-determined integrals
using the area under the curve concept. The grapmioblem in interview 1 involved
calculating kinematics quantities (i.e. velocitgcaleration) by computing the slope of the curve.
The graphical problem in interview 8 involved reaglout information from a graph. So these

two problems will not be discussed in this study.

4.2 Rationale of the interview problems
The interview problems were designed to help usvanghe research questions
mentioned above. In the spring 2009 interviews,pyablems aimed at exploring whether or not
students could recognize the use of the area uhdeurve concept in physics problems, and
whether or not students understood what quantéyatiea under the curve represented. These
problems helped us answer the first two researeistqans:
RQ1: To what extent did students recognize theofiseea under the curve in

physics problems?
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RQ2: To what extent did students understand whantfy was being
accumulated when calculating the area under a @urve
In the graphical problems in interviews 2 and 3(ffe4.1 and Figuré.2) students had

to calculate the work done by non-constant forgesualuating the area under the curve of force
versus linear displacement. Prior to our intervietive students had been taught in the lecture
that the work done by a force could be calculasidgiarea under the curve of force versus
displacement. However, there were no homework amegroblems in which this knowledge
was required, so the students did not have a charm@ctice the method prior to the interviews.
So the graphical problems in interviews 2 and 3hiigelp us determine whether or not students
could recognize the use of the area under the aoneept in physics problems after they had

been taught it but had not practiced on it.

Figure 4.1 The graphical problem in interview 2

A 0.1 kg bullet is loaded into a gun (muzzle len@th m) compressing a spring as shown.
The gun is then tilted at an angle of 30° and fired

The only information you are given about the guthat the barrel of the gun is frictionless
and when the gun is held horizontally, the netddfN) exerted on a bullet by the spring gs
it leaves the fully compressed position varies asation of its position x (m) in the barrel s
shown in the graph below.

What is the muzzle velocity of the bullet as itdea the gun, when the gun is fired at the 3Q°
angle as shown above
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Figure 4.2 The graphical problem in interview 3

A 0.1 kg bullet is loaded into a gun compressirgpang which has spring constant k = 600D
N/m. The gun is tilted vertically downward and thdlet is fired into a drum 5.0 m deep,
filled with a liquid.

The barrel of the gun is frictionless. The resistaforce provided by the liquid changes with
depth as shown in the graph below. The bullet aotoeest at the bottom of the drum.
What is the spring compressigr?

The graphical problem in interview 4 (Figute3) was designed to answer the research
guestion RQ2. This problem also involved finding thork done by a frictional force using the
area under the curve concept. However, the grapiged in this problem was the graph of
force versus angular displacement instead of lidegplacement, so finding the area under the
curve meant accumulating the product of force arglea which did not yield the total work.
Students had to convert angular displacement ingait displacement along the circular track by
multiplying the angular displacement by the raditithe track. So to get the correct value of
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work in this problem, students had to not only akdte the area under the curve, but also

multiply that area by the radius of the track. Timiecedure was equivalent to calculating the

pl2 PpRI2

integral R F(g) dg which equaled to  F(g)ds, whereds= Rdy was an infinitesimal

0 0

segment of length along the circular track spanaimgngledg . Therefore, this problem

required more than just the recognition of the aneder the curve concept. It required an
understanding of what quantity was being accumdlateen computing the area under the
curve. Without such an understanding, students tnaigim the area under the curve itself as the
value of the work. This problem, therefore, couddiphus determine whether students understood
what physical quantity the area under the curveasgmted or just applied the knowledge of

“work equaled area under the curve of force” withoaderstanding its underpinnings.

Figure 4.3 The graphical problem in interview 4

A sphere radius = 1 cm and mass = 2 kg is rolling at an initial speeg of 5 m/s along ai
track as shown. It hits a curved section (radkus 1.0 m) and is launched vertically at point
A. The rolling friction on the straight sectionnsgligible.

The magnitude of the rolling friction force acting the sphere varies as anglas per the
graph shown below. What is the launch speed o$pinere as it leaves the curve at point A
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As students proceeded through our interviews irspgreng 2009 semester, they had
become familiar with the use of the area underctirge concept in physics problems. Another
issue arose: Most of the students could state‘tinatintegral equaled the area under the curve,”
but did they know which curve? In other words, wktuidents had an integral and more than one
graphs, did they know which area under the curve @gaal to the integral? Obviously, in order
to choose from several graphs the one correspondiagre-determined integral, students had
to understand the relationship between integralaaad under the curve. So our problems in the
fall 2009 interviews were designed to help us amghe third research question:

RQ3: To what extent did students understand tlaioeiship between a definite integral
and an area under a curve?

In each of these problems, students had to caécalghysical quantity (e.g. electric field,
resistance, electric current) by evaluating a dtefiimtegral. Explicit expression of the integrand
or part of the integrand was not given. Insteaadesits were provided with several graphs of
guantities related to the integrand. Students badhbose the graph on which the area under the
curve equaled the integral at hand. These probtemlsl help us determine whether students
understood how a definite integral was relatedntar@a under a curve.

In the next sections, we will present our findifigsn the interviews and discuss how
these findings help us answer our research quaestie will use pseudonyms S1 to S15to
identify the students.

4.3 Results — Spring 2009 — Mechanics

4.3.1 Students’ recognition and understanding oftlarea under the curve concept
The graphical problems in interviews 2, 3, andvblned calculating the work done by
non-constant forces from the graphs of force velisear or angular position. We found that in
interviews 2 and 3, most of the students attemfiexlculate the work by using pre-determined
formulae for the work done by constant forces. Upeimg asked to think of another strategy to
find work, only a few students were able to recagrthat they could instead calculate the area
under the curve of force. Other students only raczegl the use of the area under the curve after

hints or detailed guidance were provided by therinewer. In interview 4, students had become
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familiar with the task, so most of them spontangostated that work equaled the area under the

curve of force. However, as discussed above, staded to multiply the area under the curve

by the radius of the circular track to obtain tleerect value of the work done by the rolling

friction force. Only one student could recognize tieed for the radius factor without assistance

from the interviewer. Many other students did noderstand why they needed a radius factor

even after hints or detailed guidance were provigethe interviewer.

We classified students’ performance into threelkve

getting the correct answer spontaneously, i.e.ouitimints from the interviewer.
getting the correct answer after a few hints gilvgithe interviewer. The hints
given were to ask students to think about the &iraof the equation for work or
its unit: Work is the product of force and displa@nt, and the unit of work is the
product of units of force and displacement. Thewlehts were asked to think
about how such a product could be obtained frongthph (i.e. multiplying the
guantities on the vertical and horizontal axes,ciwl@ssentially yielded the area).
getting the correct answer after detailed, steteyp guidance from the

interviewer.

We will now discuss students’ performance on edadheproblems.

4.3.1.1 Interview 2

The graphical problem in this interview involvedding the work done by a spring.

There were two possible strategies for calculatiregwork done by the spring force in this

problem:

finding the area under the curve of force

finding the spring constark. Because of the linear dependence of spring force
on displacementR = - kx) in this problem, the spring constantequaled the

magnitude of the slope of the line. Then the washkealby the spring force could
be found from the equatiow -1 k¥ , wherex was the maximum spring

compression.

Only one out of 11 students following the G-A setgeespontaneously stated that work

equaled the area under the curve of force versiardie, and used the first strategy to calculate
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work. The other 10 students followed the secoratetyy and also obtained the correct value of
work. When these students were asked to think ottem strategy to find the work done by the
spring force, 6 students could recognize that veapialed area under the curve of force after
hints. The other 4 students stated that the arghtrhave a physical meaning but were not able

to recall what the meaning was until being toldlexby by the interviewer.

4.3.1.2 Interview 3

The graphical problem in this interview involvedding the work done by the resistance
force of a liquid. This work might be found by find the area under the curve of force. Only 3
out of 9 students who followed the G-A sequencentsgreously stated that work equaled area
under the line. Three other students attemptededhe equation for the work done by the

frictional force on a horizontal flooV = F xd =mmgc in which the coefficient of frictionn

was the slope of the curve. Another student stitaddthe slope of the curve was the value of
work. The remaining 2 students attempted to usedquationWW = F xd where F was the value
of force at the maximum point on the graph. Of@rstudents who did not spontaneously
calculate area under the curve, 3 recognized tbdt would be calculated using the area under
the curve after hints, while the other 3 were rdé do recognize it until being told explicitly by

the interviewer.

4.3.1.3 Interview 4

This problem involved finding the work done by tioding friction force on a circular
track. This could be done by finding the area urtdercurve and multiplying this area by the
radius of the track. Only one out of 9 studentkfeing the G-A sequence spontaneously set up
the correct calculation and obtained the correlttevéor the work. Five other students
spontaneously stated that the area under the ewasehe value of work. Of these 5 students,
upon being told that the area itself was not tHaevaf work, only 2 students recognized the
need for the radius factor while the other 3 stisleid not know what was missing and needed
detailed guidance from the interviewer. The renrajrthree students needed detailed guidance

on both recognizing the use of the area underuineecand the need for the radius factor.
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4.3.2 Conclusion from the spring 2009 study
Table4.1 summarizes the number of students (out ofdtad)twho obtained the correct

value of work using area under the curve withoatdjiwith hints, and with detailed guidance.

Table 4.1 Students’ performance in the spring 2009 intefiews

_ Correct without Correct after Correct after
Interview

hints hints detailed guidance
1/11 6/11 4/11

2 S16 S1, S2, S4, S8,| S3, S7, S11, S12

S19, S14

3/9 3/9 3/9

3

S16, S10, S15 S2, S6, S12 S3, S11, S13

1/9 2/9 6/9

4 S9 S6, S10 S5, S17, S18, S13,

S15, S20

From Table4.1, we see that only a few students (S9, S10, S$16) could spontaneously
recognize the use of the area under the curvelenleéing work when the graph of force versus
displacement was provided. Student S16 followedt& sequence in interview 4 so he was not
included in the analysis of the graphical problemthis interview. In this problem, both of the
students S10 and S15 spontaneously stated thafottkedone by the rolling friction force was
the area under the curve of force versus angle.dDtiteem (S10) could recognize the need for
the radius factor after being told that the arsealitwas not the value of work. The other student
(S15) only obtained the correct value of work attetailed guidance from the interviewer.
Student S9 was the only one who could calculatetineect value of work in the graphical of
interview 4 without any assistance. However, hiofeéd the A-G sequence in interviews 2 and

3, so he was not included in the analysis of tlobl@ms in those interviews..
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We answer our first two research questions asviallo
RQ1: To what extent did students recognize theofiseea under the curve in
physics problems?

The majority of students in our interviews did spontaneously recognize the use of
area under the curve in calculating work from thegpb of force. There were two possible
explanations: (i) students were not familiar witle inethod; and (ii) students held strong
preference on algebraic method. The fact that retugents were able to recognize that work
equaled the area under the curve as they progrédssed)h the interviews suggested that
students gained familiarity with the concept. S@nalents, while talking to the interviewer after
the interviews, stated that they had not seen anlyigm using the area under the curve in their
physics homework or exam. On the other hand, staddso expressed an inclination to an
algebraic approach even when a graph was providesl attempted to use pre-derived
formulae for work and just used the graph to coltexta on the values of spring constant or
coefficient of friction to plug in those formulaBome students explicitly told the interviewer
that they hated problems with graphs and prefes@ding with equations. These facts
supported the second explanation.

RQ2: To what extent did students understand whantiy was being
accumulated when calculating the area under a @urve

In the graphical problems in interviews 2 and &, @nea under the curve itself was the
value of work. So when a student recognized thakwqualed the area under the curve, we did
not know whether he understood how work was accatedlwhen calculating the area or he just
applied what he was taught in the lecture. Theneewiaur students in interview 2 stated that the
area had some meaning but were not able to tell thkameaning was, and three students in
interview 3 stated that the slope of the line weesdoefficient of friction. These were evidence
that these students did not understand what qyahgtslope and the area represented.

In the graphical problem in interview 4, findingetarea meant accumulating the product
of force and angle, which did not yield the totalnu Six out of 9 students spontaneously stated
that work equaled the area under the curve, byt@amé of them recognized the need for the
radius factor without assistance from the internaewrhis was further evidence that although

students could invoke the knowledge of “work eqdalee area under the curve of force,” they
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might not understand what quantity was being acdated when calculating such an area.

Therefore, they failed to apply that knowledge avel situations.
4.4 Results from the fall 2009 study

4.4.1 Matching a definite integral with an area ued the curve

The graphical problems of interviews 5, 6, andvblned evaluating definite integrals
using the area under the curve concept. All 15esttgd(S1 to S15) participating in these
interviews solved the algebraic problems priot® graphical problems. Each of these graphical
problems provided three or four graphs describivggrelation between the related quantities in
the problem. Students had to select among thephgthe one in which the area under the curve
was the value of the integral they encountered vaodving the problem.

We found that most of the students preferred comguhe integral algebraically to
evaluating it graphically. Students attempted mal fihe algebraic expressions for the functions
from the given graphs to plug into the integrald aamputed them algebraically. Students
considered evaluating the integrals using the angl@r the curve only when the integral was too
complicated to be computed algebraically or whexets were unable to find the explicit
expressions for the functions. About half of thedsints in each interview were able to select the
appropriate graph to find area (i.e. the grapthefihtegrand), while others needed hints on this
task. The hint provided to the students in thigagibn was to draw a graph of an arbitrary
function f (x) and have students label the axes of the graphteactlthe area under the curve

b
from x = a to x=b equaled the integral f (x) dx. This exercise, which directed students’

a

attention to the relationship between the integramdi the function being plotted, helped most of

the students recognize the correct graph to fiecatiea.
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4.4.1.1 Interview 5
Figure 4.4 The graphical problem in interview 5

You are standing at the center of the arch asablpm 1 in a stormy day. There are negativtly
charged clouds over the arch. The charge distobuin the arch now depends on the ag
as per one of the graphs shown.

(a) Indicate the charge distribution on the figboetow.
(b) Find the magnitude and direction of the eledield at your feet (i.e. at a point O on the
ground directly below the top of the arch)

The graphical problem in interview 5 is presenteéigure4.4. In this problem, students
had to calculate the electric field due to a chdrgeh on which the charge distribution was a

function of the angular position. According to Camlb’s law, the electric field due to the arch at

pl2

/ g )cog dy . Students were provided with the graphs b{")

its center was =
4pe R i

vs.q",“/ @ )sig vs.q”, and “/ {7 Jcog vs.q", and had to evaluate the integral
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pl2
/ (7 )cos'/ d7 . The value of this integral equaled the area utftecurve of 7/ @ )cos/ VS.

-pl2
g” (i.e. the second graph in the problem statemgoth - p/2 to p/2. One out of 15 students

attempted to find the algebraic expression/‘f@) to compute the integral algebraically. Four

other students did not know what to do with thepgsa Upon being provided hints on the
relation between a definite integral and an aredeua curve, two of them were able to choose
the correct graph to calculate the area underuhes¢cwhile the other two students needed
further hints to recognize the correct graph. Guhe 10 students who spontaneously
recognized the relation between the integral aecatiea under a curve, four students were able
to choose the correct graph. The remaining sixesttgdinitially chose the incorrect graph and
needed hints to recognize the correct one. Thestinese students made included: finding area

under the curve of /{7 ) vs. g” (S11, S14, and S15) because they were “integyatify )”;
multiplying the area under the curve df(,‘/ ) vS. @” by cosg (S6); choosing the graph of
“/ g )sig vs.q” because ‘“its area was easy to calculate” (Sif);ralating the area with the

anti-derivative of the integrand (S13).

4.4.1.2 Interview 6

The graphical problem in this interview is preseénteFigure4.5. This problem asked
students to calculate the resistance of a condwdtose resistivity and diameter were changing
along its length. The resistance of this resistaiat be calculated by evaluating the integral
2 r (x) dx

=LA

, where r (x) and A(x) were the resistivity and the cross-sectional afehe
0

conductor at positiorx. The graphs of # (x) vs. x”, “ A(x) vs. x", “ r (x)xA(X) vs. x", and

r . . . .
“ ﬂ vs. X” were provided. Obviously, the value of the intdor the resistance equaled the

A(x)
area under the curve OA‘:EX; vs. x” (i.e. the fourth graph in the problem statemdrdin 0.0
X

m to 2.0 m.
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Figure 4.5 The graphical problem in interview 6

A conductor has diameter decreasing from D to @ dgdength L. The resistivity of this
conductor along the x axisligx) and its cross-sectional areadi<). The graphs of (x) vs. X,
A(X)vs.x, (X).A(X)vs.x, and (X)/A(x)vs.x are given. Find the resistance of this conductgr.

Three out of 15 students were able to choose tirecta@yraph to evaluate the integral.
Among the other 12 students, eight attempted topcenthe integral algebraically by finding

the algebraic expressions fr(x) : A(x) and plugging in the integral. The expression for
r (x) could be easily obtained from the linear graph o(x) vs. x”, while the expression for

the area functioA(x) had been derived in the algebraic problem whichecaefore this

problem. However, the obtained integral was too plarated for algebraic computation, so these
8 students considered evaluating the integral usiag under the curve and all of them were able
to pick the correct graph. The remaining four stug@vere not able to choose the correct graph
until being hinted by the interviewer. The errdiege students made could be attributed to their
misconceptions about basic properties of integndlthe relationship between an integral and

the area under a curve.
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4.4.1.3 Interview 7

The graphical problem in interview 7 is presente&igure4.6. In this problem, students

were asked to calculate the total current in a wameying a current with current densi]‘.)(r)

changing across its cross-sectional area.

Figure 4.6 The graphical problem in interview 7

A cylindrical wire of radius R = 2 cm is carryingcarrent of density which depends on the
distance from the center of the wire as per the graphsrgit#nd the magnitude of the
magnetic field caused by the wire at a point Ptesurface.

2
The equation for the current in this problem was2p | (r )rdr . Students were given

0
the graphs of §(r) vs.r”, “rj(r) vs.r”, “r?j(r) vs.r”, and @ vs. r”. The value of the

integral in the current equation equaled the aregeuthe curve of fj (r) vs.r» (i.e. the second

graph in the problem statement) from 0 cm to 2 Nime out of 15 students were able to choose

the correct graph. Four other students chose jlﬁe)“vs. r " graph for the reason that the
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current densityj (r) was being integrated. The remaining two studemise the m vs.r”
r

graph because its area was easy to calculate.

In summary, almost all of the students indicatedwdedge that an integral equaled the
area under a curve. However, when provided witessd\graphs, students had difficulties
identifying the graph on which the area under tlnee was the value of a certain integral. There
were four common errors that students made in tegethe graph:

relating only one part of the integrand with thadtion being plotted (e.g.

pl2
equating /{7 Jcog dy with the area under the curve of {7 ) vs. g”, or

-pl2

2

j(r)rdr with area under the curve of {r) vs.r");
0

relating the area with the integrand (e.g. equatiegarea under the curve of

“r(x) vs. x” with the value of the functior (x) in the integral

R= () dx );
o A(Y
identifying the graph to find the area based onsihglicity of the area
calculation (e.g. choosing a graph because thecalealation was
straightforward);
applying incorrect properties of integration (eequating the integral of a
guotient with the quotient of integrals).
In the next subsection, we will discuss studentsconceptions about integration and the

area under a curve.

4.4.2 Students’ misconceptions about the integral the area under the curve
Our interviews also revealed some students’ misgptians about basic properties of
integrals and the relationship between the intsgral the area under a curve. These
misconceptions were the integral equals the ardanthe curve of the anti-derivative of the
integrand, integral of a product or quotient eqais) or quotient of integrals, and integrand

equals area under the curve. We will discuss ehtiiese misconceptions below.
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4.4.2.1 The area under a curve equaled the antitdative of the integrand

pl2
In the graphical problem in interview 5 (Figutet), the integral was / @ )cosy q ,

-pl2
which equaled the area under the curve/o@“)cos/ vs.q" from -p/2to p/2. The

following excerpt was taken from the interview witudent S13 when she was attempting to
choose the graph to find area.
Interviewer:Okay, so now you have graphs ...
S13:Yeah, | understand that | have to use these grdptst don’t know how.
Interviewer:And you have your integral. So what is the relatetween an integral and
a graph?
S13:1t's the area underneath the curve.

Interviewer:Uh huh, area under the curve. So which graph douysmito find the area?

S13 I'm hoping this one. [points at the graph of 7 ) vs.g"]

Interviewer:Yes, you hope. But you should have a reason.

S13:No ... It's this one [points at the graph of {7 )sing vs. "]

Interviewer:How do you know you should use that graph?

S13:Um, because if | need the integral of cosine ibgg to be sine so | need the area

under this.

This student was able to recognize that the integgraaled the “area underneath the
curve” when hinted on the relationship betweenitibegral and the graph. However, she was not
sure which area was corresponding to the integfeér picking a graph with the “hope” that it
would be the correct one, she was more thoughtfakr second attempt. Her explanation that
the integral of cosine was sine indicated thatgtuse the graph based on the result of
integrating the cosine in the integrand. This en@esuggested that she did not understand the
relation “the integral equaled the area underntralturve” although she could invoke it when

solving the problem.

4.4.2.2 The area under a curve equaled the integtan
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2

In the graphical problem in interview 6 (Figute), the integral wasM dx which

0 A(X)

r ( X
equaled the area under the curve g “ ) vs. x” from 0.0 m to 2.0 m. Student S8 calculated
X

(%)

the areas under the curves of(x) vs. x” and “A(x) vs. x” and plugged those areas into
r (x) and A(x) in the integral. Similarly, in the graphical preb in interview 7 (Figurd.6),

student S3 calculated the area under the curvg f)“vs. r " and plugged that area intp(r)

2
in the integral j(r )rdr . These errors indicated that these students pextéhne area under a
0

curve as the value of the integrand rather tharvéhge of the integral.

4.4.2.3 Integral of a product or quotient equaledsam or quotient of integrals
In the graphical problem in interview 6 (Figuté), student S1 found the explicit

expression forr (x) from the “r (x) vs. x” graph and calculated the integral using the dqoat

2 2 2
r(x) dx=r(x) dx+ dx

o A(X) o 0 ALY

. Students S6 and S8 attempted to use the equation

2r(x _
( )dx: - and calculated the quotient of the areas undectinves of 7 (x) vs.

x” and “A(x) vs. x".

4.4.3 Conclusions from the fall 2009 study
In summary, we found evidence that students mightampletely understand the
concept that “the integral equals the area undective” although they might be able to invoke
it during problem solving. We also found evidemticat some students held misconceptions

about basic properties of integrals.
We answer our last research question — RQ3: To wittant did students understand the

relationship between a definite integral and amdeun a curve?
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Almost all of the students indicated knowledge thie“integral equaled the area under the
curve,” but only half of them (four students ineéntiew 5, eight in interview 6, and nine in
interview 7) were able to select the graph corradpa to a pre-determined integral when
several graphs were present. The errors othermsisideade — choosing a graph based on part of
the integrand or on the simplicity of the area ghldtion — indicated that these students did not

completely understand the relationship betweerfiaitieintegral and area under a curve.

4.5 Discussion

In this study, we found that the majority of thed#nts did not spontaneously invoke the
area under the curve concept during physics proBlaiing. This might be attributed to
students’ unfamiliarity with the graphical methaswell as their strong inclination to algebraic
methods in solving physics problems. Even whenesitglinvoked the area under the curve
concept in a physics problem, there was evidenatethiey might not understand what physical
guantity the area represented. We also found thahwprovided with several graphs, many
students were unable to choose the graph on whechrea under the curve equaled a pre-
determined integral, even though they could staéthe integral equaled the area under the
curve.

We will now discuss how our findings support antkeexl other studies in mathematics
and physics education research on students’ ugearea under the curve concept.

Students’ difficulties with the area under the @iconcept in the physics context of our
study are similar to those previously found in neatlatics context. We found that most of the
students used area under the curve to find work fiayraph of force versus displacement but
they might not understand why the work was equéhécarea, so they failed to recognize that
the area under the curve in the sphere problermataget the value of work. This is similar to
what Artigue concluded in his study: most studeatsid perform routine procedures of finding
area under the curve but rarely could they expldig these procedures were necessary.

Thompson and Silverman (2006) suggested that fiolesits to perceive the area under
the curve as representing a quantity other tham @meour case it was work), students must be
able to see the integration process as an accuorulatthe incremental bits that were formed
multiplicatively. The hints we provided to help dants recognize the use of the area under the

curve concept in our interviews aimed at this goéb. asked students questions that directed
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their attention to the fact that the total work was accumulation of the product of force and
distance over small increments, which was esséntla area under the curve on the graph of
force versus linear displacement.

Sealey (2006) concluded that the area under theeguethod could be a powerful tool to
evaluate a definite integral only when studentseusiod the structure of the definite integral.
Our study showed the extent to which students gteagwith choosing an area that equaled a
definite integral when they did not view the intaigas having two components: the integrand
and the infinitesimal ternax or dr. About half of the students in our interviews ahtise
incorrect graph because their choice was baseldeowrtong clues (i.e. based on part of the

integrand, the anti-derivative of the integrandtha ease of finding the area). The hints that

asked students to label a graph of an arbitrargtian f (x) such that the area under the curve

b
equaled the integral f (x) dx directed students’ attention to the two componefitm integral

and helped them recognize that the integrand waasltle for choosing the correct graph.
McDermottet al. (1986) studied how students used area under tive qukinematics.

Our study investigated students’ use of area utidgecurve in many other topics of introductory

physics. We did not have any problems involvingaieg area as in McDermadt al’s study,

but we had problems with more than one graph frdnitlwwe could investigate how students

related a definite integral with an area underraeu

4.6 Limitations and future work

The research methodology used in this study wasithdal interview. This method had
an advantage that it allowed us to gain insighd hdw individual students interacted with the
concept of an integral as area under the cunadsdt allowed us to interview the same students
several times during two semesters, and therefeasould track the development of a student
through the courses. In spite of the advantagesdstl by individual interviews, the method
limited the number of students participating in stiedy, and hence, limited the generalizability
of the results.

Our interview problems involved several physicsmjitges that could be calculated using

area under the curve. However, there was no proliiealving negative areas or areas that had
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the lower bound other than th‘e(x) =0 axis (i.e. the x-axis). By “area under the curwe
usually mean the area bounded by the curve and {ix¢ =0 axis. There are problems in which

the “area under the curve” is bounded by the canakbthe f (x) = -2 line for instance.

Investigating whether students know “integral equaka under the curve, but above what?” will
be an interesting study following the study presdni this paper.

Based on our interview findings, we plan to develaprial materials to help students
understand the “integral equals area under thes€uelationship and implement them for all of
the students in both EP1 and EP2 courses (usuallyned 200+ students each) in the future
semesters when the courses are offered to tesffdwts of those materials in helping students
learn to use the area under the curve method isiphproblem solving.
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Chapter 5 - Tutorials to facilitate students’ application of the
integral and the area under the curve concepts in ark — energy

problems

5.1 Motivation and Introduction

In the spring 2009 study, we found that studentatioductory mechanics encountered
significant difficulties in applying the integrahd the area under the curve concepts to
mechanics problems. The major difficulties inclushed recognizing the use of these two
concepts in the problems, and not understanding¢bhemulation process when doing the
integral or finding an area under the curve. Mahthese students, however, were eventually
able to solve those problems with verbal hints led by the facilitator. This suggested that the
students would have been able to apply the integrdlthe area under the curve concepts in
mechanics problems if they had received appropsieadfolding which targeted their difficulties.
In other words, these problems were well withirsthetudents’ Zone of Proximal Development
(Vygotsky, 1978)

Based on the knowledge of the difficulties thatistuts encountered and the scaffolding
that might be helpful, we developed and testeducstibnal materials, which will be referred to
as tutorials, to facilitate students’ applicatidrtlee integral and the area under the curve
concepts in mechanics problems. Each tutorial Wwadcbmponents:

a set of exercises created to help students lbarkrtowledge and skills
necessary to enable them to apply the integrattamdrea under the curve
concepts in physics problems;

a protocol for the conversation between the fatoit and the students to facilitate
students’ construction of ideas as they workedughothe set of exercises.

In the spring 2010 semester, we created and téstiedutorials on different topics of
introductory mechanics as follows:

Tutorial 1: One-dimensional kinematics

Tutorial 2: Newton’s laws and forces

Tutorial 3: Work — energy for a point mass

Tutorial 4: Work — energy for a rigid body
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The first two tutorials focused on helping studemigd the skills to apply the derivative
concept and vector addition to physics problemshichapter, we will only discuss the
tutorials 3 and 4 because they aimed at helpingdesits learn to apply the integral and the area
under the curve concepts in physics problems, lagg also had similarly structured sets of
exercises. These sets of exercises consisted ajrame pairs of matched math and physics
exercises, a debate problem, and two problem pdasks. We tested the effect of our tutorials
in comparison with standard instructional materaigproblem solving. In this study, we defined
“standard instructional materials on problem sajvi(or “standard instructional materials” in
brief) as the practice of providing students wiimple problems and written solutions after
students had attempted the problems themselves.

We will present the rationale of the tutorials 3 &) and their impact on students’ ability
to apply the integral and the area under the cooneepts in physics problems on work —
energy. The research question for this study isvifiat extent did our tutorials help students
improve their ability to apply the integral and #rea under the curve concepts in work — energy

problems, compared to standard instruction (i.ey@ea problems and solutions)?

5.2 Rationale of the tutorials and the standard madrials

In this section, we will present the rationale thoe creation of the exercises of the
tutorials 3 and 4, and the selection of the samppdélems and solutions to be used to represent
standard instructional materials in our study.

The purpose of the tutorials was to help studexgelto apply mathematical concepts
(i.e. the integrals and the area under the cuovghysics problems. This task required students
to invoke mathematical knowledge or model and tyaply it to a physical context. We found
from our study in the spring 2009 that studentsdé&at of difficulties in doing such a task,
although the mathematical models and the physiogvlatge required in our interview problems
were very familiar for most students (i.e. the grtd and the area under the curve; work-kinetic
energy theorem). We suspected that the physicexomight hinder the mathematical model
which made students fail to recognize the apphlcatf the mathematical model in the physics
problems. So our ideas for creating the tutorialente provide students with an intermediate
step in applying a mathematical model to physicblems. Specifically, we provided students
with a simple math exercise in which they only rexketb recall a familiar math model. This
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intermediate step offered students an opportuniigtoke, in a context-free environment, the
math model necessary to be applied to the physexise ahead. Then came the physics
exercise in which students applied the math madtie previous step to a simple physical
context. This strategy made it clear to students aonathematical model could be applied to a
physical situation. So part of the exercise satwftutorials was a sequence of matched (related)
math and physics exercises. In this sequence, lrematical model was invoked in the math
exercise and then was applied to the physics eseethat followed. This sequence, therefore,
suited well with the vertical and horizontal fram@Ww mentioned in the literature review.

Besides preparing students with the ability to gppathematical models to physics
scenarios, our tutorials also aimed at helpingesttglprepare the physics knowledge necessary
to solve complete physics problems, in which théhematical models were applied. We found
from the spring 2009 study that students also hiffidwdties applying basic physical principles
(e.g. conservation of energy, work-kinetic enetlggarem) to the interview problems. So in each
of our tutorials, there was a debate problem inclistudents were asked to comment on the
strategies suggested by fictitious students forisgla physics exercise. The strategies that these
fictitious students suggested contained errorswigabbserved our students made in the spring
2009 interviews. By reflecting on other studentsoes, students doing the debate problem might
be able to avoid those errors in their own solgiaen they solve similar problems.

The last exercise in each of our tutorials wasadbl@m posing task. Students were asked
to create a problem of their own using the mathamalatnodel and the physics scenarios of the
previous exercises, and to write an instructiorsfawving the problem they created. The purpose
of this task was to help students learn to integtla¢ mathematical model with a physical

context. Tablé.1 below summarizes the types of exercises iriwgarial and their purposes.
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Table 5.1 The types of exercise in the tutorial and theipurposes

Type of exercise Purpose

Helps students build
Math exercise | mathematical model in a

context-free environment

Sequences of Helps students apply the

. .| mathematical model in the
Physics exercise _ .
math exercise to a simple

physics context.

Prepares students with the
necessary physics background
Debate problem .
to solve a complete physics

exercise.

Helps students learn how a
Problem posing task mathematical model can be

applied to a physics exercise.

After completing each of the exercises, studentewasked to check with a facilitator
before proceeding to the next problem. The prowtmi the conversation between the facilitator
and the students after each exercise of thesealstovere very similar. The facilitator first asked
students to explain what they had done and theckeldethe correctness of their solution to the
exercise. If the students did the exercise conetiik facilitator would then ask students about
what ideas they had learned from doing the exerrisehow those ideas might help them solve
similar exercises in the future. If the students bt get the correct answer to the exercise, the
interviewer would provide hints to help studentsognize and correct their errors.

The criteria for the selection of the standardringtional materials were that they were
similar to typical end-of-chapter problems in terofisheir structure and were similar to the
problems in the tutorial in terms of physics cortsegnd representations. Specifically, the
standard materials adopted the mathematic and gghgencepts and representations from the
tutorial but must not contain math exercises, depabblem, and problem posing tasks, because

these types of problems were unlikely to appeaypical introductory physics textbooks. These
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types of exercises should be replaced by equivaleydics exercises in the standard materials.

Another criterion was that the amount of time tonpdete one set of the standard material must
be equivalent to the amount of time needed to cetane tutorial. This criterion was to ensure
equivalent amount of practice students taking estlof material experienced. Tabl below

summarizes the changes that were made on theaiutdren the standard material was created.

Table 5.2 Comparison of the types of exercises in the trial and the standard material

Type of exercise in Type of exercise in

tutorial standard material

All physics exercises
Sequence of math ang o _
_ _ similar to the physics
physics exercises . ) )
_ exercises in the tutorial
is replaced by

Physics exercise discussed
Debate problem _
in the debate problem

Problem posing tasks Physics exercises

5.2.1 Tutorial 3

5.2.1.1 Creation of treatment group materials fartorial 3

The exercise set of tutorial 3 consisted of twagaf matched math and physics
exercises (one pair in algebraic representationtlamdther in graphical representation), a debate
problem, and two problem posing tasks. The pairmath and physics exercises were to teach
students about the accumulation process undertiimgntegral and the area under the curve.
Each pair of exercises was expected to help stadenall the necessary mathematical
knowledge in a context-free math exercise and #pgiied that knowledge to a physical
situation, i.e. the physics exercise. The debaiblpm was intended to prepare students with the
physics background needed to do problems involwiatk and energy. The problem posing task
provided students with an opportunity to practiogtipg together the knowledge on the integral
and the area under the curve concepts with theigghipackground to create and solve complete

problems involving the integral and the area unbdercurve.
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The topic of the tutorial 3 was work — energy gfaant mass, which was the same as the
topic of the interview 3 in the spring 2009 stuBw. the exercise set of tutorial 3 was created
based on the findings about students’ difficulaesl the helpful hints in interview 3 of the spring
2009 study. The interview 3 in the spring 2009 gtudolved finding the work done by a non-
constant force using the integral and the areanhaecurve concepts. We found that only 3 out
of 11 students in the A-G sequence and 3 out fi®esits in the G-A sequence could
spontaneously recognize that the work equaledntiegyial of force or the area under the curve of
force, respectively. Other students attempted ¢otlus formulas for the work done by a constant

force or kinetic friction force on a horizontal ig i.e.W = F.d andW = /mmgd, to calculate the

work done by the resistance force of the liquideRstudents in the A-G sequence and 3 students
in the G-A sequence were able to recognize thak wqualed the integral and the area under the
curve after hints were provided by the interviewldre hint was to guide students’ thinking

about the total work as the sum of the infinitedimarks on small segments of the path, i.e.
thinking about integrating a function and findingarea under the curve as an accumulation
process. Since this hint had proven to be effectieemployed its idea in creating the exercise
set for the tutorial 3. So the goal of the exersisein tutorial 3 would be to help students lgarn

view the integral and the area under the curvenascaumulation.

Exercise 1 (Figur&.1) asked students to calculate the integrb(x) dx given the graph

a

of f(x) vs. x. This could be done by finding the area undertitee of f (x) vs. x from

x=a to x=c, which equaled the sum of the areas of a rectaarglea trapezoid. This simple

math problem was an example of accumulation in erattics. It might help students recall that

c

the integral notation f (x) dx represented the sum of the productfc(fx) and dx at every

a

value of x from x=a to x=c. The product off (x) and dx was actually the area of a

c

trapezoid of heightf (x) and widthdx. So the integral f (x) dx represented the sum of the

a

area of all trapezoids, which essentially equabedtotal area under the curve b(x) VS. X

from x=a to x=c.
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Exercise 2 (Figur&.2) was an application of the mathematical ideaxiercise 1 to a
physical situation. In this exercise, students toachlculate the work done by a forEe(x) over
a distanced . The magnitude of the force was not constant theedistanced and was given by
the graph ofF (x) vs. x. Students had learned that work equaled force distance, i.e.

W = Fxd, which was applicable only when the forEewas constant over the whole distance
d . So when a non-constant force was presentedotaleviork must be calculated by adding all

of the works on small segments of the distancer, whéch the force could be considered

constant. The work on each segment was the praddicé forceF (x) and the lengthdx of a

small segment of the path, which was actually tiea af a trapezoid under the curve of force. So

the total work on the whole distandewould then equal the total area under the curve ()t)

vs. X from x=0 to x=d.

Figure 5.1 Exercise 1 of the tutorial 3

Exercise 1 — Tutorial 3

The graph of a functiorf (x) is given below.

C

Find the value of the integral f (X) dX in terms of the constanésb, ¢, m, n.

f)
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Figure 5.2 Exercise 2 of the tutorial 3

Exercise 2 — Tutorial 3

The graph below shows the magnitude of a force &&hg on an object with respegt
to the displacement x of the object (F is in Newamal X is in meter). Find the work
done by force F on the object over the distandeatthe force is acting.

F(x)

Fm ax

Exercises 3 and 4 (Figuke3 and Figur®.4) formed another pair of matched math and
physics exercises. Exercise 3 asked studentsc¢alatd the area limited by the curves of some
functions. This area could be calculated by addinghe areas of all thin trapezoids under the
curve, which was essentially the value of the irdkdso the exercise 3 was the inverse of the
exercise 1. In exercise 1, students calculatedtagral using the area under the curve, while in
exercise 3, students calculated an area undeutire asing the integral. Exercise 3, therefore,
reinforced the idea of how the integral was reldtethe area under the curve: they both
represented the accumulation of small quantitiezbtain the total quantity.

Similarly, exercise 4 was the inverse of exerciski 2xercise 4, students had to calculate
the work done by a non-constant force over a digtdrom the function of force. This work
could be calculated by adding up the works onralilssegments of the distance, i.e. adding up

the product ofF (x) and dx, which was essentially the value of the integfdboce. The

exercise 4, therefore, also reinforced the iddaoef the work could be calculated by integrating

the force function.
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Figure 5.3 Exercise 3 of the tutorial 3

Exercise 3 — Tutorial 3

Find the area of the region surrounded by the graplthe following functions:

f(x)=x+2x+1, f( ¥ =0, X=X, X= X.

Figure 5.4 Exercise 4 of the tutorial 3

Exercise 4 — Tutorial 3

A block is pulled on a horizontal frictionless floly a forceF whose magnitude (in
Newton) depends on the displacement x of the blmckneters) as per the function:

F (x) = axX + bx+ ¢ (a, b, c are constants). Find the work done by foFcavhen the
block has been moved from to X,.

Exercise 5 (Figur®.5) was a debate problem, in which students wieng

conversation of several fictitious students dismgsabout their strategies to solve a physics
problem. The discussion focused on how to applyctreservation of energy principle, and how
to calculate the work done by friction in the pral. The reasoning of some fictitious students
was correct, while others’ was not. The errors thatfictitious students made in their reasoning
were the common errors observed in our interviewtié spring 2009 study. Students were
asked to comment on the reasoning of each of thigddus students and to indicate the fictitious
students who had correct strategies. By refleatimgther students’ errors, our students were
expected to be able to avoid those errors whenngpproblems similar to the problem being

discussed in the debate problem.
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Figure 5.5 Exercise 5 of the tutorial 3

Exercise 5 — Tutorial 3

Five students are discussing their strategieslt@ ¢be following problems.

A 3.5 kg block is accelerated from rest by a sprering constant 632 N/m
that was compressed by an amount x. After the bleekes the spring it
travels over a horizontal floor with a coefficieit kinetic friction = 0.25.
The frictional force stops the block in distance[3.8 m.

What was the spring compressixih

Below are parts of the students’ strategies. Comimereach student's ideas. Explai
who you agree with most and why. For the studetis make statements you
disagree with, try to identify what went wrong hretstudent's reasoning.

Student Strategy Comments
Energy is conserved so all the changes in enerdyadero. The
block starts from rest and then comes to a stofhese is no change in
kinetic energy. The only energy that changes isghng's potential
energy and that's good because that involves tmpi@ssion of the
spring. You can calculate the change in potentiatgy and solve for
the compression.
Friction is involved so you need to us + U =W, where W = -
xmgD is the work done by friction.K is zero because initial and
Mary | final speeds are zero. The initial U is that of $peing and final U is
zero. Then put everything into the equation andestdr x.

-

David

Isn't the work +,mgD, because W in that equation is the amount of
Eric work done and therefore it must be positive?

But the spring does work on the block too and yawehto take that
into account. Work is force times distance, andesitne force of the
Susan | spring is -kx and the spring pushes the block &dee x, the work
done by the spring is -kxThat's the formula you should use to find
the compression.

All you have to do to calculate the work done by §pring is to plug
Mike in the total distance the spring pushes the blottk the force -kx. So,
if the initial compression is L, the work done I tspring is -KL.

Exercise 6 (Figur&.6) consisted of two problem posing tasks. Eask ésked students

to create a solvable problem of their own in whtioh physics scenario of the problem discussed
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in exercise 5 and the physics ideas in exercisgsA2were employed. Students were also asked
to write an instruction to solve the problems thegated. This exercise was expected to help
students learn to embed an integration task iqloyaics scenario to make a complete physics

problem involving integration.

Figure 5.6 Exercise 6 of the tutorial 3

Exercise 6 — Tutorial 3

a. Start with the physics problem in problem 5, modiiflyy including in it the
physics ideas in problem 2 to create a new solvatablem of your own. Write
your instructions to solve that new problem.

b. Start with the physics problem in problem 5, modlifgy including in it the
physics ideas in problem 4 to create a new solvatablem of your own. Write
your instructions to solve that new problem.

5.2.1.2 Creation of control group materials for rtial 3

As mentioned above, the criteria for creating treganals for the control group were that
these materials represented typical end-of-chaxercises and were similar to the exercises in
the tutorials in terms of the physics conceptsrapdesentations. So we started with our tutorial
exercises and select textbook-like exercises thatred the same concepts and had the same
representations.

It is unlikely that a textbook in introductory phgs prepares students with the
mathematical knowledge necessary for an exerciggdmtroducing the exercise. So the first
difference between the standard material and dari&li was that the standard materials did not
contain math exercises. For this reason, the esesd and 3 in the tutorials (which were math
exercises) were replaced by equivalent physicscesesy in the standard material. The exercises
1 and 3 in the standard material were physics eesdn which students were asked to find the
work done by non-constant forces. The exercisesd2an the standard material were also
physics exercises on the work done by non-con&ace, but with numerical values instead of
algebraic variables as in exercises 1 and 3.

Typical physics textbooks do not contain debatdi@ms and problem posing tasks. So
the problems 5 and 6 in the tutorial (which were dlebate problem and the problem posing
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tasks, respectively) were also removed in the stahohaterial. Instead, exercise 5 in the
standard material was the exercise being discuegbé debate problem in the tutorial. Students
using the standard material solved the exerciseefeded to its solution upon completing,
rather than judging other students’ reasoning abimustrategies to solve the exercise without
actually solving it.

We estimated that the time it took to completeekercises 1, 3, and 5 in the standard
material was longer than the time it took to do¢bhgresponding exercises in the tutorial. The
amount of time to solve the problem posing tasthentutorial might compensate for this
difference. This was the reason that there wenrg Brixercises in the standard material
compared to 6 exercises in the tutorial, but edaitaotal time on task was ensured.

All problems in the standard material 3 are presgéim Figures.7 to Figures.11 below.

Figure 5.7 Exercise 1 of the standard material 3

Exercise 1 — Standard material 3

—

The graph below shows the magnitude of a force &khg on an object with respe
to the displacement x of the object (F is in Newamal x is in meter). Find the work
done by force F on the object over the distandwatithe force is acting.

F(x)

Fm ax

o
o
ob-----a---
o
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Figure 5.8 Exercise 2 of the standard material 3

Exercise 2 — Standard material 3

The graph below shows the magnitude of a forcen Néwton) acting on an object

with respect to the displacement x (in metershefabject. Find the work done by
force F on the object over the displacement from ® 10 m.

F(N)

Y R Ry .

3 ----l

X (m)

Figure 5.9 Exercise 3 of the standard material 3

Exercise 3 — Standard material 3

A block is pulled on a horizontal frictionless floly a forceF whose magnitude (in
Newton) depends on the displacement x of the blwckneters) as per the function:

F (x) = axX + bx+ ¢ (a, b, ¢ are constants). Find the work done by foFcavhen the

block has been moved from to Xx,.

Figure 5.10 Exercise 4 of the standard material 3

Exercise 4 — Standard material 3

A block is pulled on a horizontal frictionless floly a force F whose magnitude
depends on the displacement of the block as peutiation: F (x) = 2x - 3x+ 2

(x is in meter, F is in Newton). Find the work ddmeforce F when the block has
been moved from O m to 2 m.
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Figure 5.11 Exercise 5 of the standard material 3

Exercise 5 — Standard material 3

A 3.5 kg block is accelerated from rest by a sprgring constant 632 N/1
that was compressed by an amount x. After the biemkes the spring it travels
over a horizontal floor with a coefficient of kimetfriction , = 0.25. The
frictional force stops the block in distance D 8 .

—

5.2.2 Tutorial 4

5.2.2.1 Creation of treatment group materials fartorial 4

Tutorial 4 consisted of three pairs of matched naatth physics exercises, a debate
problem, and two problem posing tasks. The firgt @amath and physics exercises was to
remind students about the relationship betweenligtance along a circle and the angle it
spanned at the center of the circle. The otherpais of math and physics exercises were to
familiarize students with converting the variabfeadunction to get the function in the desired
variable, and to calculate a physical quantity friti& new function. The debate problem was
intended to prepare students with the physics backgl needed to solve problems involving
work and energy of a rigid body. The problem posagks provided students with an
opportunity to integrate the physics context arerittathematical tools.

The topic of the tutorial 4 was work — energy afgad body, which was the same as the
topic of the interview 4 in the spring 2009 stuBw. the exercise set of tutorial 4 was created
based on the findings about students’ difficulaesl the helpful hints in interview 4 of the spring
2009 study. In this interview, students had to @alie the work done by the rolling friction force
between a sphere and a circular track. The forcegieen as a function of the angular
displacement of the sphere on the track in algelaad graphical representations. We found that

the major difficulty students encountered in timterview was not recognizing that the integral
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of force or the area under the curve in this inemwas not the value of work, because the force
was given as a function of the angular displacemim correct value of work must be
calculated using the integral or the area undectinee of force versus linear displacement. So
prior to doing the integral or finding the area enthe curve, students must convert the variable

to have the given force as a function of lineapldisement. The variable conversion from
. . : . . .S
angular displacemerng to the linear displacemerst could be done using the relatlonsla;lpﬂ—R

in which R is the radius of the track.

The exercise set of the tutorial 4 aimed at helgiuglents do the variable conversion on
a function. The purpose of exercise 1 (Figure 5wl&9 to help students recall the relation
between an angle and the distance it spanned imoudac track. Part A of this exercise was a
math question on the relationship between the aggd@d the lengthx it spanned on the edge
of a circular disk of radiufk. Part B of exercise 1 was a physics question iichvthis

relationship was employed.

Figure 5.12 Exercise 1 of the tutorial

Exercise 1 — Tutorial 4

a. What is the length of the arc ‘x’ along a circletémms of radius R and angie
(in radian)?

b. A bug sits on the edge of the turn table of radRus 2.0 m which is rotating
around its center. What is the distance ‘x’ thatltig has traveled after the turn
table has rotated by an angle p/4 ?

/\

X

Exercise 2 (Figur®.13) was intended to teach students to find thek\done by a force

when the force was given as a graph of force veangsilar displacement. Part A of this exercise
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was a math question which asked students to cotheegraph of a function to the graph of the
same function with respect to a different variaBpecifically, students were asked to convert
the graph of force versus angular displacemeritégtaph of the same force versus linear
displacement. Using the relati@r Ry, the values on the horizontal axis of the graplicbe
converted into linear displacement, while the valae the vertical axis (i.e. the magnitude of
force) remained unchanged. Part b of exercise 2andsy/sics question which asked students to
calculate the work done by the force in part a.©the graph of force versus linear displacement
had been obtained, the work could be calculatesioply finding the area under the curve of
force on this graph. This exercise was aimed tp beldents reflect on two graphs of the same

function, and how the work could be calculated gsine graph but not the other.
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Figure 5.13 Exercise 2 of the tutorial 4

Exercise 2 — Tutorial 4

A toy plane is attached to a pole by a string dieg firound it in a circular arc of
radius R (in meters). The graph below shows theefexerted by the engine of the
plane as it starts from rest from its initial pasit(q = O radian) to the final position
(q = p radians).

Fo

Force from Engine (N —>

0 Angle (in Radians)—> P
a. Plot the graph of force of the engine (in Newtoithwespect to the distance ‘X’
(in meter) that the plane travels along the cincata from its initial to its final

point.

A

—

Force from Engine (M

»
>

Distance ‘X’ traveled along circular arc (in me)ers>

b. Find the work done by engine when the plane travehs its initial point to the
final point.

Similarly, exercise 3 (Figurg.14) had the same purpose and procedure as ex2rdisit
with algebraic representation of the force functiBart a of exercise 3 was a math question
which asked students to convert the variable aingtion. Specifically, the given function was a
function of the angular displacement as the vagiahd students had to convert it to a function

of linear displacement. This could be accomplishydeplacing the angular displacemenin
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the given function with the linear displacementising the relationyzé. Part B of exercise 3

was a physics question which asked students toledécthe work done by the a force, given the
force function in part a. Once the function of ®mith respect to linear displacement had been
obtained, the work could be calculated by integgathis function with respect to its variable.
This problem helped students reflect on how a fonatould be written with respect to different
variables, and how the work could be calculateihbggrating the function with respect to one

variable but not the others.

Figure 5.14 Exercise 3 of the tutorial 4

Exercise 3 — Tutorial 4

A toy plane is attached to a pole by a string dieg iround it in a circular arc of
radius R = 3.0 m. The equation below shows thesfeserted by the engine of the
plane as it starts from rest from its initial pasit(q = O radian) to the final position
(g =p radians)

F(g)=ag+b
where, a, b are constants; F is in Newton, @iglin radian.
a. Write down the equation of force of the engine &smation of the distance ‘X’ the
plane travels along the circular arc from its adito its final point.

b. Find the work done by the engine when the plangetsafrom its initial point to
the final point in terms of a and b.

The debate problem of the tutorial 4 (Figbr&5) was intended to prepare students with
the physics background to solve problems involwirmgk — energy of a rigid body. Students
were provided a problem which asked for the spéedhmop as it left the circular track and the
discussion of 5 fictitious students on how to sdhwe problem. The reasoning of some of the
fictitious students was correct, while others’ mgd@ag was not. The errors that these students
made were the common errors that we found in derview 4 in the spring 2009 study. Our
students were then asked to comment on the reasoheach of the fictitious students. By
reflecting on other students’ mistakes, our stuslemght be able to avoid them in their own

solutions.
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Figure 5.15 Exercise 4 of the tutorial 4

Exercise 4 — Tutorial 4

Five students are discussing their strategieslte gbe following problem.

A hoop radiug = 1 cm and mass = 2 kg is rolling at an initial speeglof 10 m/s along 3
track as shown. It hits a curved section (radius 2.0 m) and is launched vertically gt
point A.

| —

What is the launch speed of the hoop as it ledweslbpe at point A?

Below are part®f the students’ strategies. They may not bectimeplete solutions.
Comment on each student's ideas. Explain who yoeeagith most and why. For the
students who make statements you disagree withaiexywhat you think is wrong in]
the student's reasoning.

Strategy Comments
Energy of the hoop is conserved. On the straigttqfahe track, the
hoop’s energy includes both translational and imtal kinetic energy. At
point A, the hoop’s energy includes potential aiaghslational kinetic
energy. When the hoop flies off the track, it doesroll any more, so it
does not have rotational kinetic energy at point A.

David

Yes, the hoop does not have rotational energyiat po but it does not
have translational energy on the straight parhefttack either. The hoop
doesn’t have translational motion. It moves forwbedause it is rolling
along the track.

Mary

The hoop has both translational and rotational @mobioth on the straight
part of the track and at point A. So there are kimals of kinetic energy in
both initial and final energy.

Eric

Both gravity and normal forces, which are actinglom sphere, do not
cause any torque to the sphere so angular momegftthra sphere is
conserved between initial point and point A. Angutementum equals to
moment of inertia times angular speed, so | cashdingular speed at poir
A. This angular speed divided by the radius ofgplkere is the linear
speed of the sphere at point A.

| will use kinematics equation?w v, + 2ad, where a is acceleration due
to gravity which is acting on the sphere as it blénup the track and d is
the distance along the track. Then | can find spdele sphere at poi

Susan

Jim

Exercise 5 of tutorial 4 (Figurg16) consisted of two problem posing tasks, wiaisked

students to create their own problems by combittiegphysics principles of the physics
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problem being discussed in the debate problem tvéralgebraic and graphical representations
of the force function discussed in exercises 23&rthis exercise was intended to help students
learn to embed a unit conversion task and an iategr task into a physics scenario to make a

complete physics problem.

Figure 5.16 Exercise 5 of the tutorial 4

Exercise 5 — Tutorial 4

a. Start with the physics problem in problem 4, modliflgy including in it the
physics ideas in problem 2 to create a new solvatablem of your own. Write
your instructions to solve that new problem.

b. Start with the physics problem in problem 4, modlifgy including in it the
physics ideas in problem 3 to create a new solvatablem of your own. Write
your instructions to solve that new problem.

5.2.2.1 Creation of control group material for tutial 4

The criteria for creating the material for the cohgroup for tutorial 3 also applied for
the creation of the control group materials footial 4. We removed all of the math exercises,
debate problem, and problem posing tasks fromutogial 4 and put in physics exercises
covering the same concepts and had the same ratatses to the standard material.
Specifically, part a of exercise 1 in the tutomads a math question, so it was removed in the
standard material. Exercises 2 and 3 in the stdndaterial 4 were adopted from the
corresponding exercises in the tutorial 4, but whih math questions (parts a of these exercises)
removed.

The debate problem in the tutorial 4 was replaged physics exercise in the standard
material 4. This was the physics exercise thatdissussed by the fictitious students in the
tutorial 4. The problem posing tasks were also nedan the standard material 4.

Due to the removal of the math questions and tbblpm posing tasks from the tutorial
4, the standard material 4 was shorter and seeonaite less time to complete than the tutorial
4. So to ensure the equivalent amount of pracimce,twe added one more physics problem to
the standard material 4, which was the exercisetbis material.

All exercises in the standard material 4 are preeseim the Figur®.17 to Figures.21.

92



Figure 5.17 Exercise 1 of the standard material 4

Exercise 1 — Standard material 4

A bug sits on the edge of the turn table of raéRus 2.0 m which is rotating around
its center. What is the distance ‘x’ that the bag traveled after the turn table has
rotated by an anglg =p/4 ?

Figure 5.18 Exercise 2 of the standard material 4

Exercise 2 — Standard material 4

A toy plane is attached to a pole by a string dieg firound it in a circular arc of
radius R = 3.0 m. The graph below shows the foxegted by the engine of the plan

as it starts from rest from its initial positiogp £ O radian) to the final positiow & p
radians).

Find the work done by the engine when the planeetsafrom its initial point to the
final point.
Force of Engine (N) vs. Angle (Radians)
300

250 ull
200

150 ’/
100

50

Force of Engine (N)

Angle (Rad)

1%
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Figure 5.19 Exercise 3 of the standard material 4

Exercise 3 — Standard material 4

A toy plane is attached to a pole by a string died firound it in a circular arc of
radius R = 3.0 m. The equation below shows thesfeserted by the engine of the
plane as it starts from rest from its initial pasit(q = O radian) to the final position
(g = p radians)
F(g)=50+2g

(F is in Newton andj is in radian)
Find the work done by the engine when the planeetsafrom its initial point to the
final point.

Figure 5.20 Exercise 4 of the standard material 4

Exercise 4 — Standard material 4

A hoop radiug = 1 cm and magss = 2 kg is rolling at an initial speeglof 10 m/s
along a track as shown. It hits a curved sectiadisR = 2.0 m) and is launched
vertically at point A.

What is the launch speed of the hoop as it ledweslbpe at point A?
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Figure 5.21 Exercise 5 of the standard material 4

Exercise 5 — Standard material 4

A hoop of mass 0.5 kg starts with speed12 m/s and rolls without slipping up a
slope of height. = 6.0 m and is launched horizontally at point A Toént of launch
is at a heighh = 12 m above the ground.

A

ground

What is the launch speed of the hoop as it ledweslbpe at point A?

5.3 Experimental design

In the spring 2010 semester, we conducted fivedagoup learning interview (FOGLI)
sessions to test the effectiveness of our tutomat®mparison with standard instructional
materials, i.e. sample problems and written sohstid he pretest-posttest control group
experimental design was used. Twenty five studentslling in the first-semester calculus-
based physics course (Engineering Physics 1) veduet to participate in our study. Each
student was paid $75 for their participation in siedy. These 25 students were randomly
assigned into either a control or a treatment grdine number of students in each group varied
with each session, ranging from 8 to 10 studenteercontrol group and 12 to 14 students in the
treatment group. Most of the students were freshanesophomores in engineering majors.

Each FOGLI session occurred within 10 days afterstiudents had taken an exam in the
course. The topics covered in the FOGLI were digadpics covered in the most recent exam.
In each of the 90-minute FOGLI sessions, for th&t fi5-20 minutes students individually
attempted a pre-test consisting of an algebraiblpro and a graphical problem. In the next 40—
50 minutes, students in the treatment group wodtedur tutorials, while students in the control
group worked on isomorphic textbook exercises dagethe same physics concepts and
principles, and employing the same representat®nglents in both groups were encouraged to

discuss with their partners while doing the exasig\fter completing each of the exercises, the
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students in the control group were provided wigiriated solution of the exercise they had just
completed. Students would then read through th&tisaoland compared with their own solution.
Students might also ask the facilitator to clanifformation in the written solution. On the other
side, the students in the treatment group wereined|to check-in with the facilitator after they
had completed an exercise in the tutorial. Thdifatr then had a short conversation with the
students to elicit their ideas on solving the ebsexclf the students got the correct answer and
had reasonable strategy for solving the exerdmeefdcilitator would ask students about what
ideas they had learn from doing that exercise,havd those ideas might help them solve other
similar exercises. If the students did not getdbeect answer to the exercise or used a flawed
strategy for solving the exercise, the facilitatauld then ask students questions to help them
recognize their errors. The facilitator, howeved, wot tell the students the correct answer or the
strategy to solve the exercise. Once the student®odghe correct answer for the exercise, the
facilitator would also ask them to reflect on whay had learned in the exercise and how that
might help them solve similar exercises. In thé 1&s20 minutes, students individually
attempted the post-test which differed from thetes only in numerical values provided in the
problem statements.
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Table 5.3 Comparison of the experimental procedures takehy the control and the
treatment groups
Group Treatment group Control group

- Students worked on the pre-test and post-test @nobl
individually.

o - Students worked in small groups on the exerciséisan

Similarities )
exercise sets.

- Students were asked to notify the facilitator aftexy had

completed each exercise in the set.

- Students worked on the - Students worked on the
tutorials. standard material.
- Short conversation with - Printed solution provided after

_ facilitator after each exercise| each exercise.
Differences - o . .
- The facilitator elicited - The facilitator clarified the
students’ ideas and provided| solutions if needed, but did not
hints if needed, but did not telltell the answer.

the answer.

In this chapter, we will examine the effectivenebthe tutorials 3 and 4 in comparison
with standard instructional materials. These taisrivere tested in the FOGLI sessions 3 and 4,

respectively.

5.4 Data sources and analysis

Students’ worksheets of the pre-test, post-test the tutorial were collected. Rubrics
were created to grade the pre-test and post-tebtgmns in each FOGLI session. Each problem
was graded separately on the physics aspect amdghesentation aspect. The maximum score
on the physics aspect was 10 points and on theseptation aspect was 8 points.

The general rubrics for grading the physics aspedtthe representation aspect
(algebraic and graphical) of the test problems-{pst/post-test) were presented in Tahketo
Table5.6 below.
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Table 5.4 The general rubric for grading the physics aspx of a pre-test/post-test problem

Points 0 1 2 3
Student makes no Student uses a | Student uses a Student uses an
progress toward a physics approach| mixture of an appropriate
correct solution | which is very appropriate physics approach

complicated to approach and (ex: a physics
. get a correct inappropriate one | approach that
Physics . _ PR
Approach so!utlon (ex: , (ex: u3|r,lg I?aOTH may lead to a
using Newton’s | Newton’s 2 law correct solution)
2" law with and conservation of
changing force) | energy in problem
with changing
force)
Student doesn’t | Student misses | Student misses Student has
have any equationtwo or more ONE quantity from | correct equations
quantities from | the correct equation of physics
the correct OR has ONE principle and
Physics equation OR has | incorrect equation | quantities (ex:
Equation two or more of physics quantity.| having all
incorrect involved
equations of guantities with
physics their correct
quantities. signs)
Student plugs in | One of the Student plugs in
two or more in following cases: | ALL correct values
correct values - Student plugs in| with correct signs
(including sign ONE incorrect into physical
errors) into value (or sign guantities in an
Value of | physical error) into a equation (ex: using
Physical | quantities in an | physical quantity | vertical distance as
Quantity | equation in an equation h when calculating
- Student only gravitation potentia
plugs in a few energymgh
value from all of
the given
information
Major errors in Correct arithmetic
Math arithmetic (ex: or minor errors in
Manipula- | errors in finding | arithmetic (ex:
tion roots of an confusing signs)
equation)
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Points 0 1 2 3

Incorrect units of | Correct units of
physical physical

Units of | quantities (ex: quantities (ex:

Physical | using Newton as | using Joules as

Quantity | unit of work, unit of work,
adding quantities | adding quantities

of different units)

of the same units

Table 5.5 The general rubric for grading the physics aspx of an algebraic problem

Points 0 1 2 3 4
Incorrect Correct
interpretation or use interpretation and
Interpretation | of the given use of the given
of Function | equation (ex: equation (ex:
interpreting F(x) as| interpret F(x) as “F
“F times x") is a function of x”)
Choosing incorrect Choosing the
mathematical correct
operator to mathematical
calculate physical operator to
guantities (integrate calculate physical
Mathematical | x(t) to find v(t), or guantities from
Operator v(t) to find a(t); equation given
differentiate F(x) to (ex: differentiate
find work or X(t) to find v(t),
“spring constant) or v(t) to find a(t);
integrate F(x) to
find work)
Setting up an Setting up a correcl
incorrect calculation to
calculation to calculate the
calculate the desired quantity
desired quantity (ex: setting up the
Setting up (ex: setting up the | integral
Calculation | integral F(qg)dg F (¢) Rdg to find
to find work). work). An integral
in the form of
F(x) is
acceptable.
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Points 0 1 2 3 4
Major errors in Minor error or
calculating correct

. derivative or manipulation of
Mathemat!cal integral (ex: derivative or
Manipulation )

confuse between | integral.

differentiating and

integrating)

Incorrect unit of Correct unit of

guantity found from| quantity found from
. the calculation with| the calculation of

Unit of ) . . .

. the given function | the given function
Quantity

(ex: using Newton
as unit of integral

of F(xX)dx)

(ex: using Joule as
unit of integral of

F(x))

Table 5.6 The general rubric for grading the representatn aspect of a graphical problem

0 1 2 3 4
ALL values of ALL values of
Gather o .
i quantities read off | quantities read off
Information
from graph are from graph are
from Graph | .
incorrect correct
Incorrect mapping Correct mapping
of graph quantity of graph quantity
to physics quantity| to physics
Mapping (ex: velocity as quantity (ex:
Graph to area under x(t) vs. velocity as slope
Physics graph) of x(t) vs. t graph,
work as area
under F(X) vs. X
graph)
Setting up Setting up correct
incorrect equation | equation of graph
. of graph quantity | quantity (ex: slope
Setting up f _ - S
Calculation (ex: slope =y/x, | = Dy/Dx = rise/run)

where y and x are
coordinates of one

point)
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0 1 2 3 4
Incorrect plugging | Correct plugging in
in of values or values and correct
incorrect mathematical
. . mathematical calculation of graph
Manipulation : . .
calculation of guantity (ex:
of Graph : | .
graph quantity (ex: correct calculation
Process :
incorrect of slope, area unde
calculation of the graph)
slope, area under
the graph)
Incorrect unit of | Correct unit of
physical quantity | physical quantity
. found from graph | found from graph
Ungltj);ﬁirtaph (ex: using Newton | (ex: using Joules a
y as unit of the area | unit of area under
under F(x) vs. X F(x) vs. x graph)
graph)

Due to the small number of participants in eaclugréhe non-parametric Mann-
Whitney test (Field, 2009) was employed to testdilgaificance of the difference between the
scores of the two groups on the pre-test and gss$t-The null hypothesis was that the scores of

the two groups were not statistically significardi§ferent.

5.5 Results

In this section, we will present the pre-test andtgest problems, the scores of students
in each group, and the results of the Mann-Whitesyin FOGLI sessions 3 and 4 where we
tested our tutorials 3 and 4.

5.5.1 Tutorial 3 Results
There were 9 students in the control group andd@esits in the treatment group in
FOGLI session 3. The control and the treatmentgsounet at different times. Nine students in
the control group were divided into four groups€amoup of 3 students and three groups of 2
students each). Twelve students in the treatmenipgwere divided into 5 groups (two groups of
3 students each and three groups of 2 student$.&tadents in both control and treatment

groups were given the freedom to choose their pestn
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In the first 20 minutes of the FOGLI session,sélidents in both control and treatment
groups worked independently on the pre-test whatsisted of a graphical problem and an
algebraic problem presented in Fighr82 and Figur&.23 below, respectively. The physics
aspect of these problems involved the applicatidh@work-kinetic energy theorem for a point
mass. The representation aspect of these probleralvéd calculating the work done by a force

using the integral and the area under the curyeroé versus linear displacement.

Figure 5.22 The graphical problem in the pre-test of FOGLIsession 3

A 0.05 kg bullet is loaded into a gun compressirgpang which has spring constant
k = 5000 N/m. The gun is tilted vertically downwaadd the bullet is fired into §
drum 5.0 m deep, filled with a liquid.

The barrel of the gun is frictionless. The magnituad the resistance force provide
by the liquid changes with depth as shown in thephrbelow. The bullet comes {o
rest at the bottom of the drum.

What is the spring compressig@

Resistance Force of Liquid vs. Depth

80

60 ~
>

—~ 50
£ 40 /’
LL /

30 ”'
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o == !

0 1 2 3 4 5
x (m)
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Figure 5.23 The algebraic problem in the pre-test of FOGLEession 3

A 0.05 kg bullet is loaded into a gun compressirgpang which has spring constant
k = 5000 N/m. The gun is tilted vertically downwaadd the bullet is fired into §
drum 5.0 m deep, filled with a liquid.

The barrel of the gun is frictionless. The magnétuaf the resistance forde (in
Newton) provided by the liquid changes with depilin meters) as per the following
function:

F (x) =8x+0.5%

The bullet comes to rest at the bottom of the drum.
What is the spring compressig®

In the next 50 minutes, the students in the comfrolips worked on the set of exercises
described in Figur&.7 through Figur®.11. Students were required to notify the fadibtafter
they completed each exercise. The facilitator fiw@vided the students with the solution to the
exercise they had just completed.

The students in the treatment group worked on tleecese set of our tutorial 3 (Figure
5.1 through Figur®.6). Students were asked to check-in with thdifatr after they completed
each exercise. The facilitator then engaged ima@sation with the students to elicit their ideas
about the exercise and provided hints to help stisdslve the problem if needed, but did not
tell them the solution.

All students in both the control and the treatngoups were able to solve the exercises
easily. So the conversations between the facili@bol the students in the treatment group after
the exercises were pretty short and the facilitdidmot have to provide any hint to help
students with the exercises of tutorial 3.

In the last 20 minutes of the FOGLI session, sttglanboth the control and the
treatment groups worked individually again on gpfieal and an algebraic problems of the post-
test, which were different from the pre-test proideonly in numerical values of the quantities.

The rubrics for grading the physics and the repried®n aspects of the pre-test and post-
test problems were built upon the general corregpgrrubrics and are presented in the Table
5.7 through Tabl&.9 below.

103



Table 5.7 Rubric for grading the physics aspect of the @-test/post-test problems in
FOGLI session 3

Points 0 1 2 3
Student doesn’t| Student uses Student uses a mixture Student uses
. have any idea | Newton’s ?%law | of Conservation of conservation of
PhYSICS | for solving th AND Newton’ OR
Approach or solving the er?dergy ewton’s| energy OR
problem 2" law Work-Kinetic
Energy theorem
Student has Student has ONE| Student has ONE of theStudent has the
completely of the following: | following: correct
incorrect - Missing two or | - Missing ONE equation:
equation or more quantities | quantity from the 1 _
doesn’'t have | from the correct | correct equation; Ekxz + mgh= Wy
any equation equation - Having ONE
- Having two or | incorrect equation of | R its
more incorrect | physics quantity. equivalence.
Physics equations of Example: one of the | Note: W in
Equation physics following equations: | this equation
quantities. lie = W, : represents the
2 “energy lost due
1 to non-
Ekxz +mgh=0; conservative
kx+ mgh= W, ... forces” and
therefore, W
has positive
value.
Student Student Student correctly loads
incorrectly incorrectly loads | ALL values with
loads two or ONE value with | correct signs into
more values sign into a physical quantities in
with signs into | physical quantity | an equation.
physical in an equation Note:h andW,. may
guantities in an have positive or
Value of equation gegatiw_e value
Physical epending on where
, student chosk = 0 and
Quantity

what he/she meant by
Wi, (if Wy is “energy
lost to non-
conservative forces”, it
gets positive value; if
W is “work by non-
conservative forces”, it

gets negative value)
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Points 0 1 2 3
Student makes | Student makes
major error or | correct arithmetic

Mathemati | more than one | or ONE minor
cal minor error in | error in arithmetic
Manipulati | arithmetic - missing a
on square-root
- missing a squarsg
- confusing signs
Student has Student has
incorrect unit of | correct unit of
Units of | work, kinetic work, kinetic
Physical | energy, energy, potential
Quantity | potential energy, spring
energy, spring | compression.
compression.

Table 5.8 Rubric for grading the representation aspect ofhe algebraic pre-test/post-test
problems in FOGLI session 3

Points

0

1

2

3

4

Interpretation
of Function

One of the following
cases:

- Student doesn't
indicate an
understanding that F(x
is the equation of
resistance force of the
liquid with respect to
depth.

- Student plugs a
specific value of x into
F(x) and uses that as
the force throughout
the liquid (to calculate
work W = F.d)

Student indicates an
understanding that F(x) i
equation of resistance
force of liquid with
respect to depth.

Mathematical
Operator

Student doesn’t choos
integration as a tool to
find work OR divides
F(x) by x to find the
“spring constant” of the
liquid so that they can
find work by the liquid
as 2 Iﬁquidxz.

p Student calculates

integral of force but then
uses it as the total force
of the liquid on the bullet
(multiplies by distance tg
find work)

Student
calculates the
integral of force
equation over
the depth of the
liquid to find
the work done
by resistance
force of liquid.
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Points 0 1
Student sets up an One of the following
incorrect integral/limits| cases:
OR incorrect - Student sets up the
calculation with the correct integral to find
mathematical operator| value of work done by
chosen in the previous o8
step. the liquid: F (x) dx.
Setting up . °
) It is acceptable that
Calculation s

student writes F ().

0
- Student sets up correct
calculation with the
mathematical operator
chosen in the previous
step.

Mathematical

Major errors in
calculating the integral
set up in the previous

Correct calculation of the¢
integral set up in the
previous step.

Manipulation | step (ex: confuse
between differentiating
and integrating)
Incorrect unit of the Correct unit of the
Unit of qguantity found from the quantity found from the
Quantity calculation with the calculation with the force

force equation.

equation.
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Table 5.9 Rubric for grading the representation aspect ofhe graphical pre-test/post-test
problems in FOGLI session 3

Points 0 1 2| 3 4
More than one Correct values of

Gather incorrect value from minimum and

Information | graph maximum force,
from Graph depth read off from
graph
One of the following | Student calculates th One of the
cases: area under the graph following cases:
- Student doesn’t use | but uses it as total - Student
the idea that area underforce by the liquid on calculates the
the graph is work done the bullet (multiplies area under the
by resistance force of | it with distance to graph to find the
liquid. find work) work done by
- Student calculates the resistance force
slope of graph and uses of liquid.
it as coefficient of - Student
resistance force of considers liquid
liquid (). as a spring
- Student figures out whose “spring
the equation of the constant” is the
Mapping | graph and uses it as slope of the
Graph to coefficient of resistance graph. In this
Physics force of liquid (). case, the area

under the graph
is the value of
the term %
kliquidX2 where X
is the depth in
the liquid.

- Student
calculates the
integral of the
equation of the
graph to find the
work done by
resistance force
of liquid.
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Points 0 1 2| 3 4
One of the following: | One of the following:
- Setting up incorrect | - Setting up correct
areabas€ heigh area under the graph
- Setting up incorrect | 1. heigh
: calculation of the slopg 2
Setting up .
. of the graph - Setting up correct
Calculation . . .
- Setting up incorrect | calculation of the
integral of graph’s slope of the graph
equation - Setting up correct
integral of graph’s
eguation
One of the following: | One of the following:
- Incorrect calculation | - Correct calculation
of area set up in the | of area set up in the
Manipulation previous step . previous step
- Incorrect calculation | - Correct calculation
of Graph ) .
of the slope set up in | of slope set up in the
Process . .
the previous step previous step
- Incorrect calculation | - Correct calculation
of the integral set up in of the integral set up
the previous step in the previous step
. Incorrect unit of area | Correct unit of area
Unit of .
Graph under graph or mtegra ynder graph or
Quantit of graph’s equation integral of graph’s
y (Newton) equation (Joule)

The inter-rater reliability of the rubric in Tab#e7 was 92%, the rubric in Tal#e8 was
95%, and the rubric in Tab®9 was 85%. We present the results for the physipect and the

representation aspect below.

5.5.1.1 The physics aspect
The means and standard deviations of the physwesof each group in the pre-test and
post-test are presented in Tabl&é0. The Mann-Whitney test result is presentetable5.11.

Table 5.10 The mean#£ SD) of the physics score of each group in the ptest and post-test
in FOGLI session 3

Problem Group Pre-test Post-test
. Control 8.25 & 2.25) 7.884 2.80)
hical
Graphical — tment  8.08 & 2.78) 9.08% 1.31)
: Control 8.13 & 2.59) 8.50£ 2.00)
Algeb
9ebTIe T rcatment 833 ¢ 2.27) 9.17£ 1.11)
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Table 5.11 The Mann-Whitney test results for the physicscore in the pre-test and post-test
in FOGLI session 3

Problem Pre-test Post-test
. U=485, p = 1.00, U=59.0,p=0.42,
Graphical — "_ 404 1= 0.01 2=-0.85,r=0.19
. U=515,p=0.82, U=57.0,p=0.51,
Algebraic  "_ 557 = 0.06 2=-0.69, r=0.16

Table5.11 indicates that there was no statisticallyificant difference in the physics
scores between the control group and the treatgrenp in any problem of the pre-test and
post-test. Although the effect sizes were slighityher in the post-test (r =- 0.19 in the
graphical problem and r = - 0.16 in the algebraabfem) than in the pre-test (r=-0.01 and r =
- 0.06 respectively), the effects were still wedtis implies that our tutorial 3 did not improve
the students’ ability to solve problems involvingnk — energy of a point mass significantly
more than the control exercise set did. This resuggests that the tutorial 3 might need to be

refined to increase students’ practice with thekaemergy theorem for a point mass.

5.5.1.2 Representation aspect

The means and standard deviations of the represenszores of each group in the pre-
test and post-test are presented in Table 5.12Memn-Whitney test result is presented in Table
5.13.

Table 5.12 The mean#£ SD) of the representation score of each group imé¢ pre-test and
post-test in FOGLI session 3

Problem Group Pre-test Post-test
. Control 4.88 ( 2.75) 6.13£ 1.89)
Graphical
AP T T eatment  5.33 ¢ 2.84) 7.584 0.90)
: Control 4.25 ¢ 2.82) 4.88£ 2.80)
Algeb
9o T catment  4.08 ¢ 2.64) 7.004 1.60)

Table 5.13 The Mann-Whitney test results for the represetation score in the pre-test and
post-test in FOGLI session 3

Problem Pre-test Post-test
. U=520,p=0.79, U=745p=0.04
Graphical 72=0.31,r=-0.07 7=-2.04 r=-0.46
. U=465,p=0.88, U=735,p =0.05
Algebraic 2=011,r=0.03 z=-1.97 r=-0.44
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These tables indicate that the representation sxfdhe treatment group was not
statistically significantly different from that tfie control group in the pre-test, but it was
statistically significantly higher in the post-tépt< .05). The effect sizes, r = -0.46 in the grap
problem and r = -0.44 in the equation problem snpbst-test suggest that these were strong
effects. This result implies that our tutorial §rsficantly improved students’ ability to find
work using the integral and the area under theecofvorce versus linear displacement more

than the control exercise set did.

5.5.2 Tutorial 4 Results

There were 9 students in the control group andd@esits in the treatment group in
FOGLI session 4. The control and the treatmentggaouet at different times. Nine students in
the control group were divided into four groups€amoup of 3 students and three groups of 2
students each). Thirteen students in the treatgrenip were divided into 6 groups (one group of
3 students each and five groups of 2 students e&tidents in both the control and the
treatment groups were given the freedom to chduse partners.

In the first 20 minutes of the FOGLI session 4 séidents in both control and treatment
groups worked independently on the pre-test whastsisted of a graphical problem and an
algebraic problem presented in Fight24 and Figur®.25 below, respectively. The physics
aspect of these problems involved applying the wknketic energy theorem for a rigid body to
calculate the linear speed of a sphere at the lapamt. The representation aspect of these
problems involved calculating the work done by itbiéing friction force between the track and

the sphere using the integral and the area underutve.
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Figure 5.24 The graphical problem in the pre-test of FOGLIsession 4

A sphere radius = 2 cm and mas® = 1.0 kg is rolling at an initial speefl= 10 m/s
along a track as shown. It hits a curved sectiadigsR = 2.0 m) and is launche
vertically at point A. The rolling friction on th&raight section is negligible.

Vi
| —

The magnitude of the rolling friction force acting the sphere varies as anglas
per the graph shown below

Magnitude of Rolling Friction Force vs. Angle

7
~ 6
=
g > ——
LEE ~—
= 3
S 2
k3!
I 1

0

0 0.5 1 15
Angle (rad)

=N

What is the launch speed of the sphere as it letheesurve at point A?
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Figure 5.25 The algebraic problem in the pre-test of FOGLEkession 4

A sphere radius = 2 cm and mas® = 1.0 kg is rolling at an initial speefl= 10 m/s
along a track as shown. It hits a curved sectiadigsR = 2.0 m) and is launche
vertically at point A. The rolling friction on th&raight section is negligible.

=N

v
| ——

The magnitude of the rolling friction forde(in Newton)acting on the sphere varigs
with angleqg (radians) as per the following function

F(g)=5.0- 1.9

What is the launch speed of tspher: as it leaves the curve at point .

In the next 50 minutes, the students in the comfralips worked on the standard material
4 described in Figurd.17 through Figur®.21. Students were required to notify the faatitit
after they completed each exercise. The facilitdten provided the students with the solution to
the exercise they had just completed.

The students in the treatment group worked on xleecese set of our tutorial 4. Students
were asked to check-in with the facilitator afteeyt completed each exercise. The facilitator
then engaged in a conversation with the studergdiv their ideas about the exercise and
provided hints to help students solve the problieneeded, but did not tell them the solution.

Similar to FOGLI session 3, all students in both tontrol and the treatment groups
were able to solve the exercises easily in FOGEsisa 4. So the conversations between the
facilitator and the students in the treatment grafter the exercises were short and the facilitator
did not have to provide any hint to help studenth the exercises of tutorial 4.

In the last 20 minutes of the FOGLI session, sttglanboth the control and the
treatment groups worked individually again on gppreal and an algebraic problems of the post-

test, which differed from the pre-test problemsyaninumerical values of the quantities.
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The rubrics for grading the physics and the repried®n aspects of the pre-test and post-

test problems in FOGLI session 4 were also buittruine corresponding general rubrics and are

presented in the Tabt14 through Tabl&.16 below.

Table 5.14 Rubric for grading the physics aspect of therp-test/post-test problems in
FOGLI session 4

Points 0 1 2 3
Student makes | Student uses Student uses a Student uses
: no progress Newton's 29law | mixture of conservation of
Physics .
Approach towa_rd a correct Conservation of energy _OR_
solution. energy AND Work-Kinetic
Newton's 2 law Energy theorem
Student doesn’t| Student has ONE| Student has ONE af Student has the
have any of the following: | the following: correct
equation - Missing TWO | - Missing ONE equation:
or more quantities quantity from the 1 ? 1 WP =
from the correct | correct equation; | 7™M +§ =
equation - Having ONE 1 1
- Having TWO or | incorrect equation —mv; += W}
more incorrect of physics quantity. 2 2
equations of Example: ONE of | TMR+ W,
physics the following:
quantities. - missing the ORits
Physics rotational KE equivalence.
Equation - missing the (1 :3er)
gravitational PE on| * sPhee g
the right-hand side | Note: W in

- missing Wc

- usingémr2

instead of%l W

this equation
represents the
“energy lost due
to non-
conservative
forces” and
therefore, W,
has positive
value.

113



Student plugs
in TWO or
more incorrect
values
(including sign
errors) into

Student plugs in
ONE incorrect
value (or makes
sign error) into a
physical quantity
in an equation

Student correctly
plugs in ALL
avalues with correct
signs into physical
guantities in an
equation.

physical Note: W, may have
guantities in an positive or negative
Value of equation value depending or
Physical what he/she meant
Quantity by Wi (if Wi is
“energy lost to non-
conservative
forces”, it gets
positive value; if
Wi is “work by
non-conservative
forces”, it gets
negative value)
Student makes | Student makes
major error or | correct arithmetic
more than one | or ONE minor
Mathematical | minor error in | error in arithmetic
Manipulation | arithmetic - missing a
square-root
- missing a squarsg
- confusing signs
Student has Student has
. incorrect unit of| correct unit of
Units of S o
: work, kinetic work, kinetic
Physical .
. energy, energy, potential
Quantity .
potential energy.
energy.
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Table 5.15 Rubric for grading the representation aspectfahe algebraic pre-test/post-test
problems in FOGLI session 4

Points

0

1

2

3

4

Interpretation
of Function

Student doesn’t
indicate an
understanding that &)
is equation of rolling
friction force of the
track with respect to
angle OR plugs a
specific value ofj into
F(q) and uses that as
the force at every point
on the track.

Student appropriately
uses the fact that &) is
equation of rolling
friction force of the track
with respect to angle.

Mathematical
Operator

Student doesn’t choos
integration as the tool
to find work OR uses
the force equation to
find the “coefficient of
rolling friction” on the
track.

Student
calculates the
integral of force
equation over
angle times
radius of the
track to find
the work done
by rolling
friction force on
the track.
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Points 0 1
One of the following: | Student sets up the
- Student sets up an | correct integral to find
incorrect integral (for | value of work done by
pi2 rolling friction:
example, F(g)dg | pe
0 F (q) Rdg .
pl2 0
or  F(g) without It is acceptable that
° student writes
multiplying the result | ,/2
by R afterward) F(9)R.
Setting up | - Student doesn’t have| o
Calculation | an integral to find work] It is also acceptable that

done by the liquid.

student writes the
pl2

integrals  F(g)dg or
pl2 °

F(g) if later in the
0
problem, student
multiplies the value of
that integral by the radiu
of the track.

Mathematical

Major errors in
calculating the integral
set up in the previous

Correct calculation of the¢
integral set up in the
previous step.

Manipulation | step (ex: confuse

between differentiating
and integrating)
Incorrect unit of the Correct unit of the
qguantity found from the quantity found from the
integral of force integral of force equatior
equation (Newton) pi2 _

Unit of O F (g)Rdg has unit of

Quantity Joules
pl2

F(g)dg has unit of
0

N.rad.
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Table 5.16 Rubric for grading the representation aspectfathe graphical pre-test/post-test
problem in FOGLI session 4

0 1 2 3 4
Incorrect Correct values Incorrect Correct values
values of of minimum values of of minimum
minimum and | and maximum minimum and | and maximum
Gather . :
.| maximum forces (bases maximum forces (bases
Informati ) )
on from forces (ba_ses of trapez_0|d) forces (ba_ses of trapez_()ld)
of trapezoid) | and maximum of trapezoid) | and maximum
Graph . : . .
and maximum| angle (height and maximum| angle (height
angle (height | of trapezoid) angle (height | of trapezoid)
of trapezoid) of trapezoid)
Student Student Student finds | Student Student
doesn’'t use | calculates the| the area under doesn’t use | calculates the
the idea that | area under the the graph or | the idea that | area under the
area under the graph or integrate the | area under the graph or
graph or integral of the | equation of graph or integral of the
integral of the | graph the graph and| integral of the | graph function
Mapping | equation of | function but | sets that equal equation of | but uses it as
Graph to | the graphis | uses it as total work done by | the graph is | total force.
Physics | part of the force. rolling part of the
work done by friction (i.e. work done by
rolling student rolling
friction. doesn'’t friction.
multiply by
the radius of
the track)

117



One of the One of the One of the One of the
following following following following
cases: cases: cases: cases:
- Setting up | - Setting up - Settingup | - Setting up
incorrect area| correct area incorrect area| correct area
of trapezoid | under the of trapezoid | under the
- Settingup | graph - Settingup | graph
_ incorrect (basa+ basg) incorrect (basd+ basg)
Setting | integral of 2 integral of 5
up | graph’s " height graph’s .
Calculati equation equation helght
on or area of or area of
triangle plus triangle plus
area of area of
rectangle. rectangle.
- Setting up _ Setting up
correct correct
mtegr(’al of integral of
graph.s graph’s
equation equation
One of the One of the One of the One of the
following following following following
cases: cases: cases: cases:
- Incorrect - Correct - Incorrect - Correct
Manipula calculation qf calculation qf calculation qf calculation qf
tionof | &red setup in| area set up in area set up in| area set up in
Graph the previous | the previous the previous | the previous
Process step step step step
- Incorrect - Correct - Incorrect - Correct
calculation of | calculation of calculation of | calculation of
the integral set the integral the integral the integral set
up in the set up in the setupinthe |upinthe
previous step | previous step previous step | previous step
Incorrect unit | Correct unit Incorrect unit | Correct unit of
of area under | of area under of area under | area under
graph or graph or graph or graph or
Unit of | integral of integral of integral of integral of
Graph | graph’s graph’s graph’s graph’s
Quantity | equation equation equation equation
(Newton or (Newton time (Newton or (Newton times
Joule) radian, or Joule) radian, or
N.rad) N.rad)
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The inter-rater reliability of the rubric in Tabbel4 was 88%, of the rubrics in Tal@ld5
and Tables.16 was 95% . We present the results for the physspect and the representation
aspect below.

5.5.2.1 Physics aspect
The means and standard deviations of the physaresof each group in the pre-test and

post-test are presented in Tablé7. The Mann-Whitney test result is presentetable5.18.

Table 5.17 The mean#£ SD) of the physics score of each group in the ptest and post-test
in FOGLI session 4

Problem Group Pre-test Post-test
: Control 4.89 (& 3.66) 7.00£ 3.04)
Graphical
AP T T eatment  6.54 ¢ 3.57) 8.774 1.09)
Algebraic Control 3.78 & 3.31) 5.11£4.31)

Treatment 6.08 & 3.95) 8.62£ 1.39)

Table 5.18 The Mann-Whitney test results for the physicscore in the pre-test and post-test
in FOGLI session 4

Problem Pre-test Post-test
. U =485, p = 1.00, U=59.0,p = 0.42,
Graphical — "_ 494 1= 0.01 2=-0.85, r=0.19
. U=515,p=0.82, U=57.0,p=0.51,
Algebraic " 57 =006 2=-0.69, r=0.16

These tables show similar trends of the physiceescoFOGLI session 4 as in FOGLI
session 3, so the conclusions are the same: autaiuh this session didn’t improve students’
ability to solve problems involving the work-kinegnergy theorem for a rigid body in
comparison to the control problem set. The treatralbauld be refined to increase students’

practice with the work-kinetic energy theorem fargad body.

5.5.2.2 Representation aspect

The means and standard deviations of the represenszores of each group in the pre-
test and post-test in FOGLI session 4 are present€dble5.19. The Mann-Whitney test result
is presented in Tabk 20.
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Table 5.19 The mean#£ SD) of the representation score of each group im¢ pre-test and
post-test in FOGLI session 4

Problem Group Pre-test Post-test
. Control 2.00 ¢ 2.45) 3.784 2.68)
Graphical
Ph Treatment _ 3.08 ¢ 2.56) 5.924 2.81)
. Control 3.22 (£ 2.22) 4564 2.24)
Algebraic
g Treatment  3.54 ¢ 1.45) 7.00£ 1.53)

Table 5.20 The Mann-Whitney test results for the represetation score in the pre-test and
post-test in FOGLI session 4

Problem Pre-test Post-test
. U=40.0, p = 0.20, U=28.0,p = 0.04
Graphical 7=-129 r=-0.28 7=-2.07,r=-0.44
. U=585, p = 1.00, U=20.0,p =0.01
Algebraic  '_ 500 r =-0.00 2= -2.65, 1 =-0.56

These tables also indicate similar trend in theeggntation score as in FOGLI session 3,
so the same conclusions apply: our tutorial inises$ significantly improved students’ ability
to find work using the integral and then area uridercurve of force versus angular

displacement more than the control problem set did.

5.6 Conclusion

We created tutorials to facilitate students’ leagiio solve work — energy problems
involving the integral and the area under the cuwecepts. Each tutorial consisted of a set of
exercises and a protocol for the conversation beviiee facilitator and the students after they
had completed each of the exercises. An exerctssossisted of two or three pairs of matched
math and physics exercises, a debate problemyangroblem posing tasks. The purpose of the
pairs of matched math and physics exercises wdrelpostudents recall a mathematical model
and then applied to a simple physics context. Tdmate problem was intended to prepare the
students with the physics background necessarnyive sypical work — energy problems, and to
call for students’ awareness on possible errong ight make when solving those problems.
The problem posing tasks provided an opportunitystadents to incorporate a mathematical
model with a physics scenario to make a completblpm in which the mathematical model
was employed. These tasks might provide studertsaubetter view of how a mathematical
model could be applied to a physics problem. Alihef exercises in the tutorials were pretty
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simple so all groups were able to get the correstvars. Therefore the conversation between the
facilitator and the students that took place aftrh exercise was mostly to elicit students’ ideas
about the exercise and what they had learned frenexercise. The facilitator did not have to
provide hints to help students solve the exerdiséise tutorial.

We conducted focus group learning interviews (FO§)Lb test the effectiveness of our
tutorials in comparison to standard instructionatenials. The standard materials consisted of
typical end-of-chapter exercises and solutions ¢baered the same concepts, principles, and
had the same representations as the exercises tattnials. We found that both of our tutorials
on the topics of work — energy for a point mass fané rigid body significantly improved
students’ ability to calculate a physical quantigyng the integral and the area under the curve
concepts in a physics problem, although they wetesa effective in preparing students with the
physics background of the work — energy problenh&sg results suggested that the tutorials

should be improved to better prepare students thétphysics background of the problems.

5.7 Limitations and future work

The main limitation of this study is the small sdengize of students with whom these
tutorial materials were implemented. There werey @3l out of more than 200 students in the
course participated in the study. Another limitataf the study was that there were only two
tutorials, 90 minutes each, on the topic. Thesariais might create some improvement on
students’ performance on the tests as in our FGB&s$ions, but it is not likely that such short-
term treatment could have a long-term effect odestits’ application of the integral in work-
energy problems.

In future implementations, we plan to scale upstuely to include a larger sample size.
We plan to revise the tutorials, especially thegitg/aspect, and to implement them on a larger

sample of students.
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Chapter 6 - Tutorials to facilitate students’ application of the

integral concept to physics problems in electricity

6.1 Motivation and Introduction

In the fall 2009 study, we investigated studeniffialilties in solving physics problems
in electricity involving integration. During thedividual interviews, students were asked to
solve problems in which they had to set up and agenpn integral to calculate a physical
guantity. We found that the majority of the studewere able to recognize the need for an
integral in a problem. However, they had significdifficulties setting up and computing the
desired integral. These difficulties occurred wites students attempted to set up the expression
for the infinitesimal quantity and add up the imi@&simal quantities using the integral. These
difficulties might be attributed primarily to stuaks’ inability to interpret the meaning of the
infinitesimal termdx in the integral, and to students’ disregard of lbevinfinitesimal
guantities must be added up.

Many students in our interviews, however, were &valty able to solve the interview
problems with verbal hints provided by the intewee. This suggested that, with appropriate
scaffolding, students would have been able to getnad compute the desired integral in
electricity problems.

Based on the knowledge of the difficulties thatstuts encountered and the scaffolding
that were helpful, we proposed a strategy to fiatdi students to apply the integral concept to
physics problems in electricity. Specifically, @trategy aimed at helping students learn the
meaning of the infinitesimal terrdx in the integral and the accumulation process uyiderthe
integral. Based upon this strategy, we developstiuntional materials, which will be referred to
as tutorials, to facilitate students’ learning pply the integral electricity problems. Each tudbri
had two components:

a problem segmented into a sequence of smallateckexercises which led
students through the procedure of solving the gmblAs students solved the
exercises in the sequence, they could learn tha@imgaf each term in the

integral as well as the accumulative nature ofitkegral.
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a protocol for the conversation between the fatoit and the students to clarify
the tutorial and students’ ideas as they workealutin the exercises.

In the fall 2010 semester, we created three tutooa different topics of introductory
electricity as follows:

Tutorial 1: Electric field due to a charge disttiiomn
Tutorial 2: Resistance and capacitance
Tutorial 3: Electric current

We tested the effectiveness of our tutorials in ganson with standard learning
materials. The standard materials consisted ofdinge problems as in the tutorials but were not
segmented, and the solutions to those problems.

In this chapter, we will present the rationale of tutorials, and their impact on students’
ability to apply the integral to physics problemseiectricity. The research question for this
study is: To what extent did our tutorials helpdemts improve their ability to apply the integral
concept to electricity problems, in comparisonttmdard materials (i.e. sample problems and

solutions)?

6.2 Rationale of the tutorials and the standard madrials

The central idea of the integral is the accumutagiocess, i.e. adding up an infinite
number of individual amounts of a physical quantiitybtain the total amount of that quantity
(e.g. resistance, current) or adding up an infinitenber of individual effects to obtain the total
effect (e.g. work, electric field). So the firsucral step is to set up the expression for the
individual quantity or effect. Each of our tutosaimed at helping students learn about
integration via doing a sample problem involvingegration. However, students were not asked
to solve the problem as they usually were in thes® Instead, the problem was segmented into
several exercises which led to the complete soitbahe problem. Our tutorial starts with an
exercise asking students to calculate the totalevaf a physical quantity (e.g. resistance,
current) of some individual objects. The follow-exxercises were variations of the first exercise
in which the individual objects evolve to becomtnitesimal parts of a larger object. Solving
these exercises, students might learn how the wiuaatity of an object becomes an
infinitesimal quantity of a larger object and howwan becomes an integral.
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Upon completion of each exercise, students weredagkcheck with a facilitator before
proceeding to the next exercise. The facilitatenthsked students to explain their solution to the
exercise to make sure that students were on thetrack. The facilitator might also provide
students with verbal hints to help them recogniegrterrors if they did not get the correct result.

The standard material was intended to be similtheanaterial commonly used in the
course for practice on a particular topic or skilcontained the same problem as the one in the
tutorial but the problem was not segmented. Witk kind of material, students learned the topic
or skill by attempting to solve the problem andtiheferring to its solution. The facilitator, in
the role of the course instructor, was availableeip the students clarify the problem and the
solution, but did not explicitly teach the studeintsv to solve the problem. Students learned to
solve the problem by reading the solution whichtaoed all necessary information, and
reflected on their own solution.

In the next sub-section, we will discuss the ratlerof each tutorial we created and the

standard material we used for comparison with otarial.
6.2.1 Creation of the tutorial 1and the standard teaal 1

6.2.1.1 Creation of the tutorial 1

The structure of the tutorial 1 was different frtme structure of the other two tutorials. It
contained not only one problem segmented into séesercises, but also other mathematics and
physics problems which aimed at emphasizing tharaatative nature of the integral. Problem 1
of this tutorial (Figures.1) was a simple math problem which asked studentalculate the area
of the shaded region on the graph. This area doeifdund easily by counting the number of
squares that made up the region and multiplyinthbyarea each square represented. Problem 2
(Figure6.2) also asked students to calculate the areslohded region, but the upper bound of
this region was described by a continuous funcfidre area of this region, therefore, could not
be obtained by just counting the squares, but tegnmating the function of the upper bound.
These two problems were intended to remind studdrdasasic knowledge in calculus: the area
under a curve equaled the integral of the funatibtine curve. More importantly, these problems
gave students an idea about how a sum of disdesteeats became an integral when the
elements became continuous. Problems 3 (Fi§ueand problem 4 (Figu&4) repeated this

idea within a physics context. Problem 3 askedesitglto find the net electric field due to a
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series of point charges located at discrete positon the x-axis at a point out of the x-axis.
Because the charge distribution was discrete, ¢helectric field vector could be obtained by
adding up the electric field vectors due to allwdlal charges. Due to the symmetry of the
charge distribution, only the y-components of ealgctric field vectors contributed to the net
field vector. Problem 4 was similar to problem ept that the charge distribution was
continuous and was described by the charge disimibd . So the procedure for solving

problem 4 was similar to that for problem 3 exdiatt the sum of the electric fields due to all
point charges now became the integral of the etefttdd due to each infinitesimal charge. The
pair of problems 3 and 4 emphasized the accumelataure of the integral: the integral was the
sum of an infinite number of quantities. Althoudje tunderpinnings of these two problems were
the same, the problem 4 was more complicated becdarexjuired viewing the rod of charge as a
continuous series of point charges and settingnuptagral for the net electric field. This task
was found to cause significant difficulties for stedents in our interviews in the fall 2009
study, so the problem 4 was segmented into sestps$. Each step asked students to complete a
specific task which led to the solution to the peof.

Problem 5 (Figur&.5) was another problem on finding the net eledteld due to
continuous charge distribution. This problem wa® alegmented into steps as problem 4. It
provided students with another example of the m®dtleey had learned in problem 4.

Overall, the idea for the tutorial 1 was to leadbsints from the case of discrete quantity
to the case of continuous quantity, during whidue became an integral. The problems with
the continuous cases were segmented into stepshwhiphasized the contribution of each step

to the solution to the problem.
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Figure 6.1 Problem 1 of the tutorial 1

Problem 1 — Tutorial 1

Find the value of the shaded area below.
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Figure 6.2 Problem 2 of the tutorial 1

Problem 2 — Tutorial 1

Find the value of the area below the curvef((fx) =x-6x 10fromx=0to x = 6.
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Figure 6.3 Problem 3 of the tutorial 1

Problem 3 — Tutorial 1
Five charges are placed along the x-axis at x 2 m, 3 m, 4 m, 5 m. The value of each

charge is given agy = +3|x- 31 where x is the location of the charge (x is ingns innC).

Find the electric field due to this system of cleaagja point P which hag x 3.0 m, y = 3.0
m.

y
01 o7 0] Os
X1=1 X2:2 X3:3 X4=4 X5 =5
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Figure 6.4 Problem 4 of the tutorial 1

Problem 4 — Tutorial 1

A non-conducting rod of length L = 4.0 mis lyinigag the x-axis from x =-2.0 mto x =
+2.0 m and is having linear positive charge denéityFind the electric field due to this rod
at a point P which hasx 0, yp = +2.0 m.

X=-2.0m o X=+2.0n

Please follow the steps below to solve this problem
Step 1: Determine the sign and distribution of geawyn the rod and locate point P
Step 2: Exploit symmetry to find the direction bétE-field

Step 3: Set up the expression for dE, the elefigld due to a segment of charge dg|at
location x.

Step 4: Set up the expressions fog,diE, (the x- and y-components of dE)

Step 5: Set up the integral for finding the cumu&tontribution of the component that adds
up

Step 6: Express dg in terms of spatial variab& (Ix — the length segment along the rod) and
the linear charge densityx).

Step 7: Decide on the variable of integration arpress all other variables in terms of the
chosen variable

Step 8: Decide on the limits of integration and paoie the integral

Step 9: Report the magnitude and direction of tHeeld due to the rod at point P
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Figure 6.5 Problem 5 of the tutorial 1

Problem 5 — Tutorial 1
A non-conducting semi-circular arch carries chawgth charge density given as per the

function:
/)= ,cap

wherel ( is a positive constant. Find the electric fieleéda this charge at the center of the
arch.

g X
Please follow the steps below to solve this problem

Step 1: Determine the sign and distribution of geawn the arch

Step 2: Exploit symmetry to find the direction bétE-field

Step 3: Using Coulomb’s Law, set up the expressmndE, the electric field due to
segment of charge dq at angle

Step 4: Set up the expressions fox,dfE (the x- and y-components of dE)

Step 5: Set up the integral for finding the cumu&atontribution of the component that adds
up

Step 6: Express dq in terms of spatial variabke @s — the length segment along the grch
spanning the anglegyland the linear charge densit{q)

Step 7: Decide on the variable of integration arpress all other variables in terms of the
chosen variable

Step 8: Decide on the limits of integration and paoie the integral

Step 9: Report the magnitude and direction of tHeld due to the arch at its center
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6.2.1.2 Creation of the standard material 1

The standard material 1 contained five problem&rating the total electric charge of
two charge configurations (i.e. the rod and théaand the net electric fields due to those
charge configurations. It differed from the tutbdan several ways. First, it did not have any
math problem. The math problems in the tutorialetemeplaced by physics problems in
algebraic and graphical representations. Secoedtdmdard material 1 did not have problems
with discrete distribution of charge. The problemith discrete distribution in the tutorial 1 were
replaced by problems with continuous distributidhird, the problems in the standard material
were not segmented into steps.

All of the problems and their solutions in the stard material 1 are presented in Figure
6.6 through Figuré.15. The first three problems (1, 2, and 3) astedents to find the total
charge on a rod having a charge distribution diesdrby a graph or an equation, and to find the
net electric field due to that rod at a point olit.oThe last two problems (4 and 5) in this set
asked students to find the total charge on antaaeing a charge distribution given as a function
and the net electric field due to that arch atéster. The problems on the electric field (i.e.
problems 3 and 5) were adopted from the tutoriatile the other three problems on the total
charge were added to the standard material toaepihee math problems and the problems with
discrete distribution in the tutorial. Note thahalugh all of the problems in the standard material
dealt with continuous distribution, none of thenreveegmented. These problems were similar

to end-of-chapter practice problems in a typicathieok.
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Figure 6.6 Problem 1 of the standard material 1

Problem 1 — Standard material 1

Find the total charge on a non-conducting rod ngie L = 4.0 m lying along the x-axis and
having linear charge density given as per the ghegbbw.

x =0 X =L X

Figure 6.7 Solution to problem 1 of the standard material

Solution to Problem 1 — Standard material 1
dx
: I :

x=0 X=L

Consider a small segment dx. This segment carridsuae:dq =/ ( x) dx.

The total charge is found by integrating this dgerovthe length of the rod
4

Q= dgq= /(X dx
0

This integral is equal to the area under the cofugx) vs. x, which is the curve in the givgn

graph. This area can be approximated by countiegré¢lctangles. There are approximatgly

8.5 rectangles under the curve; each rectanglesepts a quantity of:

(1.0m) (5.0mC /m)= 5.01C

So the total area is 8.5x(5:C) = 42.5nC.
So the total charge on the arch is: Q = aC.
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Figure 6.8 Problem 2 of the standard material 1

Problem 2 — Standard material 1

Find the total charge on a non-conducting rod ogie L = 4.0 m lying along the x-axis an
having linear charge density(x) =2x* (x is in m,| is inmC/m).

I ]
L |
Xx=0C X=1L X

Figure 6.9 Solution to problem 2 of the standard material

Solution to Problem 2 — Standard material 1
dx
I I i

X=L

x=C
Consider a small segment dx. This segment carridsae:dq =/ ( x) dx.

The total charge is found by integrating this derahe length of the rod:
4

Q= dg= /(X dx
0
4 NG 4
Q= 2xdx= 2— =128mC
0 4 0
So the total charge on the arch is: Q = &3

Figure 6.10 Problem 3 of the standard material 1

Problem 3 — Standard material 1

A non-conducting rod of length L = 4.0 m is lyiniprag the x-axis from x =-2.0 m to
x =+2.0 m and is having linear positive chargesitgrv . Find the electric field due to this

rod at a point P which has x 0, yp = +2.0 m.

y

X=-2.0m o X=+2.0n
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Figure 6.11 Solution to the problem 3 of the standard matel

Solution to Problem 3 — Standard material 1
dE, dE,

dE’ f\/ dE
! dE,

dEx;é?

q

x=-2.0n dx X 'O gy X=+2.0n
Consider a small segment dx along the rod at logati. This segment carries a charge:
dg=/ dx.

. . . , _.dq _  /dx
This charge causes at P an electric fit##l which has the magnitud€tE = kr—2 =k =

dE can be broken into two componends, = dEcosg anddE = dE.sig
With any charge dq on the right half of the roaréhis a charge dq’ on the left half of the rpd
which equals to dg. The charge dq’ causing at @laatric field dE' which can be broke

into dE, and dEy. The x-components o E and dE' cancel out, while their y-components
add up. So the total electric field due to the gpdints in the +y direction and has the
magnitude which is the integral of g&ver the rod.

: /dx . / .

E,= dE = dEsing = kszyzsmq: lka x2+y25|m d
We will integrate with respect to x, so we’ll writeing in terms of X, which is]
S y
sing x (x2+y2)1/2

/ y 2 dx
i =k dx=ky — (y=
So the integral become§;, N (X2+y2)1/2 y_z(xz+y2)3,2,(y 2.0 m)
2
X k/ 2 -2 K
E.=kyf — =——1 —-—%= =—
’ yi X+ Y s 2 J8 J8 2
k/

So, the electric field due to the arch at its ce@tés E, = +ﬁ J.
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Figure 6.12 Problem 4 of the standard material 1

Problem 4 — Standard material 1

A non-conducting semi-circular arch carries chamié charge density given as per the

function:
/)= ,cap

wherel ( is a positive constant. Find the total chargehenarch.

BN

Figure 6.13 Solution to problem 4 of the standard material

Solution to Problem 4 — Standard material 1
y

q X

Consider a small segment ds along the arch sparaningngle d. We have the relationf
ds= Rq;.

This segment carries a chargigj=/ {7 )ds=/ ¢ ) Rd .
The total charge is found by integrating this dqgerovall angle of the arch

p P P p
Q= dg= /g )R¢ . Q=R /@ )¢ =R/ ,cop @ # , R cgsqgd
0 0

0 0

p
Q=/,R cog ¢ =/ ;H sip |; = (

0
The total charge on the arch is zero.
This result makes sense because on the right halHeoarch where cosis positive, the
charge is positive, and on the left half of thehawechere cog is negative, the charge |s
negative. The cosine function is symmetric withpees tog = p/2, so the positive charge gn
the right half is equal in magnitude to the negattharge on the left half, which results|in
zero net charge.
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Figure 6.14 Problem 5 of the standard material 1

Problem 5 — Standard material 1

A non-conducting semi-circular arch carries chamje charge density given as per the
function:

1q)=l,cap
wherel ( is a positive constant. Find the electric fieleeda this charge at the center of the

arch.
y
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Figure 6.15 Solution to problem 5 of the standard material

Solution to Problem 5 — Standard material 1
y

The cosine function is positive fromm= 0 toq = p/2 and is negative frorg = p/2 toq = pi,
so the charge on the right half of the arch is tbaswhile the charge on the left hafl of the
arch is negative.
Consider a small segment ds along the arch sparaningngle d. We have the relation
ds= Rqy.

This segment carries a chargig=/ {7 )ds=/ 4 ) Rd .

This charge causes at O an electric fithel which has the magnitude:
o= 0= JO)R /4 )a

R R R
dE can be broken into two componentis, = dEcosg anddE = dE.sig

The cosine function is symmetric abapt p/2, so the charge is distributed symmetricjlly
about the top of the arch. This means that with @mgrge dq on the right half of the argh,
there is a charge dq’ on the left half of the andhich equals in magnitude with dq. The

charge dqg’ causing at O an electric fiel#' which can be broken into diand dE,. The y-

components oflE anddE' cancel out, while their x-components add up. &dadtal electric
field due to the arch points in the —x directiom dras the magnitude which is the integrall of
dEx over all angle on the arch.

/
Ex: dEx: dEcosg = k@ cogy = w cog
£ =k/°pco§qdq:K 0171+00527O|q:/k 0 q+—1sin27p
R, R, 2 2R 2 0
K/, 1. 1 . K
=— +—sin - O+=sin0 =——
2R P 2 » 2 2R
k/p

So, the electric field due to the arch at its ceftés Eq = - Ei
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6.2.2 Creation of the tutorial 2 and the standardaterial 2

6.2.2.1 Creation of the tutorial 2

The tutorial 2 consisted of a sequence of exeraigesh were designed to help students
learn about the integral in physics problem. Thetext of this tutorial was the problem of
finding the capacitance of a capacitor whose platere considerably far apart compared to the
size of the plates. However, students were notcagkeolve that problem. Instead, they were led
through a sequence of exercises which asked thémdtthe equivalent capacitance of series of
individual capacitors. These capacitors evolvedhfseparate capacitors with different plate
sizes and separations between the plates to atljeeygacitors with similar plate sizes and small
separations. The result of the last exercise irségeience was the capacitance of the capacitor
with different plate sizes and large separationgctvivas the answer to the initial problem. The

sequence of exercises in the tutorial 2 is present&igure6.16 below.
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Figure 6.16 Sequence of exercises in the tutorial 2

Tutorial 2

1. Three capacitors made of the same materiamigtesty €) have different distances;,d
dz, ds between their plates respectively. The platesach capacitor are circular and hayve
radii rp ro, r3 respectively. Find the total capacitangg C

Cs

C,

C,
" Trl Trz
«—>
d, —>
d

2

f3

>
ds
2. What is the total capacitancggsCif all three capacitors above are arranged sydside
as shown in the figure below? [Hint: Is the resaline as above?]
C

C,
G,

«>—>—>
d d, d

3. What is the total capacitancggGf all three capacitors above have the same distan
between their platefx?

C,
G,

«—>—>—>
Dx Dx Dx

4. What is the total capacitancggGf instead of three capacitors, there are a largaber
of capacitors of the same lengtk and the radius of theth capacitor plate locatedxat
isri = a +bx?

5. What is the total capacitancegGf instead of three capacitors, there are a vargd
number of infinitesimally thin capacitors of thensa distance between platés and the
radius of plates of these capacitors varies ashgefunctionr(x) = a +bx, wherex is the
location of the thin capacitor with respect to ke end of the wire an@ x L?
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The tutorial started with a general case: findimg ¢quivalent capacitance of a series of 3
capacitors having different plate sizes and difieszparations between the plates (Exercise 1).
This exercise was to remind students of the forrfarléhe capacitance of parallel-plate
capacitor and the formula for the equivalent capace of a series of capacitors. Exercise 2
asked for the total capacitance of the same capadit exercise 1 when they were arranged side
by side. Putting the capacitors together in exer2igriggered the idea that these capacitors
might be a part of a larger system. In exercigb&separation between the plates of all
capacitors was set to be equalDo. This change in the system introduced the comraon t
among the capacitor®x, which would become the infinitesimal terx when the separation
became infinitesimally small. Exercise 4 generalittee case of exercise 3 fo capacitors
with the same separation between the pl&edut the plate sizes depended upon the position of
the capacitor in the series as per an equatiorrcksee5 generalized the case of exercise 4, when
the number of capacitor was infinite and the sdpmardetween the plates was infinitesimally
thin. This last exercise was to help students |dahDx becamedx and the sum became the
integral when the number of capacitor became itdiand the separation between their plates
became infinitesimally small.

The reason for choosing the capacitance of seajeaattors as the context for this tutorial
was that the equivalent capacitance of a seriegpdcitors was found by adding the inverse of
the individual capacitance, |e1— -1 +—1. So when each capacitor became an infinitesimal

eq
element of a larger capacitor, the equivalent cégrace be calculated by integrating the inverse
of the infinitesimal capacitance, |e1— = % instead of integratingdC which was a
eq
common error that students made in our interviewtbé fall 2009 study. So by working on our
tutorial 2, students might learn that they mustradtto how the infinitesimal quantities must be
added up when doing an integral.

In summary, our tutorial 2 aimed at helping studdearn the physical meaning of the
infinitesimal termdx in the integral (i.e. the quantity it represenjed® nature of the integral as
an accumulation process, and the method for acatmglthe infinitesimal quantities. The
tutorial 2, therefore, targeted the most signiftadifficulties students expressed in our fall 2009

study.
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6.2.2.1 Creation of the standard material 2

The standard material 2 consisted of the problerthertapacitance of a capacitor whose
plates are considerably far apart compared to gieas and its solution (Figuéel7 and Figure
6.18). With this set of material, students learbhg@ttempting to solve the capacitor problem on

their own, then referred to the solution and reéidon their own solution.

Figure 6.17 Problem in the standard material 2

Standard material 2

Consider a capacitor of material, permittivily The capacitor consists of two circular plajes
of radiia andb placed at a distandeapart.

Derive an expression for the capacitance of thigc#or in terms of its length, radiusa,
radiusb, and permittivitye.
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Figure 6.18 Solution to the problem in the standard matesl 2

Solution — Standard material 2

Imagine that there are several fictitious platescivhare a distancex apart in the regior

between the two plates of the capacitor. The goagracitor is now aeriescombination of
several capacitors made by the fictitious plates.

If dxis small enough, then the radii of two adjaceatgd are almost equal, so the
capacitance of the capacitor made by these twaadljgplates is:

A pr(x)°
dC=¢—=¢———
ax T dx
Where:
r (x) is the radius of the two plates of the fictitio@pacitor located at
. . b- a
At x=0,r=a and ak =L, r = b, so the expression af(x) is: r(x)= a+T
2
-a
p a+t X
Then:dC=¢e
° dx

The given capacitor is a series combination of s@\fectitious capacitors, so its capacitange
is the equivalent capacitance of all fictitious aaipors fromx = 0tox = L.
L

1_ 1 ° dx 1 L 1
~ dc ~a 2 - a __b-a
C dC °0p a+b a, egpb-a . 2 x
0
it i Lt ba_ L
C gp(b-a) b a gpb 3§ ab gpab

Gz 2P0 b

So the capacitance of the given capacitg L

141



6.2.3 Creation of the tutorial 3 and standard maitr3

6.2.3.1 Creation of the tutorial 3
The tutorial 3 consisted of two physics problense Topic of the tutorial 3 was finding

the total current in a wire from the current density. The current in a wire could be calculated
by the equation$ = jA if j=const, andl = jdA if j! const, in which A was the cross-

sectional area of the wire through which the curfienv. We found from our fall 2009
interviews that the concept of current density waiseasy to understand for many students, so
they had difficulties interpreting the equationsmi@ned above. Students in our fall 2009
interviews were not familiar with calculating thess-sectional area of some shapes, e.g. the
cylindrical shell, so many of them needed helpwaking the cross-sectional aréaof the wire.
The first problem in the tutorial 3 aimed at tanggtthese difficulties. In part a of this
problem, students were asked to calculate the w®d#onal area of a cylindrical shell having
the inner radiuR and thicknesPR. Part b of this problem asked students to caleuts total

current in the cylindrical shell given the constentrent densityj = j,. With these two parts,

the problem 1 in the tutorial 3 was intended toifeamze students with the concept of current
density, the area of a cylindrical shell, and trethod of finding the total current from the
current density and the cross-sectional area.

The problem 2 of the tutorial 3 was similar to thtorial 2. It consisted of a sequence of
exercises that led students from finding the cunrean individual cylindrical shell to finding
the current in the circular wire by adding up tlherent in each infinitesimal shell. The first
exercise in the sequence asked students to caldhkatotal current in a wire that was made of

two separate, coaxial cylindrical shells. The shilid inner radiR, R,, same thicknesBR,
and carried currents with different current demsitj,, j, but in the same direction. In the next

exercise, the radius of the smaller shell was amed such that there was no gap between the
shells but the shells were insulated from eachratbeéhey still had different current densities.
The last exercise generalized the case in exe2digeseveral infinitesimal shells having inner
radius ranging from 0 t&R and the thicknesBR of each shell was very small that the current
density in each shell could be considered consWdotking through this sequence of exercises,
students were introduced the idea of modeling yfiadrical wire or shell as a combination of
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several infinitesimally thin shells on which the'r@nt density could be considered constant, so
the total current in the wire or the shell wasshen of the current in each of these shells, which
became an integral when the shells became infimaky thin.

In summary, our tutorial 3 aimed at helping studdearn the physical meaning of the
infinitesimal termdx in the integral (i.e. the quantity it represenjed® nature of the integral as
an accumulation process, and the method of acctimgitde infinitesimal quantities. The
tutorial 2, therefore, targeted the most signiftadifficulties students expressed in our fall 2009

study.

Figure 6.19 Problem 1 of the tutorial 3

Problem 1 — Tutorial 3

a. What is the cross-sectional area of a cylindrib&llsvhich has inner radius R and
thicknesDR?

b. This shell carries a current which is distributeifarmly over the cross section of the
shell with current density = j,. What is the total current in the shell?
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Figure 6.20 Problem 2 of the tutorial 3

Problem 2 — Tutorial 3

A wire is made of two coaxial cylindrical condudishells which have inner radihRR; and
the same thickne€d3R. These shells are carrying two currents flowmg¢ghie same direction
with current densitieg; and j, respectively (,, j, are constants).

a. What is the total current in these two wires?

b. What is the total current in the wire if theseno gap between the shells? (the shells arg
insulated from each other)

c. What is the total current in the wire if the vis made of several infinitesimally thin
shells, each has inner radiyghicknessdr and current density(r). (Note thadr is
small enough that the current density within alstet be considered constant across)

6.2.3.1 Creation of the standard material 3
The standard material 3 consisted of two problemBraling the currents from the

current density and their solutions. These problem® similar to the last exercises in each of

the two sequences of exercise in the tutorial 3veeie typical textbook problems on the topic.
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All of the problems and their solutions in the stard material 3 are presented in Figér2al

through Figures.24 below.

Figure 6.21 Problem 1 of the standard material 3

Problem 1 — Standard material 3

A long, cylindrical conducting shell has inner @&l and outer radius RIt carries a
current which is distributed uniformly across thess-sectional area of the shell with currgnt

density j = j, going into the page. What is the total currerthimshell?

,

Figure 6.22 Solution to problem 1 of the standard materiaB

Solution to Problem 1 — Standard material 3

The cross-sectional area of the shellds= pR - p R'= ,0( B- I?)
The total current in the shell is theh, = ] A = jOp(R§ - Rf)
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Figure 6.23 Problem 2 of the standard material 3

Problem 2 — Standard material 3

A long, cylindrical conducting shell has inner r@a&lR and outer radius RIt carries a
current which has current densify=ar going into the page. What is the total currerthim

shell.

/

Figure 6.24 Solution to problem 2 of the standard materiaB

Solution to Problem 2 — Standard material 3

Consider an infinitesimally thin ring which has erradiug and thicknessdr small enough
that the current densij{r) is almost constant across the cross section fitig).

The cross sectional area of this ring is:
dA=p(r+ dr)2 - pré= p(r2+ 2r dr +dr 2)- o *= 2mrdr  (note thadr is very small so
dr®» 0)

The current through this cross sectional aredliss j (r )dA =ar2prdr =a 2or dr
The total current in the shell is then the integifahis infinitesimal current:

) ot R-R 2
low = dl = a2prdr=a» —| =ap 2=+ =-ap (R23 - ng)
R 3g 3 3
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6.3 Experimental design

In the fall 2010 semester, we tested the effecaserof our tutorials in comparison with
the standard materials on students enrolling irEihgineering Physics 2 course, which covered
electricity and magnetism. An important portiortlws course was the studio session, which was
an integrated session of problem solving and hamdsxperiments. All students in the course
met for two 2-hour studio sessions per week. Itestigdio session, the first 40 minutes was for
problem solving and the rest of the time for handexperiment.

The focus group learning interviews (FOGLI'S) irtpring 2010 study were conducted
as an independent activity outside of the courbat Timited the number of students
participating in our study, because the studendstbaneet outside of the course. So in order to
involve all students in the course in our studyhia fall 2010, we decided to conduct our
experiments during the problem solving sessiorkerstudio. Students worked in group of 3 or
4 during the studio sessions, so it was similamteducting a FOGLI, but with 10 groups instead
of a few groups at a time. However, conductingR&5L1 during the studio sessions also put a
constraint on the length of the FOGLI and hencdehgth of the treatments, because we had to
ensure adequate time for regular activities ofstinélio sessions. For this reason, each FOGLI in
the fall 2010 study lasted for only 40 - 50 minuiestead of 90 minutes as in the spring 2010
FOGLI.

We also employed the pretest-posttest control geoggerimental design as in the spring
2010 study. There were a total of 220 studentsldi/into 6 studio sections, so 3 sections
(approximately 110 students) served as the cogtmlp, and the other 3 sections
(approximately 110 students) served as the tredtgrenp. In each of the 50-minute FOGLI's,
for the first 10 minutes, students worked indivilljpan a pre-test which was a problem
involving integration on the topic of the FOGLI. time next 30 minutes, the students in the
treatment group worked with their peers (3 to 4letiis) on our tutorial, while the students in the
control group worked with their peers on the staddaaterial. Students in both groups were
encouraged to discuss with their partners whilegltihe exercises. After completing each of the
exercises in the tutorial or the standard matett& students in the control group were provided
with a printed solution of the exercise they hast gompleted. Students then discussed with their
partners about the printed solution and comparedtlit their own solutions. Students might also

ask the facilitators to clarify information in tipeinted solution. The students in the treatment
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group were required to check-in with the facilitadfter they had completed an exercise in the
tutorial, which was a part of a larger problem. Taalitator then engaged in a short
conversation with the students to elicit their slea solving the exercise and how they
perceived the exercise as relevant to the preweaascises. The facilitator might ask some
guestions to help them recognize their errorsafeétwas any, but did not tell the students the
correct answer to the exercise. The exercisesrituborial were simple enough that all students
were able to solve them correctly without assistaiso the role of the facilitator in the FOGLI
was mostly to ensure that the students were orighetrack. In the last 15-20 minutes, students
individually attempted the post-test which wasdhene problem as in the pre-test with minor
modifications on surface features of the problem.

Table 6.1 below summarizes the similarities anteéhces in the experimental

procedures of the control and the treatment groups.

Table 6.1 Comparison of the experimental procedures of thcontrol and the treatment
groups

Treatment group Control group
(N ~110) (N~ 110)
- Students worked on the pre-test and post-test @nubl

Group

individually.

o - Students worked in small groups on the exerciséisen
Similarities ) ) )
exercise sets of the tutorials or the standard madge
- Students were asked to notify the facilitator afftery had

completed each exercise in the set.

- Students worked on the - Students worked on the
tutorials. standard materials.

- Short conversation with - Printed solution provided after
_ facilitator after each exercise} each exercise.
Differences . . . .
- The facilitator elicited - The facilitator clarified the
students’ ideas and provided| solutions if needed, but did not
hints if needed, but did not telltell the answer.

the answer.
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6.4 Data sources and analysis

Students’ worksheets of the pre-test, post-test tla@ tutorial were collected. Unlike
mechanics problems in the spring 2010 study in kvthere were two separate aspects: physics
and representations, the electricity problems énfétli 2010 study did not have such
discrimination. The physics of the problem musthderstood in order to set up the correct
integral for the problem. The integral was the reathtical representation of the physical
situation described in the problem. The solutiothtproblem, therefore, consisted of only the
integral representing the quantity being asked. Sdhetions to the pre-test and post-test
problems in the fall 2010 study were as simpleedisng up and computing an integral. For these
reasons, we did not grade these problems usingrecrbut instead categorized students’
solutions as correct or incorrect, depending orctiveectness of the integral they set up.
Students were provided the integral formulae ferkimds of integral they encountered in the
problems, so we did not include students’ compaitadif the integral in the analysis.

Because of the binomial categorization of studesdfitions in the pre-tests and post-
tests, and because of the purpose of testing ghdisance of the difference between two
groups, the appropriate statistical test for oudgtwas the Fisher’s exact test (Field, 2009). The
null hypothesis was that the two groups were froemdame population. The errors that students
made in their solutions to the pre-test and pasttdéeach FOGLI were also recorded. These
errors were then collapsed into categories corredipg to the steps in applying the integral
concept to physics problems discussed in chapie.3rrors in recognizing the need for an
integral in the problem, errors in setting up thignitesimal quantity, errors in accumulating the

infinitesimal quantity, errors in computing theeagtal.

6.5 Results

In this section, we present the pre-test and msdtgroblems, the number of students
having the correct and incorrect integrals in egrup, and the results of the Fisher’s exact test

in each of the three FOGLI's. Students’ errorsankecategory will also be discussed.
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6.5.1 Results of the FOGLI session 1

6.5.1.1 Result of the pre-test and post-test

There were 107 students in the control group ardsiiddents in the treatment group in
the FOGLI session 1. Students in both control asatinent groups worked with the same
partners as in their regular studio sessions.

In the first 10 minutes of the FOGLI session, alldents in both control and treatment
groups worked independently on the pre-test whiak aproblem on finding the net electric
field due to a charged rod at one end of the rb. Statement and solution of the pre-test
problem are presented in Figure 6.25 and Figure beow.

In the next 30 minutes, the students in the comggralips worked on the standard material
1. Students were required to notify the facilitaaéier they had completed each exercise. The
facilitator then provided the students with theusioh to the exercise they had just completed.
The students in the treatment group worked onworial 1. Students were asked to check-in
with the facilitator after they completed each ei®. The facilitator then engaged in a
conversation with the students to elicit their slaaout the exercise and provided hints to help
students solve the problem if needed, but did elbtliem the solution. All students in both the
control and the treatment groups were able to sbleexercises. The facilitator did not have to
provide any hint to help students with the exegisiethe tutorial 1.

In the last 10 minutes of the FOGLI session, sttglanboth the control and the
treatment groups worked individually on the poststevhich was the same problem as the pre-

test.
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Figure 6.25 Pre-test problem in the FOGLI session 1

Pre-test problem — FOGLI session 1

A thin non-conducting rod is lying along the x awigh the two ends at x =0.0 mand x = 24
m. The charge on the rod is distributed as pefdh@wing function:

/(x)=a X
wherel (x) is the charge density at locationaxis a positive constant.
Find the electric field due to the rod at the &ft of the rod, located at x = 0.0 m.

E=?

]
x=C X=2 X

Figure 6.26 Solution to the pre-test problem in FOGLI sessn 1

Solution to the pre-test problem — FOGLI session 1

e E=?
S T :
x =0 dx X=2 X

Consider a small segment dx along the rod, whichiesaa chargedq =/ ( X) dx

d
This charge causes at the origin an electric fidld:= kr—?.

The distance from dq to the origin is also the fimrex of the charge, so:

ge = K0 - L)X axdx
X X X2
Because x is positive along the rodx) is also positive, which means that the chamgyéhe
rod is positive. So, The fields due to all charglesg the rod at the origin are in the —x
direction and has a magnitude:
2 2 2
E= dE= 2kxdx=2 kX? =4k=4 {9 46) = 3.6X8 N/

0 0

The integral representing the net electric fielthatx = 0 end of the rod was

2

E...= 2kxdx. The number of students obtaining the correctinodrrect integral in the pre-
0

test problem is presented in Tabl@.
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Table 6.2 Number of students getting the correct and ingoect answer in the pre-test
problem of FOGLI session 1

Correct | Incorrect Total

Control 27 80 107
Treatment 35 77 102
Total 62 157 219

The p-value from the Fisher’s exact test performedhis contingency table was
p = 0.37, which meant we could not reject the hypothesis: the two groups were from the
same population. In other words, there was nossiily significant difference between the
control and the treatment group in the pre-te$t@GLI session 1.

The post-test problem was identical to the prefiesblem, so the integral for the electric
2

field was the samek,, = 2kxdx. The number of students obtaining the correctiacolrect
0

integral in the post-test problem is presentedahl&6.3.

Table 6.3 Number of students getting the correct and ingeect answer in the post-test
problem of FOGLI session 1

Correct | Incorrect Total

Control 38 69 107
Treatment 58 54 112
Total 96 123 219

The p-value from the Fisher’s exact test performedhis table was p = 0.02, so we

could reject the null hypothesis: the two groupsexfeom the same population. In other words,
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there was a statistically significant differencévieen the control and the treatment group in the

post-test of FOGLI session 1.

6.5.1.2 Analysis of errors in the pre-test and ptesst

Table6.4 below summarizes the number and percentagedadsts making each kind of
errors in the pre-test and post-test of the FO@kEmn 1. Note that the number of students in
each group in this table does not add up to tte tatmber of students in that group (and the
percentage does not add up to 100%) because atensmight make more than one mistake

and there were students who did not make any error.

Table 6.4 Number and percentage of students making eachnkl of error in FOGLI 1

Control Control | Treatment | Treatment

Pre-test | Post-test | Pre-test Post-test
Not recognizing the need for an 31 12 16 3
integral (29%) (11%) (14%) (3%)
Incorrect expression for the 23 16 17 5
infinitesimal quantity (22%) (15%) (15%) (5%)
Incorrect accumulation of the 0 0 0 0
infinitesimal quantities (0%) (0%) (0%) (0%)
Incorrect computation of the 19 12 36 18
integral (18%) (11%) (33%) (16%)

Overall, the number of students making each ereorehsed from the pre-test to the

post-test. The students who did not recognize $leeofi the integral in the problem attempted to

use the relation/ =% to find the total charg® on the rod and plugge@ in the Coulomb’s

equation, or claimed that the net electric fielkatO was zero because(o) = 0. The students
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who set up incorrect expression for the infinitesiguantity integrated (x) only and plugged

the result into Coulomb’s equation withas a constant. Students in both groups madedd lot
errors when manipulating the integral. Some oferersors were: treating in Coulomb’s
equation as a constant or having incorrect expsadsr r , treating/ as a constant, having
wrong limits of the integral. In the pre-test arabptest problems of this FOGLI session, the
electric field due to each charge element on thepainted in the same direction, so the net field
was the algebraic sum of all the fields due to eleintharges. So there were no errors on

accumulating the infinitesimal quantities.

6.5.1.3 Conclusion from the FOGLI session 1

The treatment group did not outperform the corgrolup in the pre-test but they did in
the post-test. The error analysis presented in€l@Blabove shows that our tutorial 1 reduced
the percentage of students making each kind ofefrom the pre-test to the post-test more than
the standard material 1 did. These results indictitat the students learning with our tutorial 1
improved their ability to apply the integral to ptems on electric field more than the students
learning with the standard material 1. In otherdspistudents seemed to learn more from the
segmented exercises than from the same (not segd)gractice exercises and solutions.

Although there were more students in our treatrgemiip succeeded in the post-test than
in the pre-test, the percentage was only about B0%e post-test. This suggests that although
our tutorial 1 has a positive impact on studergarhing, it still needs to be improved to help a

larger portion of students learn about integral.
6.5.2 Results of the FOGLI session 2

6.5.2 Results of the pre-test and post-test

There were 105 students in the control group artdstiddents in the treatment group in
the FOGLI session 2. In the first 10 minutes of BH@&GLI session 2, all students in both control
and treatment groups worked independently on thegst problem which asked for the
equivalent resistance of a conductor in the shapetrmncated cone. The problem statement and
solution are presented in Figse7 and Figuré.28 below.

In the next 30 minutes, the students in the comfrolips worked on the standard material

2 described in Figuré.17. Students were required to notify the fadiitafter they had
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completed each exercise. The facilitator then gledithe students with the solution to the
exercise, presented in Figugel 8.

The students in the treatment group worked onworial 2. Students were asked to
check-in with the facilitator after they had contplt each exercise. The facilitator then engaged
in a conversation with the students to elicit the#as about the exercise and provided hints to
help students solve the problem if needed, bunhdidell them the solution.

Similar to the FOGLI session 1, students in bothdbntrol and the treatment groups did
not have significant difficulties solving the exises in our tutorial. So the facilitator did not
have to provide any hint to help students withekercises of tutorial 2.

In the last 10 minutes of the FOGLI session, sttglanboth the control and the
treatment groups worked individually on the post-fgroblem, which differed from the pre-test
problem in the shape of the conductor (the expoedsir the shape of the conductor was given).

Figure 6.27 The pre-test problem in the FOGLI session 2

Pre-test problem — FOGLI session 2

Consider a wire of length L in the shape of a tataed cone. The radius of the wire varies

with distancex from the narrow end according to=a + ax, where 0 «x <L.

Derive an expression for the resistance of thig wirterms of its length, radiusa, radiusb,
and resistivityr.
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Figure 6.28 Solution to the pre-test problem in FOGLI sessn 2

Solution to the pre-test problem — FOGLI session 2
Consider a thin resistor whose thickness dx is kembugh that over this thickness, t
resistivity changes very little and hence can besmered constant, then its resistance
_dx_ rdx _ _ _ _
dR= fK =——— where r(x) is the radius of the resistor at theatmn x, whose
pr(x)
function can be found using the coordinate systemrawn:r (x) =a+ b-L 2%
So dR=r ox r dx 5
A b- a
p a+ X
Then the resistance of the whole resistor is:
L
L
R= dR= rdx 5 :L Lb bl 3 :,.__Lb %)__1 :r_Lt
- a- - a a a
°p a+ b a, p a+ . x P P
0
ordx

The correct integral for the resistance in thetpst-and post-test wdg = W
o0 I'(X

b- a ) ) i
wherer (x) = a+T X was the radius of the cross-section of the comdwattlocationx. The

is:

number of students getting the correct and incoirgegral in the pre-test problem is presented

in Table6.5 below.

Table 6.5 Number of students getting the correct and ingoect answer in the pre-test
problem of FOGLI session 2

Correct | Incorrect Total

Control 8 97 105
Treatment 8 98 106
Total 16 195 211
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The p-value from the Fisher’'s exact test performedhis table was p = 1.00, which
meant that the two groups were very likely to beruged from the same population. In other
words, there was no statistically significant diéiece between the control and the treatment
group in the pre-test of FOGLI session 2.

The post-test problem was similar to the pre-tesblem except that the function for the

Y rdx

radius of the conductor. The integral for the eglént resistance was the sanes W
o0 I'(X

ax2 was the radius of the cross-section of the comdwttlocationx. The

wherer (x) =a+ o

number of students obtaining the correct and immbrintegral in the post-test problem is

presented in Table.6.

Table 6.6 Number of students getting the correct and ingoect answer in the post-test
problem of FOGLI session 2

Correct | Incorrect Total

Control 33 72 105
Treatment 49 57 106
Total 82 129 211

The p-value from the Fisher’'s exact test performedhis table was p = 0.03, which
meant that it was unlikely that the two groups wexeuited from the same population. In other
words, there was a statistically significant diéiece between the control and the treatment group

in the post-test of FOGLI session 2.

6.5.2.2 Errors in the pre-test and post-test
Table6.7 below summarizes the number and percentageadésts making each kind of

error in the pre-test and post-test problems.

157



Table 6.7 Number and percentage of students making eachnkl of error in FOGLI 2

Control Control | Treatment | Treatment

Pre-test | Post-test | Pre-test Post-test
Not recognizing the need for an 12 0 6 1
integral (11%) (0%) (6%) (1%)
Incorrect expression for the 52 53 55 27
infinitesimal quantity (50%) (50%) (52%) (25%)
Incorrect accumulation of the 0 0 0 0
infinitesimal quantities (0%) (0%) (0%) (0%)
Incorrect computation of the 36 17 55 17
integral (34%) (16%) (52%) (16%)

The students who did not recognize the need fontagral in the problem just plug the
expression forr (x) into the formula for the resistance of a conduetith constant resistivity

and claimed that as the final answer. The most comenror that led to the incorrect expression
for the infinitesimal quantity was the presencéhaf total lengthL of the conductor in addition

to the infinitesimal terndx (i.e. dR:% dx instead ode:% dx). Since the large conductor

could be considered as a series of infinite nunoberfinitesimally thin resistors, the equivalent

resistance could be found by adding up all of ttimitesimal resistance and not the inverse of

resistance as in the case of capacitanceRi=. dR). So there was no student making error in

the accumulation step. The errors in computingritegral included incorrect variable of

integration, incorrect limits of the integral, casfon between constants and variables.

6.5.2.3 Conclusion from the FOGLI session 2
The results of the FOGLI session 2 were similahtise of the FOGLI session 1: the
treatment group did not outperform the control grauthe pre-test but they did in the post-test.

The same trend was observed in the error analy$i©GLI session 2 as in the FOGLI session
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1: fewer errors were made in the post-test thaherpre-test. This implied that students learning
either with our tutorial 2 or the standard mate2idglad improved their ability to apply the
integral to physics problems. Larger reduction aias observed in the treatment group than in
the control group. These results indicated thattotarial 2 helped students improve their ability
to apply the integral to electricity problems mtnan the standard material 2 did. A possible
explanation for this result was that as studentskeaon short, simple exercises and did not
know the final goal of the sequence (i.e. theyrddtlknow what exercise would come next), they
might attend more closely to every details of eaxcércise. This helped them learn the meaning
of each term in the equations being used and theedure being done. On the other hand, as
students attempted the problem as a whole andréaehthe printed solution, they already had a
final goal to look forward to. That might make thewerlook necessary information and skim
through the solution to reach the final result glyiavithout noticing every details of the
solution. In the particular problem of the FOGL§s®n 2, as students in the treatment group
worked through the sequence of exercises, they ledrigom the case when there were a few
capacitors to the case when there was infinite rsrabcapacitors. Through this process,
students learned how the sum of a few capacitaacanbe the integral of capacitance of each
individual capacitor, and what the infinitesimainedx meant (i.e. the separatidx between
the plates of the capacitor becawite when the number of capacitors became infinite)tt@n
other hand, as students in the control group attednjhe problem, they started with the equation
for capacitance of a capacitor with small sepanadind had to find the capacitance of a capacitor
with large separation, with no hints on the intediate steps or procedures. When these students
read the solution, since they already had the fioal of finding the capacitance, they might just
look at the equations and the final answer witleaneful investigation of the strategy described
in the text of the solution. So these students tmgi get all of the information presented in the
solution as they read it.

Although there were more students in our treatrgemiip succeeded in the post-test than
in the pre-test, the percentage of students geti@gorrect answer was still less 50% in the
post-test. This result was similar to the FOGLIks&s 1, which implied that our tutorial needed

to be strengthened to make a positive effect @rgel population of students.
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6.5.3 Results of the FOGLI session 3

6.5.3.1 Results of the pre-test and post-test

There were 100 students in the control group arfdstilddents in the treatment group in
the FOGLI session 3. In the first 10 minutes of B@GLI session 3, all students worked
independently on the pre-test problem which askedhe net current in a wire made of a

cylindrical wire of radiusR, at the core, which was coated by a coaxial comagictylindrical
shell of inner radiudR and outer radiug, . The core and the shell were carrying electricenir

with different current densities and in oppositeediions. The problem statement and solution
are presented in Figufe29 and Figuré.30 below.

In the next 30 minutes, the students in the comfrolips worked on the standard material
3 described in Figuré.21 and Figuré.23. Students were required to notify the fadibtafter
they had completed each exercise. The facilitdten {provided the students with the solution to
the exercise, presented in Figé.22 and Figuré.24.

The students in the treatment group worked onuwtorial 3 described in Figug19 and
Figure6.20. The exercises in the tutorial and the stahdwterial were simple, so all students in
both the control and the treatment groups were tabdelve them correctly without assistance.

In the last 10 minutes of the FOGLI session, sttglanboth the control and the
treatment groups worked individually on the post-fgroblem which was identical to the pre-test
problem.
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Figure 6.29 The pre-test problem in the FOGLI session 3

Pre-test problem — FOGLI session 3

A long, straight wire has a radiug Bnd carries a current with current density
j.(r)=ar? (r £R,) going into the page. This wire is coated by a@aylindrical shell
which has inner radius;Rnd outer radius Rand carries a current with current density
j.(r)=#&r (R £r £R,) going out of the page. Find the net current invire.

/

Figure 6.30 Solution to the pre-test problem in the FOGLkession 3

Solution to the pre-test problem — FOGLI session 3

Consider an infinitesimally thin ring which has érradiug and thicknessglr small enough
that the current densif{r) is almost constant across the cross section gfitig.
The cross sectional area of this ring is:

dA=,0(r+dr)2 - pre= p(r2+ 2r dr +dr 2)- o = 2mdr (note thadr is very small
so dr® » 0)

The current through this cross sectional aredlls= j (r )dA

The current in the inner shell (going into the page

R r4[® ap
L= dl = a2orir :aajZ =R/

inner
0 0 2

The current in the outer shell (going out of thgeas:

R re
l e = dl = BH2pr%dr =b20—
R 3

The net current in the wire is then:

_ ap 2
et = |1 iner = | 7Rf— 5bp(Rg’- R

R
- R23' R3 _2 3 _ps
b =5 b0(R: -RY)

net inner ~ outer‘

The number of students getting the correct andriecbresults in the pre-test problem is

presented in Table.8 below.
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Table 6.8 Number of students getting the correct and ingoect answer in the pre-test
problem of FOGLI session 3

Correct | Incorrect Total

Control 33 67 100
Treatment 42 61 103
Total 75 128 203

The p-value from the Fisher’'s exact test performedhis table was p = 0.31, which
meant that there was no statistically significaffedence between the control and the treatment
group in the pre-test of FOGLI session 3.

The number of students obtaining the correct andrnect integral in the post-test

problem is presented in TalBe9.

Table 6.9 Number of students getting the correct and ingoect answer in the post-test
problem of FOGLI session 3

Correct | Incorrect Total

Control 42 58 100
Treatment 55 48 103
Total 97 106 203

The p-value from the Fisher’'s exact test performedhis table was p = 0.12, which
meant that there was no statistically significaffedence between the control and the treatment

group in the post-test of FOGLI session 3.

6.5.3.2 Analysis of errors in the pre-test and ptest
Table6.10 below summarizes the number of students madac kind of error in the

pre-test and post-test problems.
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Table 6.10 Number and percentage of students making ea&md of error in FOGLI 3

Control Control | Treatment | Treatment
Pre-test | Post-test | Pre-test Post-test
Not recognizing the need for an 20 7 27 8
integral (20%) (7%) (26%) (8%)
Incorrect expression for the 30 18 38 17
infinitesimal quantity (30%) (18%) (37%) (17%)
Incorrect accumulation of the 0 0 0 0
infinitesimal quantities (0%) (0%) (0%) (0%)
49 40 37 28
Incorrect computation of the integral
(49%) (40%) (36%) (27%)

Some of the students who did not use integralemptte-test and post-test problems in

FOGLI the session 3 just plugged the expressiauoent density into the equatidn= jA

where A was the total area of the wire, and claimed thal fexpression as the final answer.

Some other students plugged the radius of the inioethe expression for the current density and

multiplied by the total area (i.d.= j(R) pR?). The incorrect expressions for the

infinitesimal quantity that students set up wexgj(r) or Axj(r)dr instead ofj(r)dA. The

errors in computing the integral included: confusieetween variables and constants, incorrect
expression for the infinitesimal areb\, incorrect limits of the integral, inappropriatariable of

integration.

6.5.3.3 Conclusion from the FOGLI session 3
The results of the Fisher’s exact tests indicated there was no statistically significant

difference between the control and the treatmemigg in both the pre-test and the post-test. The
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error analysis showed a reduction in the percemfgeudents making each kind of error in both
groups. Although a slightly larger reduction wasetved in the treatment group than in the
control group, that was not sufficient to makegn#icant difference in the number of students
getting the correct answer in the two groups.

Taking a closer look at the errors students maéenwght find a possible explanation for

the insignificant result in this FOGLI session. Tdevere three errors that many students in both

groups made. First, students took the integraj (of) itself and multiplied the result with the

total areaA of the wire, i.e.l =A j(r)dr while the correct integral must be= j (r JdA.

Twenty eight students in the control group andt88ents in the treatment group made this error
in the pre-test, while there were still 18 studentthe control group and 15 students in the
treatment group made this error in the post-tase. §econd error was that students had incorrect
expression for the infinitesimal arel\. In the pre-test, 34 students in the control grang 27
students in the treatment group were not able itewhe correct expression folA. In the post-
test, there were still 22 students in the controug and 17 students in the treatment group made
this error. The third error was the incorrect limitthe integral. Ten students in each group made
this error in the pre-test, while these numberth@post-test were 11 students in the control
group and 10 students in the post-test. We sedhbeg were many students making these three
errors and there was not much improvement on theses between the pre-test and post-test in
both groups. Except for the first error which wamikar to the error in the infinitesimal quantity

in FOGLI session 2, the other two errors were diosaated to the fact that students were
integrating with respect to area. We observed frioenindividual interviews in the fall 2009

study that most of the students were having sigguifi difficulty making sense of an integral

with respect to area, i.e.] (r )dA. It seemed that students were so familiar witbgnating with

respect to positional variables suchdas dr, dg, ... so it did not make sense to them to
integrate with respect to are\. Almost all of the students in the fall 2009 iviexvs were not
able to interpret the meaning dA and hence, they failed to derive an expressiordfomrnd to
determine the limits of integration. The same diffties were observed in the FOGLI session 3
of the fall 2010 study. The fact that there wasmath improvement on these errors between the

pre-test and post-test indicated that our tut@ias well as the standard material 3 seemed to be
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insufficient in training the students to work witkis kind of integral. Therefore, there was no

significant improvement in the results of the pesttand post-test.

6.6 Conclusion

In this study, we created three tutorials to féaié students’ learning to solve electricity
problems involving the integral concept. Each tigdlazonsisted of a sequence of exercises and a
protocol for the conversation between the faciitand the students after they had completed
each of the exercises. The exercises in the seqwesie designed to lead students from a simple
case of adding up discrete quantities to the mséract case of integrating continuous
guantities. Working through the sequence of exer@gidents might learn how an individual
object became an infinitesimal part of a largeechjand how a sum became an integral.
Through this process, students learned or reinfbticeir knowledge of the accumulative nature
of the integral and the meaning of the integrandi@s as the infinitesimal term. All of the
exercises in the tutorials were pretty simple $graups were able to get the correct answers.
Therefore the conversation between the facilitatat the students that took place after each
exercise was mostly to elicit students’ ideas albloeitexercise and how they perceived the
exercises to be related. The facilitator did notehi provide hints to help students solve the
exercises in the tutorial.

We conducted focus group learning interviews (FO§)Lib test the effectiveness of our
tutorials in comparison to standard materials. Stamdard materials consisted of typical end-of-
chapter exercises and solutions that covered tine sancepts as the exercises in the tutorials.
We found that the first two tutorials on the elexfield and the resistance problems improved
students’ ability to apply the integral into physjroblems significantly more than the standard
materials did. However, the percentage of studesitsg able to obtain the correct answer in the
post-test in these two FOGLI sessions was stifl taan 50%. So our tutorials must be
strengthened to facilitate more students to leboutintegration in electricity problems. Our
third tutorial did not provide promising resultsthg other two. The major reason for this might
be that the students were unfamiliar with the tiypegral in the third tutorial. This tutorial

needed to be revised to teach students even motg mbegrating with respect to area.
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6.7 Limitations and future work

This study overcame the limitation encounterechadpring 2010 study on the sample
sizes. Our tutorials in the fall 2010 were admmistl to all students (about 200+) enrolling in
the course. However, because the tutorials wererasbered as part of the studio sessions of the
course, they were limited on the amount of time laadce the amount of training via the
tutorials. Each tutorial in this study was muchrsiiothan the tutorials in the spring 2010 study.
This was the major limitation of our tutorials g study.

Although our tutorials had provided some promigiesults, there was still about half of
the students who were not able to learn effectiir@gn our tutorials. So we plan on improving
the training power of the tutorials by extendirggléngth and revising the exercises to better

address students’ difficulties.
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Chapter 7 - Investigating the Development of Studdr’ Application
of Mathematical Concepts in Physics Problem Solving

Two Case Studies

7.1 Introduction

In the spring 2009 semester, we conducted 80 iet@s/with 20 students on mechanics
problems involving the integral and the area undercurve concepts. These interviews provided
us with a close look at students’ difficulties jppdying these concepts to mechanics problems
and the hints that might help students overcomsetltlifficulties, as presented in Chapter 3. The
findings from these interviews also constitutedlhsis for the development of tutorials to
facilitate students’ learning apply the integratlahe area under the curve concepts in mechanics
problems, as presented in Chapter 5.

The fact that we interviewed the same studentsdgeral times on the same concepts
over a semester also makes it possible to traceaeeptual development of individual students
over time. In this chapter, we will exploit the tptudinal aspect our study described in Chapter
3. The transfer in pieces framework by Wagner (WagR006), which is introduced in sub-
section 2.3.4 of the literature review in this digation, will be employed to interpret and trace
the development of an individual student as he i@sges through our interviews. In this
framework, Wagner introduced the term concept gtaga, which was “a specific combination
of knowledge resources and cognitive strategied bgean individual to identify and make use
of a concept under particular contextual conditiof&agner, 2006, p. 10)

In order to determine whether a concept is appléecaba certain context, a student has to
activate and combine the relevant knowledge regsuirom his/her knowledge structure. These
knowledge resources constitute a knowledge baseharh the student bases his/her reasoning
about the applicability of the concept. Differetidents may activate different resources to
determine whether a concept is applicable in aagesituation. The activation of an
inappropriate resource or the missing of an apmaitgresource in the knowledge base may lead
the student to perceive a concept as applicablewhfact it is not, and vice versa.

We define three terms that will used in the follog/ianalysis: knowledge frame,

knowledge base, and concept projection. Kin@wledge frameefers to how the student frames
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the situation by putting together the relevantiinfation read out from the situation. For
example, when an expert is asked to solve oneeocdlidiebraic problems of our interviews, he is
likely to frame the problem as follows: | have anrmonstant force presented in algebraic
representation and | must calculate the work donhét force. | know that the total work is the
sum of the incremental work on small segments efgdth, which becomes an integral when the
segments become very small. Mathematically, thdoise by integrating- xds. A schematic
representation of this knowledge frame is presemédgure7.1. Aknowledge baske a
collection of knowledge resources that a studetg fmgether in order to reason about the
applicability of a concept in a certain situatiénconcept projectioms a “particular set of
knowledge elements and readout and reasoninggigatthat permit a concept to be perceived
as applicable to a situation having particular abtaristics or affordances.” Affordance,
according to Wagner, is “the support offered by asgect of a situation that the individual
perceives as being relevant to the (problem-so)vaatjvity at hand.” (p. 11)

In this chapter, we present two case studies. ifsiechse study investigates the
knowledge resources that a student — Alex (pseudpryactivated to recognize the applicability
of the integral concept in calculating the work ddry non-constant forces in the algebraic
problems of interviews 2, 3, and 4 in the Sprin@26tudy. The research questions in this case
study are:

What resources did Alex use to recognize the agipility of the integral concept
in calculating the work?

How did Alex’s concept projection of the integraincept change as he
progressed through the interviews?

The second case study investigates the knowledgeirees that another student — Eric
(pseudonym) — activated to recognize the applitgtuf the area under the curve concept in
calculating the work done by non-constant forcéhangraphical problems of interviews 2, 3, and
4 of the Spring 2009 study. The research questiotigs case study are:

What resources did Eric use to recognize the agipility of the area under the
curve concept in calculating the work?
How did Eric’s concept projection of the integrahcept change as he progressed

through the interviews?
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7.2 Case study #1 — Algebraic Representation

7.2.1 The interview problems

The algebraic problems in interview 2 (Figat@) and interview 3 (Figuré.4) involved

finding the work done by non-constant forces. Tdreé functionsF (x) were provided as
algebraic expressions of. Students had learned from the lecture that thadta for the work

done by a constant forde.d became the integralF (x) dx when the force was not constant

over the whole distance, but there were no homewoskam problems involving non-constant
forces. So, students did not have any formal pradti finding the work using the integral prior
to our interviews.

A student is most likely to recognize the use @fititegral concept in calculating the
work done by a force if he is able to activateodlihe following knowledge resources:

The total work W is the sum of incremental work @vwsmall segments of the

trajectory, which in turn becomes an integral & thfinitesimal work dwW

when the segments are infinitesimally small.
The work equals the integral of force. (Note: Thiereo mention here of what the
variable of integration is.)

The integral must be that of the product of fornd the length of a segment, i.e.

the integral ofF (x) dx.

These resources constitute a complete knowledgefbashe concept projection of the
integral concept for calculating work. Although sleeresources seem to be overlap with each
other, they are treated as separate resources analysis for two reasons.

First, students might activate just one of theseuweces, which might lead them to an
inappropriate application of the integral concepthe problem. The activation of the first
resource — the total work is the sum of incrementaks on small segments of the trajectory —is
productive only if students know the formula foe tinfinitesimal work on each segment.
However, our study on students’ understanding tfgration in mechanics presented in Chapter
3 of this dissertation indicates that students lysda not know the formula for the infinitesimal
guantity. So, it is unlikely that this resource ktbhe spontaneously activated by the students

when solving the problems. The second resource wihtk equals the integral of force — is
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applicable only to the problems in which the foraes provided as functions of linear
displacement. If the force is given as a functibtirae, for instance, then the integral of force
does not represent the work, but instead the inepefishe force during a certain time interval.
The second resource needs to be complimented hifzitderesource to make a complete
knowledge set for applying the integral conceptatzulating the work done by a force.

The second reason for treating the resources asageps that some of these resources
are explicitly presented to the students eithéedture or in the text, so students might just lteca
them without understanding their underpinningse@iimes, such a resource is an equation that
is provided to the student on an equation sheéhglan exam. For example, the knowledge that
work equals integral of the force was explicitlyght in the course from which our interviewees
were recruited. Hence, when a student talked dboark equals the integral of force,” it was
possible that he was just recalling what he hathgafrom the lecture.

The algebraic problem of interview 4 (Figui&) also involved calculating the work

done by a non-constant frictional force, but theéofunction given wa$ (q) whereg was the

angular displacement of the object on a circukckr The integral F (g)dg is the sum of the

product of force and angle, but this is not eqoahte work done. The total work done is the sum

of the works on small segments of the track, wincthe product of the force and the length of a

segment of the track. This sum is the integrEI(q) ds when the lengthds of each segment

became infinitesimally small. This integral coulel written in terms ofy as F (q) Rdg,

because of the relatiotis= Rdy. To solve this problem, students must have a quru®jection
of the integral which consists of all three knowgedesources as mentioned above. Without the
last resource, students might claim any integrébuafe, such as the integral with respect to angle
dg, as the value of the work done by the force.

Figure7.1 below shows a representation of a possible ledye frame that is likely to
be used by an expert to calculate the work donedoyconstant forces in the algebraic problems
of interviews 2 through 4. We have adapted Wagrsatgematic representation in which the

knowledge resources used by an individual to frémeegoroblem at hand were highlighted.
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Figure 7.1 A possible expert’'s knowledge frame for calcutang the work done by a non-

constant force when the force is provided in graplzal representation.

Non-constant forces

Algebraic representation

Work done by force

Total work is the sum of incremental works
Work equals the integral of force

The integral must be that of force versus
linear displacement Fds

We will now analyze the performance of a studeméxApseudonym), as he calculated
the work done by non-constant forces using integithis analysis will reveal his concept
projections for the integral in the work problenmglaheir relation with his success or failure on

the tasks.
7.2.2 Results of case study #1

7.2.2.1 Interview 2 — Algebraic problem

The algebraic problem in this interview is presdriteFigure7.2 below. The velocity of
the bullet at the end of the muzzle could be oletiny using the work-kinetic energy theorem,
in which the work done by the spring force is cidted by integrating the force function with
respect to linear displacement. In this intervidex did the algebraic problem prior to the
graphical problem. He was able to set up the eguddtir the work-kinetic energy theorem quite
easily. Then he attempted to find the work donéheyspring force.
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Figure 7.2 The algebraic problem in interview 2

A 0.1 kg bullet is loaded into a gun (muzzle len@th m) compressing a spring to a maximym
of 0.2 m as shown. The gun is then tilted at agleaof 30° and fired.

The only information you are given about the guthat the barrel of the gun is frictionless gand
that the gun contains a non-linear spring such wien the gun is held horizontally, the pet
force F (N) exerted on a bullet by the spring deates the fully compressed position variep as
a function of the spring compression x (m) as gilgn

F =100k + 3000k

What is the muzzle velocity of the bullet as itMea the gun, when the gun is fired at the [30°
angle as shown above?

Interviewer:So how do you find the work done by the springefdrc

Alex: Work is force time distandevrites F xd |

Interviewer:What value of force would you use to plug in?

Alex: Umm ... this onfpoints atF =1000x + 30006¢]

Interviewer:That’s not a value, it's a function. That meansdach value of x you have a
different value of force.

Alex: Oh .. okay ... force is not constant ... so | haveotthd integral then.

Interviewer:What quantity does the integral represent here?

Alex: Integral of force is work.

Interviewer:Okay, let’s do it.

Alex first attempted to use the equation for theknaone by a constant force(= F xd)
to calculate the work done by the spring. Uponizedl that the spring force was not constant,
he was able to recognize that thiee* integral of force is worklin the language of the transfer in
pieces framework, we could say that Alex startetdhot having a concept projection for the

integral concept for finding the work done by a fommstant force.
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As he was guided to think of the non-constant matdithe force, he was able to recall
the knowledge that fitegral of force is work'which then allowed him to see the use of the
integral in finding the work. He then had a corgapjection of the integral concept which
consisted of only one knowledge resource: the vegrkaled the integral of force. The

knowledge frame for Alex’s concept projection iteirview 2 is presented in Figure3.

Figure 7.3 Alex’s knowledge frame that guides his thinkingn the algebraic problem in
interview 2

Non-constant forces

Algebraic representation

Work done by force

Work equals the integral of force

7.2.2.2 Interview 3 — Algebraic problem

The algebraic problem in this interview is presdriteFigure7.4 below. Similar to
interview 2, the algebraic problem in interviewl8carequires the application of the work-kinetic
energy theorem with the work done by a frictiormate being calculated by an integral of force.
In this interview, Alex also attempted the algebnatioblem prior to the graphical problem. He
had no difficulty setting up the equation for therkkinetic energy theorem as well as
recognizing the integral concept for finding therlvdone by the frictional force.
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Figure 7.4 The algebraic problem in interview 3

A 0.1 kg bullet is loaded into a gun compressirgpang which has spring constant k = 600
N/m. The gun is tilted vertically downward and thdlet is fired into a drum 5.0 m deep, filled
with a liquid.

The barrel of the gun is frictionless. The frictabriorce F(N) provided by the liquid changgs
with depthx(m) as per the following function.

F =10x+ 0.6X°

The bullet comes to rest at the bottom of the drum
What is the spring compressig®

Alex: | have an equation for the frictional force, so Igunna take integral of it.

Interviewer:What does that integral represent?

Alex: Integral is the work by the frictional force.

In this problem, Alex no longer struggled with find the work done by the frictional
force. He easily recognized that he had to integita¢ force function by invoking the knowledge
resource thatihtegral is the worR.This was the only knowledge resource that Alegdut cue

integration in this problem. Although he did notntien that the integral must be of the force

5
function with respect to displacement, he wrote ddle integral F (x) dx on his worksheet,
0

which implied that by “integral”, he meant “integjray F (x) with respect tox.” This integral

was actually the correct integral for the work déwyehe resistance force of the liquid. So the
only knowledge resource that “the work equals thiegral of force” was adequate for Alex to

perceive the integral concept as applicable inghadlem. In other words, the concept projection
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of the integral concept which consists of only $keond resource in the expert’s frame in Figure
7.1 was productively used by Alex in this problem.

Figure7.5 below describes the knowledge frame that gufded’s thinking about the
integral concept in this problem. This is identittathe frame he used in the algebraic problem in

interview 2.

Figure 7.5 Alex’s knowledge frame that guides his thinkingn the algebraic problem in

interview 3

Non-constant forces

Algebraic representation

Work done by force

Work equals the integral of force

7.2.2.3 Interview 4 — Algebraic problem

The statement of the algebraic problem in interdeis presented in Figui®6 below.
Similar to the algebraic problems in interviewsn2l 8, this problem also involved the work-
kinetic energy theorem in which the work done kg fitictional force was calculated from the
force function. However, the frictional force ingtproblem was provided as a function of

angular displacement instead of linear displacerasm the other two interviews. The integral

pl2

of force, F (q)dq, was therefore no longer the value of the worle Tbrrect integral of
0

PpRI2

work in this problem must be F (q)ds in which ds= Rdy was the length along the track of
0

radius R spanning the angldg . In the graphical problem that Alex attempted pt@this
algebraic problem, he needed hints from the inésver to recognize that the area under the
curve was not yet the value of work and that hetbadultiply it by the radius of the track. As
he moved on to the algebraic problem, he easilyg®ized the use of the integral in calculating
work by relating this problem with the graphicabblem. However, there was a mismatch

between the integral and the area that made lesptta failure.

175



Figure 7.6 The algebraic problem in interview 4

A sphere radius = 1 cm and mass = 2 kg is rolling at an initial speegl of 5 m/s along ji
track as shown. It hits a curved section (rafRus1.0 m) and is launched vertically at point] A.
The rolling friction on the straight section is higtple.

The magnitude of the rolling friction fordé, (N) acting on the sphere varies as angle
(radians) as per the following function

— 2
Fron (g) =- 0.79° - 1.2q+ 45
What is the launch speed of the sphere as it lethveesurve at point A?

Interviewer:So what are the similarities and differences betwibés problem and the
graphical one?

Alex: They are the same, | would say. But now you hawexjaation instead of a graph,
so | have to do an integral instead of the areaairtte curve.

Interviewer:What will your integral look like?

Alex: [writes down F(g)]

Interviewer:What variable are you taking integral with?
Alex: Umm ...gmaybe.
Interviewer:So you must have the differential term ... | mdan... to indicate that.

90
Alex: Okay[writes F (q)dq, starts computing the integral and gets 267.5]

0
Interviewer:What is that number?
Alex: It's work.
Interviewer:What is the unit of that number?

Alex: Unit of work is Joule.
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Interviewer:Let’s look carefully at what quantity you are intating. You integrate force
time angle, so what is the unit then?

Alex: Oh ... so Newton time ... degree?

Interviewer:Yes, Newton time degree. But what is the unit ok¥vo

Alex: Joule.

Interviewer:But what is one Joule?

Alex: One Joule is one Newton time meter. So | haverteectbdegree to meter
somehow.

Interviewer:How would you do that?

Alex: Umm ... the sphere travels a quarter of the cirabethe angle is 90 degrees ... and
the length is ... a quarter of a circumference i2aR over 4.

Interviewer:So what is your conversion factor?

Alex: 90 degrees ovePpR over 4 metefwrites %0 :1—{? degree over meter]

2pPR
4

Interviewer:Are you doing it the other way around?
Alex: Oh yes, | need meter over degree ... so it Wou%%e[does the unit conversion

and gets 4.67 Joules]
Right at the beginning of the problem, by compatimgalgebraic problem with the
graphical one, Alex easily recognized that he hadtegrate the force function. His written

integral indicated that bydd an integral’ Alex meant to integrate F (q)dq, i.e. integrate the

given force function with respect to its variabRy ignoring the terndg , Alex demonstrated
his lack of understanding of the components oinéegral, which disabled him from thinking
about the total work as the sum of infinitesimakkvd-urther, he did not even have the correct
expression for the infinitesimal work. Consequenttys prevented him from noticing that the

expression inside the integral must Pééq)ds, i.e. invoking the third knowledge resource in the

expert’s knowledge frame for the integral conceptchalculating the work. In fact, Alex used
only one knowledge resource from this frame — irgkgf force was work — together with
another knowledge resource that “the area undesuhe equaled the integral”’ to decide on the

applicability of the integral concept in this prebi.
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Figure7.7 below shows the knowledge frame that Alex usdHis problem. As analyzed
earlier, missing the third knowledge resource ftbmexpert’'s knowledge frame led students,
such as Alex, to perceive any integral of forcéhasvalue of work. Alex’s concept projection
for the integral concept, which consisted of ohlg second resource in the expert’s frame,

spanned only the problems in which the force fuomgiF (x) were given. So it led to a failure

when Alex attempted to use it in interview 4 whiea torce was not given as a function of linear

displacement.

Figure 7.7 Alex’s knowledge frame that guides his thinkingn the algebraic problem in

interview 4

Non-constant forces

Algebraic representation

Work done by force

Work equals the integral of force

Integral equals the area under the curve

7.2.3 Summary of Case Study #1

At the first time Alex encountered the task of cddting the work done by a force using
the integral concept (i.e. in interview 2), he dat have a concept projection of the integral
concept so he struggled to find the work done leyftince. Upon being guided to think about the
non-constant nature of the force, he was abletigade the resource that “the integral of force
was the work,” which was true for the function pd®d in that interview. This knowledge
resource also constituted Alex’s concept projectarthe integral concept for finding the work
in the algebraic problem of interview 3. He carried same concept projection into interview 4,
where he combined with it one more knowledge resothat “the area under the curve equaled
the integral.” This development in the knowledgséked to the extension of the span of Alex’s
concept projection: it then spanned not only pnoiglén which the force was given as a function

of linear displacement but also as a graph of fesrsus linear displacement. However, the
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knowledge base for Alex’s concept projection iremitew 4 was missing an important

knowledge resource: “the integral must be thaFték) dx.” Without this resource, his concept

projection did not span the type of problems inchithe force function provided was not that of
force versus linear displacement. This explaineskAl failure when he used his concept
projection in the algebraic problem of interview 4.

We answer our the research questions in this siadgllows:

What resources did Alex use to determine the agipility of the integral concept
in calculating the work?

Most of the times in our interviews, Alex activatib@ knowledge resource that “the
integral of force was the work” to determine uséhgf integral concept in calculating the work
done by non-constant forces. In interview 4, Algktthe graphical problem before the algebraic
problem, so he also activated another resourcke-dtea under the curve equaled the integral” —

as a cue for using integral to calculate the whlidwever, he failed activate the resource that

“the integral must be that d¥ (x) dx” so he did not recognize that the integral of éoit

interview 4 did not yield the value of work.
How did Alex’s concept projection of the integraincept change as he
progressed through the interviews?

The first time Alex encountered the algebraic peatl he did not have a concept
projection for the integral concept in calculatthg work. In most of the later instances in the
interviews, Alex attended to the given function &mel knowledge resource that “the integral of
force was the work” to determine that the integaicept is applicable in the problems. In
interview 4, he attended to these information ded the integral-area relation to perceive the
integral concept as applicable. This was a devesoynm his concept projection of the integral
concept which allowed him to perceive the graphécal the algebraic problems to be similar.
His concept projection of the integral at that tispanned the problems in which the function of
force was given in not only the algebraic represtm but also the graphical representation.
However, Alex did not attend to the variable of tbece function provided, so his concept
projection did not span the type of problems inchithe force provided was not a function or a
graph of force versus a variable other than linkslacement.
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7.3 Case study #2 — Graphical representation

7.3.1 The interview problems
The graphical problems presented to students emvigiws 2 and 3 (Figure.9 and
Figure7.11) involved finding the work done by non-constmces from the graphs of force
versus linear displacement. Students had learioed tine lecture that the work done by a force
equaled the area under the curve of force versydatdiement, but there were no homework or
exam problems in which this knowledge was requiSmistudents did not have any prior
experience of finding work using the area undercir@e prior to our interviews.
A student is most likely to recognize the use efainea under the curve concept in
calculating the work done by a force if he posse#ise following knowledge resources:
The total work is the sum of incremental works oral segments of the
trajectory;
The work equals the area under the curve,
The curve must be on a graph of force versus lidesgdacement, i.e. the graph of

F(x) vs. x.

These resources constitute a complete knowledgefbathe concept projection for the
area under the curve method for calculating thekwbinese resources could be combined to
make a more complete resource: the total workassthm of incremental works on small

segments of the trajectory which was equivaleihéosum of all incremental areas under the

curve of force versus linear displacement, i.ettha area under the curve Bf(x) VS. X.

However, we treat them as separate resources ianalysis because of the same two reasons
mentioned in the case study 1. First, students naigtivate just one of the resources when
solving a problem. The activation of only the knedde resource that “the work equals the area
under the curve” might lead students to perceieeattea under the curve of any graph of force as
the work done by that force. For example, the areter the curve of force versus time might be
claimed as the value of work while it is in faceé thalue of impulse. Therefore, the concept
projection that allows the recognition and apprajgriapplication of the area under the curve
concept in finding the work done by a force mustude the knowledge resource that “the graph

must be that of force versus linear displaceme®gcond, students might activate a knowledge
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resource that had been taught explicitly in théulecwithout understanding its underpinnings or
underlying assumptions. The idea that “the workaggjthe area under the curve” was taught
explicitly in the lecture, so when students talkddut finding work using the area under the
curve, it was possible that they were recalling #mowledge without understanding the
underlying accumulation process.

The graphical problem of interview 4 also involaalculating the work done by friction
force by the graphical method, but the graph giweas that of force versus angular displacement
of the object on a circular track. The area unbderdurve was then the sum of the product of
force and angle, which was not the value of wokks®lve this problem, students must have a
concept projection for the graphical method whiohsists of all three knowledge resources
mentioned above. Without the last resource, stsdeauld claim that the area under the curve
was the value of the work done by friction.

Figure7.8 below shows a possible knowledge frame thigtey to be used by an expert

to calculate the work done by non-constant forngbeé graphical problems in our interviews.

Figure 7.8 A possible expert's knowledge frame for calcutang work in the graphical

problems in our interviews

Non-constant forces

Graphical representation

Work done by force

The total work is the sum of incremental works
The work equals the area under the curve

The curve must be that of force versus
linear displacement

We will now analyze the performance of a student; gpseudonym) as he calculated the

work done by non-constant forces using the areatie curve concept. This analysis will help
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identify Eric’'s concept projections for the methaxatl their relation with his success or failure on
the task.

7.3.2 Results of case study #2

7.3.2.1 Interview 2 — Graphical problem

The graphical problem in this interview is presenteFigure7.9 below. The strategy for
finding the velocity of the bullet is the same laghie algebraic problem, except that the work
done by the spring force could be now calculatedguthe area under the curve of force (i.e. the
triangular section on the graph). With a few higiteen by the interviewer, Eric was able to set

up the equation for the work-kinetic energy thear@iren he started struggling with the graph.

Figure 7.9 The graphical problem in interview 2

A 0.1 kg bullet is loaded into a gun (muzzle len@th m) compressing a spring as shown.
The gun is then tilted at an angle of 30° and fired

The only information you are given about the gutha the barrel of the gun is frictionless
and when the gun is held horizontally, the netdédfqN) exerted on a bullet by the spring gs
it leaves the fully compressed position varies &mation of its position x (m) in the barrel 4s
shown in the graph below.

What is the muzzle velocity of the bullet as itea the gun, when the gun is fired at the 3Q°
angle as shown above
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Eric: We are not given k and x though.

Interviewer:What do you need k and x for?
Eric: Because work done by the spring%kxz.

Interviewer:Yes, but can you think of a way to find work dopéhle spring without
knowing k and x explicitly?

Eric: ... I don’t know.

Interviewer:The main source of information abdbe spring is the graph, so let’s
explore it. What information can you extract fronstgraph?

Eric: The slope.

Interviewer:What does the slope tell you about the spring?

Eric: Um ... slopeis ... maybe k ... or ... work ...

Interviewer:What other information can you read out from the ¢wap

Eric: Ummm ...  don’t know ... I'm not good at graphs though.

Interviewer:Okay. Did you learn how to find work from graph in teeture?

Eric: Ummm ... oh, | can find area under the curve ... yeah.

Interviewer:What does the area represent then?

Eric: It's work of the spring, right?

Interviewer:Alright, so let’s do that.

This was the first time Eric encountered a phypicblem involving the area under the
curve (as he said after the interview). He staptgtkrying to find the values fok and x to plug
in the formula for the work done by the spring fartJpon being hinted to exploit the graph, he
thought of the slope of the graph though he wasuag what physical quantity the slope
represented. Although he had learned from the le¢hat the work done by a force could be
obtained by finding the area under the curve afdarersus displacement, he failed to recognize
it in this problem. However, he was eventually ableecall that knowledge resource when
being asked to think of what he had learned ingbrire that was related to the graph. He also
found the method applicable to the problem at Hahdan find the area under the cufyeln
the language of the transfer in pieces framewoeksay Eric had developed a concept projection
for the area under the curve. Eric’s realizatiothef applicability of the area under the curve

concept to this problem was based solely uponglesknowledge resource: “the work equals
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area under the curve.” He mentioned neither tharaatating of incremental works nor the
condition under which the area was the value okwoe. the graph must be that of force versus
linear displacement). The knowledge frame that guiiric as he calculated the work done by

the spring using the area under the curve in irger2 is presented in Figuiel0.

Figure 7.10 Eric’s knowledge frame that guided his thinkirg in the graphical problem in

interview 2

Non-constant forces

Graphical representation

Work done by force

Work equals area under the curve

Next, we will see how Eric’s concept projection the area under the curve developed as

he went through the later interviews.

7.3.2.2 Interview 3 — Graphical problem

The graphical problem in this interview is presenteFigure7.11 below. The initial
spring compression could be obtained by using thikikinetic energy theorem, in which the
work done by the spring was the value of the areleuthe curve (i.e. the triangular section on
the graph).

Eric was presented this problem after he had caegbline algebraic problem in this
interview. The strategy to solve this graphicalljpeon was identical to the previous algebraic

problem. The only difference was that in the algebproblem, the work done by the resistance

force was calculated by computing the integr&l(x) dx, while in the graphical problem, the

work was calculated by finding the area under e of force.

Since Eric had completed the algebraic problenhatkeno difficulty setting up the
equation for the work-kinetic energy theorem in gin@phical problem. He also easily recognized
that the work done by the resistance force wasitba under the curve by relating to the integral
in the algebraic problem. The following excerptram the beginning of the problem.
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Figure 7.11 The graphical problem in interview 3

A 0.1 kg bullet is loaded into a gun compressirgpiang which has spring constant k = 600D
N/m. The gun is tilted vertically downward and thdlet is fired into a drum 5.0 m deep,
filled with a liquid.

The barrel of the gun is frictionless. The resistaforce provided by the liquid changes with
depth as shown in the graph below. The bullet aotoeest at the bottom of the drum.
What is the spring compressigr?

Interviewer:What are the similarities and differences betwe&hghoblem and the
previous one?

Eric: Just that the frictional F is given in a graph ieat of an equation. Everything else
is the same. All I'll have to do is to find the arddhe graph.

Interviewer:What physical quantity does the area represent?
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Eric: It's the same thing as the integral in the previptablem. It will give me the work
done by the frictional force.

In this interview, Eric easily recognized the apgbility of the area under the curve in
finding the work done by the resistance force. €heere two knowledge resources that Eric
explicitly mentioned in his reasoning: “the intelgeguals the area under the curve” and “the
work equals the area under the curve.” In the lagguwf the transfer in pieces framework, we
say that Eric had the concept projection of tha ameder the curve, which consisted of two
knowledge resources compared to only one resogrgeiaterview 2. This expansion in the
knowledge base of Eric’s concept projection ofdhea under the curve allowed him to easily
see the similarities between the graphical andltpebraic problems, and hence, see the
applicability of the area under the curve concegptdzognizing its relationship with the
algebraic integral. Figuré.12 below shows the knowledge frame for Eric’sasgt projection

for the area under the curve in interview 3.

Figure 7.12 Eric’s knowledge frame that guided his thinkirg in the graphical problem in

interview 3

Non-constant forces

Graphical representation

Work done by force

Integral equals area under the curve

Work equals area under the curve

7.3.2.3 Interview 4 — Graphical problem

The graphical problem in this interview is presenteFigure7.13. Similar to the
graphical problems in the previous interviews, fingblem could be solved using the work-
kinetic energy theorem. However, the graph givethis problem was the graph of force versus
angular displacement, so the area under the cuagenat the value of work. To find the work
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done by the frictional force, students had to contres graph to the graph of force versus linear

displacement, or to multiply the area under thegigurve by the radius of the track. These

PpRI2 pl2
strategies were equivalent to calculating the irtisy  F (g)ds andR  F(g) dg,

0 0

respectively.

Figure 7.13 The graphical problem in interview 4

A sphere radius = 1 cm and mass = 2 kg is rolling at an initial speeg of 5 m/s along 1
track as shown. It hits a curved section (radkus 1.0 m) and is launched vertically at point
A. The rolling friction on the straight sectionnsgligible.

The magnitude of the rolling friction force actiog the sphere varies as anglas per the
graph shown below. What is the launch speed o$pihere as it leaves the curve at point A
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Prior to this problem, Eric had completed the atgebproblem in which the work done

PpRI2
by the frictional force was calculated by the imdg F (q)ds. When he started the graphical

0

problem, he was able to relate it with the algebpaoblem but in inappropriate ways.
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Interviewer:What are the similarities and differences betwe&nghoblem and the
previous problem?

Eric: Same principles apply. All the values are the saxcep instead of an equation
you are given a graph to find the friction. Scekd to figure out how to do the integral so I'll
need the area under this gradbalculated the area and got 267.5]

Interviewer:What quantity does the area under this graph regmea

Eric: It's work, isn't it?

Interviewer:What's the unit of your area?

Eric: Shouldn't it be Joule?

Interviewer:You find the area, which means you multiply the gties on the vertical
and horizontal axes. Their units must be multipleal t

Eric: So ... Newton times degree.

Interviewer:ls that the unit you expect for work?

Eric: No, | want Joule ... or Newton times meter.

Interviewer:So how do you convert degree to meter?

Eric: One revolution would be 360 degrees but | don't kndwere meter comes in.

Interviewer:What unit should the conversion factor carries then

Eric: Meter over degree.

Interviewer:So how many meters correspond to how many degrees?

Eric: I don't know.

Interviewer:Let’s consider a circle. What are the angles andwnference?

Eric: One revolution is 360 degrees ... gr 2. and circumference IR.

Interviewer:So what is the conversion factor then?

Eric: 2pR meters over 360 degre¢did the unit conversion and got the correct valtie
work]

At the beginning of the problem, Eric stated tlnet &rea under the curve was the value of
the work done by friction by invoking two knowledgesources: the integral equaled the area
under the curve 8o | need to figure out how to do the integral'Bméed the area under this
graph”); and the work equaled the area under the curferoé (“it's work, isn’t it?”).
However, these two knowledge resources were nabppptely used in this case. First, Eric

recognized the use of the area under the curvelbyrg it with the integral he encountered in
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the algebraic problem, though there was a diffexdretween them. The integral in the algebraic

pRI2
problemwas F (q) ds which corresponded to the area under the curdercé versus length
0

along the curve while the graph provided was th&b@e versus angle. Second, the area under
the curve equaled the value of work only if theveuwas of force versus linear displacement,
which was not the case of the graphical problelmaatl. So the concept projection consisting of
these two knowledge resources, which Eric succligsised in the graphical problem in
interviews 2 and 3, is not applicable in this peshl In the transfer in pieces language, Eric’s
concept projection for the area under the curvendidspan the type of problems in which the
graph provided was not that of force versus liresplacement. The missing of the knowledge
resource that the area under the curve was the wélworkonly in the case that the curve was
on a graph of force versus linear displacementrici€£concept projection for the area under the
curve led to his overuse of the concept. Figufiel below shows the knowledge frame for Eric’s
concept projection for the area under the curviaterview 3

Figure 7.14 Eric’s knowledge frame that guided his thinkirg in the graphical problem in

interview 4

Non-constant forces

Graphical representation

Work done by force

Integral equals area under the curve

Work equals area under the curve

7.3.3 Summary of Case Study 2
In interview 2 through interview 4, Eric developaad applied his concept projections
for the area under the curve method for calculatiegwork done by non-constant forces. At his

first encounter with the task, Eric did not haveoacept projection for the area under the curve,
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so he did not spontaneously recognize the applitabf the area under the curve concept in the
graphical problem of interview 2. Only upon beirigtad to recall the strategy for finding the
work from a graph that he had learned in the lectuais Eric able to invoke the knowledge
resource that “the work equaled the area undecuhee of force.” This knowledge resource by
itself constituted the entire knowledge base foc’Efirst concept projection for the area under
the curve. This rudimental concept projection waecmate for Eric to solve the graphical
problem in interview 2, because the graph provided that of force versus linear displacement
and the area under the curve was the value of work.

In interview 3, Eric added another knowledge reseur “the integral equaled the area
under the curve” — to the knowledge base for hixept projection for the area under the curve
by relating it with the integral in the algebraioplem. This expansion in the knowledge base of
the concept projection allowed him to perceivealgebraic and graphical problems as very
similar (“All I'll have to do is to find the area of the gtdp although they were presented in
different representations. Having carried his cpbg@eojection consisting of those two
knowledge resources into interview 4, Eric spontaiséy recognized that finding the area under
the curve was a way of doing the integral which ldgesult in the value of work. However, the
graph provided in interview 4 was that of forcester angular displacement and hence the area
under the curve was not yet the value of work. Kin@wvledge base of Eric’s concept projection
contained the resource that “work is the area utfdecurve”, but did not contain the resource
that “the curve must be on a graph of force velisiesr displacement.” Thus Eric failed to
recognize that the area under the curve in interdievas not the value of work.

We answer our research questions for this casg ssitbllows:

What resources did Eric use to recognize the agiplity of the area under the
curve concept in calculating the work?

At the first time Eric encountered the graphicallpem, he was not able to activate the
resource that “the work equaled the area undecuhee of force.” As he progressed through the
interviews, he was able to activate that resowaseayell as the resource that “the integral equaled
the area under the curve.” However, he was nottahlecognize that “the curve must be on a
graph of force versus linear displacement” so leddo recognize that the area under the curve
of force in interview 4 was not yet the value ofriwo
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How did Eric’s concept projection of the integrahcept change as he progressed
through the interviews?

The first time Eric encountered the graphical peofl he did not have a concept
projection for the area under the curve conceptlaulating the work. Upon being prompted,
Eric attended to the fact that he was providedaplyand needed to calculate the work, which
cued the activation of the resource that “the weiyhaled the area under the curve of force.” In
interview 3, Eric did the algebraic problem beftive graphical problem so he also attended to
the integral-area relation and used it as a cuérfding the work using the area under the curve
concept. This was a development in his concepeptign of the area under the curve concept
which allowed him to perceive the graphical andalgebraic problems as similar. However,
Eric did not attend to the variable on the grapfoote provided, so he did not recognize that the
area under the given curve was not the value okwaorother words, Eric’'s concept projection
did not span the type of problems in which the éon@s provided as a graph of force versus a

variable other than linear displacement.

7.4 Conclusions
We have utilized Wagner’s theoretical frameworlcofcept projection to interpret and
trace the development of individual students’ aggdlon of the integral and the area under the
curve concepts to physics problems. We found théteafirst time the students encountered the
task, they usually did not have a concept projectoo the integral and the area under the curve
concepts. Hence, they did not recognize the usigeske concepts in the problems at hand.

Instead, they relied on pre-determined formule= F xd in the case of Alex and/ :% k¥ in

the case of Eric) to calculate the desired quastiWVith the hints provided by the interviewer,
these students were able to recall one knowledsmuree they had learned in the course, which
constituted the first, rudimental knowledge bagelieir concept projections for the concepts.
Activating this resource helped students recogthizeuse of those concepts in the problems at
hand. As students progressed through the interyigngy gradually enriched the knowledge
bases for their concept projections by adding nkomvledge resources, which allowed them to
perceive the concepts as applicable to a broadgeraf problems. In other words, students

expanded the span of their concept projectionb@sprogressed through the interviews.
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This finding aligns with Wagner’s transfer in pisdeamework as per which “transfer is
understood ... as the incremental growth, systentaiizeand organization of knowledge
resources that only gradually extend the spanta@sons in which a concept is perceived as
applicable.” (Wagner, 2006, p. 10). However, we &sind from our studies the instances when
students’ concept projections did not span thelprob asked in our interview. In such
situations, students either did not perceive thicept as applicable in the problem when it was
in fact applicable, or conversely they perceiveasibeing applicable when it was in fact not
applicable. We found the latter behavior in oudgts. Alex claimed the integral of the force

pl2
function F (q)dq as the work done by the force while it was nothis case, the missing of
0

one important knowledge resource, Alex’s concepjgation for the integral — “the integral

must be that of force versus linear displacemerds” — led to his overuse of the integral

concept. Similarly, Eric claimed that the area urtte curve of F (q) vs. g was the work done

by the force when, in fact it was not so. The nmgaf an important knowledge resource Eric’'s

concept projection for the area under the curvthe turve must be that of force versus linear

displacement, i.eF (x) vs. X" — led to his overuse of the area under the caoreept.

7.5 Implications for instruction

The two case studies presented in this chaptealed¢he resources, readout and
reasoning strategies that students used to determenapplicability of the integral and the area
under the curve concepts in calculating the wonkedoy non-constant forces in work-energy
problems. Students’ success and failure on integraasks were also explained based on the
resources activated, the readout and reasoninggga used. These studies suggested that
students’ success or failure in recognizing thdieability of a concept depended upon the
resources and the cognitive strategies the studesed. When a student did not activate a
certain resource that was necessary in the sityatizvas possible that he did not have that
resource (lack of a resource) or he was unawatteedfype of information given (lack of a
readout strategy). The case studies presentedsiohhpter suggested a strategy for facilitating
students’ problem solving. The strategy requiregspis instructors to be aware of the resources

students are possessing and/or missing, and barpcefo provide appropriate prompting that
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might cue students to activate the necessary resand prompting that guides students
attention to certain features of the situationaaich

In our tutorials, the sequence of math and phyexescises in tutorial 3 prepared students
with the appropriate resources necessary for wogtgy problems involving non-constant
forces. The math and physics exercises in tutdriaepared the students with the resources and
also prompted students’ attention to the variabkbhe® given force function. The promising
results of these tutorials in helping studentsrigarapply the integral and the area under the
curve concepts in work-energy problems indicated tine strategy we proposed above might be

an effective strategy to facilitate students’ pesblsolving.
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Chapter 8 - Summary and Conclusions

8.1 Summary of this research project
The research project presented in this disserta@sntwo phases. In phase 1 of the
project, we investigated the difficulties studestgountered in applying the integral and the area
under the curve concepts in physics problem sohjang the hints that might help them
overcome those difficulties. Based on the findinfphase 1, in phase 2 of the project, we
created tutorials to facilitate students’ learniogolve physics problems with integral and the
area under the curve, and tested their effectiweimesomparison to typical textbook problems.

We summarize the results of each phase of theqirbgtow.

8.1.1 Results from phase | of the project
The application of the integral and the area utideicurve concepts in physics problem

solving can be broken up into four steps:
- Step 1: recognize the need for an integral
- Step 2: set up the expression for the infinitesiquedntity
- Step 3: accumulate the infinitesimal quantities
- Step 4: compute the integral

We investigated students’ difficulties with eachtloése steps in the context of mechanics
and electricity. In mechanics, our interview probginvolved calculating the work done by a
non-constant force from the force function. We fotinat not many students were able to

recognize the relatio® = F(x) dx although they had learned about it in the coussedents’

unfamiliarity with the task might explain for thigsult. We also found that most of the students
did not think about the integral as an accumulatibsmall quantities to obtain the total quantity,
so they had difficulties setting up the correcegral for the work done by a force when the force
was given as a function of angular displacement.

Our interview problems in electricity involved calating several physical quantities
(e.g. electric field, resistance, capacitance,tetecurrent) from other non-constant quantities

(e.g. charge distribution, resistivity, current gi¢y). We found that students did not have
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significant difficulties recognizing the need for mtegral in a physics problem, although there
were still a few students who did not recogniz&lite non-constant nature of a physical quantity
provided in the problem statement was found tdheenajor cue for students to think of using
integration in the problem. We found the real stlingbblock to be the step 2: setting up the
expression for the infinitesimal quantity. Mosttbé students in our study did not indicate an
understanding of the accumulation process undeyliie integral. Students did not think of the
total quantity as a sum of infinitesimal quantitiegen when being prompted by the interviewer.
Most of them were unable to set up the correctesgion for the infinitesimal quantity because
they did not understand what the “infinitesimal gg” meant, and could not interpret the
meaning of the infinitesimal term (i.elx, dr, ...) in the integral. Once the expression for the
infinitesimal quantities was set up, students Ugualegrated it immediately without noticing
how the quantities should be added up. This tendkacstudents to errors when the quantities
to be accumulated were vector quantities (e.gtrteeeld) or quantities that must be added
reciprocally (e.g. capacitance of a series of capa}. We also found that students had
difficulties computing the integrals that were gpt These difficulties included determining
variables and constants in an integral, determithedimits of the integral, converting one
variable to another.

Most of the students’ difficulties described abowere due to students not understanding
the accumulation process underlying the integralth® hints that helped them overcome those
difficulties guided them to think about the intdgra a sum of infinitesimal quantities. This
could be done by analyzing the structure of thegrand and interpreting the meaning of each of
the terms and symbols in the integral.

We also investigated students’ application of tfteaainder the curve concept in physics
problems in mechanics and electricity. In thesdlems, the integrals must be evaluated
graphically using the area under the curve condephechanics, the problems involved

calculating the work done by a non-constant foroenfthe graph of force versus displacement.

Only a few students could recognize that the wopkaéed the area under the curveFo(fx) VS.

X, although they had learned about it. Studentsddib recognize that the area under the curve

of F (q) vS. ¢ was not the value of work. This error indicatedttstudents might not know

what quantity was being accumulated when calcigéatie area under the curve. Asking students
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about the structure of the Riemann sum underlyiegctlculation of the area under the curve
helped students understand the physical meanitigeadirea under the curve.

In electricity problems, students had to compuéeititegrals set up from the problem
statements by calculating the area under the auhen there were several graphs provided. We
found that many students had significant diffi@strelating an integral with the corresponding
are under the curve. Asking students to label plgkmowing that the area under the curve in
that graph equaled a certain integral was theegjyahat helped students recognize the correct
graph to find the area.

8.1.2 Answers to the research questions in phaséthe project

8.1.2.1 Students’ application of the integral comten mechanics

RQ1: To what extent did students recognize the akthe integral in physics
problems?

Most of the students were not able to recognizeitieeof the integral in calculating the
work done by non-constant forces. Instead, thesngited to use pre-derived formulas to
calculate the work. Students’ inability to recognthe use of the integral might be attributed to
their unfamiliarity with the task (since studenid dot have any problems involving integral
prior to our interviews) and their strong inclir@tito using the pre-derived formulas rather than
attempting an unfamiliar strategy or inventing svrstrategy.

RQ2: To what extent did students understand whagagtity was being accumulated
when calculating an integral?

The fact that some students knew that they hadltulate the derivative or the integral
of force but did not know which one suggested thase students did not understand the
physical meaning of the operators. Therefore, sttsd@pplication of the integral in finding
work might simply be the recall of the previousiatned knowledge (i.e. the work equaled the

integral) rather than an understanding of how tbekwvas being accumulated.

The fact that most of the students claimed thegnalle F (q)dq in interview 4 as the

value of force indicated that these students didunderstand what quantity was being
accumulated when they performed the integral.
RQ4: What verbal hints may help students overcotese difficulties?
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For students who attempted to use pre-derived flasrthey learned from the course to
calculate the work, the hints were to help thenogedze that those formulas were not applicable

to the problems at hand. For example, when a stdgampted to find the spring constant using
k =; to plug in the formulav :% k¥ , the hint was to ask them whether the spring eomnst
was actually a constant, which helped them recegtmat the concept of “spring constant” did
not apply for non-linear spring and hence the fdenW :% k¥ did not apply either. The hints

that guided students to think of the non-constamtine of the force triggered students’ thinking
of integration. The hints on the accumulation & iffinitesimal work to get the total work also
helped some students to set up the correct intégréthe work in interview 4, although the hints
on units seemed to be easier to understand faattisents.

8.1.2.2 Students’ application of the integral comaten electricity

RQ3: What are the common difficulties that studerdgacounter when solving problems
in electricity involving integration?

Students generally did not have significant diffigwecognizing the need for integration
in a problem. However, students did have significhfficulties setting up and computing the
desired integral. These difficulties included seftup an incorrect expression for the
infinitesimal quantity and/or accumulating the mfesimal quantities in an inappropriate
manner. Determining the limits of the integraldatiag variables in an integral, and computing
the integrals algebraically were also the diffimdtfaced by some of the students.

8.1.2.3 Students’ application of the area under tberve concept

RQ1: To what extent did students recognize the akarea under the curve in physics
problems?

The majority of students in our interviews did sppbntaneously recognize the use of
area under the curve in calculating work from thegpb of force. There were two possible
explanations: (i) students were not familiar witle method; and (ii) students held strong
preference on algebraic method. The fact that retur@ents were able to recognize that work
equaled the area under the curve as they progrédssed)h the interviews suggested that

students gained familiarity with the concept. S@nalents, while talking to the interviewer after
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the interviews, stated that they had not seen aplyigm using the area under the curve in their
physics homework or exam. On the other hand, staddso expressed an inclination to an
algebraic approach even when a graph was providesl; attempted to use pre-derived
formulae for work and just used the graph to coltkxta on the values of spring constant or
coefficient of friction to plug in those formulaBome students explicitly told the interviewer
that they hated problems with graphs and prefes@ding with equations. These facts
supported the second explanation.

RQ2: To what extent did students understand whagagtity was being accumulated
when calculating the area under a curve?

In the graphical problems in interviews 2 and &, @inea under the curve itself was the
value of work. So when a student recognized thakwqualed the area under the curve, we did
not know whether he understood how work was accatedlwhen calculating the area or he just
applied what he was taught in the lecture. Thenevieur students in interview 2 stated that the
area had some meaning but were not able to tell thkameaning was, and three students in
interview 3 stated that the slope of the line weesdoefficient of friction. These were evidence
that these students did not understand what qyahgtslope and the area represented.

In the graphical problem in interview 4, findingethrea meant accumulating the product
of force and angle, which did not yield the totalriu Six out of 9 students spontaneously stated
that work equaled the area under the curve, bytamé of them recognized the need for the
radius factor without assistance from the internaewl his was further evidence that although
students could invoke the knowledge of “work eqddles area under the curve of force,” they
might not understand what quantity was being acdated when calculating such an area.
Therefore, they failed to apply that knowledge avel situations.

RQ3: To what extent did students understand theatgnship between a definite
integral and area under a curve?

Almost all of the students indicated knowledge thie“integral equaled the area under the
curve,” but only half of them (four students inantiew 5, eight in interview 6, and nine in
interview 7) were able to select the graph corradpa to a pre-determined integral when
several graphs were present. The errors othermtisideade — choosing a graph based on part of
the integrand or on the simplicity of the area ghltion — indicated that these students did not
completely understand the relationship betweerfiaiteintegral and area under a curve.
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8.1.3 Results from phase Il of the project

In phase 2 of the project, we created tutorialatditate students’ learning to solve
physics problems involving integration in mecharaoselectricity. In mechanics, the tutorials
aimed at helping students solve problems on woseggn in which the work done by a force
must be calculated by the integral or the area uithgecurve of force. The tutorial consisted of a
sequence of math and physics exercises, a delmitepr, and two problem posing tasks. The
sequence of math and physics exercises provideerstsiwith the opportunity to activate a
mathematical model or knowledge in a context-fregmexercise and then apply it to a simple
physics context. The debate problem prepared stsigéth the physics background necessary to
solve problems on the topic. The problem posingstagere intended to help students practice
putting together a mathematical model in a phystcgext. We compared the effectiveness of
our tutorials in comparison with textbook-style Ipiems (which we called “standard materials”).
In this dissertation we discussed two tutorialghentopic of work-energy. We found that for
both tutorials, students in the treatment groupnieg with our tutorial materials outperformed
students in the control group learning with staddaaterials on integral related tasks, although
there was no difference between the two groupshgsips related tasks. This result suggested
that out tutorials helped students learn abougnatteon better than standard material did, but
post-test scores around 50% indicate that thesgllisoom for improvement. The tutorials still
needed to be enhanced to better prepare studeahtgheiphysics background of the problems.

The tutorials in electricity employed a differetriadegy. For most problems in
introductory electricity, setting up the integralsdribing the physical quantities was the major
part of the solution, and the integrals were mamulicated than those in mechanics. For these
reason, the tutorials in electricity aimed at hapstudents set up the integrals by braking up the
process in smaller steps so that students could leawv complicated integrals were formed by
translating the physical situation described indtaement to mathematical notations. Each of
the tutorials in electricity consisted of a phygieceblem in which a physical quantity was
calculated using the integral. This problem wadkenoup into several steps or smaller exercises,
through which students were led from the simple agith discrete quantities to more and more

complicated cases where there were several qunditiinfinites number of infinitesimal
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guantities. We also tested our tutorials in congmarito textbook-type problems (standard
materials). We found that two out of the three tiiais that we created in this study helped
students learn to set up an integral in a physieslem more than the standard material did, but
the third tutorial did not make a significant impeonent. The reason for this might be that the
students were unfamiliar with the type of integrathe third tutorial. Analysis of the types of
errors students made in this tutorial implementasiopported this hypothesis. Although the
students in the treatment group learning with atortals outperformed the students in the
control group learning with standard materialsreheere still fewer than half of the students
who could solve the problems in the post-test. Thigied that our tutorials needed to be

improved to help a larger proportion of studengsreabout integral in electricity problems.
8.1.4 Answers to the research questions in phasefithe project

8.1.4.1 Tutorials in mechanics

To what extent did our tutorials help students ingue their ability to apply the integral
and the area under the curve concepts in work —ggyeproblems, compared to standard
instruction (i.e. sample problems and solutions)?

Both of our tutorials on the topics of work — enefgr a point mass and for a rigid body
significantly improved students’ ability to calctéaa physical quantity using the integral and the
area under the curve concepts in a physics prold#hgugh they were not so effective in
preparing students with the physics backgrounth@ftork — energy problems. These results
suggested that the tutorials should be improvdzbtter prepare students with the physics

background of the problems.

8.1.4.2 Tutorials in electricity

To what extent did our tutorials help students ingue their ability to apply the integral
concept to electricity problems, in comparison tarsdard materials (i.e. sample problems and
solutions)?

The first two tutorials on the electric field argetresistance problems improved students’
ability to apply the integral into physics problesignificantly more than the standard materials
did. However, the percentage of students beingtalddtain the correct answer in the post-test

in these two FOGLI (Focus Group Learning Intervies$sions was still less than 50%. So our
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tutorials must be improved to facilitate more sttddo learn about integration in electricity
problems. The third tutorial did not provide promgsresults as the other two. The major reason
for this might be that the students were unfamikéh the type integral in the third tutorial. This
tutorial needed to be revised to teach students swa@e about integrating with respect to area.

8.2 What's new in my research?

There have been many studies in physics educagearch on students’ problem solving
with multiple representations (e.g. numerical, blgéc, graphical, tabular). Most of these studies
focus on which representations students choossetphow they use the representation when
solving physics problems, and the correlation betwie representation students use and their
success in solving the problems. My research alsolves several representations (e.g.
numerical, algebraic, graphical), but the focusridhow students extract information and
calculate physical quantities from the represeomasti

There have been many studies on how students tgggation in physics problems.
However, these studies mostly discuss the firgt @&cognizing the need for an integral) and the
last step (computing an integral, e.g. confusingvben variables and constants, incorrect
limits,). The new idea in my study is that | bregkthe application of the integral into four steps
and investigate students’ difficulties with eachttué steps. Therefore, my study provides a
closer look and more detailed insights into studetttficulties when applying the integral to
physics problems.

There have been a few studies on students’ intexpwa of graphs in kinematics (e.qg.
McDermott, 1986) and thermodynamics (e.g. Poll@7). My study investigates how
students use graphs in many other topics of physickiding work done by a force and
electricity. The new idea in my study is that lcaisvestigate how students use graphs to
evaluate definite integrals by providing the studemith several graphs instead of just the graph
related to the integral. This helps reveal studemtderstanding of the integral-area relation.

There have been many tutorials created to helgestadearn physics (e.g. Tutorials in
Introductory Physics, Activity-Based Tutorials, @p8ource Tutorials). These tutorials aim at
improving students’ conceptual understanding ingits; However, there are no tutorials

focusing on helping students learn to apply mathealeconcepts in solving physics problems.
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In my study, | have created tutorials that aimedpimg students’ learn to apply one of the most

important mathematical concepts — the integral phiysics problems.

8.3 Implications for instruction

My research has revealed the common difficultiegdeits encountered in applying the
integral and the area under the curve concepthyrigs problems. Based on these findings, we
created tutorials to facilitate students’ applioatof these concepts in physics problem solving.
These works have many implication for both mathé&wsatnd physics instruction, and open new
directions for future research.

All of the participants in our research were studem the Engineering Physics course
sequence at Kansas State University. At least ndeéveo semesters of calculus were required
for enrolling in the Engineering Physics 1 and Arses, respectively. This means that students
have had quite intensive training in calculus befoarticipating in our research. However,
students’ performance on integration related taskair research indicated that such training in
calculus did not prepare them well enough to agipdyr calculus knowledge to physics problems
solving. Our research found that students did mioktof integration as an accumulation process
and did not understand the meaning of the integaauadthe infinitesimal term in the integral,
therefore they had difficulties setting up the gt from the physics situations. So we suggest
that instruction in calculus should focus more loe &ccumulation process underlying
integration. This could be done by providing th&dsints with problems which ask students to
compute the integrals using the Riemann sum methibér than using pre-determined integral
techniques. Calculus homework and examination shioglude more application problems to
provide students with the opportunities to appky ¢alculus concept to physics problems right
after students have learned about it in calculbss iB similar to the sequence of math and
physics exercises in our tutorials, which have h@enen to improve students’ application of
integration in physics problems.

As discussed above, students entering calculusdijasssics courses might not have
satisfactory understanding of calculus conceptstheid calculus knowledge might not be ready
to be applied to physics. Therefore, physics imston should include tutorials on calculus
concepts to provide students the opportunity taaané their calculus knowledge and more

importantly, to learn how calculus concepts ardiadgo solve physics problems. The tutorials
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we created in this research give an example okitiak of mathematics tutorials that have been
proven to be helpful. Due to time limitation, outdrials were pretty short and therefore could
only focus on patrticular types of physics probleRisysics instructors should create more
tutorials covering a broader range of topics ambl@m types, and implement those tutorials as a

regular activity during recitation or problem salgisessions in the course.

8.4 Possibilities for further research

One of the limitations of the research presentdatigdissertation is the small number of
students participating in the studies of phasethefproject. There were only 20 participants in
comparison to more than 200 students enrolleddrctiurse. So, further research with larger
sample sizes is needed to verify the results detlséudies. Our study has suggested a four-step
model for investigating students’ application of fhtegral in physics problems. This model
might serve as a lens for other researchers todoskudents’ performance on integration tasks
in physics.

The tutorials we created in this project are limhite quantity and topics (two tutorials on
work-energy and three tutorials on electricity)the types of problems, and in the amount of
learning experience they provide. However, theltegtom implementing these tutorials are
promising. These results encourage researchees/gap more tutorials that cover a broader
range of topics and problem types, and also inerdegsamount of learning experience students
might have from using the tutorials.

Integration is a dynamic process, in the sensedtlhatge object is chopped into
infinitesimal pieces on which the physical quani#tgvaluated and then is accumulated over all
pieces to obtain the total quantity. Therefore, patar simulation might be employed to
demonstrate the chopping and accumulating procggseming when an integral is performed.
Developing computer simulations on the applicatboalculus concepts in physics is a

promising direction for future research.
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