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ABSTRACT 
 

Four experiments using 350 pigs were conducted to determine the effects of dietary 

nutrients on the incidence of osteochondrosis (OC) and to evaluate the use of biomarkers to 

predict its occurrence in growing-finishing pigs.  The first experiment was conducted to evaluate 

the potential of dietary ingredients with known functions in cartilage and bone metabolism on 

incidence of OC in pigs (PIC 327 × 1050, initially 39 kg).  Results suggest that pigs fed high 

levels of added copper and manganese, silicon, methionine and threonine, or proline and glycine 

had reduced OC severity scores.  A second experiment evaluated other dietary ingredients that 

may impact OC as well as with or without ractopamine HCl (PIC 327 × 1050, initially 47 kg).  

Results suggest that feeding a combination of added methionine, manganese, proline, and 

glycine or added silicon can numerically reduce OC severity scores compared to pigs fed a 

standard corn-soybean meal based diet.  Feeding ractopamine HCl did not affect the incidence or 

severity of OC.  A third experiment was conducted to evaluate the effect of dietary lysine 

concentration with or without the addition of high methionine, manganese, and copper in a 3 × 2 

factorial arrangement in growing-finishing pigs (PIC 327 × 1050, initially 41 kg).  Results 

suggest that increasing dietary lysine concentrations increased the severity of OC.  Furthermore, 

feeding additional methionine, manganese, and copper reduced OC severity scores.  A fourth 

experiment was conducted to determine the usefulness of ten different biomarkers of cartilage 

and bone metabolism to predict the incidence of OC and the correlation of individual markers 

with the severity of OC.  Results suggest that measuring serum C-propeptide of type II collagen 

(CPII) will predict animals with OC, as gilts with a two-fold increase in CPII are 97 times more 

likely to have OC.  As well, serum collagen type II carboxy-terminal ¾ long fragment (C2C) 

explained 49% of the variation in OC severity scores.  The results of these experiments suggest 

 



that feeding added copper, manganese, methionine, silicon, or proline and glycine may reduce 

OC severity scores in pigs, while measuring biomarkers CPII and C2C can aid in determining 

animals with OC. 
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Introduction 
 Current human disease research emphasizes identifying biological changes associated 

with specific disease pathology to allow early detection and possibly treatment intervention 

aimed at prevention.  This focus has occurred because of the rapid advancement of assays for 

detection of specific proteins in tissues using biological markers and proteomic screening.  

Technology is currently available for identification of products of metabolism or proteins 

correlated with disease occurrence or changes resulting from treatment intervention.  Biological 

markers for use in human and other animal models are under development.  Because of 

technologies to diagnose and treat human disease, the swine industry has the opportunity to use 

these same biological markers to aid in disease detection. 

 Osteochondrosis (OC) in growing and mature swine as well as in several other animal 

species remains one of the most problematic diseases with no known treatment.  Osteochondrosis 

involves the failure of endochondral ossification of cartilage which is then retained in the 

subchondral bone1 (Figure 1 vs Figure 2).  These lesions are thought to form at an early age in 

the underlying bone and can be aggravated by stress or trauma to the tissue.  These changes 

result in pain and lameness as the animal continues to grow2 (Figure 3).  Many details of how 

OC disease progression occurs are unknown; however, several in-depth studies have been 

conducted to identify physiological changes that occur during its pathogenesis3,4,5.  

Characteristics observed include a decrease in proteoglycan content and collagen type II 

concentration, and an increase in chondrocyte necrosis and collagen type I concentration5.  A low 

proteoglycan and collagen type II content would limit the ability of cartilage to absorb and 

distribute forces because of abnormal cartilage.  Increased chondrocyte cell death would limit the 

ability of cartilage to repair lesions and may result in abnormal metabolism as chondrocytes 

synthesize collagen and extracellular components.  These biological changes to load-bearing 
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joints leave the animal susceptible to stress or trauma which may result in lameness and 

decreased performance.     

Lameness is a costly problem to the swine industry6.  Currently, sow herd replacement 

rates are 50% or greater and maintaining an adequate number of replacement gilts represent a 

significant cost to producers7.  Osteochondrosis is one of the main causes of lameness and can 

increase culling rates in sow herds8.  Also, OC has also been shown to correlate with decreased 

meat yield of finishing pigs9.  Several studies have observed that rough handling or trauma has a 

profound impact on the occurrence of OC10.  Even so, strategies to limit OC either through 

handling techniques to minimize trauma or through nutritional intervention have had little 

success11,12,13.  Genetics is the most likely contributor to the high prevalence of OC in pigs.  As 

research has shown, estimates of OC heritability range from 0.1 to 0.59,14,15. The prevalence of 

OC is correlated with specific sire lines whose progeny are more susceptible16.  The most logical 

and potentially effective means of reducing OC is through genetic selection for structural 

soundness of females which may reduce OC occurrence17.  Currently, several studies are being 

conducted in Europe to establish breeding values via magnetic resonance imaging (MRI) to aid 

in selection against lines with a high prevalence of OC.  These studies using MRI to detect OC 

lesions are not practical for the commercial pork producer.  Incorporating breeding values 

potentially could be an option, but because of technology requirements and difficulty in data 

collection, this method would prove expensive and challenging18. 

The recent mapping of the human genome has lead to the possibility of determining the 

gene or genes associated with a specific disease, but the swine genome is yet to be completed.  

Kadarmideen and Janss18 reported that a major gene likely contributes to inheritance of OC; 

however, concerns exist regarding the usefulness of genetic markers, as selecting for a single 
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trait may also have negative influences on other traits.  Proteomics is the study of the expression, 

structure, and function of proteins encoded by the genome and may have implications in 

predicting disease state.  Proteomic screening is an alternative technology that is also available, 

developed around mass spectrometry to separate and detect a large number of specific proteins 

based on their mass from a tissue or biological sample19.  Proteomics also may help identify 

specific proteins that can then be developed for biomarker assays.  

Without knowing the specific gene or combination of genes involved in OC, visual 

evaluation of breeding animals and slaughter studies of related animals are tools that may or may 

not aid in selection against OC.  With the use of biomarkers, the task of genetic selection against 

OC may become more effective.  Blood samples could potentially indicate if an animal has a 

disease and which ones do not.  This would allow selection against those animals that are 

predisposed or have OC to be withdrawn from the breeding herd.  Using biomarkers offers the 

opportunity to reduce sow herd turnover rates, and may also help reduce the amount of chronic 

lameness seen in commercial finishing facilities that arise from OC.  

What are biological markers? 
 Biological markers, or biomarkers, are products of metabolism from either synthesis or 

degradation in specific tissues that are released into the blood supply, present in the tissue of 

interest, or discarded in other biological fluids such as urine20.  When an imbalance between the 

synthesis and degradative processes occurs the concentration of these metabolic products or 

biomarkers levels are abnormally altered20,21.  Thus, biomarkers have the potential to directly 

correlate with the metabolic processes occurring within the joint or underlying bone.  

Proteins can be products of specific tissues while others reflect systemic changes in 

metabolism (Table 1).  This potentially offers two directions in relating a biological marker to 

disease pathology.  First, markers from the tissue of interest, or direct markers, would allow 
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detailed information to be gathered about events occurring within that tissue 22.  Secondly, 

indirect markers or markers not originating in the tissue of interest, would reflect organism wide 

changes that occur before a disease or as a result of a disease process22.  Even so, indirect 

markers are less specific in the information they provide and may be influenced by other factors 

other than the disease of interest.  Thus, indirect markers must be used with caution and may 

have limited use as diagnostic indicators for specific disease pathology.  Tissue specific markers 

are preferred because of their ability to be clearly identified with a disease process20 and their 

relationship to the tissue of interest. 

Biological markers of joint metabolism would be defined as those that are predictive of 

future joint deterioration, and thus treatment intervention before disease progression.  Ideally, 

biomarkers also would allow measurement of treatment effectiveness in disease prevention23.  

Scientists have turned to animal models to determine biomarkers that can be correlated with 

actual changes in the joint24.  For most human studies, biomarkers are related to some type of 

pain or mobility score as well as radiographic representations of joint width20.  Although most of 

the data evaluating biomarkers have occurred in human models, animal models such as swine 

allow a direct relationship to be drawn between marker and disease state. 

Detection of biochemical markers in body tissues 
Biochemical markers can be determined by immunoassays conducted with antibodies to 

the protein of interest to allow detection and quantification in a tissue sample.  This can be done 

using several different techniques including radio-immunoassay (RIA) or enzyme-linked 

immunosorbance assay (ELISA) that require a minimal amount of sample.  In this process, 

antibodies to the protein of interest bind selectively to the protein of interest and can be 

quantified or expressed as a relative concentration to control proteins25.  The ELISA method is 

rapidly becoming the preferred method to evaluate samples for biomarkers because of its speed 
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and accuracy.  In addition, this assay requires less equipment to perform than other types of 

analysis26.  In the case of OC, the options to analyze for biochemical markers include synovial 

fluid, serum, plasma, or urine.   

Synovial fluid.  Sampling of synovial fluid is the most likely to represent direct changes 

in metabolism of articular cartilage27.  It also represents a single joint and thus the metabolism 

rate of that joint compared with blood or urine which would reflect several joints and other 

cartilgenous tissues in the body.  In addition, markers measured in synovial fluid do not undergo 

further metabolism in the body as would either blood or urine, and thus are present in higher 

concentrations27.  Even so, synovial fluid may be difficult to collect because of limited amounts, 

particularly in older animals.  Markers of synovial fluid also may be influenced by changes in 

amount of fluid volume.  If the goal is to determine the disease process occurring in a specific 

joint, analyzing synovial fluid should provide the best representation of changes occurring in that 

joint.  

Urine.  One of easiest and least invasive ways to obtain body fluids that reflect cartilage 

and bone metabolism is through urine.  Urine is similar to blood in that it carries biological 

markers released from the joint and reflects changes that are occurring in all the joints of the 

body.  Urine is different from blood in that it contains several markers that have been altered 

from their initial form due to the filtration process of the liver and kidneys.  In the case of urine, 

some markers are more concentrated by further metabolism while others are degraded into 

products that are undetectable by standard assays26.  In addition, several of the normal markers 

used to predict cartilage metabolism are absent from urine, and thus the usefulness of urine 

samples to predict cartilage metabolism events is limited.  Markers of bone turnover are readily 
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determined from urine samples, and can provide an easy method to analyze for changes in bone 

metabolism when blood samples are not available.    

Serum or plasma.  Blood samples, like urine, indicate changes occurring systemically in 

the organism, but can be analyzed for a wider variety of metabolites.  Compared to synovial fluid 

analysis, blood markers are easier to collect and may be a better indicator of systemic 

pathological processes occurring in the animal28.  Another advantage blood markers provide is 

that blood is of a relatively consistent volume29 while synovial fluid levels may fluctuate.  The 

major disadvantage of blood markers is that some markers are present in very small amounts and 

are very difficult to detect26.  This is due to processing before entering the blood stream as most 

of the biomarkers pass through the lymphatic system were they are further degraded.  In 

addition, differences in filtration rates by the liver and kidneys can change the amount of a 

marker that is present.  Blood markers appear to be the most logical choice in predicting disease 

occurrence because of the ease of collection and the range of markers that can be assessed.  

Factors affecting sampling and concentrations of biomarkers 
 Determining what tissue to evaluate or is the best indicator can be challenging and may 

fluctuate with different diseases.  Careful consideration needs to be taken before sample 

collection and processing as the concentration of specific markers can vary depending on several 

factors.  The first factor to consider is which body fluid to sample.  This will mainly depend on 

the response criteria selected and on which body fluid is an option for collection.  In most 

circumstances, it is easier to collect a blood sample versus a urine sample in animal studies, with 

both being less involved than synovial fluid sampling.  Secondly, blood marker concentrations 

may be affected by subjects with liver or kidney disorders due to their role in filtering and 

processing of these molecules26.  Gender is also a factor that must be considered in selecting a 

marker as they may be influenced by differences in hormones during development and 
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maturity30.  In a human study evaluating biomarkers, differences in gender and ethnicity have 

been found31.  For swine, differences in markers may exist between gilts and barrows or boars; 

however, this has not been evaluated.  Therefore it is probably best to use a sub-sample similar to 

the entire population.  Marker concentrations are known to change with age and may be altered 

irrespective of disease state.  Therefore, it is recommended to compare age-matched individuals 

of normal and diseased states26.  For example, in swine, comparing older sows with gilts may not 

reflect a true difference in disease state.  Another factor that affects body fluid markers is 

mechanical stress or movement.  The effect of exercise32 and type of exercise performed33 has 

been shown to influence markers of cartilage and bone metabolism in humans.  Along with this, 

dehydration can also alter the concentration of biomarkers in body fluids.  This is primarily 

because of the involvement of motion in exchanging joint tissue materials and forces applied to 

the skeleton.  In the case of swine, gilts housed in gestation crates may have different marker 

levels than loose-housed animals due to differences in movement or range of motion.  

Additionally, two considerations for blood sampling in particular may need to be addressed.  

Differences in the site of sampling may impact the level of markers detected, however, this 

problem can be easily solved.  It is recommended to draw blood from the same location on each 

animal and a site that is representative of systemic blood flow rather than an individual joint26.  

Furthermore, the timing of collection may potentially have the biggest effect on marker levels.  

Diurnal variation may result in higher marker levels due to the build up of metabolites overnight 

with lack of movement to exchange fluid with the joint or clearance of bone markers34,35.  

Research has shown that blood samples should be taken at least two to three hours after fasted 

animals have awaken to allow exchange of fluids and account for differences in the half-life of 

certain markers26.  Differences in the half-life of certain markers results in varying rates of 
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clearance from the blood and thus different markers have differing levels of day-to-day 

variability.  Seasonal variation may also contribute to differences in marker levels but has not 

been demonstrated in all species26.  Finally, samples should be processed as quickly as possible 

to avoid marker degradation.  When analyzing for multiple markers, samples should be split into 

small aliquots to eliminate freeze-thaw cycles which may also cause unnecessary degradation of 

marker molecules.  Most metabolites are stable if stored at -20º and this will prevent degradation 

until analysis.  If all of these factors are taken into consideration, it is possible to collect samples 

that allow accurate determination of marker levels. 

Application and limitations of biological markers to osteochondrosis 
 The available information regarding biomarkers that relate to OC in swine is limited.  

However, several studies using biomarker evaluation in horses and dogs that essentially involve 

the same disease process have been described.  The majority of the information on biomarkers to 

predict disease has been acquired from human studies of OC or related diseases such as 

osteoarthritis (OA) or rheumatoid arthritis (RA)36.  Both OA and RA are different from OC in 

that they are a result of inflammatory processes that degrade cartilage components, while OC 

results from an innate abnormality of cartilage ossification and occurs without inflammation.  

The implications drawn from these studies may or may not directly apply to OC in swine, but 

can provide a basis for an understanding of the biological events or changes that occur in joint 

diseases.  The value of the individual data sets largely depends on the size of the study 

conducted.  One of the limitations in advancing the understanding and interpretation of 

biomarkers in human studies has been the limited number of observations37.  The inherent 

variation between individual subjects results in difficulty in correlating biomarker levels to a 

specific individual38, but these studies provide useful information about predicting disease 

progression.   
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Markers of cartilage synthesis 
C-propeptide of type II Collagen (CPII).  Biomarkers of cartilage synthesis are a 

reflection of the production of collagen components.  Of particular interest is the rate of collagen 

type II synthesis which represents approximately 90% of the collagen content of articular 

cartilage surrounding the end of long bones39.  During synthesis of the type II procollagen 

molecule, the carboxy-terminal propeptide (CPII) and amino-terminal end of the propeptide are 

released into circulation before formation of the mature collagen fibril40.  Thus, CPII can be 

interpreted as a marker of the type II collagen synthesis rate occurring in the body and is mainly 

analyzed in serum, but can also be analyzed from synovial fluid and cartilage tissue.  During 

cartilage destruction, the articular cartilage initially tries to repair the damaged tissue by 

increasing synthesis of type II collagen and aggrecan41.  A positive feedback loop may exist with 

degraded collagen type II stimulating collagen type II synthesis42.  Degradation of type II 

collagen and proteoglycans have been determined as part of the early stages of arthritis43.  In 

human OA studies, CPII has been shown to increase dramatically in diseased joints40; however, 

in rapidly progressing rheumatoid arthritis, CPII decreased relative to controls41.  Bleasel et al.44 

found similar CPII concentrations in individuals with or without a collagen type II gene mutation 

that results in OA.  The difference observed in CPII levels between diseases is thought to reflect 

differences in how each disease progresses, representing the difference between inflammatory 

diseases and OC.  Additionally, several other studies have reported positive results when 

measuring synovial fluid CPII and relating it to progression of joint diseases45.  In equine OC, 

CPII has been demonstrated to increase in animals with OC lesions versus those without46,47,48.  

These data suggest that CPII may also have the potential to be an indicator of OC in swine as the 

disease process has similar characteristics to OC in other species.   
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Chondroitin sulfate epitope 846 (CS846).  Another major component of cartilage 

synthesis is the proteoglycan aggrecan which serves a structural function in the extracellular 

matrix39.  Much like the collagen type II molecule, components from the synthesis of aggrecan 

are released before formation of the mature protein49 and is absent in normal joints50.  One of 

these molecules is known as the chondroitin sulfate 846 epitope (CS846) and is thought to reflect 

increased synthesis of aggrecan44.  It detects a specific epitope that is released from the formation 

of new large aggrecan molecules.  The CS846 molecule has been shown to increase in humans 

with RA41 and in the serum and synovial fluid of individuals with OA44,51.  It also parallels the 

CPII marker in OA and is thought increase at a similar proportion50.  The CS846 epitope may be 

a unique marker of cartilage aggrecan synthesis rate with disease predicting potential.     

Glycoprotein 39 (YKL-40).  A non-collagenous product secreted by chondrocytes and 

synovial cells called glycoprotein-39 (YKL-40) may also be of interest in predicting cartilage 

synthesis rate20.  For YKL-40, an increase in its presence is believed to reflect increased 

synthesis of cartilage components52 but is also used as a marker of inflammation53.  The YKL-40 

marker has been used less extensively in human and animal studies than the previously 

mentioned markers and is less specific for its tissue of origin than CPII or CS84654.  Although it 

has shown some success in predicting disease progression55, it is probably less of a direct 

indicator of cartilage synthesis than CPII or CS84637.   

Markers of cartilage degradation 
Collagen type II ¾ long fragment (C2C).  During the process of cartilage degradation, 

matrix metalloproteinases (MMPs) breakdown collagen into two cleavage products (¾ and ¼ 

fragments) and a third alternative cleavage of the ¼ fragment.  Because articular cartilage is 

almost entirely type II collagen, measurement of its components released during degradation 

potentially reflect the rate at which articular cartilage is being destroyed56.  Four major variants 
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of type II collagen fragments and an indirect marker are currently available as measures of 

cartilage degradation.  During collagen breakdown, collagen undergoes two main cleavage steps 

by collagenases resulting in a collagen ¾ fragment and a ¼ fragment57.  Further processing of the 

¾ long of both type I and II collagen results in two shorter fragments that can be measured in 

fluids56.  The ¾ long fragment is denoted as the C-terminus of type II collagen ¾ long cleavage 

product (C2C) while the ¾ short is known as C1,2C because it results from additional cleavage 

of the ¾ long fragment resulting from either type I or II collagen.  Measurement of C2C has 

shown that it is increased in the synovial fluid of both OA and RA disease states43,58 indicating 

destruction of type II collagen.  The C2C concentrations in an experimental model of arthritis 

also are elevated in serum and urine59.  In addition to its use in determining cartilage degradation 

rate, it has also been used to successfully predict human OA progression60 and thus may be a 

predictor of future joint damage.  Although its use has not been extensively evaluated in animal 

models, it may provide an appropriate indication of cartilage type II degradation. 

 Collagen type I and II ¾ short fragment (C1,2C).  The C1,2C molecule resulting from 

additional cleavage of the ¾ long fragment has also been implicated as a potential marker.  

Unlike the C2C marker, C1,2C is not specific for type II collagen but reflects degradation of 

either type I or II collagen.  It is increased in cartilage samples56 and serum of OA subjects60,61.  

Cerejo et al.60 suggested that the ratio of C1,2C to C2C may be a better indicator of disease 

progression than either marker alone.  Much like the C2C marker, C1,2C requires further 

research into its correlation with collagen degradation; however, because it is not specific for 

type II collagen, it may not be as predictive of articular cartilage destruction as the C2C marker. 

 C-terminal crosslinked telopeptide of type II collagen (CTX-II).  One of the most 

recent and promising markers is an assay that recognizes the C-terminal cross linked ¼ 
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telopeptide of type II collagen degradation (CTX-II).  The CTX-II molecule is one that has 

received much attention recently because of its success as a prognostic indicator.  Originally 

developed for detection in urine, it is now available as a serum assay.  Detection of CTX-II in 

urine of subjects with OA or RA have shown increased levels relative to healthy controls62 and 

are indicative of future disease progression37,63,64.  The CTX-II assay has also been successful in 

predicting effectiveness of treatment strategies65,66.  The research of Lohmander et al.67 showed 

that CTX-II in synovial fluid is dramatically increased immediately after joint injury.  With the 

initial success of correlating CTX-II with cartilage degradation, it appears to be one of the direct 

markers with the greatest potential to predict joint disease state. 

 Type II collagen helical domain (HELIX-II).  A new marker recognizing the helical 

domain of type II collagen (HELIX-II) has recently been developed68.  This is the center portion 

of the collagen type II molecule remaining after cleavage rather than the telopeptide ends, but 

can only be detected in urine.  In the first human study, the HELIX-II molecule has been shown 

to be elevated in both OA and RA diseases relative to healthy controls68.  This biomarker may 

serve as a valuable indicator of cartilage degradation; however, further studies are needed to 

verify its correlation with disease state. 

 Cartilage oligomeric matrix protein (COMP).  The final marker of cartilage 

degradation is an indirect marker called cartilage oligomeric matrix protein (COMP).  It is a 

glycoprotein present in articular cartilage, tendons, and ligaments thought to be involved in 

maintaining collagen integrity, but its direct function is unknown69.  The COMP molecule is 

probably the most researched marker available, and can be detected in serum and synovial fluid.  

Similar to the type II collagen fragments, COMP degradation may also result from activation of 

MMPs70.  The use of COMP in both human and animal models of joint disease is because of its 
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consistent association with joint destruction.  This is because cartilage breakdown increases with 

OA and correlates with radiographic progression of this joint disease71.  In a study of individuals 

possessing a mutation in the type II collagen gene, COMP levels were abnormally elevated44 and 

thought to reflect altered cartilage metabolism.  Several studies using serum and synovial fluid 

have shown elevated levels of COMP in human OA and RA diseases41,72,73.  Dodge et al.74 and 

Di Cesare et al.75 have also observed increased COMP levels in patients with OA and RA 

compared to controls.  Some concern has been expressed about the diagnostic value of COMP as 

an individual marker20,73 because of the range in values obtained in diseased and normal 

individuals76.  Roux-Lombard et al.77 did not find a correlation between COMP and joint disease 

progression in RA patients over a five year period.  Even so, COMP may be most valuable as a 

prognostic indicator of joint disease progression72,78,79.  The use of COMP should provide an 

indirect measure of cartilage destruction and may be beneficial to use in combination with other 

types of markers when trying to predict disease occurrence. 

Markers of proteoglycan degradation 
 Keratan sulfate (KS) and hyaluron (HA).  Two markers that represent proteoglycan 

and synovium turnover are keratan sulfate (KS) and hyaluronan (HA).  Both have been used to 

predict joint destruction in human models20.  The KS fragment is related to the CS846 molecule 

and is also part of aggrecan, but is released during degradation and measured in joint fluid as 

well as serum.  Increased concentrations of serum and synovial fluid KS have been found in RA 

and OA disease states80,81.  In synovial fluid of subjects with knee OA, KS is elevated compared 

to controls51,82.  Also, KS levels are dramatically elevated in humans with the collagen type II 

gene mutation44.  The HA marker is more of an indicator of synovial tissue processes and is 

measured in serum.  Garnero et al.37 described higher levels of HA in patients with knee OA, but 

it did not correlate with an index of joint damage.  Mansson et al.41 and Fex et al.83 found 
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increased HA concentrations in aggressive RA.  The major drawback in using HA is the large 

variation that occurs during the day because of build up in levels at night and decreasing levels 

later in the day20.  Therefore, timing of serum collection for this marker is important to limit 

variation.  Both of these markers offer alternative measures that may aid in prediction of joint 

diseases.                     

Markers of bone formation 
Amino-terminal propeptide of type I collagen (PINP) and carboxy-terminal 

propeptide of type I collagen (PICP).  Osteochondrosis involves both the articular cartilage and 

the underlying subchondral bone, thus markers related to bone formation or turnover may also 

prove to be valuable markers of this disease84.  Most of the biomarkers for bone formation or 

turnover have been extensively evaluated for bone diseases.  Several markers of bone formation 

have been developed for detection in blood or urine, but limited data from animal models is 

available35.  Similar to articular cartilage, fragments from formation of collagen type I present in 

bone or other markers related to the formation of bone can be measured in body fluids.  Two 

telopeptides of the type I procollagen molecule, both the amino-terminal (PINP) and carboxy-

terminal (PICP), can be determined by immunoassay in serum; however, many other tissues 

besides bone contain type I collagen85 which may limit their validity as markers.  Hassager et 

al.86 and Blumsohn et al.87 observed evaluated PICP in women and found that its clearance from 

blood was not only influenced by hormone levels but may also be processed by a different 

mechanism than PINP.  Even so, Parfiit et al.88 found that PICP correlated with other measures 

of bone formation in subjects with a bone disease.  Initial assays for the PINP molecule were 

unsuccessful in correlating with bone formation89, but further research and development have 

resulted in assays that have been shown to closely follow other methods for evaluating bone 
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formation90,91.  Because of differences in clearance or processing of PICP, it appears that PINP is 

a better indicator of bone formation92,93. 

 Osteocalcin.  One of the more recognized markers of bone formation is osteocalcin, also 

known as bone gla protein35.  Osteocalcin is synthesized by osteoblasts and thought to directly 

reflect their activity, but its true function in bone is not clear85.  Some researchers believe it is 

involved in crystal formation in bone.  In the initial studies using osteocalcin from serum to 

predict bone formation, a large amount of variation was observed94.  This is a result of the 

instability of the intact osteocalcin molecule.  Therefore it is recommended to use an assay that 

detects both the intact and N-terminal fragment of osteocalcin95.  Osteocalcin has been used as a 

successful marker in predicting OA disease progression with an increase in serum osteocalcin 

after a one year follow up from the initial evaluation96.  Garnero et al.37 on the other hand, 

observed a correlation of osteocalcin with a score of joint damage in which osteocalcin was 

significantly decreased relative to controls.  Limited data is available using osteocalcin to predict 

joint disease, but it has been used to predict bone formation response to dietary calcium and 

phosphorus in swine97.  The few studies that are available show that it may have potential to 

predict events in bone metabolism and disease progression. 

 Bone specific alkaline phosphatase (BAP).  Serum bone specific alkaline phosphatase 

is a protein synthesized by bone cells and is considered a measure of osteoblast activity35.  It 

provides the most accurate measure of bone formation among the alkaline phosphatases because 

of its origin in bone98.  Increased concentrations of BAP are associated with excessive bone loss 

in several bone related diseases99.  Decreases in BAP concentrations have been found after 

hormone treatment therapy was done to increase bone mass in women with osteopenia100.  Peel 

et al.101 observed decreased BAP concentrations in women with spinal osteoarthritis while 
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Mansell et al.102 found an increase in BAP in women with hip OA.   Even though BAP is an 

established marker of bone formation, the implications that can be drawn concerning joint 

diseases is limited.  More data regarding the relationship between serum BAP concentrations and 

joint diseases is needed.              

Markers of bone turnover or resorption 
Amino-terminal and carboxy-terminal telopeptide of type I collagen (NTX and 

CTX-I).  Markers of bone turnover measure the rate of bone degradation.  Much like type II 

collagen degradation, type I collagen of bone undergoes similar cleavage into NTX, CTX-I, and 

a secondary cleavage telopeptide molecule of CTX-I with cross-links attached (ICTP)103.  Both 

NTX and CTX-I have been extensively evaluated in urine and more recently, serum assays have 

been developed35.  In urinary assays, NTX and CTX-I need to be adjusted for creatinine because 

of variation in clearance rate; however, only serum can be used to measure ICTP35.  High levels 

of NTX or CTX-I indicate excessive bone degradation by osteoclasts such as in osteoporosis.  In 

a study of patients with OA, CTX-I was increased in subjects with erosive OA104. Garnero et 

al.105 also found elevated levels of CTX-I that corresponded to joint destruction and reported that 

initial urinary CTX-I levels predicted RA progression; however, Garnero et al.37 showed 

conflicting results of reduced serum and urinary CTX-I levels in subjects with OA.  Treatment 

related changes in CTX-I have been observed as well65.  Woitge et al.106 observed similar 

responses from urinary or serum CTX-I after treatment of patients with various bone diseases.  

The NTX marker has not been used in studies of human joint diseases, but has been used in pigs 

to determine osteoclastic activity or bone turnover107.  It is also considered a good marker for 

treatment responses to anti-resorptive therapy108 and an excellent indicator of bone turnover109.  

The ICTP marker also has been used successfully to portray the excess bone turnover involved in 

 17



bone diseases110.  All three markers (CTX-1, NTX, and ICTP) are good indicators of bone 

turnover, but more work to clarify their correlation to joint diseases is needed. 

 Pyridinoline and deoxypyridinoline (PYD and DPD).  Like the CTX-1 and NTX 

molecules, the cross-links that hold collagen molecules together can also be measured in urine 

and serum as a result of collagen degradation.  Hydroxypyridinoline cross-links originate from 

bone, cartilage, and tendons, whereas DPD crosslinks originate from bone and can only be 

measured in urine103.  The PYD marker has potential as both a cartilage and bone turnover 

marker, but is not specific for either tissue type.  Determining PYD and DPD in urine has limited 

potential as prognostic indicators because of further processing that makes determination of their 

tissue of origin difficult20.  Even so, increases in urinary PYD are higher than DPD in RA 

patients and may reflect cartilage and bone degradation111,112.  Garnero et al.37 reported that PYD 

was elevated in patients with knee OA and was correlated with both joint surface area and an 

index of joint damage.  In a study of markers and long-term knee osteoarthritis, Bruyere et al.96 

were not able to predict long-term changes with PYD or DPD.  For prediction of joint 

destruction, PYD appears to be a better indicator of cartilage damage than DPD because of its 

origin in both cartilage and bone.  

 Tartrate-resistant acidic phosphatase and bone sialoprotein (TRAP and BSP).  

Tartrate-resistant acidic phosphatase is a bone specific marker of osteoclast activity113.  Although 

several different isoforms of TRAP exist, assays recognizing a bone specific form have been 

developed103.  It has been used as a measure of bone turnover in pigs107 and to predict fracture 

risk in humans106.  Bone sialoprotein is a non-collagenous protein that is localized to the junction 

of articular cartilage and subchondral bone114 and may be an indicator of processes effecting 

their interaction.  The BSP marker was shown to have a negative correlation with radiographic 
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bone changes in OA115.  Saxne et al.116 found increased concentrations of BSP in OA patients 

and was correlated with OA severity.  Mansson et al.41 and Petersson et al.117 observed elevated 

BSP levels compared to controls in both RA and OA subjects, respectively.  Both of these 

markers have implications to aid in the prediction of events associated with bone turnover, but 

more research is needed to clarify their role and specificity for joint diseases. 

Markers of inflammation and cytokines 
C-reactive protein (CRP).  Measuring markers of inflammation or the cytokines that 

ultimately control the degradative processes may offer predictive potential of OC.  Many of these 

cytokines have direct influences on gene expression and initiation of joint tissue destruction.  

They can also be measured in synovial fluid, cartilage samples, and blood; however, most of 

these are not specific to joint tissues and may be influenced by other processes or tissues in the 

body.  One of the main markers used extensively to predict inflammation is C-reactive protein 

(CRP) because of its sensitivity20.  The production of CRP is stimulated by cytokines like 

interleukin-1 and tumor necrosis α26.  Increased levels of serum CRP have been shown in 

subjects with OA118.  Garnero et al.37,63 did not find a correlation of CRP to joint damage in OA 

or RA patients.  As well, Sturmer et al.119 found a significant relationship of CRP to pain but was 

unable to predict OA severity.  Even though CRP is a consistent marker of inflammation, its use 

as an indicator of joint disease progression or early indicator of disease may be limited.   

 Interleukin-1 and tumor necrosis factor α (IL-1 and TNF-α).  Measurement of the 

cytokines IL-1 and TNF-α in serum and synovial fluid have also been proposed as indirect 

markers of joint disease because of their direct effects in regulating collagen type II synthesis 

and proteolytic enzymes120,121.  High levels of IL-1 and TNF-α would decrease expression of the 

collagen type II gene or the ability to repair, and increase the production of MMPs that degrade 

collagen.  Both IL-1 and TNF-α have been measured in synovial fluid122,123 and serum/plasma of 
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patients with joint diseases124,125.  Wood et al.122 found that IL-1 concentrations were elevated in 

synovial fluid of subjects with arthritis while Tetta et al.124 described the presence of TNF-α in 

both serum and synovial fluid of patients with RA.  In a study of 14 different markers in urine, 

Otterness et al.126 found high correlations of increased TNF-α in patients with OA.  The number 

of studies evaluating either IL-1 or TNF-α and their relationship to joint damage are small and 

mostly limited to their effects in vitro.  They may be used as indirect markers but are probably 

better indicators if measured from synovial fluid samples. 

 Matrix metalloproteinases (MMPs).  The main enzymes that breakdown collagen are 

the MMPs that regulate the cleavage of collagen during its degradation.  Measurement of these 

molecules in cartilage samples, synovial fluid, and blood has been more extensively researched 

than cytokines because MMPs are the end product of inflammatory stimulators.  The main 

MMPs involved in collagen breakdown are 1, 3, 8, and 1326.  More recently, MMP-13 has been 

described as the primary collagenase of cartilage destruction127.  The inhibitor of MMPs, tissue 

inhibitor of matrix metalloproteinases (TIMP-1) has also been measured and expressed relative 

to concentrations of the MMPs20.  The TIMP-1 molecule binds to MMPs and regulates their 

activity, where an imbalance either prevents degradation or allows degradation.  The MMPs are 

mainly measured in synovial fluid and serum, and elevated levels have been shown to correlate 

with RA disease77,83.  Ishiguro et al.128  demonstrated that both MMP-1 and MMP-3 were 

increased in patients with OA, and the ratio of these MMPs to TIMP-1 was drastically increased.  

Both Roux-Lombard et al.77 and Garnero et al.63 have demonstrated a positive correlation of 

MMP-3 with a score of joint erosion in RA patients.  Increases in MMP-1 and -13 have been 

described in a guinea pig model of OA and concentrations were localized to lesion sites129.  

Alternatively, Hegemann et al.130 reported a ratio of less than 1 for MMP-3/TIMP-1 in OA 
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subjects, which the authors suggest indicates a surplus of TIMP-1.  In a study evaluating 

potential markers of OA, MMP-1 and -3 were not correlated with severity, but TIMP-1 showed 

marginal correlations with OA severity131. Other markers of the inflammatory process have also 

been proposed as markers for joint diseases, but many have not been evaluated in clinical 

studies.   

As new markers become available, they will have to be evaluated in large, well controlled 

studies to determine their effectiveness in predicting joint diseases.   

Conclusion 
 Biomarker technology either by antibody detection or proteomic screening offers the 

opportunity to predict disease occurrence and provide information regarding disease processes in 

living animals.  This technology will further advance our understanding of the events involved in 

disease pathology, such as OC, the changes that occur as a result of the disease, and provide a 

measure of our ability to provide treatment intervention.  Biomarkers will aid in selecting for 

animals free of diseases like OC where early detection is difficult on a live animal.  Cost will be 

the main road block in implementing this technology for commercial applications; however, the 

expense of biomarker assays is decreasing.  The potential to use biomarkers to predict OC in 

swine is rapidly becoming available; however, much research will be needed to validate assays 

and determine their predictive value in swine models.  In the future, a combination of different 

biomarkers may provide an opportunity to aid in selection of animals that have not developed 

OC and potentially help reduce sow herd turnover rates. 
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Figure 1.  Normal physis (notice the even distribution of cartilage at the articular cartilage 

and growth plate with no evidence of osteochondrosis). 
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Figure 2.  Osteochondrosis example (cartilage retained in subchondral bone). 
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Figure 3.  Osteochondrosis dissecans (lesion persisting through the articular surface 

causing fragmentation. 
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Table 1.  Markers of cartilage and bone metabolism measured in synovial fluid, serum, and 
urinea

  
Direct markers Metabolic process measured 

Propeptide of type II collagen (CPII) collagen type II synthesis rate 
Collagen type II ¾ long fragment (C2C) collagen type II degradation rate 
Collagen type I and II short fragment (C1,2C) collagen type I and II degradation 
Collagen type II C-terminal crosslink fragment (CTX-II) collagen type II degradation rate 
Collagen type II helical domain (HELIX-II) collagen type II degradation rate 
Chondroitin sulfate epitope 846 (CS486) aggrecan or CS chain synthesis rate 
Keratan sulfate (KS) aggrecan degradation 
Pyridinoline crosslinks (PYD) cartilage or bone turnover  
Deoxypyridinoline crosslinks (DPD) bone turnover or resorption 
Glycoprotein 39 (YKL-40) synovial tissue synthesis 
Bone specific alkaline phoshphatase (BAP) bone formation 
Osteocalcin (OST) bone formation or osteoblast activity 
Bone sialoprotein (BSP) bone turnover or resorption 
tartrate-resistant acid phosphatase (TRAP)  bone turnover or resorption 
Amino-terminal telopeptide of type I collagen (NTX) collagen type I turnover 
Carboxy-terminal telopeptide of type I collagen (CTX-I) collagen type I turnover 
Crosslinked carboxy-terminal telopeptide of type I 
collagen (ICTP) collagen type I turnover 
Amino-terminal procollagen type I propeptide (PINP) collagen type I synthesis rate 
Carboxy-terminal procollagen type I propeptide (PICP) collagen type I synthesis rate 
 
 

Indirect markers Metabolic process measured 
Cartilage Oligomeric matrix protein (COMP) rate of cartilage destruction 
Interleukin-1 (IL-1) inflammatory cytokine secretion 
tumor necrosis factor alpha (TNF-α) inflammatory cytokine secretion 
C-reactive protein (CRP) inflammation or tissue degeneration 
Hyaluron (HA) synovial tissue synthesis 
Matrix metalloproteinase-1 (MMP-1) collagen degradation 
Matrix metalloproteinase-3 (MMP-3) Measure of collagen degradation 
Matrix metalloproteinase-13 (MMP-13) Measure of collagen degradation 
Tissue inhibitor of matrix proteinase (TIMP-1) inhibitor of MMPs  
aAdapted from Garnero et al.20 and Thonar et al.26  
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CHAPTER II 

EFFECT OF DIETARY NUTRIENTS ON OSTEOCHONDROSIS LESIONS AND 

CARTILAGE PROPERTIES IN PIGS 
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ABSTRACT 
Objective-To screen dietary ingredients involved in cartilage and bone metabolism on 

osteochondrosis (OC) in swine.   

 

Animals-160 gilts (PIC 327×1050, 39 kg BW in Exp. 1 and 47 kg BW in Exp. 2) were used in 

two trials (80 per trial). 

 

Procedures- Pigs were fed a corn-soy based diet or a diet containing additional minerals, 

vitamins, amino acids, or fatty acids involved in cartilage and bone metabolism.  In Exp. 2, 

ractopamine HCl (RAC), a growth promoter, was added to half the pigs fed the control and 

methionine/proline/glycine/manganese (Met/Pro/Gly/Mn) diets.  Upon completion of the feeding 

period, pigs were harvested and the distal femur collected for determination of OC lesions at the 

femoral condyle.   

 

Results- In Exp. 1, feeding added proline/glycine, silicon, copper/manganese, 

methionine/threonine, or the combination of all additional ingredients reduced (P <0.03) overall 

OC severity scores compared to controls.  Additional methionine/threonine also tended (P < 

0.10) to increase longissimus muscle area.  In Exp. 2, pigs fed added silicon or dietary 

combination of additional Met/Pro/Gly/Mn tended (P < 0.10) to reduce the overall OC severity 

scores compared to pigs fed Met/Pro/Gly/Mn + RAC or arginine/glycine while the other 

treatments were intermediate.  The addition of RAC to the control and Met/Pro/Gly/Mn diets 

compared to diets without RAC did not affect overall OC severity (P > 0.10).   

 

Conclusions and Clinical Relevance- Feeding added dietary methionine/threonine, 

copper/manganese, or silicon decreased the severity of OC lesions compared to pigs fed a control 

diet, and further research on optimal concentrations and combinations is warranted.   

 

 (Key Words: Cartilage biology, Nutrition-swine, Osteochondrosis) 
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Introduction 
Osteochondrosis (OC), a failure in the endochondral ossification of cartilage to bone1,2, 

remains a common problem among growing swine that occurs in approximately 85 to 90% of all 

pigs3,4.  Osteochondrosis lesions observed in pigs are similar to lesions in other animal 

species5,6,7.  The main changes in cartilage that have been identified with OC are a loss of 

proteoglycans and collagen type II, with increased chondrocyte necrosis8,9.  The presence of OC 

can reduce sow longevity because of lameness10, and negatively affects carcass meat yield traits 

of finishing pigs11.  Previously, OC was thought to result from a disruption in cartilage canal 

vessels that supply blood to the end of growing long bones12,13,14, but OC more likely results 

from focalized disruption of endochondral ossification by mechanical stress15.  Fast growth rate 

has been cited as a factor in manifestation of OC lesions16,17; however, several trials have 

observed no correlation between growth rate and OC occurrence18,19.  Other factors, such as 

heredity20,21 and trauma22, have also been implicated in OC prevalence.   

Several attempts have been made to determine the ability of dietary nutrients, such as 

protein19,23,24, energy25, calcium and phosphorus23, Vitamin D23,26, and Vitamin C27,28, to 

influence OC occurrence and severity in swine with little success.  In addition, several studies 

have evaluated the effect of growth promotants on OC29,30,31 with mixed results.  The use of 

glycosaminoglycans (GAGs), glucosamine and chondroitin sulfate, have been implicated for 

arthritic joint disorders32, but have not been evaluated in swine OC models.  Evaluation of 

several minerals involved in collagen and proteoglycan synthesis have suggested the importance 

of Cu33, Mn34, or Si 35,36,37.  Dietary Cu has been found to play a role in reducing the severity of 

OC lesions in horses38,39.  Glucosamine40 and n-3 fatty acids41,42,43 have been implicated in 

minimizing cartilage degradation by blocking the production of matrix metalloproteinases 

(MMPs) which when present in high concentrations excessively degrade cartilage 
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components44,45.  In addition, S-adenosylmethionine (SAMe), a metabolite of methionine, has 

been shown to increase synthesis of collagen and proteoglycan46,47 components of cartilage.  

Collagen contains a high concentration of the non-essential amino acids proline and glycine48, 

but the influence of feeding additional proline or glycine on OC or cartilage synthesis has not 

been evaluated.  Although the role of minerals and fatty acids, such as Cu, Mn, silicon, and n-3 

fatty acids, in cartilage and bone formation are relatively well known, their ability to prevent or 

aid in repair of joint diseases, such as OC, through dietary intervention have not been described.   

Therefore, the objective of these experiments was to screen dietary ingredients involved 

in cartilage and bone metabolism for their influence on OC lesion occurrence and severity, other 

cartilage criteria, growth performance, and carcass characteristics in growing-finishing pigs. 

Materials and Methods  
General 

Procedures used in these experiments were approved by the Kansas State University 

Animal Care and Use Committee.  Two experiments were conducted at the Kansas State 

University Swine Research and Teaching Center finishing facility.  The barn contains 80 pens 

with totally slatted concrete flooring (1.52 m2), providing approximately 2.31 m2/pig.  Each pen 

was equipped with a one-hole dry self-feedera and nipple waterer to allow ad libitum access to 

feed and water.  In both experiments, each pen contained one pig for a total of ten replicates 

(pigs) per treatment for each trial.   

Animals 

In Exp. 1, 80 gilts (PIC line 327 × 1050; 39 kg initial BW) were blocked by weight for 

the 84-d growth assay and randomly allotted to one of eight dietary treatments.  Experiment 2 

was conducted similar to Exp. 1 with 80 gilts (PIC line 327 × 1050; 47 kg initial BW) that were 

again blocked by weight for a 70-d growth assay and randomly allotted to one of eight dietary 
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treatments.  Pigs in Exp. 2 were heavier at the start of the experiment and were harvested at a 

lighter weight due to scheduling constraints.  

Treatments 

Minimum true ileal digestible (TID) amino acid ratios relative to lysine (Lys) were 

maintained in all diets with minimum ratios set at 30% for methionine, 60% for methionine and 

cystine, 65% for threonine, and 16.5% for tryptophan.  All essential nutrients were supplied at or 

above National Research Council (NRC)49 estimates.  Diet samples from both experiments were 

analyzed for amino acid concentration and found to contain similar amounts compared to 

calculated values.      

Experiment 1.  Dietary treatments consisted of 1) control (standard corn-soy bean meal 

diet with 3.5% choice white grease) or the control diet with added, 2) fish oil (3.5%) replacing 

choice white grease, 3) proline and glycine (Pro/Gly, 300 and 200% of Lys, respectively), 4) 

leucine, isoleucine, and valine (BCAA; 200, 100, and 100% of Lys, respectively), 5) silicon (Si; 

1,000 ppm), 6) copper and manganese (Cu/Mn, 250 ppm and 100 ppm, respectively), 7) 

methionine and threonine (Met/Thr, 110 and 100% of Lys, respectively), and 8) all ingredients in 

diets 2 through 7 combined into one diet (Table 2).  The control diet contained amino acid levels 

of Pro (100% of lysine), Gly (65% of lysine), leucine (145 % of lysine), isoleucine (69 % of 

lysine), valine (76 % of lysine), Met (30% of lysine), and Thr (67 % of lysine) with mineral 

levels of Cu (16.5 and 14 mg/kg in phase I and phase II or III, respectively), Mn (40 and 33 

mg/kg in phase I and phase II or III, respectively), and Si (0 mg/kg).  Experimental diets were 

fed in meal form for 84 d in three 28-d phases.  The phase I diets were formulated to contain 

1.07% TID Lys and 3,457 Mcal of metabolizable energy (ME, Table 1), the phase II diets 

contained 0.94% TID Lys and 3,468 Mcal of ME, and phase III diets contained 0.80% TID Lys 

and 3,463 Mcal of ME.  In each phase, all essential amino acids other than those used in dietary 
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treatments were provided at approximately 10% above the requirement for pigs in these weight 

ranges and added fat concentration varied slightly to maintain isocaloric diets.   

Experiment 2.  The eight dietary treatments were 1) control (standard corn-soybean meal 

diet, 3.4% added choice white grease); 2) control diet plus 20 ppm ractopamine HCl (RAC) as 

Paylean® to increase growth performance; 3) control diet plus methionine, proline, glycine (146, 

173, and 174 % of Lys, respectively), and manganese (128 ppm; Met/Pro/Gly/Mn); 4) diet 3 plus 

RAC at 20 ppm; 5) control diet plus antioxidants (Vit. C and E 200 and 1,120 IU/kg, 

respectively), and fish oil at 0.45%); 6) control diet plus silicon (Si; 2,200 ppm); 7) control diet 

plus arginine and glycine (173 and 173% of Lys, respectively; Arg/Gly); and 8) 

glycosaminoglycans (GAGs), glucosamine at 460 ppm and chondroitin sulfate at 820 ppm, 

where chicken cartilage and poultry meal partially replaced soybean meal to provide the GAG 

concentrations (Table 3).  Diets were formulated to contain 0.97 % total Lys and approximately 

3,571 Mcal of ME (Table 1).  The control diet contained amino acid levels of Pro (114% of 

lysine), Gly (79% of lysine), Met (30% of lysine), Arg (100 % of lysine), and vitamin and 

minerals levels of Vit. C (0 IU/kg), Vit. E (37 IU/kg), Mn (33 mg/kg), and Si (0 mg/kg).  Pigs 

were fed the same treatment throughout the trial period.  Extruder conditioned diets were fed as 

an extruded pellet from d 0 to 46 and from d 46 to 70 diets were fed in meal form.  The two diets 

containing RAC were manufactured by taking half of the control and Met/Pro/Gly/Mn diets and 

remixing them with the addition of RAC at 20 ppm.  The two diets containing RAC were 

analyzed for RAC concentration and found to contain levels similar to calculated amounts.   

Growth performance and carcass data collection 

 Experiment 1 and 2.  Pigs and feeders were weighed every 14 d to determine average 

daily gain (ADG), average daily feed intake (ADFI), and gain/feed (G/F).  At the end of the trial, 

pigs were weighed and each pig marked with a distinctive tattoo before transport to the Kansas 
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State University Meats Laboratory, where the left hind leg was collected for determination of OC 

lesions and carcass data was collected.  Pigs were loaded onto a trailer in small groups of 18-20 

pigs and transported approximately 4 km to the processing facility.  At the start of Exp. 1, all 

gilts were ultrasonically scanned to determine initial backfat depth and estimate fat-free lean.  

For carcass data, 10th rib backfat depth, longissimus muscle area, fat-free lean index, fat-free lean 

gain, and hot carcass weight were evaluated.  Fat depth was measured with a ruler at the 10th rib, 

6 cm off of the midline, while longissimus muscle area was traced on translucent paper and 

calculated using a grid.  Fat-free lean index was calculated according to National Pork Producers 

Council (NPPC)50 procedures and fat-free lean gain per day was calculated as the final fat-free 

lean minus initial fat-free lean divided by days on feed.   

Collection of cartilage data and OC lesions scores 

 In both experiments, the left femur was collected and removed to visually determine the 

number of cartilage abnormalities and the occurrence of OC lesions by gross examination at the 

distal end of the femoral condyle.  The joints were cleaned of excess tissue and then stored in 

10% formalin until evaluation.  Joints were photographed to allow visual evaluation of the 

external surface and the underlying articular cartilage/subchondral bone interface.  After external 

evaluation, the distal end of the femur was cut into 3 mm thick sections perpendicular to the long 

axis of the bone using a bandsaw21.  This resulted in 12 faces (cut surfaces) for evaluation of 

lesions.  Each joint was evaluated for the number of external abnormalities (fissures or defects in 

the cartilage surface), and presence of OC lesions at the articular and growth plate cartilage.  

Lesions were given a severity score of 0 to 4 (0 = normal, 1 = mild, 2 = moderate, 3 = severe, 

and 4 = OC dissecans) based on the extent of tissue involvement.  This scoring system is similar 

to those used previously21,26.  The number of abnormalities at the external surface and faces or 

sections with lesions at the articular cartilage and growth plate were also noted.  Each animal 
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was also given a “Yes” or “No” score for the presence or absence of OC lesions to determine the 

effect of treatment on OC occurrence.   

A cartilage sample was cut from the patella for cartilage property analysis to determine 

the effect of dietary nutrients on mechanical properties of the cartilage. This is similar to the 

process used by Brama et al51 (indenter system) but with force applied to the whole cartilage 

sample using an Instron machineb.  Cartilage samples were weighed, measured for thickness and 

length using a caliper, and then tested for the ability to absorb compression or to resist shearing 

using an Instron machine.  Cartilage samples were placed between two flat surfaces of the 

Instron to perform texture profile analysis and compressed half of the individual cartilage 

samples thickness.  A second procedure was conducted in which the cartilage was cut using a 

Warner-Bratzler shear blade to determine the ability of the cartilage to withstand shearing force.  

Compression values and shear values were adjusted to a per gram of cartilage weight to equalize 

for differences in the actual cartilage weight.   

Statistical analysis 

Data were analyzed as a randomized complete block design using the PROC MIXED 

procedure of SASc with pig as the experimental unit.  The response criteria of growth 

performance, carcass composition, cartilage compression and shearing, and number of 

abnormalities were tested.  Although scored categorically, severity scores were analyzed via 

PROC MIXED because low number of observations at some of the severity scores prevented 

categorical analysis.  An overall score using the number of abnormalities at each location 

multiplied by the severity at each location and then summed was created to provide an overall 

severity score or indication of joint status.  The ‘Yes’ or ‘No’ comparison of the presence of OC 

lesions was compared using the Cochran-Mantzel-Haenszel statistic of PROC FREQ.  To 

evaluate the effect of amino acids or mineral containing diets relative to the other dietary 
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treatments single degree of freedom contrasts52 were constructed.  Values were considered 

significant at P < 0.05 and trends in the data at P < 0.15. 

Results  
Experiment 1 

Growth and carcass data.  Overall (d 0 to 84) growth performance was unaffected by 

dietary treatment (P > 0.21, Table 4).  Pigs fed high Met/Thr tended to have increased (P < 0.10) 

longissimus muscle area compared to the other dietary treatments while pigs fed fish oil were 

intermediate; however, no other carcass differences were observed (P > 0.84).   

Cartilage evaluation.  Cartilage compression values were unaffected by dietary 

treatment (P > 0.19, Table 5), but pigs fed fish oil had lower (P < 0.02) shear energy values and a 

higher (P < 0.03) ratio for compression:shear energy compared to pigs fed the control diet, added 

Cu/Mn, or silicon with the other treatments intermediate.   

Joint evaluation.  No differences (P > 0.52) in the number of animals with OC were 

detected between treatments.  Pigs fed diets containing fish oil or Si tended (P < 0.07, Table 6) to 

have a higher severity score for external joint abnormalities compared to pigs fed high BCAA, 

Met/Thr or a diet containing all additional ingredients with the other dietary treatments 

intermediate.  Pigs fed high Met/Thr, Cu/Mn, or Si tended (P < 0.08) to have lower articular 

cartilage severity scores than pigs fed the control diet or BCAAs, with the other dietary 

treatments intermediate.  The occurrence of OC lesions at the growth plate, total faces with 

lesions, or total number of abnormalities were not affected by dietary treatment (P > 0.23); 

however, there was a numerical trend (P < 0.14) for pigs fed diets containing high Met/Thr or the 

diet containing all additional ingredients to have lower total severity scores than pigs fed the 

control diet or fish oil with the other treatments intermediate.  Finally, pigs fed diets containing 

additional Pro/Gly, Si, Cu/Mn, Met/Thr, or the diet containing all additional ingredients had 
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lower (P < 0.03) overall severity scores compared with pigs fed the control diet with the other 

treatments intermediate.  Contrast statements also revealed that pigs fed the diets containing 

additional amino acids (Pro/Gly, BCAAs, Met/Thr) had lower external and total severity scores 

(P < 0.05) than pigs fed the other dietary treatments; however, pigs fed diets containing 

additional minerals (Si or Cu/Mn) tended to have lower articular cartilage severity scores (P < 

0.08) and overall severity scores (P < 0.02). 

Experiment 2 

Growth performace.   Overall (d 0 to 70), there were no differences in ADG (P > 0.36, 

Table 7), ADFI (P > 0.29), or G/F (P > 0.14).  Hot carcass weight (HCW) tended (P < 0.06) to 

increase in pigs fed the negative control + RAC diet compared to the other dietary treatments 

with pigs fed silicon intermediate.  Dressing percentage also tended (P < 0.08) to increase in pigs 

fed the control + RAC diet compared to the other dietary treatments with pigs fed added Si, 

GAGs, or Met/Pro/Gly/Mn intermediate. 

Cartilage evaluation.  Instron measurements of cartilage compression and shear values 

were unaffected by dietary treatment (P > 0.41, Table 8). 

 Joint evaluation.  No differences (p > 0.54) in the number of animals with OC were 

detected between treatments.  From external evaluation of the joints, there were no treatment 

differences in either the number of abnormalities or severity score (P > 0.46, Table 9).  There 

was a numerical trend (P < 0.14) for pigs fed additional Met/Pro/Gly/Mn to have lower severity 

scores at the articular cartilage than pigs fed added Met/Pro/Gly/Mn + RAC or Arg/Gly with the 

other dietary treatments intermediate.  There were no differences in the number of faces with 

lesions or severity score at the physeal growth plate (P > 0.23).  The overall evaluation revealed 

that there was a numerical trend (P < 0.11) for pigs fed added Si to have a reduced total number 

of faces with lesions compared to pigs fed added GAGs, Arg/Gly, or Met/Pro/Gly/Mn + RAC 
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with the other dietary treatments intermediate.  The total number of abnormalities was unaffected 

by dietary treatment (P > 0.17).  The total severity score of all three locations was unaffected by 

dietary treatment (P > 0.63); however, the overall severity scores (abnormalities × severity) of 

OC tended (P < 0.10) to be reduced in pigs fed added Si or Met/Pro/Gly/Mn compared to pigs 

fed added Met/Pro/Gly/Mn + RAC or Arg/Gly with the other dietary treatments intermediate.  

The comparison of the control and Met/Pro/Gly/Mn diets with RAC versus all other treatments 

without RAC by orthogonal contrast did not show an affect on the overall severity score (P > 

0.40). 

Discussion 
 The goal of this research was to screen and possibly identify nutrient strategies to reduce 

the severity or prevalence of OC lesions in swine.  The incidence of OC is high in swine and is 

similar to OC in other species3,5.  One of the main concerns with OC and lameness in swine is 

the negative effects it may have on sow longevity10,54.  Sow herd turnover rates approaching 

greater than 50% have been noted55 with the largest reasons for turnover including reproductive 

failure and lameness56.  In the first study, dietary ingredients were screened with structural and 

functional roles in cartilage and bone metabolism to determine their ability to impact the 

occurrence and severity of OC lesions.  The second study was conducted to confirm the results 

found in Exp. 1 and to explore other dietary nutrients that could have an impact on OC lesions.    

No differences in growth performance were observed in either experiment as expected 

except for the response to RAC; however, growth performance in both studies was similar to 

other research studies and slightly higher than growth rates found in commercial facilities.   

The results from Exp. 1 suggest that the minerals Cu and Mn provided in excess of 

requirements49 may reduce the severity of OC lesions at the articular cartilage and overall 

severity score.  In Exp. 2, Mn fed in combination with Met, Pro, and Gly numerically reduce the 
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overall severity score of OC.  This data would suggest that both Cu and Mn may reduce the 

severity of OC lesions either by maximizing lysyl oxidase activity57,58, stimulating proper 

collagen crosslinking59,60, improving the integrity of vascular walls of cartilage canal vessels, or 

increased formation of proteoglycans34.  Swine diets are often supplemented with Cu for its 

positive effects on growth and efficiency61 and thought to have antimicrobial activity.  Previous 

research with added Cu fed to rats demonstrated that a Cu deficient diet or a diet with additional 

Cu did not effect the level of lysyl oxidase mRNA, but additional Cu supplementation increased 

the activity of the enzyme60.  Heraud et al.33 showed that the addition of Cu to human articular 

chondrocytes resulted in a dose and time dependent increase in collagen synthesis determined by 

[3H]-proline incorporation.  Pasqualicchio et al.62 reported similar benefits with the addition of 

Cu to porcine articular cartilage cell culture preventing depletion of proteoglycans or stimulating 

proteoglycan synthesis.  Supplementation of swine diets with high levels of zinc (5,000 ppm) 

have been proposed to inhibit Cu absorption and result in an increased occurrence of OC63,64.  

Aballi and Austbo65 also reported that sows fed 100 ppm of additional Cu had offspring with less 

severe OC lesions than sows fed 15 ppm.  Similar to previous trials, added Cu decreased the 

severity of OC; however, additional research is required to verify the mechanism. 

Manganese fed in combination with Cu in Exp. 1 and with added Met/Pro/Gly in Exp. 2 

reduced overall severity scores.  Manganese is involved in proteoglycan metabolism through 

glycosyltransferases which are abundant in cartilage66, and serves a structural role in linking 

chondroitin sulfate molecules.  Manganese is also critically important in mitochondrial 

superoxide dismutase to control free radical production by oxidation reactions in the 

mitochondria67.  Feeding rats a Mn deficienct diet resulted in decreased bone formation68, and 
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has been shown to negatively impact proteoglycan metabolism in chickens34; however, studies 

on the influence of manganese on joint diseases are limited.   

Feeding pigs a diet with added Si, a mineral with no established requirement for swine49, 

reduced the severity of OC lesions at the articular cartilage and overall severity scores in Exp. 1, 

and numerically reduced overall severity scores in Exp. 2.  In both studies, Si was supplied as 

Zeolite A (silica acid) which has been shown to significantly increase serum concentrations of Si 

in horses69.  It has been speculated that Si is required for proper cartilage and bone metabolism 

due to its role in collagen formation and bone mineralization70, and is found in relatively large 

quantities in the proteoglycan matrix35.  Silicon is required for maximal prolyl hydroxylase in the 

synthesis of hydroxyproline, a rate limiting step in collagen formation71, and a deficiency is 

associated with decreased collagen formation72.  Supplementation of Si to growing chicks 

resulted in a greater concentration of glycosaminoglycans and water content in the cartilage36, 

while Calomme and Vanden Berghe37 showed a positive correlation between serum Si and 

collagen concentrations in bovine cartilage explants.  Increasing dietary intake of Si has also 

been shown to increase bone mineral density in humans73.  Thus, the positive results observed on 

OC overall severity score in Exp. 1 and overall severity score in Exp. 2 may be due to the 

positive role Si has in collagen formation and stabilizing the proteoglycan matrix.   

The addition of high levels of Met/Thr reduced the severity of OC at the articular 

cartilage and the overall severity score in Exp. 1.  In Exp. 2, even though the incidence of OC 

was dramatically lower than Exp. 1, numerical improvements in the overall severity score were 

observed when Met was fed in combination with Mn, Pro, and Gly compared to pigs fed the 

control diet.  Previous research with a metabolite of Met, S-adenosylmethionine (SAMe), 

indicated SAMe has positive effects on collagen synthesis and proteoglycan formation46,47.  In 
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addition, sulfur is required for the formation of proteoglycan chains that extend from the 

hyaluronic acid backbone and give cartilage its absorptive properties74.  More recently, it has 

been proposed that the protective effects of nutrients containing sulfur on cartilage may be a 

result of overcoming a deficiency of sulfur in the extracellular matrix and emphasized the role of 

sulfur amino acids for glutathione formation (antioxidant) and in cartilage metabolism75,76.  

However, it is highly unlikely that the positive effects seen in these experiments are due to the 

antioxidant activity of Met since neither fish oil nor other antioxidant strategies provided any 

benefit.  The amino acid Thr can be metabolized to Gly, a component of collagen, by threonine 

dehydrogenase77; however, we believe the effects seen in Exp. 1 and 2 are primarily due to 

methionine’s role as SAMe or as a sulfur donor.  The positive effects SAMe has on proteoglycan 

and collagen metabolism may help offset the loss of these two cartilage components during OC.   

In Exp. 1, pigs fed high Met/Thr had increased LMA.  This is similar to the response 

observed by Knowles et al.78 on increased lean:fat ratio with increasing total sulfur amino acid 

concentrations in finishing pig diets.  The increase in LMA may be due to the methyl donor 

properties of Met which may protect DNA in proteins from degradation79 and thus reduce protein 

turnover.  Additionally, certain genes involved in protein synthesis or inhibitors of protein 

synthesis also may increase or be suppressed by methylation80.   

Supplementing swine diets with additional fish oil (Exp. 1) or in combination with added 

Vit. C and Vit. E (Exp. 2) did not affect the occurrence or severity of OC lesions.  Conversely, 

fish oil added to diets in Exp. 1 caused cartilage to require less energy to shear and had the 

highest ratio of compression:shear.  This suggests that the cartilage samples from pigs fed fish oil 

required more energy to compress while at the same time were more brittle and easier to shear 

into two pieces, demonstrating less ability to distribute mechanical forces and resist tearing.  Fish 
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oil may have prevented the proper turnover of cartilage components by inhibiting MMPs and 

resulted in cartilage with inferior mechanical properties.  Excessive free radicals may signal 

increased activation of inflammatory cytokines that stimulate cartilage degradation by 

MMPs63,81,82,83,84,85.  Increasing dietary n-3 fatty acids have shown positive results in arthritic 

joint disease because of their ability to reduce the production of inflammatory intermediates 

41,42,43,86.  Vitamin C also has a role in collagen formation and is required for the hydroxylation 

reaction that produces hydroxylysine and hydroxyproline for cartilage87, while both Vit. C and 

Vit. E function as antioxidants within the cell and lipid membranes88, respectively.  However, 

pigs are able to synthesize Vit. C in sufficient quantity49 for proper cartilage hydroxylation.  

Several attempts have been made to determine the ability of vitamin C to influence OC and bone 

characteristics in swine because of this role.  Similar to our results, Grondalen and Hansen27 

found no effect of Vit. C on OC occurrence in growing pigs, while Nakano et al.28 reported no 

benefit of supplementation with 350 or 700 ppm on hydroxyproline concentrations in cartilage 

samples from pigs fed these levels from weaning till slaughter.  Armocida et al.89 did not find a 

relationship between plasma Vit. C and OC in four litters of pigs.  The inflammatory process 

known to be involved in arthritic joint diseases may not be of major importance in the pathology 

leading to OC as arthritic conditions are often secondary to OC in pigs5. 

In Exp. 2, feeding pigs GAGs did not affect OC severity or occurrence.  

Glucosaminoglycans are thought to possess a similar ability to n-3 fatty acids and antioxidants to 

inhibit production of inflammatory mediators that signal the degradation of cartilage 

components39,90.  Both glucosamine and chondroitin sulfate (GAGs) are components of 

proteoglycans in the extra cellular matrix and have been implicated as effective pain relief 

treatments in arthritis32, but their ability to positively affect cartilage or proteoglycan metabolism 
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is less well determined40.  The positive effect of GAGs on cartilage may work to a greater extent 

on older animals as demonstrated in bovine articular cartilage explants from older animals 

compared to younger animals91.  Again, it appears that ingredients with positive effects on 

inflammatory mediators, such as GAGs or antioxidants, in osteoarthritis diseases may not be 

directly involved in OC pathogenesis.      

In Exp.1, feeding high levels of Pro and Gly had intermediary effects on overall severity 

of OC lesions.  In Exp. 2, Pro and Gly were included in combination with additional Met and Mn 

and numerically reduced OC overall severity scores.  Proline and Gly are two non-essential 

amino acids highly concentrated in collagen47.  Supplementing additional dietary Pro and Gly 

has not been evaluated; however, we theorized that supplying large quantities of these amino 

acids may have a positive influence on collagen formation.  An additional dietary treatment 

combination of Arg and Gly was formulated to determine if the same results could be observed 

using Arg, which can be converted to Pro through several reactions92.  However, pigs fed 

additional Arg and Gly had a greater number of abnormalities and numerically higher overall 

severity scores compared to the control diet.  We do not have an explanation as to why high 

levels of Arg and Gly increased abnormalities and overall severity score in Exp. 2, but it may be 

because of excessive conversion of arginine to nitric oxide (NO).  Nitric oxide is an 

inflammatory mediator with downstream activation of MMPs and is involved in cell signaling of 

apoptosis93.  High levels of Arg may increase NO and thus increase signaling of inflammatory 

pathways that increase collagen breakdown or control chondrocyte apoptosis. 

Ractopamine HCl (RAC), a beta-agonist that enhances protein deposition and growth 

rate94, was added to both the control and Met/Mn/Pro/Gly diets in Exp. 2 to increase growth 

performance.  In Exp. 2, the addition of RAC to the diet with added Met/Pro/Gly/Mn increased 
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overall severity, but did not affect any of the OC response measures when comparing the two 

diets containing RAC to the other dietary treatments without RAC, suggesting no negative 

implications of RAC feeding on OC severity or occurrence in this study.  Previously, it has been 

proposed that a hormonal imbalance may cause OC, particularly growth hormone and insulin-

like growth factor; however, mixed results have been shown on the effects of growth enhancers 

on OC.  Similar to our experiment, Hill and Dalrymple29 found no effect of adding cimaterol to 

the diet of pigs on OC.  However, He et al.31 injected pigs with somatotropin and found a higher 

incidence of OC independent of growth rate compared to pigs injected with saline.  Evock et al.30 

also noted an increased incidence of OC in pigs injected with recombinant growth hormone 

compared to controls.   

In conclusion, feeding dietary ingredients involved in cartilage and bone metabolism may 

offer potential to reduce the severity of OC lesions, but only fish oil in Exp. 1 negatively affected 

cartilage mechanical properties.  The minerals Cu, Mn, and Si appear to play a role in either 

preventing the cartilage matrix from degradation or increasing the ability of the tissue to repair 

lesions, particularly at the articular-epiphyseal cartilage.  Similarly, adding high levels of the 

amino acids Met, Thr, Pro, and Gly may also positively influence cartilage metabolism and 

reduce the severity of OC lesions.  However, the limited effects of these nutrients on growth 

plate lesions may be because they are resolved before reaching slaughter weights.  More research 

will be required to allow a better understanding of the influence these minerals and amino acids 

have on OC and to further evaluate combinations of these dietary ingredients.   

a Farmweld, Tuetopolis, IL. 
b Instron model 4201. 
c SAS, version 8.0, SAS Institute, Cary, NC. 
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Table 1.  Diet composition (As-fed) 

 Experiment 1abc  Experiment 2de

Item Phase I Phase II Phase III   Control 
Ingredient      
   Corn 62.65 68.60 74.05  69.96 
   Soybean meal (49% CP) - - -  18.79 
   Soybean meal (46.5% CP) 30.45 24.95 19.50  - 

   Choice white greasef 3.50 3.50 3.50  3.41 
   Monocalcium phosphate (21 % P) 1.50 1.25 1.25  - 
   Dicalcium phosphate (18.5 % P) - - -  2.17 
   Limestone 1.05 1.00 1.00  0.87 
   Salt 0.35 0.35 0.35  0.63 
   Vitamin premixg 0.15 0.13 0.13  0.13 
   Trace mineral premixh 0.15 0.13 0.13  0.13 
   Choline chloride - - -  0.11 
   L-lysine HCl 0.15 0.15 0.15  0.17 
   DL-methionine 0.06 0.03 -  0.04 
   L-threonine 0.06 0.05 0.05  - 

   L-proline - - -  - 
   L-glycine - - -  - 
   Manganese sulfate - - -  - 
   Cornstarchd - - -   3.60 
   Total 100.00 100.00 100.00  100.00 
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Table 1 Continued (Calculated analysis)          
   Total lysine, % 1.20 1.05 0.90  0.97 
   True ileal digestible amino acids      
      Lysine, % 1.07 0.94 0.80  0.87 
      Isoleucine:lysine ratio, % 69 69 70  67 
      Leucine:lysine ratio, % 145 154 164  156 
      Methionine:lysine ratio, % 32 31 29  31 
      Met & Cys:lysine ratio, % 60 60 60  60 
      Threonine:lysine ratio, % 65 66 68  68 
      Tryptophan:lysine ratio, % 20 19 19  21 
      Valine:lysine ratio, % 76 78 80  78 
   ME, kcal/kg 3,457 3,468 3,461  3,567 
   CP, % 19.5 17.4 15.4  16.7 
   Ca, % 0.80 0.72 0.72  0.91 
   P, % 0.70 0.62 0.62  0.74 
   Lysine:calorie ratio, g/mcal 3.47 3.03 2.60  2.72 
aDiets fed in meal form in three 28-d phases. 
bDietary treatments were created by substituting ingredients for corn or CWG in Exp. 1. 
cAnalyzed values for lysine and other amino acids were found to contain similar levels relative to the calculated values. 
dAdditional dietary treatments for Exp. 2 were created by replacing cornstarch or soybean meal in the negative control diet. 
eAnalyzed values for lysine, other amino acids, and vitamins/minerals were found to contain similar levels relative to the 
calculated values. 
fCWG varied in the diet slightly to maintain isocaloric diets. 
gVitamin premix contributed per kilogram of complete diet in phase I: vitamin A, 6,613 IU; D3, 992 IU; vitamin E, 26 IU; 
vitamin K, 2.7 mg; vitamin B12, 0.03 mg; riboflavin, 6 mg; pantothenic acid, 20 mg; niacin, 33 mg, and in the phase II or III 
diet:  vitamin A, 5,512 IU; D3, 827 IU; vitamin E, 22 IU; vitamin K, 2.2 mg; vitamin B12, 0.02 mg; riboflavin, 5 mg; 
pantothenic acid, 16 mg; niacin, 27 mg. 
hTrace mineral premix provided per kilogram of complete diet in phase I: copper (from copper sulfate), 16.5 mg; iodine (from 
calcium iodate), 0.3 mg; iron (from ferrous sulfate), 165 mg; manganese (from manganese oxide), 40 mg; selenium (sodium 
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selenite), 0.3 mg; zinc (from zinc oxide), 165 mg, and in phase II or phase III:  copper (from copper sulfate), 14 mg; iodine 
(from calcium iodate), 0.25 mg; iron (from ferrous sulfate), 138 mg; manganese (from manganese oxide), 33 mg; selenium 
(sodium selenite), 0.25 mg; zinc (from zinc oxide), 138 mg. 
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Table 2.  Ingredients added to form dietary treatments (Exp. 1)ab

Treatment 
Control Standard corn-soybean meal based diet. 
Fish oil 3.5% fish oil replaced choice white grease resulting in an n-6 to n-3 ratio of 2:1. 
Pro/Gly L-proline was added at 2.55% and L-glycine at 1.70% to create a ratio 

of proline:lysine of 300% and a glycine:lysine ratio of 200%.  
BCAA L-leucine was added at 0.60%, L-Isoleucine at 0.35%, and L-Valine at 0.29% to 

create a leucine:lysine ratio of 200%, isoleucine:lysine ratio of 100%, and valine:lysine ratio of 
100%.  

Silicon Silicon was added at 0.80% (Zeolite A) to create the Si diet (1,000 ppm). 
Cu/Mn Copper was added at 0.1% (250 ppm) and manganese was added at 0.02% (100 ppm). 
Met/Thr DL-methionine was added at 1.05% to create a methionine:lysine ratio of 110% 
 while L-threonine was added at 0.45% to create a threonine:lysine ratio of 100%. 
Combination Contained all additional dietary ingredients at the expense of corn and choice white grease. 
aAll dietary treatments were fed in meal form and maintained throughout the three 28 d feeding phases. 
bControl diet contained amino acid levels of Pro (100% of lysine), Gly (65% of lysine), leucine (145 % of lysine), 
isoleucine (69 % of lysine), valine (76 % of lysine), Met (30% of lysine), and Thr (67 % of lysine) with minerals 
levels of Cu (16.5 and14 mg/kg in phase I and phase II or III, respectively), Mn (40 and 33 mg/kg in phase I and 
phase II or III, respectively), and Si (0 mg/kg). 
 

 

 

 

 

 

 76



Table 3.  Ingredients added to form dietary treatments (Exp. 2)abc

Treatment 
Control                                   Standard corn-soybean meal based diet. 
Control + RAC                     Ractopamine HCl (RAC) supplied as Paylean® was supplemented at 0.02% (20 ppm) and 
                                               replaced corn starch. 
Met/Mn/Pro/Gly Corn-soybean meal based diet containing additional DL-methionine (1.17%), L-proline (0.55%, 

L-glycine (0.91%), and manganese sulfate (0.025%).  
Met/Mn/Pro/Gly + RAC Ractopamine HCl supplied as Paylean® was supplemented at 0.02% (20 ppm) and replaced corn 

starch in the Met/Pro/Gly/Mn diet.  
Antioxidants Added Vitamin C (200 IU/kg), Vitamin E (1120 IU/kg) and fish oil (0.45%) replaced cornstarch 

in the control diet. 
Silicon Silicon was added at 2.0% (Zeolite A) replacing corn starch in the control diet to create the 

Si diet (2,200 ppm).  
Arginine/Glycine L-arginine (0.79%) and L-glycine (0.91%) replaced cornstarch to form the Arg/Gly treatment. 
GAGs Poultry meal (13.06%) and chicken cartilage (2.15%) replaced cornstarch and soybean meal to  
 provide 460 ppm glucosamine and 820 ppm chondroitin sulfate. 
aDietary treatments were fed as an extruded pellet from d 0 to 46 and in meal form from d 46 to 70 to accommodate the 
feeding of ractopamine HCl (RAC). 
bDiets were fed in one phase throughout the trial period. 
cControl diet contained amino acid levels of Pro (114% of lysine), Gly (79% of lysine), Met (30% of lysine), Arg (100 % of 
lysine), and vitamin and minerals levels of Vit. C (0 IU/kg), Vit. E (37 IU/kg), Mn (33 mg/kg), and Si (0 mg/kg). 
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Table 4.  Effect of different nutrients on growth performance and carcass composition (Exp. 1) 

Probability,   
P <                                                               Dietary treatment  

  Control
Fish 
Oil Pro/Gly BCAA Si Cu/Mn Met/Thr 

All  
ingredientsb SED Treatment 

Growth, d 0 to 84           
   ADG, kg 1.09 1.06 1.08 1.12 1.11 1.13 1.03 1.04 0.047 0.21 
   ADFI, kg 2.78 2.65 2.71 2.80 2.79 2.74 2.64 2.58 0.110 0.26 
   Gain/Feed 0.39 0.40 0.40 0.40 0.40 0.41 0.39 0.40 0.013 0.91 
   Final weight, kg 133.6 128.0 132.2 133.1 135.5 130.3 128.9 129.5 4.64 0.70 
Carcass data           
   Initial backfat, mm 5.3 5.4 5.1 5.5 5.1 5.1 5.4 5.1 0.02 0.83 
   Hot Carcass Weightc, kg 95.2 93.4 93.0 94.9 96.5 93.8 91.5 89.4 3.28 0.43 
   Final backfat, mm 15.6 15.7 15.1 14.3 14.2 15.5 15.9 16.1 0.06 0.92 
   LMA, cm2d 49.5gh 51.2hi 48.3gh 48.8gh 48.4gh 49.0gh 53.5i 47.1g 2.24 0.10 
   Fat free lean indexe 55.4 55.7 55.3 55.5 55.7 55.4 56.1 54.5 1.09 0.92 
   Fat-free lean gain kg/df 0.436 0.432 0.428 0.454 0.450 0.431 0.424 0.400 0.020 0.19 
aEach value is the mean of 9 or 10 replications with pigs initially 39 kg and average final weight of 131.5 kg. 
bDiet contained all additional ingredients added into one diet. 
cHot carcass weight was used as a covariate in analysis except for fat-free lean gain. 
dLongissimus muscle area. 
eFat free lean index calculated according to the procedures of the NPPC50. 
fCalculated as the final fat-free lean minus initial fat-free lean divided by days on feed. 
g,h,i Treatments with different superscripts differ (P < 0.05). 
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Table 5.  Effect of different nutrients on cartilage properties (Exp. 1) 

Probability, 
P <  Dietary treatment  

 Item Control
Fish 
Oil 

Proline/ 
Glycine BCAA Si Cu/Mn Met/Thr

All 
Ingredientsb SED Treatment 

Instron measures           
   Compression energy, n/gc 85.4 126.9 144.7 102.5 86.0 59.8 116.4 110.7 39.22 0.59 
   Shear energy, n/gd 518.1gh 371.4g 444.7gh 491.8gh 527.1gh 601.5h 498.8gh 540.9gh 61.32 0.02 
   Total energy, n/g2e 1271.4 1226.8 976.5 1303.3 1342.3 1401.9 1326.9 1539.6 291.54 0.73 
   Ratio of CE/SEf 0.15h 0.41g 0.31gh 0.25gh 0.17h 0.15h 0.25gh 0.21gh 0.081 0.03 
aEach value is the mean of 9 or 10 replications with pigs initially 39 kg and a final weight of 131.5 kg. 
bDiet contained all additional ingredients added into one diet. 
cAmount of energy in newtons per gram of cartilage to compress the cartilage half its thickness. 
dAmount of peak energy in newtons per gram of cartilage to shear the cartilage into two pieces. 
eThe total amount of energy required to shear the cartilage into two pieces. 
fThe ratio of compression energy to shear energy in which lower values would indicate more desirable characteristics. 
g,hTreatments with different superscripts differ (P < 0.05). 
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Table 6.  Effect of dietary nutrients on the occurrence of osteochondrosis (Exp. 1)a

          Probability, P< 
 Dietary treatment   Contrasts 
           Minerals AAs 

Item Control 
Fish 
Oil 

Pro/ 
Gly BCAA Si 

Cu/ 
Mn 

Met/ 
Thr 

All  
Ingredientsb SED Treatment

vs  
others 

vs  
others 

Total animals/trtc 10 10 10 10 10 9 10 10 - - - - 
Animals with lesionsd 9 9 9 9 6 7 7 7 1.5 0.52 - - 
External             
   Abnormalitiese 1.9op 2.6o 2.0op 1.4p 2.5o 1.8op 1.3p 1.4p 0.56 0.13 0.86 0.02 
   Severity scoref 2.1op 2.5o 1.9op 1.4p 2.4o 1.8op 1.3p 1.4p 0.48 0.07 0.94 0.01 
Articular cartilage             
   Number of facesg 5.0 4.5 2.4 5.0 2.2 2.3 2.6 4.1 1.44 0.16 0.19 0.87 
   Severity scoreh 2.0o 1.3opq 1.2opq 1.6op 0.7q 0.8pq 0.7q 1.3opq 0.48 0.08 0.08 0.98 
Growth plate             
   Number of facesi 0.9 1.7 1.2 0.6 1.2 1.6 1.8 0.2 0.68 0.23 0.47 0.25 
   Severity scorej 0.6 1.1 0.9 0.6 0.8 0.8 1.0 0.1 0.43 0.38 0.21 0.43 
Overall             
   Total facesk 5.9 6.2 3.6 5.6 3.4 3.9 4.4 4.3 1.81 0.63 0.17 0.68 
   Total abnormalitiesl 8.7 8.8 5.6 7.0 5.9 5.7 5.7 5.7 1.89 0.54 0.21 0.27 
   Total severitym 4.7o 4.9o 4.0op 3.6op 3.9op 3.3op 3.0p 2.8p 0.85 0.14 0.12 0.05 
   Overall scoren 17.1o 15.0op 8.8pq 12.4opq 8.4pq 6.4q 6.6q 7.0q 3.76 0.03 0.02 0.11 
aEach value is the mean of 9 or 10 replications with one pig per pen initially 39 kg and a final weight of 131.5 kg. 
bDiet contained all additional dietary ingredients added into one diet. 
cTotal animals evaluated per treatment. 
dThe number of animals with OC lesions (Cochran-Mantzel-Haenszel test). 
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eNumber of abnormalities noted upon visual evaluation of the external surface. 
fLesion severity score (0 - 4 with 0 being normal, 1 mild, 2 moderate, 3 severe, and 4 OC dissecans) of the external surface of the  
intact joint. 
gThe number of faces showing lesions at the articular cartilage evaluating 12 cut surfaces. 
hLesion severity score (0 - 4 with 0 being normal, 1 mild, 2 moderate, 3 severe, and 4 OC dissecans) at the articular cartilage. 
iThe number of faces showing lesions in the growth plate evaluating 12 cut surfaces. 
jLesion severity score (0 - 4 with 0 being normal, 1 mild, 2 moderate, 3 severe, and 4 OC dissecans) at the growth plate. 
kTotal faces showing lesions at the articular cartilage and growth plate evaluating 12 cut surfaces. 
lSum of external abnormalities, articular faces, and growth plate faces. 
mSum of severity scores for external, articular cartilage, and growth plate faces. 
nCalculated as the number of abnormalities multiplied by the severity for each location and then summed. 
o,p,q Treatments with different superscripts differ (P < 0.05). 
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Table 7.  Effect of dietary nutrients on growth performance (Exp. 2)a

 Dietary treatment   
    Met/Mn/      Probability,
  Control+ Met/Mn/ Pro/Gly Anti-     P < 
Item Control RACb Pro/Gly + RACb oxidantsc Si Arg/Gly GAGsd SED Treatment 
Day 0 to 70           
   ADG, kg 0.99 1.10 1.01 1.02 1.02 1.03 1.02 0.97 0.053 0.36 
   ADFI, kg 2.25 2.47 2.22 2.23 2.25 2.20 2.24 2.26 0.114 0.29 
   Gain/Feed 0.44 0.45 0.46 0.46 0.45 0.47 0.45 0.43 0.014 0.14 
   Final weight, kg 111.3 120.4 114.1 113.6 115.0 115.4 114.5 111.6 3.44 0.25 
   HCWe, kg 80.1f 88.6g 82.5f 81.8f 82.3f 83.8fg 81.9f 80.8f 2.54 0.06 
   Dressing % 72.0f 73.5g 72.3fg 72.0f 71.6f 72.6fg 71.6f 72.4fg 0.007 0.08 
aEach value is the mean of 10 replications with pigs initially 47 kg and average final weight of 114.3 kg. 
bFed same diet as other controls until d 46 and then were fed RAC (Paylean® 20 ppm) from d 46 to 70. 
cAntioxidant diet contained Vit. C (200 IU/kg), Vit. E (1,120 IU/kg) and 0.45% fish oil. 
dGlucosaminoglycans derived from chicken cartilage and poultry meal (glucosamine, 420 ppm, and chondroitin sulfate, 860 
ppm). 
eHot carcass weight (HCW). 
f,gTreatments with different superscripts differ (P < 0.05). 
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Table 8.  Effect of dietary nutrients on cartilage properties (Exp. 2)a

 Dietary treatment  Probability,
    Met/Mn/      P < 

 Item Control
Control  
+RACb

Met/Mn/ 
Pro/Gly 

Pro/Gly 
+RACb

Anti-
oxidantsc Si Arg/Gly GAGsd SED Treatment 

Instron measurements           
   Compression energy n/ge 43.6 61.5 43.2 30.7 17.8 28.2 45.6 70.5 25.53 0.49 
   Shear peak energy n/gf 533.7 373.1 520.5 458.9 457.1 474.3 480.6 492.7 84.35 0.80 
   Total energy n/g2g 847.3 715.6 769.8 819.8 826.2 737.4 742.1 598.3 163.66 0.62 
   Ratio of CE/SEh 0.10 0.09 0.07 0.10 0.05 0.06 0.12 0.14 0.059 0.76 
aEach value is the mean of 10 replications with pigs initially 47 kg and a final weight of 114.3 kg. 
bFed same diet as other controls until d 46 and then were fed ractopamine HCl (Paylean® 20 ppm) from d 46 to 70. 
cAntioxidant diet contained Vit. C (200 IU/kg), Vit. E (1,120 IU/kg) and 0.45% fish oil. 
dGlucosaminoglycans derived from chicken cartilage and poultry meal (glucosamine, 420 ppm, and chondroitin sulfate, 860 ppm). 
eAmount of energy in newtons per gram of cartilage to compress the cartilage half its thickness. 
fAmount of peak energy in newtons per gram of cartilage to shear the cartilage into two pieces. 
gThe total amount of energy required to shear the cartilage into two pieces. 
hThe ratio of compression energy to shear energy in which lower values would indicate more desirable characteristics. 
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Table 9.  Effect of dietary nutrients on the occurrence of osteochondrosis (Exp. 2)a

            
 Dietary treatment  Probability, P < 
      Met/Mn/       Contrast 

 Item Control
Control 
+RACb

Met/Mn 
Pro/Gly 

Pro/Gly 
RACb

Anti-
oxidantsc Si Arg/Gly GAGsd SED Treatment

RAC vs 
others 

Total animals/trte 10 10 10 10 10 10 10 10 - - - 
Animals with lesionsf 6 6 6 9 8 7 9 8 1.49 0.54 - 
External            
   Number abnormalitiesg 0.5 0.5 0.6 0.1 0.5 0.5 0.7 0.9 0.32 0.46 0.10 
   Severity scoreh 0.7 0.9 0.9 0.1 0.6 0.5 0.9 1.0 0.44 0.50 0.30 
Articular Cartilage            

   Number of facesi 2.5 2.7 2.3 3.9 3.2 2.0 3.8 3.7 1.06 0.38 0.41 
   Severity scorej 0.9pq 0.8pq 0.6q 1.4p 1.2pq 0.9pq 1.4p 0.9pq 0.32 0.14 0.30 
Growth plate            
   Number facesk 0.4 0.6 0.6 1.7 0.7 0.2 1.0 0.8 0.57 0.29 0.11 
   Severity scorel 0.2 0.3 0.4 0.6 0.3 0.1 0.5 0.4 0.24 0.50 0.34 
Overall            
   Total faces 2.9qr 3.3qr 2.9qr 5.9p 3.9pqr 2.2r 4.8pq 4.5pq 1.28 0.11 0.16 
   Total abnormalitiesm 3.4 3.8 3.5 6.0 4.4 2.7 5.5 5.4 1.34 0.17 0.34 
   Total severityn 1.9 2.3 2.1 2.3 2.1 1.5 3.1 2.5 0.76 0.63 0.82 
   Overall scoreo 6.0pq 4.9pq 4.2q 9.4p 6.7pq 3.1q 9.6p 6.0pq 2.44 0.10 0.40 

aEach value is the mean of 10 replications with one pig per pen initially 47 kg and a final weight of 114.3 kg. 
bFed same diet as other controls until d 46 and then were fed ractopamine HCl (Paylean® 20 ppm) from d 46 to 70. 
cAntioxidant diet contained Vit. C (200 IU/kg), Vit. E (1,120 IU/kg) and 0.45% fish oil. 
dGlucosaminoglycans derived from chicken cartilage and poultry meal (glucosamine, 420 ppm, and chondroitin sulfate, 860 ppm). 
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oCalculated as the number of abnormalities multiplied by the severity score at each location and then summed over the three locations. 

85

jLesion severity score (0 - 4 with 0 being normal, 1 mild, 2 moderate, 3 severe, and 4 OC dissecans) at the articular cartilage. 

eTotal animals evaluated per treatment. 
fNumber of animals with OC lesions (Cochran-Mantzel-Haenszel test). 
gNumber of abnormalities noted upon visual evaluation of the intact external joint. 
hLesion severity score (0 - 4 with 0 being perfect, 1 mild, 2 moderate, 3 severe, and 4 OC dissecans) of the external surface 

lLesion severity score (0 - 4 with 0 being normal, 1 mild, 2 moderate, 3 severe, and 4 OC dissecans) at the growth plate. 

iThe number of faces showing lesions at the articular cartilage evaluating 12 cut surfaces. 

kThe number of faces showing lesions in the growth plate evaluating 12 cut surfaces. 

nSum of severity scores for external surface, articular, and growth plate. 

mSum of external abnormalities, articular faces, and growth plate faces. 

p,q,rTreatments with different superscripts differ (P < 0.05). 

of the intact joint. 

 

 

 

 

 

 

 

 



CHAPTER III 

THE EFFECT OF DIETARY LYSINE OR METHIONINE AND 

COPPER/MANGANESE ON OSTEOCHONDROSIS LESIONS AND CARTILAGE 

PROPERTIES IN PIGS 
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ABSTRACT 
Objective-Evaluate the influence of dietary lysine concentration and added methionine, copper, 

and manganese on osteochondrosis occurrence in swine. 

 

Animals-120 gilts (PIC 327 × 1050; 40.5 kg initial BW) were used. 

 

Procedures-Gilts were fed below (0.71% phase I and 0.53% phase II), at (0.89% phase I and 

0.71% phase II), or above (1.16% phase I and 0.98% phase II) their requirement for true ileal 

digestible (TID) lysine (Lys) with standard concentrations or high added methionine(1%)/ 

copper(250 ppm)/manganese(220 ppm) in a 3 × 2 factorial, 84-d study.  The effects on growth 

performance, visual soundness, carcass traits, the occurrence and severity of osteochondrosis 

(OC) lesions, and cartilage properties were measured.  Upon completion of the feeding period, 

60 gilts were harvested and the distal aspect of the left humerus and femur were evaluated by 

gross examination for OC lesions. 

   

Results- Increasing dietary Lys increased (P < 0.01) ADG, but feeding high Met/Cu/Mn 

decreased ADG (P < 0.02).  Overall severity score did not correlate with ADG (R2 0.03) or 

weight (R2 0.015).  Increasing dietary Lys concentration (P > 0.64) did not effect the overall 

severity score (abnormalities × severity); however, the addition of high Met/Cu/Mn tended (P < 

0.09) to reduce the overall severity score of OC compared to pigs fed diets with normal 

Met/Cu/Mn. 

   

Conclusions and Clinical Relevance-Feeding growing gilts to maximize growth performance 

with high dietary Lys may increase the severity of OC lesions, while a diet with additional 

Met/Cu/Mn above requirements may aid in the reduction of OC abnormalities and severity.  

 

(Key Words: Cartilage biology, Nutrition-swine, Osteochondrosis) 
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Introduction 
Osteochondrosis (OC) is the focalized disruption in the endochondral ossification of 

cartilage at the end of growing long bones leaving areas of retained cartilage in the subchondral 

bone or defects in the cartilage surface1,2,3.  It occurs in 85-90% of all swine4, decreases meat 

yield in finishing pigs5, and is associated with reduce longevity of sows6.  The changes that occur 

in the joint from OC include decreased type II collagen concentrations, decreased proteoglycans, 

increased chondrocyte necrosis, and increased type I collagen7,8 due to the loss of balance 

between synthesis and degradative processes.  Osteochondrosis is thought to be a result of 

degeneration of cartilage canal vessels9,10,11 that supply blood to the end of growing long bones; 

however, it is not know whether this is the cause or a result of OC12.  Previously, it has been 

thought that OC is associated with pigs or other animals with fast growth rates13,14 which may be 

due to the increased mechanical stress relative to the maturity of the joint; however several 

studies have shown no correlation of growth rate with OC in swine15,16,17.  Dietary intervention to 

prevent or aid in the repair of joint disorders such as OC in swine through supplementation with 

vitamins and minerals have not shown reductions in OC occurrence or severity18,19,20,21,22.  

Dietary ingredients such as copper, manganese, and methionine, however, have shown positive 

effects on cartilage or proteoglycan synthesis in vitro23,24,25,26,27 as well as reduced OC and 

osteoarthritis occurrence in several animal studies28,29,30.  These nutrients may provide a means to 

reduce the occurrence of OC or aid in the repair of lesions.  Previous research from our lab31 

observed positive effects of these dietary ingredients on OC severity in pigs, but to varying 

degrees among studies.  Differences in the starting weights, length of the trial period, and dietary 

lysine concentrations may have affected our ability to influence OC or lowered OC occurrence.  

We hypothesized that the addition of methionine, copper, and manganese could reduce the 
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severity of OC lesions, and that feeding different levels of dietary lysine may affect the 

occurrence of OC.  

The objective of this experiment was to determine the effect of dietary lysine level and 

the combination of additional methionine, copper sulfate, and manganese sulfate on OC lesions, 

growth performance, carcass composition, and several cartilage criteria in growing-finishing 

pigs. 

Materials and Methods  
General 

 

Procedures used in these experiments were approved by the Kansas State University 

Animal Care and Use Committee.  The experiment was conducted at the Kansas State University 

Swine Research and Teaching Center.  A total of 120 gilts (PIC line 327 × 1050; 40.5 kg initial 

BW) were blocked by weight in an 84-d growth assay.  Each pen contained two pigs per pen and 

there were ten replicates (pens) per treatment.  The barn contains 80 pens with totally slatted 

concrete flooring (1.52 m2) and provided approximately 1.15 m2/pig.  Each pen was equipped 

with a one-hole dry self-feedera and nipple waterer to allow ad libitum access to feed and water.    

Treatments 

Experimental diets were fed in meal form for 84 d in two 42 d phases.  Dietary treatments 

were arranged in a 3 × 2 factorial consisting of three true ileal digestible (TID) lysine (Lys) 

levels and two levels of supplemental methionine, copper, and manganese (Met/Cu/Mn).  The 

TID Lys levels were formulated below the requirement (0.71% phase I, 0.53% phase II), at the 

requirement,(0.89% phase I, 0.71% phase II), or above their requirement (1.16% phase I, 0.98% 

phase II).  The requirement was estimated from earlier titrations conducted within these 

facilities.  The Met/Cu/Mn treatments were either at standard inclusion typical of swine diets (no 
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added methionine, 9 ppm of Cu and 20 ppm of Mn) or high added methionine (1% added DL-

methionine), 250 ppm Cu, and 220 ppm Mn).  Copper sulfate and manganese sulfate were the Cu 

and Mn sources, respectively.  Added Met/Cu/Mn replaced sand in each of the Lys diets to form 

the other dietary treatments.  The values used in diet formulation and TID digestibilities were 

based on those published in the National Research Council (NRC)31.  Diet samples were 

analyzed for amino acid content and contained levels similar to calculated concentrations.  

Growth performance and carcass composition 

 Pigs and feeders were weighed every 14 d to determine average daily gain (ADG), 

average daily feed intake (ADFI), and gain/feed (G/F).  At the end of the trial, pigs were weighed 

and the heaviest pig from each pen was marked with a distinctive tattoo before transport to the 

Kansas State University Meats Laboratory, where the left humerus (elbow joint) and left femur 

(knee joint) were collected for determination of OC lesions for one pig in each pen.  Pigs were 

loaded onto a trailer in small groups (15 pigs) and transported approximately 4 km to the 

processing facility.  For carcass data, 10th rib backfat depth, longissimus muscle area (LMA), 

percentage lean, and hot carcass weight were evaluated.  Fat depth was measured with a ruler at 

the 10th rib, 6 cm off of the midline, while LMA was traced on translucent paper and calculated 

using a grid.  Percentage lean was calculated using an equation from the National Pork Producers 

Council32 (NPPC). 

Visual soundness scores  

 Prior to harvest, the heaviest pig from each pen was scored by two evaluators for the 

front leg and rear leg (1-5 where 1 = poor and 5 = excellent) based on angle and conformation, 

and for locomotion (1-5 where 1 = poor and 5 = excellent) as an indication of mobility.  The 

front and rear legs scores were added together to form the total score according to the National 
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Swine Improvement Federation33 (NSIF) system (2-3 = poor or unsuitable for breeding purposes, 

4-7 = average, and 8-10 = excellent or desirable for breeding purposes).  

Collection of cartilage data and OC lesions scores 

 The left humerus (elbow joint) and femur (knee joint) were collected and removed to 

visually determine the number of surface cartilage abnormalities and the occurrence of OC 

lesions by gross examination of the humerus and femoral condyles for one pig from each pen.  

The joints were cleaned of excess tissue and then stored in 10% formalin until evaluation.  After 

external evaluation, the distal end of the humerus and femur were cut into 3 mm thick sections 

perpendicular to the long axis of the bone using a bandsaw.  This resulted in 12 to 14 cut surfaces 

for evaluation, and the number of abnormalities was adjusted for 12 evaluated faces.  Each joint 

was evaluated for the number of external abnormalities at the femoral and humerus condyles, OC 

lesions at the articular and growth plate cartilage of the distal femur, and humerus articular 

cartilage.  Lesions were given a severity score (0-4); with 0 = normal, 1 = mild, 2 = moderate, 3 

= severe, and 4 = OC dissecans based on the extent of tissue involvement.  This scoring system 

is similar to that used by Ytrehus et al.17 and Jefferies et al.20 but slightly modified.  All pigs had 

OC lesions at one of the locations evaluated, so we were unable to analyze for differences in OC 

occurrence (number of animals with OC).   

In addition, a cartilage sample was cut from the patella for cartilage property analysis.  

Cartilage samples were weighed, measured for thickness and length using a caliper, and then 

tested for the ability to absorb compression force or to resist shearing force.  The process was 

similar to that used by Brama et al34 (indenter system) but with force applied to the whole 

cartilage sample using an Instron testing machineb as a measure of mechanical properties.  

Cartilage samples were placed between two flat surfaces of the Instron to perform texture profile 

analysis and compressed half of the thickness to measure the ability of the cartilage to resist 
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compression force.  A second measure was conducted in which the cartilage was cut using a 

Warner-Bratzler shear blade to determine the ability of the cartilage to withstand shearing force.  

Compression and shear values were adjusted to a per gram of cartilage weight to equalize for 

differences in the actual cartilage sample weight. 

Relationship between growth rate, weight, visual soundness, and overall severity score 

 Because there were differences in growth rate among our dietary treatments, a correlation 

between growth rate or weight and the overall severity score was conducted.  Visual evaluation 

of soundness or leg conformation was also evaluated for correlattion with the overall severity 

score.  Each prediction variable was plotted by the overall severity score and a linear regression 

line fitted to determine how much of the variation in overall severity score could be explained by 

the variables (R2 value). 

Statistical analysis 

Data were analyzed as a randomized complete block design using the PROC MIXED 

procedure of SASc with pig as the experimental unit to determine the main effect of treatment.  

The response criteria of growth performance, carcass composition, cartilage compression and 

shear energy, and number of abnormalities were tested.  Although scored categorically, 

soundness and OC severity scores were analyzed via PROC MIXED because low number of 

observations at some of the severity scores prevented categorical analysis.  Linear and quadratic 

effects of increasing dietary Lys were determined using single degree of freedom contrasts35. 

Results 
Growth performance.  Overall, d 0 to 84, a Lys × Met/Cu/Mn interaction was observed 

for ADG (P < 0.02; Table 2), thus the interactive means are presented.  In pigs fed standard 

concentrations of Met/Cu/Mn, increasing dietary Lys concentration increased (quadratic, P < 

0.01) ADG from below to the pigs estimated requirement with no improvements thereafter.  
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Added high Met/Cu/Mn reduced ADG (P < 0.01) compared to pigs fed diets with standard 

Met/Cu/Mn, particularly in the diets with Lys fed below or at the requirement.  Increasing 

dietary Lys tended (linear, P < 0.09) to increase ADFI, while added high Met/Cu/Mn reduced 

ADFI (P < 0.01) compared to pigs fed diets with standard Met/Cu/Mn.  Increasing dietary Lys 

up to the requirement improved F/G (quadratic, P < 0.01), and feeding diets containing added 

high Met/Cu/Mn had no effect on F/G (P > 0.57).   

Carcass data.  No interaction between Lys × Met/Cu/Mn was detected for carcass traits 

(P > 0.49; Table 3).  The addition of high Met/Cu/Mn tended (P < 0.07) to reduce backfat 

thickness compared to pigs fed diets with standard Met/Cu/Mn.  Pigs fed increasing dietary Lys 

from below to the requirement increased LMA (quadratic, P < 0.04) with no improvements 

thereafter, but the addition of high Met/Cu/Mn did not affect LMA (P > 0.61).  Increasing dietary 

Lys improved (linear, P < 0.01) percentage lean.  

Leg scoring.  No Lys × Met/Cu/Mn interactions were observed for leg scores (P > 0.21; 

Table 4).  Visual soundness scores were unaffected by dietary Lys (P > 0.26); however, the 

addition of high Met/Cu/Mn to the diet tended (P < 0.07) to negatively reduce front leg scores 

and locomotion (P < 0.06) compared to pigs fed standard Met/Cu/Mn.   

Cartilage properties.  No Lys × Met/Cu/Mn interactions for instron measurements were 

detected (P > 0.17; Table 5).  In pigs fed standard Met/Cu/Mn, increasing dietary Lys decreased 

cartilage shear energy (quadratic, P < 0.01); however, no other instron measurements were 

affected by Lys (P > 0.24).  The addition of high Met/Cu/Mn had no effect on any cartilage 

instron measurements (P > 0.23).   

Osteochondrosis evaluation.  No Lys × Met/Cu/Mn interactions were observed for OC 

measures (P > 0.12; Table 6).  All animals had OC lesions at either the humerus or femur.  Thus, 
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we could not test for differences in the number of animals with OC between treatments.  At the 

external surface of the femur, increasing dietary Lys concentration tended (linear, P < 0.08) to 

increase the number of abnormalities and there was a numerical trend (P < 0.13) to increase the 

external severity score.  The addition of high Met/Cu/Mn to the diet reduced the number of 

abnormalities (P < 0.02) and severity score (P < 0.01) at the external surface of the femur 

compared to pigs fed diets with standard Met/Cu/Mn.  At the external humerus, increasing 

dietary Lys increased both the number of abnormalities (linear, P < 0.01) and severity score 

(linear, P < 0.01).  The addition of high Met/Cu/Mn to the diet reduced (P < 0.03) the number of 

abnormalities and severity score (P < 0.03) for the external humerus compared to pigs fed 

standard Met/Cu/Mn.   

At the femoral articular cartilage, neither increasing dietary Lys nor the addition of high 

Met/Cu/Mn affected either the number of faces with lesions (P > 0.35) or the severity score (P > 

0.36).   The number of faces with lesions and the severity score at the femoral growth plate was 

unaffected by increasing dietary Lys concentration (P > 0.52) or the addition of high Met/Cu/Mn 

to the diet (P > 0.16).   

The number of faces with lesions and severity score at the humerus articular cartilage was 

unaffected by increasing dietary Lys concentration (P > 0.16) or the addition of high Met/Cu/Mn 

to the diet (P > 0.37).     

Overall, the total faces with lesions were not affected by increasing dietary Lys 

concentration (P > 0.78) or the addition of high Met/Cu/Mn (P > 0.86).  There was a numerical 

trend (linear, P < 0.12) for the total abnormalities (external abnormalities and the number of 

faces with lesions) to increase with increasing dietary Lys.  The addition of high Met/Cu/Mn did 

not affect the total number of abnormalities (P > 0.16).  The total severity score (sum of 

 94



severities at the humerus and femur) increased with increasing dietary Lys concentration (linear, 

P < 0.01).  The addition of high Met/Cu/Mn decreased the total severity score (P < 0.02) 

compared to pigs fed diets with standard Met/Cu/Mn.  Finally, increasing dietary Lys 

concentration did not effect the overall severity score (abnormalities × severity, P > 0.64), but 

the addition of high Met/Cu/Mn tended (P < 0.09) to reduce the overall severity score compared 

to pigs fed diets with standard Met/Cu/Mn. 

Correlation of growth rate and visual evaluation with overall severity score.  The 

correlations were low between overall severity score and ADG (R2= 0.0316; Figure 1), weight 

(R2=0.0262; Figure 2), total leg score (R2= 0.0153; Figure 3), or locomotion score (R2= 0.0197; 

Figure 4).   

Discussion 
Osteochondrosis is a multi-factorial disease that has increased in occurrence with the 

selection of lean, high growth genetics in swine36.  One of the main concerns with this increase 

in OC is to the welfare and longevity of sows6,37.  The resulting lameness from OC can decrease 

mobility, reproductive performance, and increase sow herd turnover rates38.  This increase in sow 

turnover rate represents a substantial economic loss39 to replace these animals as the average 

parity per sow has dropped to less than three6, resulting in failure of sows to reach their most 

productive parities.   

Much of the research for joint disorders in humans and other animal models have focused 

on dietary intervention involving glucosamine, chondroitin sulfate, and polyunsaturated fatty 

acids which have been shown to decrease production of inflammatory mediators that in turn 

regulate cartilage degradation40,41,42,43.  However, the results from these studies are based on 

reductions in pain or indirect measures of osteoarthritis.  Limited data exists on the ability of 

these anti-inflammatory ingredients to alter synthesis of matrix components or influence OC44.   
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Previous research from our lab45 studied the effects of different dietary nutrients and their 

effects on OC occurrence and severity.  In these previous experiments, feeding added dietary n-3 

fatty acids or glucosamine and chondroitin sulfate did not affect OC in swine, and may reflect a 

difference between OC and osteoarthritis pathology.  However, several minerals and amino acids 

were identified that indicated potential in aiding the repair process or preventing OC lesions from 

manifesting into more severe cases.  The differences in dietary Lys concentrations between the 

previous two experiments may account for the some of the difference in severities and magnitude 

of response observed.  Thus, two minerals and an amino acid that showed positive effects on OC 

as well as dietary Lys concentrations on OC were tested.  

Lysine is the first limiting amino acid in swine diets and is used as the basis in diet 

formulation31.  Increasing dietary Lys from below requirements to the animal’s requirement will 

improve growth performance, efficiency, and protein deposition46.  As expected, increasing 

dietary Lys from below to the pigs requirement increased ADG, G/F, LMA, percentage lean, and 

decreased backfat depth with minimal improvements in those pigs fed above their requirement; 

however, feeding high Met/Cu/Mn reduced growth rate and backfat with no affect on LMA or 

percentage lean.   

Growth rate, which is dramatically affected by dietary Lys concentration, has been shown 

to increase OC occurrence in swine13,14; however, mixed results have been reported.  Limiting 

energy consumption and thus growth rate in dogs also has been shown to reduce the occurrence 

of hip dysplasia and osteoarthritis47,48.  In the current experiment, no correlation between overall 

severity score and ADG, weight, or visual soundness scores were observed.  Nankano et al.15 and 

Woodard et al.16 showed no correlation of growth rate with OC in swine.  Similarly, Ytrehus et 

al.12 found no correlation between OC and weight, growth rate, or femoral shape of pigs.  In 
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addition, feeding ractopamine HCl, a beta-agonist which increases growth rate and protein 

deposition by 20%49, did not increase overall severity of OC45.   

An increase in the number of abnormalities and external severity scores along with higher 

total severity scores were observed with increasing dietary Lys, but Lys did not affect overall 

severity score or visual soundness evaluation.  Previous experiments demonstrated that pigs fed 

dietary Lys above their requirement had a greater severity of OC than pigs fed closer to their 

requirement45 although similar growth performance was observed.  Because of the linearity of 

the response to increasing dietary Lys concentrations on OC severity, it appears that providing 

excess dietary Lys and thus other amino acids relative to Lys increases external and total OC 

severity scores.  We do not have a explanation as to why overfeeding dietary Lys has negative 

implications on OC; however, because we supplied additional Lys through increased soybean 

meal in the diet, crude protein (CP) concentrations were allowed to vary.  Supplying a 

combination of non-essential amino acids arginine and glycine negatively impacted OC severity 

scores45.  On the other hand, Woodard et al.16 and Jorgenson et al.19 evaluated the effect of 

dietary CP and energy density on OC and found no effect.  It does not seem logical that dietary 

Lys by itself can influence OC severity to this degree, but rather may be due to changes in 

arginine or non-essential amino acids concentrations when dietary Lys is increased.  Arginine is 

metabolized to nitric oxide, one of the key mediators of the inflammatory response and can 

stimulate the breakdown collagen and signal chondrocyte apoptosis50.  Providing dietary lysine 

and other amino acids in excess of requirements may negatively impact OC severity 

The addition of Met/Cu/Mn at high levels in this study resulted in a reduction in the 

number of external abnormalities and severity scores as well as lower total and overall severity 

of OC.  Similarly, in previous experiments, a combination of Met and threonine or a combination 
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of Cu and Mn reduced OC severity scores45.  A positive response to dietary intervention with a 

combination of added Met, proline, glycine, and Mn or by feeding silicon also reduced the 

overall severity score.  This effect may be a result of the positive influence Met has on cartilage 

metabolism25,26, Cu in crosslinking of collagen molecules or vascular stability, and Mn on 

proteoglycans within the extracellular matrix.  Also, inadequate sulfur in the extracellular matrix 

leads to the formation of under-sulfated proteoglycans51,52,53.  Copper has been shown to 

stimulate cartilage synthesis in vitro23, reduce OC severity in young horses27,28, and decrease the 

incidence of OC in offspring from copper supplemented sows30; however, deficiencies in Cu do 

not inhibit the function of the lysyl oxidase enzyme involved in crosslinking54.  Manganese is 

important for proteoglycan synthesis55, bone formation, and may also serve a structural role in 

linking chondroitin sulfate molecules24.  These dietary ingredients may stimulate collagen or 

proteoglycan synthesis.  The loss of proteoglycan content and decreased collagen type II content 

are the primary changes seen in cartilage of swine with OC8.  Thus, the positive effects these 

ingredients have shown on in vitro collagen synthesis and proteoglycan synthesis may also be 

taking place in this animal model; however, further research into the affect of these nutrients on 

cartilage concentrations or gene expression will be needed to verify this response.  

 The addition of high Met/Cu/Mn tended to have adverse affects on visual front leg and 

locomotion scores compared to pigs not fed added Met/Cu/Mn.  This may have been mainly due 

to the high level of Mn fed in these diets as excessive Mn is known to result in limb stiffness and 

reductions in mobility in swine56.  Also, the limited differences observed from the analysis of 

cartilage properties was due to high variability between samples and suggests that the sample 

taken may not accurately reflect events occurring within the joint.   

 98



 In conclusion, increasing dietary Lys concentration increased external abnormalities and 

total severity scores and appears to be independent of growth rate, while the addition of high 

Met/Cu/Mn above requirements reduced abnormalities and severity scores.  This study suggests 

that the addition of high Met/Cu/Mn to the diets of growing gilts may reduce the severity of OC 

in articular joints.  The increase in external abnormalities seen at both the femur and humerus 

with increasing dietary Lys concentration may be due to a greater supply of arginine or other 

non-essential amino acids when fed at or above their requirement for Lys.  Furthermore, the 

reduction in external abnormalities that were seen with the addition of high Met/Cu/Mn is similar 

to results from our previous experiments and may be due to the positive influence of Met on 

cartilage metabolism and Cu/Mn in stabilizing the extracellular matrix.  This combination of 

ingredients may allow articular cartilage a greater ability to repair or prevent OC lesions and 

provide a potential treatment strategy to reduce OC in swine and other animal species. 

a Farmweld, Tuetopolis, IL. 
b Instron model 4201. 
c SAS, version 8.0, SAS Institute, Cary, NC. 
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Table 1.  Diet composition (as-fed) 

 Phase Ia  Phase IIb

Item Below Requirement Above   Below Requirement Above 
Ingredient        
   Corn 76.20 69.05 58.25  83.90 76.75 65.95 
   Soybean meal (46.5% CP) 16.05 23.25 34.15  8.75 16.00 26.85 
   Soy oil 3.00 3.00 3.00  3.00 3.00 3.00 
   Monocalcium phosphate (21 % P) 1.85 1.80 1.75  1.50 1.45 1.40 
   Limestone 1.03 0.98 0.90  1.03 0.98 0.90 
   Salt 0.35 0.35 0.35  0.35 0.35 0.35 
   Vitamin premixc  0.15 0.15 0.15  0.13 0.13 0.13 
   Trace mineral premixd 0.08 0.08 0.08  0.08 0.08 0.08 
   L-lysine HCl 0.15 0.15 0.15  0.15 0.15 0.15 
   DL-methionine - 0.02 0.09  - - 0.04 
   L-threonine 0.02 0.04 0.07  - 0.03 0.05 
   Manganese sulfate - - -  - - - 
   Copper sulfate - - -  - - - 
   Sande 1.15 1.15 1.15   1.15 1.15 1.15 
Total 100.00 100.00 100.00  100.00 100.00 100.00 
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Calculated analysis                  
(Table 1 continued)               
   Total lysine, % 0.80 1.00 1.30  0.60 0.80 1.10 
   True ileal digestible amino acids        
      Lysine, % 0.71 0.89 1.16  0.53 0.71 0.98 
      Isoleucine:lysine ratio, % 70 70 69  71 70 69 
      Leucine:lysine ratio, % 168 153 140  192 168 149 
      Methionine:lysine ratio, % 30 30 32  34 30 30 
      Met & Cys:lysine ratio, % 63 60 60  71 63 60 
      Threonine:lysine ratio, % 67 67 67  68 68 67 
      Tryptophan:lysine ratio, % 19 19 20  18 19 19 
      Valine:lysine ratio, % 68 66 64  88 83 79 
   ME, kcal/kg 3,408 3,408 3,408  3,424 3,424 3,424 
   CP, % 13.9 16.7 20.8  11.2 14.0 18.1 
   Ca, % 0.81 0.80 0.80  0.71 0.71 0.70 
   P, % 0.71 0.73 0.77  0.61 0.63 0.66 
   Available P equiv. 0.52 0.52 0.52  0.43 0.43 0.43 
   Lysine:calorie ratio, g/mcal 2.3 2.9 3.8   1.7 2.3 3.2 
aPhase I fed in meal form from d 0 to 42. 
bPhase II fed in meal form from d 42 to 84. 
cVitamin premix contributed per kilogram of complete diet in phase I: vitamin A, 6,613 IU; D3, 992 IU; vitamin E, 26 IU; vitamin 
K, 2.7 mg; vitamin B12, 0.03 mg; riboflavin, 6 mg; pantothenic acid, 20 mg; niacin, 33 mg, and in the phase II diet:  vitamin A, 
5,512 IU; D3, 827 IU; vitamin E, 22 IU; vitamin K, 2.2 mg; vitamin B12, 0.02 mg; riboflavin, 5 mg; pantothenic acid, 16 mg; 
niacin, 27 mg. 
dTrace mineral premix provided per kilogram of complete diet in phase I and II:  copper (from copper sulfate), 9 mg; iodine (from 
calcium iodate), 0.15 mg; iron (from ferrous sulfate), 83 mg; manganese (from manganese oxide), 20 mg; selenium (sodium 
selenite), 0.15 mg; zinc (from zinc oxide), 83 mg. 
eDL-methionine (1%), manganese sulfate (0.05%), and copper sulfate (0.1%) replaced sand to form the other dietary treatments. 
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Table 2.  Effect of dietary lysine and methionine/copper/manganese on growth performanceab

     Added Met/Cu/Mnd   Probability, P < 
 TID Lysinec  TID Lysinec   Lysine   

Item Below 
Require-

ment Above  Below 
Require-

ment Above SED 
Lys × 

Met/Cu/Mn Linear Quadratic
Met/ 

Cu/Mn  
Day 0 to 84              
  Initial weight, kg 40.4 40.5 40.6  40.3 40.4 40.5 0.25 0.99 0.18 0.76 0.55  
  ADG, kg 0.89f 1.01g 0.99g  0.76e 0.93f 0.98g 0.027 0.02 0.01 0.01 0.01  
  ADFI, kg 2.57g 2.56g 2.56g  2.29e 2.35ef 2.50fg 0.077 0.12 0.09 0.64 0.01  
  Gain/Feed 0.35e 0.39f 0.39f  0.34e 0.39f 0.40f 0.009 0.68 0.01 0.01 0.57  
  Final weight, kg 119.3f 129.6g 128.4g  107.7e 122.4f 128.7g 2.53 0.06 0.01 0.01 0.01  
aEach value is the mean of 10 replications with two pigs per pen initially 40.5 kg and an average final weight of 120.5 kg. 
bPigs were fed meal diets in two 42 d phases. 
cDiets contained 0.71, 0.89, and 1.16 % TID lysine during phase I and 0.53, 0.71, and 0.98 TID lysine during phase II, respectively. 
dDiet contained added methionine (1%), copper (250 ppm), and manganese (220 ppm). 
e,f,gMeans with different superscripts differ (P < 0.05). 
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Table 3.  Main effect of lysine level and additional methionine/copper/manganese on carcass characteristicsa

        Probability, P< 
 TID Lysineb  Met/Cu/Mnc   Lysine  

Item Below 
Require- 

ment Above   Standard Added SED 
Lys × 

Met/Cu/Mn Linear Quadratic
Met/ 

Cu/Mn 
HCW, kgd 80.9 90.5 91.3  89.7 85.5 1.84 0.01 0.01 0.01 0.01 
Backfat, mmd 15.6 14.6 13.6  15.5 13.7 1.35 0.80 0.16 0.99 0.07 
Longissimus area, cm2d 48.3 61.9 65.3  57.9 59.1 3.19 0.49 0.01 0.04 0.61 
Lean, %d 55.8 59.4 60.6   58.0 59.2 1.10 0.92 0.01 0.14 0.14 
aEach mean represents 20 replications for lysine treatments and 30 replications for Met/Cu/Mn with the heaviest pig from each pen 
initially 40.5 kg and an average final wt of 127 kg.. 
bDiets contained 0.71, 0.89, and 1.16 % TID lysine during phase I and 0.53, 0.71, and 0.98 % TID lysine during phase II.  
cDiet contained 1% added methionine, copper (250 ppm), and manganese (220 ppm). 
dHot carcass weight (HCW) used as a covariate in analysis. 
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Table 4.  Main effect of lysine level and additional methionine/copper/manganese on visual soundness scoresab

           Probability, P < 
 TID Lysinec  Met/Cu/Mnd   Lysine   

Item Below 
Require- 

ment Above   Standard Added SED 
Lys x 

Met/Cu/Mn Linear Quadratic 
Met/ 

Cu/Mn
Front legs 2.7 2.4 2.5  2.7 2.4 0.13 0.37 0.45 0.36 0.07 
Rear legs 2.8 2.4 2.6  2.6 2.6 0.12 0.28 0.39 0.18 0.69 
Totale 5.4 4.8 5.1  5.3 4.9 0.21 0.21 0.34 0.18 0.17 
Locomotionf 2.9 2.6 2.8   3.0 2.6 0.14 0.34 0.68 0.28 0.06 
aEach mean represents 20 replications for lysine treatments and 30 replications for Met/Cu/Mn with the heaviest pig from each pen 
initially 40.5 kg and an average final wt of 127 kg. 
bFront, Rear, and Locomotion scores are the mean of two evaluators for each animal given a score of 1-5, where 1=poor and 
5=excellent according to NSIF system. 
cDiets contained 0.71, 0.89, and 1.16 % TID lysine during phase I and 0.53, 0.71, and 0.98 TID lysine during phase II, respectively. 
dDiet contained 1% added methionine, copper (250 ppm), and manganese (220 ppm). 
eSum of front and rear scores according to NSIF system (7-10, excellent, 4-6, average, 2-3, poor) 
fAn independent measure of mobility scored from 1-5 (1=poor and 5=excellent) according to NSIF system. 
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Table 5.  Main effect of lysine level and additional methionine/copper/manganese on cartilage propertiesa

                                    Probability, P < 

 TID Lysineb  Met/Cu/Mnc   Lysine   

 Item Below 
Require-

ment Above  
Stand-

ard Added SED 
Lys x 

Met/Cu/Mn Linear Quadratic 
Met/ 

Cu/Mn 
Instron measurementsd           
  Compression energy, newtons/ge 13.2 9.5 19.0 12.7 15.1 6.74 0.35 0.40 0.27 0.67 
  Shear energy, newtons/gf 558.1 432.2 591.1 538.1 516.2 59.06 0.34 0.58 0.01 0.66 
  Total energy, newtons/g2g 572.9 611.4 716.2 696.2 570.6 297.11 0.61 0.30 0.75 0.23 
  Ratio CE/SEh 0.025 0.025 0.033  0.024 0.031 0.012 0.51 0.49 0.72 0.52 
aEach mean represents 20 replications for Lys treatments and 30 for Met/Cu/Mn with the heaviest pig from each pen initially 40.5 kg and 
an average final wt of 127 kg. 
bDiets contained 0.71, 0.89, and 1.16 % TID lysine during phase I and 0.53, 0.71, and 0.98 TID lysine during phase II. 
cDiet contained added DL-methionine (1%), copper (250 ppm), and manganese (220 ppm). 
dInstron measurements were conducted on model 4201 Instron. 
eAmount of force required in newtons per gram of cartilage to compress the cartilage half its thickness. 
fAmount of peak force required to shear the cartilage into two pieces in newtons per gram of cartilage. 
gTotal amount of energy required to shear cartilage into two pieces in newtons per gram of cartilage. 
hRatio of compression energy to shear energy, respectively. 
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Table 6.  Main effect of lysine level and additional methionine/copper/manganese on osteochondrosis evaluation 

        Probability, P < 

 TID Lysinec  Met/Cu/Mnd   Lysine  

 Item Below
Require-

ment Above   Standard Added SED 
Lys × 

Met/Cu/Mn Linear Quadratic
Met/ 

Cu/Mn 
External femur            
  # abnormalities 0.7 1.4 1.3  1.5 0.8 0.33 0.73 0.08 0.23 0.02 
  Severity score 0.8 1.4 1.3  1.5 0.8 0.32 0.24 0.18 0.26 0.01 
External humerus            
  # abnormalities 0.8 1.4 1.9  1.6 1.1 0.30 0.52 0.01 0.99 0.03 
  Severity score 0.7 1.3 1.7  1.5 1.0 0.26 0.61 0.01 0.83 0.03 
Femur articular cartilage            
  # of faces 4.4 4.4 3.6  4.3 3.9 0.84 0.78 0.35 0.59 0.57 
  Severity score 1.4 1.4 1.2  1.3 1.3 0.28 0.83 0.29 0.68 0.99 
Femur growth plate            
  # of faces 0.5 0.4 0.6  0.3 0.7 0.32 0.13 0.88 0.55 0.16 
  Severity score 0.2 0.3 0.3  0.2 0.3 0.16 0.12 0.52 0.96 0.19 
Humerus articular cartilage            
  # of faces 0.9 1.6 1.9  1.5 1.4 0.70 0.61 0.16 0.81 0.86 
  Severity score 0.5 0.6 0.8  0.7 0.5 0.28 0.77 0.23 0.92 0.32 
Overall            
  Total facese 5.8 6.2 6.1  6.1 5.9 1.13 0.45 0.83 0.78 0.86 
  Total abnormalitiesf 7.3 8.9 9.3  9.2 7.8 1.23 0.65 0.12 0.56 0.16 
  Total severityg 3.6 4.8 5.2  5.2 3.9 0.59 0.32 0.01 0.44 0.01 
  Overall severityh 15.2 16.5 16.9   18.7 13.7 3.56 0.43 0.64 0.88 0.09 
aEach mean represents 20 replications for Lys treatments and 30 replications for the Met/Cu/Mn treatment with the heaviest pig from each 
pen initially 40.5 kg and an average final wt of 127 kg. 
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bJoints were scored on a scale of 0-4 (0=normal,1=mild, 2=moderate, 3= severe, and 4=osteochondrosis dissecans) for each location. 
cDiets contained 0.71, 0.89, and 1.16 % TID lysine in phase I and 0.53, 0.71, and 0.98 % TID lysine in phase II, respectively. 
dDiet contained additional methionine (1%), copper (250 ppm), and manganese (220 ppm). 
eTotal faces showing lesions at the humeral articular cartilage, femoral articular cartilage, and growth plate. 
fTotal number of external abnormalities and faces with lesions. 
gSum of severity scores for the external, articular, and growth plate for both the humerus and femur.  
gCalculated as abnormalities multiplied by severity score for each location and then summed for all locations. 

 

 

 

 

 

 

 

 

 

 

 

 



R2 = 0.0316
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Figure 1.  Average daily gain (ADG) versus overall severity score of osteochondrosis using 

60 gilts.  A linear line was fitted to the data to determine the amount of variation in overall 

severity score that could be explained by ADG. 
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R2 = 0.0262
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Figure 2.  Weight versus overall severity score of osteochondrosis using 60 gilts.  A linear 

line was fitted to the data to determine the amount of variation in overall severity score 

that could be explained by weight. 
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R2 = 0.0153
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Figure 3.  Total visual leg score versus overall severity score of osteochondrosis.  Total leg 

score is the sum of the front and rear leg scores which were scored from 1-5 where 1=poor 

and 5=excellent and then summed to form the total score according to the NSIF system on 

60 gilts. 
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R2 = 0.0197
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Figure 4.  Locomotion score versus overall severity score of osteochondrosis.  Locomotion 

(measure of mobility) was scored from 1-5 where 1=poor and 5=excellent according to the 

NSIF system and is the average of two evaluators using 60 gilts. 
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CHAPTER IV 

THE USE OF SERUM BIOMARKERS TO PREDICT THE OCCURRENCE AND 

SEVERITY OF OSTEOCHONDROSIS LESIONS IN PIGS 
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ABSTRACT 
Objective- Evaluate the use of serum biomarkers of cartilage and bone metabolism to predict the 

occurrence and severity of OC at the distal left femur in swine. 

 

Animals- 71 gilts (PIC 327×1050) were used. 

   

Procedures- Serum blood samples were collected prior to harvest by venipuncture.  Samples 

were centrifuged and separated into one ml aliquots for each animal and sent to a commercial lab 

for analysis of ten different markers involved in cartilage and bone metabolism.  Gilts were 

categorized as with or without OC.  Logistic regression analysis was then performed to predict 

risk of OC based on biomarker concentration.  After determining which animals had OC, we 

used linear regression to predict the severity of the animals with OC.   

     

Results- Serum C-propeptide of type II collagen (CPII, P< 0.01) and cartilage oligomeric matrix 

protein (COMP, P< 0.01) were increased in gilts with OC compared to normal animals.  

Carboxy-terminal collagen type II ¾ long fragment (C2C, P< 0.01) and pyridinoline crosslinks 

(PYD, P< 0.01) were decreased in gilts with OC compared to normal gilts.  A two-fold increase 

in CPII level increased the odds of having OC 97 times (95% CI, 6-infinity).  Using serum C2C, 

we were able to explain 49% (R2) of the variation in overall severity score.   

 

Conclusions and Clinical Relevance- Serum biomarkers, CPII and COMP, are significantly 

increased while C2C and PYD were decreased with OC occurrence.  Thus, biomarkers may be a 

valuable selection tool to diagnose OC and aid in the reduction of lameness in sow herds.   

  

 (Key Words: Animal models, Cartilage biology, Osteochondrosis) 
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Introduction 
Osteochondrosis (OC) involves the failure of endochondral ossification occurring during 

bone formation that results in cartilage retained in the subchondral bone1,2.  Osteochondrosis may 

increase lameness in sow herds3,4 and reduce performance and meat yield in finishing pigs5.  

Heritability estimates of OC range from 0.1-0.56,7 and also may be affected by breed8, growth 

rate9, and trauma10.  Because the pathology that results in OC is not well understood and attempts 

at nutritional intervention have had limited success11,12,13, the most likely opportunity to reduce 

its prevalence is through genetic selection.  Recently, Kadermideen and Janss14 identified a 

major gene that may relate to OC inheritance in pigs.  Thus, genetic strategies or biomarker 

proteins, which are the end result of gene expression, may enhance our selection capabilities 

against OC and could reduce the economic consequences of this disease.   

Over the past ten years, much research has been conducted to determine the pathological 

process and biological changes that occur during osteochondrosis, osteoarthritis, and rheumatoid 

arthritis in humans as well as animal models15,16.  These include increased chondrocyte necrosis, 

decreased collagen type II, and reduced proteoglycan concentrations17,18,19.  As a result, many 

immunoassays have been developed to help in determining biochemical changes in living 

animals from synovial fluid, blood, or urine samples20.  Because of the limited ability of 

scientists to obtain tissue samples and conduct experiments with human subjects, their research 

has focused on alternative methods to diagnose disease and measure treatment effectiveness.  

Biomarkers are products of cartilage or bone metabolism that are released into circulation from 

events associated with their synthesis or degradation that are altered due to loss of homeostasis 

during disease15,21.  These specific proteins can be measured in samples by antibody detection 

assays and may reflect changes between normal and diseased animals22.  Cartilage and bone 

metabolism markers have been used with some success in correlating with disease state and 

 121



determining treatment effectiveness in several different animal models of osteoarthritis23,24 and 

OC25,26,27; however, only a few biomarkers of bone turnover have been evaluated in swine28,29,30.  

Therefore, the objective of this experiment was to determine the ability of serum 

biomarkers of cartilage and bone metabolism to predict the occurrence and severity of OC 

lesions in growing gilts and develop prediction equations that potentially can aid in gilt selection. 

Materials and Methods  
General 

 

Procedures used in these experiments were approved by the Kansas State University 

Animal Care and Use Committee.  A total of 71 gilts (PIC line 327 × L1050, 114 kg) were used 

for serum collection and determination of OC severity.  The experiment was conducted at the 

Kansas State University Swine Research and Teaching Center.  Gilts were housed individually 

and had ad libitum access to feed and water.  The barn contains 80 pens with totally slatted 

concrete flooring (1.52 m2), providing 2.31 m2/pig.  Each pen was equipped with a one-hole dry 

self-feedera and nipple waterer.  Pigs were loaded in small groups onto a trailer for transport 4 

km to the Kansas State meat processing facility.    

Osteochondrosis lesions severity scores 

 The distal left femur was collected and removed to visually determine the number of 

cartilage abnormalities and the occurrence of OC lesions at the femoral condyle by gross 

examination.  The joints were stored in 10% formalin until evaluation.  Joints were photographed 

to allow visual evaluation of the external surface and the underlying articular cartilage/ 

subchondral bone interface.  After external evaluation, the distal end of the femur was sliced 

perpendicular to the long axis of the bone7 into 3 mm sections using a bandsaw.  Samples were 

evaluated for the number of abnormalities, then lesions were given a severity score (0-4), where 
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0 = normal, 1 = mild, 2= moderate, 3= severe, and 4=OC dissecans for the external surface, 

articular cartilage, and growth plate based on the extent of tissue involvement.  The scoring 

system used is similar to those described previously7,31.  From these scores, a prediction response 

of number of external abnormalities multiplied by the severity plus the number of articular 

cartilage abnormalities multiplied by the severity plus the number of growth plate abnormalities 

multiplied by the severity was used as the overall severity score for the joint.   

Analysis of biomarkers  

 Serum samples were collected and stored at -20° C until evaluation.  Samples were sent 

to a commercial laboratoryb for determination of the concentration of ten biomarkers.  All 

samples were determined in duplicate by commercially available enzyme-linked 

immunosorbance assays (ELISA) that had previously been validated for swine at this 

commercial lab.  The C-propeptide of type II collagen (CPII) was measured an indication of 

cartilage synthesis and is released during formation of the mature molecule.  Chondroitin sulfate 

epitope 846 (CS846) is released during the formation of mature aggrecan and was measured an 

indication of aggrecan synthesis.  The carboxy-terminal telopeptide of type II collagen ¾ long 

fragment (C2C) and carboxy-terminal crosslinked telopeptide fragment of type II collagen 

(CTXII) are cleaved from the intact collagen molecule by matrix metalloproteinases during 

degradation and were measured as indicators of cartilage destruction.  Cartilage oligomeric 

matrix protein (COMP), produced by chondrocytes and synovial cells, is considered an indirect 

marker of cartilage destruction.  Osteocalcin (OST) and bone specific alkaline phosphatase 

(BAP) are markers of bone formation or osteoblast activity.  The amino-terminal telopeptide of 

type I collagen (NTX), pyridinoline crosslinks (Pyd), and carboxy-terminal crosslinked 

telopeptide of type I collagen (ICTP) were measured as markers of bone turnover that are 

released during collagen type I degradation.   
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Statistical analysis 

Logistic regression was used to predict whether or not an animal had OC by backward 

step-wise parameter selection to identify biomarkers that were significant in the model.  Then in 

animals with OC, linear regression was used to model the severity of OC by step-wise analysis to 

determine the significance of biomarkers in the model. 

Because the biomarker data was not normally distributed, the individual markers were 

log transformed for evaluation in the model.  In addition, the response variable or overall score 

was square root transformed due to increasing variation as scores increased32.  Normality was 

confirmed by adjusted residual evaluation.  Data were first analyzed using the PROC LOGISTIC 

procedure of SASc with the binary response YES or NO to predict which animals had OC.  Next, 

PROC REG was used to predict overall severity scores using biomarkers and final weight by 

forward selection for animals with OC.  The final model was determined as the biomarkers that 

significantly contributed to the model at the P < 0.05 level.   Differences in biomarker 

concentrations between animals with or without OC were analyzed by ANOVA using PROC 

MIXED with these differences also considered significant at P < 0.05.  Simple correlations 

between markers and severity of OC were analyzed using Spearman’s rank correlation 

coefficient procedure of PROC CORR in SAS.  

Results  
Individual markers.  Of the 71 gilts, 15 had no gross evidence of OC, while the 

remaining 56 gilts had varying OC severity.  For the individual analysis of each marker as a 

function of gilts with OC versus gilts with no gross evidence of OC, serum C2C (P< 0.02, Table 

1) and PYD (P< 0.01) decreased with the occurrence of OC.  Serum biomarkers CPII (P< 0.01) 

and COMP (P< 0.03) were increased in gilts with OC compared to gilts with no gross evidence 
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of OC.  No other biomarkers were different (P > 0.20) in animals with OC versus those without 

OC.   

Modeling the occurrence of OC.  Using logistic regression analysis to predict the binary 

response of YES or NO (whether or not an animal has any gross sign of OC), the biomarker CPII 

was significant in the model (P < 0.01, Table 2) and resulted in an odds ratio of 97 (95% CI, 6 - 

infinity).  This indicates that a two-fold increase in the CPII marker would increase the odds of 

having OC by 97 times.  No other biomarkers were significant in the model (P > 0.14).  

Modeling the severity of OC.  After predicting which animals had OC, biomarkers were 

evaluated for correlation with the overall severity score using linear regression.  Only C2C and 

the log of C2C were significant (P < 0.05) in the model.  Using this single marker, C2C and the 

log of C2C explained 49% (R-square, Table 3) of the variation in overall severity scores.   

Spearman’s rank correlation coefficients.  Spearman’s rank correlation coefficients 

were evaluated to determine if any associations exist between biomarker concentrations and 

overall severity score.  This analysis assigns rankings to both the response and indicator 

variables and ignores the actual values.  Thus, it gives an indication of increasing or decreasing 

associations that are present between our response and biomarker values.  From this analysis, 

correlations (P < 0.05) between six markers and the overall severity score were observed.  The 

CPII (-0.430, Table 4) and COMP (-0.270) markers showed negative correlations with increasing 

severity score, while BAP (0.312), CS846 (0.311), Pyd (0.426), and C2C (0.564) demonstrated 

positive correlations with increasing severity score.   

Discussion 
The use of biomarkers to diagnose joint diseases without invasive procedures has been a 

focus of human research for almost twenty years.  Identifying subjects with greater potential for 

joint destruction from arthritis or OC would allow treatment intervention in humans and 
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companion animals, as well as selection against animals that are genetically predisposed to OC 

in swine.  Using radiographic procedures to measure changes in progression of these diseases is 

difficult to evaluate over short periods of time and are only detectable in the later stages20 of OA 

or OC.  The potential to use biomarkers to detect and correlate with disease progression holds the 

most promise as genetic markers are currently unavailable.  The high incidence of OC in swine is 

thought to correlate with increased selection pressure for lean growth rate33.  With the challenge 

of maintaining both highly prolific sow lines and maximum lean growth, increased selection 

pressure against OC is needed.  Thus, we hypothesized that serum biomarkers of cartilage and 

bone metabolism would correlate with OC occurrence or severity and potentially could be used 

as a diagnostic tool to identify animals with OC.   

 The serum CPII marker of collagen type II synthesis has been shown to increase with 

osteoarthritis34,35,36 and is elevated in horses with OC23,24,25.  This may be a programmed 

response to increased cartilage fragmentation through a potential feedback loop37.  The increased 

serum concentrations of CPII in gilts with OC compared to normal gilts demonstrates an 

increased repair process by trying to synthesize new type II collagen molecules.  In addition, 

serum CPII predicted which animals had OC with an odds ratio of 97.  All animals with greater 

than 850 ng/ml of CPII had OC, and because of this the upper limit of the 95% confidence 

interval for the odds ratio is approaching infinity or complete separation in the data set.  

However, once gilts with OC had been determined, a negative correlation (-0.43) of CPII in 

those animals with OC as severity score increased was observed.  Mannsson et al.38 observed 

lower CPII levels in patients with rapid rheumatoid arthritis compared to controls.  The response 

in animals with OC may be a result of differences in the progression of lesions.  Gilts with lower 

severity scores and higher CPII concentrations may indicate regressing lesions; however, more 
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involved lesions with lower CPII concentrations may be stagnant or unable to repair through 

increased CPII.  It appears that elevated CPII is a good indicator of the presence of OC in swine.   

A positive spearman correlation of CS846 (0.311), aggrecan synthesis marker39, with 

increased severity score was also found.  This may indicate that in addition to increased collagen 

type II synthesis in gilts with OC, the synthesis of aggrecan may also be elevated; however, the 

success of this marker in correlating with disease state has been debated.  The CS846 biomarker 

was increased in humans with rheumatoid arthritis39 and osteoarthritis40 compared to controls.  

As well, Lohmander et al.41 found parallel changes in CS846 with CPII in a human osteoarthritis 

model.  Synthesis markers of cartilage components may be valuable diagnostic indicators of the 

repair process and aid in identification of those animals with OC. 

Elevated serum COMP concentrations, a non-collagenous protein synthesized by 

chondrocytes and synovial cells20, are thought to indicate cartilage destruction occurring within 

joints.  Several human studies have demonstrated positive correlations of COMP with severity of 

osteoarthritis42,43,44 and as a predictor of future joint deteriation45,46.  Similarly, higher 

concentrations of serum COMP were observed in animals with OC compared to those without.  

This would indicate increased cartilage destruction occurring in animals with OC.  However, a 

negative Spearman correlation of COMP (-0.27) was observed with increasing severity score.  

This may be similar to the results found with the CPII marker, and thus could indicate more 

active or regressing lesions versus larger and stagnant lesions in animals with OC. 

Direct markers of cartilage degradation also have been shown to correlate with specific 

disease states.  In the present study, serum Pyd and C2C were significantly decreased in gilts 

with OC compared to those with no gross lesions; however, when used to predict the OC severity 

score, both Pyd (0.426) and C2C (0.564) showed strong positive spearman correlations.  In 
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comparison, several osteoarthritis models have shown increased serum and urinary Pyd 

concentrations and correlations to disease progression47,48,49.  Similarly, increased C2C 

concentrations have also been described with severity of osteoarthritis23,35,50 and in equine OC27.  

In the current study, the change in the direction of correlation between diseased and normal 

animals may indicate a difference in the pathology between normal cartilage turnover and those 

animals with varying severities of OC.  In gilts with OC, the decrease in both PYD and C2C may 

represent an altered turnover of cartilage when compared to gilts with no OC but still showed a 

positive correlation with increasing severity score.  The physiological explanation for this 

observation is not known.   

Measuring serum CTX-II, a newer marker of cartilage destruction, has been shown to 

correlate with joint deterioration in synovial fluid51 and urine48,52,53,54 in human and animal 

models, but serum concentrations were not altered or did not significantly correlate with OC 

severity score in this study.  The reason a correlation or difference in CTX-II was not observed 

with the incidence of OC or severity may be due to the inherent variation between individual 

animals.      

Markers of bone turnover or formation were not significantly altered with disease state in 

this study, but concentrations were similar to previously reported values in swine28,29,30.  

However, a positive spearman correlation of BAP (0.312) with increasing severity score 

indicates the potential for this marker given larger population samples.  Fuller et al.55 also 

demonstrated elevated BAP levels in an equine osteoarthritis model.  Although NTX-I, OST, 

Pyd, and BAP have been successfully used as markers of bone turnover in swine28,29,30 as well as 

ICTP in other animal models56,  it does not appear that bone remodeling is significantly altered 

with OC occurrence in gilts.  Billinghurst et al.26 found a positive correlation of OST with 

 128



macroscopic lesion score at five months of age; however, they described limited use of bone 

turnover or formation markers in predicting OC severity in older foals which may be similar to 

the results from the current experiment as some lesions may have had time to resolve.     

In summary, biomarkers of cartilage synthesis and destruction were altered with the 

presence of OC compared to gilts without OC, and predictive of OC occurrence and severity.  

Biomarkers of bone metabolism did not correlate with OC occurrence or severity.  Using logistic 

regression, gilts with a high risk of OC (odds ratio of 97) could be determined by measuring only 

serum CPII.  Once gilts with OC had been determined by measuring serum CPII, linear 

regression was used to explain 49% (R-square) of the variation in OC severity with C2C.  

However, the individual marker variation appears to limit the ability of other biomarkers to 

predict OC severity scores with a higher accuracy.  Biomarkers of cartilage metabolism, in 

particular CPII and C2C, may be of use in determining the occurrence of OC in replacement gilts 

and to potentially help in selection against animals with OC; however, further work will be 

required to test and refine these equations for practical applications. 

aFarmweld, Tuetopolis, IL. 
bMD Biosciences, Minneapolis, Minnesota. 
cSAS, version 8.0, SAS Institute Inc., Cary, NC. 
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Table 1.  Effect of disease state on serum biomarker concentrationsabcd
    

 Osteochondrosis   Biomarker concentration 

  No Yes SED Probability, P < Minimum Maximum 

Cartilage synthesis       

   CPII, ng/mL 648.1 1,110.5 85.06 0.01 537.5 1,723.1 

   CS846, ng/mL 977.4 857.8 145.4 0.42 228.5 2,960.1 

Cartilage degradation       

   C2C, ng/mL 163.0 123.9 10.42 0.01 60.1 202.9 

   CTXII, pg/mL 213.6 235.8 43.37 0.66 110.7 480.4 

   COMP, U/Le 1.05 1.39 0.101 0.01 0.51 2.16 

   Pyd, nmol/L 8.1 6.6 0.38 0.01 4.5 9.8 

Bone turnover       

   NTX, nM BCEe 215.3 234.9 21.61 0.37 100.0 411.0 

   ICTP, μg/L 39.6 38.6 1.55 0.56 24.9 48.5 

Bone formation       

   Osteocalcin, ng/mL 22.2 23.6 1.03 0.20 11.5 34.8 

   BAP, U/Le 75.9 71.5 5.04 0.39 21.6 123.8 
aBlood samples were collected by venipuncture prior to slaughter using gilts (113.4 kg). 
bAssays were validated for swine and conducted at a commercial lab. 
cIncluded 15 gilts without gross OC and 56 gilts with gross OC. 
dCPII= collagen type II C-propeptide, CS846=chondroitin sulfate epitope 846, C2C= collagen type II ¾ long fragment,  
CTXII= C-terminal crosslinked fragment of type II collagen, COMP= cartilage oligomeric matrix protein, Pyd=  
Pyridinoline crosslinks, NTX= amino-terminal telopeptide of type I collagen, ICTP= carboxy-terminal crosslinked  
telopeptide of type I collagen, BAP= bone specific alkaline phosphatase. 
eBCE= Bone equivalency units, U= arbitrary units. 
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Table 2.  Modeling of biomarkers to predict osteochondrosis occurrence in pigsa

Logistic regression to predict OC (Yes or No)       
Marker Equation Odds ratiob 95% CI Probability, P < 

log2 CPII OC = -42.5748 + (4.5704 * log2 CPII) 97 6 - infinity 0.01 
aLogistic regression was conducted using all 71 animals to determine the Yes or No presence of OC lesions. 
bThe odds ratio indicates that a two-fold increase in the collagen type II C-propeptide biomarker (CP II)would 
be 97 times more likely to have OC. 
 

 

 

 

Table 3.  Linear regression to predict severity score in gilts with osteochondrosisa

   Equation Model R2  Marker 

C2Cb  0.44 
log C2Cb    OC = 18.62746 + (0.05507*C2C) + (-4.76606*logC2C) 0.49 

aLinear regression was conducted on 56 animals with varying levels of  
OC severity to predict the overall severity score. 
bCollagen type II C-terminal ¾ long fragment (C2C) and the log transformed C2C. 
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Table 4.  Spearman rank correlation coefficients between biomarkers and osteochondrosis 
severity scoreab

Biomarker Correlation coefficient value 
Collagen C-propeptide of type II (CP II) -0.430 
Chondroitin sulfate epitope 846 (CS846) 0.311 
Cartilage oligomeric matrix protein (COMP) -0.270 
Bone specific alkaline phosphatase (BAP) 0.312 
Collagen type II C-terminal 3/4 long fragment (C2C) 0.564 
Pyridinoline crosslinks (Pyd) 0.426 
aValues shown were significant (P < 0.05). 
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bSpearman’s rank correlation assigns ordered numbers to measure increasing or decreasing 
relationships between two variables without assuming a normal distribution. 
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