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Abstract 

 

Crash prediction models in the Highway Safety Manual (HSM) are used to quantify the 

safety experience of existing and new roadways. Safety performance functions (SPFs) or crash 

prediction models are statistical formulas developed on limited data from a few selected states, 

Kansas not being one of those states. Therefore, the HSM recommends calibration of HSM-

default SPFs, or development of local SPFs, to enhance accuracy of predicted crash frequency. 

This dissertation demonstrates the HSM calibration procedure and its’ quality assessment for 

freeway segments, speed-change lanes, ramp segments, and crossroad ramp terminals in Kansas. 

The study used three years of recent crash data, the most recent geometric data, and HSM-

recommended sample sizes for all facilities considered for the calibration.    

The HSM methodology overpredicted all fatal and injury (FI) crashes and underpredicted 

all property damage only (PDO) crashes for freeway segments. The HSM methodology 

consistently underpredicted both FI and PDO crashes for both entrance- and exit-related speed-

change lanes. The HSM methodology overpredicted all FI crashes, underpredicted multiple 

vehicle PDO crashes, and overpredicted single vehicle PDO crashes for entrance ramp segments. 

In the case of exit ramp segments, the HSM methodology underpredicted all multiple vehicle 

crashes and overpredicted all single vehicle crashes. The HSM methodology overpredicted all FI 

crashes and underpredicted all PDO crashes for both signal- and stop-controlled crossroad ramp 

terminals.  

Cumulative residual plots and coefficient of variation were used to evaluate the quality of 

calibrated HSM-default SPFs. Results of calibration quality assessment indicated that estimated 

calibration factors were satisfactory for all freeway and ramp facilities considered in this study. 

However, for further accuracy and comparison purposes, calibration functions were developed to 



    

 

 

improve the fit to local data. Calibration functions were better fitted compared to calibrated 

HSM-default SPFs for freeway and ramp facilities in Kansas. Challenges faced, how those 

challenges were addressed, and data collection techniques used in this study are discussed. In 

summary, estimated calibration factors and developed calibration functions of this study would 

greatly improve making accurate decisions related to freeway and ramp safety in Kansas.   
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all property damage only (PDO) crashes for freeway segments. The HSM methodology 

consistently underpredicted both FI and PDO crashes for both entrance- and exit-related speed-

change lanes. The HSM methodology overpredicted all FI crashes, underpredicted multiple 

vehicle PDO crashes, and overpredicted single vehicle PDO crashes for entrance ramp segments. 

In the case of exit ramp segments, the HSM methodology underpredicted all multiple vehicle 

crashes and overpredicted all single vehicle crashes. The HSM methodology overpredicted all FI 

crashes and underpredicted all PDO crashes for both signal- and stop-controlled crossroad ramp 

terminals.  

Cumulative residual plots and coefficient of variation were used to evaluate the quality of 

calibrated HSM-default SPFs. Results of calibration quality assessment indicated that estimated 

calibration factors were satisfactory for all freeway and ramp facilities considered in this study. 

However, for further accuracy and comparison purposes, calibration functions were developed to 



    

 

 

improve the fit to local data. Calibration functions were better fitted compared to calibrated 

HSM-default SPFs for freeway and ramp facilities in Kansas. Challenges faced, how those 

challenges were addressed, and data collection techniques used in this study are discussed. In 

summary, estimated calibration factors and developed calibration functions of this study would 

greatly improve making accurate decisions related to freeway and ramp safety in Kansas.   
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1 

 

 – Introduction 
 

1.1 Background 

Motor vehicle crashes are one of the top 10 causes of death in the United States (US).  

During 2017, 37,133 people were killed in roadway crashes in the US. This number was a 

decrease from 37,806 recorded in the previous year (NTHSA, 2019). However, there was a 6.5% 

increase in these type of deaths between 2015 and 2016; and an 8.4% increase in deaths between 

2014 and 2015 in the US. The 8.4% increase was the second highest percentage increase 

recorded after the all-time record high of 9.4% between 1963 and 1964 (NTHSA, 2017). In 

Kansas, 461 people were killed due to roadway crashes in 2017 – an increase from 429 deaths 

(+7%) recorded in 2016 (NTHSA, 2019). Nevertheless, this 7% increase in deaths between 2016 

and 2017 was much lower than the 21% increase recorded between 2015 and 2016 (NTHSA, 

2019). Table 1.1 tabulates the crash distribution on Kansas roadways by functional class from 

2012 to 2016.  

Table 1.1. Distribution of crashes by functional class in Kansas (2012-2016) 

Functional Class 

Road 

Length in 

Miles 

(2016) 

% 

Road 

Length 

DVMT 

(2016) 

% 

DVMT 

FI 

Crashes 

(2012-

2016) 

FI 

Crashes 

per 

Mile 

Total 

Crashes 

(2012-

2016) 

Total 

Crashes 

per 

Mile 

Interstate 874 0.6 21,372,166 24.4 7,825 1.8 34,763 8.0 

Other FWYS/EXPYS 595 0.4 8,915,631 10.2 3,798 1.3 16,116 5.4 

Other Principal Arterial 2,946 2.1 12,355,244 14.1 18,490 1.3 76,108 5.2 

Minor Arterial 5,630 4.0 18,729,175 21.4 15,679 0.6 64,769 2.3 

Major Collector 24,210 17.0 13,275,745 15.1 8,023 0.1 36,669 0.3 

Minor Collector 9,766 6.9 1,520,423 1.7 834 0 3,373 0.1 

Local Road 98,026 69.0 11,543,471 13.2 13,756 0 69,274 0.1 

All 142,047 100 87,711,855 100 68,405 0.1 301,072 0.4 

Note: DVMT - Daily Vehicular Miles Traveled, FI – Fatal and Injury  
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For the period 2012 to 2016, both fatal and injury (FI) crashes per mile, and total crashes 

per mile were higher on interstate highways and other freeways/expressways than those for all 

other functional classes. Over the past years, safety-related decisions at the project level had been 

made based on engineering judgement and adherence to accepted national guidance (Lubliner, 

2011). However, these tools do not allow comparison of safety performance of dissimilar 

roadway facilities or quantification of added safety benefits (Lubliner, 2011).  

In 2010, the American Association of State Highway and Transportation Officials 

(AASHTO) published the first edition of the Highway Safety Manual (HSM) as a result of 

widespread road safety research conducted over the previous few of decades (AASHTO, 2010). 

The project development process designed by AASHTO discusses the standard phases of a 

project, from planning to post-construction operations and maintenance (AASHTO, 2014).   The 

roadway safety management process in Part B of the HSM plays a leading role in the project 

development process. The roadway safety management process is a cyclic procedure where 

network screening, diagnosis, countermeasure selection, project prioritization, and safety 

effectiveness evaluation take place within the cycle. Network screening is a major step in the 

roadway safety management process, where sites that require and benefit from safety treatment 

to improve highway safety performance are identified. Network screening using the Empirical 

Bayes (EB) method is the most preferred and reliable approach as it addresses the regression-to-

mean (RTM) effect (Gan et al., 2016). The RTM effect occurs, when a site experiences high 

(low) crashes over a certain period, and it is statistically probable it will experience 

comparatively low (high) crashes in the following period of the same duration (AASHTO, 2010). 

The EB approach addresses the RTM effect by estimating the expected crash frequency of 

planning, design, operation, and maintenance decisions combining the predicted crash frequency 
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with the observed crash frequency. The predicted crash frequency is estimated using a safety 

performance function (SPF), preferably calibrated to local conditions, which explains the 

relationship between exposure and mean crash frequency. SPFs for rural multilane highways, 

rural two-lane two-way roads, and urban and suburban arterials are provided in Part C of the 

HSM (AASHTO, 2010). Chapters 18 and 19 of the HSM supplement to the first edition 

published in 2014 provides SPFs for freeway and ramp facilities (AASHTO, 2014).  The 

calibration procedure for those facilities is provided in Appendix B of the HSM supplement 

(AASHTO, 2014).  

1.2 Freeways in Kansas 

The HSM defines freeways as fully access-controlled roadways having grade separation 

with all intersecting highways that can only be accessed through grade-separated interchanges 

(AASHTO, 2014). All interstate (I) highways and some United States (US) and Kansas (K) 

roadways (other freeways and expressways) in Kansas meet the HSM freeway criteria.  Figure 

1.1 highlights freeways in Kansas considered for this study. They are, I-70, I-35, I-135, I-235, I-

335, I-470, I-435, I-635, I-670, US-69, US-59, US-81, US-75, K-10, and K-96 roadways where 

the speed limit is more than or equal to 65 mph.  

 

 

 

 

 

 

 
Figure 1.1. Freeways under study 
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Freeway crash prediction models in the HSM are classified by area type (urban, rural) 

and cross section (4, 6, 8 and 10 through lanes) combinations, resulting in rural freeways with 4, 

6, and 8 through lanes (R4F, R6F, and R8F) and urban freeways with 4, 6, 8, and 10 through 

lanes (U4F, U6F, U8F, and U10F). Table 1.2 provides mileage of freeways considered in this 

study by freeway types as defined in the HSM. In Kansas, a majority of freeways are rural 4-lane 

freeways (747 miles), whereas rural 8-lane and urban 10-lane freeways are not present within 

state boundaries.   

Table 1.2. Mileage by freeway types in Kansas 

Freeway Type Freeway Mileage  (miles) 

Rural 4-lane (R4F) 746.99 

Rural 6-lane (R6F) 11.23 

Urban 4-lane (U4F) 207.36 

Urban 6-lane (U6F) 54.00 

Urban 8-lane (U8F) 7.37 

Total 1,025.93 

 

1.3 Problem Statement 

According to the Kansas Strategic Highway Safety Plan (SHSP) published in 2017, the 

goal is to reduce fatalities by half for future years (KDOT, 2017b). Freeway crashes have a 

greater impact on motor vehicle fatalities in Kansas because freeways record the highest crash 

rates per mile, in both FI and total crashes, among all other roadway functional classes. It is, 

therefore, beneficial to have accurate crash prediction models for Kansas freeway and ramp 

facilities to make effective decisions in planning, design, operation, and maintenance processes, 

as KDOT maintains more than 1,000 miles of freeways.  

SPFs provided in the HSM have been established for a set of base conditions distinct to 

each highway facility. These SPFs are statistical formulas developed from limited data gathered 
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from a few selected states. For example, the original freeway crash prediction models in the 

HSM were developed based on data gathered from California, Maine and Washington states 

(Bonneson et al., 2012). Weather conditions, animal population, topography, crash-reporting 

thresholds, highway conditions, driving culture, and lighting are some of the factors associated 

with crashes and are expected to be different from state to state. Therefore, use of HSM-default 

SPFs may result in biased crash frequency predictions compared to actual crash counts recorded 

each year. When applying HSM-default SPFs to a certain jurisdiction, calibration of these SPFs 

is highly recommended to avoid biased crash predictions. Jurisdictions may first calibrate 

existing HSM-default SPFs and assess the quality of the calibration factors before developing 

local SPFs, as HSM-default SPFs are already in place (Srinivasan et al., 2013). As the calibration 

factor is a single multiplier, the quality assessment of calibrated HSM-default SPFs is mainly 

conducted to capture inconsistencies of reported crashes among selected sites (Lyon et al., 2016). 

Development of local SPFs necessitates personnel with a high level of know-how in statistical 

modeling, where transportation agencies without in-house expertise commonly hire university 

consultants (Srinivasan et al., 2013).  

1.4 Study Objectives 

Primary objectives of this research are as follows:  

I. To apply the calibration procedure provided in Appendix B of the HSM to Kansas 

freeway segments, speed-change lanes, ramp segments, and crossroad ramp terminals.  

II. To assess the quality of estimated calibration factors for all facility types considered in 

this study. 

III. To estimate calibration functions when estimated calibration factors do not provide a 

better fit to local data. 
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IV. To develop calibration factors by ranges of Annual Average Daily Traffic (AADT) and 

segment length. 

V. To compare performance among estimated calibration factors; developed calibration 

functions; and estimated calibration factors by ranges of AADT and segment length using 

cumulative residual plots. 

VI. To provide recommendations for the best safety prediction approach for each facility type 

considered in this study.  

1.5 Organization of the Dissertation  

  This dissertation consists of six chapters. Chapter 1 provides background on freeways in 

Kansas, freeway-related crashes, and the need for accurate crash prediction models.   A review of 

previous research carried out on HSM calibrations, sample size guidelines, and SPF assessment 

are provided in Chapter 2. Chapter 3 explains required data variables, data collection techniques, 

and methodologies used in this study to develop calibration factors and calibration functions for 

freeway segments, speed-change lanes, ramp segments, and crossroad ramp terminals in Kansas. 

Estimated calibration factors; quality assessment of estimated calibration factors; developed 

calibration functions; and developed Kansas-specific crash proportions for freeway segments, 

speed-change lanes, ramp segments, and crossroad ramp terminals are provided in Chapter 4. 

Chapter 5 provides a research summary, conclusions, discussion of the application of calibrated 

crash prediction models, recommendations, and limitations based on research outcomes.   
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 – Literature Review 
 

The first part of this chapter is a discussion of calibration studies conducted in relation to 

freeway and ramp facilities, which are covered in Chapters 18 and 19 of the supplement to the 

first edition of the HSM (AASHTO, 2014). In the latter part of this chapter, past HSM 

calibration studies in Kansas, a review of sample size determination for calibration, and SPF 

assessment studies are discussed.  

2.1 Research Gap 

At the time this research was conducted, only two states in the US had conducted the 

calibration for freeway and ramp facilities following the HSM supplement due to its complexity 

in data collection and novelty in procedures. Maryland and Missouri were the very first to 

calibrate HSM freeway and ramp SPFs to their local conditions following the HSM supplement 

to the first edition published in 2014. At the time this study was conducted, no comprehensive 

study had conducted on calibration of HSM crash prediction models for ramps segments. 

Maryland could not calibrate ramp crash prediction models due to insufficient crash data, and 

Missouri used the HSM recommended minimum sample size of 30 sites for the calibration 

mainly due to required extensive data collection. As data systems vary from state to state, the 

HSM does not specify data collection and data handling techniques needed to perform the 

calibration. As the HSM supplement is relatively new, this study would be additional guidance 

for future HSM calibration studies thereby stimulating use of the HSM for highway safety-

related decision making. 



    

8 

 

2.2 HSM Calibration for Freeways and Ramps 

Shin et al. (2016) carried out the most recent comprehensive freeway and ramp 

calibration study using Maryland data. The study used crash data from 2008 to 2010 to perform 

the calibration for freeway segments, speed-change lanes, and ramp terminals. However, this 

study did not estimate calibration factors for ramps and Collector-Distributor (C-D) roads due to 

insufficient crash data. The researchers obtained 60% of required geometric and condition data 

from the Maryland State Highway Administration database and the remaining data from Google 

Earth. Furthermore, the study mentioned that about 70% of the calibration effort was put into 

data gathering.  Once required data were gathered, the study used the Interactive Highway Safety 

Design Model (IHSDM) developed by the Federal Highway Administration (FHWA) to compute 

local calibration factors (USDOT, 2019b).  

Results indicated that freeways, speed-change lanes, and ramp terminals in Maryland 

encountered fewer crashes compared to HSM base conditions during the study period. Table 2.1 

summarizes estimated calibration factors for Maryland freeways, speed-change lanes, and ramp 

terminals. Other than the predictive models suggested in the HSM, the Maryland study also 

computed calibration factors separately for each area type (urban and rural), cross section type 

(4, 6, 8, and 10 lanes), crash type (multiple vehicle (MV) and single vehicle (SV)), severity type 

(fatal and injury (FI) and property damage only (PDO)), and control type (signal-controlled and 

stop-controlled) combinations. This was done because in HSM chapters 18 and 19, HSM-default 

crash distributions or jurisdiction-specific crash distributions are applied after obtaining the 

calibration factors (AASHTO, 2014, pp.18-13, pp.19-15). Therefore, the Maryland study 

compared the sum of squared deviations (observed crashes minus predicted crashes) of calibrated 

facility types between HSM-default crash distributions and Maryland-specific crash distributions 
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and, provided recommendations accordingly. The study recommended Maryland-specific crash 

distributions for all freeway and ramp facilities considered in this study. However, disaggregated 

calibration factors were not recommended as no significant improvements were observed, and 

most of the facility types did not meet the HSM minimum sample size requirements.  

Table 2.1. Estimated calibration factors for HSM Chapters 18 and 19 in Maryland (2008-

2010) (Shin et al., 2016) 

Facility Type 

Crash & 

Severity 

Type 

Number of 

Segments 

Observed 

Crashes 

Predicted 

Crashes 

Calibration 

Factor 

Freeways 

MV FI 564 1,190 2,617.94 0.4546 

MV PDO 564 1,890 6,610.84 0.2859 

SV FI 564 910 1,451.53 0.6269 

SV PDO 564 1,735 2,705.70 0.6412 

Speed-change 

Lanes 

EN FI 264 358 605.63 0.5911 

EN PDO 264 600 1,139.64 0.5265 

EX FI 254 336 438.32 0.7666 

EX PDO 254 572 649.53 0.8806 

Ramp 

Terminals 

ST FI 147 83 122.85 0.6756 

SG FI 172 425 1,213.81 0.3501 

ST PDO 147 77 203.91 0.3776 

SG PDO 172 511 1,690.71 0.3022 
Note: MV – Multiple Vehicle, SV – Single Vehicle, FI – Fatal and Injury, PDO – Property Damage Only, EN – 

Entrance-related, EX – Exit-related, ST – Stop-Controlled, SG – Signal-Controlled  

 

Sun et al. (2013) estimated calibration factors for eight intersection types and five 

segment types provided in the first edition of the HSM using crash data from 2009 to 2011. This 

study also included calibration of three freeway types following the proposed freeway 

methodology in Appendix C of the HSM published in 2010. Data required for the calibration 

were gathered from a variety of sources, including the Transportation Management System 

database (TMS) of the Missouri Department of Transportation, Google street view photographs, 

and other sources. Samples were randomly selected for calibration considering geographic 

representativeness across the state. However, this sampling technique was not feasible for some 

freeway types as sites were located in only a few districts. Results for freeways showed 



    

10 

 

calibration factors for FI crash models to be comparatively lower than PDO crash models. Table 

2.2 tabulates estimated calibration factors for rural 4-lane, urban 4-lane, and urban 6-lane 

freeways in Missouri.  

Table 2.2. Estimated freeway calibration factors in Missouri (2009-2011) (Sun et al., 2013) 

Facility Type 

Crash & 

Severity 

Type 

Number of 

Segments 

Observed 

Crashes 

Predicted 

Crashes 

Calibration 

Factor 

Rural 4-lane 

Freeways 

MV FI 47 150 164.83 0.91 

MV PDO 47 645 325.76 1.98 

SV FI 47 268 348.05 0.77 

SV PDO 47 1,229 813.91 1.51 

Urban 4-lane 

Freeways 

MV FI 39 153 109.29 1.40 

MV PDO 39 669 186.35 3.59 

SV FI 39 142 202.86 0.70 

SV PDO 39 583 359.88 1.62 

Urban 6-lane 

Freeways 

MV FI 54 424 353.33 1.20 

MV PDO 54 1,482 909.20 1.63 

SV FI 54 206 203.96 1.01 

SV PDO 54 477 542.05 0.88 
Note: MV – Multiple Vehicle, SV – Single Vehicle, FI – Fatal and Injury, PDO – Property Damage Only  

 

Berry (2017) estimated calibration factors for urban 6-lane freeway segments in Missouri 

using crash data from 2012 to 2014. The sample of urban 6-lane segments used in this study was 

the exact same sample used by Sun et al. in 2013. However, the study followed methodology 

provided in Appendix B of the HSM supplement, where the high-volume parameter was 

introduced. Results showed the HSM predictive method underpredicted MV PDO crashes and 

overpredicted SV FI crashes, MV FI crashes, and SV PDO crashes for 6-lane freeways in 

Missouri. Table 2.3 shows estimated calibration factors for urban 6-lane freeways in Missouri.  
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Table 2.3. Estimated freeway calibration factors in Missouri (2012-2014) (Berry, 2017) 

Facility Type 

Crash & 

Severity 

Type 

Number of 

Segments 

Observed 

Crashes 

Predicted 

Crashes 

Calibration 

Factor 

Urban 6-lane 

Freeways 

MV FI 54 411 486 0.846 

MV PDO 54 1,281 1,050 1.220 

SV FI 54 189 196 0.964 

SV PDO 54 443 519 0.854 
Note: MV – Multiple Vehicle, SV – Single Vehicle, FI – Fatal and Injury, PDO – Property Damage Only 

 

Sun et al. (2016a) also estimated calibration factors for speed-change lanes, ramps, and 

ramp terminals in Missouri using crash data from 2010 to 2012. The study used the Enhanced 

Interchange Safety Analysis Tool (ISATe) for estimating calibration factors. One of the major 

challenges encountered in this study was the issue of locating crashes within the interchange 

area.  Another study was conducted separately, where 12,409 crashes and 9,168 crash reports 

were manually reviewed to identify crashes at freeway interchange areas in Missouri (Sun et al., 

2016b). All interchange facilities were manually classified according to HSM definitions, and 

sites were selected randomly maintaining geographical representativeness across the state. 

Whenever possible, the study managed to obtain 30 samples for the calibration by fulfilling the 

HSM minimum sample size requirement of 30 sites. Data required for the calibration were 

gathered from a variety of sources such as the TMS database, Google street-view photographs, 

web-based tools, and imported aerial photographs to AutoCAD. Table 2.4 provides estimated 

calibration factors for Missouri speed-change lanes, and Table 2.5 provides estimated calibration 

factors for Missouri ramps and ramp terminals. Sun et al. (2018) recalibrated 16 highway 

facilities in Missouri including rural 4-lane freeway segments, urban 4-lane freeway segments, 

and urban 6-lane freeway segments using crash data from 2012 to 2014. The study used the 
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Interactive Highway Safety Design Model (IHSDM) software for the recalibration (USDOT, 

2019b).   

Table 2.4. Estimated calibration factors for Missouri speed-change lanes (2010-2012) (Sun 

et al., 2016) 

Facility Type 

Crash & 

Severity 

Type 

Number of 

Segments 

Observed 

Crashes 

Predicted 

Crashes 

Calibration 

Factor 

Rural Speed-

change lanes 

EN FI 30 3 4.201 0.714 

EN PDO 30 15 13.023 1.152 

EX FI 30 4 4.930 0.811 

EX PDO 30 13 11.184 1.162 

Urban 4-lane 

Speed-change 

lanes 

EN FI 30 6 10.026 0.598 

EN PDO 30 15 23.598 1.314 

EX FI 30 4 8.788 0.455 

EX PDO 30 11 21.192 0.519 

Urban 6-lane 

Speed-change 

lanes 

EN FI 30 20 46.375 0.431 

EN PDO 30 74 100.095 0.739 

EX FI 30 14 31.63 0.443 

EX PDO 30 40 82.991 0.482 
Note: FI – Fatal and Injury, PDO – Property Damage Only, EN – Entrance-related, EX – Exit-related 

 

 

Srinivasan and Carter (2011) developed SPFs for rural and urban freeways within the 

influence of interchanges and outside the influence of interchanges in North Carolina. Smith et 

al. (2017) developed calibration factors for rural 4-lane, urban 4-lane, urban 6-lane, and urban 8-

lane freeways in North Carolina using crash data from 2009 to 2015 following the freeway 

models provided in NCHRP 17-45 (Bonneson et al., 2012). Lu et al. (2014) developed SPFs for 

Florida freeways and freeway interchange areas using the Negative Binomial (NB) method 

employing road geometry data from 2008 and reported crash data from 2007 to 2010. Then, the 

study compared performance of calibrated SafetyAnalyst-default SPFs with Florida-specific 

SPFs. Results indicated Florida-specific SPFs were better fitted to local data than calibrated 

SafetyAnalyst-default SPFs. Michigan estimated calibration factors for all facility types covered 
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in the first edition of the HSM in 2012 using data from 2005 to 2010 (MDOT, 2012). The study 

also included calibration of freeways and freeway interchange areas with regard to total crashes 

and FI crashes. Bonneson and Pratt (2008) developed calibration factors for rural freeways with 

four to eight lanes and urban freeways with four to ten lanes, in Texas. 

Table 2.5. Estimated calibration factors for Missouri ramp facilities (2010-2012) (Sun et al., 

2016) 

Facility Type 

Crash & 

Severity 

Type 

Number of 
Segments 

Observed  
Crashes 

Predicted 
Crashes 

Calibration 
Factor 

Rural Entrance 

Ramps 

SV FI* 30 0 2.614 1.000 

SV PDO 30 3 3.900 0.769 

MV FI* 30 0 0.101 1.000 

MV PDO 30 1 0.402 2.489 

Rural Exit 
Ramps 

SV FI 30 2 5.611 0.356 

SV PDO 30 12 7.836 1.531 

MV FI* 30 0 0.027 1.000 

MV PDO* 30 0 0.163 1.000 

Urban Entrance 
Ramps 

SV FI 30 6 6.573 0.913 

SV PDO 30 12 10.704 0.121 

MV FI 30 3 1.119 2.681 

MV PDO 30 8 1.258 6.390 

Urban Exit 

Ramps 

SV FI 30 9 10.713 0.840 

SV PDO 30 20 15.798 1.266 

MV FI 30 2 0.850 2.354 

MV PDO 30 9 1.714 5.252 

Rural D4 
ST FI 32 7 8.302 0.843 

ST PDO  32 34 15.108 2.251 

Urban D4 
ST FI 30 23 18.765 1.226 

ST PDO  30 91 44.948 2.025 

D4 with 2-lane 

crossroad 

SG FI 30 84 77.300 1.087 

SG PDO 30 311 131.767 2.360 

D4 with 4-lane 

crossroad 

SG FI 32 161 188.842 0.853 

SG PDO 32 523 285.756 1.830 

D4 with 6-lane 
crossroad 

SG FI 10 88 100.744 0.874 

SG PDO 10 357 166.052 2.150 

Rural A2  
ST FI 16 2 6.905 0.290 

ST PDO  16 10 6.650 1.504 

Urban A2  
ST FI 23 19 18.359 1.035 

ST PDO  23 51 32.000 1.594 

A2 
SG FI 19 89 166.365 0.535 

SG PDO 19 273 232.924 1.172 
Note: *denotes that the facility type did not have any crashes during the study period, a value of 1.000 (i.e. national 

data was used) MV – Multiple Vehicle, SV – Single Vehicle, FI – Fatal and Injury, PDO – Property Damage Only, 

EN – Entrance-related, EX – Exit-related, ST – Stop-Controlled, SG – Signal-Controlled  
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La Torre et al. (2014) estimated calibration factors for freeway segments and speed-

change lanes in Italy. The calibration was accomplished using 56 freeway sections having two, 

three, and four lanes. Crash data over a five-year period from 2005 to 2009 was considered for 

the analysis. Results showed a reasonable transferability of HSM predictive models to the Italian 

freeway network. It was identified that freeway segment models performed better compared to 

speed-change lane models because sample sizes for speed-change lanes were smaller. In 

addition, crash predictions for FI models were more accurate than PDO models.  

La Torre et al. (2019) proposed a new methodology to transfer HSM freeway crash 

prediction models to European freeways. This study presented two crash prediction models for 

SV FI and MV FI crashes that could be applied on Italian rural freeways based on previously 

developed local SPFs. The dataset included FI crashes reported for a five-year period from 2009 

to 2013 along 884 Km of freeway segment length.  In the interest of improving reliability of 

crash predictions, crash modification factors (CMFs) and calibration factors were developed and 

applied. Further, the goodness-of-fit of all models were compared using the Pearson’s χ2 statistic, 

root mean square error, and residual analysis. Results presented a good fit of both models to the 

dataset used. Finally, these models were suggested for use as a tool for crash predictions on 

Italian freeways.  

 

2.3 HSM Calibration Studies in Kansas 

Karmacharya and Dissanayake (2019) estimated calibration factors and developed 

calibration functions for predicting crashes at urban intersections in Kansas. This study included 

four main urban intersection types such as three-leg unsignalized intersections with stop control 

on the minor approach (3ST), three-leg signalized intersections (3SG), four-leg unsignalized 

intersections with stop control on the minor approach (4ST), and four-leg signalized intersections 
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(4SG). The study period for 3ST, 3SG, and 4SG intersections was considered as 2013 to 2015 

and for 4ST intersections the study period was taken as 2014 to 2016 as more recent data was 

available. Calibration factors showed the HSM methodology underpredicted both FI and total 

crashes for 4SG intersections and overpredicted both FI and total crashes for 3ST, 4ST, and 3SG 

intersections. This study compared the performance of calibration functions and calibration 

factors using two goodness-of-fit measures and concluded that calibration functions had better 

reliability as compared to calibration factors. Aziz and Dissanayake (2016) analyzed HSM 

calibration procedures for rural multilane segments and intersections in Kansas. Results showed 

the HSM methodology overpredicted FI crashes for 4-lane divided and 4-lane undivided 

segments and underpredicted total crashes for 4-lane divided and 4-lane undivided segments.  

Lubliner (2011) conducted a study to analyze both accuracy and practicality of using 

HSM prediction models for two-lane two-way highways in Kansas. However, due to limitations 

in the HSM calibration procedure, the study introduced an alternative calibration procedure 

focusing on prevalent animal crashes in Kansas. Bornheimer (2011) developed SPFs using the 

NB method for rural two-lane highways in Kansas. The study compared original HSM crash 

prediction models with Kansas-specific calibrated models and newly-developed crash prediction 

models to find the best model that fits rural two-lane highways in Kansas. Finally, the study 

recommended two best models that would work for Kansas with and without animal crashes.   

2.4 Site Selection for HSM Calibration 

The HSM recommends a desirable sample size of 30 to 50 sites with at least 100 crashes 

per year for each predictive model calibration. For unbiased selection, sites need to be randomly 

selected without considering the number of crashes throughout the study period (AASHTO, 

2014). Recent studies have identified that the HSM-suggested one-size-fits-all sample size is not 
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adequate to obtain a reliable calibration factor. For example, collecting 100 crashes from 30 to 

50 sites could be difficult in some instances (MnDOT, 2014; Xie et al., 2011).  A few studies 

mentioned use of a single criterion for calibration sample size might not be practical because 

each roadway type has a diverse set of characteristics and homogeneities, and further data 

systems and number of observed crashes considerably vary across states (Alluri et al., 2016; 

Bahar, 2014; Banihashemi, 2012; Kim et al., 2015; Trieu et al., 2014).  

Since recent studies have stipulated the one-size-fits-all sample size suggested by the 

HSM may not provide anticipated results accurately, the study explored sampling techniques 

previously used in other HSM calibration studies. Banihashemi (2012) estimated calibration 

factors using an entire data set (population) for different roadway types, and these factors were 

considered as ideal calibration factors. Then, for different subsets, the sensitivity of calibration 

factors were estimated such that the probability of generating calibration factors for each subset 

falls within 5% and 10% of ideal calibration factors. The study concluded that some types of 

roadways required a large sample-size number for an effective calibration. Alluri et al. (2016) 

followed the methodology suggested by Banihashemi (2012) and concluded that calibration 

factors obtained from reliable sample sizes are more likely to lie within 10% of ideal calibration 

factors. Shirazi et al. (2016) studied the required sample size for HSM calibrations based on the 

coefficient of variation (CV), which is the ratio of the standard deviation to the mean observed 

crashes. Shin et al. (2015) proposed a method to determine minimum sample size based on the 

finite population correction (FPC) method allowing for adjustments between desired error levels 

of the estimated calibration factors, confidence levels, and sample standard deviations. Trieu et 

al. (2014) conducted a sensitivity analysis to evaluate accuracy of the HSM-recommended 

sample size. Samples were obtained from the entire data set at various percentages and the 
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Monte Carlo simulation was performed with an initial iteration such as 500. It was found that 

when sample size increased, calibration factors with higher errors decreased. To sum up, the FPC 

method proposed by Shin et al (2015) seemed to be a common choice in previous HSM 

calibration studies for determining an appropriate sample size. 

2.5 Assessing the Quality of the Calibration Process 

Srinivasan et al. (2016) assessed the goodness-of-fit of rural two-lane roadway SPFs in 

Arizona using cumulative residual (CURE) plots. Even though the estimated calibration factor 

was much closer to 1.000 for total crashes, when the CURE plot was created for fitted values 

most of the cumulative residuals were lying outside the confidence limits, indicating a poor 

goodness-of-fit. The study also estimated calibration factors by exposure variables such as 

AADT, segment length, and alignment. In order to improve the goodness-of-fit, the study 

explored different forms of calibration functions using the NB method, Poisson regression, and 

Ordinary Least Squares Method. The study showed the base calibration function (i.e., 

relationship between predicted crashes and observed crashes), and calibration functions 

developed using AADT and segment length fitted better to the data set than other forms of 

calibration function. 

Claros et al. (2018) performed a comparative analysis among four safety prediction 

techniques: HSM calibration factors, calibration factors by ranges of exposure variable, 

calibration function, and local SPFs using 160 urban 4-lane freeway segments in Missouri. The 

study mentioned that in general, prediction accuracy increases from the calibration factor to local 

SPFs as shown in Figure 2.1.  The NB method was used to develop calibration functions and 

CURE plots were used to compare the goodness-of-fit among prediction techniques.  Log-

likelihood and inverse overdisperison were assessed for calibration functions and local SPFs in 
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addition to CURE plots. Calibration factors by AADT ranges had the highest goodness-of-fit 

among those compared to HSM calibration factors. Calibration functions did not show a 

significant improvement in accuracy compared to calibration factors by ranges of exposure. 

Local SPFs presented a similar goodness-of-fit as the calibration factor and calibration function 

by AADT ranges.   

 

 

 

Vargas et al. (2019) compared the performance of Florida-specific SPFs with calibrated 

SafetyAnalyst-default SPFs using several goodness-of-fit measures such as mean absolute 

deviation, mean squared predicted error, and Freeman-Tukey R-square in predicting crashes on 

rural and urban two-lane and multi-lane highway facilities in Florida. This study was conducted 

to identify the need for developing Florida-specific SPFs for these facilities. Results showed 

Florida-specific SPFs generally produced better-fitted models compared to calibrated 

SafetyAnalyst-default SPFs. However, calibrated SafetyAnalyst-default SPFs performed better 

compared to existing Florida-specific SPFs when calibrated to the latest crash data. 

In summary, the literature shows performance of calibrated HSM-default SPFs, local 

jurisdiction-specific SPFs, and calibration functions are highly dependent on the input data set 

unique to each jurisdiction. For example, calibration functions seem to fit better to local data for 

some jurisdictions than calibration factors developed for a range of exposure variables. 

Therefore, jurisdictions must discover which safety prediction techniques provide a better fit for 

local data at each facility type.  

Calibration 
Factor

Calibration factor by ranges of the 
variables of interest, such as AADT, 

segment length 

Calibration 
Function

Local SPFs

Figure 2.1. Accuracy of safety prediction techniques (Claros et al., 2018) 
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 – Data and Methodology 
 

This chapter outlines the HSM calibration procedure for freeway and ramp facilities 

along with offering an overview of data preparation. The calibration procedure requires two main 

types of data from the selected sites – (1) geometric and traffic data and (2) crash data.  

3.1 Definition of Freeway Segment and Speed-Change Lane  

A freeway segment is defined as a length of roadway consisting of ‘n’ number of through 

lanes with a continuous cross section providing two directions of travel, where travel lanes are 

physically separated by either distance or a barrier (AASHTO, 2014). A speed-change lane is 

defined as a section of roadway located between gore and taper points of a ramp’s merge and 

diverge area as shown in Figure 3.1 (AASHTO, 2014). There are two types of speed-change 

lanes: ramp entrance-related speed-change lanes (SCen) and ramp exit-related speed-change 

lanes (SCex).  According to the HSM, all crashes occurring in the shaded area “A” in Figure 3.1 

should be classified as speed-change lane crashes and all crashes that occurring in the region “B” 

should be classified as freeway segment crashes.  

Figure 3.2 schematically shows three shaded freeway segments (Fs1, Fs2, and Fs3) and 

two speed-change lanes (SCen and SCex). In cases where a speed-change lane is presented 

within a freeway segment, calculation of the effective freeway segment length is required. In this 

study, freeway segments connected to ramps were excluded from consideration because those 

segments were used to create the speed-change lane database. The detailed segment reduction 

procedure conduced in creating the freeway segment database and speed-change lane database 

used in the research is explained in Section 3.7 of this dissertation. 
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Length Fs1 Length Fs2 Length Fs3 

Fs2 
Fs1 Fs3

SCen SCex

Figure 3.1. Assigning crashes to freeway segments and speed-change lanes 

Figure 3.2. Illustration of freeway segments and speed-change lanes (AASHTO, 2014) 
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3.2 Definition of Ramp Segment, C-D road, and Crossroad Ramp Terminal 

A ramp segment and Collector-Distributor (C-D) road segment is defined as a length of 

roadway consisting of ‘n’ number of through lane(s) with a continuous cross section providing 

one direction of travel (AASHTO, 2014).  A crossroad ramp terminal is a controlled terminal 

between a ramp and crossroad (AASHTO, 2014). According to the HSM, any crashes that occur 

on a ramp or C-D road are classified as either intersection-related or segment-related crashes 

(AASHTO, 2014, pp. 19-27). Intersection-related crashes are assigned to the corresponding 

crossroad ramp terminal, which has an influence area that extends 250 ft in each direction along 

the crossroad and ramps as shown in a dotted box in Figure 3.3. (AASHTO, 2014, pp. 19-26). 

Segment-related crashes are assigned to the corresponding ramp or C-D segment as shown in 

dashed boxes in Figure 3.3, which schematically illustrates two entrance ramp segments (Ren1 

and Ren2), two exit ramp segments (Rex1 and Rex2), five C-D road segments (CD1, CD2, CD3, 

CD4, and CD5), and one crossroad ramp terminal (In). The three control types for crossroad ramp 

terminals addressed in the HSM are signal-controlled, all-way stop-controlled, and one-way 

stop-controlled. C-D roads are more likely to be an urban design with a main purpose of moving 

vehicle lane changing away from high-speed traffic on freeway main lanes (Texas A&M 

Transportation Institute, 2019). In Kansas, more than 90% of the 141,173 centerline miles of 

roadways are rural roads. Therefore, the calibration for C-D roads was not conducted due to a 

lack of sites that match the HSM definition. 

3.2.1 Crossroad Ramp Terminal Configurations in Kansas  

The seven most common types of crossroad ramp terminal configurations are addressed 

in the HSM labeled as D3en, D3ex, D4, A4, B4, A2, and B2 as shown in Appendix A. When 

applying the HSM predictive method to crossroad ramp terminals, the procedure is specific to 
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each configuration (AASHTO, 2014). Table 3.1 provides a summary of crossroad ramp terminal 

configurations present on freeways considered in this study. As defined in the HSM D3en, D3ex, 

A2, and B2 are three-leg terminals and D4, A4, and B4 are four-leg terminals. In Kanas, the 

majority of crossroad ramp terminals are the ‘D4” type used at diamond interchanges with 

diagonal ramps. Other than the crossroad ramp terminal configurations addressed in the HSM, 11 

roundabout ramp terminals and three unique types of ramp terminals present on freeways are 

considered in this study as shown in Appendix B.  

 

 

 

 

 

 

 

 

 

 

 

CD2 CD4 CD5 CD3 CD1 

Figure 3.3. Illustration of ramp segments, C-D roads, and crossroad ramp terminals 

(AASHTO, 2014) 
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Table 3.1. Crossroad ramp terminal configurations of freeways under study 

Freeway D3en D3ex D4 A4 B4 A2 B2 Roundabout 
 

Unique 

I-35 0 0 73 0 1 12 4 2 0 

I-70 6 8 168 0 0 17 15 6 1 

I-135 5 5 62 3 0 5 4 2 0 

I-235 1 1 13 0 0 3 3 0 1 

I-335 0 0 1 0 0 1 0 0 0 

I-435 0 1 20 2 1 4 5 0 1 

I-470 4 4 7 0 0 1 0 0 0 

I-635 3 3 5 2 0 3 2 0 0 

US-59 1 1 10 0 0 0 0 0 0 

US-69 1 1 45 3 0 1 1 0 0 

US-75 0 0 13 0 0 1 0 1 0 

US-81 0 0 6 0 0 0 0 0 0 

K-10 0 0 16 0 0 3 3 0 0 

K-96 3 3 16 0 0 2 2 0 0 

Total 24 27 455 10 2 53 39 11 3 

 

3.3 Data Preparation 

3.3.1 Main Data Sources 

KDOT maintains two separate databases for geometric/traffic attributes and reported 

crashes on Kansas roadways. The Control Section Analysis System (CANSYS) database is 

comprised of data on roadway classifications, geometrics, and the condition of more than 10,000 

miles of state roadways in Kansas (KDOT, 2011). The Kansas Crash Analysis and Reporting 

System (KCARS) database is comprised of crash records reported by police in Kansas. In 

addition, KDOT also maintains yearly AADTs of Kansas roadways in ArcGIS shapefiles1, which 

are submitted to the Highway Performance Monitoring System (HPMS) each year (USDOT, 

2018a). 

                                                             
1 Obtained from https://www.fhwa.dot.gov/policyinformation/hpms/shapefiles.cfm  

https://www.fhwa.dot.gov/policyinformation/hpms/shapefiles.cfm
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3.3.2 Study Period  

The HSM recommends the calibration period to be a duration that is a multiple of 12 

months to avoid seasonal effects (AASHTO, 2014). Shorter periods are highly unpredictable due 

to the randomness of crashes, and longer periods are subjected to alterations in reporting 

thresholds or physical changes in highway elements (Lubliner, 2011).  A three-year period from 

2013 to 2015 was considered as the study period for the freeway segment and speed-change lane 

calibration, which was the period with most recent data available at the beginning of this study. 

The study period for the ramp segment and crossroad ramp terminal calibration was considered 

as 2014 to 2016 due to availability of more recent data as research progressed.  

3.4 Data Required for HSM Calibrations 

3.4.1 Freeway Segments and Speed-Change Lanes 

The HSM does not provide in-depth guidelines for collecting data needed for the 

calibration, as data systems are different for each state (Brown, 2014).  Table 3.2 provides data 

needed for the freeway segment and speed-change lane calibration, including sources of data 

extraction. Even though a majority of geometric data elements were readily available in the 

CANSYS database, most of those required manual adjustments to conform to HSM definitions. 

A few data elements were collected using Google Earth and ArcGIS tools, as they were not 

available in the CANSYS database (Google Earth, 2018; ESRI, 2012).  

 

 



    

25 

 

Table 3.2. Sources of data in calibrating freeway segments and speed-change lanes 

(AASHTO, 2014) 

Data Element R/D* 
Freeway 

Segments  

Speed-Change 

Lanes 
Source 

Area type (Urban & Rural) R √ √ CANSYS 

Number of through lanes R √ √ CANSYS 

Segment length R √ √ CANSYS 

Length of radii and horizontal 

curves 
R √ √ CANSYS 

Lane width R √ √ CANSYS 

Paved inside/outside shoulder 

width 
R √ √ CANSYS 

Median width R √ √ CANSYS 

Length of rumble strips on 

inside/outside shoulders 
D √ √ CANSYS 

AADT volume of freeway  R √  CANSYS 

AADT volume of ramp in 

Speed-change lane 
R  √ 

HPMS GIS 

shapefiles 

Length of and offset to median 

barrier 
R √ √ 

CANSYS/Google 

Earth 

Length of and offset to outside 

barrier 
R √  Google Earth 

Clear zone width D √  Google Earth 

AADT volume of and distance 

to nearest upstream 

entrance ramp 

R √  

HPMS GIS 

shapefiles/GIS 

Measure Tool 

AADT volume of and distance 

to nearest downstream 

exit ramp 

R √  

HPMS GIS 

shapefiles/ GIS 

Measure Tool 

AADT volume of freeway 

adjacent to Speed-change lane  
R  √ CANSYS 

Proportion of AADT that 

occurs during hours where lane 

volume exceeds 1,000 veh/hr/ln 
D √ √ 

Calculated using the 

formula provided in 

section 18.4.2 of the 

HSM 

Presence and length of Type B 

weaving sections R √ √ 

No Type B weaving 

sections present in 

selected segments 
Note*: R – Required, D – Desired  

Accordingly, 16 and 13 data elements were needed to perform the freeway segment and 

speed-change lane calibration, respectively. Few data elements were desirable for both facility 

types; however, these desirable variables, such as clear zone width, length of rumble strips on 
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inside/outside shoulders, and proportion of AADT that occurs during hours where lane volume 

exceeds 1,000 veh/hr/ln were sensitive to relevant CMFs.  As a result, data for all elements in 

Table 3.2 were collected from a variety of data sources. 

3.4.2 Ramp Segments and Crossroad Ramp Terminals  

Table 3.3 provides data needed for the ramp segment calibration including sources of data 

extraction. More than 90% of the geometric data elements needed for the ramp segment calibration 

were collected using Google Earth (Google Earth, 2018).  

Table 3.3. Sources of data in calibrating ramp segments (AASHTO, 2014) 

Data Element R/D* Ramps Source 

Area type (Urban & Rural) R √ CANSYS 

Number of through lanes R √ Google Earth 

Segment length R √ GIS shapefiles 

AADT volume of the ramp R √ GIS shapefiles 

Length of radii and horizontal curves 
R √ 

KDOT curve tool/GIS 

shapefiles 

Lane width R √ Google Earth 

Paved left/right shoulder width R √ Google Earth 

Length of and offset to left side 

barrier 
R √ Google Earth 

Length of and offset to right side 

barrier 
R √ Google Earth 

Presence of lane add or drop  D √ Google Earth 

Presence of Speed-change lane  R √ Google Earth 

Presence and length of weaving 

section  
R  Google Earth 

Note*: R – Required, D – Desired  

Table 3.4 provides data needed for the calibration of stop-controlled and signal-controlled 

crossroad ramp terminals including sources of data extraction. According to the HSM, 15 

variables were needed to perform the stop-controlled crossroad ramp terminal calibration and 20 

variables were needed to perform the signal-controlled crossroad ramp terminal calibration. 
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Table 3.4. Sources of data in calibrating crossroad ramp terminals (AASHTO, 2014) 

Data Element R/D* 

Stop-controlled 

Crossroad Ramp 
Terminals 

Signal-controlled 

Crossroad Ramp 
Terminals 

Source 

Area type (Urban & Rural) R √ √ CANSYS 

Ramp Terminal Configuration  R √ √ Google Earth 

Type of Traffic Control  R √ √ Google Earth 

Control for exit ramp right turn 
movement 

R √ √ Google Earth 

AADT for the inside and outside 

crossroad legs  
R √ √ GIS shapefiles 

AADT volume for each ramp leg  R √ √ GIS shapefiles 

Number of through lanes on each 

crossroad approach  
R √ √ Google Earth 

Number of Lanes on the exit 
ramp  

R √ √ Google Earth 

Number of crossroad approaches 

with left turn lanes  
R √ √ Google Earth 

Number of crossroad approaches 
with right turn lanes 

R √ √ Google Earth 

Number of unsignalized public 

street approaches to the crossroad 

leg outside of the interchange   

D √ √ Google Earth 

Distance to next public street 

intersection  
D √ √ Google Earth 

Distance to adjacent crossroad 

ramp terminal  
D √ √ Google Earth 

Crossroad median width and left 

turn width 
R √ √ Google Earth 

Skew Angle  R √  Google Earth 

Number of unsignalized 
driveways on the crossroad leg 

outside of the interchange   

D  √ Google Earth 

Number of crossroad approaches 

with protected-only left-turn 
operation 

R  √ Google Earth 

Number of crossroad approaches 

with right-turn channelization  
R  √ Google Earth 

Presence of exit ramp right-turn 
channelization  

R  √ Google Earth 

Presence of non-ramp public 

street leg 
D  √ Google Earth 

Note*: R – Required, D – Desired  

As with ramp segments, more than 90% of geometric data required for the stop-

controlled and signal-controlled crossroad ramp terminal calibration were collected using Google 

Earth (Google Earth, 2018).  Data variables needed for both ramp segment and crossroad ramp 
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terminal calibration were extremely challenging to gather compared to freeway facility 

calibration data variables. Specifically, data gathering for the calibration of ramp segments and 

crossroad ramp terminals was the most time-consuming and challenging task of this entire study. 

3.5 Extraction of Geometric Data 

3.5.1 Freeway Segment and Speed-Change Lane Calibration 

As emphasized in Section 3.4, approximately 65% of geometric and traffic data needed to 

perform freeway segment and speed-change lane calibrations were obtained from the CANSYS 

database. In addition to roadway geometric and condition data, CANSYS also includes data on 

at-grade rail crossings, bridges, and access permits (KDOT, 2011). The geometric and accident 

data unit (GAD) in KDOT maintains CANSYS, and the data are collected by numerous entities 

within KDOT. Geometric data elements needed to perform the freeway segment and speed-

change lane calibration are illustrated in this section.  

3.5.1.1 Access Control 

HSM defines freeways as fully access-controlled roadways having grade separation with 

all intersecting roadways that can only be accessed through grade-separated interchanges 

(AASHTO, 2014). The access control in CANSYS is coded at three levels: ‘01’ = full access 

control, ‘02’ = partial access control, and ‘03’ = no access control of conditions. For this study, 

all fully access-controlled roadways were selected first, and a segment reduction procedure was 

carried out later with regard to HSM definitions.   

 

 

 



    

29 

 

3.5.1.2 Area Type  

Depending on roadway characteristics, surrounding land uses, and population, the HSM 

classifies an area as urban, suburban, or rural (AASHTO, 2014). The definition for area type in 

the HSM is based on FHWA guidelines, which define “urban” areas as localities where the 

population is greater 5,000, and “rural” areas as localities where the population is less than 5,000 

(AASHTO, 2014). In addition, the HSM refers to “suburban” areas as the outlying portions of an 

urban area. KDOT practices the same area classification definitions and the CANSYS database 

includes a field named “RURAL_URBAN” that indicates the area type corresponding to each 

segment.   

3.5.1.3 Number of Through Lanes 

The total number of through lanes for freeway segments are counted by considering both 

directions of travel together (AASHTO, 2014). For speed-change lanes, the number of through 

lanes are counted in the portion of freeway adjacent to the speed-change lane, including those 

freeway lanes in the opposing travel direction (AASHTO, 2014). Figure 3.4 provides an example 

of how the number of through lanes are counted in cases where a lane adds or a lane drops. 

According to guidelines provided in the HSM, high occupancy lanes and managed lanes should 

be excluded from the through lane count; and auxiliary lanes should be included in the through 

lane count if the weaving length exceeds 0.85 miles (AASHTO, 2014). Speed-change lanes that 

merge with or diverges from the freeway should be included in the through lane count if the 

length exceeds 0.3 miles (AASHTO, 2014). 
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(a) Lane Add                                                             (b) Lane Drop 

 

 

3.5.1.4 Segment Length 

Segment length is the distance from the beginning to the end of a segment. A segment 

may include different components, such as speed-change lanes, lane add/drop, and auxiliary 

lanes, but only if they meet the criteria mentioned in Section 3.5.1.3. The HSM recommends a 

segment be between 0.1 and one mile in length for carrying out of a freeway segment calibration 

(AASHTO, 2014). Segments shorter than 0.1 miles were excluded from the study and segments 

longer than one mile were divided into one-mile sections using the ET Geo Wizards Tool 

(Version 11.3) (Spatial Techniques, 2019). The same tool was used in the Maryland freeway 

calibration study to divide freeway segments in to one-mile sections (Shin et al., 2016). As an 

example, Figure 3.5 shows one-mile sections created from the ET Geo Wizards tool in a 2.55-

miles long freeway segment. 

 

 

 

2.55 miles 

1 mile 1 mile 0.55 miles 

Figure 3.4. Through lane count in segments in cases where a lane adds or drops 

(AASHTO, 2014) 

Figure 3.5. One-mile sections created by et geo wizards tool in a 2.55-miles long freeway 

segment 
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According to the HSM, length of a speed-change lane should be limited to 0.3 miles and 

if it exceeds 0.3 miles, then the speed-change lane is counted as a through lane (AASHTO, 2014, 

pp. 18-15). However, the HSM does not provide guidance on the minimum length to be 

considered for entrance or exit speed-change lanes.  For this research, minimum length for 

entrance-related speed-change lanes was considered 0.04 miles, and minimum length for exit-

related speed-change lanes was considered 0.02 miles based on applicability of ramp-entrance 

and ramp-exit CMFs provided in the HSM. However, Shin et al. (2016) used 0.05 miles as the 

minimum length for both entrance and exit speed-change lanes in the Maryland study.  

3.5.1.5 Begin/End Mile Post  

In Kansas, following US customs, mileposts increase from South to North for odd 

numbered routes and West to East for even-numbered routes. KDOT uses two milepost systems, 

namely, a state milepost system and a county milepost system. State mileposts begin from the 

southern or western state lines, whereas county mileposts begin likewise from the county lines. 

Data used in this study were collected using the state milepost system. Therefore, the difference 

between beginning and ending mileposts was the segment length. 

3.5.1.6 Effective Segment Length  

As mentioned in Section 3.1, calculation of effective length (L*) is required when a 

speed-change lane is present in a freeway segment.  Figure 3.6 illustrates the typical calculation 

of the effective segment length (L*), which is the segment length minus the length of speed-

change lanes, in miles.  However, for this research, calculation of effective segment length was 

not required because the study selected only basic freeway segments that are not connected to 

ramps for the freeway segment calibration. As the CANSYS database did not create a new 
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homogenous segment with a ramp being present, the study had to use freeway segments 

connected to ramps to create the speed-change lane database. 

 

 

 

 

 

 

 

 

3.5.1.7 Lane Width and Paved Inside/Outside Shoulder Width 

Lane width is measured at successive points along the roadway and averaged for all 

through lanes as per HSM guidelines (AASHTO, 2014). If required, average lane width is 

rounded to the nearest 0.5 ft. Paved inside/outside shoulder width is also measured at successive 

points along the roadway (AAHTO, 2014). If required, paved inside/outside shoulder width is 

rounded to the nearest 1 ft.  

3.5.1.8 Median Width 

Median width is the distance between the inside (left) edges of the traveled way for two 

roadways in both travel directions including the paved inside shoulder width (if present) 

(AASHTO, 2014). This measurement is estimated as an average of the median widths at 

Fs1 Fs2 Fs3 

L 

Figure 3.6. Calculation of effective segment length (AASHTO, 2014) 
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different points of the segment.  If necessary, the average median width is rounded to the nearest 

10 ft (AASHTO, 2014). If the average median width exceeds 90 ft, it is to be set to 90 ft.  

3.5.1.9 Radius of Curve and Length of Curve  

If a curve is present in a segment, the radius of curve, length of curve (curve length), and 

length of curve in the segment need to be calculated to perform the freeway facility calibration 

(AASHTO, 2014). The radius of curve is measured in feet for each roadbed separately along the 

inside edge of the traveled way (AASHTO, 2014). In case of a spiral curve, the radius of the 

central circular portion of the curve should be considered. If the curve is present in both 

directions of the roadway (in both roadbeds), the equivalent curve radius is to be calculated using 

Equation 1. If the curve is present only in one direction (in one roadbed), only 𝑅𝑎,𝑖
2  should be 

used considered.  

𝑅𝑖
∗ =  (

0.5

𝑅𝑎,𝑖
2 +

0.5

𝑅𝑏,𝑖
2 )

−0.5

                                                                                                                                                (1) 

where,  

𝑅𝑖
∗ = Equivalent radius of curve i, 

𝑅𝑎,𝑖
2 = Radius of curve i in one roadbed, and 

𝑅𝑏,𝑖
2 = Radius of curve i in second roadbed.  

The length of curve is measured along the reference line from the point where the tangent 

ends and the point of curvature (PC) begins to the point where the curve ends and the point of 

tangent (PT) begins (AASHTO, 2014). The length of curve in the segment is measured within 

the boundaries of the desired freeway segment or speed-change lane (AASHTO, 2014). In 

addition, this measurement should not exceed the segment length or curve length. Figure 3.7 

illustrates the length of curve and length of curve in the segment for different scenarios of curves 
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that could be present on a freeway facility. Specifically, Figure 3.7 (a) represents a curve present 

in one direction of the segment, Figure 3.8 (b) signifies a not-concentric curve present in both 

directions of the segment, and Figure 3.8 (c) signifies a concentric curve present in both 

directions of the segment. 

 

 

 

(a) Curve in one direction (in one roadbed) 

 

 

 

(b) Not-concentric curve in both directions (in both roadbeds) 

 

 

 

(c) Concentric curve in both directions (in both roadbeds) 

 

 

Figure 3.7. Curve radius and curve length in a segment (AASHTO, 2014) 
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3.5.1.10 Length of Rumble Strips and Length of Median/Outside Barrier 

Length of rumple strips is measured separately for each shoulder type and travel 

direction. Length of the median/outside barrier is measured along the reference line for each 

short piece of barrier and travel direction. 

3.5.1.11 Length and Offset to Median/Outside Barrier  

Barrier offset is the distance from the nearest edge of the traveled way including the 

inside shoulder to the barrier face. Barrier length is the length of lane paralleled by a barrier; it is 

a total for both travel directions (AASHTO, 2014).  As the CANSYS database did not include 

measurements for length of and offset to the median/outside barrier, this study estimated those 

variables using the ruler tool in Google Earth as shown in Figure 3.8 (Google Earth, 2018). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Length of Median Barrier 

Offset to Median Barrier 
Length of Outside Barrier 

Offset to Outside Barrier 

Concrete Median Barrier 

on I-35 

Figure 3.8. Length of and offset to median/outside barrier 



    

36 

 

3.5.1.12 Clear Zone Width 

Clear zone width is the distance from the edge of the traveled way including the outside 

shoulder to vertical obstructions, such as fences, utility poles, or non-traversable slopes 

(AASHTO, 2014). Figure 3.9 illustrates the extent of a clear zone (Whc) as defined in the HSM. 

It should be noted that lone trees are not considered as vertical obstructions. Additionally, 

outside barriers are also not considered as vertical obstructions as the effect of those are covered 

in freeway crash modification factors. Like other variables, the average length is calculated if the 

clear zone width varies along different points of the segment.  

 

 

 

 

 

 

3.5.1.13 Distance to Nearest Entrance/Exit Ramp 

The distance to the nearest entrance or exit ramp should be measured from the edge of the 

segment to the nearest entrance or exit ramp in both directions of travel. Figure 3.10 (a) displays 

an example estimation of distances to the nearest entrance/exit ramps when the segment is 

located externally to all ramps. For the increasing milepost direction, the distance, Xb,ent is 

measured from the beginning milepost to the upstream entrance ramp, and the distance, Xe,ext is 

measured from the end milepost to the downstream exit ramp. For the decreasing milepost 

direction, the distance, Xb,ext is measured from the beginning milepost to the upstream exit ramp, 

Figure 3.9. Measurement of the clear zone width (AASHTO, 2014) 
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and the distance, Xe,ent is measured from the end milepost to the downstream entrance ramp. 

Figure 3.10 (b) displays an example estimation of distances to the nearest entrance/exit ramps 

when the segment is located on a ramp. In this study, distances to the nearest exit and entrance 

ramps were measured using the measurement tool in ArcGIS (ESRI, 2012).  

 

 

 

 

 

(a) Distance when all ramps are located externally to the segment 

 

 

 

 

 

 

 

(b) Distance when one ramp is located in the segment  

 

 

3.5.1.14 Proportion of High Volume 

The proportion of high volume is the proportion of freeway AADT volume that occurs 

during hours when the volume exceeds 1,000 veh/hr/ln (AASHTO, 2014). This study used the 

default equation given in the HSM to calculate the proportion of high volume.  

Figure 3.10. Distance to nearest entrance/exit ramp (AASHTO, 2014) 
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3.5.2 Ramp Segment Calibration  

More than 90% of geometric data required for the ramp segment calibration were 

extracted using Google Earth (Google Earth, 2018). Similar to freeway segments, area type for 

ramp segments was identified using the CANSYS database. Segment lengths of ramps were 

extracted from the Highway Performance Monitoring System (HPMS) GIS shapefiles (USDOT, 

2018a). To obtain the radii for horizontal curves on ramps, KDOT’s built-in ArcGIS curve tool 

was run for the latest ramp GIS shapefile (KDOT, 2015). All other geometric variables, such as 

number of through lanes, lane width, paved left/right shoulder width, length of and offset to 

left/right side barrier, presence of lane add or drop, presence of speed-change lane, and presence 

and length of weaving section, were collected using Google Earth (Google Earth, 2018). Figures 

3.11 and 3.12 show the measurement of length and offset to outside/inside barriers; and 

measurement of lane width and paved shoulder width on ramps using Google Earth, respectively.  

 

 

 

 

 

 

 

 

 

Outside Barrier 

Inside Barrier 

Figure 3.11. Length of and offset to outside/onside barrier on ramps using Google Earth 
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3.5.3 Crossroad Ramp Terminal Calibration  

Similar to ramp segments, more than 90% of geometric data required for the crossroad 

ramp terminal calibration were extracted from Google Earth (Google Earth, 2018). Ramp 

terminal configuration, number of through lanes on each crossroad approach, number of lanes on 

the exit ramp, distance to the next public street intersection, distance to adjacent crossroad ramp 

terminal, crossroad median width and left-turn width, number of crossroad approaches with 

right-turn channelization, presence of exit ramp right-turn channelization, and presence of non-

ramp public street leg were some of the data elements collected using Google Earth. Other 

variables, such as type of traffic control, control for exit ramp right-turn movement, number of 

crossroad approaches with left- and right- turn lanes, number of unsignalized public street 

approaches to the crossroad leg outside of the interchange, number of unsignalized driveways on 

the crossroad leg outside of the interchange, and number of crossroad approaches with protected-

only left-turn operations were obtained from the Google street-view mode. Figure 3.13 shows 

measurement of distance to the adjacent ramp terminal and public street using Google Earth. The 

skew angle was measured inserting a “compass tool” to Google Earth as shown in Figure 3.14.  

Lane Width 

                            Paved Shoulder Width 

Figure 3.12. Lane width and paved shoulder width dimensions using Google Earth 
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All data elements discussed in this section correspond to the data elements provided in 

Tables 3.2, 3.3, and 3.4, which were needed to perform freeway facility and ramp facility 

calibration.   

D4 Configuration 

150 – Skew 

Angle 

Figure 3.13. Distance to adjacent ramp terminal/public street using Google Earth 

Figure 3.14. Measuring skew angle using Google Earth 
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3.6 Extraction of AADT Volume of Freeways, Ramps, and Crossroads 

Even though the CANSYS database included AADTs of all freeways in Kansas for the 

entire study period, AADT volumes for ramps were not available in CANSYS. Ramp AADT 

volumes and crossroad AADT volumes were extracted from the HPMS GIS shapefiles (USDOT, 

2018a). The HPMS is a national-level highway information system that contains data on the 

condition, performance, use, and operating characteristics of selected highways in the US 

(USDOT, 2018a). Each year, KDOT submits condition, extent, and performance data of selected 

state highways in Kansas to the HPMS administrated by the FHWA. In addition, KDOT 

maintains two separate GIS shapefiles for ramp-related data, which includes AADT volume and 

segment lengths of ramps in Kansas as shown in Figure 3.15.   

 

 

 

 

 

(a) Ramp                                               (b) Ramp + Speed-Change  

 

3.7 Segmentation  

According to the HSM, a new homogenous segment should begin when a change occurs 

in at least one of the freeway characteristics, such as number of through lanes, lane width, 

outside shoulder width, inside shoulder width, median width, ramp presence, or clear zone width 

Figure 3.15. GIS shapefiles for Kansas ramps 
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(AASHTO, 2014). In fact, each row of the CANSYS database represents a homogenous segment 

indicating that geometric attributes of each segment were consistent in between given milepost 

locations.  

3.7.1 Segment Reduction Procedure 

As the CANSYS database is comprised of geometric and condition data for all I, K and 

US roadways in Kansas, the main goal was to isolate freeway segments that met HSM freeway 

definition criteria. The CANSYS database includes records of homogeneous segments on both 

sides of a roadway (right side and left side). For example, as shown in Figure 3.16, the west-

bound (WB) lane of I-70 is the left side and the east-bound (EB) lane of I-70 is the right side of 

the freeway. Similarly, for roadways that run in north-south directions, the south-bound (SB) 

lane is the left side and the north-bound (NB) lane is the right side of the freeway.  

 

 

 

 

 

3.7.2 Freeway Segment Database  

The freeway segment database was created to perform the freeway segment calibration in 

Kansas with respect to HSM calibration criteria. This database was created by reducing segments 

from the original CANSYS database. Table 3.5 lists the steps followed in selecting freeway 

segments that meet the HSM definition. At step 1, all fully access-controlled segments were 

WB (Left Side) 

EB (Right Side) 

Figure 3.16. Example of identification of freeway sides based on CANSYS 
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filtered out from the CANSYS. In step 2, the filtered segments were further screened by median 

type, presence of toll plazas, HOV lanes, reversible lanes, ramp metering, presence of an 

intersection within 0.5 miles, and all other limitation criteria listed in the HSM (AASHTO, 

2014). Step 3 was conducted to divide the segments into one-mile sections, as the HSM requires 

the segments to be 0.1 to 1.0 mile in length for the calibration.   

Table 3.5. Segment reduction procedure in developing freeway segment database 

Step No. Action Taken 

Number of Segments 

Right 

Side 

Left  

Side 
Total 

Step 1 
Extract fully access-controlled segments from 

CANSYS database 
2,700 2,013 4,713 

Step 2 Select freeway segments by HSM definition 1,552 1,189 2,741 

Step 3 Divide into 1-mile sections 2,484 2,127 4,611 

Step 4 
Select freeway segments associated with 

ramps (Speed-change Lane Database) 
1,047 918 1,965 

Step 5 

Remove the number of segments obtained in 

step 4 from the step 3 (Initial Freeway 

Segment Database) 

1,433 1,204 2,637 

Step 5.1 Discard 2 lane, 5 lane & 7 lane segments 1,417 1,201 2,618 

Step 5.2 Select segments with speed limit ≥ 65mph 1,367 1,174 2,541 

Step 5.3 Select segments ≥ 0.1 mile in length 1,131 995 2,126 

Step 5.4 

Select segments with matching mileposts on 

both sides of freeway 

(Final Freeway Segment Database)  

1,133 

 

3.7.3 Speed-Change Lane Database  

The speed-change lane database was created to perform the speed-change lane calibration 

in Kansas with respect to HSM calibration criteria. Preparation of the speed-change lane 

database was more challenging compared to the freeway segment database, because the 

CANSYS database did not generate a new homogeneous segment with a ramp being present. 

Therefore, when creating the freeway segment database in step 4 as shown in Table 3.5, freeway 
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segments connected to ramps were selected and those segments were further filtered with respect 

to the HSM criteria to create the speed-change lane database. 

The two ramp shapefiles shown in Figure 3.15 were manually edited by adding two fields 

(columns) named, “ramp side” and “EN/EX”. The “ramp side” field was recorded as the left or 

right side, depending on the side the ramp was located on the freeway. If the ramp was connected 

to an entrance-related speed-change lane along the freeway, “En” was recorded in the “EX/EN” 

field, and if the ramp was connected to an exit speed-change lane along the freeway, “Ex” was 

recorded in the “EN/EX” field.  Table 3.6 indicates the steps followed to obtain the speed-change 

lane database after isolating freeway segments connected to ramps. Steps 4 and 5 in Table 3.6 

were carried out to isolate speed-change lane sites from freeway segments connected to ramps. 

In order to isolate speed-change lane sites, endpoints (gore and taper) were created for both 

HPMS ramp GIS shapefiles (ramps shapefile and ramps+speed-change shapefile) in ArcGIS as 

shown in Figure 3.17.  

 

 

 

 

 

 

 

 

 

 

 

Taper Point 
Gore Point 

Figure 3.17. Creating endpoints in ramp GIS shapefiles 
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Table 3.6. Segment reduction procedure in developing speed-change lane database 

Step No. Action Taken 

Number of Segments 

Right 

Side 

Left  

Side 
Total 

Step 1 
Select freeway segments connected to ramps 

(Step 4 in Table 3.3)  
1,047 918 1,965 

Step 2 Discard 2 lane, 5 lane & 7 lane segments 1,030 909 1,939 

Step 3 Select segments with the speed limit ≥ 65mph 920 833 1,753 

Step 4 Split at the gore point    514 477 991 

Step 5 
Split at the taper point and separate speed-

change lane sites   
446 416 865 

Step 6 
Select entrance related speed-change lanes 

(manually) 
168 187 355 

Step 7 
Select exit related speed-change lanes 

(manually)  
192 178 370 

Step 8 

Select entrance related segments between 

0.04-0.30 miles in length (Final EN speed-

change lane database) 

166 185 351 

Step 9 

Select exit related segments between 0.02-

0.30 miles in length (Final EX speed-change 

lane database) 

190 176 366 

 

Figure 3.18 graphically explains the procedure for isolating a sample speed-change lane 

site using ArcGIS. At first, freeway segments connected to ramps were split at the gore point. 

Then, the segment obtained in the previous step was further split at the taper point. After 

implementing these two steps, the segment left out in between the gore and taper points is the 

speed-change lane.  Similarly, this procedure was carried out for all freeway segments connected 

to ramps on both left and right sides of the roadway. Once the speed-change lane sites were 

extracted for both sides of the freeway, a new column was added, called “EN/EX” to the speed-

change lane database. If the speed-change lane was entrance-related (entrance to the freeway), 

“En” was recorded in the “EX/EN” field and if speed-change lane is exit-related (exit from the 

freeway), “Ex” was recorded in the “EN/EX” field. This process was carried out manually, and 

steps 6 and 7 in Table 3.6 provide resulting entrance-related and exit-related speed-change lanes. 



    

46 

 

It should be noted that, when processing steps 6 and 7, more than 100 segments were removed in 

step 5 because those homogeneous segments ended up in between gore and taper points 

according to the original CANSYS segmentation process.  Afterwards the minimum length for 

an entrance-related speed-change lane was considered as 0.04 miles, and the minimum length for 

an exit-related speed-change lanes was considered as 0.02 miles.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Taper Point 

Freeway segment associated with ramps 

Gore Point 

First Split at Gore point 
Gore Point 

Second Split at Taper point 

Taper Point 

Speed-change lane site 

Figure 3.18. Splitting segments at taper and gore points to obtain speed-change lane sites 
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3.7.4 Ramp Segmentation  

According to the HSM, ramp segmentation occurs when a change occurs in at least one 

of the characteristics, such as number of through lanes, lane width, right shoulder width, left 

shoulder width, merging ramp, or diverging ramp.  Figure 3.19 shows a guideline provided in the 

HSM to determine the number of lanes in ramp segments. This is an exit ramp where the most 

right end of segment 3 ends at the crossroad ramp terminal.  

 

 

 

 

 

This study did not consider ramp segmentation when a change in number of lanes 

occurred due to the inability to locate crashes at exacts location on ramps. Nevertheless, if any 

ramp had three-quarters of its length as 2-lanes, it was considered a 2-lane ramp, and similarly, if 

any ramp had three-quarters of its length as one-lane, it was considered a one-lane ramp.  

3.8 Site Selection  

3.8.1 Freeway Segment and Speed-Change Lane Calibration Sample  

Based on the most recent literature, it seemed that 30 to 50 sites initially suggested by the 

HSM were not adequate to estimate an accurate calibration factor. Therefore, a more reasonable 

sample size was determined with a 95% confidence level using Equation 2. Shin et al. (2015) and 

Kim et al. (2015) used this approach to calculate a minimum sample size with respect to a 

desired confidence level. 

Figure 3.19. Number of lanes in ramps (AASHTO, 2014) 
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                                        𝑛 =
𝑛0𝑁

[𝑛0 + (𝑁 − 1)]⁄                               (2)         

                                                 𝑛0 = 𝑃 (1 − 𝑃) (
𝑍

𝑒
)

2

                                                                     

where,  

n = Minimum sample size, 

Z = Area under normal curve to the preferred confidence level, 

N = Population, 

P = True population, and 

e = Margin of errors. 

 

 This study considered a 95% confidence level with a 5% margin of error and 50% of the 

true population. Table 3.7 provides calculated minimum sample sizes for all freeway facility 

types using Equation 2. Considering freeway segments, a minimum sample of 446 sites was 

required to perform the calibration. After computing the minimum sample size, Hawth’s 

Analysis Tools for ArcGIS (Version 3.27) was used to create a random sample in ArcGIS (ESRI, 

2012; Bayer, 2004).  Even though the minimum sample size required was 446, the study team 

used data from 521 segments in total for calibration. In the case of speed-change lanes, the entire 

population of 351 entrance-related speed-change lanes and 366 exit-related speed-change lanes 

were used for the calibration. The reason for employing the entire population for speed-change 

lane calibration was that the exit-related speed-change lanes did not fulfil the HSM minimum 

crash threshold of 100 crashes per year with a minimum sample size of 187 sites. In addition, 

most of the recent literature related to HSM calibration mentioned that because data systems and 

number of observed crashes vary considerably across states, sometimes a larger sample size may 

be required (Alluri et al., 2016; Bahar, 2014; Banihashemi, 2012; Kim et al., 2015; Trieu et al., 

2014).  



    

49 

 

Table 3.7. Minimum sample size requirement at 95% confidence level for freeway segments 

and speed-change lanes 

Facility Type 
Total 

Population 

95% CI No. of Sites 

Used for 

Calibration 
Min. Sample 

Size 

Freeway Segments 

Rural 4-lane freeways (R4F) 896 270 338 

Rural 6-lane freeways (R6F) 18 18 18 

Urban 4-lane freeways (U4F) 178 122 142 

Urban 6-lane freeways (U6F) 35 35 20 

Urban 8-lane freeways (U8F) 4 4 3 

Total Freeway Segments 1,133 446 521 

Speed-change Lanes  

Speed-change lanes entering rural 4-lane freeway 

(R4SCen) 
200 132 200 

Speed-change lanes entering urban 4-lane freeway 

(U4SCen) 
108 84 108 

Speed-change lanes entering urban 6-lane freeway 

(U6SCen) 
35 32 35 

Speed-change lanes entering urban 8-lane freeway 

(U8SCen) 
8 8 8 

Speed-change lanes exiting rural 4-lane freeway 

(R4SCex) 
215 138 215 

Speed-change lanes exiting urban 4-lane freeway 

(U4SCex) 
114 99 114 

Speed-change lanes exiting urban 6-lane freeway 
(U6SCex) 

31 29 31 

Speed-change lanes exiting urban 8-lane freeway 

(U8SCex) 
6 6 6 

Total Entrance Speed-change lanes (SCen) 351 184 351 

Total Exit Speed-change lanes (SCex) 366 187 366 

 

Figures 3.20 and 3.21 provide the geographical distribution of freeway segments and 

speed-change lanes utilized in this calibration study, respectively. In fact, both the freeway 

segment sample and speed-change lane sample used for the calibration were well distributed on 

the state network.  
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3.8.2 Ramp Segment and Crossroad Ramp Terminal Calibration Sample  

Figure 3.22 shows 33 counties where freeways under study pass through in the state of 

Kansas. Out of those 33 counties, 15 were randomly selected using the Microsoft Excel random 

generator tool. Ramp segments and crossroad ramp terminals from those randomly selected 15 

counties, namely, Johnson, Shawnee, Wabaunsee, Douglas, McPherson, Harvey, Sedgwick, 

Saline, Dickinson, Ellsworth, Butler, Miami, Russell, Gove, and Geary were used for the 

calibration. Table 3.8 provides the number of sites used for the ramp segment, stop-controlled 

crossroad ramp terminal, and signal-controlled crossroad ramp terminal calibrations in Kansas. 

Accordingly, 184 entrance ramps, 156 exit ramps, 120 stop-controlled crossroad ramp 

terminals, and 74 signal-controlled crossroad ramp terminals were used. 

Figure 3.20. Freeway segment calibration sample 

Figure 3.21. Speed-change lane calibration sample 
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Table 3.8. Selected ramp segments and crossroad ramp terminals for calibration 

Facility Type No. of Sites Used for Calibration 

Ramps 

Urban 1-lane entrance ramps (U1EN) 112 

Urban 2-lane entrance ramps (U2EN) 10 

Rural 1-lane entrance ramps (R1EN) 62 

Urban 1-lane exit ramps (U1EX) 77 

Urban 2-lane exit ramps (U2EX) 19 

Rural 1-lane exit ramps (R1EX) 60 

Total Entrance Ramps  184 

Total Exit Ramps  156 

Stop-controlled Crossroad Ramp Terminals 

Rural D4 stop-controlled terminals (RD4ST) 47 

Rural A2 stop-controlled terminals (RA2ST) 1 

Rural B2 stop-controlled terminals (RB2ST) 1 

Urban D4 stop-controlled terminals (UD4ST) 55 

Urban A2 stop-controlled terminals (UA2ST) 4 

Urban B2 stop-controlled terminals (UB2ST) 2 

Urban D3en stop-controlled terminals (UD3enST) 4 

Urban D3ex stop-controlled terminals (UD3exST) 6 

Total Stop-controlled Crossroad Ramp Terminals  120 

Signal-controlled Crossroad Ramp Terminals 

Urban D4 signal-controlled terminals (UD4SG) 47 

Urban A2 signal-controlled terminals (UA2SG) 9 

Urban A4 signal-controlled terminals (UA4SG) 1 

Urban B2 signal-controlled terminals (UB2SG) 10 

Urban D3en signal-controlled terminals (UD3enSG) 2 

Urban D3ex signal-controlled terminals (UD3exSG) 5 

Total Signal-controlled Crossroad Ramp Terminals  74 

 

Figures 3.23, 3.24, and 3.25 provide the geographical distribution of ramp segments, 

signal-controlled crossroad ramp terminals, and stop-controlled crossroad ramp terminals utilized 

in this calibration study, respectively. Like freeway facilities, samples selected for the ramp 

segment and crossroad ramp terminal calibration were also well distributed on the state network.  
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Figure 3.22. Counties where freeways under study pass through in Kansas 

Figure 3.23. Ramp segment calibration sample 

Figure 3.24. Signal-controlled crossroad ramp terminal calibration sample 

Figure 3.25. Stop-controlled crossroad ramp terminal calibration sample 
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3.9 Reported Crashes 

3.9.1 Crash Severity  

Five types of injury severity were reported in Kansas: F - fatal (K), D - disabled (A), I - 

injury (B), P - possible injury (C), and N - not injured (O). The “Accident Severity” field in the 

ACCIDENT_SUMMARY table of the KCARS database records these five injury severities 

under three major levels of crash severity, as follows:  

1. Fatal (F) crashes 

If a crash results in the death of one or more persons at the time of the accident, or within 30 

days of the accident, it is classified as a fatal crash (KDOT, 2014). If a person dies because of a 

medical condition and not as a result of the accident, the injury severity is recorded as per the 

accident repercussion (KDOT, 2014).  

2. Injury (I) crashes 

KDOT classifies injury severity into three severity levels: 

• Disabled (incapacitating) – Any injury, other than a fatal injury, that prevents the 

injured person from driving, walking, or continuing regular activities that he/she 

was capable of performing before the injury occurred (KDOT, 2014).   

• Injury (non-incapacitating) – Any injury that is not fatal or disabling, which is 

evident to observers at the sight of the crash (KDOT, 2014). Inclusions: lump on 

head, abrasions, bruises, and minor lacerations. 

• Possible injury – Any reported or claimed injury that is not fatal, disabling, or 

incapacitating (KDOT, 2014). Inclusions: momentary unconsciousness, limping, 

complaint of injuries not evident, nausea, and hysteria.  



    

54 

 

3. Property Damage Only (PDO) crashes  

If a crash causes damage to public or private property higher than a $1,000 threshold with 

no injuries reported, it is identified as a PDO crash (KDOT, 2014). According to the HSM, crash 

severities for freeway and ramp calibration models are considered as Fatal and Injury (FI) 

crashes, and Property Damage only (PDO) crashes.  

3.9.2 Extracting Crash Data from KCARS Database for Freeway Segments and 

Speed-Change Lanes 

The KCARS database consists of information on all crashes occurring on Kansas 

roadways reported as accidents. It is a Microsoft Access-based database consisting of several 

tables carrying detailed information about the crash such as location, severity, functional class, 

manner of collision, time and data of crash, weather and light conditions, road surface type, road 

conditions, etc. This database is coded to comply with the Kansas Motor Vehicle Accident 

Report (KDOT, 2014). Crash records from different tables in the database could be linked with 

use of the accident key, a unique ID assigned to each crash. In this study, a query was designed 

as shown in Figure 3.26 linking three main tables: ACCIDENTS, ACCIDENT_SUMMARY, 

and ACCIDNET_CANSYS by the accident key to obtain data on crashes on freeways with 

respect to three levels of crash severity.  Once crash data for freeways were extracted from the 

KCARS database, these crashes were mapped in ArcGIS using the latitude and longitude of each 

crash location (ESRI, 2012). Then, the observed crashes for each selected freeway segment or 

speed-change lane were counted for the study period. In case of speed-change lanes, crashes 

were mapped according to the left and right side of the freeway as explained in section 3.7.1. 
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Figure 3.27 indicates crashes on fully access-controlled highways in Kansas from 2013 to 

2015, Figure 3.28 provides assignment of crashes on sample freeway segments, and Figure 3.29 

provides assignment of crashes on sample entrance and exit speed-change lanes. 

 

 

 

 

 

 

 

Figure 3.26. Snip of query design in KCARS database 

Figure 3.27. Crashes on freeways under study (2013-2015) 
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3.9.3 Crash Extraction for Ramp Segments and Crossroad Ramp Terminals  
 

Crashes for ramp segments and crossroad ramp terminals were identified by manually 

reviewing all interchange-related crash reports from 2014 to 2016.  Even though crashes for 

ramps were indirectly included in the KCARS database, after an in-depth investigation it was 

observed that most crashes recorded as ramp crashes were actually crossroad ramp terminal 

crashes or speed-change lanes. Therefore, this study manually reviewed 13,730 interchange-

related crash reports in total from 15 counties as mentioned in Section 3.8.2. When reviewing 

Figure 3.28. Crashes on sample freeway segments 

Figure 3.29. Crashes on sample en/ex speed-change lanes (East-Bound) 
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interchange-related crash reports manually, the collision diagram and crash description were 

thoroughly studied to identify crashes located on ramp segments and crossroad ramp terminals. 

According to the HSM, driveway- and public street-related crashes on the crossroad within 250 

ft of the crossroad ramp terminal should be assigned to the crossroad ramp terminal (AAHTO, 

2014, pp, Appendix B-20).  

3.10 Allocation of Crashes and Site Characteristics for Freeway Segments, 

Speed-Change Lanes, Ramp Segments, and Crossroad Ramp Terminals  

This section explains allocation of crashes and site characteristics of freeway segments, 

speed-change lanes, ramp segments, and crossroad ramp terminals utilized for calibration. Site 

characteristics for freeway segments, speed-change lanes, and ramp segments include the AADT 

of the segment and segment length of the facility type. Site characteristics for crossroad ramp 

terminals include AADT of inside/outside legs of the crossroad, and AADT of associated exit 

and entrance ramps. The inside leg is the crossroad between ramps and the outside leg is the 

crossroad outside of the interchange as illustrated in Figure 3.30.  

 

 

 

 

 

 

 

 

Outside Leg of Crossroad 

Inside Leg of Crossroad 
Freeway (I-70) 

Figure 3.30. Illustration of inside/outside leg of crossroad 
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Table 3.9 shows segment characteristics and crash allocations of freeway segments 

considered for the calibration. Roughly, 77% of the total length of freeway segments, 55% of 

freeway crashes, and 52% of freeway fatal and injury crashes occurred in rural settings. Rural 4-

lane freeway is the most dominant freeway type in the Kansas freeway segment sample with 338 

segments consisting of 194.8 miles in length and 1,574 reported crashes from 2013 to 2015. The 

AADT for the total freeway segment sample fluctuated between 4,260 and 145,000 vehicles per 

day (vpd), whereas the segment length varied from 0.10 to 1.00 mile, which is compatible with 

the HSM recommendations. Urban 8-lane freeways reported the highest crash rate per 100 

Million Vehicle Miles Traveled (MVMT) and urban 4-lane freeways reported the second highest 

crash rate per 100 MVMT.  

Table 3.9. Crash allocation and segment characteristics of freeway segment sample 

Freeway 

Facility 

(Freeways) 

Freeway AADT (vpd) Segment Length (miles) 
FI 

Crashes 

(2013-

2015) 

PDO 

Crashes 

(2013-

2015) 

Crash 

Rate 

per 100 

MVMT Min Max Average Min Max Average Total 

R4F 4,260 36,500 13,026 0.11 1.00 0.58 194.84 285 1,289 56.64 

R6F 37,600 41,000 39,067 0.15 1.00 0.62 11.15 62 261 67.70 

U4F 6,450 66,300 23,865 0.10 1.00 0.40 56.87 233 972 81.09 

U6F 31,100 109,000 67,443 0.10 0.53 0.27 5.42 47 183 57.49 

U8F 68,600 145,000 110,967 0.11 0.45 0.14 0.70 33 87 140.56 

Total  268.98 660 2,792 66.03 

Note: FI - Fatal and Injury, PDO – Property Damage Only, vpd – vehicles per day, MVMT – Million Vehicle Miles 

Traveled, R – Rural, U- Urban 

 

Table 3.10 shows segment characteristics and crash allocations of entrance speed-change 

lanes considered for the calibration. Approximately 77% of fatal and injury crashes and total 

entrance speed-change lane crashes are in urban settings. However, only 44% of total entrance 

speed-change lane lengths are in urban settings. In fact, the number and complexity of the 

interchanges are higher in urban areas. In contrast, the rural 4-lane entrance speed-change lane is 

the most prevalent entrance speed-change lane type in this sample. There are 200 rural 4-lane 
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entrance speed-change lane sites comprising 30.5 miles of length. The total segment length of 

entrance speed-change lanes varied from 0.06 to 0.29 miles, while complying with the HSM 

recommendation of 0.3 miles as the maximum length to be considered. Urban entrance speed-

change lanes recorded the highest crash rates per 100 MVMT.  

Table 3.10. Crash allocation and segment characteristics of entrance speed-change lane 

sample 

Freeway 

Facility 

(Speed-

Change 

Lanes) 

Freeway AADT (vpd) Segment Length (miles) 
FI 

Crashes 

(2013-

2015) 

PDO 

Crashes 

(2013-

2015) 

Crash 

Rate per 

100 

MVMT 
Min Max Average Min Max Average Total 

R4SCen 2,650 31,200 14,053 0.08 0.28 0.15 30.51 36 130 35.36 

U4SCen 6,970 75,600 28,085 0.06 0.29 0.16 17.43 62 180 45.15 

U6SCen 31,100 149,000 71,901 0.06 0.26 0.16 5.70 45 155 44.57 

U8SCen 73,200 152,000 135,821 0.10 0.21 0.14 1.09 28 102 80.19 

Total SCen 54.73 171 567 45.66 

Note: FI - Fatal and Injury, PDO – Property Damage Only, vpd – vehicles per day, MVMT – Million Vehicle Miles 

Traveled, R – Rural, U- Urban 

Table 3.11 shows segment characteristics and crash allocations of exit speed-change 

lanes considered for the calibration. Like entrance speed-change lanes, rural 4-lane exit speed-

change lanes are the most predominant exit speed-change lane type in the Kansas exit speed-

change lane sample. There are 215 rural 4-lane exit speed-change lane sites totaling 18.6 miles in 

length. Approximately 73% of the fatal and injury crashes, and total exit crashes are in urban 

settings. However, only 46% of the total exit speed-change lane lengths are present within urban 

settings. The total segment length of exit speed-change lanes varied from 0.03 to 0.27 miles, 

while complying with the HSM recommendation of 0.3 miles as the maximum length to be 

considered for speed-change lanes. Urban 6-lane and urban 8-lane exit speed-change lanes 

recorded the highest crash rates per 100 MVMT.   
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Table 3.11. Crash allocation and segment characteristics of exit speed-change lane sample 

Freeway 

Facility 

(Speed-

Change 

Lanes) 

Freeway AADT (vpd) Segment Length (miles) 
FI 

Crashes 

(2013-

2015) 

PDO 

Crashes 

(2013-

2015) 

Crash 

Rate per 

100 

MVMT 
Min Max Average Min Max Average Total 

R4SCex 2,650 36,500 14,283 0.03 0.19 0.09 18.59 33 95 44.03 

U4SCex 7,300 75,600 28,293 0.04 0.27 0.10 11.59 30 127 43.73 

U6SCex 30,300 149,000 69,009 0.05 0.27 0.12 3.66 43 97 50.62 

U8SCex 38,000 155,000 117,167 0.05 0.21 0.10 0.62 18 40 72.92 

Total SCex 34.46 124 359 48.02 

Note: FI - Fatal and Injury, PDO – Property Damage Only, vpd – vehicles per day, MVMT – Million Vehicle Miles 

Traveled, R – Rural, U- Urban 

Table 3.12 shows segment characteristics and crash allocations of ramp segments used 

for the calibration. In the Kansas ramp segment sample, one-lane ramps are more prevalent than 

2-lane ramps. There are 184 entrance ramp segments and 156 exit ramp segments totaling 40 and 

36.79 miles in length, respectively. Severe injury crashes or FI crashes are not very predominant 

in the Kansas ramp sample compared to freeway facilities. The majority of exit- and entrance-

ramp crashes occurred in urban settings. In the case of ramp segments, urban 2-lane ramps 

recorded the highest crash rate per 100 MVMT.  

Table 3.12. Crash allocation and segment characteristics of ramp segment sample 

Ramp 

Facility 

(Ramps) 

Segment AADT (vpd) Segment Length (miles) FI 

Crashes 

(2014-

2016) 

Total 

Crashes 

(2014-

2016) 

Total 

Crash 

Rate per 

100 

MVMT 

Min Max Average Min Max Average Total 

U1EN 115 20,933 3,873 0.08 0.68 0.23 25.68 11 58 53.26 

U2EN 8,805 15,032 12,603 0.12 0.29 0.19 1.91 5 27 102.44 

R1EN 14 4,607 694 0.14 0.40 0.20 12.41 1 5 53.01 

U1EX 123 22,170 3,084 0.12 0.66 0.24 18.73 9 47 74.32 

U2EX 1,780 19,935 5,311 0.12 0.37 0.24 4.54 2 20 75.76 

R1EX 22 3,993 627 0.14 0.45 0.23 13.52 - 3 32.31 

Total EN Ramps 40.00 17 90 62.21 

Total EX Ramps 36.79 11 70 70.76 

 Note: FI - Fatal and Injury, PDO – Property Damage Only, vpd – vehicles per day, MVMT – Million Vehicle Miles 

Traveled, R – Rural, U- Urban 
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Table 3.13 shows site characteristics and crash allocations of stop-controlled crossroad 

ramp terminals used for the calibration. There are 102 D4 stop-controlled crossroad ramp 

terminals and 18 other configurations of stop-controlled ramp terminals in this calibration 

sample. The majority of severe injury crashes occurred on D4 stop-controlled ramp terminals. 

There were no rural D3en and D3ex stop-controlled crossroad ramp terminals in counties 

considered for this ramp terminal calibration. Urban D4 stop-controlled ramp terminals and rural 

D4 stop-controlled ramp terminals showed the for highest total crash rates per Million Entering 

Vehicles (MEV).  

Table 3.13. Crash allocation and site characteristics of stop-controlled crossroad ramp 

terminal sample 

Ramp 

Facility 

(Stop-

controlled 

Ramp 
Terminals) 

Average Crossroad AADT 

(vpd) 

Average Ramp AADT 

(vpd) FI Crashes 

(2014-

2016) 

Total 

Crashes 

(2014-

2016) 

Total Crash 

Rate per 

Million 

Entering 

Vehicles 
Inside Leg Outside Leg Exit Entrance 

RD4ST 2,091 2,417 1,057 903 26 74 27.96 

RA2ST 3,320 3,320 4,115 282 - 4 1.10 

RB2ST 558 65 150 167 - 1 14.05 

UD4ST 5,321 5,262 2,179 2,074 57 185 32.11 

UA2ST 8,022 7,764 1,734 2,017 - 12 1.41 

UB2ST 5,309 2,286 2,182 750 - 2 0.80 

UD3enST 7,347 11,188 NA 3,533 - 8 0.65 

UD3exST 8,726 8,226 3,674 NA - 30 3.33 

Total ST 83 316 7.11 

Note: FI - Fatal and Injury, PDO – Property Damage Only, vpd – vehicles per day, Traveled, R – Rural, U- Urban, ST 

– Stop-Controlled, MEV – Million Entering Vehicles 

 

Table 3.14 shows site characteristics and crash allocations of signal-controlled crossroad 

ramp terminals used for the calibration. There are 47 D4 signal-controlled crossroad ramp 

terminals and 27 other configurations of signal-controlled ramp terminals in this calibration 

sample. All signal-controlled crossroad ramp terminals considered were in urban settings. A 

majority of severe injury crashes occurred on D4 signal-controlled ramp terminals. Urban D4 

signal-controlled crossroad ramp terminals reported the highest total crash rate per MEV.  
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Table 3.14. Crash allocation and site characteristics of signal-controlled crossroad ramp 

terminal sample 

Ramp 

Facility 
(Signal-

controlled 

Ramp 

Terminals) 

Average Crossroad AADT 

(vpd) 

Average Ramp AADT 

(vpd) FI Crashes 
(2014-

2016) 

Total 
Crashes 

(2014-

2016) 

Total Crash 

Rate per 
Million 

Entering 

Vehicles 
Inside Leg Outside Leg Exit Entrance 

UD4SG 12,354 12,448 4,477 4,024 138 542 39.76 

UA2SG 12,962 12,416 4,458 2,664 11 51 3.75 

UA4SG 11,282 19,150 8,217 2,125 5 8 0.38 

UB2SG 13,242 13,448 3,816 3,710 31 62 4.21 

UD3enSG 19,130 18,628 NA 4,211 4 11 0.54 

UD3exSG 16,751 13,032 6,846 NA 9 49 3.43 

Total SG 198 723 7.55 

Note: FI - Fatal and Injury, PDO – Property Damage Only, vpd – vehicles per day, Traveled, R – Rural, U- Urban, 

SG – Signal-Controlled, MEV – Million Entering Vehicles 

 

3.11 Aggregation of Databases to Perform Freeway Segment and Speed-

Change Lane Calibration 

Once the required data were gathered to perform the calibration, three main databases, as 

discussed in data preparation section, were merged in ArcGIS (ESRI, 2012). Figure 3.31 

indicates the merging procedure of three databases including actions taken to achieve the 

calibration. In this process, CANSYS database and ArcGIS shapefiles were utilized to obtain the 

required geometric and traffic data, and the KCARS database was used to extract reported crash 

data for the study period.  
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Figure 3.31. Aggregation of databases in ArcGIS 

 

3.12  Methodology  

3.12.1 HSM Calibration Factor Estimation Process 

This section summarizes the 18-step predictive method given in Figure 18-1 of the HSM 

supplement (AASHTO, 2014, pp. 18-8). Estimation of HSM calibration factors follows an 

ordinary process as shown in Figure 3.32. This is a simplified process from the 18-step 

predictive method.   
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3.12.2 HSM Predictive Method  

 

The HSM predictive method follows a general form to compute the predicted average 

crash frequency as stated in Equation 3 (AASHTO, 2014). The model consists of a SPF 

developed for a set of base conditions, a set of CMFs to address non-base conditions, and a 

calibration factor.  

where,  

 

 

 

Predictive models provided in chapters 18 and 19 of the HSM supplement require 

separate analyses of segments and intersections. The HSM categorizes freeways and ramps as 

segments, and speed-change lanes and crossroad ramp terminals as intersections. The HSM 

predictive models for freeways, entrance speed-change lanes, and exit speed-change lanes apply 

to rural freeway segments with four to eight lanes and urban freeway segments with four to 10 

lanes.  The HSM predictive models for entrance and exit ramps apply to urban ramps with one to 

𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 𝑁𝑠𝑝𝑓 × (𝐶𝑀𝐹1 × 𝐶𝑀𝐹2 × … ×  𝐶𝑀𝐹𝑚 ) × 𝐶                (3) 

𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  = Predicted average crash frequency, 

𝑁𝑠𝑝𝑓  = Safety performance function,  

𝐶𝑀𝐹(1−𝑚)  = Crash modification factors, and   

𝐶  = Calibration factor.  
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Figure 3.32. HSM calibration factor development process 
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two lanes and rural ramps with one-lane. The HSM predictive models for signal-controlled and 

stop-controlled ramp terminals apply to rural crossroad ramp terminals with two to four 

crossroad lanes and urban crossroad ramp terminals with two to six crossroad lanes. Freeway and 

ramp crashes are predicted by combinations of two crash types and severity types such as 

multiple vehicle fatal and injury (MV FI), single vehicle fatal and injury (SV FI), multiple 

vehicle property damage only (MV PDO), and single vehicle property damage only (SV PDO). 

Speed-change lane crashes and crossroad ramp terminal crashes are predicted for all crash types 

and two crash severity types, FI and PDO. 

3.12.3 Safety Performance Functions (SPFs)  

The SPF predicts the number of crashes at a location as a function of the exposure and 

roadway characteristics. For freeway segments, speed-change lanes, and ramp segments, the 

exposure is signified by the segment length and AADT associated with the study section under a 

given set of base conditions. For crossroad ramp terminals, the exposure is signified by the 

AADTs associated with the crossroad, entrance ramps, and exit ramps.  The calculation of the 

effective length of freeway segment (L*) was described in Section 3.5.1.4.  

Equation 4 denotes the SPF for multiple-vehicle or single-vehicle crashes on freeway segments.   

𝑁𝑠𝑝𝑓,𝑓𝑟𝑒𝑒𝑤𝑎𝑦𝑠  = 𝐿∗  × 𝑒𝑥𝑝(𝑎 + 𝑏 × 𝑙𝑛[𝑐 × 𝐴𝐴𝐷𝑇𝑓𝑠]) 

 

(4) 

where,  

 

𝑁𝑠𝑝𝑓,𝑓𝑟𝑒𝑒𝑤𝑎𝑦𝑠  = Predicted average crash frequency,  

𝐿∗ = Effective length of freeway segment (mi),  

𝑎, 𝑏 = Regression coefficients,  

𝑐 = AADT scale coefficient, and  

𝐴𝐴𝐷𝑇𝑓𝑠 = AADT volume of freeway segment (vpd).  
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Equation 5 denotes the SPF for all crashes at entrance or exit speed-change lanes.  

𝑁𝑠𝑝𝑓,𝑠𝑝𝑒𝑒𝑑−𝑐ℎ𝑎𝑛𝑔𝑒 𝑙𝑎𝑛𝑒𝑠  = 𝐿𝑒𝑛 𝑜𝑟 𝑒𝑥  × 𝑒𝑥𝑝(𝑎 + 𝑏 × 𝑙𝑛[𝑐 × 𝐴𝐴𝐷𝑇𝑓𝑠]) 

 

      (5) 

where,  

𝑁𝑠𝑝𝑓,𝑠𝑝𝑒𝑒𝑑−𝑐ℎ𝑎𝑛𝑔𝑒 𝑙𝑎𝑛𝑒𝑠  = Predicted average crash frequency, 

𝐿𝑒𝑛,𝑒𝑥 = Length of ramp entrance or exit (mi), 

𝑎, 𝑏 = Regression coefficients, 

𝑐 = AADT scale coefficient, and 

𝐴𝐴𝐷𝑇𝑓𝑠 = AADT volume of freeway segment (vpd). 

 

Equation 6 denotes the SPF for multiple-vehicle crashes on entrance or exit ramps and Equation 

7 denotes the SPF for single-vehicle crashes on entrance or exit ramps.  

𝑁𝑠𝑝𝑓,𝑀𝑉,𝑟𝑎𝑚𝑝𝑠 = 𝐿𝑟 × 𝑒𝑥𝑝(𝑎 + 𝑏 × [𝑐 × 𝐴𝐴𝐷𝑇𝑟 + 𝑑[𝑐 × 𝐴𝐴𝐷𝑇𝑟]) (6) 

𝑁𝑠𝑝𝑓,𝑆𝑉,𝑟𝑎𝑚𝑝𝑠 = 𝐿𝑟 × 𝑒𝑥𝑝(𝑎 + 𝑏 × [𝑐 × 𝐴𝐴𝐷𝑇𝑟]) (7) 

where,  

𝑁𝑠𝑝𝑓,𝑀𝑉/𝑆𝑉,𝑟𝑎𝑚𝑝𝑠 = Predicted average crash frequency, 

𝐿𝑟 = Length of ramp segment (mi), 

𝑎, 𝑏, 𝑑 = Regression coefficients, 

𝑐 = AADT scale coefficient, and 

𝐴𝐴𝐷𝑇𝑟 = AADT volume of ramp segment (vpd). 

 

Equation 8 denotes the SPF for signal-controlled and stop-controlled crossroad ramp terminals.  

𝑁𝑠𝑝𝑓,𝑆𝐺/𝑆𝑇 = 𝑒𝑥𝑝(𝑎 + 𝑏 × 𝑙𝑛[𝑐 × 𝐴𝐴𝐷𝑇𝑥𝑟𝑑] + 𝑑 × 𝑙𝑛[𝑐 × 𝐴𝐴𝐷𝑇𝑒𝑛 + 𝑐 × 𝐴𝐴𝐷𝑇𝑒𝑥]) (8) 

with  

𝐴𝐴𝐷𝑇𝑥𝑟𝑑 = 0.5 × (𝐴𝐴𝐷𝑇𝑖𝑛 + 𝐴𝐴𝐷𝑇𝑜𝑢𝑡 )  
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where,  

 

3.12.4 Crash Modification Factors (CMFs)  

A CMF is a multiplicative factor used to measure the crash impact of geometric 

conditions. For example, if a segment has a lane width of 14 feet, which is a deviation from the 

base condition, the SPF can be modified by multiplying the relevant CMF associated with the 

lane width. For any segment characteristic has counterparts to base conditions, the CMF value is 

equal to 1.0. A CMF value less than 1.0 indicates a reduction in predicted crashes while applying 

the specific countermeasure and vice versa. Table 3.15 provides CMFs that are applicable to 

freeway segments, speed-change lanes, ramp segments and crossroad ramp terminals. In 

summary, a total of 11,seven, eight, 10 and seven CMFs were calculated to perform the 

calibration for freeway segments, speed-change lanes, ramp segments, signal-controlled 

crossroad ramp terminals, and stop-controlled crossroad ramp terminals, respectively. The first 

six CMFs are common to both freeway segments and speed-change lanes. Several CMFs 

required a variable characterizing the proportion of the segment’s length to a specific feature, 

such as a curve, barrier, or rumble strip, if it is present within the segment. In those 

circumstances, the proportion is equal to the total length of the feature summed over both 

𝑁𝑠𝑝𝑓,𝑆𝐺/𝑆𝑇 = Predicted average crash frequency, 

𝐴𝐴𝐷𝑇𝑥𝑟𝑑  = AADT volume of the crossroad (vpd ), 

𝑎, 𝑏, 𝑑 = Regression coefficients, 

𝑐 = AADT scale coefficient,  

𝐴𝐴𝐷𝑇𝑒𝑥/𝑒𝑛 = AADT volume of exit/entrance ramp (vpd ), 

𝐴𝐴𝐷𝑇𝑖𝑛 = AADT volume of crossroad leg between ramps (vpd), and 

𝐴𝐴𝐷𝑇𝑜𝑢𝑡 = AADT volume of crossroad leg of interchange (vpd). 
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roadbeds divided by the length of both roadbeds. Appendix C explains the estimation of the 

relevant CMFs for freeway segment calibration by providing a sample calculation. 

 

Table 3.15. CMFs applicable for freeway segments, speed-change lanes, ramp segments, 

and crossroad ramp terminals (AASHTO, 2014) 

CMF 
Variable 

CMF Description 
Freeway 
Segments 

Entrance 

Speed-
Change 

Lanes 

Exit 

Speed-
Change 

Lanes 

Ramp 
Segments  

Signal-

Controlled 
Ramp 

Terminals  

Stop-

Controlled 
Ramp 

Terminals 

CMF1 Horizontal Curve √ √ √ √   

CMF2 Lane Width √ √ √ √   

CMF3 Inside Shoulder Width √ √ √    

CMF4 Median Width √ √ √    

CMF5 Median Barrier √ √ √    

CMF6 High Volume √ √ √    

CMF7  Lane Change √      

CMF8 Outside Shoulder Width √      

CMF9 Shoulder Rumble Strip √      

CMF10 Outside Clearance √      

CMF11 Outside Barrier √      

CMF12 Ramp Entrance  √     

CMF13 Ramp Exit   √    

CMF14 Right Shoulder Width    √   

CMF15 Left Shoulder Width    √   

CMF16 Right Side Barrier    √   

CMF17 Left Side Barrier    √   

CMF18 Lane Add or Drop    √   

CMF19 Ramp Speed-Change Lane    √   

CMF20 Weaving Section       

CMF21 Exit Ramp Capacity     √ √ 

CMF22 Crossroad Left-Turn Lane     √ √ 

CMF23 Crossroad Right-Turn Lane     √ √ 

CMF24 Access Point Frequency     √ √ 

CMF25 Segment Length      √ √ 

CMF26 Median Width     √ √ 

CMF27 
Protected Left-Turn 

Operation 
    √  

CMF28 
Channelized Right Turn on 

Crossroad 
    √  

CMF29 
Channelized Right Turn on 

Exit Ramp 
    √  

CMF30 
Non-Ramp Public Street 

Leg 
    √  

CMF31 Skew Angle       √ 

Total CMFs 11 7 7 8 10 7 
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3.12.5 Calibration Factor 

According to the HSM, the calibration factor is computed by obtaining the ratio of total 

observed crashes to total predicted crashes. Observed crashes for freeway facilities were 

obtained from the KCARS database and observed crashes for ramp facilities were obtained by 

manually reviewing interchange-related crash reports. Predicted crashes were estimated using 

freeway and ramp facility SPFs from HSM; and relevant CMFs. If the calibration factor is 

smaller than 1.00, the HSM methodology overpredicts crashes and if the calibration factor is 

larger than 1.00, the HSM methodology underpredicts crashes. Overprediction designates a 

certain jurisdiction experiences less crashes than what is predicted using the HSM methodology 

and underprediction designates a certain jurisdiction experiences more crashes than what is 

predicted using the HSM methodology. Equation 9 was used to estimate the calibration factor. 

where,  

 

 

 

3.12.6 Development of Calibration Datasets 

Calibration datasets were created in Microsoft Excel and geometric and traffic attributes of 

the sample segments or intersections were entered to the worksheet to perform calibrations. Then, 

CMFs were computed on different worksheets for each individual segment or intersection for cases 

where base conditions change. Next, the calibration procedure was executed on a new worksheet. 

The calibration worksheet included columns for CMFs, SPFs, predicted crash frequencies, 

observed crash frequencies, and estimated calibration factors as shown in Figure 3.24. The 

𝐶 =
∑ ∑ 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑐𝑟𝑎𝑠ℎ𝑒𝑠

𝑛𝑦𝑒𝑎𝑟𝑠

𝑗=1
𝑛𝑠𝑖𝑡𝑒𝑠
𝑖=1

∑ ∑ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑐𝑟𝑎𝑠ℎ𝑒𝑠
𝑛𝑦𝑒𝑎𝑟𝑠

𝑗=1
𝑛𝑠𝑖𝑡𝑒𝑠
𝑖=1

 

 

      (9) 

𝐶 = Calibration factor, and  

𝑛𝑠𝑖𝑡𝑒𝑠 = Number of sites of the freeway facility type. 
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equations for SPFs were manually inserted and predicted crash frequencies were calculated for all 

freeway and ramp facility types considering each crash type and severity type combination for the 

entire study period. Then, the reported crashes for each individual segment were added to the 

calibration workbook.  Finally, the calibration factors were estimated by dividing total observed 

crashes by total predicted crashes for the study period.  

3.12.7 Assessment of the Quality of the Calibration Process  

When calibration factors are developed for a certain facility type, jurisdictions must first assess 

the quality of the calibration process before developing local SPFs (Srinivasan et al., 2013). As the 

calibration factor is a single multiplier, it is recommended to evaluate the performance of the 

calibrated SPFs in explaining the inconsistency of reported crashes among sites (Lyon et al. 2016). 

Srinivasan et al., (2013) also listed a number of ways to assess the quality of the calibration process, 

as follows:  

(1) The value of the calibration factor – if the calibration factor is significantly different from 

1.000 (i.e. much less or much greater), this indicates the crash experience in that specific 

jurisdiction is much different than the data used to estimate the initial SPFs. 

(2) Goodness-of-fit tests – cumulative residual (CURE) plots and coefficient of variation 

(CV), and the importance of CURE plots and CV are explained in the next sections. 

Further, the calibrated SPF is acceptable if either: (1) an upper threshold of 5% or less of 

CURE plot fitted (calibrated) values (after applying the calibration factor) exceed 2σ limits, 

or (2) the CV of the calibration factor is less than 0.15 (Hauer, 2016; Lyon et al., 2016). 
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Figure 3.33. Freeway calibration worksheet sample 
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3.12.7.1 Cumulative Residual (CURE) Plots  

A CURE plot is a graphical indication of the cumulative residuals (observed minus 

predicted crashes) against the variable of interest arranged in ascending order. The variable of 

interest would be the calibration factors, AADT, segment length, shoulder width, etc. CURE 

plots provide further insight into whether the selected functional form is reasonable or not. In this 

scenario, CURE plots help to identify possible concerns by providing a visual depiction of 

goodness-of-fit over a range of variables of interest (Lyon et al., 2016). The concerns include –  

• Long trends: increasing or decreasing long trends in the CURE plot indicate bias in SPFs, 

therefore, jurisdictions must rectify improvement to the SPF by either changing the 

functional form or adding new variables.  

• Percent exceeding confidence limits: cumulative residuals outside the range of the two 

confidence intervals indicate a poor fit over the range of variable of interest.  

• Vertical changes: large vertical changes indicate potential outliers that may require further 

inspection.  

Figure 3.34 graphically explains long trends, percent exceeding confidence limits, and 

vertical changes in a CURE plot. Fitted values in the CURE plots indicate the calibrated values, 

where the HSM predicted values are multiplied by the relevant calibration factor and cumulative 

residuals indicate the observed minus predicted crashes.  
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3.12.7.2 Coefficient of Variation (CV) of Calibration Factor  

 

The CV of the calibration factor is the ratio of standard deviation of the calibration factor 

to the estimate of the calibration factor as shown in Equation 10. Variance of the calibration 

factor, V(C), is calculated using Equation 11.  The square root of the variance is the standard 

deviation of the calibration factor. 

𝐶𝑉 =  
√𝑉(𝐶)

𝐶
 

      (10) 

 

where, 

𝑉(𝐶) =  
∑ (𝑦𝑖 + 𝑘 × 𝑦𝑖

2)𝑎𝑙𝑙 𝑠𝑖𝑡𝑒𝑠

(∑ ŷ𝑎𝑙𝑙 𝑠𝑖𝑡𝑒𝑠 )2
 

      (11) 

 

CV = Coefficient of variation of the calibration factor,  

𝐶 = Estimate of the calibration factor, and 

𝑉(𝐶) = Variance of the calibration factor. 

Figure 3.34. Possible concerns to be identified from CURE plots 
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where, 

 

 

The study used the Calibrator tool to develop two goodness-of-fit measures, the CURE 

plot and the CV, as discussed in this section (USDOT, 2018b). The spreadsheet-based Calibrator 

tool developed by Lyon et al. (2016) supports analysts in assessing SPF compatibility and 

applicability. The Calibrator tool computes several goodness-of-fit measures, such as mean 

absolute deviation, modified R2, dispersion parameter, coefficient of variation (CV) of the 

calibration factor, and CURE plots, which could be used to determine if the SPF calibration is 

acceptable or not. 

3.12.8 Development of Calibration Functions 

Calibration functions are further developed to improve the fit of data compared to the use 

of calibration factors (Hauer, 2016; Srinivasan et al., 2016). A few recent studies related to HSM 

calibration mentioned that calibration functions deliver more accurate predictions than 

calibration factors and are more comparable with local SPFs (Claros et al., 2018; Farid et al., 

2018; Rajabi et al., 2018). It is therefore important to see whether the same is valid for conditions 

in Kansas. Equation 12 shows the base model of the calibration function, which signifies the 

relationship between observed crashes and predicted crashes in power function form commonly 

used in road safety modeling. If “b” is equal or close to the value of 1, “a” becomes the 

calibration factor.  Apart from the base model, calibration functions could also be developed 

using other predictor variables, such as segment length, AADT, and CMFs. However, this study 

was limited to the base calibration function.  Common methods of estimating calibration 

𝑦𝑖 = Observed counts, 

ŷ = Uncalibrated predicted values from the SPF, and  

𝑘 = Dispersion parameter (recalibrated).  



    

75 

 

functions are the ordinary least squares (OLS) method, Poisson regression, and NB regression. 

Among these three methods, Poisson regression is the most simple; however, NB regression is 

often used in the literature due to its capability to explain the overdispersion (Hauer 2015; 

Srinivasan et al., 2016; Claros et al., 2018). The calibration functions were developed for 

freeway segments, speed-change lanes, and crossroad ramp terminals depending upon initial 

goodness-of-fit estimated using the two methods discussed in Section 3.12.7.  

𝑁𝑜𝑏𝑠 = 𝑎 × 𝑁𝑝𝑟𝑒𝑑
𝑏       (12) 

 

where,  

 

 

 

 

 

 

In the NB method, “a” and “b” parameters are estimated by maximizing the log-

likelihood (LL). The LL based on the NB regression method was computed using Equation 13 

(Hauer, 2015).  

ln[𝐿(𝛽0, 𝛽1, … , ϐ)] = ∑ [𝑙𝑛𝛤(𝑜𝑏𝑠𝑖
𝑛
𝑖=1 + ϐ𝐿𝑖) − 𝑙𝑛𝛤(ϐ𝐿𝑖) + ϐ𝐿𝑖 ln(ϐ𝐿𝑖) + 𝑜𝑏𝑠𝑖 ln(𝑝𝑟𝑒𝑑𝑖) −

(ϐ𝐿𝑖 + 𝑜𝑏𝑠𝑖) × ln(ϐ𝐿𝑖 + 𝑝𝑟𝑒𝑑𝑖)] 

(13) 

 

where i designates a segment and 𝐿𝑖 is the length of segment i. When parameter estimates 

of the model 𝛽0, 𝛽1, … , ϐ are maximized in the LL function, the sum of ln[𝐿(𝛽0, 𝛽1, … , ϐ)] is 

maximized (Hauer, 2015). The value of 1/ ϐ𝐿𝑖 is the dispersion parameter, which is often 

referred as “k”. All dispersion parameters in the HSM are either a constant or a function of 

𝑁𝑜𝑏𝑠 = Observed crashes, 

𝑁𝑝𝑟𝑒𝑑  = Predicted crashes, 

𝑎 = Model coefficient multiplier, and 

𝑏 = Model coefficient exponent.  
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segment length for road segments. The dispersion parameter k, is determined from the variance 

equation as shown in Equation 14. 

𝑉 =  𝐸 +
𝐸2

ϐ𝐿𝑖
 

(14) 

where, V is the estimated variance of mean crash rate, E is the estimated mean crash rate, 

and  
1

ϐ𝐿𝑖
  is the dispersion parameter, k.  

3.12.9 The Calibrator  

The Calibrator is a spreadsheet-based tool developed by FHWA that could be used to 

calibrate and assess the performance of SPFs (USDOT, 2018b). In addition, the latest version 

(2018) includes the capability of estimating calibration functions. The Calibrator tool creates 

CURE plots and provides goodness-of-fit measures to determine how well the function fits the 

data set. A more detailed procedure on use of the Calibrator tool is available in Lyon et al. 

(2016). This study used the Calibrator tool to assess the performance of calibrated SPFs and to 

estimate calibration functions; however, Microsoft Excel datasheets were developed to perform 

the calibration for all facilities. 

This study estimated the calibration functions in two ways, using the NB method and the 

Calibrator tool (Hauer 2015; Srinivasan et al., 2016; USDOT, 2018b). The estimated values for 

“a” and “b” parameters were similar in both methods supporting that the Calibrator tool also uses 

the NB method in developing calibration functions. 
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 – Results  
 

The first part of this chapter provides estimated calibration factors, estimated goodness-

of-fit measures, and developed calibration functions for all facility types considered in this study. 

The latter part of the chapter delivers developed Kansas-specific crash type distributions for 

freeway segments, speed-change lanes, and crossroad ramp terminals in comparison to HSM-

default crash type distributions.  

4.1 Estimated Calibration Factors for Freeway Segments and Speed-

Change Lanes   

Table 4.1 tabulates estimated calibration factors and developed calibration functions for 

freeway segments and speed-change lanes in Kansas. A calibration factor greater than 1.000 

indicates an underprediction of crashes meaning that Kansas has experienced more crashes than 

what is predicted using the HSM predictive method. In contrast, a calibration factor smaller than 

1.000 indicates an overprediction meaning that Kansas has experienced fewer crashes than what 

is predicted using the HSM predictive method. Considering all freeway segments, the HSM 

methodology overpredicted both MV FI and SV FI crashes, and underpredicted both MV PDO 

and SV PDO crashes. Considering all speed-change lane types, the HSM methodology 

consistently underpredicted both entrance- and exit- related FI and PDO crashes. Overall, the 

value of calibration factors for FI crashes was much closer to 1.000 compared to PDO crashes. 

When the calibration factors are significantly different from 1.000, it indicates some biasness in 

estimated calibration factors. This creates a necessity to further assess the quality of the 

calibration process as shown in previous studies related to the HSM calibration (Hauer, 2015; 

Lyon et al. 2016; Srinivasan et al., 2016; Srinivasan et al., 2013).         
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4.2 Assessment of Quality of Calibration Process for Freeway Facilities  

The study estimated percent cure deviation and CV for freeway and speed-change lane 

SPFs as shown in Table 4.1. This assessment was only limited to the most-common types of 

Kansas freeways and the speed-change lanes in calibration sample, where the sample size was at 

least 50 sites for each facility type. It is acknowledged that smaller sample sizes may not result in 

reliable calibrations (Alluri et al., 2016; Bahar and Hauer, 2014; Banihashemi, 2012; Kim et al., 

2015; Trieu et al., 2014).  

The percent of cure deviation for fitted values (after applying the calibration factor) less 

than 5%, or the CV of the calibration factor less than 0.15, indicates a successful calibration. The 

Calibrator tool was used to estimate the values for percent cure deviation and to create CURE 

plots (USDOT, 2018b). The percent cure deviation is the percentage of cumulative residuals 

lying outside the two standard deviations of the cumulative residuals (±2σ) in a CURE plot. In 

Figure 4.1, the x-axis represents fitted values and the y-axis cumulative residuals. The fitted 

values are the calibrated values where the HSM predicted crash frequency is multiplied by the 

estimated calibration factor. Cumulative residuals are calculated by subtracting the predicted 

crashes from the observed crashes.   

Overall, considering either percent cure deviation or CV value for all freeway facility 

types considered in this study, it can be concluded that the calibration was reasonably successful. 

However, the percent of cure deviation for fitted values for the calibration factor was greater than 

5% in majority of freeway models, thus indicating some biased predictions. Therefore, 

calibration functions were developed to further improve the fit of fitted values to the local 

dataset. Table 4.1 also provides “a” and “b” coefficients of developed calibration functions for 

disaggregate freeway and speed-change lane types. The quality assessment between calibrated 
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HSM-default SPFs and developed calibration functions was conducted for freeway segment and 

speed-change lane SPFs using CURE plots. Furthermore, the estimated percent cure deviation 

values for calibration factors (i.e. calibrated HSM-default SPFs) and calibration functions are 

presented in Table 4.1.  

Figure 4.1 displays CURE plots created for fitted values for calibration factor and 

calibration function for the rural 4-lane freeway, SV PDO model. For this specific scenario, the 

percent cure deviation was reduced from 60% to 6% when the calibration function was 

considered. Similarly, for all freeway facilities presented in Table 4.1, the percent cure deviation 

values (last two columns) reported for calibration functions are much less than the values 

reported for the respective calibration factors. This indicates the developed calibration functions 

are better fitted for Kansas freeway segment and speed-change lane data compared to calibrated 

HSM-default SPFs. CURE plots for other freeway facilities are provided in Appendix D.  
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Figure 4.1. CURE plots for fitted values for calibration factor and calibration function 

(Rural 4-lane freeways SVPDO model) 
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Table 4.1. Estimated calibration factors, estimated goodness-of-fit measures, and developed 

calibration functions for freeway segments and speed-change lanes 

Freeway 
Facility 
Type 

Crash 
Type 

Observed 
Crashes 

Predicted 
Crashes 

Calibration 
Factor 
(2013-
2015) 

Coefficient 
of 
Variation  

Calibration 
Function 

% Cure Deviation 
of Fitted Values 

a b Calibration 
Factor 

Calibration 
Function 

R4F 

MVFI 68 72.88 0.933 0.15 1.31 1.31 9 9 

SVFI 217 280.51 0.774 0.10 0.76 0.76 8 2 

MVPDO 220 99.92 2.202 0.14 2.24 1.10 11 9 

SVPDO 1069 609.69 1.753 0.04 2.06 0.78 60 6 

U4F 

MVFI 83 89.63 0.926 0.18 0.92 0.94 1 1 

SVFI 150 123.46 1.215 0.14 1.20 0.50 27 5 

MVPDO 310 138.22 2.243 0.29 2.38 0.54 7 7 

SVPDO 662 313.48 2.112 0.07 2.98 0.63 79 1 

All 

Freeways 
(HSM 
Criteria) 

MVFI 219 230.13 0.952 0.14 0.96 1.06 7 6 

SVFI 441 470.95 0.936 0.09 0.95 0.76 49 1 

MVPDO 746 376.33 1.982 0.12 2.08 0.90 14 4 

SVPDO 2046 1110.02 1.843 0.07 2.23 0.80 80 2 

R4SC 

ENFI 36 19.41 1.855 0.25 0.52 0.44 29 1 

ENPDO 130 66.13 1.966 0.15 1.44 0.70 1 0 

EXFI 33 26.38 1.251 0.26 2.06 1.25 8 0 

EXPDO 95 59.39 1.600 0.17 1.37 0.87 0 0 

U4SC 

ENFI 62 46.84 1.324 0.25 1.24 0.90 2 2 

ENPDO 180 103.72 1.736 0.16 1.79 0.78 16 6 

EXFI 30 32.06 0.936 0.34 0.98 1.03 6 6 

EXPDO 127 76.10 1.669 0.30 1.62 0.88 1 1 

All Speed-
Change 
Lanes 
(HSM 
Criteria) 

ENFI 171 117.77 1.452 0.16 1.39 0.91 16 5 

ENPDO 567 291.83 1.943 0.13 1.95 0.99 6 6 

EXFI 124 87.60 1.416 0.20 1.70 1.20 18 0 

EXPDO 359 208.78 1.720 0.13 1.72 0.99 1 0 

Note: MV – Multiple Vehicle, SV – Single Vehicle, FI – Fatal and Injury, PDO – Property Damage Only, EN – 

Entrance-related, EX – Exit-related 

 

 

4.3 Estimated Calibration Factors for Ramp Segments 

Table 4.2 shows estimated calibration factors for ramp segments using Kansas data from 

2014 to 2016. The HSM methodology overpredicted SV FI, SV PDO, and MV FI crashes and 

underpredicted MV PDO crashes for all entrance ramps in Kansas. In case of all exit ramps, the 

HSM methodology underpredicted all MV crashes and overpredicted all SV crashes. Moreover, 
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results indicated MV ramp crashes are more prevalent in urban settings then in rural settings in 

Kansas. When no crashes were reported during the study period for a particular ramp type, 

calibration factors for those ramp types were considered as 1.000. Calibration factors were also 

estimated separately for urban and rural settings. However, none of the prediction models met 

the HSM crash criteria of 100 crashes per year even with a satisfactory sample size of 184 and 

156, respectively, for entrance and exit ramps. Furthermore, sample sizes of 184 entrance ramps 

and 156 exit ramps considered in this study were much larger than the HSM-desired sample size 

requirement of 30 to 50 sites. Additionally, rural ramps experienced very few total crashes in 

comparison to urban ramps. Calibration factors for multiple vehicle crashes at exit ramps were 

much greater than 1.000 compared to calibration factors for multiple vehicle crashes at entrance 

ramps.   

Nevertheless, assessment of calibrated HSM-default SPFs for ramp segments was not 

conducted in this study. The HSM ramp SPFs are to be considered by number of lanes, area type, 

and severity type, and therefore, the number of crashes relevant to each SPF becomes small. 

Consequently, it is not practicable to assess the performance of these calibrated HSM-default 

ramp SPFs or to develop calibration functions having smaller crash numbers, since it is well 

known that smaller crash numbers do not provide reliable results.  
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Table 4.2. Estimated calibration factors for Kansas ramp segments  

Ramp Facility Crash Type 
No. of 

Segments 

Observed 

Crashes 

Predicted 

Crashes 

Calibration Factor 

(2014-2016) 

Urban EN 

MVFI 122 10 10.28 0.973 

SVFI 122 6 38.66 0.155 

MVPDO 122 52 18.28 2.845 

SVPDO 122 17 52.21 0.326 

Rural EN 

MVFI* 62 0 0.17 1.000 

SVFI 62 1 3.86 0.259 

MVPDO* 62 0 0.72 1.000 

SVPDO 62 4 4.80 0.833 

All EN Ramps 

(HSM Criteria) 

MVFI 184 10 10.45 0.957 

SVFI 184 7 42.52 0.165 

MVPDO 184 52 19.00 2.737 

SVPDO 184 21 57.01 0.368 

Urban EX 

MVFI 96 7 1.26 5.556 

SVFI 96 5 24.59 0.203 

MVPDO 96 35 4.18 8.373 

SVPDO 96 20 37.43 0.534 

Rural EX 

MVFI* 60 0 0.03 1.000 

SVFI* 60 0 3.29 1.000 

MVPDO* 60 0 0.21 1.000 

SVPDO 60 3 4.40 0.682 

All EX Ramps 
(HSM Criteria) 

MVFI 156 7 1.29 5.426 

SVFI 156 5 27.88 0.179 

MVPDO 156 35 4.39 7.973 

SVPDO 156 23 41.84 0.550 

Note: * denotes that no crashes were reported during the study period and calibration factor was considered as 1.000  

MV – Multiple Vehicle, SV – Single Vehicle, FI – Fatal and Injury, PDO – Property Damage Only  

 

4.4 Estimated Calibration Factors for Crossroad Ramp Terminals 

Table 4.3 provides estimated calibration factors for all stop-controlled and signal-

controlled crossroad ramp terminals in Kansas. For the calibration, 120 stop-controlled crossroad 

ramp terminals and 74 signal-controlled ramp terminals were used. The HSM-classified 

crossroad ramp terminal configuration types included in the calibration are D4, A2, B2, A4, 

D3en, and D3ex. The number of sites belonging to each crossroad terminal configuration is 
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provided in Table 3.8. Calibration factors were also developed by area type for all stop-

controlled and signal-controlled crossroad ramp terminals as shown in Table 4.3, although all 

signal-controlled crossroad ramp terminals are located in urban settings. Considering all stop-

controlled and signal-controlled crossroad ramp terminals, the HSM methodology 

underpredicted FI crashes and overpredicted PDO crashes.   

Table 4.4 shows estimated calibration factors for D4 stop-controlled and D4 signal-

controlled crossroad ramp terminals in Kansas. Calibration factors for D4 crossroad ramp 

terminals were estimated separately because D4 is the most common ramp terminal 

configuration type present in Kansas. For the calibration, 102 D4 stop-controlled crossroad ramp 

terminals and 47 D4 signal-controlled crossroad ramp terminals were used. The HSM 

methodology underpredicted both FI and PDO crashes at D4 stop-controlled crossroad ramp 

terminals. Considering D4 signal-controlled crossroad ramp terminals, the HSM methodology 

overpredicted FI crashes and underpredicted PDO crashes. 

4.5 Assessment of Quality of Calibration Process for Crossroad Ramp 

Terminals  

Considering either percent cure deviation or CV value for both signal-controlled and 

stop-controlled crossroad ramp terminals as shown in Tables 4.3 and 4.4, the calibration is 

acceptable with some biased predictions. However, considering only the percent of cure 

deviation for fitted values for the calibration factor, values were greater than 5% in a majority of 

cases, and therefore, calibration functions were developed to further improve the fit to local data. 

Tables 4.3 and 4.4 also provide estimated “a” and “b” coefficients, and respective percent cure 

deviations for calibration functions. Developed calibration functions improved the fit to local 

data, resulting in lower percent cure deviations compared to those of calibration factors. In 
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addition, CURE plots for all crossroad ramp terminal facility types considered in this study are 

provided in Appendix E. 

Table 4.3. Estimated calibration factors, estimated goodness-of-fit measures, and developed 

calibration functions for all stop-controlled and signal-controlled crossroad ramp terminals  

Ramp 
Terminal 
Facility 
(All) 

Crash 
Type 

Observed 
Crashes 

Predicted 
Crashes 

Calibration 
Factor 
(2014-
2016) 

 
Coefficient 

of Variation 

Calibration 
Function 

% Cure Deviation of 
Fitted Values 

a b 
Calibration 
Factor 

Calibration 
Function 

Rural  

ST 

STFI 26 25.71 1.011 0.21 0.92 0.55 49 6 

STPDO 53 35.75 1.483 0.15 1.46 0.42 65 0 

Urban 
ST 

STFI 57 68.15 0.836 0.38 0.85 0.91 2 3 

STPDO 180 136.44 1.319 0.12 1.66 0.72 15 7 

All ST 
(HSM 

Criteria) 

STFI 83 93.86 0.884 0.27 0.91 0.72 36 8 

STPDO 233 172.19 1.353 0.10 1.70 0.65 49 3 

All SG        
(Urban) 
(HSM 
Criteria) 

SGFI 198 316.45 0.626 0.17 1.51 0.43 53 1 

SGPDO 525 422.75 1.242 0.12 3.34 0.46 77 5 

Note: FI – Fatal and Injury, PDO – Property Damage Only, ST – Stop-Controlled, SG – Signal-Controlled  

 

Table 4.4. Estimated calibration factors, estimated goodness-of-fit measures, and developed 

calibration functions for d4 stop-controlled and signal-controlled crossroad ramp terminals  

Ramp 
Terminal 
Facility 
(D4) 

Crash 
Type 

Observed 
Crashes 

Predicted 
Crashes 

Calibration 
Factor 
(2014-
2016) 

 
Coefficient 
of Variation 

Calibration 
Function 

% Cure Deviation of 
Fitted Values 

a b 
Calibration 
Factor 

Calibration 
Function 

Rural  
ST 

STFI 26 25.16 1.033 0.20 0.95 0.55 51 6 

STPDO 48 35.23 1.362 0.15 1.37 0.47 57 2 

Urban 
ST 

STFI 57 49.05 1.162 0.28 1.14 1.10 2 0 

STPDO 128 103.50 1.237 0.14 1.64 0.64 9 5 

All ST 
(HSM 
Criteria) 

STFI 83 74.21 1.118 0.22 1.14 0.76 26 9 

STPDO 176 138.73 1.269 0.10 1.61 0.59 45 8 

All SG        
(Urban) 
(HSM 
Criteria) 

SGFI 138 205.54 0.671 0.20 1.61 0.46 34 6 

SGPDO 404 266.66 1.515 0.12 3.38 0.57 32 2 

Note: FI – Fatal and Injury, PDO – Property Damage Only, ST – Stop-Controlled, SG – Signal-Controlled  
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4.6 Calibration Factors by Ranges of AADT and Segment Length  

Table 4.5 tabulates estimated calibration factors by ranges of AADT and segment length 

for rural 4-lane freeways. Ranges of AADT and segment length were selected by assuring a 

reasonable sample size for each range. AADT ranges considered were 5,000-10,000 vpd, 10,000-

15,000 vpd and >15,000 vpd; segment length ranges considered were 0.1-0.3 mi, 0.3-0.16 mi, 

and > 0.6 mi.  

Table 4.5. Estimated calibration factors by ranges of AADT and segment length for rural 

4-lane freeways  

Freeway 
Type 

Variable 
of 

Interest 

Range 
Number 
of 

Segments 

Severity 
Type 

Observed 
Crashes  

Predicted 
Crashes  

Calibration 
Factor 

(2013-2015) 

% Cure 
Deviation 

CV 

R4F 

AADT 

5,000-
10,000 
vpd 

111 MVFI 7 14.05 0.498 30 0.57 

111 SVFI 59 80.71 0.731 36 0.22 

111 MVPDO 32 14.91 2.147 27 0.28 

111 SVPDO 300 158.96 1.887 43 0.14 

10,000-
15,000 
vpd 

153 MVFI 26 29.57 0.879 4 0.29 

153 SVFI 96 121.49 0.790 2 0.17 

153 MVPDO 58 37.78 1.535 2 0.21 

153 SVPDO 465 259.96 1.789 39 0.12 

> 15,000 

vpd 

74 MVFI 35 29.26 1.196 19 0.32 

74 SVFI 62 78.30 0.792 10 0.25 

74 MVPDO 130 47.23 2.753 13 0.33 

74 SVPDO 304 190.77 1.594 1 0.17 

Segment 
Length 

0.1-0.3 
mi 

99 MVFI 11 8.60 1.280 31 0.46 

99 SVFI 32 31.15 1.027 23 0.30 

99 MVPDO 24 12.34 1.945 41 0.32 

99 SVPDO 151 68.41 2.207 22 0.17 

0.3-0.6 
mi 

92 MVFI 16 17.07 0.938 15 0.36 

92 SVFI 56 61.48 0.911 2 0.22 

92 MVPDO 58 24.28 2.389 0 0.27 

92 SVPDO 258 135.92 1.898 29 0.15 

> 0.6 mi 

147 MVFI 41 47.22 0.868 33 0.28 

147 SVFI 129 187.87 0.687 10 0.16 

147 MVPDO 138 63.30 2.180 25 0.30 

147 SVPDO 660 405.36 1.628 23 0.11 

Note: MV – Multiple Vehicle, SV – Single Vehicle, FI – Fatal and Injury, PDO – Property Damage Only 
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In addition, estimated goodness-of-fit measures, percent cure deviations, and CV values 

are also provided for each range as shown in Table 4.5. In a study conducted by Claros et al. 

(2018), calibration factors by AADT ranges outperformed HSM calibration factors and 

developed calibration functions. Considering either of two goodness-of-fit measures, estimated 

calibration factors for rural 4-lane freeways by ranges of AADT and segment length, were not 

satisfactory. However, Claros et al. (2018) considered six years of crash data for the analysis; 

therefore, crashes for each range of AADT or segment length were much larger compared to 

Kansas crash numbers. As the estimated calibration by ranges of AADT and segment length 

were not satisfactory for Kansas 4-lane freeways, this study did not develop calibration factors 

by ranges for the remaining freeway and ramp facility types. 

4.7 Crash Type Distributions for Freeway Segments, Speed-Change Lanes, 

and Crossroad Ramp Terminals in Kansas 

The HSM provides a default distribution of crash type for each predictive model in 

Chapters 18 and 19 (AASHTO, 2014, pp.18-13, pp.19-15). Development of crash type 

distributions for freeway and ramp facilities is extremely useful for jurisdictions because they 

can be used to estimate the expected average crash frequency for each 10 crash types (e.g. head-

on, crash with animal). Therefore, it is beneficial to update the HSM-default crash type 

distributions with locally derived values as a part of the calibration process. However, this could 

be only developed if there are adequate numbers of reported crashes for each facility as defined 

in the HSM supplement (AASHTO, 2014, pp. Appendix B-10).  

Tables 4.6 through 4.10 provide developed Kansas-specific crash type distributions in 

comparison to HSM-default crash type distributions for freeway segments, speed-change lanes, 

and crossroad ramp terminals, respectively. Development of Kansas-specific crash type 
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distributions for ramp segments was not possible because ramp segments considered in this study 

did not meet the required total crash frequency of 200 crashes for developing jurisdiction-

specific crash type distributions. In addition, Kansas does not specifically record “right-angle” 

crashes as one of the MV crash types as defined in chapters 18 and 19 of the HSM. However, 

Kansas does record all “angle crashes” – which include right-angle and other angle crashes. 

Table 4.6 provides developed Kansas-specific crash type distributions for freeway segments 

using crash data from 2013 to 2015.  

Table 4.6. Kansas crash distributions for freeway segments  

Area 
Type 

Crash Type Crash Type Category 
HSM-Default Kansas-Specific 

FI PDO FI PDO 

Rural 

Multiple  

Vehicle 

Head-on 0.018 0.004 0.006 0.007 

Right-angle* 0.056 0.030 0.254 0.150 

Rear-end 0.630 0.508 0.581 0.428 

Sideswipe 0.237 0.380 0.146 0.375 

Other MV crashes  0.059 0.078 0.014 0.041 

Single  

Vehicle 

Crash with animal 0.010 0.065 0.086 0.471 

Crash with fixed object 0.567 0.625 0.493 0.346 

Crash with other object 0.031 0.125 0.016 0.043 

Crash with parked vehicle 0.024 0.023 0.024 0.014 

Other SV crashes  0.368 0.162 0.381 0.125 

Urban 

Multiple  

Vehicle 

Head-on 0.008 0.002 0.023 0.005 

Right-angle* 0.031 0.018 0.072 0.081 

Rear-end 0.750 0.690 0.695 0.557 

Sideswipe 0.180 0.266 0.201 0.323 

Other MV crashes  0.031 0.024 0.008 0.034 

Single  

Vehicle 

Crash with animal 0.004 0.022 0.026 0.155 

Crash with fixed object 0.722 0.716 0.814 0.656 

Crash with other object 0.051 0.139 0.020 0.074 

Crash with parked vehicle 0.015 0.016 0.022 0.017 

Other SV crashes  0.208 0.107 0.117 0.098 

Note: *Kansas records all angle-crashes 

Kansas freeway segment crash proportions for both FI and PDO crashes were higher 

compared to HSM-default crash type distributions for MV “right-angle” crash types in both rural 
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and urban settings, because MV crashes by “right-angle” crash type are not directly reported in 

Kansas. In addition, “rear-end” and “side-swipe” crash types recorded comparatively lower FI 

and PDO crash proportions compared to HSM-default values for both urban and rural settings. 

Considering freeway SV crashes in Kansas, both FI and PDO crash proportions were higher for 

the “collision with animal” crash type compared to relevant HSM-default crash proportions. 

These values seem to be reliable because animal or deer crashes in Kansas are higher compared 

to the states of Washington, Maine, and California (KDOT, 2018). Similarly, Tables 4.7 and 4.8 

provide Kanas-specific crash type distributions developed for entrance- and exit-related speed-

change lanes using crash data from 2013 to 2015, respectively.  

Table 4.7. Kansas crash distributions for entrance-related speed-change lanes  

Area 

Type 
Crash Type Crash Category 

HSM-Default Kansas-Specific 

FI PDO FI PDO 

Rural 

Multiple  

Vehicle 

Head-on 0.021 0.004 0.000 0.000 

Right-angle* 0.032 0.013 0.087 0.047 

Rear-end 0.351 0.260 0.130 0.094 

Sideswipe 0.128 0.242 0.043 0.156 

Other multiple vehicle crashes 0.011 0.040 0.000 0.000 

Single  

Vehicle 

Crash with animal 0.000 0.009 0.174 0.266 

Crash with fixed object 0.245 0.296 0.261 0.344 

Crash with other object 0.021 0.070 0.043 0.031 

Crash with parked vehicle 0.021 0.000 0.000 0.016 

Other single vehicle crashes 0.170 0.066 0.261 0.047 

Urban 

Multiple  

Vehicle 

Head-on 0.004 0.001 0.020 0.007 

Right-angle* 0.019 0.016 0.040 0.041 

Rear-end 0.543 0.530 0.420 0.324 

Sideswipe 0.133 0.252 0.140 0.209 

Other multiple vehicle crashes 0.017 0.015 0.000 0.027 

Single  

Vehicle 

Crash with animal 0.000 0.002 0.020 0.081 

Crash with fixed object 0.194 0.129 0.180 0.182 

Crash with other object 0.019 0.036 0.000 0.061 

Crash with parked vehicle 0.004 0.003 0.000 0.000 

Other single vehicle crashes 0.067 0.016 0.180 0.068 

Note: *Kansas records all angle-crashes 
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Similar to freeway segments, developed crash proportions for “right-angle” crashes 

recorded higher values in Kanas as they include all “angle crashes”. Overall, developed crash 

proportions for “rear-end” and “sideswipe” crash types are relatively lower than the HSM-default 

values for both entrance- and exit-related speed change lanes. Once again, Kansas reported 

higher crash type proportions for “crash with animal” in both entrance- and exit-related speed-

change lanes. 

Table 4.8. Kansas crash distributions for exit-related speed-change lanes  

Area 

Type 
Crash Type Crash Category 

HSM-Default Kansas-Specific 

FI PDO FI PDO 

Rural 

Multiple  

Vehicle 

Head-on 0.000 0.000 0.000 0.000 

Right-angle* 0.015 0.000 0.000 0.000 

Rear-end 0.463 0.304 0.421 0.032 

Sideswipe 0.104 0.243 0.105 0.111 

Other multiple vehicle crashes 0.000 0.009 0.053 0.000 

Single  

Vehicle 

Crash with animal 0.000 0.061 0.000 0.270 

Crash with fixed object 0.224 0.235 0.263 0.349 

Crash with other object 0.030 0.061 0.000 0.048 

Crash with parked vehicle 0.000 0.017 0.053 0.016 

Other single vehicle crashes 0.164 0.070 0.105 0.175 

Urban 

Multiple  

Vehicle 

Head-on 0.005 0.002 0.045 0.006 

Right-angle* 0.011 0.012 0.091 0.017 

Rear-end 0.549 0.565 0.386 0.436 

Sideswipe 0.158 0.138 0.045 0.099 

Other multiple vehicle crashes 0.016 0.016 0.023 0.017 

Single  

Vehicle 

Crash with animal 0.000 0.007 0.000 0.093 

Crash with fixed object 0.196 0.207 0.205 0.267 

Crash with other object 0.016 0.030 0.023 0.029 

Crash with parked vehicle 0.000 0.000 0.000 0.000 

Other single vehicle crashes 0.049 0.023 0.182 0.035 

Note: *Kansas records all angle-crashes 

Table 4.9 shows Kansas-specific crash type distributions developed for stop-controlled 

crossroad ramp terminals using crash data from 2014 to 2016. All locally derived MV and SV 

crash type distributions for stop-controlled crossroad ramp terminals were much closer to HSM-
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default crash type distributions for both rural and urban settings. Like other facility types, the 

local derived “right-angle” crash proportion includes all angle crashes. In addition, the SV “crash 

with fixed object” crash proportion was higher compared to the HSM-default value.  

Table 4.9. Kansas crash distributions for stop-controlled crossroad ramp terminals  

Area 

Type 
Crash Type Crash Category 

HSM-Default Kansas-Specific 

FI PDO FI PDO 

Rural 

Multiple  

Vehicle 

Head-on 0.020 0.015 0.063 0.000 

Right-angle* 0.522 0.372 0.531 0.281 

Rear-end 0.275 0.276 0.156 0.316 

Sideswipe 0.020 0.107 0.063 0.088 

Other multiple vehicle crashes 0.013 0.026 0.031 0.018 

Single  

Vehicle 

Crash with animal 0.000 0.000 0.000 0.000 

Crash with fixed object 0.078 0.158 0.094 0.193 

Crash with other object 0.000 0.005 0.000 0.000 

Crash with parked vehicle 0.007 0.015 0.000 0.000 

Other single vehicle crashes 0.065 0.026 0.063 0.105 

Urban 

Multiple  

Vehicle 

Head-on 0.017 0.012 0.105 0.020 

Right-angle* 0.458 0.378 0.421 0.337 

Rear-end 0.373 0.377 0.368 0.455 

Sideswipe 0.025 0.079 0.026 0.119 

Other multiple vehicle crashes 0.017 0.016 0.000 0.000 

Single  

Vehicle 

Crash with animal 0.000 0.000 0.000 0.020 

Crash with fixed object 0.085 0.110 0.000 0.040 

Crash with other object 0.000 0.000 0.000 0.000 

Crash with parked vehicle 0.000 0.008 0.000 0.000 

Other single vehicle crashes 0.025 0.020 0.079 0.010 

Note: *Kansas records all angle-crashes 

 Table 4.10 tabulates Kansas-specific crash type distributions developed for signal-

controlled crossroad ramp terminals using crash data from 2014 to 2016. All signal-controlled 

crossroad ramp terminal crashes considered in this study were limited to urban settings.  Once 

again, “right-angle” crash proportions for both FI and PDO crashes were higher in Kansas 

compared to HSM-default crash type proportions, mainly because locally derived values include 
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all “angle crashes”. Kansas-specific crash type proportion for FI “head-on” crash type was higher 

compared to the HSM-default value.  

Table 4.10. Kansas crash distribution for signal-controlled crossroad ramp terminals 

Area 

Type 
Crash Type Crash Category 

HSM-Default Kansas-Specific 

FI PDO FI PDO 

Urban 

Multiple 

Vehicle 

Head-on 0.011 0.007 0.035 0.005 

Right-angle* 0.260 0.220 0.509 0.425 

Rear-end 0.625 0.543 0.386 0.482 

Sideswipe 0.042 0.149 0.018 0.057 

Other multiple vehicle crashes  0.009 0.020 0.000 0.005 

Single 

Vehicle 

Crash with animal 0.000 0.000 0.000 0.000 

Crash with fixed object 0.033 0.050 0.018 0.016 

Crash with other object 0.001 0.002 0.018 0.005 

Crash with parked vehicle 0.001 0.002 0.000 0.000 

Other single vehicle crashes  0.018 0.007 0.018 0.005 

* Kansas records all angle-crashes 

 

Developed Kansas-specific crash type distributions for freeway segments, speed-change 

lanes, and crossroad ramp terminals in this section can replace the HSM-default crash type 

distributions to obtain more accurate crash predictions by crash type in Kansas. Once the 

expected average crash frequency for a certain segment or intersection is estimated, it is then 

multiplied by the developed Kansas-specific crash type proportion to compute the expected 

average crash frequency for each of 10 crash types.   
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 – Summary, Conclusions, and Recommendations 
 

5.1 Research Summary  

The HSM is a national handbook that provides a quantitative evaluation of safety in 

highway facilities. When applying HSM prediction models to a local jurisdiction, they need to be 

calibrated to reflect local conditions and environments such as weather conditions, animal 

population, topography, crash-reporting thresholds, highway conditions, driving culture, and 

lighting. Considering Kansas freeway crash data from 2012 to 2016, freeways had the highest FI 

and PDO crash rates per mile compared to other functional classes.  As KDOT maintains more 

than 1,000 miles of freeways, it is beneficial to have accurate crash prediction models for Kansas 

freeway and ramp facilities, which could be used in making effective planning, design, 

operation, and maintenance decisions. As freeway and ramp facility SPFs and their calibration 

procedures are comparatively new, not many studies have been conducted under this directive.  

This study calibrated HSM SPFs for freeway segments, speed-change lanes, ramp 

segments, and crossroad ramp terminals for Kansas conditions. The freeway segment and speed-

change lane calibration used three years of crash data from 2013 to 2015, with freeway crash 

data were extracted from the KCARS database. The study period for the ramp segment and 

crossroad ramp terminal calibration was considered as 2014 to 2016; however, the study 

manually reviewed 13, 730 interchange-related crash reports to identify crashes on ramp 

facilities. This study assessed the accuracy of calibrated HSM-default SPFs using CURE plots 

and CV values. For comparison purposes and further accuracy, calibration functions were 

developed to improve fit to local data. Table 5.1 summarizes the estimated calibration factors 

and developed calibration functions with respect to the HSM-recommended prediction models 

that need calibration for all freeway and ramp facilities considered in this study. The last column 
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in Table 5.1 indicates an “overprediction”, if the estimated calibration factor is less than 1.000, 

and an “underprediction”, if the estimated calibration factor is greater than 1.000.  

Table 5.1. Summary of HSM calibration results of this study 

Facility 

Type 

Crash 

Type 

Number 
of Sites 

Used 

Observed 

Crashes 

Predicted 

Crashes 

Calibration 

Factor 

 
Overprediction/ 

Underprediction 

 

Calibration 

Function 

a b 

Freeway 
Segments 

MVFI 521 219 230.13 0.952 overprediction 0.96 1.06 

SVFI 521 441 470.95 0.936 overprediction 0.95 0.76 

MVPDO 521 746 376.33 1.982 underprediction 2.08 0.90 

SVPDO 521 2046 1110.02 1.843 underprediction 2.23 0.80 

Speed-
Change 

Lanes 

ENFI 351 171 117.77 1.452 underprediction 1.39 0.91 

ENPDO 351 567 291.83 1.943 underprediction 1.95 0.99 

EXFI 366 124 87.60 1.416 underprediction 1.70 1.20 

EXPDO 366 359 208.78 1.720 underprediction 1.72 0.99 

Entrance 

Ramp 
Segments 

MVFI 184 10 10.45 0.957 overprediction NA NA 

SVFI 184 7 42.52 0.165 overprediction NA NA 

MVPDO 184 52 19.00 2.737 underprediction NA NA 

SVPDO 184 21 57.01 0.368 overprediction NA NA 

Exit Ramp 
Segments 

MVFI 156 7 1.29 5.426 underprediction NA NA 

SVFI 156 5 27.88 0.179 overprediction NA NA 

MVPDO 156 35 4.39 7.973 underprediction NA NA 

SVPDO 156 23 41.84 0.550 overprediction NA NA 

Stop-
Controlled 

Ramp 

Terminals 

STFI 120 83 93.86 0.884 overprediction 0.91 0.72 

STPDO 120 233 172.19 1.353 underprediction 1.70 0.65 

Signal-

Controlled 

Ramp 

Terminals* 

SGFI 74 198 316.45 0.626 overprediction 1.51 0.43 

SGPDO 74 525 422.75 1.242 underprediction 3.34 0.46 

 D4 Stop-

Controlled 

Ramp 
Terminals 

STFI 102 83 74.21 1.118 underprediction 1.14 0.76 

STPDO 102 176 138.73 1.269 underprediction 1.61 0.59 

D4 Signal-

Controlled 

Ramp 
Terminals* 

SGFI 57 138 205.54 0.671 overprediction 1.61 0.46 

SGPDO 57 404 266.66 1.515 underprediction 3.38 0.57 

Note: *includes only urban sites 

MV – Multiple Vehicle, SV – Single Vehicle, FI – Fatal and Injury, PDO – Property Damage Only, EN – Entrance-

related, EX – Exit-related, ST – Stop-Controlled, SG – Signal-Controlled, NA – Calibration functions were not 

developed  
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5.2 Conclusions  

Estimated calibration factors for freeway segments showed the HSM methodology 

overpredicted all FI crashes and underpredicted all PDO crashes. The HSM methodology 

consistently underpredicted both FI and PDO crashes for entrance and exit speed-change lanes. 

The quality assessment of calibrated HSM-default SPFs was satisfactory for both freeway 

segments and speed-change lanes considering either the CV or percent cure deviation; however, 

for comparison purposes and further accuracy, calibration functions were developed.  This study 

did not assess the quality of calibrated HSM-default SPFs or developed calibration functions or 

for freeway facility types, such as rural 6-lane, urban 6-lane, and urban 8-lane freeways due to 

smaller sample sizes. Then estimated values for percent cure deviation were compared between 

developed calibration functions and estimated calibration factors. Results showed that developed 

calibration functions for freeway segments and speed-change lanes fitted better to local data 

compared to estimated calibration factors, which reported lower percent cure deviation values.  

The HSM methodology overpredicted all FI crashes, underpredicted MV PDO crashes, 

and overpredicted SV PDO crashes for entrance ramp segments. The HSM methodology 

underpredicted all MV crashes and overpredicted all SV crashes for exit ramp segments. The 

quality assessment of calibrated HSM-default ramp SPFs and development of calibration 

functions for entrance and exit ramps were not conducted due to a lower number of observed 

crashes reported during the study period. In the case of stop- and signal-controlled crossroad 

ramp terminals, the HSM methodology overpredicted all FI crashes and underpredicted all PDO 

crashes. The study also estimated calibration factors separately for D4 crossroad ramp terminals 

as these are the most common ramp terminal configuration type in Kansas. The HSM 

methodology underpredicted both FI and PDO crashes for D4 stop-controlled crossroad ramp 
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terminals. In the case of D4 signal-controlled crossroad ramp terminals, the HSM methodology 

underpredicted PDO crashes and overpredicted FI crashes. Even though the quality of calibrated 

HSM-default SPFs was satisfactory, calibration functions were also developed for all crossroad 

ramp terminals and D4 types for comparison purposes and further accuracy. Similar to 

calibration functions developed for freeway facility types considered, calibration functions 

developed for crossroad ramp terminals fitted better to the local dataset compared to estimated 

calibration factors. Estimated calibration factors for PDO crash models were much higher 

compared to FI crash models for all freeway and ramp facility types considered in this study. 

One valid explanation could be that PDO crashes are accurately reported in Kansas compared to 

the states of California, Washington, and Maine that were used to develop HSM crash prediction 

models for freeway and ramp facilities.  

5.3 Challenges Faced and Areas for Improvement 

This section provides challenges faced in conducting this calibration study together with 

explanations on addressing those listed challenges. These challenges and explanations would 

benefit and encourage researchers to conduct other similar calibrations. Table 5.2 summarizes 

challenges faced and how they were addressed as this study progressed. Compared to the 

calibration of freeway segments and speed-change lanes, calibration of ramp segments and 

crossroad ramp terminals required much more extensive data, where most transportation 

agencies do not record such detailed geometric data for ramp facility types in typical motor 

vehicle crash reports. In the case of freeway segments and speed-change lanes, a majority of 

required geometric, traffic, and crash data needed for the calibration were available in electronic 

data sources maintained by KDOT. However, for ramp segments and crossroad ramp terminals, 
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an overwhelming majority of geometric data needed for the calibration was extracted from 

Google Earth, a highly time-consuming task (Google Earth, 2018).  

Even though all freeway crashes were available for the desired study period, locating 

crashes on entrance- and exit-related speed-change lanes was a significant challenge. In addition, 

accurately locating crashes on ramps and crossroads ramp terminals was the most critical 

challenge. While all ramp crashes and ramp terminal crashes were included in the KCARS 

database under interchange-related crashes, they could not be directly extracted with respect to 

the exact crash location. Therefore, it was necessary to manually review all interchange-related 

crash reports from 2014 to 2016 to identify crashes that occurred on ramps and crossroad ramp 

terminals. After manually reviewing all interchange-related crash reports from several counties 

in Kanas, it was identified that 90% of crashes coded as ramp crashes in the KCARS database 

were actually located on crossroad ramp terminals or speed-change lanes. Moreover, obtaining 

horizontal curve radii for ramp segments and ramp segmentation by number of lanes was also a 

huge challenge. Fulfilling the HSM-desired crash criteria for ramp segments and stop-controlled 

crossroad ramp terminals were also huge challenges. Even though significantly larger sample 

sizes were considered for both of these facility types, meeting 300 crashes for the entire study 

period could not be easily reached since the number of crash occurrences was small.   
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Table 5.2. Challenges faced and tips to succeed in HSM freeway calibration   

Challenges  How challenges were addressed  

Locating speed-change lane crashes – Crashes for 

entrance and exit speed-change lanes could not be 

directly identified from the KCARS database.  

All freeway crashes were assigned to each side of the 

freeway and ArcGIS tools were used to isolate speed-

change lane crashes as described in section 3.7.3. 

Locating ramp segment crashes/Discrepancy between 

actual and coded crashes in KCRAS database – Most 

of the multiple vehicle crashes that were identified as 

ramp crashes in the KCARS database were actually 

located on ramp terminals or speed-change lanes. 

This study manually reviewed full crash reports for all 

interchange-related crashes during the study period to 

identity ramp crashes as explained in section 3.9.3.   

Locating crossroad ramp terminal crashes – Crossroad 

ramp terminal crashes could not be directly identified 

from the KCARS database. 

While identifying all ramp crashes, crashes for stop-

controlled and signal-controlled crossroad ramp 

terminals were also identified. 

Meeting the HSM minimum crash criteria for ramp 

segments and stop-controlled crossroad ramp 

terminals – The HSM recommends a desirable sample 

of 30 to 50 sites with having at least 100 crashes per 

year for the calibration.  

The study proceeded the calibration with the actual 

reported crash numbers, even though they did not 

satisfy the HSM requirements. 

None of the required geometric data for the ramp 

segment and crossroad ramp terminal calibration were 

readily available in Kansas electronic databases.   

Most of the geometric data required for the calibration 

were gathered using Google Earth. 

Ramp segmentation based on number of lanes - Ramp 

segmentation by number of lanes was not considered 

due to the inability to locate crashes at the exact 

location on ramps.  

In this study, if the ramp has three quarter of its length 

as 2-lane this ramp was considered as a 2-lane ramp as 

explained in section 3.7.4. 

Obtaining ramp horizontal curve radius- The 

horizontal curve radii for ramps were not readily 

available in Kansas electronic databases. The study 

first imported Google Earth images to AutoCAD to 

obtain curve radii of ramps. However, it was highly 

dependent on personal judgement and it was not easy 

to identify the beginning of the curve and end of the 

curve.  

The KDOT uses a build-in ArcGIS curve tool to obtain 

the curve radius in roadways. This tool was applied to 

the latest ramp GIS shapefile to obtain horizontal curve 

radii for ramps in Kansas.  
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5.4 Research Contributions  

5.4.1 Reference for Future HSM Freeway and Ramp Calibration Studies 

At the time of this study, only a couple of other studies had been conducted regarding the 

HSM calibration procedure for freeway and ramp facilities due to its novelty and extensive data 

needs. For example, even though Maryland did not calibrate HSM predictive models for ramp 

segments due to insufficient crash data, the authors conducted a comprehensive calibration for 

freeway segments, speed-change lanes, and crossroad ramp terminals. In the case of Missouri, 

three freeway types, such as rural 4-lane freeways, urban 4-lane freeways, and urban 6-lane 

freeways were calibrated prior to publication of the HSM supplement (Sun et al., 2013). 

However, Berry (2017) recently estimated calibration factors only for urban 6-lane freeways 

Missouri using the methodology provided in the HSM supplement. Missouri also estimated 

calibration factors for selected types of speed-change lanes, ramp segments, and ramp terminals; 

however, sample sizes used for most of these facility types were only 30 sites and none of the 

facilities met the HSM minimum crash threshold of 100 crashes/year, which makes the results 

unreliable (Sun et al., 2016).  The HSM does not provide any guidance on data collection 

techniques to perform the calibration because data systems and crash reporting thresholds vary 

from state to state. Therefore, data collection procedures and assessment methodologies used in 

this study could be helpful to and practiced in any other jurisdictions.  

5.4.2 Calibration Factors and Calibration Functions for Kansas Freeway and 

Ramp Safety Prediction Models  

Calibration of the HSM predictive method supports all strategic goals of USDOT and 

KDOT. Strategic goals identified by USDOT include, safety (reduce fatalities and serious 

injuries), infrastructure (invest in infrastructure to ensure safety, mobility, and accessibility and 
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to stimulate economic growth), innovation (lead in the development and deployment of 

innovative practices and technologies that improve safety and performance), and accountability 

(greater efficiency and effectiveness) (USDOT, 2018c). Following the USDOT’s strategic goals, 

the 2017 Kansas Strategic Highway Safety Plan (SHSP) emphasizes the goal for upcoming years 

as cutting fatalities and serious injuries by half on Kansas highways, aiming towards zero-deaths 

vision (KDOT, 2017b). Instead of using uncalibrated SPFs available in safety analyst software, 

such as SafetyAnalyst, IHSDM, or ISATe in day-to-day state-level decision making, KDOT can 

use estimated calibration factors or developed calibration functions from this study to make 

accurate crash predictions (Bonneson et al., 2012; Harwood et al., 2010; USDOT, 2019b).  

5.4.3 Recalibration of Freeway Facilities and Ramp Facilities in Kansas  

Calibration datasets and ArcGIS shapefiles created for freeway segments, speed-change 

lanes, ramp segments, and crossroad ramp terminals could be reused for future recalibration 

studies of these facilities. Since, the HSM recommends recalibration to performed every two to 

three years, calibration datasets developed for in this study can be reused by simply replacing 

observed crash frequency with the most recent crash data (AASHTO, 2010). In fact, if no major 

construction has taken place of late that would affect the geometries of the highway, geometric 

characteristics of the calibration sites used should remain constant. However, if the geometries 

had been changed due to recent constructions, geometric characteristics of those sites would need 

to be updated. For example, Missouri updated calibration factors for freeway segments using 

recent crash data utilizing the same dataset used by Sun et al. in 2013 (Sun et al., 2018). In a 

similar manner, recalibrations for Kanas freeway segments, speed-change lanes, ramp segments, 

and crossroad ramp terminals will require minimum extra effort because this study collected all 

geometric characteristics of calibration sites using a variety of data sources.  
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5.5 Application of HSM Predictive Method 

Network screening is the most important stage in the highway safety management 

process as it determines highway facilities or locations that require safety treatments with the 

purpose of improving overall safety on the nation’s roadways. HSM methodologies can be 

applied in planning, operations, design, and maintenance processes of a project. For example, 

HSM analysis is compulsory for safety-related road designs such as shoulder type, turn lanes, 

alignment, etc. (Sun et al., 2018). These HSM crash prediction methodologies could also be used 

to analyze the safety impact of different alternatives, to estimate economic effectiveness of crash 

reductions, and to calculate economic benefits of project improvements. When a new 

countermeasure is applied, it is extremely important to evaluate the safety effectiveness of the 

applied countermeasure to identify whether it has supported in a reduction in observed crash 

frequencies (Galgamuwa et al., 2018). Reducing key risk factors on highway facilities could save 

thousands of valuable lives and hundreds of millions of dollars related to direct and indirect 

costs. Having a robust methodology that helps in predicting roadway crashes more accurately is 

extremely beneficial for jurisdictions because most highway safety-related decisions are made 

based on benefits and costs associated with crash costs, travel time, operating costs, reliability, 

etc.  Therefore, jurisdictions may calibrate HSM-default SPFs or develop local SPFs in order to 

make effective decisions related to highway safety. 

Hachey et al. (2019) provided an overview of a benefit cost analysis conducted following 

the safety management process, where costs and benefits of a desired safety countermeasure 

were compared with existing conditions. First, the expected crash frequency for the base existing 

condition using the EB approach was calculated based on the performance of similar locations 

(i.e., predicted crash frequency) and their crash experiences (i.e., observed crash frequency) (Gan 



    

101 

 

et al., 2016).  Consequently, the expected crash frequency is the weighted average of observed 

and predicted crash frequencies as shown in Equation 15, where weight depends on reliability of 

the SPF (Gan et al., 2016).  

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑟𝑎𝑠ℎ 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =  𝑊𝑒𝑖𝑔ℎ𝑡 ×  𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐶𝑟𝑎𝑠ℎ 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 + 

 (1 − 𝑊𝑒𝑖𝑔ℎ𝑡) × 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐶𝑟𝑎𝑠ℎ 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦  

(15) 

 

Predicted crash frequency is typically calculated using calibrated HSM-default SPFs, 

developed calibration functions, or local SPFs. Then the estimated expected average crash 

frequency for base conditions was multiplied by high-quality CMFs, which are commonly 

obtained from the CMF clearing house representing safety effects of the desired countermeasures 

or alternatives (USDOT, 2019a). Change in safety performance, or estimated long-term average 

crash frequency and severity, are represented by the benefits generated from reduced crashes due 

to desired countermeasure. Furthermore, results show economical savings gained by reduced 

crash frequency and severity are massive compared to other benefits such as saved in travel time, 

improved reliability of trips, reduced vehicle operating costs, and reduced non-user costs 

(Hachey et al., 2019). 

 

5.6 Recommendations  

• Estimated calibration factors and developed calibration functions as provided in Table 5.1, 

can be used to predict crashes more accurately for Kansas freeway and ramp facilities. 

Since calibration functions showed a good reliability for freeway segments, speed-change 

lanes, and crossroad ramp terminals, it is acknowledged that these calibration functions are 

used in crash predictions.  
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• Estimated disaggregate calibration factors and developed disaggregate calibration 

functions by each area type and cross section type, as shown in Tables 4.1 through 4.4 can 

be used to predict crashes more accurately for each freeway type, speed-change lane type, 

ramp type, and crossroad ramp terminal type.  

• It is recommended that Kansas-specific crash type distributions for freeway segments, 

speed-change lanes, and crossroad ramp terminals be used to identify types of crashes that 

could occur at these facilities in such a way that necessary treatments can be implemented.  

• It is recommended that Kansas-specific SPFs be developed for multiple vehicle crash 

models in exit ramp segments, as both fatal and injury and property damage only models 

reported too-high calibration factors and the number of reported ramp crashes during the 

study period was insufficient to develop reliable calibration functions.  

• This study recommends considering incorporating crash locations, such as ramps, speed-

change lanes, C-D roads, and crossroad ramp terminals, when revising existing motor 

vehicle crash reports for a certain jurisdiction, so that these crashes are accurately 

reported in future years.  

• This study also recommends considering the inclusion of geometric data types needed for 

freeway and ramp facility calibrations to state-maintained electronic databases. 

• It is important to insure that police officers are aware of these freeway and ramp crash 

locations and terminology when reporting interchange-related crashes such that these 

crashes are accurately reported for future years.  

5.7 Limitations of the Study  

Since the value of calibration factors rely completely on the number of reported crashes, 

a certain possibility exists of resulting inaccurate values for these calibration factors. However, 
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not only this study, but all crash-related studies undergo the issue of uncertainty in accuracy and 

completeness in reported crashes. For example, police officers may not have been notified if 

either road users agree to sign private informal agreements for insurance purposes, no third 

parties were involved during the crash (i.e., single vehicle crashes), or no obvious injuries 

occurred as a result of the crash (Amoros et al., 2006). Moreover, miscoding, misreporting, and 

incompleteness are three main issues in electronic crash databases and therefore, in reality, 

reported crash data are not perfect either.  

In addition, a large majority of geometric data required for ramp segment and crossroad 

ramp terminal calibration were collected using Google Earth (Google Earth, 2018). Best efforts 

were made to collect accurate geometric data; however, the possibility exists of getting imprecise 

numbers for geometries. For example, in some cases, measuring the length and offset of the 

median/outside barrier using the ruler in Google Earth was difficult due to unclear views caused 

by oversized trucks. Lastly, a manual review of 13,750 crash reports was performed in this study 

and accordingly, the possibility of human error exists in this extensive, crash report review 

process.   
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Appendix A - Crossroad Ramp Terminal Configurations Covered in 

the HSM 
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Appendix B - Unique Crossroad Ramp Terminal Configurations 

Present in Kansas 
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Appendix C - Sample Calculation of Freeway Segment Calibration 

Factors 

Site/Freeway Facility: A rural 4-lane freeway segment with a horizontal curve 

The facts:  

The study period is 2013 to 2015. The conditions present during this period are provided below. 

• 0.42 in length 

• AADT (year) = 11,800 vpd (2013), 12,600 vpd (2014), 13,000 vpd (2015) 

• One horizontal curve 

o 17,198 ft radius in one roadbed and 17,282 in the second roadbed 

o 0.42 mi in length – entirely in the segment 

o Curve exits in both road beds 

• 12 ft lane width 

• 10 ft outside shoulder width 

• 6 ft inside shoulder width  

• 40 ft median width 

• Rumble strips present on inside and outside shoulders entirely in the segment 

• No median barrier or roadside barrier 

• No type B viewing sections  

• 30 ft clear zone width  

 

 

 

 

 

 

Table C.1 Data to describe four ramps in the vicinity of the segment 

Variable Script b,ent e,ext e,ent b,ext 

Distance from segment, Xa,b (mi) 1.35 0.08 0.07 1.35 

Ramp Volume, AADTa,b (2015) (vpd) 50 465 470 39 

Ramp Volume, AADTa,b (2014) (vpd) 21 500 500 10 

Ramp Volume, AADTa,b (2013) (vpd) 21 500 500 10 

Note: Data in Table C.1 were collected using ArcGIS measure tools and GIS ramp shapefiles as 

mentioned in section 3.6.  



    

113 

 

CMF 1 – Horizontal Curve  

The base condition is an uncurved (tangent segment).  

𝐶𝑀𝐹1,𝑓𝑠,𝑎𝑐,𝑦,𝑧 = 1 + 𝑎 × [∑ (
5730

𝑅𝑖
∗ )

2

× 𝑃𝑐,𝑖

𝑚

𝑖=1

] 

Where,  

CMF,1,fs,ac,y,z = Crash modification factor for horizontal curvature in a freeway 

segment with any cross section ac, crash type y, and severity z 

Ri
* = Equivalent radius of curve i (ft) = [0.5/Ra,i ^2 + 0.5/Rb,i ^2], if both 

roadbeds are curved, Ra,i if only one roadbed is curved 

Ra,i = Radius of curve i in one roadbed (ft) 

Rb,i = Radius of curve i in second roadbed (ft) *if both roadbeds are curved 

Pc,i = Proportion of effective segment length with curve i 

m = Number of horizontal curves in the segment 

 

The segment is 0.42 mi long, the curve is present throughout the entire segment length in 

both roadbeds, and its entire length is in the segment. Hence, Pc,i = 1.00 and Ri
* = 17, 240 ft. From 

the HSM Table 18-14, a = 0.0172 for multiple vehicle fatal and injury crashes (AASHTO, 2014, 

pp. 18-36). The CMF1,fs,4,mv,fi is calculated as follows:  

𝐶𝑀𝐹1,𝑓𝑠,4,𝑚𝑣,𝑓𝑖 = 1 + 0.0172 × [∑ (
5730

17,240
)

2

× 1

𝑚

𝑖=1

] = 1.0019 

 

The calculations using the other coefficients from the HSM Table 18-14 provides the following 

results:  

𝐶𝑀𝐹1,𝑓𝑠,4,𝑚𝑣,𝑝𝑑𝑜 = 1.0038 

𝐶𝑀𝐹1,𝑓𝑠,4,𝑠𝑣,𝑓𝑖 = 1.0079 

𝐶𝑀𝐹1,𝑓𝑠,4,𝑠𝑣,𝑝𝑑𝑜 = 1.0069 

 

CMF 2 – Lane Width   

The base condition is a 12 ft lane width.  



    

114 

 

The segment has 12 ft lanes, which is the base condition for the lane width CMF.  So,  

CMF2,fs,4,y,fi and CMF2,fs,4,y,pdo are equal to 1.0000. If the lane width is different from 12 ft, use the 

HSM Equation 18-25 to calculate the relevant CMF (AASHTO, 2014, pp. 18-36). 

CMF 3 – Inside Shoulder Width   

The base condition is a 6 ft inside shoulder width.  

The segment has 6 ft inside shoulders, which is the base condition for the inside shoulder 

CMF.  So,  CMF3,fs,4,y,fi and CMF3,fs,4,y,pdo are equal to 1.0000. If the inside shoulder width is 

different from 6 ft, use the HSM Equation 18-26 to calculate the relevant CMF (AASHTO, 2014, 

pp. 18-37). 

CMF 4 – Median Width   

The base condition is a 60 ft median width, a 6 ft inside shoulder width, and no barrier present 

in the median. 

𝐶𝑀𝐹4,𝑓𝑠,4,𝑦,𝑧  = (1 − 𝑃𝑖𝑏) × 𝑒𝑥𝑝(𝑎 × [𝑊𝑚 − 2 × 𝑊𝑖𝑠 − 48]) + 𝑃𝑖𝑏 × 𝑒𝑥𝑝(𝑎 × [2 × 𝑊𝑖𝑐𝑏 − 48]) 

Where,  

CMF,4,fs,ac,y,z = Crash modification factor for median width in a freeway segment with 

any cross section ac, crash type y, and severity 

Pib = Proportion of effective segment length with a barrier present in the 

median (i.e., inside) 

Wm = Median width (ft) -measured from near edges of traveled way in both 

directions 

Wicb = Distance from edge of inside shoulder barrier to barrier face (ft) 

 

The segment does not have a median barrier, therefore, Pib = 0.0 and the calculation of Wicb 

does not apply. From the HSM Table 18-17, a = -0.00305 for multiple vehicle fatal and injury 

crashes (AASHTO, 2014, pp. 18-38). The CMF4,fs,4,mv,fi is calculated as follows: 

𝐶𝑀𝐹4,𝑓𝑠,4,𝑚𝑣,𝑓𝑖  = (1 − 0) × 𝑒𝑥𝑝(−0.00302 × [40 − 2 × 6 − 48]) + 0.0 × 𝑒𝑥𝑝(−0.00302 ×

[2 × 𝑊𝑖𝑐𝑏 − 48]) = 1.062  

The calculations using the other coefficients from the HSM Table 18-17 provides the following 

results:  
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𝐶𝑀𝐹4,𝑓𝑠,4,𝑚𝑣,𝑝𝑑𝑜 = 0.980 

𝐶𝑀𝐹4,𝑓𝑠,4,𝑠𝑣,𝑓𝑖 = 1.060 

𝐶𝑀𝐹4,𝑓𝑠,4,𝑠𝑣,𝑝𝑑𝑜 = 1.060 

 

CMF 5 – Median Barrier  

The base condition is no median barrier present.  

The segment does not have a median barrier, which is the base condition for the median 

barrier CMF.  So,  CMF5,fs,4,y,fi and CMF5,fs,4,y,pdo are equal to 1.0000.  If a median barrier is present 

within the segment, use the HSM Equation 18-28 to calculate the relevant CMF (AASHTO, 2014, 

pp. 18-38). 

CMF 6 – High Volume   

The base condition is no hours having a volume exceeds 1,000 veh/hr/ln. 

As the study did not have any data on the number of hours where volume exceeds 1,000 

veh/hr/ln, the HSM equation 18-29 was used to estimate the CMF for High Volume (AASHTO, 

2014, pp.18-39, pp. 18-21). From the HSM Table 18-19, a = 0.35 for multiple vehicle fatal and 

injury crashes (AASHTO, 2014, pp. 18-40). 

𝐶𝑀𝐹6,𝑓𝑠,4,𝑦,𝑧  = 𝑒𝑥𝑝(𝑎 × 𝑃ℎ𝑣) 

𝑃ℎ𝑣 = 1 − 𝑒𝑥𝑝(1.45 − 0.000124 × 𝐴𝐴𝐷𝑇
𝑛⁄ ) 

Where,  

CMF6,fs,ac,y,z = crash modification factor for high volume in a freeway segment with 

any cross section ac, crash type y, and severity z 

Phv = Proportion of AADT during hours where volume exceeds 1,000 

veh/hr/ln, *if the value computed is less than 0.0, then set it to 0.0. 

n = Number of through lanes (i.e. 4, 6, 8, and 10) 

The CMF6,fs,4,mv,fi is calculated as follows: 

𝑃ℎ𝑣,2013 = 1 − 𝑒𝑥𝑝 (1.45 − 0.000124 × 11,800
4⁄ ) = −1.9570 

𝑃ℎ𝑣,2014 = 1 − 𝑒𝑥𝑝 (1.45 − 0.000124 × 12,600
4⁄ ) = −1.8864 
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𝑃ℎ𝑣,2015 = 1 − 𝑒𝑥𝑝 (1.45 − 0.000124 × 13,000
4⁄ ) = −1.8490 

The calculated Phv values were less than 0.0 for all three years. Therefore, the value Phv was set 

as 0.0.  

𝐶𝑀𝐹6,𝑓𝑠,4,𝑚𝑣,𝑓𝑖 (2013−2015)  = 𝑒𝑥𝑝(0.35 ×  0) = 1.000 

So, CMF6,fs,4,y,fi (2013-2015) and CMF6,fs,4,y,pdo (2013-2015) are equal to 1.0000. 

CMF 7 – Lane Change    

The base condition is no significant lane changing due to ramp entry or exit. More specifically 

no ramp entrance or exit within 0.5 mi of the segment.  

 

𝐶𝑀𝐹7,𝑓𝑠,4,𝑦,𝑧 = (0.5 × 𝑓𝑤𝑒𝑣,𝑖𝑛𝑐 × 𝑓𝑙𝑐,𝑖𝑛𝑐) + (0.5 × 𝑓𝑤𝑒𝑣,𝑑𝑒𝑐 × 𝑓𝑙𝑐,𝑑𝑒𝑐) 

Where,  

𝑓𝑤𝑒𝑣,𝑖𝑛𝑐  = (1 − 𝑃𝑤𝑒𝑣𝐵,𝑖𝑛𝑐) × 1.0 + 𝑃𝑤𝑒𝑣𝐵,𝑖𝑛𝑐 × 𝑒𝑥𝑝 (
𝑎

𝐿𝑤𝑒𝑣,𝑖𝑛𝑐
) 

𝑓𝑤𝑒𝑣,𝑑𝑒𝑐  = (1 − 𝑃𝑤𝑒𝑣𝐵,𝑑𝑒𝑐) × 1.0 + 𝑃𝑤𝑒𝑣𝐵,𝑑𝑒𝑐 × 𝑒𝑥𝑝 (
𝑎

𝐿𝑤𝑒𝑣,𝑑𝑒𝑐
) 

𝑓𝑙𝑐,𝑖𝑛𝑐  = (1.0 +
𝑒𝑥𝑝(−𝑏 × 𝑋𝑏,𝑒𝑛𝑡 + 𝑑 × 𝑙𝑛[𝑐 × 𝐴𝐴𝐷𝑇𝑏,𝑒𝑛𝑡])

𝑏 × 𝐿𝑓𝑠
× [1.0 − 𝑒𝑥𝑝(−𝑏 × 𝐿𝑓𝑠)]) + 

(1.0 +
𝑒𝑥𝑝(−𝑏 × 𝑋𝑒,𝑒𝑥𝑡 + 𝑑 × 𝑙𝑛[𝑐 × 𝐴𝐴𝐷𝑇𝑒,𝑒𝑥𝑡])

𝑏 × 𝐿𝑓𝑠
× [1.0 − 𝑒𝑥𝑝(−𝑏 × 𝐿𝑓𝑠)]) 

𝑓𝑙𝑐,𝑑𝑒𝑐  = (1.0 +
𝑒𝑥𝑝(−𝑏 × 𝑋𝑒,𝑒𝑛𝑡 + 𝑑 × 𝑙𝑛[𝑐 × 𝐴𝐴𝐷𝑇𝑒,𝑒𝑛𝑡])

𝑏 × 𝐿𝑓𝑠
× [1.0 − 𝑒𝑥𝑝(−𝑏 × 𝐿𝑓𝑠)]) + 

(1.0 +
𝑒𝑥𝑝(−𝑏 × 𝑋𝑏,𝑒𝑥𝑡 + 𝑑 × 𝑙𝑛[𝑐 × 𝐴𝐴𝐷𝑇𝑏,𝑒𝑥𝑡])

𝑏 × 𝐿𝑓𝑠
× [1.0 − 𝑒𝑥𝑝(−𝑏 × 𝐿𝑓𝑠)]) 
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Where,  

CMF,7,fs,mv,y,z = Crash modification factor for lane changes in a freeway segment with any 

cross section ac, multiple- vehicle crashes mv, and severity z 

flc,inc = Lane change adjustment factor for travel in increasing milepost direction 

flc,dec = Lane change adjustment factor for travel in decreasing milepost direction 

fwev,inc = Weaving section adjustment factor for travel in increasing milepost 

direction 

fwev,dec = Weaving section adjustment factor for travel in decreasing milepost 

direction 

PwevB,inc = Proportion of segment length within a Type B weaving section for travel 

in increasing milepost direction 

PwevB,dec = Proportion of segment length within a Type B weaving section for travel 

in decreasing milepost direction 

Lwev,inc = Weaving section length for travel in increasing milepost direction (may 

extend beyond segment boundaries) (mi) 

Lwev,dec = Weaving section length for travel in increasing milepost direction (may 

extend beyond segment boundaries) (mi) 

Xb,ent = Distance from segment begin milepost to nearest upstream entrance ramp 

gore point, for travel in increasing milepost direction (mi) 

Xb,ext = Distance from segment begin milepost to nearest downstream exit ramp 

gore point, for travel in decreasing milepost direction (mi) 

Xe,ent = Distance from segment begin milepost to nearest upstream entrance ramp 

gore point, for travel in decreasing milepost direction (mi) 

Xe,ext = Distance from segment begin milepost to nearest downstream exit ramp 

gore point, for travel in increasing milepost direction (mi) 

AADTb,ent = AADT volume of entrance ramp located at distance Xb,ent (vpd) 

AADTb,ext = AADT volume of exit ramp located at distance Xb,ext (vpd) 

AADTe,ent = AADT volume of entrance ramp located at distance Xe,ent (vpd) 

AADTe,ext = AADT volume of exit ramp located at distance Xe,ext (vpd) 

 

Table C.1 provides the required data elements needed to estimate the CMF for lane change. 

This was the most complex CMF in the freeway segment calibration due to extensive details. This 

segment does not have Type B weaving sections, therefore the weaving adjustment factors fwev,inc 

and fwev,dec are equal to 1.00. Following shows the flc,inc and flc,dec calculation for the year 2013. 
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From the HSM Table 18-20, a = 0.175, b = 12.56, c = 0.001, and d = -0.272 for multiple vehicle 

fatal and injury crashes (AASHTO, 2014, pp. 18-42). 

𝑓𝑙𝑐,𝑖𝑛𝑐  = (1.0 +
𝑒𝑥𝑝(−12.56 × 1.35 − 0.272 × 𝑙𝑛[0.001 × 21])

−12.56 × 0.42
× [1.0 − 𝑒𝑥𝑝(−12.56 × 0.42)]) + 

(1.0 +
𝑒𝑥𝑝(−12.56 × 0.08 − 0.272 × 𝑙𝑛[0.001 × 500])

−12.56 × 0.42
× [1.0 − 𝑒𝑥𝑝(−12.56 × 0.42)]) = 1.0000 

𝑓𝑙𝑐,𝑑𝑒𝑐  = (1.0 +
𝑒𝑥𝑝(12.56 × 0.07 − 0.272 × 𝑙𝑛[0.001 × 500])

−12.56 × 0.42
× [1.0 − 𝑒𝑥𝑝(−12.56 × 0.42)]) + 

(1.0 +
𝑒𝑥𝑝(−12.56 × 1.35 − 0.272 × 𝑙𝑛[0.001 × 10])

−12.56 × 0.42
× [1.0 − 𝑒𝑥𝑝(−12.56 × 0.42)]) = 1.0166 

 

𝐶𝑀𝐹7,𝑓𝑠,4,𝑚𝑣,𝑓𝑖 (2013) = (0.5 × 1.00 × 1.0000) + (0.5 × 1.00 × 1.0166) = 1.0083 

Similarly, the calculations using the other coefficients from the HSM Table 18-19 provides the 

following results:  

𝐶𝑀𝐹7,𝑓𝑠,4,𝑚𝑣,𝑝𝑑𝑜 (2013) = 1.0073 

𝐶𝑀𝐹7,𝑓𝑠,4,𝑚𝑣,𝑓𝑖 (2014) = 1.0083 

𝐶𝑀𝐹7,𝑓𝑠,4,𝑚𝑣,𝑝𝑑𝑜 (2014) = 1.0073 

𝐶𝑀𝐹7,𝑓𝑠,4,𝑚𝑣,𝑓𝑖 (2015) = 1.0085 

𝐶𝑀𝐹7,𝑓𝑠,4,𝑚𝑣,𝑝𝑑𝑜 (2015) = 1.0075 

CMF 8 – Outside Shoulder Width     

The base condition is a 10 ft outside shoulder width.  

The segment has 10 ft outside shoulders, which is the base condition for the outside 

shoulder width CMF. Hence, CMF8,fs,4,sv,fi and CMF8,fs,4,sv,pdo are equal to 1.0000. If the outside 

shoulder width is different from 10 ft, use the HSM Equation 18-35 to calculate the relevant CMF 

(AASHTO, 2014, pp. 18-42). 
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CMF 9 – Shoulder Rumble Strips     

The base condition is no shoulder rumble strips present.  

The proportion Pir or Por represents the proportion of the effective segment length with 

rumble strips present on the inside shoulders or outside shoulders. It is computed by summing the 

length of roadway with rumble strips on the inside shoulder or outside shoulder (excluding the 

length of any rumble strips adjacent to speed-change lanes) in both travel directions and dividing 

by twice the effective freeway segment length.  

The segment has shoulder rumble strips on both the inside and outside shoulders throughout the 

entire segment length in both directions of travel. Therefore, Pir and Por equals to 1.00. 

𝐶𝑀𝐹9,𝑓𝑠,4,𝑠𝑣,𝑓𝑖 = (1.0 − ∑ 𝑃𝑐,𝑖

𝑚

𝑖=1

× 𝑓𝑐,𝑖) × 𝑓𝑡𝑎𝑛 + (∑ 𝑃𝑐,𝑖

𝑚

𝑖=1

× 𝑓𝑐,𝑖) × 1.0 

𝑓𝑡𝑎𝑛 = 0.5 × ([1.0 − 𝑃𝑖𝑟] × 1.0 + 𝑃𝑖𝑟 × 0.811) + 0.5 × ([1.0 − 𝑃𝑜𝑟] × 1.0 + 𝑃𝑜𝑟 × 0.811) 

 

Where, 

CMF9,fs,ac,sv,fi = Crash modification factor for shoulder rumble strips in a freeway 

segment with any cross section ac and fatal-and-injury (fi) single-

vehicle (sv) crashes 

ftan = Factor for rumble strip presence on tangent portions of the segment; 

Pir = Proportion of effective segment length with rumble strips present on 

the inside shoulders 

Por = Proportion of effective segment length with rumble strips present on 

the outside shoulders 
 

𝑓𝑡𝑎𝑛 = 0.5 × ([1.0 − 1.0] × 1.0 + 1 × 0.811) + 0.5 × ([1.0 − 1.0] × 1.0 + 𝑃𝑜𝑟 × 0.811) = 0.811 

𝐶𝑀𝐹9,𝑓𝑠,4,𝑠𝑣,𝑓𝑖 = 0.8110 
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CMF 10 – Outside Clearance      

The base condition is a 30 ft clear zone, a 10 ft outside shoulder width and no barrier present at 

the clear zone.   

The segment has a clear 30 ft clear zone, a 10 ft outside shoulder width and no barrier 

present at the clear zone.  So,  CMF10,fs,4,sv,fi and CMF10,fs,4,sv,pdo are equal to 1.0000. If any of the 

variables change from the set base conditions, use the HSM Equation 18-38 to calculate the 

relevant CMF (AASHTO, 2014, pp. 18-44). 

CMF 11– Outside Barrier      

The base condition is no barrier present in the clear zone.  

The segment does not have outside barriers.  So,  CMF11,fs,4,sv,fi and CMF11,fs,4,sv,pdo are equal 

to 1.0000. If an outside barrier present in the segment, use the HSM Equation 18-39 to calculate 

the relevant CMF (AASHTO, 2014, pp. 18-44). 

In summary, it can be noted that calculation of the freeway segment CMFs were extremely 

challenging. Furthermore, the HSM also provides supplemental calculations to obtain CMF 4, 

CMF 5, CMF 10, and CMF 11 in a separate section as the equations are very lengthy (AASHTO, 

2014, pp. 18-50).  
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Appendix D - Cure Plots for Freeway Facilities 

 

Appendix D1: Rural 4-lane Freeway Fatal and Injury Crashes  
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Appendix D2: Rural 4-lane Freeway Property Damage Only Crashes  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-40

-20

0

20

40

0 2 4 6 8

C
u

m
u

la
ti

ve
 R

es
id

u
al

s

Fitted Values [R4F - MVPDO]
Calibration Factor

Cum Res 2σ -2σ

-60

-40

-20

0

20

40

60

0 5 10 15

C
u

m
u

la
ti

ve
 R

es
id

u
al

s

Fitted Values [R4F - SVPDO]
Calibration Function

Cum Res 2σ -2σ

-60

-40

-20

0

20

40

60

80

100

0 5 10 15

C
u

m
u

la
ti

ve
 R

es
id

u
al

s

Fitted Values [R4F - SVPDO]
Calibration Factor

Cum Res 2σ -2σ

-40

-20

0

20

40

0 5 10

C
u

m
u

la
ti

ve
 R

es
id

u
al

s

Fitted Values [R4F - MVPDO]
Calibration Function

Cum Res 2σ -2σ



    

123 

 

Appendix D3: Urban 4-lane Freeway Fatal and Injury Crashes  
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Appendix D4: Urban 4-lane Freeway Property Damage Only Crashes  
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Appendix D5: All Freeways Fatal and Injury Crashes  
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Appendix D6: All Freeways Property Damage Only Crashes  
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Appendix D7: Rural 4-lane Speed-Change Lane Fatal and Injury Crashes  
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Appendix D8: Rural 4-lane Speed-Change Lane Property Damage Only Crashes  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-15

-10

-5

0

5

10

15

0 0.5 1 1.5 2

C
u

m
u

la
ti

ve
 R

es
id

u
al

s

Fitted Values [R4SC - ENPDO]
Calibration Factor

Cum Res 2σ -2σ

-15

-10

-5

0

5

10

15

0 1 2 3

C
u

m
u

la
ti

ve
 R

es
id

u
al

s

Fitted Values [R4SC - EXPDO]
Calibration Factor

Cum Res 2σ -2σ

-15

-10

-5

0

5

10

15

0 0.5 1 1.5

C
u

m
u

la
ti

ve
 R

es
id

u
al

s

Fitted Values [R4SC - ENPDO]
Calibration Function

Cum Res 2σ -2σ

-15

-10

-5

0

5

10

15

0 0.5 1 1.5 2

C
u

m
u

la
ti

ve
 R

es
id

u
al

s

Fitted Values [R4SC - EXPDO]
Calibration Function

Cum Res 2σ -2σ



    

129 

 

Appendix D9: Urban 4-lane Speed-Change Lane Fatal and Injury Crashes  
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Appendix D10: Urban 4-lane Speed-Change Lane Property Damage Only Crashes  
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Appendix D11: All Speed-Change Lanes Fatal and Injury Crashes  
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Appendix D12: All Speed-Change Lanes Property Damage Only Crashes  
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Appendix E - Cure Plots for Crossroad Ramp Terminals 

 

Appendix E1: Rural Stop-Controlled Crossroad Ramp Terminal Fatal and Injury and 

Property Damage Only Crashes   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-10

-5

0

5

10

0 2 4 6 8

C
u

m
u

la
ti

ve
 R

es
id

u
al

s

Fitted Values [RST - FI]
Calibration Factor

Cum Res 2σ -2σ

-10

-5

0

5

10

0 1 2 3

C
u

m
u

la
ti

ve
 R

es
id

u
al

s

Fitted Values [RST - FI]
Calibration Function

Cum Res 2σ -2σ

-10

-5

0

5

10

15

0 2 4 6 8

C
u

m
u

la
ti

ve
 R

es
id

u
al

s

Fitted Values [RST - PDO]
Calibration Factor

Cum Res 2σ -2σ

-10

-5

0

5

10

0 1 2 3

C
u

m
u

la
ti

ve
 R

es
id

u
al

s

Fitted Values [RST - PDO]
Calibration Function

Cum Res 2σ -2σ



    

134 

 

Appendix E2: Urban Stop-Controlled Crossroad Ramp Terminals Fatal and Injury and 

Property Damage Only Crashes   
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Appendix E3: All Stop-Controlled Crossroad Ramp Terminals Fatal and Injury and 

Property Damage Only Crashes   
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Appendix E4: Urban/All Signal-Controlled Crossroad Ramp Terminals Fatal and Injury 

and Property Damage Only Crashes   
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