
  

Additive manufacturing of high-strength continuous fiber reinforced polymer composites 

 

 

by 

 

 

Pedram Parandoush 

 

 

 

B.S., Central Tehran Azad University, 2011 

M.S., University of Malaya, 2014 

 

 

 

AN ABSTRACT OF A DISSERTATION 

 

 

 

submitted in partial fulfillment of the requirements for the degree 

 

 

 

 

DOCTOR OF PHILOSOPHY 

 

 

 

Department of Industrial and Manufacturing Systems Engineering 

Carl R. Ice College of Engineering 

 

 

 

KANSAS STATE UNIVERSITY 

Manhattan, Kansas 

 

 

2019 

 

  



  

Abstract 

Additive manufacturing (AM), also referred to as 3D printing, of polymer-fiber composites 

has transformed AM into a robust manufacturing paradigm and enabled producing highly 

customized parts with significantly improved mechanical properties compared to un-reinforced 

polymers. 3D printing of continuous carbon fiber reinforced thermoplastics (CFRTP) composites 

is increasingly under development owing to its unparalleled flexibility of manufacturing 3D 

structures over traditional manufacturing processes. However, key issues, such as weak interlayer 

bonding, voids between beads and layers, and low volume ratio of carbon fiber, in the mainstream 

fused deposition modeling (FDM) and extrusion suppress the applications of these techniques in 

mission-critical applications, such as aerospace and defense industries. In this work, we proposed 

a new laser assisted AM method that utilizes prepreg composites with continuous fiber 

reinforcement as feedstock to fabricate 3D objects by implementing laser assisted bonding and 

laser cutting. This technique is inspired by laminated object manufacturing (LOM), for AM of 

continuous CFRTPs using prepreg composite sheets. AM of continuous glass and carbon fiber 

reinforced thermoplastic composites is demonstrated using this technique. The continuous fiber 

reinforced prepreg is laser cut and laser bonded layer upon layer to produce 3D composite objects. 

Microstructure and mechanical properties (strength, modulus, interfacial, and shear properties) of 

the additively manufactured continuous fiber composites are studied and compared to other 

additive and conventional manufacturing methods. The interlayer properties of these additively 

manufactured composites was superior to other AM technologies, resulting to an excellent 

mechanical properties relative to other AM techniques. The microstructure analysis, by micro 

computed tomography (CT) scans, scanning electron microscopy (SEM), and optical microscopy, 

showed low void content and full consolidation of prepreg layers.  The temperature at the material 



  

interface during the 3D process is crucial to achieve a strong bonding strength. This temperature 

can be predicted via the developed finite element (FE) heat transfer model in this work. This 

numerical model is able to predict the temperature history during the laser bonding process with 

great accuracy when compared to the experimental values. The surface quality of the additively 

manufactured CFRTPs were also studied and compared with the FDM technology. In addition, 

mechanical finishing methods, namely CNC milling and rotary ultrasonic machining (RUM), were 

employed to improve the surface quality of the 3D printed composites and drill precise holes in 

the structures. Overall, the proposed AM method can be broadly beneficial for industries requiring 

high performance and lightweight structural materials with complex geometries. This method is 

also easily scalable for high volume productions and could additionally reduce the waste associated 

with current CFRTP production techniques and improve the process from the production time 

standpoint by automation.  
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interface during the 3D process is crucial to achieve a strong bonding strength. This temperature 

can be predicted via the developed finite element (FE) heat transfer model in this work. This 

numerical model is able to predict the temperature history during the laser bonding process with 

great accuracy when compared to the experimental values. The surface quality of the additively 

manufactured CFRTPs were also studied and compared with the FDM technology. In addition, 

mechanical finishing methods, namely CNC milling and rotary ultrasonic machining (RUM), were 

employed to improve the surface quality of the 3D printed composites and drill precise holes in 

the structures. Overall, the proposed AM method can be broadly beneficial for industries requiring 

high performance and lightweight structural materials with complex geometries. This method is 

also easily scalable for high volume productions and could additionally reduce the waste associated 

with current CFRTP production techniques and improve the process from the production time 

standpoint by automation.  
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Chapter 1 - Introduction 

 

Additive manufacturing (AM), also known as 3D printing, is defined as a process of adding 

materials to fabricate objects from three-dimensional (3D) models in successive layers, versus 

traditional subtractive manufacturing methods. Numerous novel AM processes have been 

developed in more than 20 years of AM development with applications in aerospace, automotive, 

biomedical, digital art, architectural design, etc. [1]. There was an exponential increase in AM 

technologies in recent years and they continue to grow due to its versatility and low cost for rapid 

prototyping and manufacturing applications. All these features combined with AM’s 

customizability to fabricate complex monolithic structures and geometries, with micrometer 

resolution helped AM grow to a multibillion-dollar industry [2, 3].  

To date, the dominant part of 3D printing industry immensely has relied on single material 

printing. This issue paired with limited choice of available resins compatible with commercial 

printers severely limited variations in the physical and chemical properties of 3D printed objects. 

This limitation led to development of multi-material printers with partial control on material 

composition and properties, offering layered composite materials. Furthermore, multiple printing 

heads allowed printing blended composites with functional and variable features. 3D printing of 

fiber reinforced composites is currently conducted by stereolithography (SL), laminated object 

manufacturing (LOM), fused deposition modeling (FDM), selective laser sintering (SLS), and 

extrusion. It is one of the hottest topics in the field of additive manufacturing and under intense 

attention and offers significant improvement in mechanical properties, however, it requires a 

complex procedure to be manufactured and is difficult to be incorporated into processing. 



2 

Implementing the traditional methods of composite manufacturing in AM is not practical and new 

technologies are needed to assist with the development of new AM methods [4].  

The advances in development of composite 3D printers have not prevented development 

in pre-blended materials with fillers such as nanoparticles, carbon nanotubes, fibers and graphene 

in order to achieve unique characteristics and capabilities [5]. Fiber reinforcement, in particular, 

appears to be an attractive filler to improve the properties of polymers. Pre-blended materials using 

discontinuous fibers as additive have been under intensive investigation as a good alternative to 

multi-head printers with complex and costly designs. These additive based materials exhibit unique 

characteristics and capabilities, depending on the additive used. Suitable mechanical, electrical, or 

thermal properties can be accomplished in an inexpensive manner. 

Polymers amongst other materials have been in the center of attention due to ease of 

production and availability. 3D printing industry primarily involves with polymers in various 

forms such as, reactive, liquid solutions, or thermoplastic melts [6, 7]. These benefits joined by 

enhancements from fiber reinforcement offer a favorable combination for future development of 

AM technologies. In addition, almost all of the existing AM methods can be benefited from fiber 

reinforcement.  

Although fiber reinforcement in 3D printing sounds promising, there are numerous issues 

needed to be resolved, namely the effect of fibers on resolution, agglomerate formation, 

heterogeneous composite formation, blockage of printer heads, and non-adhesion and increased 

curing times [5]. The objective of this research is to address the issue with current composite AM 

technologies by implementing a novel AM technique. The main target of this dissertation is to 

improve the mechanical properties of the additively manufactured fiber reinforced polymer 

composites by incorporating new AM processes into composite manufacturing. This improvement 
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is achievable by enhancing interlayer bonding of additively manufactured continuous fiber 

reinforced composites. This dissertation is consist of 6 chapters. Chapter 1 is an introduction to 

AM of fiber reinforced polymer composites followed by chapter 2 which discusses current state 

of the art of AM techniques capable of producing fiber-polymer composites. In chapter 3, a novel 

method is introduced for AM of continuous glass fiber reinforced polymers and characterization 

of the produced composites. Chapter 4 discusses AM of continuous carbon fiber reinforced 

polymers, characterization of additively manufactured carbon fiber composites, and finite element 

(FE) modeling of the process. Chapter 5 presents finishing processes for the composites produced 

via our AM technology. Finally, conclusions of this dissertation and research findings are 

presented in chapter 6. 
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Chapter 2 - Literature Review  

Fiber reinforcement can greatly improve the properties of 3D printed parts with polymer 

matrix. Fiber orientation and void fraction of composites are main concern in 3D printing of these 

composites. Most of the commercially available 3D printing techniques would benefit from fiber 

reinforcement. In this section, all these techniques for 3D printing of polymer-fiber composites are 

reviewed in detail to demonstrate their strength and weakness in additive manufacturing of 

polymer-fiber composites. These methods are fused deposition modeling (FDM), laminated object 

manufacturing (LOM), stereolithography (SL), extrusion, and selected laser sintering (SLS). Fiber 

orientation and void fraction of composites are main concern in 3D printing of these composites. 

In this chapter, all these techniques for 3D printing of polymer-fiber composites are discussed in 

detail to demonstrate their strength and weakness in additive manufacturing of polymer-fiber 

composites. Potential methods for modelling and analysis of these 3D printed structures are also 

reviewed.  

 

 Fused Deposition Modeling (FDM) 

FDM is currently the most applied AM technology, according to Wohler’s Report from 

Stratasys, Inc. Commercial FDM machines held 41.5% of the market share with the total of 15,000 

FDM machines sold by the end of 2010. The key elements of FDM system include material feed 

mechanism, liquefier, print head, gantry, and build surface [1]. Several process parameters are 

essential in FDM, including bead width, air gap, model build temperature, and raster orientation. 

The effect of raster orientation on tensile and compression test results have been investigated in 

detail [2]. The temperature distribution during FDM process can be monitored by IR camera [3].  

The surface roughness and cross section shape of FDM fabricated parts are under intense study [4, 
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5]. Several building rules have been proposed to improve the strength and accuracy of the FDM 

printed parts, such as build parts to make sure tensile loads will be carried axially along printed 

directions, take care of the stress concentration at corners, use negative air gap to increase both 

strength and stiffness, consider that small bead width leading more building time and better surface 

quality, be aware the part accuracy affected by the build orientation, and realize that tensile loaded 

area tends to fail easier than compression loaded area [2].  

Recently, fiber reinforcement in FDM has been very popular amongst the researchers. Most 

of the efforts were focused on development of filaments with short fibers additives. Inclusion of 

fibers in filament reduce tape swelling at the head during deposition and increase the stiffness [6]. 

Glass fiber reinforced polypropylene (PP) was evaluated by Carneiro, et al. [7] and showed 30% 

and 40% improvement for the modulus and strength, respectively, compared to pure PP. Vapor 

grown carbon fibers (VGCFs) and single wall carbon nanotubes (SWNTs) were compounded with 

acrylonitrile butadiene styrene (ABS) for FDM process. The VGCFs can be easily aligned by 

extrusion process. Tensile strength of 5 wt. % of VGCFs and SWNTs filled FDM parts increased 

18% and 31%, respectively. However, the strain to failure of printed parts reinforced with VGCFs 

and SWNTs was dramatically decreased [8]. ABS containing oriented VGCFs and SWNTs 

exhibited modulus improvements up to 93% [9]. Thermotropic liquid crystalline polymers 

(TLCPs) with excellent tensile strength such as ABS and polypropylene (PP) were used in fiber 

reinforced FDM parts in order to overcome the drawbacks of low aspect ratio of fiber filled parts 

[10]. Processing temperature was one of the important parameters, which affects the surface 

morphology of TLCP and its mechanical behavior. The tensile modulus of 40 wt. % of TCLP filled 

ABS and PP was increased 100 % and 150 %, respectively. Higher carbon fiber ratio has a high 

maximum decomposition temperature thus providing high thermal stability. Ning, et al. [11] 
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evaluated the effect of weight ratio and length of carbon fiber on physical properties of FDM 

samples with ABS matrix. The 5 and 7.5 wt. % carbon fiber content showed the best improvement 

in tensile strength and Young's modulus, respectively. They have also concluded that longer carbon 

fibers can increases tensile strength and Young's modulus at the expense of toughness and ductility. 

Using aligned carbon fiber during FDM process, 30 wt. % CF-ABS composites showed great 

improvement in strength (~115%) and Young’s modulus (~700%). These printed CF-ABS parts 

exhibit specific strength higher than Aluminum. The triangular channels between beads decreased 

by incorporating carbon fibers because of the reduced die-swell and increased thermal conductivity 

resulted from carbon fiber inclusion. However, inclusion of carbon fiber into the feedstock caused 

internal voids inside the beads responsible for stress concentration and failing at lower stresses. 

FDM samples exhibited significant pore formation with internal voids and the voids formed 

between the deposited beads during printing [12].  

Continuous fiber reinforcement is currently one of the biggest challenges for researchers 

in 3D printing of polymer composites. It offers significant improvement in mechanical properties 

compared to discontinuous fibers, however, there is still no robust and standard paradigm 

developed for continuous fiber composites printing. Recently, Matsuzaki, et al. [13] developed an 

innovative technique for in-nozzle impregnation of continuous fiber and thermoplastic matrix. The 

resin filament and fiber were supplied separately before heating and mixing in the printing head. 

The mixture was then ejected to the printing bed. Carbon fibers and twisted yarns of natural jute 

fibers used as reinforcement. Namiki, et al. [14] implemented the same technique for printing 

polyactic acid (PLA)/carbon fiber composite parts. Some gaps were reported between PLA 

filaments which can be reduced by increasing the resolution. Tensile strength of continuous carbon 

fiber reinforced PLA prepared by FDM, as reported by Li, et al. [15] , can reach up to 91 MPa 
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while in the case of short carbon fiber, it is only 68 MPa. Weak bonding between PLA and carbon 

fiber [16] can significantly affect the mechanical properties in this method, however, surface 

modification of carbon fiber bundle with  methylene dichloride and PLA particles [15], improved 

adhesion and increased tensile and flexural strength. Tian, et al. [17] performed a systemic analysis 

on interface and performance of printed continuous carbon fiber reinforced PLA composites and 

the effect of process parameters on the temperature and pressure in the process. The demonstrated 

the capability of this method in 3D printing large curvatures without losing the continuous fiber 

reinforcement.  Melenka, et al. [18] evaluated continuous Kevlar fiber-reinforced 3D printed 

Nylon structures using commercial desktop printers in order to predict the tensile properties. 

Stiffness and ultimate strength showed significant increase with high volume of fiber 

reinforcement. Carbon fibers were placed between layers of 3D printed polymer to improve 

strength and fatigue life and thermal treatment was performed to further increase the mechanical 

properties [19]. However, Van Der Klift, et al. [20] showed that increasing the number of layers 

of carbon fibers results in larger void areas which had negative effect on tensile strength. 

Impregnation of plastics into the fiber bundle could be achieved in the temperature range of 200-

230 ˚C. Layer thickness of 0.4-0.6 mm and hatch spacing of about 0.6 mm guaranteed bonding 

strength between lines and layers. These parameters could achieve maximum flexural strength of 

335 MPa and flexural modulus of 30 GPa.  

 

 Laminated object manufacturing (LOM) 

In LOM, which was developed by Helisys of Torrance, CA and shipped in 1991, 3D parts 

are manufactured by cutting 2D cross-sections with laser or cutter and sequentially laminating the 

sheets. Paper, metals, plastics, fabrics, synthetic materials, and composites are amongst the 
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materials that can be used in LOM [21, 22]. Polymer matrix composites of C-shaped panel were 

directly fabricated by curved LOM [23]. A vacuum thermoforming apparatus was applied to bond 

commercial prepregs. The deviation of height direction was around 7.9% and the accuracy of most 

other directions was below 1%. The shear strength of fabricated composites was measured to be 

approximately 24.8 MPa, which was suggested by the authors that is acceptable for normal 

applications. LOM process was applied to print 3D parts of unidirectional and continuous glass 

fibers with 52-55 vol. % with epoxy matrix [24]. Decent interfacial bonding was shown by 

interlayer microstructures of LOM polymer composites. The major issue for LOM process was 

that the heat roller was not adequate for bringing parts to full consolidation and cure. It is helpful 

to increase the interface strength and reduce void contents to under 5% by a post consolidation 

cycle. Sonmez and Hahn [25] studied heat transfer and stress in LOM to understand the effect of 

process parameters on the resulting stress and temperature distributions. Large rollers were more 

favorable for bonding due to less concentrated stress distribution. One of the main advantages of 

LOM is ability to produce part with high strength, high modulus, low void content, and a strong 

inter layer interface. However, since the feedstock is in a form sheet, certain internal features 

cannot be produced as the excess material inside the part is challenging to be removed.  In addition, 

in LOM sheets are needed for each layer and the extra unwanted material is not reusable 

contributing to an extra material waste.  

 

 Stereolithography (SL) 

The 3D parts fabricated by SL exhibit weak mechanical properties, which hinders their 

further applications as functional components under loading conditions [26], however, adding 

fibers to the resin can increase the potential of SL in 3D printing functional components. Although, 
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continuous fiber is ideal for reinforcement, high weight ratio of short fibers can yield comparable 

results, but, their efficiency is limited due to fracture during mixing, random orientation, and un-

even length [27]. 

Multi-wall carbon nanotubes (MWNTs) with low weight ratio were mixed in SL resin by 

mechanical mixing and ultrasonic dispersion [28]. The tensile strength (TS) and fracture strength 

(FS) were increased 5.7% and 26%, respectively, by adding 0.025 wt. % MWNTs. Carbon fiber 

has been successfully applied to reinforce polymers, however the primary issue for utilizing carbon 

fiber in SL is that it is opaque to the UV light and regions of the resin blocked by carbon fibers 

remains uncured by UV light. Various methods have been developed to avoid this drawback. Using 

glass fiber instead of carbon fiber can be beneficial for decreasing the opacity to UV light [27]. SL 

plus vacuum cast process was investigated to improve the tensile strength [26, 29]. Tensile samples 

produced by SL and polymer-glass fiber nonwoven-polymer sandwich structures were introduced 

by vacuum cast. It showed a significant increase of 36% in ultimate tensile strength and 11% 

increase in stiffness. The viscosity of the resin, especially at low shear rates, increased in the 

composite resins with significant volume fractions of fibers [30]. The surface coating of fibers can 

effectively reduce the viscosity, which is an advantage to allow processing of resins with higher 

fiber concentration. Laser scanning based SL was used to add 20 vol. % of short glass fibers 

(length: 1.6 mm and diameter: 15.8 µm) into acrylic based photo polymer [31]. Fiber filled 

composites represents a higher elastic modulus and ultimate tensile strength. The shrinkage of 

fiber reinforced composites was also observed to be lower than their non-reinforced counterparts. 

Dual porlymerization scheme, including UV radiation and thermal treatments, was proposed to 

cure resins containing high volume ratio of carbon fibers [32]. It was estimated that one quarter of 

resin remains uncured, which was primarily inside carbon fibers. After an hour of thermal 
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treatment, the tensile strength was increased by 95%. Llewellyn-Jones, et al. [33] used ultrasonic 

manipulation to distribute glass microfibers in the resin. A variety of fiber orientation angles were 

achieved demonstrating versatility of the process. This method allows smart material fabrication 

such as resin-filled capsules for self-healing or piezoelectric particles for energy harvesting [34].  

 

 Extrusion 

Extrusion, as one of the most recent developments in 3D printing, emerged to overcome 

the limitations of the FDM method with its versatility and cost-effectiveness. In this AM technique, 

layers of the material solution directly deposited (printed) in a volatile solvent to produce freeform 

3D structures [35]. Lightweight cellular carbon fiber (10 µm diameter and 220 µm mean length, l

/ d =22) or SiC whiskers filled composites have been demonstrated by applying 3D extrusion 

printing method. Epoxy-based inks, which exhibited the desired viscoelasticity and long pot-life 

(30-day pot-life) in the absence and presence of highly anisotropic carbon fibers, were prepared. 

The authors claimed that shear induced alignment of fillers occurs along the printing direction. 

The SiC-filled and SiC/C filled transverse specimens showed a substantial increase in Young’s 

modulus, over the pure resin from 2.66±0.17 GPa to 10.61±1.38 GPa and 8.06±0.45 GPa, 

respectively. The longitudinal SiC filled and SiC/C filled specimens represent the increase of 

Young’s modulus to 16.10±0.03 GPa and 24.5±0.83 GPa, respectively. Tensile strength of printed 

composites is comparable to the cast epoxy resin samples (71.1±5.3 MPa), with longitudinal 

specimens exhibiting slight higher strength (96.6±13.8 and 66.2±6.1 MPa, for SiC-filled and SiC/C 

filled composites) than that the transverse specimens (69.8±2.9 and 43.9±4.1 MPa, for SiC-filled 

and SiC/C filled composites) [36]. PLA/MWNTs composite was used to fabricate conductive 3D 
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microstructures with arbitrary shapes as small as 100 μm with a method so called liquid deposition 

modeling [37].   

 

 Selective laser sintering (SLS) 

Selective laser sintering (SLS) is a powder based AM process. The laser scans the powder 

bed layer by layer to form a 3D structure.  It mainly deals with wax, ceramics [38-41], metals [40, 

42-48] and polymers [49-54]. Major polymers used by SLS are including nylon, i.e. polyamide 

(PA) [51, 52, 54-59], (semi-) crystalline thermoplastics: polyethylene [60-62] (PE), PEEK [63], 

and PCL [64, 65]. SLS can be categorized in solid state sintering (SSS), liquid phase sintering-

partial melting, full melting, and chemically induced binding. SSS is a thermal process that occurs 

at temperatures between TMelt/2 and TMelt, where TMelt is the melting temperature. In liquid phase 

sintering-partial melting usually the binder material liquefied while structural material remains 

solid. Full melting technique, melt the powder entirely and exhibits properties comparable to those 

of bulk materials [66]. It can be applied to wide variety of materials, however, the long process 

time and preheating of powders is necessary.  

CNT was added in Polyamide 12 (PA12) in order to improve the mechanical behaviors 

[51]. The laser sintered parts had 13% greater flexural modulus, 10.9% higher flexural strength, 

and 54% larger Young’s modulus. The crystallization temperature of PA12-CNT powder was 

increased, which was responsible in hindering the movement of PA12 chains by the interfacial 

force between CNTs and PA12. However, the porosity also increased in the CNT composites. 

MWNTs were also mixed with PA 12 for the investigation of its effect on mechanical properties 

[52]. Goodridge, et al. [54] also confirmed enhancement in mechanical properties of PA12 with 

inclusion of CNT (3 wt. %) additives with 22% increase in storage modulus. High volume ratio of 
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carbon fibers (maximum 50%) was added into PA12 [53]. CNT-coated PA12 also improve heat 

conduction and heat absorption compared with pure PA12 in addition to the reinforcement on 

mechanical properties of the laser sintered polymeric composites [67]. Simulation results on laser 

sintering of PA12-CNT also suggested that inclusion of CNT helps the laser heat to conducted 

wider and deeper into the powder bed [68] 

Uniform distribution of carbon fibers and good interfacial adhesion between fibers and 

matrix was achieved by pre-modification of carbon fibers through oxidation [53]. By adding the 

maximum weight ratio of carbon fibers, the flexural strength and flexural modulus were enhanced 

114% and 243.4%, respectively. Glass beads used as additive in SLS of Nylon powders in order 

to determine mechanical properties as a function of material composition [69]. Zhu, et al. [70] 

proposed a novel method to prepare high-performance carbon fibers/PA12/epoxy ternary 

composites by infiltrating the porous green carbon fibers/PA12 parts built by SLS with high-

performance thermosetting epoxy resin prior to curing the resin. The end result is a ternary 

composite system with novolac epoxy resin reinforced with carbon fibers coated with a thin 595nm 

layer of PA12. This method with 33% volume fraction of carbon fibers yielded an ultimate tensile 

strength of 101.03 MPa and a flexural strength of 153.43 MPa.  

 

 Modeling and Analytical Techniques  

Polymer-fiber composites produced by AM can be analyzed using existing theory and 

methods based on the manufacturing technique, and reinforcement type. Existing macro and micro 

mechanical modelling techniques can be applied to AM with slight modifications. Microstructure 

of 3D printed parts often differ from those prepared by traditional manufacturing methods and 
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with the immerging of new AM methods, there is a demand for modelling and analysis of these 

structures.  

 

 Short Fiber Composite Theories 

There are several theories for predicting the properties of short fiber composites. 

Depending on their assumptions they can be applied to various 3D printing methods. Fibers 

alignment, shape, length, and its bonding with matrix are crucial in accuracy of the modelling. The 

modified rule of mixtures (MROM) is the simplest method to predict the tensile properties of short 

fiber composites, by assuming perfect fiber –matrix interfacial bonding. MROM is given by [71, 

72]  

𝜎𝑐𝑢 = 𝜒1𝜒2𝑉𝑓𝜎𝑓𝑢 + 𝑉𝑚𝜎𝑚 (2-1) 

where 𝜒1𝜒2 is fiber efficiency factor for the strength of the composite, in which, 𝜒1 and  𝜒2 

are the fiber orientation and fiber length factors, respectively; 𝜎𝑐𝑢 and 𝜎𝑓𝑢 are ultimate strength of 

the composite and fiber, respectively; 𝑉𝑓 and 𝑉𝑚 represent the volume fraction of the fiber and 

matrix; and 𝜎𝑚 is the matrix stress at the composite failure. If the fiber length is equal to L and 

uniform, fiber orientation factor is equal to 1 and fiber length factor is given by [73], 

𝜒2 = 𝐿 2𝐿𝑐⁄   for 𝐿 < 𝐿𝑐 (2-2) 

𝜒2 = 1 − 𝐿𝑐 2𝐿⁄   for 𝐿 ≥ 𝐿𝑐 (2-3) 

where 𝐿𝑐 = 𝑟𝑓𝜎𝑐𝑢 𝜏𝑖⁄  is the critical fiber length, 𝑟𝑓 is fiber radius, and 𝜏𝑖 is interfacial shear 

stress between matrix and fibers. In order to consider the effect of fiber orientation and non-

uniform fiber length in the model,  𝜒1 and 𝜒2 should be modified. Modified Kelly and Tyson model 

proposed for fibers shorter and longer than the critical fiber length with considering fiber 

orientation, as follows [73, 74], 
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𝜎𝑐𝑢 = 𝜒1 [∑
𝑉𝑖𝜎𝑓𝑢𝐿𝑖

2𝐿𝑐

𝐿𝑐
𝐿𝑖=𝐿𝑚𝑖𝑛

+ ∑ 𝑉𝑖𝜎𝑓𝑢 (1 −
𝐿𝑐

2𝐿𝑖
)

𝐿𝑚𝑎𝑥
𝐿𝑖=𝐿𝑐

] + 𝑉𝑚𝜎𝑚  (2-4) 

However, fiber orientation factor 𝜒1 in this model is fitted empirically. Fu and Lauke [73] 

used two probability density functions for modelling the fiber length and fiber orientation 

distributions with the intention of predicting the elastic properties. 

There are various theories for predicting the stiffness properties of short-fiber composites.  

Halpin and Tsai developed a famous theory for unidirectional short-fiber composites, in which, 

the longitudinal and transverse engineering moduli, E11 and E22, are expressed in the general form 

of [75] 

𝐸

𝐸𝑚
=

1 + 𝜍𝜂𝑉𝑓

1 − 𝜂𝑉𝑓
 (2-5) 

where 𝐸 and 𝐸𝑚 represent the Young's modulus of the composite and matrix, respectively, 

ϛ is a shape parameter dependent upon fiber geometry and loading direction, and 𝜂 is giver by 

𝜂 =
𝐸𝑓 𝐸𝑚 − 1⁄

𝐸𝑓 𝐸𝑚 − 𝜍⁄
 (2-6) 

where Ef represents the Young's modulus of the fiber. The Mori–Tanaka model is another 

well-known theory that considers considered a non-dilute composite containing many identical 

spheroidal particles. It is assumed that the composite experience an average stress different from 

that of the applied stress. Longitudinal and transverse elastic moduli in Mori–Tanaka model are 

[76-78] 

𝐸11

𝐸𝑚
=

𝐴

𝐴 + 𝑉𝑓(𝐴1 + 2𝜈𝑚𝐴2)
 (2-7) 

𝐸22

𝐸𝑚
=

2𝐴

2𝐴 + 𝑉𝑓(−2𝜈𝑚𝐴3 + 𝐴4(1 − 𝜈𝑚) + 𝐴𝐴5(1 + 𝜈𝑚))
 (2-8) 
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where 𝑉𝑓 is the volume fraction of filler and 𝜈𝑚 is the Poisson’s ratio of the matrix; A1, 

A2, A3, A4, A5, and A are functions of the Eshelby’s tensor and the properties of the fiber and the 

matrix with more explanation given in [77].  

In theory, the aforementioned equations for short fiber composites can be used to model 

3D printed parts, however, length and orientation of the fibers used in the process should match 

the assumptions.  FDM, SLS, and extrusion with short fiber reinforcement can be modeled with 

these analytical methods. However, 3D printed parts often contain considerable fraction of void 

content and modifications may be necessary when applying these methods on additive 

manufacturing. Void in composite materials are comprehensively explained in [79]. 

 

 Classical Laminate Plate Theory (CLPT) 

CLPT is an extension of the classical plate theory for isotropic and homogeneous materials 

with some modifications to reflect the inhomogeneity in thickness direction of orthotropic 

materials. CLTP is applicable for all the 3D printed parts that exhibit orthogonal behavior. Here, 

we present a brief summary of CLPT for laminated plates consisting of multiple unidirectional 

laminae [79, 80]. Basic assumptions of CLPT are given in [79]. The stiffness matrix of each ply 

can be described as [79], 

𝑄𝑖𝑗 = [
𝑄11 𝑄12 0
𝑄12 𝑄22 0

0 0 𝑄66

] (2-9) 

where 

𝑄11 =
𝐸11

2

𝐸11−𝜈12
2 𝐸22

 ,    𝑄12 =
𝜈12𝐸11𝐸22

𝐸11−𝜈12
2 𝐸22

  ,   

𝑄22 =
𝐸11𝐸22

𝐸11−𝜈12
2 𝐸22

 ,    𝑄66 = 𝐺12 . 

(2-10) 
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Transformed reduced stiffness matrix for various fiber orientation can be computed using 

transformation matrix as follow [79], 

�̅�𝑖𝑗 = 𝑇−1𝑄𝑖𝑗𝑇 (2-11) 

where 

𝑇 = [
𝑚2 𝑛2 2𝑚𝑛
𝑛2 𝑚2 – 2𝑚𝑛

−𝑚𝑛 𝑚𝑛 𝑚2 − 𝑛2

] (2-12) 

in which, 𝑚 = cos 𝜃, 𝑛 = sin 𝜃, and 𝜃 is the angle of the fiber reinforcement. Then, in-

plane, coupling, and bending stiffness matrices can be obtained by, respectively [79],  

𝐴𝑖𝑗 = ∑ �̅�𝑘(𝑧𝑘 − 𝑧𝑘−1)

𝑛

𝑘=1

 (2-13) 

𝐵𝑖𝑗 =
1

2
∑ �̅�𝑘(𝑧𝑘

2 − 𝑧𝑘−1
2 )

𝑛

𝑘=1

 (2-14) 

𝐷𝑖𝑗 =
1

3
∑ �̅�𝑘(𝑧𝑘

3 − 𝑧𝑘−1
3 )

𝑛

𝑘=1

 (2-15) 

where z represents the vertical position in the ply from the midplane. Finally, we can write 

a connection between the applied loads and the associated strains in the laminate, as follows [79],  

{
𝑁
𝑀

} = [
𝐴 𝐵
𝐵 𝐷

] {𝜀0

𝜅
}  (2-16) 

where N is normal stress resultants, M is moment resultants, 𝜀0 represent strain term in 

midplane, and 𝜅 is the twist of the laminated plate. The strain along the plate thickness can be 

given by [79], 

{

𝜀𝑥

𝜀𝑦

𝛾𝑥𝑦

} = {

𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

} + 𝑧 {

𝜅𝑥

𝜅𝑦

𝜅𝑥𝑦

} (2-17) 
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Additionally, by using the same principle, CLPT can be applied to evaluate the strength 

and elastic constants of FDM printed parts with void content. As mentioned earlier, FDM process 

is associated with void formation between printing beads which needs to be considered in the 

modeling. In the method developed by Rodriguez, et al. [81] for ABS materials, The FDM part is 

defined as an unidirectional ABS–void composite with a laminate structure. This structure is 

consisting of vertically stacked layers with contiguous material ‘‘fibers’’ and voids. The 

unidirectional elastic constants are given as [82], 

𝐸11 = (1 − 𝜌1)𝐸 (2-18) 

𝐸22 = (1 − 𝜌1
0.5)𝐸 (2-19) 

𝐺12 = 𝐺
(1 − 𝜌1)(1 − 𝜌1

0.5)

(1 − 𝜌1) + (1 − 𝜌1
0.5)

 (2-20) 

𝜈12 = (1 − 𝜌1)𝜈 (2-21) 

𝜈21 = (1 − 𝜌1
0.5)𝜈 (2-22) 

where, E, G, and 𝜈 represent the elastic modulus, shear modulus and Poisson’s ratio for the 

extruded polymer used in the FDM process. The 𝜌1 is the area void density in the plane normal to 

filament direction. This method was used in various works for single material FDM parts 

containing void [82-85], however, certain modifications are needed in order to apply it to multi-

material 3D printing. More information regarding void in composite structures can be found in 

[79]. 

 

 Finite Element Method (FEM) 

FEM is particularly interesting for modelling 3D printed part due to its flexibility in 

analyzing complex geometries in both macro and micro scale. It can be applied to continuous and 

short fiber 3D printed composites. The primary distinction of most composites by AM is the 
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significant void content that need to be incorporated into the respective finite element models. 

Perhaps the most appealing approaches for mechanical modelling of fiber composites are 

homogenization, which was described briefly in CLPT, and unit-cell (UC) based methods [86]. 

Both approaches can be implemented in FEM, thus, applicable to all AM methods. Conversely, 

there has been a lack of attention to modelling of these processes, and with increasing the 

popularity of 3D printing among practitioners, the need for simulating 3D printing is certain. UC 

is a single or multiple fibers embedded in the matrix with the volume fraction similar to those of 

the composite. A finite element model of this geometry using two different materials is constructed 

and various loadings are applied to characterize the behavior of the UC. In the case of composites 

with random fiber orientations the composite behavior is approximated by direct averaging over 

all orientations [87].  

Another commonly used approach is multiscale methods by combining micro level and 

homogenized macro stress analysis. For many applications, homogenized properties are used to 

solve the problem, however, sometimes extra accuracy is needed. Microscopic level analysis can 

increase the accuracy, but are often too expensive to be used in practice. Multiscale modelling 

takes advantage of the efficiency of macroscopic models and the accuracy of the microscopic 

models. The microscope analysis is normally performed at the area of interest with high stress 

concentration [88, 89].  

 

 Final Remarks  

3D printing of composite structures can be a turning point for AM technology. The 

potential of fabricating functional devices directly from commercial 3D printers with controllable 

properties created a huge rush for new development and research in this field. The attractive 



20 

combination of endless possibilities in the range of composite materials and extra customization 

of AM, which offers a uniquely new area in the manufacturing field for researchers and developers 

to explore. Fiber reinforcement significantly improves the mechanical properties of 3D printed 

parts. It can be implemented in various AM techniques, such as FDM, SLA, SLS, LOM, and 

extrusion. The alignment of fibers in 3D printing of composites was one of the major challenges 

in the reviewed literature and its improvement attracted tremendous research interest in almost all 

the existing AM methods. Recent advances in FDM printing of continuous fiber reinforced 

thermoplastics took these improvements one step further to establish AM as a dependable 

manufacturing method for various industries. 

However, most 3D printing methodologies of composite materials still facing major 

challenges that should be addressed before becoming a mainstream manufacturing method. Void 

formation during printing, adhesion of fibers and polymer matrix, and challenges in continuous 

fiber printing are all amongst the existing issues in 3D printing of fiber composites. Moreover, 

most of the commercial 3D printers designed for specific resins and introduction of fillers can lead 

to blockage, wear, non-adhesion, and increased curing times.  

In conclusion, AM of fiber reinforced polymer composites is tremendously promising in 

turning 3D printing from a prototyping method to a robust manufacturing technique. The unique 

characteristics of 3D printing, such as high customization combined with extra strength from fiber 

reinforcement and the ability to produce functional complex 3D structures with total control over 

material properties help AM of fiber-polymer composites gain enormous attentions from a broad 

range of science industries. Aerospace industry, automotive industry, biomedical science, 

electronic industries, and robotics are only a few examples of those attracted by AM of fiber 

reinforced polymer composites. 
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Chapter 3 - Additive Manufacturing of Continuous Glass Fiber 

Thermoplastic Composites  

 

Continuous fiber reinforced thermoplastic polymer composites (CFRTPCs) exhibit 

superior properties, including mechanical performance, versatility, recyclability, and the potential 

for light-weight structures, that enable CFRTPCs as a substitute material for steel and conventional 

thermoset polymers in automotive, transportation, aerospace, and marine applications [1, 2]. 

Continuous glass fiber (GF) and low glass transition temperature matrix systems such as 

polypropylene (PP) combine ease of processing, lower associated manufacturing costs, high 

volume processing potential, and performance suited for high end uses. Additionally, these 

composites exhibit enhanced toughness, chemical-environmental resistance, damage tolerance, 

and an unlimited shelf life at relatively low cost. A large range of GF/PP composites is 

commercially available possessing these features [1, 3]. High performance levels can be achieved 

with high fiber concentration and continuous fiber reinforcement; however, these attributes 

increase the processing complexity [4]. To date, numerous manufacturing methods for CFRTPCs 

have been developed, such as compression molding, stamping, vacuum forming, filament winding, 

pultrusion, and bladder-assisted molding. These manufacturing methods are often associated with 

expensive molds, and inability to produce complex construction with customized fibers alignment 

[5]. As a result, alternative manufacturing techniques for CFRTPCs are under great demand in 

order to bypass the long, expensive processing procedures, and add more complexity to 

manufactured structures. 

Additive manufacturing (AM) or three-dimensional (3D) printing attracted popularity due 

to high customization and development of application-oriented parts [6]. AM is a promising 
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technology that has not reached its full potential, particularly in the field of composites. Various 

researchers worked on applying AM to fiber reinforced thermoplastics in order to benefit from the 

vast flexibility in 3D composite manufacturing [7]. Most of the works done in this field focused 

on fused deposition modeling (FDM), selective laser sintering (SLS), and stereolithography (SL) 

with short fiber reinforcement. Zhong, et al. [8] included short GFs in the filament for improved 

strength; but, extrusion force and potential tool wear were spotted during the process. Inclusion of 

short iron and copper fibers in acrylonitrile butadiene styrene (ABS) filament resulted in higher 

stiffness compared to printed pure ABS [9]. Shofner, et al. [10] compounded carbon nanotube and 

vapor grown carbon fiber with ABS in FDM 3D printing for improved mechanical properties. 

Tekinalp, et al. [11] developed a method to control the orientation of short carbon fibers in the 

matrix; reportedly, tensile strength and modulus of 3D printed samples exhibited 115% and 700% 

increase compared to pure thermoplastic matrix, respectively. However, FDM samples printed 

with this method showed significant pore formation between deposited filaments during 3D 

printing. Ning, et al. [12] reported that inclusion of 5 wt% carbon fiber content in ABS filament, 

also increased flexural strength, flexural modulus, and flexural toughness by 11.82%, 16.82%, and 

21.86%, respectively. Short carbon fiber/ABS was also used FDM 3D printing of 3D orthogonal 

preforms and poor carbon fiber-ABS interfacial bonding and the high content of fibers under 100 

μm in length (∼50 wt%) were spotted indicating low reinforcing efficiency of short carbon fibers. 

The authors named continuous fiber reinforcement A highly desirable solution [13].  Carneiro, et 

al. [14] reinforced polypropylene with short GF for FDM and achieved 30% and 40% improvement 

for the modulus and strength, respectively. Compton and Lewis [15] employed an a new epoxy-

based ink for 3D inkjet printing of cellular composites with controlled alignment of multi-scale 

and high aspect ratio fiber reinforcement. These structures exhibited Young's modulus an order of 
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magnitude higher than thermoplastics and photocurable resins utilized in commercial 3D printers. 

SLS process has been also modified for fiber composites and carbon fiber filled polyamide 

composite powder is commercially available for SLS, however, mechanical mixing is not able to 

provide a uniform distribution of carbon fiber in the composite powder which can result in carbon 

fiber aggregates. Although efforts has been made to coat the fibers with nylon-12 through the 

dissolution–precipitation process to form suitable CF/PA composite powders, SLS is not capable 

of continuous or long fiber reinforcement [16-18]. Similarly, SL process is able to fabricate 3D 

parts with short fiber reinforcement. Carbon fiber and glass fiber has been successfully applied to 

SL, but, carbon fiber can block the UV light and interferes the curing process which can be 

resolved by thermal treatment [19]. Various fiber orientation and uniform fiber distribution were 

achieved by ultrasonic manipulation of the composite resin used in SL process [20].  

The aforementioned methods for AM of short fiber composites reported improved strength 

relative to the thermoplastic matrix; however, continuous fiber (CF) reinforcement has extra 

potential to be used in functional parts with more substantial effect on the mechanical properties. 

Maximum achievable stiffness and strength can only be obtained using CF, since most of the load 

in these composites is carried by the fibers oriented along the load direction [21]. Laminated object 

manufacturing (LOM) was one of the first developed AM methods capable of CF reinforcement. 

3D parts in LOM are manufactured by cutting 2D cross-sections with laser or blade and 

sequentially laminating the sheets. Prepreg CF/epoxy composite sheets have been utilized in LOM 

successfully, however, additional heat treatment was required to fully cure the resin and 

consolidate the prepreg layers [22, 23]. Furthermore, LOM is often associated with large amount 

of waste material and postproduction time is necessary to eliminate waste and in some cases 

secondary processes are required to produce accurately functional parts [24]. Lately, efforts have 
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been made to modify FDM for CF polymers composites. Mori, et al. [25] proposed a FDM method 

in which continuous carbon fibers were sandwiched between lower and upper plastic plates, and 

then the plates were heated for better bonding between layers. Although relatively higher strength 

was achieved, the usage of carbon fiber was limited in this method and porosity of composite 

structures had negative effects on the strength of the components. Lately, a new FDM method was 

developed for continues carbon fiber/polyactic acid (PLA). PLA and carbon fiber were supplied 

separately before heating and mixing inside the printing head [26-28]. However, this method, 

similar to other FDM techniques, suffers from bonding issues and void formation between printing 

beads.  

On the other hand, there are other composite manufacturing methods with high potential 

to be customized for AM. Laser assisted tape placement (LATP) is one of the most promising 

techniques due to its flexibility and capability to achieve continuous fiber reinforcement. A 

significant advantage of this method is the ability to manufacture parts of essentially unlimited 

size in a rapid, potentially saving large capital and running costs associated with large autoclaves. 

In LATP the high temperature induced by the laser at the nip point combined with high compaction 

forces of the consolidation roller decrease the viscosity of the polymeric matrix, and the applied 

roller pressure promotes inter-ply bonding [29]. Recently, laser gained interest over alternative 

heat sources such as hot gas due to energy efficiency and precise control [30]. 94% of autoclave 

properties could be achieved for carbon fiber–polyether ether ketone (PEEK) using a diode laser 

processing head [31]. LAPT is associated with high cooling rates, and high toughness was 

observed in LAPT parts with Polyphenylene sulfide (PPS) and PEEK matrix due to largely 

amorphous morphology [32-35]. Rosselli, et al. [36] studied the effect of process parameters on 

strength of thermoplastic composite rings manufactured by laser assisted on line consolidation. 
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Comer, et al. [29] investigated LATP in comparison with traditional autoclave methods for carbon 

fiber/PEEK manufacturing. It performed better in terms of interlaminar toughness, but flexural 

strength, interlaminar shear strength, flexural stiffness, and open-hole-compression strength were 

not on par with autoclave.   

As discussed in aforementioned literature review, there are various issues with existing 

methods used for additive manufacturing of fiber, especially for continuous fiber, reinforced 

thermoplastics. LATP process is able to manufacture 3D composite structures with minimal void 

concentration and continuous fiber reinforcement. Our proposed method implements similar 

method for adding prepreg composite tapes in successive layers and cut the layer according to the 

CAD file. Prepreg tapes are placed in parallel using LATP to cover each layer prior to laser cut 

the 2D shape associated with each layer and no post processing is required after the AM process. 

This method demonstrates the potential to solve the issue with interfacial bonding associated with 

FDM while offering continuous fiber as reinforcement. In addition, the proposed method is 

preferred to LOM since it significantly reduces waste material due to use of prepreg narrow tapes 

instead of prepreg sheet and postprocessing is not necessary due to full consolation of prepreg 

tapes. In the present work, interfacial microstructure and mechanical performance of the parts 

prepared with glass fiber/polypropylene (PP) prepreg by this newly proposed method were studied 

in assessment with other AM and traditional methods for fiber reinforced polymer. 

 

 Experimental  

 Materials  

The thermoplastic composite prepregs used in this study were unidirectional (UD) GF/PP 

(IE 6832, 66.5% GF) and bidirectional (BD) GF/PP (IE 6010, 60.0% GF) supplied by Polystrand 
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(Englewood, CO) with 0.30 mm and 0.6 mm thickness, respectively. The matrix of the prepreg 

composite is PP copolymer reinforced and the diameter of GF is 15 µm. The prepreg sheets were 

cut into 5 mm wide tapes for laser assisted AM process. 

 Laser assisted additive manufacturing 

The proposed AM method was to add prepreg GF/PP composites in successive layers. A 

desired 3D shape defined by the CAD file is “sliced” into multiple 2D layers, and each layer is 

laser cut accordingly to a corresponding 2D slice. This process is iterated layer by layer until an 

ultimate laminate structure, in the 3D shape defined by the CAD file, achieved. The first layer of 

the part uses the sheet prepreg instead of the narrow cut tapes for simplicity and higher quality 

bond. This layer is used as the base layer for the laminated object. Using narrow tapes reduces the 

waste associated with similar LOM method, where the 2D shape is cut prior to bonding with hot 

roller. The tape strips are placed layer by layer using a laser and compaction roller. Figure 3-1 

illustrates the laser assisted AM to obtain a 3D shape, as well as some 3D parts produced by this 

method. The vb denotes to binding velocity for the tape placement process and vc is the cutting 

speed of a focused laser used to cut the desired shape of each layer. The laser was emitted at the 

interface of two layers with the angle of 18˚ from the base before applying pressure by compaction 

roller to consolidate the prepreg tapes. The laser used in this work is CO2 laser (Beijing Reci Laser 

Technology, China) with maximum power of 100W. In our setup, the roller, laser beam, and 

mirrors were fixed during the tape placement process and prepreg tapes were supplied under the 

compaction roller using a motorized stage. The laser power was 22-28 W and the stage was moving 

at the speed of 1-4 mm/s (vb) to feed the tape under the roller. After achieving a rough shape of 

the 2D shape, the fine shape is cut using Full Spectrum (Las Vegas, NV) P-Series 24x16+ CO2 

laser with maximum power of 90 W. In the present setup, the part being printed moves back and 
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forth between two stations and the parameters of laser cutting process are 31.5 W power, 70 mm/s 

cutting speed (vc), and spot diameter of 1 mm. The camera pictures of the described setup is 

presented in Figure 3-2. 

 

Figure 3-1 3D schematic of the proposed additive manufacturing method 

 

 

Figure 3-2 Camera pictures of the laser assisted AM setup 
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 Characterization 

Scanning electron microscopy (SEM) (FEI Versa 3D Dual Beam, OR) was used for 

microstructure characterization. The cross-sectional images were used to demonstrate the 

orientation of the continuous fibers, any possible void content, and bonding details. The surface of 

the SEM samples was first sputter coated with gold with the thickness of 15 nm. Then, SEM 

micrographs were observed at an acceleration voltage of 10 kV and an emission current of 20 μA. 

The mechanical properties of the 3D printed parts were characterized with T-peel test, 

single lap shear test, tensile test, and 3-point bending test. All mechanical tests were performed 

using Shimadzu EZ-LX universal testing machine, Kyoto, Japan. The T-peel test was run at 5 

mm/min, and lap shear test was conducted at the speed of 1.3 mm/s, both using 3 mm wide tapes. 

At least 4 dog-bone samples were used to determine the tensile related properties of tensile strength 

and modulus at the strain rates of 1 mm/min. The 3-point bend test was conducted to measure the 

flexural strength and modulus at the speed 1 mm/s. 

 

 Results and discussion   

A new AM methodology of CFRTPCs by customizing the laser cutting and laser bonding 

process was proposed and evaluated. As we demonstrated in this paper, additive manufactured 

samples with continuous reinforcement prepared by the proposed method presenting high strength, 

which is in the range of traditional manufacturing methods such as compression molding. Our 

results also demonstrated that no void was formed during this process which is essential for load 

bearing components. Detailed results are given in this section.  
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 Cross-sectional microstructure  

Bonding mechanism at micro level was studied through cross-sectional SEM images of 

printed samples. Aforementioned two types of prepregs, unidirectional and bidirectional PP 

reinforced continuous glass fiber (CGF), were used in the experiments. Figure 3-3 shows the 

bidirectional and unidirectional prepreg tapes before the laser assisted AM process. The 

bidirectional prepreg has 0/90 degree fiber orientation while the unidirectional prepreg only has 

fiber reinforcement oriented in one direction. The bidirectional tape is also thicker at 0.6 mm 

thickness compare to thickness of 0.3 mm for unidirectional tape. The PP matrix in the prepreg 

has a semi-crystalline structure and bonded by diffusion when heat and pressure is applied. This 

process involves heating the polymeric matrix at the interface to a viscous state, physically causing 

polymer chains to inter-diffuse by the compaction roller, and cooling it for consolidation [37], as 

described in Figure 3-4.  

 

Figure 3-3 Optical microscope pictures of (a) bidirectional and (b) unidirectional GF/PP 

prepreg tapes before laser assisted AM, demonstrating the thickness and fiber orientation 

difference in them. 
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Figure 3-4 Bonding mechanism in laser assisted bonding of PP matrix 

 

Figure 3-5 illustrates the cross sectional microstructure of the parts printed with 

unidirectional prepreg with 0/90 fiber orientation. The unidirectional tapes were laid on top of each 

other with 90˚ angle orientation in two principal fiber directions to achieve high strength in both 

directions. Microstructures of these specimen showed good interfacial diffusion between layers 

without any visible void and gap. Figure 3-5 a, and b also demonstrate the continuity of fibers in 

prepreg material and 3D printed parts. Thickness of the unidirectional prepreg tape is reduced to 

~285 µm exhibiting only ~5% shrinkage in thickness.  Cross-sectional microstructure of samples 

prepared with bidirectional prepreg is presented in Figure 3-6. It can be observed in Figure 3-6 (c), 

that the bonded prepregs form a solid structure without any void between the tapes with good 

interfacial fusion between layers. The bidirectional prepregs have fiber orientated in two principal 

direction noticeable in Figure 3-6 (a). The shrinkage in bidirectional samples was more noticeable 

at ~13% with the thickness of ~520 µm after laser bonding process.  The proposed method delivers 



40 

excellent interfacial bonding between fibers and matrix as well as laminated layers with minimal 

void content. This method eliminates the necessity of post-processing for consolidation as reported 

in aforementioned LOM method [22, 38]. Excessive thermal energy had negative effects on the 

structural accuracy of the process due to dimensional change of molten material under compaction 

roller. Therefore, adequate bonding while maintaining dimensional accuracy is highly sensitive to 

process parameters. 

 

 

Figure 3-5 Cross-sectional SEM images of unidirectional samples demonstrating interfacial 

bonding after laser assisted additive manufacturing. (a) cross-ply fiber orientation (0/90) 

evident from cross-sectional micrograph, (b, c) interfacial area between two layers with 90˚ 

angle of fiber orientation, and (d) fibers in unidirectional tape. 
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Figure 3-6 Cross-sectional SEM images of bidirectional samples demonstrating interfacial 

bonding after laser assisted additive manufacturing. (a) Cross section of the sample showing 

bonding structure of two tapes, (b, c) interfacial area between two tapes, and (d) fiber 

orientation and distribution in the bidirectional tape. 

 

 

 Bonding Strength  

Bonding strength of laser bonded prepreg layers plays an important role for obtaining high 

strength required in functional components. The supplied prepreg composites are reinforced with 

continuous GF and exceptional mechanical properties can be achieved by ensuring strong 

interfacial bonding between prepreg layers. This section presents the results of two popular 

adhesion test, the T-peel test and single lap shear test, to evaluate the strength of laser bonding 

method implemented.  
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  T-peel testing 

The performance of 3D printed GF/PP composites are highly dependent on its interfacial 

properties, which were investigated by T-peel test (90˚). Four laser power settings of 22, 24, 26, 

and 28 W and roller speed o2 1, 2, 3, and 4 mm/s was selected for this test. The T-peel test was 

run at 5 mm/s. Figure 3-7 presents the test results of peel strength (N/mm).  It can be observed that 

T-peel strength increases with higher range of laser power (26-28 W). Lower temperatures can be 

achieved with low laser power, leading to incomplete consolidation of polymer chains, and 

ultimately, inferior peel strength. It was noticed that substantial increase in laser power can melt 

the prepreg tape to a point that cause dimensional inaccuracy and considerable shrinkage in 

thickness. The average peel strength of over 3 and 2 N/mm was achieved for laser bonded prepreg 

GF/PP material in bidirectional and unidirectional form, respectively. Bidirectional prepregs 

showed higher peel strength relative to unidirectional counterpart, due to higher thermoplastic 

concentration witch facilities bond formation. Figure 3-7 (a) and (b) show the effect of laser power 

and confirm that increasing power to higher than 26 W does not offer any significant improvement 

in the peel strength. Figure 3-7 (c) and (d) illustrate the influence of roller speed with a fix laser 

power (26 W) on peel strength. It shows that decreasing the speed has positive effect on the peel 

strength with highest strength achieved in the range of 1-2 mm/s speed. With higher feed rate, 

there is not adequate time for consolation of the prepreg layers. It can be interpreted that, for the 

given laser bonding setup full consolidation occurs at 26 W laser power and 2 mm/s roller speed 

and these parameters yielded the best peel strength for both laser bonded unidirectional and 

bidirectional GF/PP prepregs. T-peel test results in this work were evaluated against peel strength 

of the well-established hot compaction method for fiber reinforced PP reported by Swolfs, et al. 

[39]. Superior peel strength for bidirectional prepreg and comparable results for unidirectional 
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prepreg was achieved. Specifically, our method exhibited 50% higher peel strength than hot 

compaction for bidirectional prepregs and similar peel strength for unidirectional prepreg layers 

bonded by laser.  

A typical adhesive failure mode after peel test is shown in Figure 3-8. It confirms the 

excellent bonding and adhesion of fiber-matrix and prepreg layers. The glass fiber in prepreg was 

damaged and fibers were pulled out of the matrix demonstrating the exceptional interfacial 

bonding. The SEM images presented in Figure 3-8 indicates the remarkable peel strength 

comparable to traditional manufacturing methods. 

 

Figure 3-7 T-Peel test results and configuration using various laser powers and roller speeds 

for laser assisted AM parts; (a, b) the effect of laser power on peel strength of (a) 

unidirectional and (b) bidirectional samples; (c, d) the effect of roller speed on peel strength 

of (c) unidirectional and (d) bidirectional samples. 
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Figure 3-8 SEM images of T-peel test surface after adhesive failure. (a, b) The pulled out 

fibers from the surface resulted from T-peel test and (c, d) the thermoplastic matrix adhesive 

failure. 

 

 

  Lap shear strength (LSS)  

Lap shear strength (LSS) testing, which involves axial pulling of the bonded specimen, is 

one of the most commonly test methods for investigating bond strength. LSS can be calculated by 

the following equation [40]: 

max
2

F N
mmL b

  
    

(3-1) 

where  is lap shear strength, L is length of the overlap, b is width of the overlap, and Fmax 

is maximum tensile force. In order to access a better understanding of the laser bonding shear 
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strength in the AM method, benchmark LSS values of compression molded GF/PP studied by Hou 

and Friedrich [40] were compared with our work. LSS of the 3D printed specimen with laser 

bonding is presented in Figure 3-9 with respect to laser powers of 22, 24, 26, and 28 W and feed 

rate of 1, 2, 3, and 4 mm/s. When speed is fixed to 2 mm/s, Laser power below 22 W was found 

to be insufficient to initiate bonding, and increasing it to value over 28 W resulted in excessive 

thermal damage with a large heat affected zone (HAZ) and dimensional inaccuracy.  

It can be interpreted that increasing laser power gradually increased the LSS with improved 

interfacial bonding between thermoplastic matrixes of two respective prepreg layers. However, it 

was noticed that increasing laser power over 26 W does not offer a substantial improvement in 

LSS for both unidirectional and bidirectional prepregs in agreement with T-peel test results. 

Unsurprisingly, LSS decreased at elevated speed resulted from partial consolidation and speed 

range of 1-2 mm/s generated the best results for LSS. Unidirectional prepregs exhibited lower LSS 

compared to bidirectional counterpart, which may be due to more volume ratio of PP matrix 

responsible for better bonding. Nevertheless, LSS obtained from laser bonding in present method 

approached the value of 9.87 MPa in compression molding stated by Hou and Friedrich [40] for 

CGF/PP composites. Precisely, using the optimum settings of 26 W power and 2 mm/s speed, 96 

% and 93 % of compression molded LSS benchmark were obtained with bidirectional and 

unidirectional prepreg, respectively.   
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Figure 3-9 Lap shear strength of the laser bonded prepreg as a function of (a) laser power 

and (b) roller speed as compared with compression moulding [40]. 

 

 

 Mechanical properties 

Tensile and flexural properties of the 3D printed components by newly proposed method 

were characterized. The detailed results and comparison with other works are presented in this 

section.  

 Tensile properties 

The tensile strength was tested by the universal testing machine using 4 samples for each 

bidirectional and unidirectional prepreg samples to ensure the reliability of test results.  Figure 

3-10 shows the printed tensile bars and their dimensions for both unidirectional and bidirectional 

prepregs. Fiber orientation in the tensile bars was in two principle directions, in the load direction 

and vertical to the load, regardless of the prepreg type. Thus, only about 50% of the fibers carried 

the load in the tensile test for more realistic results similar to real applications where components 

are under tension. The fiber orientation in the tensile test samples can be observed in Figure 3-12, 

which shows the tensile fracture surface obtained by SEM after tensile testing for tensile bars 



47 

prepared with unidirectional and bidirectional prepreg. For both prepreg types, fiber pullout and 

breakage were observed microscopically in the SEM images. It indicates that only one principal 

fiber orientation carry the tensile load during testing. Long fiber length can be observed in the 

fracture surface, indicating poor interfacial adhesion between GF and PP matrix. This behavior 

agreed with the previous report for extruded CGF/PP and 3D printed continuous carbon fiber/PLA 

using FDM [26, 41]. 

 

Figure 3-10 Tensile bars used for tensile strength measurement prepared with bidirectional 

and unidirectional prepreg tapes.  

 

The stress-strain curve of the material, as presented in Figure 3-11 (a), indicated higher 

strength in the parts 3D printed by unidirectional tapes owing to the higher glass fiber ratio. There 

were two regions marked in the curves associated with PP and GF similar to previous works on 

FDM  3D printing of CFRTPCs reported in Li, et al. [27]. The most probable reason can be 

debonding fiber-matrix interface at the limit value of interface strength causing a slight decrease 

in the curve slope [27], supported by SEM micrographs of the fracture surface in Figure 3-12, in 

which fibers are completely snapped out of the matrix. During the test the stress in the samples 

may rise to the higher than fiber-matrix interface strength causing interfacial failing, but, fibers 
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and matrix have not failed yet, and most of the load is still supported by fibers. Finally, both GF 

and PP reach the yield point and break. The GF reinforced samples are entirely snapped by the 

external tensile load and most of the fiber-matrix interface are damaged (Figure 3-12). It is worth 

noting that, considerably higher tensile strength and modulus can be reached if all the fibers were 

oriented in load direction. The proposed AM method for CGF reinforcement of PP was compared 

with FDM printing of short GF/PP [14] and other traditional methods of composite manufacturing 

[2, 3, 14] in Figure 3-11 (b). The proposed method offers substantially superior strength and higher 

Young’s modulus relative to FDM of short GF/PP owing to continuous fibers (CF) in the prepreg 

material. Tensile strength of our 3D printed parts were close to part produced by injection molding 

with short fiber (SF) and long fiber (LF), compression molding and stamping with CF; however, 

our method exhibits a lower tensile modulus. Specifically, the tensile modulus is 45 % lower than 

injection molding and 57% lower than stamping and compression molding, in average. Our method 

also was compared with continuous carbon fiber reinforced FDM parts with ABS and PLA resin. 

Tensile strength of FDM of continuous carbon fiber/PLA was in the range of our work with 

substantially higher tensile modulus (233 %) due to use of carbon fiber. However, in the case of 

FDM parts with ABS resin, tensile strength and tensile modulus is the same range as our work 

with bidirectional prepreg. Overall, the proposed method offers higher tensile strength than 

injection molding with short or long glass fiber and reaches the level of compaction molding and 

stamping with continuous fiber.  
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Figure 3-11 Tensile properties of 3D printed samples fabricated by our proposed method. (a) 

Stress-strain curve showing the ultimate tensile strength of 3D printed samples, and (b) 

tensile modulus versus strength in comparison with FDM (SF) [14], compression molding 

(SF) [14], continuous GF compression molding and stamped [2], injection molding with SF 

and LF [3], FDM (ABS/CF-carbon) [42], and FDM (PLA/CF-carbon) [26]. 

 

 

 

Figure 3-12 Cross-sectional microstructure of the tensile fracture surface: (a) bidirectional 

prepreg and (b) unidirectional prepreg. 

 

 Flexural properties  

The flexural properties of our method are reported and compared with benchmark data for 

compression molding, stamping [2], and injection molding [43], and FDM of continuous carbon 
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fiber reinforced thermoplastics [28, 42]. Flexural behavior of the continuous GF/PP is highly 

dependent on the bonding mechanism and its strength. Figure 3-13 (a) presents the stress-curve 

obtained during 3-point bending test. Unidirectional and bidirectional samples showed different 

behavior during the test. Predictably, specimen with unidirectional prepreg exhibited higher 

strength due to higher GF volume ratio. The results obtained from 3-point bending test indicated 

comparable strength to injection molding with LF and stamping with CF. However, compression 

molding with CF was able to achieve higher strength range may be due to stronger bonding 

between layers resulted from longer compression time and higher pressure during processing. 

Surprisingly, this method exhibited higher stiffness with relatively high flexural modulus 

compared to compression molding and stamping. As data suggests, using both unidirectional and 

bidirectional prepreg, similar flexural strength was achieved, but, unidirectional higher GF volume 

ratio contributed to a higher flexural modulus. Interestingly, higher GF concentration in 

unidirectional prepreg did not achieve higher strength unlike modulus. We believe that higher 

bonding strength using bidirectional prepreg due to more thermoplastic matrix concentration was 

responsible for these results which is in agreement with T-peel test results. This result could also 

be observed in the benchmark data found in the literature. Although the injection molding using 

LF instead of CF in compression molding and stamping has lower GF concentration, it exhibited 

~50% higher flexural modulus; but, flexural strength was in the same range due to much better 

bonding in injection molding compared to laminar structure of other mentioned methods. When 

compared to continuous carbon fiber reinforced FDM parts with both ABS and PLA resin, flexural 

modulus is substantially lower than laser assisted AM, and flexural strength of samples with ABS 

and PLA resins is ~30% and ~10% lower than our work, respectively. This superior flexural 

properties is due to the better interfacial bonding relative to FDM. In brief, our proposed method 
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was capable of 3D printing parts, and comparable in flexural properties with traditional 

manufacturing methods of CFRTPCs.   

 

Figure 3-13 Flexural properties obtained from 3-point bending test. (a) Flexural stress-strain 

curve indicating flexural strength, and  (b) comparison of flexural strength and modulus of 

our method (using unidirectional and bidirectional prepregs) with compression molding 

(CF-glass) [2], stamping (CF-glass) [2],  injection molding (LF-glass) [3], FDM (ABS/CF-

carbon) [42], and FDM (PLA/CF-carbon) [28]. 

 

  Overall picture  

The results of all of the tests on mechanical properties are presented and compared with 

pure PP produced by compression molding in Table 3-1.  In general, unidirectional samples 

exhibited better properties in our tests, and it can be seen that CGF reinforcement has a substantial 

effect on the mechanical behavior of the pure PP thermoplastic. It can increase tensile strength, 

tensile modulus, flexural strength, and flexural modulus, by 547%, 247%, 253%, and 750%, 

respectively. 
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Table 3-1 Mechanical properties of continuous GF/PP by laser assisted AM compared with 

pure PP manufactured by compression molding. 

 Our work 

(bidirectional GF) 

Our work 

(unidirectional GF) 

Compression molding 

(pure PP)  

Tensile strength 173.7 ± 19.9 MPa 217.6 ± 28.6 MPa 32.3 ± 1.0 Mpa [44] 

Tensile modulus 4.9 ± 0.7 GPa 5.9 ± 0.8 GPa 1.7 ± 0.1 GPa [45] 

Flexural strength 150.7 ± 30.5 MPa 169.7 ± 48.6 MPa 48.0 ± 0.7 MPa [44] 

Flexural modulus 15.3 ± 1.0 GPa 21.4 ± 5.1 GPa 1.8 ± 0.1 GPa [45] 

 

 Conclusions  

An innovative method for additive manufacturing of CFRTPCs with the intention of 

solving the fundamental issue in 3D printing of fiber composites was proposed by using prepreg 

composite. Successive layers of narrow prepreg tapes were heated using a CO2 laser and bonded 

by compaction roller to form a laminated 3D object. Designed shape of each layer was obtained 

by laser cutting prior to adding the next layer. In this work, two types of GF/PP prepregs 

(unidirectional and bidirectional) were chosen to demonstrate this method. The microstructure 

characterized by scanning electron microscopy showed superior bonding of prepreg lays with no 

visible void or gap, which is a substantial improvement compared to other 3D printing techniques, 

such as FDM and etc.  

A series of tests, namely, T-peel, Lap shear strength, tensile, and 3-point bending tests were 

performed on the parts prepared using this method. The following is a brief summary of the test 

results: 

 Adhesion of laser bonded prepreg layers was tested through a series of T-peel tests, and then 

compared to compaction molding. Peel strength was 50 % higher for bidirectional prepreg and 
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nearly equal for the unidirectional type. Increasing laser bonding power to 26 W with fixed 

roller speed of 2 mm/s resulted in stronger adhesion. Exceeding 26 W showed no adhesion 

improvement and resulted in dimensional inaccuracy. 

 Single lap shear tests indicated comparable LSS to compaction molding for both unidirectional 

and bidirectional prepregs.  

 Our proposed method was capable of achieving superior tensile strength and modulus 

compared to FDM parts reinforced with SF and similar tensile strength and lower modulus 

relative to traditional composite manufacturing methods with continuous fiber reinforcement.   

 Flexural strength of our method fell below compaction molding by 30% on average; however, 

flexural modulus can be up to 100% higher, indicating high flexural stiffness.  

In conclusion, this proposed method has a high potential in establishing AM as a robust 

technique for manufacturing of CFRTPC functional components. It can find applications in 

automotive, aerospace, marine, and construction industries providing excellent rigidity, light 

weight, versatility of design and material choice. This paper provides a novel path in the field of 

composite 3D printing.  
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Chapter 4 - Additive manufacturing of High Strength Carbon Fiber 

Composites  

 

The emerging field of 3D printing (also known as additive manufacturing) carbon fiber 

reinforced polymers (CFRPs) offers unparalleled flexibility in achieving complex geometries and 

high mechanical performance suitable for aerospace [1], automotive [2], marine [3], and civil 

engineering [4] industries, unattainable by traditional manufacturing methods [5]. The vision of 

inexpensive and high performance structural composites without the need of expensive custom 

molds and post machining processes associated with conventional methods [6] is enabled by 

various 3D printing techniques [5]. A vast majority of 3D printed CFRP composites comprises 

pre-blended polymer filament, resin, or powders with short carbon fibers (SCFs) for commercial 

3D printers, including fused deposition modeling (FDM) [7-9], stereolithography (SLA) [10, 11], 

extrusion [12], and selective laser sintering (SLS) [13, 14] demonstrating relative improvements 

in mechanical performance over pure resin [13, 14]. However, pre-blended resins imposes several 

issues and complications when using commercial 3D printers. Presence of fibers in the filament 

for FDM reduces tape swelling at the printing head during the material deposition and increases 

the filament stiffness which further complicates the process and reduces the printing quality [15]. 

These composite filaments also cause micro voids inside the beads in addition to regular voids 

between beads and layers, which are potential spots for stress concentration and failure. 

Furthermore, SCF reinforcement itself is not adequate for ultrahigh strength structures and only 

aligned continuous carbon fiber (CCF) reinforced components can enable structural load bearing 

applications. The majority of the research efforts for integrating CCF reinforcement was focused 

on FDM, where either prepreg filaments with CCF were used [16], or CCF was supplied separately 
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and mixed with the molten polymeric resins inside the printing head [17, 18]. However, FDM is 

also known to have weak interfacial bonding and is associated with void formation amongst the 

deposited layers [7]. These limitations call for an alternative 3D printing of CFRP composites 

technique, which can manufacture lightweight and ultrahigh strength structural materials with high 

weight ratio of CCF, decent interfacial bonding, low void content, and controlled alignment of 

carbon fibers in each layer. Therefore, we proposed a laser assisted additive manufacturing method 

to concurrently achieve these key features.  

Herein, we reported a novel approach for 3D printing of CFRP using prepreg composite 

sheets to fabricate free standing laminated structures. This process was inspired by laminated 

object manufacturing (LOM), however, the bonding process was modified for a more efficient 

consolidation of prepreg sheets. It began with the laser cutting of prepreg sheets based on the sliced 

CAD geometry (Figure 4-1 (a)), similar to LOM. Each prepreg layer was then stacked on top the 

previous layer and bonded by a collimated laser beam and a consolidation roller (Figure 4-1 (b) 

and (c)), unlike the LOM that bonds the layers with a hot roller and bonders. There was no post 

processing required after the 3D printing process, as appose to LOM which requires post heat 

treatment in order to cure the bonders for full consolidation. Fiber reinforced epoxy composites 

have been already produced by LOM successfully, however, additional heat treatment was 

required to fully cure the epoxy resin and consolidate the prepreg layers [19, 20]. We demonstrated 

a comparable method by utilizing continuous glass fiber reinforced thermoplastic in our previous 

work [21]. In that work, we used prepreg tape and successively laser bonded the tape strips. After 

covering the entire surface of each layer with prepreg tape, the precise 2D shape was cut using a 

laser cutting system. However, in the current work, prepreg sheets were used instead of tape and 

laser cutting took place before the laser bonding process. This method improved the flexibility of 
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the process in producing over-hanging features and simplified the overall additive manufacturing 

process. In addition, the new method sped up the fabrication process and could improve the 

mechanical properties, owing to more uniform layers. The temperature at the interface exceeded 

the melting point of the polymeric matrix and was adequate to interfuse the polymer chains for full 

consolidation. We used polyamide 6 (PA6) as a high performance thermoplastic matrix for an 

alternative to conventional and single-use thermoset polymers with complex curing cycles. 

Thermoplastics have shown a great potential to improve the printing flexibility of CFRPs [22] and 

allow an improved control over reproducible physical properties [23]. Continuous carbon fiber 

reinforced thermoplastic (CFRTP) composites are a class of structural materials offering superior 

strength, impact resistance, lightweight, extensive shelf life, recyclability, and exceptional damage 

tolerance.[1, 24] A CO2 laser source with 29 W power was used for bonding the CFRTP layers 

due to high absorptivity of both polymeric matrix and carbon fibers for 10.6 μm wavelength of 

laser radiation.[25] The high temperature, induced by laser beam, significantly improved the 

interfacial bonding over extrusion based techniques, such as FDM. In addition, the pressure 

delivered by the consolidation roller eliminated the voids between layers. These advantages 

coupled with aligned CCF reinforcement enabled us to produce ultra-strong 3D printed constructs. 

In this work, we demonstrated the highest tensile and flexural strength of 668.3 and 591.6 MPa, 

respectively. Our technique was also capable of achieving high lap shear strength (17.01 ± 0.54 

MPa) in the range of high performance CFRPs with epoxy resins produced by autoclave [26-28], 

as shown in Figure 4-2. The fracture surface of the lap shear test samples (Figure 4-3) showed 

adhesive failure and fiber pullout. This indicates an enormous improvement in interfacial bonding 

quality over other additive manufacturing techniques. The PA6/CCF prepreg sheets were used to 

demonstrate this 3D printing technique. Our 3D printing was also capable of producing 3D multi-
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material structures by using various prepreg composites materials. Herein, we demonstrated this 

ability by printing subsequent layers of glass and carbon fiber reinforced prepreg. Optical image 

of some 3D printed carbon fiber composite structures is shown in Figure 4-1 (d). The thickness of 

the prepreg sheets, which determined the vertical resolution of the process, was 130 μm. The CCF 

orientation in the 3D printed laminated structures can be controlled and designed according to the 

application and loading direction. Differential scanning calorimetry (DSC) of these materials is 

presented in Figure 4-1 (e), showing the crystallization behavior and melting point of PA6/CF and 

polypropylene (PP)/GF. Our 3D printing process also has the potential to be developed as an 

automated process for manufacturing high performance laminates [29, 30] with comparable 

mechanical properties to the conventional autoclave method [31].   
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Figure 4-1 Schematic illustration of the laser assisted 3D printing for carbon fiber reinforced 

thermoplastic composites. a) Laser cutting of prepreg composite sheet using a focused CO2 

laser beam based on the sliced shape. b) Adding the pre-cut layer on top of the previous 

printed layers. c) Laser assisted bonding of composite prepreg sheets using a tilted CO2 laser 

beam and a consolidation roller. High temperature above the resin melting point from the 

laser irradiation and pressure from the consolidation roller causes full consolidation of the 

prepreg layers. d) Optical picture of final 3D laminated structures produced by 3D printing 

(scale bar: 10 mm). e) DSC curves of polyamide 6 PA6/CF and polypropylene /GF prepreg 

composite sheets used in our 3D printing method. 
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Figure 4-2 Lap shear strength for the test laser bonded unidirectional carbon fiber laminates. 

5 samples with similar condition were tested. 

 

 
Figure 4-3 Fracture surface of the lap shear test samples 
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 Experimental 

 Materials 

 The CFRTP prepreg used in this work was Celstran CFR-TP PA6 CF60-03 with 60 wt. % 

(48.5 vol. %) carbon fiber and 130 µm layer thickness (Celanese Corp, Dallas, TX). The glass 

fiber prepreg composite was IE 6832 with 66.5 wt. % glass fiber and 300 µm thickness supplied 

by Polystrand (Englewood, CO). 

 Laser Assisted 3D printing 

The 3D CAD geometry was sliced into 2D profiles and then cut by a CO2 laser cutter (Full 

Spectrum P-Series, Las Vegas, NV) with maximum power of 90 W. The laser beam was focused 

to 1 mm in diameter. The 37% and 60% of laser power were used to cut CF and GF prepreg sheets, 

respectively, with the cutting speed of 50 mm/s. The prepregs composite sheets were then bonded 

in a layer by layer fashion using a consolidation roller and a top-scanning CO2 laser beam at 20° 

angle from the build plate. The laser beam heated the prepreg sheets to above its melting point and 

with the pressure provided by the stainless steel roller (41.25 mm diameter) the composite sheets 

were bonded and fully consolidated. The laser beam was Gaussian beam and 6 mm in diameter. 

The 100 W CO2 laser used for bonding was purchased from Beijing Reci Laser Technology, China. 

The laser beam was directed to the nit point under the consolidation roller heating the printing 

layer from the top. The built plate moved at 6 mm/s in a serpentine pattern to cover the entire 

surface area with 3 mm spacing between scanning lines. 

 Characterization 

 Differential scanning calorimetry (DSC) of PA6/CF and PP/GF was performed using TA 

instrument DSC Q200 and in the temperature range of -10°C to 250ºC. 5.7 mg of each material 

was sampled for DSC and data was sampled at the time intervals of 0.2 s. Scanning electron 
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microscopy (SEM) (FEI Versa 3D Dual Beam, OR) micrographs were observed at an acceleration 

voltage of 10 kV and an emission current of 20 μA. Micro CT scans were performed with Xradia 

microXCT 400 Scanner with the resolution of 1 µm at the University of Texas at Austin CT 

Laboratory (UTCT). The tensile testing was conducted based on ASTM D3039 standard with 

Shimadzu AG-IC universal testing machine (Kyoto, Japan) at a constant 1 mm/min strain rate 

(Figure 4-4). The 3-piont bending test was based on ASTM D7264 standard and performed with 

Shimadzu EZ-LX universal testing machine (Kyoto, Japan) at 1 mm/min strain rate (Figure 4-5). 

For both tensile and 3-point bending tests, at least 5 samples were tested and averaged for each 

condition to determine the properties. The lap shear test was conducted based on ASTM D5868 

standard with Shimadzu AG-IC universal testing machine (Kyoto, Japan) at the rate of 13 mm/min 

and repeated 5 times. We performed lap shear adhesion tests for fiber reinforced plastic bonding 

based on ASTM D5868 standard. At least 5 samples were tested to determine the lap shear strength 

of the laser bonded PA6/CF laminates. The dimensions of these specimens are explained in Figure 

4-6. The tests were only performed for unidirectional laminates. Optical images of the lap shear 

test samples are shown in Figure 4-7. 
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Figure 4-4 Some of the tensile bars used for tensile testing (scale bar: 14 mm). 

 

 

 

Figure 4-5 Some of the flex bars used for 3-point bending testing (scale bar: 10 mm) 
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Figure 4-6 Overall layout and dimensions of the ASTM D5868 lap shear test specimens 

 

 

Figure 4-7 Optical image of lap shear test samples (Scale bar: 25 mm) 

 

 Microstructure 

We studied the microstructure of the 3D printed CFRTPs through micro computed 

tomography (micro-CT) scans (Figure 4-8) with ultrahigh resolution of 1 μm. For this 

communication, we printed structures with various fiber orientations in each layer, specifically, 

unidirectional [0º]s ( Figure 4-8 (a)), cross-ply [0/90º]s (Figure 4-8 (b)), and [0/-45/0/45º]s (Figure 

4-8 (c)), as well as unidirectional glass-carbon fiber (G-CF) reinforced composites (Figure 4-8 

(d)). The 3D illustrations of continuous fiber reinforcement in these structures were created using 

the micro-CT scan slices and presented in Figure 4-8. The continuous glass and carbon fibers are 
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easily distinguishable with 0º, ±45º, and 90º angle orientations in these 3D images. The inset in 

Figure 4-8 (a) shows the cross section of the 3D printed unidirectional laminate, containing fibers 

in 0° orientation. All fibers in these samples aligned in one direction and provided the highest 

longitudinal reinforcement. The cross sectional scans of the cross-ply samples are presented in 

Figure 4-8 (b) inset. CCFs had two principal orientations of 0º and 90°, and potentially, these 

laminates should exhibit similar strength in these two directions. Figure 4-8 (c) inset shows the 

scan from the cross section of [0/-45/0/45º]s sample with CFs oriented in 0º and ±45º angles. The 

CT scans of our 3D oriented CFRTPs showed decent interfacial bonds and no indistinctive 

boundary between printed layers except for some minor voids. Lastly, the scan of G-CF reinforced 

samples is shown in Figure 4-8 (d) inset, demonstrating the GF and CF both are in 0° orientation. 

More void content was noticed in the multi-material sample and the boundaries between layers are 

more distinct. This was, most probably, due to the poor interfacial bonding between dissimilar 

thermoplastic resins used in the multi-material specimens. Additional 3D illustrations and CT 

scans of the 3D printed carbon fiber composite microstructure can be found in Appendix A. The 

demonstrated continuous reinforcement significantly improved the strength and stiffness over pure 

polymers and short fiber reinforcement with the potential of being implemented for end-use 

products across various industries.  
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Figure 4-8 Micro CT scans of the 3D printed CFRTPs with various fiber orientations, 

namely, a) unidirectional [0]s, b) cross-ply [0/90]s, c) [0/-45/0/45]s, and d) unidirectional with 

both GF and CF. The continuous carbon fiber reinforcement can be achieved in any desired 

angle at any given layer. The insets show the cross sectional slices of the CT scans and 

demonstrate the fiber orientation in 3D printed composite structure. 

 

 Mechanical Properties  

We have conducted the mechanical properties tests to evaluate the strength and Young’s 

modulus of our 3D printed CFRP structures. Tensile bars were fabricated with various fiber 
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alignments and materials to investigate the tensile properties relative to fiber reinforcement. Unlike 

other 3D printing techniques which can only print fiber composites with unidirectional or limited 

fiber alignments, our proposed 3D printing methodology could control the fiber alignment in each 

layer. Here, we printed unidirectional [0º]s, cross-ply [0/90º]s, and [0/-45/0/45º]s CFRTPs, as well 

as unidirectional glass-carbon fiber (G-CF) reinforced composites. In general, the CFRP laminates 

exhibit intense anisotropic strength dependent on the state of carbon fiber orientation [32]. 

Typically, they have superior longitudinal strength and stiffness along fiber orientation over 

transverse direction and most of the CFRPs use multi-direction fiber reinforcement to achieve high 

strength in several directions. Figure 4-9 (a) shows the typical stress-strain curve of tensile testing. 

Our 3D printed unidirectional tensile bars exhibited high tensile strength and modulus of 668.3 ± 

80.6 MPa and 18.2 ± 4.1 GPa, respectively, owing to the alignment and high weight ratio of CFs 

in the loading direction. Our 3D printed unidirectional CFRPs substantially overwhelmed FDM 

with CCF reinforcement and extrusion in terms of ultimate strength (Figure 4-9 (d)). There were 

two distinct regions observed in the tensile stress-strain curves and the slop of the curves slightly 

decreased after fiber-matrix debonding. This phenomenon was previously observed in continuous 

CFRTP FDM printing and our previous work [21, 33]. After the printing process, a portion of the 

carbon fiber bundles were not entirely straight and they could further be stretched under tensile 

loads, thus causing a slight drop in the curve’s slope. 

The tensile fracture surface of the unidirectional tensile bars (Figure 4-9 (b)) shows 

microscopic fiber pullout and breakage resulting from tensile test. The fracture surface appeared 

to be free of delamination with fiber breakage and fiber-matrix debonding being the primary 

fracture mechanism. The [0/-45/0/45°]s and cross ply samples exhibited an impressive tensile 

strength of over 600 and 400 MPa, respectively. The fiber pullout could be observed in the fracture 
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surface of these samples (Figure 4-9 (c) and (e)) for the fibers aligned in 0° and ±45°, in which 

fibers are completely snapped out of the matrix. These results demonstrated a higher tensile 

strength than aerospace grade Aluminum alloy 7075-T652 [34] with 470 MPa ultimate tensile 

strength. Our 3D printing methodology for CFRTP composites could be an excellent lightweight 

replacement for high strength Aluminum alloys. On the other hand, the tensile bars with G-CF 

reinforcement exhibited the lowest strength and modulus amongst the printed samples (239.4±9.4 

MPa and 9.6±1 GPa, respectively) mainly due to the lower strength of GF reinforcement. The 

fracture surface of these samples (Figure 4-9 (f)) showed concurrent delamination and fiber 

breakage. This delamination was primarily due to the low interlaminar bonding strength between 

PP and PA6 resins. As a benchmark, the tensile strength and modulus of our printed CRFTP 

composites were compared with other previously reported additive manufacturing techniques 

capable of processing CFRTP (Figure 4-9 (d)). The tensile strength of our 3D printed 

unidirectional CFRPs significantly exceeded other available 3D printing methods with comparable 

tensile Young’s modulus to extrusion and FDM. The tensile performance of our composite tensile 

bars was vastly superior to SLS, inkjet, and SLA both in terms of strength and modulus with the 

tensile strength of up to 3 times higher than majority of FDM and 10 times higher than SLS, inkjet, 

and SLA. The capability to process composites with high fractions of CCF (48.5 vol. %) and 

exceptional interfacial bonding were the distinct characteristics of our methods over other 3D 

printing techniques which was responsible for the ultrastrong 3D printed laminates. Moreover, 

these structures could offer reinforcement in several directions and be designed to support multi-

directional loads. 
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Figure 4-9 Tensile properties of the 3D printed carbon fiber composites. a) Representative 

tensile stress versus strain curves for 3D printed tensile bars of varying fiber materials and 

alignments. d) Property space map of tensile modulus versus tensile strength that compare 

our 3D printed CFRTP with other CF reinforced polymer 3D printing methods, namely, 

FDM [6-8, 16, 18], extrusion [12], SLS [12, 35], inkjet [12], and SLA [12, 36, 37]. Tensile 

fracture surface of the tensile bars with b) unidirectional [0]s, c) cross-ply [0/90]s, and  e) [0/-

45/0/45]s  with CF reinforcement. f) Tensile fracture surface of a multi material tensile bar 

with unidirectional [0]s glass and carbon fiber reinforcement. The inset in (b) shows the fiber 

pullout resulted from the tensile test. Scale bars are 30 µm for (b), (c), (e), and (f). The scale 

bar for the inset in (b) is 5 µm. 

 

We also investigated the flexural properties of our 3D printed composites to better 

understand the interlaminar bonding.  Flex bars with four previously mentioned fiber alignments 

were 3D printed for the 3-point bending test and results are displayed in Figure 4-10 (a). 

Unsurprisingly, our unidirectional CFRTPs displayed the highest flexural strength and modulus of 

591.16±88.6 MPa and 79.0±10.0 GPa, respectively. The [0/-45/0/45]s and cross-ply samples 

exhibited slightly lower flexural strength 460.6±33.2 MPa and 352.5±31.3 MPa, respectively, due 

to less CF in the bending direction. Flexural modulus of our [0/45/0/45]s and cross-ply printed 

CFRTPs was 49.2±5.9 GPa and 46.3±3.4 GPa, respectively. The unidirectional G-CF reinforced 
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structures exhibited lower flexural strength and modulus of 163.6±47.1 MPa and 36.1±9.9 GPa, 

respectively, due to the usage of less strong GF. The SEM images (Figure 4-11) shows the fracture 

mechanisms in the flex bars. In the 3D printed single material CF composites the failure was 

mainly due to fiber and matrix failure, however, delamination in dual-material samples (G-CF 

reinforced) was more prominent due to the lower quality of interfacial bonding. As a reference, 

we plotted the flexural property map of our printed composite structures in comparison with other 

3D printed carbon fiber composites (Figure 4-10 (b)). Our 3D printed composites showed 

impressive flexural properties, which are significantly higher than the best 3D printed CFRTP 

materials, with around 100% improvement in both flexural strength and modulus. Our 

unidirectional CFRTPs were 50% stronger and 100% stiffer than the strongest FDM with CCF 

reinforcement and up to 6 times stronger than SLS and FDM with SCF. The exceptional flexural 

strength and modulus make our printed architectures a prime candidates for structural material in 

various industries where rigidity and stiffness are essential.  
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Figure 4-10 Flexural properties of the 3D printed CFRTP flex bars. a) Typical flexural stress 

versus strain curves from 3-point bending test of flex bars with varying fiber alignments. b) 

Property space map of flexural modulus versus flexural strength in comparison with 

CFRTPs fabricated by FDM [16, 17] and SLS [14, 35]. 
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Figure 4-11 SEM images from sides of the flex bars after 3-point bending test for (a) 

unidirectional, (b) cross-ply, (c) [0/-45/0/45]s, and (d) unidirectional G-CF laminates (Scale 

bar: 1 mm). 

 

 Finite Element Simulation 

In order to evaluate the bonding process, we conducted a heat transfer finite-element (FE) 

simulation of the laser bonding process using COMSOL Multiphysics (Figure 4-15 (a)). The 

geometry of the simulated domain was same as the geometry used in temperature measurement 

with thermocouples. The built-in heat transfer modulus of COMSOL was used for the heat transfer 

simulation. The geometry of the domain (Figure 4-12) was consist of 8 layers of prepreg sheets 

with the dimensions of 25x120 mm. The roller was also included in the simulation. Heat transfer 

conduction in solid with a translational motion (equation 4-1) was used to perform the heat transfer 

in the laminate.  
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𝜌∁𝑝𝑢. ∇𝑇 + ∇. 𝑞 = 0   ∋     𝑞 = −𝑘∇𝑇 (4-1) 

where 𝜌 is the volumetric mass, ∁𝑝 is the heat capacity, 𝑘 is the anisotropic conductivity tensor, 𝑣 

is the bonding velocity, and 𝑇 is the temperature. Our boundary conditions consisted of convective 

heat flux (equation 4-2) on all outer surfaces, thermal contact at the 3 upper interfaces (equations 

4-3 − 4-6), and the boundary heat source on top of the laminates and on the roller. 

𝑞0 = ℎ. (𝑇𝑒𝑥𝑡 − 𝑇) (4-2) 

−𝑛𝑑 . 𝑞𝑑 = −ℎ(𝑇𝑢 − 𝑇𝑑) + 𝑟𝑄𝑏 (4-3) 

−𝑛𝑢. 𝑞𝑢 = −ℎ(𝑇𝑑 − 𝑇𝑢) + (1 − 𝑟)𝑄𝑏 (4-4) 

𝑟 =
1

1 + 𝜉
,      𝜉 = √

𝜌𝑢𝐶𝑝,𝑢(𝑘𝑢𝑛𝑢). 𝑛𝑢

𝜌𝑢𝐶𝑝,𝑑(𝑘𝑑𝑛𝑑). 𝑛𝑑
 (4-5) 

ℎ = ℎ𝑐 + ℎ𝑔 (4-6) 

where ℎ𝑐 is the constriction conductance and is obtained by cooper-mikic-yovanovich correlation 

[38] and ℎ𝑔 is parallel plate gap gas conductance [39]. The cooper-mikic-yovanovich correlation 

is built in COMSOL. The boundary heat source represent the laser source on top of the laminate. 

In our simulation, we modeled the laser source as an elliptical beam to accommodate the tilting 

angle of the laser beam. An elliptical Gaussian model was used as a boundary heat source to 

simulate the 20º angle of the laser beam (equation 4-7) [40]. This elliptical Gaussian heat source 

is presented in Figure 4-13.  

𝑃(𝑥, 𝑦) = 𝑃0 𝑒𝑥𝑝 {− [
((𝑥 − 𝑥𝑐) + (𝑦 − 𝑦𝑐))

2

2𝜎𝑎
2

+
(−(𝑥 − 𝑥𝑐) + (𝑦 − 𝑦𝑐))2

2𝜎𝑏
2

]} (4-7) 

where 𝜎𝑎and 𝜎𝑏 are the standard deviations of the Gaussian profiles along the elliptical major axis 

and minor axis, (xc, yc) is coordinate pair of the peak value location, and 𝑃0 is the laser peak power 

per area. The prepreg composite sheets exhibit orthotropic properties. The thermal properties of 
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PA6/CF at room temperature was supplied by Celanese Corporation. We used the general rule of 

mixture for thermal conductivity to estimate the axial and transverse temperature dependent 

thermal conductivity (Figure 4-14) [41]. The temperature dependent thermal conductivity of PA6 

and carbon fibers were obtain from elsewhere [42, 43]. The roller material is stainless steel. The 

rest of the material properties and COMSOL parameters are shown in Table 4-1.  

 

 

 

 

Figure 4-12 Meshed geometry used in COMSOL simulation 
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Figure 4-13 Elliptical Gaussian boundary heat source   

 

 

Figure 4-14 (a) Transverse and (b) longitudinal temperature dependent thermal conductivity 

of PA6/CF 
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Table 4-1 Material properties and COMSOL parameters used in the heat transfer 

simulations 

Material properties and COMSOL parameters Value 

Heat capacity of PA6/CF 1700 J/kg.K 

Density of PA6/CF 1450 kg/m3 

Thermal conductivity of the roller 15 W//m.K 

Heat capacity of roller 460.55 J/kg.K 

Density of Roller  8000 kg/m3 

Convective coefficient  23 W//m2.K 

Laser Power (P0) 29 W 

Translational speed 6 mm/s 

σa 2.5 mm 

σb 7.3 mm 

PA6/CF absorption  0.125 

Roller absorption 0.1 

Ambient and initial temperature 298.15 K 

Surface roughness of PA6/CF 2 µm 

Thermal conductivity of air 0.025 W//m.K 

 

The simulated temperature distribution was validated by thermal sensors embedded in the 

interface (Figure 4-15 (a) inset). The temperature distribution in the interface played a crucial role 

in the consolidation of two prepreg layers with polymer diffusion. These executed FE simulations 

and experimental studies on the heat transfer during the bonding process can directly inform the 

laser bonding parameters. The temperature distribution at the bonding interface is of high 

importance for consolidation to occur. From the FE simulations, the maximum temperature at the 

first interface, which is the most important, was well above the PA6 melting point (220 °C) at 360 

ºC.  The maximum temperature at the second and third interface was simulated to be 257 °C and 

158 ºC, respectively. In order to accurately validate our heat transfer simulations, we embedded 

three micro thermal sensors (d=70 µm) at the three upper interfaces for internal temperature 

measurement, as illustrated in Figure 5c. The thermocouples reading and simulation data for the 

temperature history agree with each other (Figure 4-15 (b)). The 3D printed structure with CCF 
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reinforcement possessed orthotropic properties in each lamina and overall were anisotropic. 8 

layers of prepreg sheets were used in both experimental temperature measurements and FE 

simulation. For the temperature measurement experiments, we embedded the thermal sensors at 

the three upper interfaces and bonded the last three layers at the same time while recording the 

temperature at 40 ms intervals. We also considered one reflection of laser beam from both roller 

and composite sheet. With the validated FE model, we could improve our fundamental 

understanding about this process and it guided us to alter process parameters for further 

optimization.  

 

Figure 4-15 Heat transfer analysis of the CFRP laser assisted bonding process using FE 

simulations. a) Temperature distribution in the CFRP laminate during the laser bonding 

process computed from the FE simulation. Isothermal contours show the temperature profile 

in the entire geometry; the temperature distribution on the top surface, 1st, 2nd, and 3rd 

interface are presented due to their importance in the consolidation process. The 

temperature at the 1st interface is well above the PA6’s melting point (220 ºC). The image 

from thermal IR camera shows the experimental temperature distribution on the top 

surface. b) Comparison of the temperature history obtained by thermocouples during the 

experiment with FE simulation at 1st, 2nd, and 3rd interface. c) Schematics of the thermal 

sensor locations for the experimental temperature measurements. 
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In order to further understand the effects of processing parameters on the temperature distribution, 

we performed additional simulation and experiments for laser powers (P) of 25 and 29 W with the 

scanning speeds (v) of 6, 12, and 18 mm/s. The temperature distribution at the cross section for all 

6 printing conditions are presented in Figure 4-16. It can be observed that with increasing the laser 

power and decreasing the scanning speed, higher temperatures could be obtained at the cross 

section. The melting point of Nylon6 resin is 220 ºC and temperatures above melting point were 

easily accessible with the current setup. Temperatures above melting point at the interface facilitate 

material diffusion and result in a stronger interlayer bonding. The assumption of thermal contact 

boundary condition at the upper interface (interface 1) caused the temperature at the top layer to 

be relatively high due to the increased thermal resistance at interface 1. In order to validate our 

simulation results, we performed experiments with the same parameters as FE simulations. The 

temperature history of three upper interfaces (interface 1-3) for some of these parameters is shown 

in Figure 4-17. The dimensions of the laminate for these experiments were same as the geometry 

used in FE simulations (120x25 mm).   
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Figure 4-16 The temperature profile obtained from FE simulations at the cross section for 

various process parameters, namely, (a) P=25 W, v=6 mm/s, (b) P=29 W, v=6 mm/s, (c) P=25 

W, v=12 mm/s, (d) P=29 W, v=12 mm/s, (e) P=25 W, v=18 mm/s, and (f) P=29 W, v=18mm/s. 
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Figure 4-17 The experimental temperature history obtained from thermocouples, at 

interface 1-3, for the laser powers of (a) 25 W and (b) 29 W. 

 

We compared the simulated maximum temperature at three upper interfaces with the 

experimentally measure values to validate our FE model. This comparison is illustrated in Figure 

4-18 for all 6 parameters. The FE model had a decent agreement with experimental results and 

could successfully predict the temperature distribution in the laminate during the 3D printing 

process. Our model can be used to optimize the bonding process during the bonding process to 

achieve the desired temperature for a required time at the interface. The temperature should be 

above melting point to enable the diffusion of thermoplastic resin in the prepreg composite sheets. 

The developed FE model is a versatile method to study the effect of process conditions on the 

interfacial bonding quality. 
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Figure 4-18 The comparison of maximum temperature at interface 1-3 between the FE 

simulations and experimental results for the laser powers of (a) 25 W and (b) 29 W. 

 

 

 Practical Applications 

The feasibility of our 3D printing technique for high-strength CFRTP constructs was 

further established through 3D printing a laminate structure capable of supporting the axial (Figure 

4-19 (a)) and transverse (Figure 4-19 (b)) load of P. Parandoush’ s weight , as well as, a fully 

functioning remote control car (Figure 6c and 6d). All of these structures were 3D printed with 

[0/-45/0/45º]s CF orientation for a high multi-directional strength. Figure 4-19 (a) shows the 

incredible axial strength of the 3D printed support structure. The dimensions of this 3D printed 

structure were 150x100x12 mm and its detailed drawing is illustrated in Figure 4-19 (b). 

Nevertheless, one of the main benefits of our method was the strong interlayer bonding and it was 

verified in Figure 4-19 (b) by supporting a transverse load of P. Parandoush weight. These results 

are not surprising as we previously confirmed the ultrahigh tensile and flexural strength of these 

additively manufactured CFRTPs. Furthermore, our 3D printed frame for a remote control car 

proven to be as stiff and strong as the original Aluminum frame that it replaced. The supreme 

flexibility of our additive manufacturing technique, paired with its high strength-to-weight ratio 
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can be a defining moment for 3D printing to become a chief candidate in the production of high 

performance structural materials. 

 

Figure 4-19 Some practical implications of the developed additive manufacturing technique. 

The 3D printed CFRTP structure with [0/-45/0/45º]s fiber orientation can support the weight 

of P. Parandoush in both a) axial and b) transverse direction. This strength is enabled by 

having a variety of continuous fiber reinforcement directions and exceptional interfacial 

bonding. c) This 3D printing methods method was also used to print the chassis of a remote 

control car. d) The printed under body of the car was replaced the original Aluminum parts 

without sacrificing the rigidity of the structure. 

 

The 3D printing technique described in the current work, in addition to exceptional 

mechanical properties, is easily scalable for high volume productions. This system is based on 

LOM and can be designed for components with the size scales from few centimeters to few meters. 

The LOM is capable of automation in handling materials, as well as automation of the entire 

additive manufacturing process. The modified bonding process does not add a significant 

complication to the design and conveniently remove the need of post processing for most of the 

engineering thermoplastics. The only challenge in designing this system would be determining the 

prepreg thickness after the laser consolidation process and adjusting the vertical travel based on 
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the prepreg material and process parameters. Currently, autoclave molding and laser assisted tape 

placement (LATP) are the prominent manufacturing techniques used in CFRP production. 

Autoclave is a manual process that require expensive molds and post machining process is required 

to get the final geometry. LATP does not require molds, however, post processing is often required 

and complex geometries are not attainable [44, 45]. These factors enormously increase the 

production costs and hinder the wide spread utilization of CFRP in consumer products. The 3D 

printing technology suggested in this work could streamline the CFRP production and replace 

existing manufacturing methods for various mass produced components. Additionally, the 

proposed technology is an improvement from production time standpoint over existing methods. 

With the help of automation and eliminating the need of molds and post-processing, the production 

time could be significantly reduced for potential commercial applications in aerospace, 

transportation, marine, etc. Finally, the additive manufacturing nature of the proposed approach 

means complex geometries, both internal and external, could be produced that conventional 

approaches are incapable of producing and yields new degrees of freedom in CFRP production.     

 

 Conclusions  

In conclusion, we have demonstrated a high-strength 3D printed by utilizing prepreg 

composite sheets with CCF reinforcement as the feedstock. In this method, the CAD geometry 

was sliced to 2D cross section similar to other 3D printing techniques. In printing each layer, the 

prepreg sheets were laser cut based on the specified CAD model cross section. The prepreg layer 

was then bonded to the precious layer using a laser beam and a consolidation roller. This layer 

upon layer process was repeated until the final 3D geometry was achieved. Our 3D printed 

architectures incorporated high weight ratio CCFs and a strong interlayer adhesion responsible for 
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superior strength and stiffness over commercial composite 3D printing techniques. The tensile and 

flexural properties of our 3D printed CF/PA6 composites were superior to FDM, SLA, SLS, inkjet, 

and extrusion with both continuous and short carbon fiber reinforcement with tensile and flexural 

strength of 668.3 and 591.6 MPa, respectively.  The controllable fiber alignment in any respective 

layer could further increase the flexibility of the 3D printed CFRTPs and add an entirely new 

dimension to the engineering design of 3D printed assemblies. By automation of this process, 

highly customized CFRTP geometries with complex internal and external features could be 

digitally designed, optimized, and manufactured, offering a substantial improvement in cost and 

flexibility relative to the manual and expensive conventional molding in the autoclave.  This 

technique can be used for a wide variety of prepreg composites with thermoplastic resins and we 

demonstrated the capability of widening the range of materials available for additive 

manufacturing in this work. It also has a potential to be used with thermosetting resins which is 

one of our future scopes for this project. In addition, we developed a validated FE model capable 

of predicting temperature distribution in the CFRTP structure during the laser bonding process. 

Temperature disturbing at the laminate interface is the primary factor in the bonding quality and 

the FE model could help modifying and optimizing this technique for various structural 

composites. Moreover, this system can be designed for components with the size scale from few 

millimeters to few meters for potential commercial productions. With no required post-processing 

and the benefit of automation, this process is also scalable for high volume productions and could 

improve current CFRP productions both volumetrically and from a production time standpoint.  

The flexibly of the demonstrated 3D printing process and the ability to produce lightweight and 

strong structures made it favorable in  various industries such as aerospace, automotive, marine, 
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and civil engineering where automation of the process could significantly bring down the cost and 

waste. 
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Chapter 5 - Finishing Operation for Additively Manufactured 

Carbon Fiber Composites 

3D printing (also known as additive manufacturing) technology has the potential to 

revolutionize carbon fiber reinforced polymer composite (CFRP) production by increasing the 

flexibility of the fabrication process, reducing waste, and a significant cost saving. In this 

technology, 3D parts are fabricated by joining materials layer upon layer from a computer aided 

design (CAD) model. The direct transformation of a digital file to the finished product in an 

automated process is a substantial improvement over existing manual conventional methods of 

CFRP productions [1]. Recently, there has been enormous amount of research efforts to increase 

the mechanical properties of 3D printed CFRP composites. 3D printing CFRP composites with 

short carbon fiber (SCF) reinforcement was the main focus of the majority of recent works by 

using pre-blended filament, resin, or powders. Various 3D printing techniques could benefit from 

SCF reinforcement, including fused deposition modeling (FDM) [2-4], stereolithography (SLA) 

[5, 6], extrusion [7], and selective laser sintering (SLS) [8, 9]. These 3D printed composites could 

offer relative improvement over pure polymers and even composites with higher specific strength 

than Aluminum 6061-0 could be 3D printed [2]. However, CFRPs with SCF could not be a true 

replacement for high performance CFRP laminated composites with continuous carbon fiber 

(CCF) reinforcement. So far, only FDM [10-12] and laminated object manufacturing (LOM) [13-

15] have been used for 3D printing composites with continuous fiber reinforcement. The 

mechanical properties of these 3D printed composites are approaching conventionally produced 

CFRPs and could be replacing traditional techniques in various industries.  

On the other hand, 3D printing technologies for composites are required to resolve issues 

regarding surface finish and geometric tolerance before becoming mainstream for industrial 
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applications. Layered structure of the 3D printed parts deteriorates the surface finish and the free 

standing fabrication process could result in poor tolerances [16]. Substantial experimental and 

theoretical works aimed to optimize the 3D printing (mainly FDM) process parameters to improve 

the surface smoothness of the 3D printed components. The effects of layer thickness, wall 

thickness, and build orientation was the most significant for surface quality [17-19]. Achievable 

tolerances in FDM were reported in the range of 0.1-0.7 mm, which is again not suitable for high 

precise applications [20]. An inexpensive and straightforward solution to the quality issues of 3D 

printing could be finishing subtractive operations. Finishing processes could be categorized under 

chemical and mechanical processes. Chemical processes for polymers involve acetone vapor bath 

and could decrease surface roughness up to 90% and cause slight reduction in tensile strength [21, 

22]. However, chemical finishing processes require deep knowledge of the material and, to date, 

have only been applied to Acrylonitrile Butadiene Styrene (ABS). In addition, they do not offer a 

consistent control over the dimensional accuracy of the treated parts. Conversely, mechanical 

finishing processes are less sensitive to the 3D printing material and overall are more attractive 

amongst industries and 3D printing services [23].  

Mechanical processes are ideal for finishing 3D printed polymers and their composites and 

could offer an improved and consistent geometric tolerances over unfinished parts, as well as, a 

smoother surface finish. They can also be customized and only applied to certain areas of interest 

based on the application. Geometric complexity is the primary element in designing a 

manufacturing process and often a combined additive and subtractive manufacturing process is the 

optimal approach [24, 25]. Barrel finishing was employed to improve surface quality of the FDM 

process with higher repeatability compared to chemical processes. Moreover, it did require 

clamping of the part and the outcome was less sensitive to process parameters [26]. Abrasive flow 
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machining could also be used for finishing in micro/nano level with no effect on the mechanical 

properties [27]. Integrating FDM and 5-axis CNC machining for a hybrid additive and subtractive 

manufacturing process could resolve the aforementioned issues regarding engineering quality of 

3D printing. This hybrid system could use benefit of the both systems and use five-axis machining 

on a completed FDM part or trim the freeform surface fabricated by FDM to achieve more accurate 

dimensions and better surface finish [28]. Currently, there is a significant research gap in 

mechanical finishing operations of 3D printed polymers and their composites. To the best of the 

author’s knowledge there has not been any research effort on finishing operations of 3D printed 

polymer composites and only few works investigated mechanical finishing for a limited number 

of polymers.  

In this chapter, CNC machining and rotary ultrasonic machining (RUM) were chosen as 

finishing processes for 3D printed continuous CFRP composites. RUM can be a great candidate 

as a mechanical finishing operation for additive manufacturing of CFRPs. Ultrasonic machining 

uses mechanical vibrations which is converted from high frequency electrical energy via a 

combination of transducer and booster.  This vibration is then transmitted through an assembly of 

horn and tool. RUM on the other hand involves a tool which simultaneously vibrated and rotated, 

reducing out-of-roundness compared to conventional ultrasonic machining [29]. The feasibility of 

RUM in drilling CFRPs has been already verified in several works with reduced tool wear, higher 

surface quality, decreased delamination, and improved chip-removal rate relative to conventional 

drilling. Moreover, RUM could drill holes in CFRP without any fiber pull-out and taper [30-32]. 

Here, CNC and RUM finishing was applied to two 3D printing technologies of FDM and laser 

assisted-laminated object manufacturing (LA-LOM). The FDM 3D printer used in this study could 

produce continuous and short carbon fiber reinforcement. The chopped carbon fiber was pre-
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blended in the thermoplastic matrix and continuous carbon fiber was deposited between layers 

during the 3D printing process using an additional depositing nozzle similar to ref. [33, 34]. On 

the other hand, the LA-LOM system used prepreg continuous carbon fiber reinforced polymer 

sheets and therefore offered continuous fiber reinforcement. This technique was inspired by the 

LOM process with a modified consolidation process. The laser assisted consolidation phase in LA-

LOM improves the LOM bonding process by using a laser source instead of a hot roller. LOM, 

with post curing cycles, has been used to fabricate epoxy composites with continuous fiber 

reinforcement [13, 14]. In our system, prepreg sheets were cut based on the CAD cross-section 

and then bonded layer upon layer using a laser beam and a consolidation roller. Potentially, the in-

house developed LA-LOM system could achieve stronger interfacial bonding relative to FDM 

owing to its laser assisted consolidation process. In the present work, we performed face and 

peripheral milling on top and side surfaces of the 3D printed CFRP composites with varying 

cutting depths. In addition, we preformed RUM drilling on both using varying machining 

conditions on the additively manufactured CFRP plates to explore the performance of the process 

and the quality of the drilled holes. The surface morphology of the finished parts was investigated 

and compared based on the 3D printing technology and the machining conditions. 

 

 Experimental  

 Materials 

The prepreg carbon fiber (CF)/Polyamide 6 (PA6) composite, used for the LA-LOM, was 

supplied by Celanese Corp, Dallas, TX. The Celstran CFR-TP PA6 CF60-03 prepreg composite 

sheet had 60 wt. % (48.5 vol. %) continuous CF content with sheet thickness of 130 µm. The 

materials used in the FDM 3D printer was purchased from Markforged. In this study, nylon 
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composite material was used, which was reinforced with short CF with the commercial name of 

ONYX. The continuous CF for the FDM machine was also purchased from Markforged.  

 LA- LOM  

This method was inspired by the traditional LOM process; however, the bonding process 

was modified to develop a more efficient bonding process for prepreg CFRP materials (Figure 

5-1). The CAD model of the desired geometry was sliced into 2D cross sections to determine the 

path for the laser cutter. Each cross section were then laser cut using a CO2 laser cutter with a 

maximum power of 100 W (Figure 5-1 (a)). 60% of the laser power used for the cutting process 

with cutting speed of 50 mm/s and laser spot diameter of 0.8 mm. After laser cutting of each layer, 

they were stacked on top of the previous layer, prior to the laser consolidation process (Figure 5-1 

(b)). The laser beam heated the nit point under the roller from the top, with 20° angle, just before 

compressed by the stainless steel roller with the dimeter of 41.25 mm (Figure 5-1 (c)). The laser 

beam had a Gaussian power distribution with 6 mm diameter. This 100 W CO2 laser was purchased 

from Beijing Reci Laser Technology, China. We used 29% of the laser power for the bonding 

process with the scanning speed of 6 mm/s. In this setup, the roller and the laser beam were 

stationary and the stage held the moving part. After bonding the entire surface of each layer with 

3 mm spacing between scanning lines, the next layer was cut and bonded layer upon layer until 

the desired 3D geometry was achieved. The additively manufactured laminates were then 

compressed with the pressure of 1.2 kPa and cured at 220 °C for 2 hours in an isothermal furnace. 

The CFRP plates had carbon fiber orientation of [0°/90°]s (cross-ply). The overall dimensions of 

the CFRP plates fabricated via LA-LOM were 8.3×27×27 mm.  
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Figure 5-1 Schematic of the LA-LOM process for each layer: a) laser cutting of the prepreg 

CFRP sheets, b) adding the pre-cut cross section on top of the previous layers, and c) laser 

assisted bonding of the prepreg CFRP layer using a laser beam and a consolidation roller. 

 

 FDM 3D Printing 

The FDM printed CFRP plates were printed using Markforged MARK TWO 3D printer 

(Markforged, Watertown, MA). The FDM printed parts had both short and continuous CF 

reinforcement. The short CF reinforced matrix is a Nylon composites with the commercial name 

of ONYX. In addition, the parts were reinforced with continuous carbon fiber to further increase 

the CF content. The optimal images of the Markforged Mark two 3D printed and the 3D printing 
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mechanism are shown in Figure 5-2. The FDM 3D printed plates were 8.3×27×27 mm in 

dimensions. In the 3 mm thickness of the printed CFRP plates, 3 layers of continuous CF were 

used as reinforcement. 

 

Figure 5-2 The Markforged FDM 3D printer used for CFRP fabrication showing the 3d 

printing configuration. The printing head consists of two nozzles, one for continuous carbon 

fiber and one for nylon composite filament. 

 

 CNC Machining  

A 5-axis CNC milling machine was used to finish the horizontal and vertical surfaces of 

the 3D printed CFRP structures (Figure 5-3). The HAAS VF-E CNC Vertical Machining Center 

that was used in this work was purchased from Haas Automation, Inc. (Oxnard, CA). The tool that 

was used in the milling process was Accupro - 1/4" Diameter 2 flute carbide mill and was 

purchased from Accupro Technologies, Inc. (Green Bay, WI). All the finishing processes were 

performed using 4000 rpm rotation speed and 15 inch/min cutting speed with a varying cutting 

depth.  
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Figure 5-3 The CNC milling machine used for finishing the 3D printed CFRP composites. 

 

 Rotary Ultrasonic Machining 

A RUM machine (Series 10, Sonic-Mill, Albuquerque, New Mexico, USA) was used to carry out 

the RUM process (Figure 5-4). The experimental setup involved an ultrasonic spindle system, a 

data acquisition system, and a coolant system, as shown in Figure 5-5. The ultrasonic spindle 

system was included an ultrasonic spindle, a power supply, an electric motor, and a control panel. 

The power supply generates a high frequency (20 kHz) electrical output from a low frequency (60 

Hz) 110v electric input. A piezoelectric transducer in the ultrasonic spindle converts that high 

frequency electric signal to low amplitude mechanical vibrations. That low amplitude of the 

mechanical vibrations was amplified by the horn in the spindle and supplied to the cutting tool. 

The vibration amplitude could be adjusted by controlling the output of the power supply. The 

electric motor located on top of the spindle provides the rotational power to the spindle. The cold 

air cooling system consisted of an air compressor, oil and water filters, a vortex tube, a pressure 
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regulator and gauge, and a valve. Cold air is generated using a vortex tube, which has the capability 

to separate the compressed air stream into two separate streams, one of hot air and one of cold air. 

The cold air outlet of the vortex tube is fixed onto the spindle to blow out cold air (with a 

temperature of 5 oC and a pressure of 50 psi) through the cutting tool (core drill). The tool variables, 

namely inner and outer tool diameters, abrasive size, and abrasive concentration were fixed at 10 

mm, 12 mm, 0.12 mm, and 100, respectively. Abrasive size is defined as the average diameter of 

the tool abrasives and abrasive concentration  is defined as the weight of diamond per cm3 which 

is 4.4 carat/cm3. The data acquisition system contained a dynamometer (Model 9272, Kiestler Inc., 

Winterthur, Switzerland), a charge amplifier (Model 5070, Kiestler Inc., Winterthur, Switzerland), 

an analog to digital converter, a data acquisition card (PCIM-DAS 1602/16, Measurement 

Computing Corporation, Norton, MA, USA), and a computer with software (Type 2815A, Kiestler 

Inc., Winterthur, Switzerland). 

 

Figure 5-4 Schematic of the RUM of the fabricated CFRP plate with LA-LOM and FDM 

showing the RUM tool and cutting mechanism.  
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Figure 5-5 RUM experimental setup 

 

 Characterization  

The 3D surface morphology of samples was measured with a Zygo NewView 7300 surface 

profiler. The scanning area was 1.40 mm × 1.05 mm and the magnification was 50x. All the data 

obtained from the surface profiler was processed with a post-processing software MetroPro. The 

average of three tests for each condition was reported. The microscopic images of the surface was 

captured using an Olympus BX51 Fluorescence Microscope (Olympus Corporation, Shinjuku, 

Tokyo, Japan). 5× and 20× objectives lenses were used to study the surface morphology of the 

finished 3D printed composites. Scanning electron microscopy (SEM) (FEI Versa 3D Dual Beam, 

OR) images were acquired at an acceleration voltage of 20 kV and an emission current of 20 μA. 

The SEM samples were coated with Gold particles with a coating thickness of 10 nm prior to the 

observation. A dynamometer measured the cutting force in RUM process. The dynamometer 
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signal was amplified using an amplifier. The signal was then converted a digital numerical signal. 

Dynoware software (Version 2.4.1.6 type 2825A-02, Kistler Instrument Corp, Switzerland) was 

used to observe the cutting force. 2D surface roughness was recorded on the cylindrical surface of 

the drilled hole after each drilling test by using a surface profilometer (Mitutoyo SJ-400, Mitutoyo 

Corporation, Kanagawa, Japan). The measurement range was 1.25 mm and the surface roughness 

was calculated by taking the average surface roughness value (Ra). Five measurements were taken 

for each experimental condition. The mean and standard deviation of these five Ra values are stated 

in this paper. The cutting temperature throughout the RUM process was monitored by an E40 FLIR 

thermal camera (FLIR Systems, Wilsonville, OR). The initial temperature and the highest 

temperature were then captured from the recorded video and used for analysis.  

 

 CNC Machining Results  

The feasibility of the CNC finishing process was investigated by finishing the horizontal 

and vertical surfaces of LA-LOM and FDM components. The surface morphology and particularly 

surface roughness for various cutting depths were the main focus of this work. The rest of the 

machining parameters were kept constant, as described in the experimental section. The cutting 

depth ranged from 0.1 mm to 1.0 mm, as presented in Table 5-1. As the cutting depth increased in 

the machining process more fibers were protruded and they needed to be removed manually after 

the process. However, trimming the excess fibers on the surface with cutting depth under 1 mm 

did not require any additional process. The 3D profile and microscopic images of each surface 

were studied to reveal the surface roughness and surface features.  
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Table 5-1 The varying cutting depths used in the experimental study. 

Condition 1 2 3 4 5 6 

Cutting Depth 0.1 mm 0.2 mm 0.4 mm 0.6 mm 0.8 mm 1.0 mm 

 

 Surface Roughness  

Improving surface roughness of 3D printed carbon fiber composites was the primary 

motivation of the present work. Initially, the surface roughness of the 3D printed surfaces were 

measured before the finishing process. Surfaces parallel and perpendicular to the 3D printing 

layers were the main focuses of this study. For this purpose, we 3D printed cubic structures and 

characterized their top and side surfaces before and after the finishing operation. An optical surface 

profiler was used to investigate the surface morphology of these surfaces and at least three 

measurements were carried out for each experimental condition. Figure 5-6 presents the resultant 

surface roughness values for both LA-LOM and FDM method for cutting depths varying from 0.1 

to 1 mm. The cutting depth of zero in Figure 5-6 represents the unfinished surfaces prior to the 

CNC machining process. For unfinished LA-LOM surfaces, there is a huge disparity between the 

surface roughness values of the horizontal and vertical surfaces. The reason is the smooth surface 

of the prepreg CFRP sheets that gives the horizontal surfaces a smooth finish compared to surfaces 

90° to the prepreg layers. The surface roughness for the horizontal and vertical unfinished LA-

LOM samples was 2.0±0.2 and 10.0±0.4 μm, respectively (Figure 5-6 (a)). For all the investigated 

cutting depths, the horizontal surfaces maintained the smoother surface finish relative to vertical 

surfaces. Relatively, the average surface roughness of horizontal LA-LOM surfaces was below 3 

μm. On the other hand, the vertical surface of LA-LOM structures showed improved surface finish 



105 

with higher cutting depths. The reason for this improvement is due to the machining of any 

potential misalignments and waviness of the 3D printed layers that might have happened during 

the LA-LOM process. Thus, machining these surfaces that are not parallel to 3D printed layers 

could drastically improve the surface finish. The average surface roughness of the vertical surfaces 

in LA-LOM composites could be reduced up to 70% by the proposed finishing process, 

demonstrating a substantial improvement over the original surface. It could also be observed that 

the variability of surface roughness was decreased by increasing the cutting depth showing more 

consistency in the surface finish.  

 

Figure 5-6 Surface roughness of the 3D printed CFRPs before and after finishing with 

varying cutting depths. Surface roughness of the horizontal and vertical surfaces for a) LA-

LOM and b) FDM method is presented. 
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On the other hand, when we inspected the FDM 3D printed CFRP structures, more 

consistency could be observed between horizontal and vertical surfaces. As it can be seen in Figure 

5-6 (b), the surface roughness of horizontal and vertical surfaces were in the range of 6 – 7 μm. 

Similar to unfinished surfaces, the roughness of the finished surfaces via CNC machining showed 

a good consistency for various cutting depths. The surface roughness of surfaces parallel to 3D 

printed layers was consistently and slightly lower than the vertical surfaces. This is due to the 

directional continuous and short carbon fiber which are aligned along the 3D printed layers. The 

surface roughness of the mechanically finished horizontal and vertical surfaces for FDM CFRP 

structures were around 2.2 and 2.7 μm, respectively. Overall, the proposed CNC finishing process 

could reduce the surface roughness of FDM parts up to 60% which is a substantial improvement 

in the surface finish. Additionally, Figure 5-6 (b) demonstrates that the variance of surface 

roughness was substantially decreased for all FDM surfaces and the surface finish exhibited a 

higher degree of consistency compared to the original 3D printed surfaces. It is to be noted that 

LA-LOM samples contained higher volume fraction of CCF reinforcement everywhere in the 

structure which increased the hardness of the CFRP composites and made it harder to machine. 

Conversely, The FDM parts only contained CCF in the center of the structure where no machining 

took place and overall had lower volume fraction of CCF compared to LA-LOM.  Furthermore, 

the outer surfaces of FDM constructs only contained SCF reinforcement making it softer and easier 

to machine. In general, the surface roughness of the 3D printed carbon fiber composites fabricated 

via LA-LOM and FDM could be substantially reduced with a higher consistency in the finished 

surface morphology relative to the unfinished 3D printed surfaces.  
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 LA-LOM Surface Morphology 

The 3D profile of the LA-LOM 3D printed surfaces before and after the mechanical 

finishing process could reveal the surface morphology of these surfaces and helps us understand 

features associated with each surface. First, we analyzed the horizontal surfaces of LA-LOM CFRP 

laminates through the 3D surface profiles and optical microscope images (Figure 5-7). Here we 

only presented the original unfinished surface alongside with the finished surfaces with the cutting 

depth of 0.4 and 0.8 mm. As we illustrated earlier, the horizontal surface of the unfinished LA-

LOM exhibited a smooth surface finish that could be observed in its surface profile (Figure 5-7 

(a)). The unidirectional CCF created the directional surface morphology in Figure 5-7 (a). The 

microscopic images of this surface (Figure 5-7 (d)) also shows the unidirectional CCF on the top 

surface. Figure 5-7 (b) shows the 3D profile of the finished surface with 0.4 mm cutting depth and 

displays a slight increase in the surface roughness. The pattern created by the milling tool could 

be observed in surface profile and microscopic images of the finished surface. We also notices 

more exposed CCF on the top surface.  The same patterns could be seen in the finished horizontal 

surface with deeper cutting depth of 0.8 mm (Figure 5-7 (c) and (f)).  The surface roughness did 

not exhibit a substantial change with increasing the cutting depth and similar surface morphology 

could be achieved. The proposed finishing process could be successfully applied for various 

cutting depth to attain the desirable geometry with considerably higher tolerances than what 3D 

printing could offer.  
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Figure 5-7 The surface morphology of the original and finished horizontal surfaces for LA-

LOM structures. 3D surface profiles of the a) original unfinished surface and finished 

surfaces with b) 0.4 mm and c) 0.8 mm cutting depth. Microscopic images of d) the unfinished 

surface and finished surfaces with e) 0.4 mm and f) 0.8 mm cutting depth 

 

Figure 5-8 displays the surface profile and surface morphology of the vertical surfaces 

before and after finishing. The unfinished surface exhibited a relatively rough surface finish due 

to the potential misalignment of the prepreg layers during the LA-LOM process. The layered 

microstructure of the CFRP laminated could be easily noticed in the 3D surface profile. Each 

prepreg layer had a thickness of 130 μm (Figure 5-8 (a)). The layers of the laminated structure and 

their fiber alignment could be clearly distinguished in Figure 6d. However, the finished surface 

with 0.4 mm cutting depth showed a relatively smoother surface finish (Figure 5-8 (b)). As 

explained earlier, the LA-LOM composite structures had a cross-ply [0/90]s fiber arrangement that 

is clearly visible in microscopic images of the finished surface (Figure 5-8 (e)). By increasing the 

cutting depth to 0.8 mm, the surface finish was improved dramatically and the surface features 

were more uniform with less defects (Figure 5-8 (c) and (f)). The high magnification microscopic 
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images could also confirm that the interfacial bonding of composites was not damaged, exhibiting 

a desirable surface morphology for industrial applications.  

 

Figure 5-8 The surface morphology of the original and finished vertical surfaces for LA-

LOM structures. 3D surface profiles of the a) original unfinished surface and finished 

surfaces with b) 0.4 mm and c) 0.8 mm cutting depth. Microscopic images of d) the unfinished 

surface and finished surfaces with e) 0.4 mm and f) 0.8 mm cutting depth. 

 FDM Surface Morphology 

The microstructure of the CFRP composites fabricate via FDM 3D printing was vastly 

different with the microstructure of LA-LOM composites. Figure 5-9 shows the 3D profiles and 

microscopic images of the horizontal surfaces of FDM constructs. In the surface profile of the 

original top surface, the deposited beads are clearly noticeable that creating an undesirable rough 

surface finish (Figure 5-9 (a)). The microscopic images in Figure 5-9 (d), confirm this surface 

morphology and also shows the SCF reinforcement used near the surface. There are no CCF 

reinforcement near the surface of the FDM structures. On the other hand, the finished horizontal 

surfaces with 0.4 mm cutting depth showed a significant improvement in surface roughness 

(Figure 5-9 (b)). The optical images of the surface clearly shows the milling marks similar to LA-

LOM samples, as well as the exposed SCFs on the top surface (Figure 5-9 (e)). By increasing the 
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cutting depth to 0.8 mm, comparable surfaces roughness and morphology could be attained. The 

3D surface profile (Figure 5-9 (c)) and the optical microscopic images of the surface (Figure 5-9 

(f)) display the surface features resulted from the finishing operation and the end milling tool. The 

direction of the carbon fiber reinforcement depended on the 3D printed layer that ended up being 

on top after the fishing process. Overall, a smooth surface finish could be achieved for FDM 

printed composites for any cutting depth.  

 

Figure 5-9 The surface morphology of the original and finished horizontal surfaces for FDM 

structures. 3D surface profiles of the a) original unfinished surface and finished surfaces with 

b) 0.4 mm and c) 0.8 mm cutting depth. Microscopic images of d) the unfinished surface and 

finished surfaces with e) 0.4 mm and f) 0.8 mm cutting depth 

 

Figure 5-10 shows the profile and microscopic images of the vertical FDM surfaces before 

and after CNC finishing with 0.4 and 0.8 mm cutting depth. The layered microstructure of the 

original unfinished surface could be seen in the 3D profile (Figure 5-10 (a)) and the microscopic 

images of the unfinished surface (Figure 5-10 (d)). This kind of layered surface morphology causes 

a rough surface finish and decreases the consistency and reliability of the manufacturing process. 

As expected, the CNC finished vertical surfaces with 0.4 mm cutting depth exhibited a substantial 
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improvement in surface roughens (Figure 5-10 (b)). The vertical patterns resulted from the milling 

process could also be observed in Figure 5-10 (b) and (e). Interestingly, the layered surface 

morphology of the vertical surfaces were completely eliminated demonstrating a smooth surface. 

Carbon fibers could also be observed near the finished vertical surfaces and no sign of a layered 

structure could be noticed. Figure 5-10 (c) and (f) illustrates the 3D profile and features of the 

finished vertical surfaces with 0.8 mm cutting depth. The surface morphology was identical to the 

surfaces with lower cutting depth and the average surface roughness was comparable. In general, 

a consistent and predictable surface morphology could be achieved using the proposed finished 

method for FDM CFRP composites. The CNC finishing process could improve the surface finish 

and geometric tolerances of the FDM composites in an inexpensive and reliable manner suitable 

for a wide range of industries.  

 

Figure 5-10 The surface morphology of the original and finished vertical surfaces for FDM 

structures. 3D surface profiles of the a) original unfinished surface and finished surfaces with 

b) 0.4 mm and c) 0.8 mm cutting depth. Microscopic images of d) the unfinished surface and 

finished surfaces with e) 0.4 mm and f) 0.8 mm cutting depth 
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 RUM Results 

The RUM was carried out on the CFRP plates fabricated by FDM and LA-LOM with a total seven 

different cutting conditions. In the present study, we investigated the effect of feedrate (FR), tool 

rotation speed (TRS), and ultrasonic power (UP) on the overall cutting quality. Surface quality, 

surface roughness, cutting force, and cutting temperature were studied to determine the 

performance and feasibly of RUM for additively manufactured CFRPs. Table 5-2 shows the seven 

machining conditions used in the current paper which included 3 levels of FD, TRS, and UP. 100% 

UP was equivalent to 900 W. Three replicates were carried out for each experimental condition. 

 

Table 5-2 RUM experimental conditions 

Condition 

Feedrate 

(mm/s) 

Tool rotation speed 

(rpm) 

Ultrasonic power 

(%) 

1 0.04 4000 20 

2 0.04 4000 40 

3 0.04 4000 60 

4 0.04 2000 40 

5 0.04 6000 40 

6 0.02 4000 40 

7 0.06 4000 40 

 

 Cutting Force 

Cutting force is one of the most crucial variables of RUM and significantly influences the 

surface quality and machining performance. It could alter the fracture mechanism during the 
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machining process and directly affect the microstructure and surface quality. The 3D printed CFRP 

plates by FDM and LA-LOM had a layered micro structure and cutting force beyond their 

interfacial bonding strength at elevated temperatures could lead to delamination. However, LA-

LOM and FDM CFRPs microstructures differs substantially due to the fundamentally different 

fabrication process. LA-LOM parts had a laminated structure with continuous CF reinforcement 

in each prepreg layer. On the other hand, the FDM parts used various layers of pure continues CF 

between the polymeric layers. In addition to continuous CF, the nylon matrix had pre-blended 

chopped CF. The FDM parts generally exhibit porous microstructure with pores between the 

printing beads and potentially have weaker interfacial bonding relative to LA-LOM parts. During 

the modified LA-LOM process, the interface is heated beyond matrix melting point and further 

heat treatment ensured the full consolidation of the prepreg layers. Fig 3 shows the effects of 

machining conditions on the maximum cutting force occurred during the RUM process. The 

maximum cutting force in RUM of LA-LOM parts were generally higher than FDM printed CFRP 

plates. Increasing feedrate from 0.02 to 0.06 mm/s, steadily elevated the maximum cutting force 

from 55.0±3.0 to 67.3±2.6 N for FDM and from 65.5±3.7 to 82.8±11.3 N for LA-LOM (Fig 3a). 

Higher feedrate directly increase the material removal rate (MRR) and unsurprisingly increase the 

associated cutting force. In addition, the RUM cutting force predominantly affected by the 

interaction between active abrasive particles on the tool surface and the workpiece. The force 

resulted by this interaction increases in deeper penetration depths. At higher feedrates, the depth 

of penetration depth typically increase, hence increasing the interaction force and ultimately 

cutting force [32].  

Tool rotation speed had an opposite effect on the maximum cutting force and higher tool 

rotation speed corresponded to lower maximum cutting force. The influence of tool rotation speed 
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was similar for FDM and LA-LOM parts with LA-LOM exhibited higher maximum cutting force. 

For LA-LOM, the maximum cutting force of over 100 N was occurred with TRS of 2000 rpm 

while it deceased to about 60 N for the TRS of 6000 rpm. Similarly, for FDM, cutting force 

decreased from about 90 N to 50 N when TRS changed from 2000 to 6000 rpm (Figure 5-11). The 

penetration depth of active abrasive particles into the workpiece decreases as tool rotation speed 

increases for fixed feedrate and ultrasonic power, resulting in a reduced interaction force, hence 

decreasing the cutting force.  

Ultrasonic power did not have a similar influence on FDM and LA-LOM CFRP 

composites. It did not significantly alter the maximum cutting force when power was changed 

from 20 to 60 % in RUM of FDM composites. Conversely in RUM of LA-LOM parts, increasing 

the power increased the maximum cutting force. When ultrasonic power increases ultrasonic 

vibration amplitude also increases which results in a higher penetration depth of active abrasive 

particles into the workpiece material. The cutting force was ultimately increased due to this higher 

interaction force.  
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Figure 5-11 The effect of RUM machining conditions, namely, a) feedrate, b) tool rotation 

speed, and c) ultrasonic power, on the maximum cutting force 
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Figure 5-12 The digital photographs and SEM micrographs of the drilled holes in the LA-

LOM parts for various feedrates. The optical images of the enter and exit surfaces of drilled 

holes for FRs of a) 0.02, f) 0.04, and l) 0.06 mm/s. The SEM micrograph of the surface 

morphology for the FRs of b, c, d, e) 0.02, g, h, i, k) 0.04, m, n, o, p) 0.06 mm/s. The scale bar 

in b, g, and m are 1 mm and the scale bar in the rest of SEM images are 200 µm.  

 

 Surface Morphology  

The investigation of the surface morphology of the drilled hole through SEM micrographs 

and digital images revealed better surface finishing quality and cleaner holes for LA-LOM part 

relative to FDM. Figure 5-12 shows the enter and exit surface of the drilled holes and SEM images 

of the hole surface for various feedrates in LA-LOM parts (experimental conditions 6, 2, and 7). 

In SEM images the surfaces near the entering surface, middle, and exiting surface were analyzed.  

When feedrate was set at 0.02 mm/s, decent surface quality was achieved, with some pull out 

delamination and rough surface finish near the exiting surface. With 0.04 mm/s feedrate, pull out 

delamination could be eliminated with no significant burr formation. Furthermore, surface finish 

was improved and the integrity of the microstructure was maintained throughout the RUM process 
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resulted in much cleaner holes. However, when the feedrate was increased to 0.06 mm/s, the drilled 

holes were further improved with an exceptional defect-free surface and no trace of delamination 

or burr formation, demonstrating the capability of RUM in drilling additively manufactured CFRP 

with our modified LA-LOM technology. The effects of feedrate on the surface morphology of the 

drilled holes in FDM parts are illustrated in Figure 5-13. The drilled holes in FDM parts exhibited 

remarkably higher amount of burr formation and rougher surfaces. The FDM printed parts had 

ununiformed microstructure and the pre-blended chopped carbon fiber in the nylon polymer with 

continuous fiber bundles between them, resulting in more uncertainty for RUM process. The 

continuous fiber reinforcement was exposed and could be observed in SEM images (Figure 5-13 

(i)). However, burr formation and surface finish was decent with the feedrate of 0.04 mm/s and 

yielded the best results out the 3 implemented feedrates.  

 

Figure 5-13 The digital photographs and SEM micrographs of the drilled holes in the FDM 

parts for various feedrates. The optical images of the enter and exit surfaces of drilled holes 

for FRs of a) 0.02, f) 0.04, and l) 0.06 mm/s. The SEM micrograph of the surface morphology 

for the FRs of b, c, d, e) 0.02, g, h, i, k) 0.04, m, n, o, p) 0.06 mm/s. The scale bar in b, g, and 

m are 1 mm and the scale bar in the rest of SEM images are 200 µm.  
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Figure 5-14 The digital photographs and SEM micrographs of the drilled holes in the LA-

LOM parts for various tool rotation speeds. The optical images of the enter and exit surfaces 

of drilled holes for TRSs of a) 2000, f) 4000, and l) 6000 rpm. The SEM micrograph of the 

surface morphology for the TRSs of b, c, d, e) 2000, g, h, i, k) 4000, m, n, o, p) 6000 rpm. The 

scale bar in b, g, and m are 1 mm and the scale bar in the rest of SEM images are 200 µm. 

 

When we look at the surface of the holes with various TRS settings in LA-LOM (Figure 

5-14), the finishing surface appeared to be smooth, except for some exposed carbon fiber and 

relatively rough surface finish with TRS of 2000 rpm. The continuous carbon fiber with 45° angle 

could be seen in Figure 5-14 (e). The enter and exit surface of the holes were clean and no pull-

out delamination were noticed in the CFRP. The surface finish improved with increasing TRS to 

4000 rpm and only some minimal surface defects were observed near the bottom of the CFRP 

plate. As TRS was increased to 6000 rpm, the most significant change was the extra burr formation 

on the top surface, visible in Figure 5-14 (l) and (m). The integrity of the CFRP laminate was 

preserved with no trace of delamination. The continuous fiber in 0° and ±45° could be observed 

in Figure 5-14 (o).  The surface morphology near the exiting surface was smooth with minimal 
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defects on the surface. Overall, we could conclude that increasing feedrate in LA-LOM parts 

resulted in increased burr formation due to the higher cutting temperature in the RUM process.  

Figure 5-15 demonstrates the surface morphology of the RUM holes in FDM samples with regards 

to TRS. Although not steady, a trend of increasing surface roughness as TRS amplified could be 

seen in Figure 5-15. We also noticed increased burr formation on the top and bottom surface of 

the CFRP plate due to a higher cutting temperature with larger TRS. The hole surface appeared to 

have less defects with TRS of 2000 and 4000 and exhibit cleaner edges with less burr formation. 

Yet again we can confirm that the drilled holes in LA-LOM samples using RUM possessed 

smoother surface with less defects around the machining area, over FDM samples.  

 

 

Figure 5-15 The digital photographs and SEM micrographs of the drilled holes in the FDM 

parts for various tool rotation speeds. The optical images of the enter and exit surfaces of 

drilled holes for TRSs of a) 2000, f) 4000, and l) 6000 rpm. The SEM micrograph of the 

surface morphology for TRSs of b, c, d, e) 2000, g, h, i, k) 4000, m, n, o, p) 6000 rpm. The 

scale bar in b, g, and m are 1 mm and the scale bar in the rest of SEM images are 200 µm. 
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Figure 5-16 The digital photographs and SEM micrographs of the drilled holes in the LA-

LOM parts for various ultrasonic powers. The optical images of the enter and exit surfaces 

of drilled holes for UPs of a) 20, f) 40, and l) 60 %. The SEM micrograph of the surface 

morphology for the UPs of b, c, d, e) 20, g, h, i, k) 40, m, n, o, p) 60 %. The scale bar in b, g, 

and m are 1 mm and the scale bar in the rest of SEM images are 200 µm. 

 

The surface characteristics of the RUM holes with respect to ultrasonic power is illustrated 

in Figure 5-16 for LA-LOM and in Fig 9 for FDM. In LA-LOM samples, with the power of 20% 

most burr formation occurred and it decreased as power elevated to 40% and 60%. In addition, the 

area near the exiting surface possessed more defects when the power was set to 20%. The 

variations in surface roughness appeared to be insignificant in the range of ultrasonic power that 

was investigated in this study and in average surface finish was smooth in all LA-LOM samples 

(Figure 5-16). Pull out delamination was non-existent in these samples after RUM that shows the 

incredible interfacial bonding strength in the modified LA-LOM CFRPs. Overall, we can conclude 

that LA-LOM did not have a substantial effect on the surface morphology of the holes and high 

ultrasonic powers are not essential for RUM of additively manufactured CFRP. On the other hand, 
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RUM holes in FDM samples exhibited rougher surface finish and the surface defects appeared to 

increase with higher ultrasonic power. We could see that higher ultrasonic powers contributed to 

higher surface damage and the quality of the drilled holes with the power of 60% was poor. Burr 

formation was present for all samples; however, it was remarkably higher with 60% ultrasonic 

power. With higher ultrasonic power, chunks of the polymeric matrix were removed from the 

surface creating and uneven surface with exposed carbon fiber. Overall, the integrity of the FDM 

CFRP plates could not be maintained throughout the RUM process and the non-uniform 

microstructure of these CFRPs furthered complicated the machining process. We could claim that 

RUM of FDM parts should be performed with lower ultrasonic power to limit the surface defects, 

fiber-matrix debonding, and burr formation.  

 

 

Figure 5-17 The digital photographs and SEM micrographs of the drilled holes in the FDM 

parts for various ultrasonic powers. The optical images of the enter and exit surfaces of 

drilled holes for UPs of a) 20, f) 40, and l) 60 %. The SEM micrograph of the surface 

morphology for the UPs of b, c, d, e) 20, g, h, i, k) 40, m, n, o, p) 60 %. The scale bar in b, g, 

and m are 1 mm and the scale bar in the rest of SEM images are 200 µm. 
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 Surface Roughness 

Typically, the holes made by additive manufacturing does not exhibit smooth surface due 

to the layer based nature of the process. Thus, surface roughness of the RUM surface in the 

additively manufacture components is of high significance for engineering applications. The 3D 

surface profile of the drilled hole surface via RUM was studied in this section for a deeper 

understanding of the surface morphology in LA-LOM and FDM parts. The measurement area was 

1.40 mm by 1.05 mm of the cylindrical surface, inside the drilled holes. The curvature of the drilled 

hole surface was significant and affected the accuracy of the surface roughness measurements, 

therefore, the curvature of the surface was removed via software manipulation to acquire a flat 

image showing the surface features. Figure 5-18 presents the 3D surface profile of LA-LOM parts 

drilled with the 7 experimental conditions described in Table 5-2.  The CFRP layers in LA-LOM 

samples were clearly recognizable in these images with less variation in surface roughness 

amongst different experimental conditions compared to FDM samples (Figure 5-19). The surface 

roughness varied between 0.5731.706 µm for LA-LOM parts with similar surface features and 

no apparent surface defects. The RUM surface with experimental conditions 2 and 5 exhibited the 

smoothest surfaces with Ra values below 1 µm (Figure 5-18 (b) and (e)). It was noticed that the 

TRS had a positive effect on the surface smoothness and higher TRS contributed to a lower surface 

roughness. Figure 5-19 shows the 3D surface profiles of the hole surface in FDM samples. The 

first evident difference with the drilled holes in LA-LOM parts was the rougher surface and larger 

amount of the surface defect in FDM samples. The Ra values varied in the range of 2.0236.048 

µm with some distinct differences in the surface features across various experimental conditions. 

The layered structure of the FDM parts are observable in some of the profile images, however, the 

RUM surfaces were completely altered in some samples due to the cutting forces higher than the 
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interfacial bonding strength. It could be observe that experimental conditions 2 and 3 resulted in 

the best surface roughness values which was below 3 µm. Overall, the RUM surface in FDM 

samples were severely damaged and the most probable explanation is the high cutting force and 

temperature that overwhelmed the interfacial bonding and the materials used in the FDM CFRP 

composite. The LA-LOM samples that were additively manufactured in-house was better suited 

for the RUM process with a stronger interfacial bonding and a higher volume fraction of carbon 

fiber.  

 

 

Figure 5-18 3D surface profile and the corresponding surface roughness of the RUM surface 

for LA-LOM CRFP plates using experimental conditions a) 1, b) 2, c) 3, d) 4, e) 5, f) 6, and 

g) 7.  
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Figure 5-19 3D surface profile and the corresponding surface roughness of the RUM surface 

for FDM CRFP plates using experimental conditions a) 1, b) 2, c) 3, d) 4, e) 5, f) 6, and g) 7.  

 

In order to investigate the trend of changes in the surface roughness relative to processing 

conditions, additional 2D surface roughness measurements were carried out. This time, 5 separate 

measurements were performed from various locations of the cylindrical surface inside the drilled 

holes for each experimental condition and the average surface roughness values were computed. 

Figure 5-20 shows the average surface roughness of RUM surface for both FDM and LA-LOM 

with respect to FR, TRS, and UP. Expectedly, the drilled holes in the LA-LOM samples had overall 

smoother surfaces over FDM samples, in agreement with the previous 3D measurements. The 

surface roughness for RUM surface of LA-LOM samples increased with higher feedrates (Figure 

5-20 (a)). When changing the FD from 0.02 to 0.04 mm/s the surface roughness slightly decreased 

but remained below 1 µm. However, it exhibited a sharp increase to above 1.5 µm for the FD of 
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0.06 mm/s. As expected, with increasing the TRS for LA-LOM parts, from 2000 to 6000 rpm, 

average surface roughness marginally decreased from about 1 µm to about 0.8 µm (Figure 5-20 

(b)).  Fig 10c shows that higher ultrasonic powers resulted in a slightly rougher surface, particularly 

when it was increased from 20% to 40% and ultimately 60%. Surface roughness ranged between 

0.8 and 0.9 µm for LA-LOM CRFPs. Overall, the FDM parts exhibited considerably higher surface 

roughness affected by burr formation and delamination. The best result (1.17±0.19 µm) were 

obtained with power of 40%, TRS of 4000 rpm, and FR of 0.04 mm/s. The surface roughness of 

the majority of the other FDM samples were above 2 µm.  

 

Figure 5-20 The influence of machining conditions, namely, a) feedrate, b) tool rotation 

speed, and c) ultrasonic power, on the average surface roughness of the drill holes.   
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 Cutting Temperature 

Cutting temperature is tremendously important in any machining process and could directly 

alter microstructure and surface characteristics of the machined surface. In RUM, processing 

conditions, type of coolant, and material properties are the major determinant factors of cutting 

temperature. Here, the RUM process used air cooling as oppose to fluid cooling. The decision was 

made on premise that polymers have high fluid absorbance and it can lead to delamination and 

affect mechanical properties of CFRP. Figure 5-21 shows the maximum temperature increase in 

the RUM process with air cooling. We used the temperature increment because the starting 

temperature can differ significantly between samples. The temperature increment was calculated 

based on the thermal images obtained from a FLIR camera during the RUM process.  As the 

micrographs of the surface also suggested, the cutting temperature increment was lower for LA-

LOM in all cases. Changing feedrate from 0.02 to 0.04 mm/s and ultimately 0.06 mm/s for both 

LA-LOM and FDM, decreased and increased temperature increment, respectively (Figure 5-21 

(a)).  TRS of 2000 and 4000 rpm for LA-LOM yielded similar temperature increments for LA-

LOM while 6000 rpm TRS decreased it from 57 to 36 °C. For FDM, temperature increment 

decreased and increased by increasing the TRS from 2000 to 4000 rpm and ultimately 6000 rpm, 

respectively. On the other hand, ultrasonic power had the least effect on the temperature increment, 

as it can be observed in Figure 5-21 (c).  
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Figure 5-21 The influence of RUM machining conditions, namely, a) feedrate, b) tool rotation 

speed, and c) ultrasonic power, on the increased temperature during the RUM process. 

Temperature increment is defined as the temperature difference between the starting point 

and the highest temperature occurred during RUM process.   

 

High cutting temperatures during the RUM process could be particularly harmful for the 

polymer matrix of the CFRP composite. It could degrade and melt the matrix resulting in burr 

formation, rough surface, delamination, and decreased mechanical properties. The effect of 

process parameter on the temperature increase was already investigated, however, we studied the 
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maximum temperature occurred during the process for LA-LOM (Figure 5-22) and FDM (Figure 

5-23) CFRPs. The temperature observation was performed for all the seven RUM experimental 

condition described in Table 5-2. With similar processing conditions, RUM of LA-LOM CFRPs 

resulted in lower cutting temperature relative to FDM CFRPS plates. The cutting temperature 

results confirmed the significantly higher amount of burr formation, thermal damage, and rougher 

surface in FDM parts due to a higher cutting temperature. It was observed that as feedrate 

increased, maximum cutting temperature decreased in LA-LOM parts. The temperature decrease 

was most probably due to the shorter machining time as feedrate increased. Conversely, the cutting 

temperature for LA-LOM was increased with higher tool rotation speeds, due to higher friction 

between tool and CFRP. Interestingly, ultrasonic power for both FDM and LA-LOM had minimal 

effect on the cutting temperature, as temperature increment analysis suggested in Figure 5-21 (c).  

 

Figure 5-22 The thermal images of the highest temperature (°C) occurred during the RUM 

of LA-LOM parts for conditions a) 1, b) 2, c) 3, d) 4, e) 5, f) 6, and g) 7, acquired from FLIR 

thermal camera.  
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Figure 5-23 The thermal images of the occurred highest temperature (°C) occurred during 

the RUM of FDM parts for conditions a) 1, b) 2, c) 3, d) 4, e) 5, f) 6, and g) 7, acquired from 

FLIR thermal camera.  

 

 Conclusions  

The feasibility of CNC milling and RUM drilling as mechanical finishing processes for 3D 

printed CFRP composite was studied through an experimental investigation. The 3D printing 

technology could process complex geometries unattainable by traditional molding methods, 

however, lacks certain engineering standards for surface finish and tolerance. Mechanical finishing 

processes could inexpensively improve the surface roughness and engineering quality of 3D 

printed composites. We employed two distinct 3D printing technologies of FDM and LA-LOM to 

fabricate the CFRP samples for this work. The CNC finishing process was performed using a 5-

axis CNC milling machine with a varying cutting depth (0.11.0 mm).  Furthermore, three levels 
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of various RUM parameters, namely feedrate (0.02, 0.04, 0.06 mm/s), tool rotation speed (2000, 

4000, 6000 rpm), and ultrasonic power (20, 40, 60 %) was considered for the feasibility study. 

Both 3D printing technologies were capable of incorporating CCF reinforcement into the 

fabrication process, however, the mechanisms was entirely different. The LA-LOM process used 

prepreg CFRP sheets with imbedded CCF and was able to control the fiber alignment in each 3D 

printed layer. On the other hand, the FDM 3D printer that was used, had two separate nozzles for 

the CCF and polymeric matrix. LA-LOM could generally offer higher flexibility and CCF 

concentration than FDM.  

The surface morphology and specifically surface roughness of the original 3D printed 

surfaces and finished surfaces were studied through 3D surface profiles and microscopic images 

of the respected surfaces. The surfaces parallel (horizontal) and perpendicular (vertical) to the 3D 

printed layers were studied before and after finishing with varying cutting depths. The surface 

roughness of unfinished horizontal and vertical LA-LOM surfaces was 2.0±0.2 and 10.0±0.4 μm, 

respectively. On the other hand, the surface roughness of horizontal and vertical surfaces of FDM 

components was in the range of 6 – 7 μm. As the result of the finishing process, the average surface 

roughness of the CFRP composites was improved 70% for FDM and 60% for LA-LOM 

components. The surface features of the finished CFRPs exhibited no delamination or defects and 

the integrity of the structure was fully maintained. The proposed finishing method in this work is 

an inexpensive solution to some of the most prominent drawbacks of 3D printed CFRP composites 

which are the surface finish and engineering quality. CFRP components with CCF reinforcement 

could be 3D printed and finished via CNC milling with less cost and waste compared to traditional 

CFRP production methods and a predictable engineering quality thanks to the mechanical finishing 

process.  
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Cutting force was generally higher in RUM of LA-LOM samples relative to FDM. It 

increased for both FDM and LA-LOM with higher feedrates. Tool rotation speed on the other hand 

had the opposite effect and the cutting force decreased as tool rotation speed increased, for both 

LA-LOM and FDM samples. Increasing the ultrasonic power contributed to a higher cutting force 

in RUM of LA-LOM components. However, the effects of ultrasonic power on cutting force in 

FDM parts was insignificant. The SEM micrographs revealed that the surface finish of the drilled 

hole in LA-LOM components was smoother than FDM counterpart with significantly less surface 

defects, burr formation, and pullout delamination. Higher feedrate and tool rotation speed yielded 

better surface morphology while the effect of ultrasonic power on the surface morphology was not 

substantial for both additive manufacturing techniques. The surface roughness of RUM holes was 

remarkably lower in the drilled hole in LA-LOM samples relative to FDM parts. In LA-LOM parts, 

surface roughness improved with lower feedrates, while higher tool rotation speed and ultrasonic 

power slightly increased and decreased the average surface roughness, respectively. The cutting 

temperature increase during the RUM process was typically higher for FDM samples over LA-

LOM. We could conclude that typically higher feedrate increased temperature increment while 

higher tool rotation speed decreased it. In contrast, ultrasonic power had no significant influence 

on the temperature increment. In addition to temperature increment, Maximum cutting temperature 

was also higher in RUM of FDM parts resulting in more thermal damage and burr formation. 
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Chapter 6 - Conclusions  

 

Additive manufacturing (AM), or 3D printing, introduced a new revolutionary concept into 

the manufacturing industry and made producing complex products with customized features 

directly from a digital file a reality. Fiber reinforcement significantly improves the mechanical 

properties of 3D printed parts. It can be implemented in various AM techniques, such as FDM, 

SLA, SLS, LOM, and extrusion.  However, most 3D printing methodologies of composite 

materials still facing major challenges need to overcome before becoming a mainstream 

manufacturing method. Void formation during printing, adhesion of fibers and polymer matrix, 

and challenges in continuous fiber printing are all amongst the existing issues in 3D printing of 

fiber composites that negatively impact the mechanical properties. Moreover, most of the 

commercial 3D printers designed for specific resins and introduction of fillers can lead to blockage, 

wear, non-adhesion, and increased curing times. In this work, a new approach for laser assisted 

AM of continuous fiber reinforced thermoplastic composites was developed with the motivation 

of increasing the mechanical properties of additively manufactured fiber reinforced polymer 

composites. This approach exhibits superior mechanical properties due to continuous fiber 

reinforcement, high fiber weight ratio, minimized void content, and superior interfacial bonding. 

In this technique, prepreg composites sheet containing continuous fiber reinforcement is the 

feedstock. The prepreg sheets are laser cut and laser bonded layer upon layer based on the CAD 

geometry to obtain the desired geometry. This novel approach was inspired by LOM and used for 

3D printing of continuous carbon fiber reinforced thermoplastics (CFRTPs) by impending prepreg 

composite sheets.  
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Glass and carbon fiber reinforced thermoplastics have been implemented in this study. The 

microstructure of these 3D printed composites were characterized by optical microscopy, scanning 

electron microscopy (SEM), and micro computed tomography (CT) scans. Superior consolidation 

of prepreg layers with minimal visible void or gap were observed in the additively manufactured 

composites. In this work, composite parts can be designed with varying fiber arrangements to meet 

the requirements of the particular application and the fiber alignment angle for each layer can be 

easily controlled.  The interlayer properties of these materials were tested through various tests, 

such as T-peel test and lap sheer test. In comparison to conventional manufacturing techniques, 

the interlayer bonding properties were decent and were fairly close to traditional methods. 

However, the interlayer properties achieved in this work is significantly better that existing AM 

technologies. In addition, mechanical properties, namely tensile and flexural properties, of bulk 

composites manufactured by our method is also excellent relative the strongest 3D printed 

composites by other techniques. The excellent interfacial bonding strength and high volume ratio 

of continuous fiber contribute to the highest reported tensile strength of 668.3 MPa and flexural 

strength 591.16 MPa for our 3D printed carbon fiber composites. In addition, we developed a 

validated finite element (FE) model capable of predicting temperature distribution in the CFRTP 

structure during the laser bonding process. Temperature disturbing at the laminate interface is the 

primary factor in the bonding quality and the FE model could help modifying and optimizing this 

technique for various structural composites. The temperature profile obtain by the FE analysis 

were validated at various laser powers and printing speeds to ensure the accuracy of the model. 

The experimental data was captured using micro thermocouples embedded between layers during 

the AM process. During this laser assisted 3D printing technique, temperature at the material 

interface could reach well above the matrix melting point.  
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AM technologies in general suffers from poor surface quality and uncertain engineering 

quality. Mechanical finishing processes could concurrently solve these surface issues with the 3D 

printed composites components. We demonstrated CNC milling and rotary ultrasonic machining 

(RUM) as two mechanical finishing process to improve the surface finish of the additively 

manufactured composites. We also compared the surface quality results with FDM CFRTP parts 

before and after the finishing process. The surface roughness and surface morphology of the 

original unfinished and finished surfaces with various cutting depths are extensively studied to 

investigate the feasibility of the proposed finishing technique. A smooth, consistent, and 

predictable surface morphology is achieved for various surfaces and drilled holes, demonstrating 

a substantial improvement over the original 3D printed surfaces. 

Finally, the AM technique explored in this dissertation is capable of scaling up to meet the demand 

of high volume productions in automotive, aerospace, marine, and construction industries and 

provide excellent rigidity, light weight, and versatility of design and material choice. It could also 

help automated the labor intensive composite manufacturing industry to bring down the cost of 

production and eliminate waste by streamlining the production. Overall, our proposed new method 

offer an alternative direction in AM of continuous fiber reinforced thermoplastic polymer 

composites to solve some of the fundamental issues associated with current techniques.
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Appendix A - Additional Micro CT Scans for continuous carbon 

fiber reinforced PA6 

 

 

Figure A-1 3D illustration of continuous fiber reinforcement in the 3D printed unidirectional 

CFRTPs 

 

 

Figure A-2 Cross sectional CT scan of the 3D printed unidirectional CRTPs 
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Figure A-3 3D illustration of continuous fiber reinforcement in the 3D printed cross-ply 

CFRTPs 

 

 

Figure A-4 Cross sectional CT scan of the 3D printed cross-ply CFRTP 
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Figure A-5 3D illustration of continuous fiber reinforcement in the 3D printed [0/-45/0/45]s 

CFRTPs 

 

 

 

Figure A-6 Cross sectional CT scan of the 3D printed [0/-45/0/45]s CFRTPs 
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Figure A-7 3D illustration of continuous fiber reinforcement in the G-CF samples 

 

 

Figure A-8 Cross sectional CT scan of the G-CF samples 

 

 


