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Abstract 

Cranberries are fruits rich in polyphenols known to promote health in various ways, from 

urinary tract health to cardiovascular and oral health. As consumers look to reduce calories and 

sugar and move to more convenient snacking and bioactive food forms, research on different 

forms of cranberries and stability of bioactive compounds over time becomes more important. 

There is a lot of research on stability of polyphenols in cranberry juice drinks, however, similar 

research on sweetened dried cranberries and cranberry supplements is a needed research area. 

This research focused on the effects of product matrix, processing, and packaging on polyphenol 

stability and antioxidant capacity of various sweetened dried cranberries and cranberry 

supplements over time.  

Across the sweetened dried cranberry treatments, it was found that product matrix 

significantly influenced not only initial polyphenol content but also degradation over time. Sliced 

cranberries had higher polyphenol content than whole cranberries due to higher infusion rate via 

increased surface area. Infusion ingredients also impacted polyphenol content and stability, with 

additional bulking agents, such as apple concentrate or soluble corn fiber, providing enhanced 

insulation and stability of polyphenols during processing compared to sucrose-only treatments. 

Compared to raw cranberries, sweetened dried cranberries are significantly lower in 

polyphenols. Measurement of antioxidant capacity via DPPH assay found that sweetened dried 

cranberries had similar antioxidant capacity to raw cranberries, though other studies analyzing 

cranberries via ORAC assay resulted in higher antioxidant values for raw cranberries 

demonstrating the importance of consistency in assay when comparing values. 

Across the cranberry supplement treatments, it was found that the spray-dried treatment 

had significantly higher initial and final polyphenol content as well as stability for all analyses 



   

 

  

over time compared to gummy treatments. Compared to raw cranberries, the spray-dried 

treatment had significantly more polyphenols and antioxidant activity, further signifying that 

spray-drying stabilizes polyphenols due to lower moisture content and Aw, leads to a higher 

concentration of active components due to water removal, and the capsule form further protects 

polyphenols from degradation. Across gummy treatments, product matrix and packaging 

impacted not only initial polyphenol content but also stability over time. The gummy treatment 

with fewer filler ingredients contained a higher ratio of polyphenols and higher stability (except 

for proanthocyanidins) due to being packaged as individual wrapped gummies compared to bulk 

for the other gummy treatment.  

Overall this research demonstrates that product matrix in conjunction with processing 

parameters and packaging for sweetened dried cranberries and cranberry supplements 

significantly impacts polyphenol content and stability. The product with the highest polyphenol 

content and most stability over time was the spray dried supplement, though as consumers seek 

bioactive foods instead of supplements the sliced soluble corn fiber, glycerin, sucrose, and 

sucralose infused sweetened dried cranberry and gummy with few filler ingredients may be 

preferable options.  Further research should be done to evaluate how different processing 

conditions, packaging, and other product matrix attributes may improve polyphenol content and 

stability of non-spray dried cranberry products over time. 

 



   

 

iv 

Table of Contents 

List of Figures .............................................................................................................................. viii 

List of Tables .................................................................................................................................. x 

Acknowledgements ....................................................................................................................... xii 

Chapter 1 - Literature Review ......................................................................................................... 1 

Introduction ................................................................................................................................. 1 

Nutraceuticals ............................................................................................................................. 4 

Bioactive Compounds ................................................................................................................. 6 

Label Claims for Bioactive Compounds ......................................................................... 6 

Antioxidants ................................................................................................................................ 7 

Antioxidants and Their Mechanisms ...................................................................................... 7 

Determination of Antioxidant Capacity ................................................................................ 10 

Ferric Reducing Antioxidant Power Assay (FRAP) ..................................................... 11 

Trolox Equivalent Antioxidant Capacity Assay (TEAC) ............................................. 12 

Oxygen Radical Absorbance Capacity Assay (ORAC) ................................................ 12 

2,2-diphenyl-1-picrylhydrazyl Assay (DPPH).............................................................. 13 

Legal Status of Antioxidants in the United States ................................................................ 14 

Polyphenols ............................................................................................................................... 16 

Flavonoids ............................................................................................................................. 17 

Anthocyanins ........................................................................................................................ 18 

Anthocyanins as Antioxidants ...................................................................................... 19 

Anthocyanins as Colorants ........................................................................................... 20 

Other Potential Health Benefits of Anthocyanins ......................................................... 22 

Proanthocyanidins ................................................................................................................. 24 

Inherent Characteristics of Food Products ................................................................................ 26 

Moisture Content and Water Activity ........................................................................... 26 

Texture .......................................................................................................................... 27 

Color ............................................................................................................................. 28 

Cranberries (Vaccinium macrocarpon) .................................................................................... 30 

Information ................................................................................................................... 30 



   

 

v 

Conclusions ............................................................................................................................... 32 

References ................................................................................................................................. 32 

Chapter 2 - Polyphenol Stability and Antioxidant Capacity of Sweetened Dried Cranberries .... 44 

Abstract ..................................................................................................................................... 44 

Introduction ............................................................................................................................... 45 

Materials and Methods .............................................................................................................. 48 

Proanthocyanidin Content ..................................................................................................... 49 

Proanthocyanidin Extraction ......................................................................................... 49 

Proanthocyanidin Content – BL-DMAC ...................................................................... 50 

Proanthocyanidin Content – Cranberry Standard Assay .............................................. 51 

Anthocyanin Content ............................................................................................................ 52 

Total Phenolic Content ......................................................................................................... 53 

Antioxidant Activity ............................................................................................................. 54 

Water Activity and Moisture Content ................................................................................... 55 

Water Activity ............................................................................................................... 55 

Moisture Content .......................................................................................................... 55 

Colorimetric and Texture Analyses ...................................................................................... 55 

Color ............................................................................................................................. 55 

Texture .......................................................................................................................... 56 

Statistical Analyses ............................................................................................................... 56 

Results and Discussion ............................................................................................................. 57 

Proanthocyanidin Content ..................................................................................................... 57 

Anthocyanin Content ............................................................................................................ 65 

Total Phenolic Content ......................................................................................................... 75 

Antioxidant Activity ............................................................................................................. 79 

Water Activity and Moisture Content ................................................................................... 80 

Water Activity ............................................................................................................... 80 

Moisture Content .......................................................................................................... 82 

Colorimetric and Texture Analyses ...................................................................................... 85 

Color ............................................................................................................................. 85 

Texture .......................................................................................................................... 89 



   

 

vi 

Conclusions ............................................................................................................................... 92 

References ................................................................................................................................. 94 

Chapter 3 - Polyphenol Stability and Antioxidant Capacity of Cranberry Supplements ........... 100 

Abstract ................................................................................................................................... 100 

Introduction ............................................................................................................................. 101 

Materials and Methods ............................................................................................................ 107 

Proanthocyanidin Content ................................................................................................... 108 

Extraction of OSC and AZO ....................................................................................... 108 

Extraction of TC ......................................................................................................... 109 

Proanthocyanidin Content – BL-DMAC Assay ......................................................... 109 

Proanthocyanidin Content – Cranberry Standard Assay ............................................ 110 

Anthocyanin Content .......................................................................................................... 111 

Total Phenolic Content ....................................................................................................... 112 

Antioxidant Activity ........................................................................................................... 113 

Water Activity and Moisture Content ................................................................................. 114 

Water Activity ............................................................................................................. 114 

Moisture Content ........................................................................................................ 115 

Colorimetric and Texture Analyses .................................................................................... 115 

Color ........................................................................................................................... 115 

Texture ........................................................................................................................ 116 

Statistical Analysis .............................................................................................................. 116 

Results and Discussion ........................................................................................................... 116 

Proanthocyanidin Content ................................................................................................... 116 

Anthocyanin Content .......................................................................................................... 127 

Total Phenolic Content ....................................................................................................... 136 

Antioxidant Activity ........................................................................................................... 140 

Water Activity and Moisture Content ................................................................................. 142 

Water Activity ............................................................................................................. 142 

Moisture Content ........................................................................................................ 144 

Colorimetric and Texture Analyses .................................................................................... 147 

Color ........................................................................................................................... 147 



   

 

vii 

Texture ........................................................................................................................ 149 

Conclusions ............................................................................................................................. 154 

References ................................................................................................................................... 155 

Chapter 4 - Overall Conclusions ................................................................................................. 161 

  



   

 

viii 

List of Figures 

Figure 1.1 Phenolic compounds found in fruits and vegetables (Gnanavinthan, 2013) ............... 25 

Figure 2.1 Structure of anthocyanidins ......................................................................................... 48 

Figure 2.2 Proanthocyanidin content (BL-DMAC Assay) versus time of sweetened dried 

cranberries ............................................................................................................................. 62 

Figure 2.3 Proanthocyanidin Content (Cranberry Standard Assay) versus time of sweetened dried 

cranberries ............................................................................................................................. 64 

Figure 2.4 Anthocyanin content versus time of sweetened dried cranberries .............................. 69 

Figure 2.5 Initial anthocyanin profile of SAJ ............................................................................... 70 

Figure 2.6 Final anthocyanin profile of SAJ ................................................................................. 70 

Figure 2.7 Initial anthocyanin profile of WAJ .............................................................................. 71 

Figure 2.8 Final anthocyanin profile of WAJ ............................................................................... 71 

Figure 2.9 Initial anthocyanin profile of SSDC ............................................................................ 72 

Figure 2.10 Final anthocyanin profile of SSDC ........................................................................... 72 

Figure 2.11 Initial anthocyanin profile of WSDC ........................................................................ 73 

Figure 2.12 Final anthocyanin profile of WSDC .......................................................................... 73 

Figure 2.13 Initial anthocyanin profile of SCFG .......................................................................... 74 

Figure 2.14 Final anthocyanin profile of SCFG ........................................................................... 74 

Figure 2.15 Total phenolic content versus time of sweetened dried cranberries .......................... 78 

Figure 2.16 Aw versus time of sweetened dried cranberries ......................................................... 82 

Figure 2.17 Moisture content versus time of sweetened dried cranberries ................................... 84 

Figure 2.18 DE versus time of sweetened dried cranberries ........................................................ 89 

Figure 2.19 Adhesion force versus time of sweetened dried cranberries ..................................... 92 

Figure 3.1 Structure of anthocyanidins ....................................................................................... 106 

Figure 3.2 a) B-type epicatechin dimer from granny smith apples and b) A-type epicatechin 

dimer from red peanut skin (Xu et al., 2015) ...................................................................... 107 

Figure 3.3 Proanthocyanidin content (BL-DMAC Assay) versus time of TC ........................... 122 

Figure 3.4 Proanthocyanidin content (BL-DMAC Assay) versus time of OSC and AZO ......... 123 

Figure 3.5 Proanthocyanidin content (Cranberry Standard Assay) versus time of TC .............. 125 



   

 

ix 

Figure 3.6 Proanthocyanidin content (Cranberry Standard Assay) versus time of OSC and AZO

 ............................................................................................................................................. 126 

Figure 3.7 Anthocyanin content versus time of TC .................................................................... 131 

Figure 3.8 Anthocyanin content versus time of OSC and AZO ................................................. 132 

Figure 3.9 Initial anthocyanin profile of OSC ............................................................................ 133 

Figure 3.10 Final anthocyanin profile of OSC............................................................................ 133 

Figure 3.11 Initial anthocyanin profile of TC ............................................................................. 134 

Figure 3.12 Final anthocyanin profile of TC .............................................................................. 134 

Figure 3.13 Initial anthocyanin profile of AZO .......................................................................... 135 

Figure 3.14 Final anthocyanin profile of AZO ........................................................................... 135 

Figure 3.15 Total phenolic content versus time of TC ............................................................... 139 

Figure 3.16 Total phenolic content versus time of OSC and AZO ............................................. 140 

Figure 3.17 Aw versus time of cranberry supplements ............................................................... 144 

Figure 3.18 Moisture content versus time of cranberry supplements ......................................... 146 

Figure 3.19 DE versus time for cranberry supplements ............................................................. 149 

Figure 3.20 Hardness versus time of cranberry supplements ..................................................... 151 

Figure 3.21 Adhesion versus time for cranberry supplements ................................................... 152 

Figure 3.22 Toughness versus time of cranberry supplements ................................................... 153 

 

  



   

 

x 

List of Tables 

Table 2.1 Sweetened Dried Cranberries Sample Overview .......................................................... 49 

Table 2.2 Rate of change of sweetened dried cranberries ............................................................ 60 

Table 2.3 Proanthocyanidin content (BL-DMAC Assay) of sweetened dried cranberries over 

time ....................................................................................................................................... 61 

Table 2.4 Proanthocyanidin content (Cranberry Standard) of sweetened dried cranberries over 

time ....................................................................................................................................... 63 

Table 2.5 Anthocyanin content of sweetened dried cranberries over time ................................... 68 

Table 2.6 Total phenolic content of sweetened dried cranberries over time ................................ 77 

Table 2.7 Antioxidant activity of sweetened dried cranberries .................................................... 80 

Table 2.8 Comparison of initial and final Aw of sweetened dried cranberries ............................. 81 

Table 2.9 Comparison of initial and final moisture content of sweetened dried cranberries ....... 84 

Table 2.10 Comparison of initial and final L* in sweetened dried cranberries ............................ 87 

Table 2.11 Comparison of initial and final a* in sweetened dried cranberries ............................. 87 

Table 2.12 Comparison of initial and final b* in sweetened dried cranberries ............................ 88 

Table 2.13 ∆E in sweetened dried cranberries .............................................................................. 88 

Table 2.14 Comparison of initial and final adhesion force of sweetened dried cranberries ......... 91 

Table 3.1 Cranberry Supplements Sample Overview ................................................................. 108 

Table 3.2 Rates of Change of Cranberry Supplements ............................................................... 120 

Table 3.3 Proanthocyanidin content of cranberry supplements by BL-DMAC assay over time 121 

Table 3.4 Proanthocyanidin content of cranberry supplements by DMAC assay utilizing 

cranberry standard over time............................................................................................... 124 

Table 3.5 Anthocyanin content of cranberry supplements over time ......................................... 130 

Table 3.6 Total phenolic content of cranberry supplements over time....................................... 138 

Table 3.7 Antioxidant activity of cranberry supplements ........................................................... 141 

Table 3.8 Initial and final comparison of Aw of cranberry supplements .................................... 143 

Table 3.9 Initial and final comparison of moisture content of cranberry supplements .............. 146 

Table 3.10 Initial and final comparison of a* of cranberry supplements ................................... 148 

Table 3.11 Overall color change (∆E) of cranberry supplements ............................................... 148 

Table 3.12 Comparison of initial and final hardness of cranberry supplements ........................ 151 



   

 

xi 

Table 3.13 Comparison of initial and final adhesion of cranberry supplements ........................ 152 

Table 3.14 Comparison of initial and final toughness of cranberry supplements ...................... 153 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

 

xii 

Acknowledgements 

I would like to thank Dr. Hughes for not only guiding me through this journey, but also 

serving as a great mentor academically, professionally, and personally – I could not have done 

this without your patience, expertise, and compassion. I would like to thank my committee 

members Dr. J. Scott Smith and Dr. Yucel for their suggestions and guidance during this process 

and ensuring my success from afar.  

I would like to show gratitude and thanks to Ocean Spray Cranberries for allowing me to 

continue my education, showing support along the way, and fostering a culture of growth and 

development. 

Lastly, I would like to thank my family for their support throughout the long nights and 

long journey that this has been. 

 

  



   

 

1 

Chapter 1 - Literature Review 

 

 Introduction 

Consumer views on foods have shifted to becoming more health forward and health 

conscious (Kell, 2016). With this trend becoming more prevalent, there is a need for the food 

industry to provide consumers with products that not only taste good but are good for them. 

Within the food industry it is no longer just acceptable to have products that taste good and 

have no added value to a person. 

In the United States chronic diseases are highly prevalent – according to the CDC one-

third of adults from 2011-2014 were considered obese (Ogden, et al., 2015), diabetes is the 

leading cause of kidney failure (Centers for Disease Control and Prevention, 2011), and heart 

disease and cancer accounted for 46% of all deaths in 2014 (Centers for Disease Control and 

Prevention, 2015). Many of these chronic diseases are linked to either over consumption of 

sodium rich foods (Jackson, et al., 2016), under consumption of fruits and vegetables 

(Centers for Disease Control and Prevention, 2017), or a lack of physical activity (US 

Department of Health and Human Services, 2018). In 2015 40% of adults admitted to eating 

fruits and vegetables less than once a day (Centers for Disease Control and Prevention, 

2017). These epidemics in the United States cause consumers and government bodies to push 

for healthier food options and move away from heavily processed food products.  

In 1994, the USDA created the Center for Nutrition Policy and Promotion (CNPP) to 

help promote the healthy life-style of Americans through diet and nutrition (United States 

Department of Agriculture, 2018). The construction of the CNPP addressed concern over 

obesity and diabetes in the United States and the USDA’s attempt to limit obesity and 
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diabetes by recommending healthier options. In 1994 48 states cited obesity in adults under 

18% and 49 states cited diabetes under 6% (Center for Disease Control Division of Diabetes 

Translation, 2018). The CNPP initiatives such as MyPlate aimed to keep obesity and diabetes 

percentages low in the United States. However, in 2015, 0 states could cite obesity under 

18% and 0 states could site diabetes under 6% (Center for Disease Control Division of 

Diabetes Translation, 2018). In 2015 36 states cite obesity over 26% and 27 states cite 

diabetes over 9% (Center for Disease Control Division of Diabetes Translation, 2018). Even 

though healthy initiatives were pushed from the government, obesity and diabetes did not 

decline as had been the intention of the CNPP. 

One initiative that the CNPP established was the MyPlate food guidance system which 

aims to develop healthy dietary segments for a balanced diet of fruits, vegetables, grains, 

protein, and dairy. The MyPlate initiative recommends that half of a plate should consist of 

whole fruits and a variety of vegetables (United States Department of Agriculture, 2018). 

Fruits and vegetables are nutrient dense and are healthy food sources, which is why they are 

recommended to make up half of the plate. Whole fruits, whether fresh, frozen, prepackaged, 

or dried, are recommended due to their nutritive content such as potassium or fiber. These 

whole fruits are recommended due to their higher nutritive values compared to juice drinks 

(typically less than 100% juice with added sugars and a lack of dietary fibers) and 100% 

juices (typically have no added sugar but still lack dietary fibers) (United States Department 

of Agriculture, 2018). Vegetables are recommended to make up slightly more than one 

quarter of the plate due to low fat content, low calories, zero cholesterol, and their rich 

nutritive content including dietary fiber, potassium, and vitamins and minerals (United State 

Department of Agriculture, 2018). Vegetables are recommended to make up a slightly larger 
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majority of the plate than fruits because of the low to no sugar content found in vegetables 

compared to fruits. 

Chronic diseases and obesity have increased even with governmental guidance for 

consumers to eat healthier. It is not that consumers are not aware of healthy foods and the 

need for them in their diet, but consumer lifestyles have changed. More consumers are eating 

on-the-go and live a fast-paced lifestyle, which makes eating whole fruits and vegetables less 

conducive to their busy lifestyle. Companies that produce and market vegetable products 

have innovated towards consumers with busy lifestyles. Consumers can buy packs of baby 

carrots or celery to eat with hummus and bring on-the-go, or they can buy prepackaged and 

prepared vegetable based foods that make cooking easier and healthier (precut vegetables in 

the produce department for easy additions to meals or vegetable noodles and riced vegetables 

for healthier pasta and rice replacements). Companies that manufacture fruit based products 

on the other hand have not done innovations in the same way, and there are rarely any 

prepackaged fruits or pre-peeled fruits that would be easier to take on-the-go. A part of this 

may be that there is more involved to consume fresh fruits, such as needing to peel oranges, 

de-core an apple, or peel bananas, and that fresh fruit tends to go bad more quickly than 

vegetables, such as bananas ripening quickly and apples bruising easily when taken on-the-

go.  

Dried fruits can provide the convenience of on-the-go type snacks while still maintaining 

the nutrition that consumers look for in fresh fruits. In fact, the dried fruit market is 

anticipated to increase 5.7% between 2018-2026 due to consumer need for healthier food 

options in conjunction with consumer need for easier and more convenient foods 

(Transparency Market Research, 2018). The downside to dried fruits, however, is that when 
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the fruits are dried to remove water, other ingredients are generally added like sugar to 

increase sweetness in fruits like pineapples and cranberries, or browning agents in dried 

bananas to mitigate browning reactions that occur during drying. Addition of ingredients like 

added sugars and anti-browning agents can reduce the health perception of dried fruits in 

relation to their whole fruit counterparts. Consumers need more healthy options that 

encompass the health benefits of whole fruits while still being easy to bring on-the-go and 

require less preparation. Consumers who do not choose whole fresh fruits can alternatively 

get the nutrients of whole fruits through other forms such as nutraceuticals or supplements, 

functional consumer goods, or dried fruits. 

 

 Nutraceuticals 

Nutraceuticals have no regulatory standing in the United States, but they are recognized 

by the government as functional foods which aim to prevent diseases (Kalra, 2003). 

Nutraceuticals harness the biologically active compounds in whole fruits, for example, in a 

nonconventional form of a food such as a pill or supplement. Ginger shots and extracts are 

used to relieve symptoms of nausea (Semwal, et al., 2015), and cranberry extract 

supplements can aid in urinary tract health via bacterial anti-adhesion effects (Singh, et al., 

2016). Nutraceuticals are aimed at consumers who may want to self-diagnose the need for 

select bioactives, however the FDA requires companies to place disclaimers on their 

packaging to alert the public that the claims that the products are making have not been 

evaluated by the FDA and are not intended to replace pharmaceutical medications. An 

example is that a claim suggesting that a product may aid in urinary tract health is allowed, 

however, a claim stating that a product cures UTIs is not allowed.  The statement required is 
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the following: “This statement has not been evaluated by the Food and Drug Administration. 

This product is not intended to diagnose, treat, cure, or prevent any disease” (21CFR101.93). 

Nutraceuticals are an easy option for consumers compared to the rigor that comes with 

preparing meals or the amount of a whole fruit you would need to consume to get the same 

benefits as an extract, which removes the water in the fruit to concentrate bioactive 

compounds in a more convenient form. However, Millennials (born 1981-1996) may not find 

nutraceuticals as enticing as the older generations because they are not food products and 

they come with a level of dissociation from the experience of eating food (Loria & Lee, 

2018).  

Millennials make up the largest age group in the United States and thus drive a large 

majority of the eating trends in the United States (Rosenbloom, 2018). Eating healthy by 

preparing meals at home is expensive and time consuming. A 2017 study found that 55% of 

Millennials are driven by the convenience of a food over the foods’ taste (Rosenbloom, 

2018). With this large demographic wanting convenience in their food choices nutraceuticals 

may seem like a good option as they are easy to consume and require no preparation, unlike 

making meals at home. However, the word nutraceutical is a combination of the words 

nutrition and pharmaceutical and while the word nutrition is on the minds of consumers and 

seen positively, pharmaceutical is not thought of in such a positive light. In fact, Millennials 

ranked the pharmaceutical industry as the least trusted health institution in the United States 

(Patel, 2017). This perception steers Millennials away from traditional means of medicine 

and towards holistic and more natural approaches to give their bodies the nutrients that are 

needed to thrive and to promote self-care. Millennials spend a great deal of money on 

themselves in order to promote wellness (of body and mind) and a 2017 study by Charles 
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Schwab found that Millennials spend more than both Gen X and Baby Boomers on items and 

luxuries that provide them with comfort and convenience (Elkins, 2017). Moving away from 

nutraceuticals and towards food products with bioactive compounds is one way to capture 

Millennial consumers. 

 

 Bioactive Compounds 

 Label Claims for Bioactive Compounds 

A bioactive compound has effects on a persons’ biological system and promotes a 

persons’ health, such as flavonols in berries which act as antioxidants and lower total 

cholesterol (Kris-Etherton, et al., 2002). For food manufacturers to make claims on bioactive 

compounds in their products there must be scientific evidence which links the bioactive 

compounds in question to specific health benefits. These bioactive compounds also must be 

quantified by the food manufacturer and substantiated that they remain throughout the 

products’ shelf life. Health claims can come in the form of nutrient content claims or 

structure/function claims. These claims differ from pharmaceutical claims in that they do not 

make a statement that they will cure or prevent any disease or ailment but can be statement of 

fact on nutrients contained in the foods or can attest to functionality of the food product in 

support of health. The Nutrition Labeling and Education Act of 1990 (NLEA) allows food 

manufacturers to make nutrient content claims on their labels as long as they can prove that 

that amounts of nutrients they are claiming are actually present in the food product (United 

States Department of Health and Human Services, 2018). Labels may use terms such as 

“high in” or “low in” to describe the amounts of the nutrient in the food relative to the 

Reference Daily Intake (RDI) or percentage of the daily value (%DV) of certain nutrients 
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based on a 2000 calorie diet, as regulated by the FDA (U.S. Food & Drug Administration, 

2018). 

Unlike nutrient content claims, structure/function claims on food products reference how 

a nutrient in a food product will effect body functions once ingested (United States 

Department of Health and Human Services, 2018). These claims also must be backed by 

scientific evidence to support the claims being made. An example of a nutrient content claim 

might be that a food product is high in calcium (based on %DV), whereas a 

structure/function claim might be that the product contains calcium to promote or support 

bone health. Another example of a nutrient content claim in cranberry juice may be that the 

juice product contains polyphenols, whereas a structure function claim would be that the 

juice is able to support urinary tract health. Structure/function claims are more difficult to 

prove as they require more scientific testing to link the mechanism of the bioactive 

compound to an effect on the body, whereas a nutrient content claim can just quantify the 

amount of the nutrient in the food product without any link to mechanisms in the body. 

 

 Antioxidants 

Antioxidants and Their Mechanisms 

Antioxidants are generally defined as those compounds that can inhibit oxidation through 

free radical scavenging (Decker, et al., 2010). Free radicals are molecules that contain an 

unpaired electron (Lobo, et al., 2010). Free radicals can originate in the human body from human 

metabolic processes or from external forces such as chemical exposure or air pollution (Lobo, et 

al., 2010). Free radicals are negative in humans because they are highly reactive and can cause 

damage to DNA, cells, and proteins (Lobo, et al., 2010).  Free radical scavengers (FRS) are the 
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most common form of food product antioxidants and include polyphenols, ascorbic acid, and 

carotenoids (Decker, et al., 2010). By donating hydrogen molecules to compounds that are 

oxidizing, FRS can scavenge free radicals to limit biological damage to cells and tissues by 

decreasing energy in the form of an electron (Decker, et al., 2010) (Yeo, et al., 2010). In humans, 

lipoxygenases are enzyme types that create oxidation of low-density lipoprotein and oxidation 

reactions (Rosenson, 2009). Anthocyanins have been shown, using an in vitro model of soybean 

lipoxygenase-1, to inhibit lipoxygenase, with delphinidin 3-O-galactoside and delphinidin 3-O-

glucoside being the most effective anthocyanins at inhibiting lipoxygenase compared to other 

anthocyanins (Knaup, et al., 2009). In that study, the anthocyanins were isolated and extracted 

from lowbush wild blueberries (delphinidin 3-O-glucoside, delphinidin 3-O-galactoside, 

delphinidin 3-O-arabinoside, malvidin 3-O-glucoside), aronia concentrate (cyanidin 3-O-

glucoside, cyanidin 3-O-galactoside, cyanidin 3-O-arabinoside), and cranberry juice (peonidin 3-

O-glucoside, peonidin 3-O-galactoside, peonidin 3-O-arabinoside) (Knaup, et a., 2009). 

Less commonly than FRS, antioxidants can also come in the form of quenchers and 

chelators. Quenchers prevent oxidation by quenching singlet oxygens and lipid oxygen products, 

and lowering excited oxygen molecules to their ground state (Yeo, et al., 2010) (Tsao, 2015). 

Chelators act in the presence of transition metals and prevent metals such as iron or copper from 

redox reactions, which in turn prevents oxidation from occurring in food products (Allen, 2015) 

(Yeo, et al., 2010). 

In food products oxidation is a negative attribute because it contributes to off-flavors, 

odors, color changes, and nutrient degradation (Skibsted, 2010). In order to mitigate these 

changes, antioxidants can be added to products to maintain the overall quality of the food as well 

as the integrity of the bioactive compounds. An example is in the addition of apple polyphenols 
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to red pitaya fruit, which delayed fruit discoloration, microbial growth, and softening of the fruit 

(Fan, et al., 2018). In food products, oxidation reactions occur from free radicals in the food 

product or by free radical formation via redox reactions (Lobo, et al., 2010). When foods contain 

antioxidant compounds such as vitamin A (beta-carotene), vitamin C (L-ascorbic acid), or plant 

phenolics, however, the antioxidant compounds can inhibit the free radicals from harming the 

food product. Vitamin A (beta-carotene) works in food products to scavenge singlet oxygens to 

create a nonradical and therefore by inhibiting the formation of free radicals it inhibits further 

oxidation, however this process can also change the color of the food due to bleaching of the 

beta-carotene compounds (Decker, et al., 2010). Vitamin C (L-ascorbic acid) is seen as a potent 

antioxidant, however, this depends on other competing reactions. Vitamin C can reduce 

transition metals but, in the process, enables hydrogen molecules generated to become free 

radicals which in turn promote oxidation reactions (Decker, et al., 2010). Plant phenolics such as 

carnosic acid and rosmarinic acids in rosemary are added to meat and oil emulsions to limit lipid 

oxidation (Decker, et al., 2010). In the process of protecting the foods from oxidation reactions 

and free radicals, the antioxidant species are used up. If too many antioxidant species are used up 

and free radicals begin to form in an imbalance to antioxidants, oxidative stress occurs which can 

breakdown lipids, proteins, and nucleic acids in the foods, like how antioxidants and free radicals 

work in the human body (Lobo, et al., 2010). Oxidative stress can occur by free radical formation 

by oxidation of amino acids, cleavage of peptide bonds, and by cross-linkages formed via lipid 

peroxidation (Lobo, et al., 2010). In plants and fruits where there are no lipids or proteins, 

oxidation can occur via polyphenol oxidase (PPO) enzymes or reactions with phenols innate to 

the plant (Pourcel, et al., 2007). 
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Determination of Antioxidant Capacity 

It is important to measure antioxidant capacity and activity in food products both as a 

manufacturer and as a researcher. As a manufacturer, it is important to validate nutrient content 

claims, and as a researcher it is important to look at the antioxidant potential of different 

compounds. Antioxidant activity references whether a compound can act as an antioxidant. 

Antioxidant capacity of a compound refers to how much (or to what degree) the compound is 

acting as antioxidant. Antioxidant capacity therefore can give more quantifiable values whereas 

antioxidant activity would simply refer to whether the compound can act as an antioxidant. There 

are various methods of analyzing antioxidant capacity, including ferric reducing antioxidant 

power (FRAP), Trolox equivalent antioxidant capacity (TEAC), oxygen radical absorbance 

capacity assay (ORAC), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) colorimetric assay (Popovic, 

et al., 2012). These methods are differentiated as either being electron transfer or hydrogen atom 

transfer assays. Electron transfer assays such as DPPH, FRAP, and TEAC are color reactions due 

to the reduction of oxidants by an electron transfer, while hydrogen atom transfer assays such as 

ORAC are caused by competing reactions mechanisms of an antioxidant and the substrate such 

as sodium fluorescein which results in a fluorescein decay curve which can be measured against 

a blank (Popovic, et al., 2012) (Roy, et al., 2010).  

While these assays can measure antioxidant capacity of food products, antioxidants do 

not all work in the same way. Some antioxidants react due to multiple mechanisms while others 

may only react due to a single reaction, and some antioxidants may react to certain free radical 

species but not others (Prior, et al., 2005). For example, phenolic compounds quench peroxyl 

radicals better than carotenoids but carotenoids are better as quenching singlet oxygen species 

(Prior, et al., 2005). The different combinations of reactions and free radical species for 
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antioxidants to react with means that while assays can accurately measure antioxidant capacity, 

no assay will be able to accurately measure all the different scenarios that may occur in a food 

matrix (Prior, et al., 2005). A single food matrix can vary based on ingredients used, processing 

parameters and conditions, and storage and packaging conditions. These variables will also 

impact how the antioxidants in the food are able to be measured. Processing conditions may 

damage antioxidants if they are too harsh (long processing times or high processing 

temperatures), if there are too few antioxidants to be able to insulate from degradation, and 

improper packaging and storage may let in oxygen which may speed up degradation. It is 

important for food manufacturers to understand how different processing conditions and food 

matrices may affect antioxidants and the bioactive compounds in the food products. Testing 

assays based on the different antioxidant species and reaction mechanisms can help food 

manufacturers to better understand how antioxidants are functioning in their food products. 

 

 Ferric Reducing Antioxidant Power Assay (FRAP) 

FRAP assay is measured by a reaction between an electron donor antioxidant species and 

Fe3+ to produce Fe2+, which produces a color change when reacted with 2,4,6-tris(2-pyridyl)-s-

triazine (TPTZ) (Martins, et al., 2013). FRAP assay measures antioxidant capacity based on the 

ferric ion, which may not be directly applicable to how antioxidants react in biological matrices 

because the ferric ion is not available as an antioxidant species in humans. A disadvantage to the 

FRAP assay is that the reaction is read spectrophotometrically within 6 minutes of the reaction 

which assumes that all reduction reactions will be complete within 6 minutes (Prior, et al., 2005). 

This assumption may not always be true as polyphenols and other phenolic compounds have 

longer reaction times, up to multiple hours, due to reduction reactivity, so the FRAP assay may 
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result in underestimation of antioxidants in these cases (Prior, et al., 2005) (Zhong & Shahidi, 

2015). 

 

 Trolox Equivalent Antioxidant Capacity Assay (TEAC) 

The TEAC assay is a reaction between the radical 2-2’-azino-bis(3-ethylbenxothiazoline-

6-sulphonic acid) (ABTS) and antioxidants. Antioxidant compounds decrease the color created 

during the reaction by scavenging the free radicals and the antioxidant capacity can be measured 

(Prior, et al., 2005). TEAC is a simple assay which utilizes a 30 minute reaction time and can be 

used on products with varying pH ranges (Prior, et al., 2005). One disadvantage to this assay is 

that the radical used for the reaction (ABTS) is not found in humans or other mammals, so it is 

not representative of antioxidants in the human body (Prior, et al., 2005). Since this assay is not 

representative of antioxidants in the human body, the assay is useful for overall antioxidant 

quantification and not correlation with antioxidants in relation to biological functions. 

 

 Oxygen Radical Absorbance Capacity Assay (ORAC) 

ORAC utilizes a reaction between antioxidants based on inhibition of oxidation by 

peroxyl radicals which results in a fluorescence curve which can be used to calculate antioxidant 

capacity based on product formed and rate of the reaction (Roy, et al., 2010)(Prior, et al., 2005). 

However, in 2012 the USDA chose to remove ORAC values for foods from the Nutrient Data 

Laboratory (NDL) because of scientific evidence indicating that ORAC values could not be 

linked to bioactive compounds in humans (United States Department of Agriculture, Agricultural 

Research Service, 2010). ORAC values were previously used by the USDA to quantify 

antioxidant capacity of foods and by food manufacturers to talk about the antioxidant benefits of 
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their products. However, since ORAC values cannot be directly translated to biological functions 

in the human body, the values can be misleading to consumers since even though a food contains 

antioxidants, they may not be recognized by the FDA to make claims (United States Department 

of Agriculture, Agricultural Research Service, 2010). The ORAC method also needs to be done 

in a temperature-controlled environment and utilizes a fluorometer rather than a 

spectrophotometer, which may not be available in many food laboratories (Prior, et al., 2005). 

 

 2,2-diphenyl-1-picrylhydrazyl Assay (DPPH)  

DPPH is a dark purple radical which when reacted with antioxidants will lighten in color 

due to electron transfer to the DPPH free radical, and the color change can be characterized with 

a spectrophotometer (Roy, et al., 2010). DPPH assay has increased in use in the food industry 

because it is a simple test, which requires commerically available reagents and a 

spectrophotometer to run the reaction (Roy, et al., 2010). DPPH assay though can have trouble if 

the test compounds in question have spectra that will absorb at the same wavelength that the 

DPPH reaction is read (515 nm). This is the case with carotenoids, so care needs to be taken if 

samples containing carotenoids are to be used (Prior, et al., 2005). 

ORAC and DPPH have been used to assess antioxidant capacities in fruit products such 

as plums, Chinese bayberries, cranberries, grape seeds, and banana peels (Almeida, et al., 2016) 

(Yang, et al., 2009) (White, et al., 2010) (Babbar, et al., 2011). In these products, substances 

such as phenolic compounds, carotenoids, and ascorbic acid can contribute to antioxidant 

capacity. Not all fruits have the same chemical makeup, so the contributing compounds differ in 

different food products. In berries and darker fruits, the polyphenols are important compounds 
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that maintain fruit integrity against oxidation and act as antioxidants (Chen, et al., 2014) (Hassan 

& Abdel-Aziz, 2010). 

The various methods for antioxidant capacity measurement in food products differ in how 

their mechanisms allow them to act as antioxidants. Therefore, it is hard to directly compare 

different methods if they do not inhibit free radical formation in the same ways which makes it 

increasingly hard for scientists to use these methods to make claims on food products and rather 

have to substantiate with human trials.  

 

Legal Status of Antioxidants in the United States 

In the United States, food manufacturers may make antioxidant claims in the form of 

nutrient content claims. The FDA will approve a product with an antioxidant nutrient content 

claim so long as the antioxidant has an established RDI level and has scientifically proven 

antioxidant activity in the form of human clinical studies. The level at which the antioxidant is 

used may additionally qualify for good source (10% RDI), excellent source (20% RDI), 100%, 

“low in” (5% DV or less), or “high in” (20% DV or more), which are easy for the consumer to 

understand (U.S. Food & Drug Administration, 2018). Currently there are only three antioxidants 

in the United States that have an established RDI backed by human clinical trials: vitamin A 

(beta-carotene or retinol), vitamin C (L-ascorbic acid), and vitamin E (gamma-tocopherol or 

alpha-tocopherol). Despite scientific studies which demonstrate that polyphenols have 

antioxidant properties in food matrices (Chen & Yu, 2017) (Kim, et al., 2003) (White, et al., 

2010), the FDA has not established RDI values for polyphenols as antioxidants due to the 

complexity of validating polyphenol antioxidant properties in humans. The RDI is based off of 

the estimated average requirement for the nutrient (amount estimated to meet nutritional 
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requirements for half the population in a group) plus either a standard deviation or 10% 

coefficient of variance (Institute of Medicine (US) Food and Nutrition Board, 1998). The 

estimated average requirement is based on peer-reviewed scientific literature which displays 

reduction of certain diseases.  

There are no studies which indicate a necessary quantity of polyphenols that must be 

ingested to reduce disease in humans. There is also a lack of knowledge on which polyphenols 

are specifically responsible for acting as antioxidants. Polyphenols are a class of compounds, and 

while individual compounds may be effective as individual antioxidants, there is no evidence 

that the whole class of compounds acts as antioxidants. Similarly, vitamins are a class of 

compounds which as a class do not have an RDI level, but the individual vitamins each have an 

RDI. The mechanisms of vitamins A, C, and E as antioxidants are well supported by scientific 

literature, thus they meet the FDA requirements for being labeled as an antioxidant. If more 

clinical studies are conducted on specific polyphenols, they could have the potential to be 

qualified as an antioxidant with an RDI level for food claims. Nutrient content claims such as 

good source of specific polyphenols such as proanthocyanins, anthocyanins, and carotenoids 

would then be able to be used on label for consumers interested in health forward products. 

However, the complexity of human clinical trials reduces the ability for studies to be 

successfully done on polyphenol antioxidants. Although single isolated polyphenols like 

anthocyanins or proanthocyanidins may exhibit antioxidant capacity in vitro, once they are 

introduced into human subjects, which differ in health status and gut microflora, the compounds 

may not behave as they would in a controlled in vitro model, which demonstrates the differences 

in an antioxidant compound having capacity regardless of the matrix versus its availability in 

different formats (Manach, et al., 2004). 
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 Polyphenols 

One of the main groups of bioactive compounds in fruits are polyphenols, a classification of 

phytochemicals. Polyphenols have an aromatic ring and at least one hydroxyl group that includes 

a derivative such as an ester of glycoside (Gnanavinthan, 2013). Polyphenols are the most widely 

consumed antioxidant in the human diet and are made up of flavonoids, tocopherols, phenolic 

acids, lignan, stillbens, tannins, and coumarins (Gnanavinthan, 2013). These groups of 

polyphenols have natural antioxidant capacity and have been found to reduce oxidative stress 

caused by cancers and heart disease in in vitro models (Manach, et al., 2004) (Eaton, et al., 1996) 

(Scalbert, et al., 2005). Most polyphenols are absorbed in the small intestine (Donovan, et al., 

2006) with the remaining portion broken down and absorbed in the large intestine (Del Rio, et 

al., 2010). Polyphenol activity in humans can differ depending on the type of phenolic compound 

and its intrinsic biological activity, poor absorption of certain compounds, high metabolism rate 

of certain compounds, or because some compounds are more rapidly eliminated in humans than 

others (Manach, et al., 2004). Bioactivity of polyphenols is the effect that they have on a 

persons’ body whereas the bioavailability of polyphenols is the amount of the compounds that 

are capable of being absorbed and used in the body. While many compounds are bioactive, their 

bioavailability may be very small in the human body and their effects might not be great. In 

human studies therefore it can be difficult for polyphenols to be quantified and validated. 

Different polyphenols will be more readily available in humans while others will rapidly 

breakdown. Also, since most polyphenols are absorbed in the intestines, many compounds do not 

make it through the digestive system to be studied in human trials, further limiting the reliability 

of in vitro polyphenol studies. 
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Flavonoids 

Polyphenolic compounds are primarily composed of a group of compounds called 

flavonoids. Flavonoids are composed of flavonols, flavones, isoflavones, flavanones, 

anthocyanidins, and flavanols (Benzie & Wachtel-Galor, 2013) (Manach, et al., 2004), with all 

of these having the same chemical foundation in common: 2 aromatic rings bound by 3 carbons 

which form a heterocycle (Manach, et al., 2004). Flavonoids play a role in the biological 

functions of plants by acting as FRS, maintaining plant structure, providing UV protection for 

plants, and regulating plant physiology and reproduction (Flacone Ferreyra, et al., 2012). All of 

these biological activities are fundamental for plant survival, which is why flavonoids are so 

widely found in nature.  

Flavonols are the most common of the flavonoids, flavones are only typically found in 

parsley and celery, flavanones are found in high amounts in citrus, isoflavones are relatives of 

estrogen compounds found in the legumes, flavanols are found in tea as catechins and 

proanthocyanidins in fruits, and anthocyanins are pigments in fruits and vegetables (Manach, et 

al., 2004). A USDA report of flavonoid content of commonly consumed foods showed fruits 

such as berries contain the highest flavonoid contents, with blueberries (raw highbush variety) 

containing 180 mg/100 g of total flavonoids (90% of which are anthocyanins), cranberries (raw) 

containing 132 mg/100 g of total flavonoids (79% of which are anthocyanins), and cherries 

(sweet, raw) containing 44 mg/100 g of total flavonoids (70% of which are anthocyanins) 

(Bhagwat, et al., 2013). As in the case of the blueberries, cranberries, and cherries, anthocyanins 

make up more than 70% of the total flavonoids, making anthocyanins a vital component of many 

fruits. 
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Anthocyanins 

Anthocyanins are a class of flavonoid which give pigmentation to fruits and vegetables, 

usually in the form of reds, blues, purples, and blacks (Steyn, 2009). Copigmentation is 

important for anthocyanins because it is a pigment and copigmentation protects anthocyanins 

from degradation. Copigmentation occurs when anthocyanin molecules stack on top of each 

other causing insulation of the compounds from oxidation reactions and pH changes which may 

degrade the anthocyanins (Gordillo, et al., 2012). This insulation through copigmentation not 

only leads to increased anthocyanin stability, but the different stacking combinations lead to the 

different variety of  colors that consumers may see in fruits from anthocyanins (raspberry 

pigmentation versus strawberry pigmentation versus cranberry pigmentation) (Gordillo, et al., 

2012). Of the over 700 anthocyanins found, 90% of them are made up of 6 anthocyanidin bases 

(Wallace & Giusti, 2015). These anthocyanidin bases (which lack a sugar substituent) are 

pelargonidin, cyanidin, peonidin, delphinidin, petunidin, and malvinidin, which are differentiated 

by the 2 substituents attached to one of three phenolic rings  (Wallace & Giusti, 2015).  A 2006 

study looking at the concentrations of anthocyanins in 100 commonly consumed U.S. foods 

found that only 24% contained anthocyanins (16% fruits and 7% vegetables), suggesting that 

fruits contain more anthocyanins than vegetables (Wu, et al., 2006). The USDA analyzed 

anthocyanin content in 2013, showing that fruits such as bilberry (285.21 mg/100 g), 

chokeberries (349.79 mg/100 g), elderberries (485.28 mg/100 g), plums (558.19 mg/100 g), and 

black raspberries (671.79 mg/100 g) all have high anthocyanin content compared to navel 

oranges (0 mg/100 g), red delicious apples (2.97 mg/100 g), and bananas (7.39 mg/100 g) 

(Bhagwat, et al., 2013). These fruits are associated with red, blue, purple, or black pigmentation, 

which is why they are very high in anthocyanin content compared to orange and yellow fruits. 
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The same can be said for vegetables, where red cabbage (209.95 mg/100 g) and radicchio 

(134.67 mg/100 g) also contain high anthocyanin content compared to celery and carrots, which 

all have 0 mg/100 g of anthocyanins (Bhagwat, et al., 2013). 

 

 Anthocyanins as Antioxidants 

There are many studies which assess anthocyanins and antioxidant capacity (Chen, et al., 

2014) (Skrovankova, et al., 2015) (Hernandez-Herrero & Frutos, 2015). An in vitro Chinese 

study looking at twelve different types of berries showed a positive relationship between 

anthocyanin content and antioxidant capacity (Chen, et al., 2014). In this study, blue-berried 

honeysuckle (dark red in color) had the highest anthocyanin level (68.11 mg/kg) and antioxidant 

capacity (103.63 mg/kg via DPPH assay) while the Chinese dwarf cherry and raspberry (both 

pink in color) had the lowest anthocyanin levels (3.96 mg/kg and 2.58 mg/kg, respectively) and 

also had lower antioxidant capacity (70.29 mg/kg and 39.42 mg/kg via DPPH assay, 

respectively) (Chen, et al., 2014). The data show a positive correlation between total phenolic 

content and antioxidant capacity (r=0.809), and overall those fruits with higher anthocyanin 

content had higher antioxidant capacity (Chen, et al., 2014). Other berries like strawberries, 

blackberries, blueberries, and cranberries have antioxidant capacity and also have high 

anthocyanin content (Skrovankova, 2015). While berries contain many bioactive compounds that 

could be attributed to antioxidant capacity, there appears to be a positive correlation between 

anthocyanins specifically and antioxidant capacity which further needs to be explored through 

their functionality in the human body. 
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 Anthocyanins as Colorants  

The association of anthocyanins with pigmentation make them a viable option as a natural 

colorant in food products. Consumers are beginning to move away from synthetic ingredients 

including sweeteners, preservatives, and colorants as natural alternatives are becoming available 

and being used by manufacturers to meet consumer demand for more natural ingredients. A 2014 

study found that consumers are less tolerant of synthetic colorants than synthetic preservatives or 

sweeteners (Bearth, et al., 2014). Synthetic colorants that are deemed safe by the FDA are 

regulated under the 1938 Federal Food, Drug, and Cosmetic Act which labels certified colorants 

as food, drug, and cosmetic compliant (FD&C), drug and cosmetic compliant (D&C) or external 

drug and cosmetic compliant (Ext. D&C) (Barrows, et al., 2003). Examples of these colorants 

permitted for use in foods include FD&C Blue #1, FD&C Red #40, and FD&C Yellow #6 (U.S. 

Food & Drug Administration, 2017). Food manufacturers add colorants to foods to extend shelf-

life, make the products more visually appealing, and to make up for color deterioration that may 

result from processing. Consumers are driven by visually appealing food products and are more 

likely to eat foods that are red over green due to the prehistoric human association with red as an 

indication of freshness and calories in foods (Cantu & Griskevicius, 2012). Foods that do not 

have naturally appealing colors or have colors that may fade or degrade during processing or 

over the course of the products shelf life need to add color, and as consumers are less accepting 

of FD&C colorants (Bearth, et al., 2014), natural colorants are a good option for the food 

industry.  

Anthocyanins are water-soluble and provide pigmentation, so they are a good option for 

many food matrices (Mateus & de Freitas, 2008). Grapes are a common source of anthocyanins 

in the food industry (Mateus & de Freitas, 2008) but other fruits and vegetables also contain 
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anthocyanins such as blueberries, raspberries, cranberries, and red cabbage (Mateus & de Freitas, 

2008). Anthocyanins change color reversibly with increased pH and appear red in acidic pH 

solutions, purple in neutral pH solutions, and blue in basic pH solutions (Khoo, et al., 2017). A 

2015 study showed purple black carrot (Daucus carota L.) anthocyanins are stable as a natural 

food color extract and that the color change that occurs based on the pH of the product could be a 

potential useful indicator of food spoilage (Masoodi, et al., 2016). If a food matrix changes pH to 

a pH more suitable for pathogen and microbial growth, the anthocyanin would react in the food 

matrix and change color, alerting the consumer and manufacturer of potential hazards (Masoodi, 

et al., 2016). Color changes based on pH may be a potential useful indicator of food safety, but it 

has also been a limiting factor in being able to use anthocyanin derived food colorants. Many 

food applications that use anthocyanins as a food colorant do so because the pH of their product 

is low enough to maintain the original anthocyanin color.  

Another drawback to anthocyanins as food colorants is that they degrade quickly due to 

processing and storage conditions. Thermal processing of blueberry purees and blueberry juice 

(clarified by centrifugation at 6000 x g for 10 minutes) have shown that processing decreases 

anthocyanin content (Cesa, et al., 2017) (Brownmiller, et al., 2008). In cranberry juice 

processing, blanching of the fruit resulted in significant reduction of total anthocyanin content 

(White, et al., 2011). Three different processing conditions were looked at prior to the addition of 

pectinase and juice clarification, one in which ground fruit was blanched at 95oC for 3 minutes, 

one in which ground fruit was unblanched, and one in which whole fruit was blanched at 95oC 

for 3 minutes, and it was found that anthocyanins were retained at 39%, 53.1% and 42.4% 

respectively (compared to the frozen initial fruit) (White, et al., 2011). The range of colors 

produced by anthocyanins not only has to do with the pH of the solution as well as the 
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processing stability, but copigmentation of anthocyanins plays a large role. Copigmentation of 

anthocyanins causes stability of the anthocyanins and enhances their color through an absorption 

shift (5-20 nm) either intramolecularly or intermolecularly (Gomez-Miguez, et al., 2006) 

(Rustioni, et al., 2012). Intramolecular interactions occur via interaction of the central 

anthocyanin molecule and the aromatic acyl compounds linked to them, where intermolecular 

interactions occur between anthocyanins and other non-pigmented compounds, usually in the 

form of phenolic compounds (Gomez-Miguez, et al., 2006). 

 

  Other Potential Health Benefits of Anthocyanins 

 Aside from the antioxidant capacity of anthocyanins, there have been studies with 

mulberry extracts fed to mice and rats as well as introduced to human cancer cells that show that 

anthocyanins (cyanidin-3-glucose, cyanidin-3-rutinoside, and peonidin-3-glucoside) possess 

other beneficial health attributes, especially in relation to cancer prevention (Huang, Chang, Wu, 

Hung, & Wang, 2011) (Long, et al., 2018) (Li, et al., 2016). A 2011 study showed anthocyanin 

extracts from mulberries (cyanidin-3-glucoside and cyanidin-3-rutinoside) were effective in 

inhibiting gastric cancer cells in mice by inducing apoptosis in the cancerous glandular cells, 

thus reducing the amount of cancer cells that could grow via p38 caspase 8 signaling and p38 

Bac signaling pathways (Huang, Chang, Wu, Hung, & Wang, 2011). Anthocyanin induced 

apoptosis of cancer cells was seen again with mulberry anthocyanins in relation to thyroid cancer 

where mulberry anthocyanins acted as thyroid tumor suppressors by deactivating Akt/mTOR 

signaling in cancer cells (Long, et al., 2018). Anthocyanins induce cell death in cancer cells 

independent of where the cells are derived from. In patients with trastuzumab-resistant breast 

cancer, anthocyanin extracts of mulberry (cyanidin-3-glucoside and peonidin-3-glucoside) were 
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once again shown to induce apoptosis in the cancerous cells which limited cancer cell migration 

and overall growth, both in vitro and in vivo (Li, et al., 2016). 

A 2017 study evaluated the effect of anthocyanins on human pancreatic cancer cells and 

found that when healthy individuals consumed a grape and bilberry juice that was high in 

anthocyanin content (841 mg/L of total anthocyanins), pancreatic cancer cells (derived in the 

study from pancreatic carcinoma cell lines PANC-1 and AsPC-1) were unable to migrate due to 

reduction of radical oxygen species by the anthocyanins (Kuntz, Kunz, & Rudloff, 2017). Even 

though there are studies that validate specific anthocyanins’ role as antioxidants there is still no 

legal guidance from the FDA which allows anthocyanins to be called out in food products as a 

source of antioxidants. More work needs to be done to link anthocyanins as a group of 

compounds and their effectiveness as antioxidants. Since there is no guidance on anthocyanins as 

a group of compounds, there is no recommendation as to the amounts that would be needed to be 

consumed for antioxidant benefits in humans. One drawback is that unlike vitamin C, there are 

no illnesses that would result from not consuming enough anthocyanins in a persons’ diet. Even 

though studies show that anthocyanins can cause apoptosis in cancer cells and can limit cancer 

cell growth, there is no evidence that without consumption of anthocyanins humans would 

develop cancers. So even though there are no identified illnesses that would be prevented by the 

absence of anthocyanins in a persons’ diet, anthocyanin consumption can aid in prevention or 

reduction of chronic diseases such as cancer (Kuntz, Kunz, & Rudloff, 2017) (Huang, Chang, 

Wu, Hung, & Wang, 2011) (Li, et al., 2016). 
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Proanthocyanidins 

Proanthocyanidins are a part of the flavonoid group also known as condensed tannins 

(Figure 1) (Gnanavinthan, 2013). They are polymers of flavan-3-ols and are commonly 

consumed parts of the human diet (Santos-Buelga & Scalbert, 2000). Proanthocyanidins are 

produced when flavanol monomers are polymerized (Beecher, 2003). This polymerization can 

occur naturally within the plant or from oxidation during processing (Beecher, 2003). As 

antioxidants, polyphenol compounds such as proanthocyanidins will defend the plant against 

oxidation in nature and will also do this when oxidation reactions occur when food products are 

processed to protect the food. Proanthocyanidins are found as either B-type carbon-carbon 

linkages or A-type carbon-oxygen. Figure 2 shows a comparison of proanthocyanidin dimers 

between a B-type linkage from a granny smith apple and an A-type linkage from red peanut skin 

(Figure 2) (Xu, et al., 2015). The main difference between type-A and type-B linkages as 

illustrated is the addition of an ether bond within the A-type linkages. Foods such as grapes and 

blueberries contain the widely appearing B-type linkages, while cranberries and plums contain 

A-type linkages (Xu, et al., 2015) (Howell, 2007) (Gu, et al., 2004). A-type linkages are 

associated with anti-adhesion activity (Howell, 2007) (Gu, et al., 2004). Cranberries have A-type 

proanthocyanidins and the anti-adhesion properties associated with A-type proanthocyanidins 

make cranberries good promotors of urinary tract health (Howell, 2007). Anti-adhesion 

properties make it so that harmful bacteria such as P-fimbriated uropathogenic E. coli cannot 

adhere within the body and cause infections (Howell, 2007). This occurs because the A-type 

proanthocyanidins bind to E. coli fimbrial tips which inhibits the bacteria from adhering (Hisano, 

et al., 2012). 
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 A 2003 study found that B-type proanthocyanidins from apple juice, green tea, and dark 

chocolate provided no anti-adhesion in vitro while A-type proanthocyanidins from cranberry 

juice cocktail showed in vitro anti-adhesion (Howell, et al., 2005). While A-type 

proanthocyanidins are more noted for their anti-adhesion properties in urinary tract health, a 

2010 study found that A-type proanthocyanidins are responsible for the antioxidant capacity of 

lychee seeds in vivo, and proanthocyanidin litchitannin A2 exhibited anti-CVB3 (coxsackie virus 

B3) activity in vitro, indicating that A-type proanthocyanidins are beneficial to health as an anti-

viral as well as for anti-adhesion (Xu, et al., 2010). 

 

 

Figure 1.1 Phenolic compounds found in fruits and vegetables (Gnanavinthan, 2013) 
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Figure 1.2 a) B-type epicatechin dimer from granny smith apples. b) A-type epicatechin 

dimer from red peanut skin (Xu et al., 2015) 

 

 Inherent Characteristics of Food Products 

 Moisture Content and Water Activity 

 Moisture content refers to the total amount of water in a food system whereas water 

activity (Aw) refers to the unbound or free water in a food system. Both moisture content and Aw 

are used in the food industry for product shelf life considerations as well as food safety 

parameters for the inhibition of microbial growth (Bell, 2007) (Chirife & Fontana Jr., 2007). 

Low moisture content and Aw can limit microbial growth and reduce chemical reactions in food 

products. Chemical reactions in foods such as oxidation are facilitated by water content in the 

products. Therefore, when the total amount of water (moisture content) in products is reduced, 

those reactions will be diminished (Bell, 2007). Aw is also an indicator because microbial 

reactions are hindered at low Aw and chemical reactions such as oxidation are related to Aw 

levels (Perera, 2005).  

To achieve a low Aw in products processing needs to take place to remove most of the 

water. Water removal can occur by methods such as freezing, concentration, thermal processing, 

or addition of ingredients such as salt or sugar to bind water. Considerations need to be taken 
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when selecting methods by which to lower Aw as there usually are consequences to the product 

that will result from the different techniques. While lowering the Aw by thermal processing will 

increase stability, shelf life, and limit microbial growth (Perera, 2005), it also can be harmful to a 

product with respect to browning, crystallization, and degradation of bioactive compounds. As 

previously stated, thermal processing degrades polyphenols which are the main bioactive 

components of fruits (Ioannone, et al., 2015) (Mendez-Lagunas, et al., 2017) (Beecher, 2003). 

On the other hand, products naturally low in Aw, such as grains, do not have the same issues of 

browning and bioactive compound degradation as products with high Aw as they do not need a 

thermal process to achieve low Aw.  

Polyphenols can act as antioxidants by protecting the food product by scavenging free 

radicals. In doing so the antioxidant species that scavenge the free radical are no longer active as 

an antioxidant species and therefore the polyphenol content of the food product is lowered. In 

dried apples it was found that enzymatic browning via PPO was heightened when Aw was 

between 0.32 and 0.56 (Lavelli & Caronni, 2010). The activity range for PPO is at an Aw 

between 0.2 and 0.8 (Lavelli & Caronni, 2010). Less than 0.2 Aw there is little water to react with 

and greater than 0.8 Aw there is so much water that the active components are too diluted 

(Brennan, 1994). PPO has a direct impact on the color changes occurring in a product and the 

degradation of polyphenols such as anthocyanins, which results in formation of yellow, brown, 

and black colors developing over time (Bermejo-Prada & Otero, 2016).  

 

 Texture 

Aside from the microbiological and chemical reactions that may occur in food products that 

make food manufacturers provide limitations and ranges for moisture content, there is a 
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consumer aspect that is also important. Consumers want food products that meet not only their 

flavor expectations but also maintain their textural expectations. In 2012, 27% of the top 

launched foods and beverages in the United States carried some sort of texture claim, such as 

creamy in reference to chocolate characteristics, or crunch in reference to the deep ridges in 

potato chips, making texture an important characteristic for consumers (Sloan, 2013). Dried fruit 

is expected to have a low moisture content and Aw because, as the name implies, it has been 

dried. If a consumer is presented with a dried apple slice and it is soggy, the textural expectation 

is not met and there is a disconnect with what the product should be and what it actually is. For 

supplements and other nutraceuticals there is no textural expectation or if there is it may not be 

inherently positive (a gummy chew may not need to taste good if it is giving the consumer a 

concentrated health benefit). When foods are outside of that realm not only is it an indicator on 

an analytical level that something is wrong with the product, but consumer perception of the food 

product will change to something that is off-putting or unpleasant.  

 

 Color 

Color is an important aspect of food products, as it contributes to attracting the consumer to 

purchase the product. This color attraction is true especially with fresh fruits, where color can be 

an indicator of the quality of the product, such as how a yellow banana indicates good quality 

because that is the color of ripeness, while a brown or black banana indicates that it has been 

ripened for too long and is no longer of good quality. In processed foods, however, this 

association with color is different. Raisins for example do not look as vibrant or full of color as 

grapes because they have been processed and dried which will result in color change that 

naturally would be negative. While not all indicators are this obvious in nature, consumers eat 
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with their eyes so anything that is visually unappealing or out of the ordinary will decrease the 

consumers appetite for that food product (Marshall, 2017). Fruits such as blueberries and 

strawberries can undergo enzymatic browning which can deteriorate the color of fruits after food 

processing (Siddiq & Dolan, 2017) (Bermejo-Prada & Otero, 2016). PPO is a naturally occurring 

enzyme in plants and causes browning in the presence of oxygen when the PPO reacts with the 

oxygen causing phenols to convert to melanin (a brown pigment) (Siddiq & Dolan, 2017) (Fang, 

et al., 2007) (Institute of Food Science and Technology, 2017). Strawberries get their red color 

from anthocyanins, and PPO can degrade anthocyanins to brown, black, or yellow colors 

(Bermejo-Prada & Otero, 2016). Processing such as juicing and drying as well as storage 

conditions can induce PPO reactions causing most color changes and anthocyanin 

polymerization reactions (Siddiq & Dolan, 2017) (Bermejo-Prada & Otero, 2016) (Jaiswal, et al., 

2010). In dried pomegranate arils it was found that oven drying (90oC for 90 minutes, 70oC for 2 

hours, and 50oC for 9 hours) versus sun drying (dried in trays over several months in a 

greenhouse with temperatures between 32-42oC until 76% moisture content was reached) 

decreased total anthocyanins by 61% and 83%, respectively (Jaiswal, et al., 2010). When PPO 

activity was evaluated in these same conditions, a 68% and 45% reduction respectively was seen, 

indicating that oven drying was less destructive to anthocyanins and inhibited PPO activity 

significantly more than sun drying (Jaiswal, et al., 2010). This less destructive process of oven 

drying could be due to the longer process of sun-drying (a several month-loing process versus 

many hours) and that it has been shown that processing above 80oC inhibits PPO reactions – 

which would be seen in processing such as oven-drying but would not be seen in sun drying 

(Severini, et al., 2003).  
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While PPO and its effects on anthocyanins can be quantified, consumers only perceive a 

change in color. In the food industry, the L*a*b* color matrix is used to systematically assess the 

color of a product as the consumer would see it (L*representing black/white color scale, a* 

representing green/red color scale, and b* representing blue/yellow color scale) (Gordillo, et al., 

2012). This color matrix can assess change in color over a period of time or in comparison to 

another product, and this overall change in color is referred to as DE (Chong, et al., 2013). This 

matrix provides more objective data about browning as it relates to consumers perception of 

products, not just anthocyanins and PPO, although studies have been conducted regarding the 

L*a*b* color and copigmentation models of anthocyanins to really overlay the chemical and 

visual components of foods (Gordillo, et al., 2012).  

 

 Cranberries (Vaccinium macrocarpon) 

 Information 

Cranberries (Vaccinium macrocarpon) are a North American fruit that is red in color and 

astringent in taste. Of the cranberries sold, 95% are in the forms of juices, dried cranberries 

(snack or baking ingredient), sauces, or cranberry supplements (gummy supplement or spray-

dried powder pill), and only 5% are sold as fresh fruit (Grace, et al., 2012). Millennials are 

seeking healthier food, either on their own accord or through government persuasion like 

MyPlate initiatives. Fruits with antioxidant properties, like cranberries, have been called “super 

fruits” (Schaich, 2012), making them a popular ingredient in better-for-you food options. The 

most common association with cranberries is their role in the maintenance and health of the 

urinary tract (Howell, 2007). This association is because cranberries are rich in polyphenols, 

specifically A-type proanthocyanidins which inhibit the adhesion of bacterial cells in the urinary 
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tract thus aiding in urinary tract health (Krueger, et al., 2013). While many fruits have 

proanthocyanidins, the A-type proanthocyanidins that cranberries are uniquely rich in help 

urinary tract health.  

While urinary tract health is the cranberry’s most well-known health association, cranberries 

are rich in other compounds that are good for the body and maintaining overall health, such as 

bioactive polyphenols like anthocyanins. The strength and combination of these compounds in 

cranberries are suspected to aid in oral health (Feghali, et al., 2012), provide chemoprevention 

(Caillet, et al., 2012), and aid in the prevention of cardiovascular diseases (Ruel, et al., 2005). 

There is research quantifying and looking at the polyphenols in fresh cranberries and cranberry 

juice drinks (Chen & Martynenko, 2016) (Cote, et al., 2011) (Grace, et al., 2012), but many do 

not cover the stability of these compounds over time, and there is no research looking at these 

compounds in products such as sweetened dried cranberries, apart from spray-dried powders or 

freeze-dried cranberries (Leusink, et al., 2010) (Grace, et al., 2012) (Michalska, et al., 2018). 

While cranberry juice drinks are used as refreshments and beverages, sweetened dried 

cranberries are used for baking or as a snack, and freeze-dried or spray-dried cranberry powders 

are a popular option for supplements. The differentiation on the impact of processing on 

polyphenol stability between the dried cranberry process and the juice making process is an 

avenue of research that should be further explored. However, there is a lack of research on 

polyphenols in sweetened dried cranberries and most of the literature on cranberry polyphenols 

and processing is focused on juice fractionation and processing. 
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 Conclusions 

Consumer trends are moving towards bioactive foods, less sugar, and more convenience. 

The high quantity of polyphenols in fruits such as cranberries make them a good option for 

millennial consumers, however most research is focused on cranberries as they are used in juice 

applications. While this form is the most abundant form of cranberries currently, understanding 

the ability of other cranberry forms to deliver bioactive benefits and viable cranberry 

polyphenols need to be evaluated as these forms deliver on reduced sugar and more convenience 

compared to cranberry juice drinks. 
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Chapter 2 - Polyphenol Stability and Antioxidant Capacity of 

Sweetened Dried Cranberries 

 

 Abstract 

Cranberries are fruits containing phenolic compounds such as anthocyanins and 

proanthocyanidins. While there is research showing the phenolic composition of cranberry juices 

and how processing and storage may affect these compounds there is no research on how product 

matrix and processing affect phenolic compounds in dried cranberries over time. The objectives 

of this research were to 1) assess the polyphenol content and inherent characteristics of various 

sweetened dried cranberries, 2) determine the stability of those components and characteristics 

over time, and 3) assess any relationship between product matrix and polyphenol stability. 

This research assessed 5 different commercially available sweetened dried cranberry 

matrices: 1) sliced soluble corn fiber, glycerin, sucrose, and sucralose infused, 2) sliced apple 

juice infused, 3) whole apple juice infused, 4) sliced sucrose infused, and 5) whole sucrose 

infused (3 replicates/treatment). Anthocyanins (HPLC), proanthocyanidins (BL-DMAC and 

cranberry standard DMAC assay), total phenolic content (Folin-Ciocalteu), antioxidant capacity 

(DPPH), water activity, moisture content, color, and texture were evaluated over 12 months at 

21°C. Data were analyzed by ANOVA (p<0.05). 

The results demonstrate that sweetened dried cranberry polyphenols are unstable and 

decline significantly over time regardless of product matrix for anthocyanins, proanthocyanidins, 

and total phenolic content. As well, antioxidant capacity is negligible compared to fresh 

cranberries. More research is needed to determine optimal processing parameters for sweetened 



   

 

45 

dried cranberries to maintain polyphenol stability and antioxidant capacity as healthier food 

options for consumers. 

 

 Introduction 

Consumer views on foods have shifted to becoming more health forward and health 

conscious (Kell, 2016), especially in the United States where chronic diseases such as obesity, 

diabetes, and heart disease are highly prevalent (Ogden, et al., 2015) (Centers for Disease 

Control and Prevention, 2011) (Centers for Disease Control and Prevention, 2015). Some of 

these chronic diseases are a result of under consumption of fruits and vegetables (Centers for 

Disease Control and Prevention, 2017), with 40% of adults in 2015 admitting to eating fruits and 

vegetables less than once a day (Centers for Disease Control and Prevention, 2017). These 

chronic diseases in the United States cause consumers and government bodies to push for 

healthier food options and move away from heavily processed food products.  

One governmental guidance issued was the Center for Nutrition Policy and Promotion 

(CNPP) created by the USDA in 1994, which aimed to promote a healthy life-style for 

Americans through diet and nutrition programs (United States Department of Agriculture, 2018). 

The CNPP started initiatives such as MyPlate aimed to keep obesity and diabetes percentages 

low in the United States.  The MyPlate food guidance system aimed to develop healthy dietary 

segments by balancing meals with fruits, vegetables, grains, protein, and dairy. The MyPlate 

initiative recommends that half of a plate should consist of whole fruits and a variety of 

vegetables (United States Department of Agriculture, 2018). 

Even though healthy initiatives such as MyPlate were pushed by the government, obesity and 

diabetes did not decline as had been the intention of the CNPP (Center for Disease Control 
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Division of Diabetes Translation, 2018). Healthy options such as fruits are less convenient for 

consumers than heavily processed, prepackaged foods. Fruit based food manufacturers have not 

innovated around convenience the same way that vegetable manufactures have. More options are 

available for prepackaged fresh vegetable options to improve convenience for the consumer, but 

there are rarely any prepackaged fruits that would be convenient for a consumer. Part of this may 

be that there is more involved in consuming fresh fruit, and that fresh fruit tends to be more 

susceptible to chemical reactions than vegetables. 

While convenient fresh fruit options may not be avaiable for consumers, dried fruits can 

provide this convenience while still maintaining the nutrition consumers seek. The dried fruit 

category is expected to increase at least 5.7% from 2018-2026 due to the consumer need for 

convenience and healthy food options (Transparency Market Research, 2018). The downside to 

dried fruits, however, is that when the fruits are dried to remove water, other ingredients are 

generally added like sugar to increase sweetness in fruits like pineapples and cranberries, which 

can be seen as negative. 

Fruits are rich in bioactive compounds such as flavonoids in berries and resveratrol in 

grapes (Kris-Etherton, et al., 2002). Cranberries (Vaccinium macrocarpon) are fruits composed 

of bioactive compounds such as anthocyanins and proanthocyanidins, which, in conjunction with 

other flavan-3-ols, acids and flavonols, make up the overall phenolic content (Blumberg, et al., 

2013). Anthocyanins are a class of flavonoid which give pigmentation to fruits and vegetables, 

usually in the form of reds, blues, purples, and blacks (Steyn, 2009) (Figure 2.1). 

Proanthocyanidins are a part of the flavonoid group also known as condensed tannins. They are 

polymers of flavan-3-ols and are commonly consumed parts of the human diet (Gnanavinthan, 

2013) (Santos-Buelga & Scalbert, 2000).  
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The USDA database states that raw cranberries contain 60.42 mg/100 g combined 

cyanidin and peonidin anthocyanins (Haytowitz, et al., 2018), 30.74 mg/100 g total polyphenols 

(Haytowitz, et al., 2018), and 354.9 mg/100 g proanthocyanidins (Bhagwat & Haytowitz, 2015). 

While raw cranberries are rich in bioactive compounds and possess health benefits, consumers 

do not generally eat cranberries in the raw form, but instead consume them primarily as juices, 

sweetened dried cranberries (snack or baking ingredient), sauces, or cranberry supplements 

(Grace, et al., 2012). During production of these products, the cranberries are subjected to high 

heat which can cause degradation of bioactive compounds. Thermal processing of blueberry 

purees and blueberry juice (clarified by centrifugation at 6000 x g for 10 min) has shown that 

processing decreases anthocyanin content (Cesa, et al., 2017) (Brownmiller, et al., 2008). In 

cranberry juice processing, blanching of the fruit resulted in significant reduction of total 

anthocyanin content (White, et al., 2011). Three different processing conditions were looked at 

prior to the addition of pectinase and juice clarification, one in which ground fruit was blanched 

at 95oC for 3 min, one in which ground fruit was unblanched, and one in which whole fruit was 

blanched at 95oC for 3 min, and it was found that anthocyanins were retained at 39%, 53.1%, and 

42.4% respectively (compared to the frozen initial fruit) signifying that thermal processing of 

any kind leave anthocyanins subject to degradation (White, et al., 2011). While there is research 

which shows processing effects on cranberry juice polyphenols, there is little available 

information on processing effects in relation to sweetened dried cranberries. 

While there is evidence that raw cranberries possess bioactive compounds, research is 

needed to evaluate how processing affects the bioactive compounds that are abundant in raw 

cranberries. The objectives of this research were to 1) assess the polyphenol content and inherent 

characteristics of various sweetened dried cranberries, 2) determine the stability of those 
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components and characteristics over time, and 3) assess any relationship between product matrix 

and polyphenol stability. 

 

 

Figure 2.1 Structure of anthocyanidins 

 

 

 Materials and Methods 

This study evaluated 2 structures of sweetened dried cranberries across 3 ingredient 

matrices (Table 2.1). Commercially made 11.34 kg boxes of each treatment were obtained from 

Ocean Spray Cranberries (Lakeville-Middleboro, MA) within 3 weeks of production from the 

same plant and repacked into 0.34 oz heat sealed bags with oxygen barrier. Treatments were 

stored for 360 days at 21oC in a sealed box to reduce light exposure. Analytical measurements 

were taken on the treatments initially (t=0), then weekly for the first month, and then monthly 

until 360 days were obtained, except for antioxidant activity which was assessed at 5 time points 
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due to low antioxidant activity. Analyses were terminated prior to 360 days if two consecutive 

time points recorded no quantifiable polyphenols. At each time point 3 replicates were analyzed 

for each treatment. Reagents were analytical grade and were purchased from Fisher Scientific 

(Waltham, MA) unless otherwise noted.  

 

Table 2.1 Sweetened Dried Cranberries Sample Overview 

TREATMENT STRUCTURE INGREDIENTS 

SAJ Sliced Cranberries, Apple Juice Concentrate 

WAJ Whole Cranberries, Apple Juice Concentrate 

SCFG Sliced Cranberries, Soluble Corn Fiber, Sugar, 

Glycerin, Sucralose 

SSDC Sliced Cranberries, Sugar 

WSDC Whole Cranberries, Sugar 

  

Proanthocyanidin Content 

 Proanthocyanidin Extraction 

Replicates were introduced to liquid nitrogen and ground into a fine powder. The 

powdered sample (5 g) was placed into a centrifuge tube along with 15 mL extraction solution 

(75% acetone, 24.5% deionized water, 0.5% acetic acid (v/v)). The test tube was vortexed for 10 

s, sonicated in a Branson ultrasonic water bath (Danbury, CT) for 15 min, and then centrifuged at 

7954 x g for 20 min. The supernatant was removed from the pellet and placed into a 50 mL 

Falcon tube. The extraction was repeated two more times with the extraction solution added to 

the pellet each time and the supernatants combined. After the final extraction each replicate was 

placed in a glass tube in a Buchi Syncore extraction device (Buchi AG, Flawil, Switzerland) and 
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placed under vacuum at 45oC for 5 h. Vacuum settings were based on a five step gradient where 

1) 450 mbar – 350 mbar for 10 min 2) 350 mbar – 300 mbar for 5 min 3) 300 mbar – 265 mbar 

for 105 min 4) 265 mbar – 125 mbar for 80 min 5) 125 mbar – 25 mbar for 100 min. A vacuum 

pump was connected to a recirculating chiller set to -10oC.  

 

 Proanthocyanidin Content – BL-DMAC 

Treatments were assessed for proanthocyanidin content using an A2 dimer procyanidin 

standard following a modified method of Prior et al (2010). For proanthocyanidin analysis a 

Precision XS with 96 well plate (Bio-Tek Instruments, Inc., Winooski, VT) was used for serial 

dilutions. A2 dimer standard was made by taking 5 mg of procyanidin in a 50 mL volumetric 

flask and bringing up to volume with ethanol. Using a 96-well plate, 140 µL of blank (80% 

ethanol in deionized water), A2 dimer standard, and the replicate were loaded onto the first 

column. Precision XS performed serial dilutions by taking 70 µL of blank solution and filling all 

columns (7 in total). Taken from each well was 70 µL and then mixed with the next well in the 

series, with the last 70 µL from the final column being discarded so that a final working volume 

of 70 µL was in each cell. 4-dimethylaminocinnamaldehyde (DMAC) (Sigma-Aldrich, St. Louis, 

MO) (210 µL) (0.1 DMAC powder in 100 mL 75% ethanol, 12.5% HCl, and 12.5% deionized 

water (v/v)). The well plate was loaded into Synergy 2 microplate reader with GEN5 software 

(Bio-Tek Instruments, Inc., Winooski, VT) and analyzed at 25oC and 640 nm every min for 30 

min. A calibration curve was generated from the A2 standard used. The concentration of 

proanthocyanidin in each replicate was determined using a calibration curve (A2 dimer standard 

absorbance versus A2 dimer concentration) regression line and the below equation where c is the 

concentration of proanthocyanidin in the extraction (g/L), d is the dilution factor, v is the volume 
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of the extraction fluid after vacuum (mL), and w is the weight of the replicate used for extraction 

(g). 

𝑃𝐴𝐶 =
𝑐 𝑥 𝑑 𝑥 𝑣

(1000 𝑥 𝑤)
 

 

 Proanthocyanidin Content – Cranberry Standard Assay 

Treatments were assessed for proanthocyanidin content using a modified method of 

Krueger et. al (2016). Bio-Rad Poly-prep® columns (Hercules, CA) (2 per replicate) were set up 

in column racks and pre-hydrated lipophilic Sephadex® LH20 (22%) (Sigma-Aldrich, St. Louis, 

MO) was added to the column to a volume of 1.2 mL. Deionized water was then added to the 

column to 7.5 mL. Once the column was drained, 1 g of replicate was added to the column. 

Deionized water was then added to the top of the column. Once the column was drained, 10 mL 

25% reagent alcohol in deionized water was added to the column and allowed to drain. The 

columns were then transferred to 15 mL Falcon tubes and washed twice with 2.5 mL 70% 

acetone in deionized water. The liquid collected in the Falcon tube was then vortexed for 5 s. 

The liquid (1 mL) was added to glass test tubes by auto-pipette using 70% acetone as the blank. 

DMAC solution (3 mL) (0.1% DMAC) (Sigma-Aldrich, St. Louis, MO) in HCl:Methanol 

(30:70) was transferred by autopipette to a test tube and vortexed for 5 s. After 3 min the liquid 

was vortexed for 3 s. After 5 min the absorbance of the sample was read spectrophotometrically 

(640 nm).  Proanthocyanidin content was calculated using the below equation where ABS is the 

absorbance, RF is the response factor, w is the weight of the replicate loaded onto the column, d 

is the dilution factor if used (Replicate Weight/Water + Replicate Weight), and %S is the percent 

solids (100-Moisture Content). Proanthocyanidin content was then converted to mg/g. Replicates 
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were diluted prior to analysis so that an absorbance reading between 0.2 and 0.8 was obtained 

when read spectrophotometrically. 

𝑢𝑔 𝑃𝐴𝐶

𝑔 𝐷𝑊𝐵
=

𝐴𝐵𝑆 𝑥 5
𝑅𝐹 𝑥 𝑤 𝑥 𝑑 𝑥 %𝑆

0.95
 

  

Anthocyanin Content 

An Agilent 1260 HPLC (Agilent Technologies, Santa Clara, CA) was used for HPLC 

analysis of anthocyanins (Brown and Shipley 2011). Replicates were added to liquid nitrogen 

and ground until a fine powder was obtained. The powder (1.5 g) was added to 20 mL of 2% 

HCl:Methanol (2:98). The solution was sonicated in a Branson ultrasonic water bath (Danbury, 

CT) for 15 min, shaken for 30 min, and centrifuged at 2324 x g for 5 min. The supernatant was 

removed from the pellet and used in HPLC analysis.  

The HPLC was run with 2 mobile phases (v/v) consisting of A) deionized water and o-

phosphoric acid (99.5:0.5) and B) deionized water, acetonitrile, acetic acid, and o-phosphoric 

acid (50:48.5:1.0:0.5). Each replicate was analyzed via HPLC for 35 min with a 10 µL injection 

volume, 1.0 mL/min flow rate, and the absorbance was read at 520 nm and 25oC, using a Water 

X-Select HSS T3 5µm, 4.6 x 150 mm reversed-phase C18 column. Replicates were analyzed for 

cyanidin-3-galactoside (cy-3-gal), cyanidin-3-glucoside (cy-3-glu), cyanidin-3-arabinoside (cy-

3-arab), peonidin-3-galactoside (peo-3-gal), peonidin-3-glucoside (peo-3-glu), and peonidin-3-

arabinoside (peo-3-arab). Standards for cy-3-gal, cy-3-glu, cy-3-arab, and peo-3-glu were 

obtained via Phytolab (Vestenbergsgreuth, Germany). Peo-3-glu and peo-3-arab were reported as 

peo-3-glu equivalents due to limited commercial manufacturing of the standards and the 

retention times were based on those validated by Brown & Shipley (2011). The minimum 
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detection limit for cyanidins was 0.02 µg/mL and for peonidins 0.01 µg/mL. Flow rate was kept 

consistent throughout the run (1.0 mL/min) and ratio of mobile phase A to mobile phase B was 

decreased for the first 32 min and then increased to the initial settings for the remaining 3 min. 

The anthocyanin content of each sample was calculated using Agilent Open lab software 

(Agilent Technologies, Santa Clara, CA) based on the extraction dilution and reported as ppm. 

 

Total Phenolic Content 

Total phenolic content was measured using the Folin-Ciocalteu colorimetric assay 

(Singleton & Rossi, 1965) (Asami, et al., 2003). Each replicate (10 g) was placed in a Warren 

blender with 90 g deionized water and blended on the low setting for 3 min. Each replicate was 

analyzed in duplicate and deionized water was used as the blank. Diluted replicates and blank 

(100 µL) were pipetted into a glass test tube. Deionized water (3.9 mL) was added to each test 

tube and vortexed for 5 s. Folin-Ciocalteu reagent (5 mL 2N Folin-Ciocalteu Phenol Reagent in 

50 mL deionized water) (250 µL) was added to the test tube and vortexed for 5 s. Sodium 

carbonate solution (7.5% sodium carbonate anhydrous [Sigma-Aldrich, St. Louis, MO] in 

deionized water) (750 µL) was added to each test tube and vortexed for 5 s. The replicates were 

stored in the dark for 30 min and absorbance was read spectrophotometrically (765 nm). Gallic 

acid (Sigma-Aldrich, St. Loius, MO) was used to create a standard calibration curve where 0.5% 

gallic acid solution was prepared and diluted to 0, 10, 50, 100, 150, and 200 mg/L of gallic acid 

and the standard curve was made by plotting absorbance versus concentration. Total phenolic 

content of the replicates was determined by using the gallic acid calibration curve, dilution factor 

of the replicate, and the moisture content of the replicate to report total phenolic content as mg/g 

gallic acid equivalent (GAE). 
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Antioxidant Activity 

Antioxidant activity was assessed using a reaction with 2,2’-Diphenyl-1-Picrylhydrazyl 

(DPPH) (AOAC 2012.04). Each replicate was introduced to liquid nitrogen and ground in a to a 

fine powder. The powder (15 g) was added to a 100 mL volumetric flask with 50 mL 95% 

Ethanol. The solution was shaken on a shaker table for 2 h then filtered through Whatman #4 

filter paper. Solutions were diluted to 0.1, 0.5, 1.0, 2.0, 5.0, and 7.0 g/mL in 95% ethanol and 

vortexed. Each solution (0.1 mL) was placed in a glass test tube with 0.1 mL 95% ethanol as a 

control. DPPH (Sigma-Aldrich, St. Louis, MO) solution (0.0394 g DPPH in 1000 mL methanol) 

was added to the test tube (2.9 mL) and vortexed for 5 s. Dilutions were stored in the dark for 30 

min and read spectrophotometrically (517 nm). Deionized water was used as the blank. 

Percentage radical scavenging activity was calculated with the below equation. 

 

𝐷𝑃𝑃𝐻 𝑆𝑐𝑎𝑣𝑒𝑛𝑔𝑖𝑛𝑔 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (%) =
𝐴𝐵𝑆(𝑐𝑜𝑛𝑡𝑟𝑜𝑙) − 𝐴𝐵𝑆(𝑠𝑎𝑚𝑝𝑙𝑒)

𝐴𝐵𝑆(𝑐𝑜𝑛𝑡𝑟𝑜𝑙)
 𝑥 100 

 

The concentration of antioxidant required to inhibit 50% of the oxidation reaction (IC50) 

was calculated by plotting % DPPH scavenging activity against the concentration and using the 

logarithmic trendline. Equations for these calculations are below where g replicate (g) is the 

weight of the fine powder used in the extraction and mg dilution (mg) is the weight of the serial 

dilutions. For the IC50 calculation a is the slope of the natural logarithmic tread line based on the 

plot of % scavenging versus concentration, and b is the y-intercept of the natural logarithmic 

tread line based on the plot of % scavenging versus concentration. 
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𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛
𝑚𝑔

𝑚𝐿
= ( 

𝑔 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑒

50 𝑚𝐿
 𝑥 1000) 𝑥 (𝑚𝑔 𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛) 

𝐼𝐶50: 50 = 𝑎𝑙𝑛(𝑥) + 𝑏 

 

Water Activity and Moisture Content 

 Water Activity 

Water activity (Aw) was measured using a calibrated Aqua Lab 4TE (Meter Group Inc., 

Pullman, WA). Each replicate was measured in triplicate. 

 

 Moisture Content 

Moisture content was assessed via Karl-Fischer titration using a calibrated Metrohm KF 

901 Titrando auto-titrator (Metrohm, Herisau, Switzerland). Each replicate (5 g) was added to a 

stainless-steel homogenization flask and 100 g Karl-Fischer Grade low water methanol was 

added. The replicate was then homogenized for 5 min using an Omni Mixer (Omni International, 

Kennesaw, GA) set to speed 4. After homogenization, the flask was disconnected and covered 

with parafilm. The liquid sat undisturbed for 5 min before being analyzed for moisture content. 

Each replicate was then taken into a 3 mL syringe and was run through the auto-titrator. Each 

replicate was run in triplicate. 

 

Colorimetric and Texture Analyses 

 Color 

Color was analyzed using a calibrated handheld Konica Minolta CR-410 Colorimeter 

(Tokyo, Japan). Each replicate was read 5 times by the handheld colorimeter, which was rotated 
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90o between readings and the average of the readings was reported for L*, a*, and b* values 

which were used to calculate ΔE according to the below calculation. Each replicate was read in 

triplicate. 

∆𝐸 = √(𝐿 ∗1− 𝐿 ∗2
2) + (𝑎 ∗1− 𝑎 ∗2)2 + (𝑏 ∗1− 𝑏 ∗2)2 

 

 Texture 

Texture was analyzed using a calibrated TA.XT.Plus from Texture Technologies 

Corporation (Hamilton, MA). The TA.XT.Plus was configured with a TA-30 cylinder probe (3” 

diameter aluminum cylinder, 10 mm height), 0.50 mm/s pre-test speed, 0.5 mm/s test speed, 10 

mm/s post-test speed, 500 g applied force, 10 mm return distance, and 10 s contact time. Each 

replicate (25 g) was loaded onto the rounded base plate and the test was run. Adhesion force (g) 

was recorded by the texture analysis software (Exponent 32, version 6, Texture Technologies 

Cop, Scarsdale, NY). 

Statistical Analyses 

Data were analyzed using Minitab 16 (State College, PA) for analysis of variance 

(ANOVA) for all treatments. Shapiro-Wilk test for normality was assessed. Tukey’s Honest 

Significant Difference Test (HSD) was used for post-hoc analyses. Prior to ANOVA significance 

level of p<0.05 was chosen. 
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 Results and Discussion 

Proanthocyanidin Content 

All treatments had a significant (p<0.05) decrease in proanthocyanidin content by both 

BL-DMAC and DMAC with cranberry standard analyses indicating that proanthocyanidins are 

unstable in sweetened dried cranberries over time regardless of product matrix (Table 2.3) (Table 

2.4) (Figure 2.2) (Figure 2.3). In all treatments, cranberry standard proanthocyanidin values were 

significantly higher and degraded less than BL-DMAC values (both initially and finally). While 

both DMAC assays show the same pattern of degradation across treatments, BL-DMAC assay 

values are significantly lower in all treatments than those seen using cranberry standard DMAC 

assay. Other studies in which both assays were used (Martin, et al., 2015) (Krueger, et al., 2016) 

showed similar results in which BL-DMAC assay yielded proanthocyanidin values significantly 

lower than cranberry standard DMAC. Cause for the lower proanthocyanidin values via BL-

DMAC was hypothesized to be because the cranberry standard assay utilized a standard derived 

from the cranberry fruit as opposed to BL-DMAC which uses an A2 dimer standard. Cranberries 

have proanthocyanidins that are more complex than those seen with procyanidin A2 dimer, so 

using A2 dimer standard leads to underestimation of proanthocyanidin content, as cranberries not 

only contain simple dimer proanthocyanidins, but also more complex oligomers that would not 

be quantified using A2 dimer standard (Krueger, et al., 2016). Despite BL-DMAC being the 

industry standard for proanthocyanidin analysis, products containing complex oligomer 

proanthocyanidins such as cranberry should be analyzed using cranberry standard DMAC assay 

so that all proanthocyanidins in the sample are quantified. 

When analyzed using BL-DMAC, proanthocyanidin content in sweetened dried 

cranberries was comparable to values seen by Blumberg et., al (2013). SCFG had the 
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significantly highest initial proanthocyanidin content (1.04 mg/g) while WAJ had significantly 

the lowest (0.30 mg/g). Sliced treatments resulted in significantly higher proanthocyanidin 

content (initial and final) than whole treatments. Slicing of the fruit prior to thermal processing 

allows for higher infusion rate due to larger infusion surface area which introduces more 

polyphenols. SCFG had significantly higher initial and final proanthocyanidin content compared 

to other sliced treatments indicating that bulking agents in SCFG such as soluble corn fiber and 

glycerin may have insulating effects compared to sucrose and apple juice and thus reduce 

degradation of polyphenols during processing. A study on sour cherry puree found that natural 

sweeteners such as palm sugar, erythritol, xylitol, and other agents such as inulin, inhibited 

polyphenol degradation, which could be the case in the SCFG treatment (Nowicka & Wojdylo, 

2016). Overall degradation of proanthocyanidin (88.3% in SAJ, 87.8% in WAJ, 92.8% in SSDC, 

100% in WSDC, and 87.8% in SCFG) indicate that proanthocyanidins are extremely unstable in 

sweetened dried cranberries over time. The most significant decrease in proanthocyanidins 

occurred during the first 90 days (57.1% decrease in SAJ, 56.2% decrease in WAJ, 24.9% 

decrease in SSDC, 91.4% decrease in WSDC, and 76.9% decrease in SCFG) possibly due to 

oxidation reactions and polymerization of proanthocyanidins which would be steepest early on in 

shelf life when higher proanthocyanidin content is viable.  

When analyzed using cranberry standard DMAC assay, SCFG had the significantly 

highest initial proanthocyanidin (3.74 mg/g) while WSDC had the significantly lowest (1.10 

mg/g). As previously discussed, slicing resulted in significantly higher proanthocyanidin content 

(initial and final) than whole treatments. As previously discussed, SCFG had the significantly 

highest initial and final proanthocyanidin content due to insulation effects during processing 

from the bulking agents (soluble corn fiber and glycerin) compared to other sliced treatments 
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(Nowicka & Wojdylo, 2016). Overall degradation of proanthocyanidins using cranberry standard 

DMAC assay (67.8% in SAJ, 74.5% in WAJ, 82.3% in SSDC, 91.6% in WSDC, and 70.2% in 

SCFG) indicate that proanthocyanidins are extremely unstable in sweetened dried cranberries 

over time. 

Despite higher proanthocyanidin values using cranberry standard, compared to raw 

cranberries (3.59 mg/g proanthocyanidins via BL-DMAC) none of the treatments had a final 

proanthocyanidin content comparable to raw cranberries, and therefore do not contribute a 

significant amount of proanthocyanidins (Bhagwat & Haytowitz, 2015). Treatments with the 

largest initial proanthocyanidin content (despite analytical method used to determine content) 

had the highest rates of degradation during storage (Table 2.2). The continued degradation of 

proanthocyanidins during storage indicates that while proanthocyanidins do degrade during 

processing, oxidation reactions and polymerization of proanthocyanidins during storage leads to 

further degradation, with increases in rates of degradation dependent on content of 

proanthocyanidins in the food.
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Table 2.2 Rate of change of sweetened dried cranberries 

TREATMENT SLICED APPLE JUICE 

INFUSED (SAJ) 

 

WHOLE APPLE JUICE 

INFUSED (WAJ) 

 

SLICED SUCROSE 

INFUSED (SSDC) 

 

WHOLE SUCROSE 

INFUSED (WSDC) 

 

SLICED SOLUBLE 

CORN FIBER, 

GLYCERIN, 

SUCROSE, AND 

SUCRALOSE INFUSED 

(SCFG) 

Proanthocyanidin Content 

(BL-DMAC Assay) 

-0.0014ab ± 0.0002 

 

-0.0007a ± 0.0002 

 

-0.0016b ± 0.0004 

 

-0.0023c ± 0.0002 

 

-0.0025c ± 0.0003 

 

Proanthocyanidin Content 

(Cranberry Standard 

Assay) 

-0.0036ab ± 0.0007 

 

-0.0029a ± 0.0004 -0.0058bc ± 0.0003 -0.0028a ± 0.0000 -0.0073c ± 0.0018 

 

Anthocyanin Content -0.0590c ± 0.0012 -0.0345b ± 0.0010 -0.1089d ± 0.0041 -0.0087a ± 0.0003 -0.1977e ± 0.0080 

Total Phenolic Content -0.0052b ± 0.0002 -0.0093d ± 0.0012 -0.0010a ± 0.0002 -0.0008a ± 0.0007 -0.0072c ± 0.0000 

Aw -0.0000b ± 0.0000 -0.0001c ± 0.0000 0.0001a ± 0.0000 0.0001a ± 0.0000 -0.0000b ± 0.0000 

Moisture Content -0.0044b ± 0.0014 0.0052b ± 0.0013 0.0009ab ± 0.0048 0.0063a ± 0.0040 -0.0061b ± 0.0024 

 

DE 0.0094bc ± 0.0009 0.0119b ± 0.0016 0.0067c ± 0.0012 0.0092c ± 0.0019 0.0188a ± 0.0003 

Adhesion Force 0.0423a ± 0.1240 -0.0091a ± 0.1101 0.0608a ± 0.0287 0.0985a ± 0.0372 -0.2986b ± 0.0925 

Each value is the average ± standard deviation (n=3). Treatments were stored at 21oC in individually sealed bags in boxes to limit light exposure for 360 days. 

Values within rows not sharing a lowercase letter are significantly (p<0.05) different. Treatments were analyzed by ANOVA (Tukey’s HSD).  
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Table 2.3 Proanthocyanidin content (BL-DMAC Assay) of sweetened dried cranberries over time 

TIME (DAYS) SLICED APPLE JUICE 

INFUSED (SAJ) 

 

WHOLE APPLE JUICE 

INFUSED (WAJ) 

 

SLICED SUCROSE 

INFUSED (SSDC) 

 

WHOLE SUCROSE 

INFUSED (WSDC) 

 

SLICED SOLUBLE 

CORN FIBER, 

GLYCERIN, 

SUCROSE, AND 

SUCRALOSE INFUSED 

(SCFG) 

0 0.56aB ± 0.07 0.30bC ± 0.06 0.61cB ± 0.12 0.84aA ± 0.08 1.04aA ± 0.12 

7 0.48aC ± 0.06 0.41aC ± 0.07 0.89bA ± 0.03 0.62bB ± 0.04 0.59bB ± 0.08 

14 0.51aB ± 0.08 0.29bC ± 0.04 0.90bA ± 0.03 0.53bB ± 0.05 0.53bcB ± 0.05 

21 0.44abB ± 0.12 0.25bcC ± 0.01 1.19aA ± 0.09 0.33cC ± 0.04 0.55bcB ± 0.04 

28 0.41abB ± 0.10 0.26bcC ± 0.04 0.96bA ± 0.04 0.22dC ± 0.03 0.44cdB ± 0.01 

60 0.31bcB ± 0.05 0.18cdC ± 0.03 0.50cdA ± 0.05 0.11eC ± 0.03 0.31deB ± 0.01 

90 0.24cdB ± 0.03 0.13deC ± 0.02 0.44deA ± 0.04 0.07efC ± 0.02 0.24efB ± 0.02 

120 0.28bcdA ± 0.03 0.14deB ± 0.02 0.33efA ± 0.03 0.03efC ± 0.01 0.27eA ± 0.02 

150 0.24cdA ± 0.02 0.09defB ± 0.01 0.22fgA ± 0.01 0.05efB ± 0.03 0.24efA ± 0.01 

180 0.21cdeA ± 0.01 0.13deB ± 0.03 0.19fghA ± 0.02 0.05efC ± 0.01 0.21efA ± 0.01 

210 0.22cdeA ± 0.04 0.13deB ± 0.00 0.20fghA ± 0.02 0.03efC ± 0.00 0.23efA ± 0.05 

240 0.21cdeA ± 0.00 0.09efB ± 0.00 0.18ghiA ± 0.02 0.02fB ± 0.00 0.21efA ± 0.01 

270 0.20cdeA ± 0.02 0.06efB ± 0.01 0.09ghiB ± 0.01 0.00fB ± 0.00 0.21efA ± 0.02 

300 0.20cdeA ± 0.02 0.03fB ± 0.01 0.09ghiB ± 0.01 0.00fC ± 0.00 0.23efA ± 0.02 

330 0.11deA ± 0.02 0.02fC ± 0.00 0.08hiAB ± 0.01 0.00fC ± 0.00 0.12fA ± 0.01 

360 0.07eB ± 0.01 0.04fC ± 0.00 0.04iC ± 0.01 0.00fD ± 0.00 0.13fA ± 0.01 

Each value is the average ± standard deviation (n=3). Treatments were stored at 21oC in individually sealed bags in boxes to limit light exposure for 360 days. 

Values within columns not sharing a lowercase letter are significantly (p<0.05) different. Values within rows not sharing an uppercase letter are significantly 

(p<0.05) different. Treatments were analyzed by ANOVA (Tukey’s HSD).  
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Figure 2.2 Proanthocyanidin content (BL-DMAC Assay) versus time of sweetened dried cranberries 
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Table 2.4 Proanthocyanidin content (Cranberry Standard) of sweetened dried cranberries over time 

TIME (DAYS) SLICED APPLE JUICE 

INFUSED (SAJ) 

WHOLE APPLE JUICE 

INFUSED (WAJ) 

SLICED SUCROSE 

INFUSED (SSDC) 

WHOLE SUCROSE 

INFUSED (WSDC) 

SLICED SOLUBLE 

CORN FIBER, 

GLYCERIN, 

SUCROSE, AND 

SUCRALOSE INFUSED 

(SCFG) 

0 1.89aBC ± 0.16 1.42bC ± 0.13 2.54cdB ± 0.14 1.10aC ± 0.05 3.74aA ± 0.63 

7 1.85aB ± 0.24 1.83aB ± 0.19 2.67cA ± 0.014 1.01aC ± 0.04 2.86bA ± 0.35 

14 2.13aB ± 0.34 1.36bC ± 0.23 2.96cA ± 0.13 0.87bD ± 0.02 2.71bcA ± 0.42 

21 1.80abC ± 0.41 1.13bcdD ± 0.03 3.57abA ± 0.45 0.76bcD ± 0.01 2.83bB ± 0.29 

28 1.60abcC ± 0.26 1.15bcdD ± 0.19 3.90aA ± 0.19 0.73cE ± 0.02 2.10cdB ± 0.08 

60 1.20cdB ± 0.14 1.33bcB ± 0.06 3.08bcA ± 0.26 0.68cC ± 0.02 1.60deB ± 0.06 

90 1.01deC ± 0.09 1.09bcdeC ± 0.08 2.06deA ± 0.20 0.65cdD ± 0.05 1.30efB ± 0.05 

120 1.12cdC ± 0.02 0.90deC ± 0.11 1.91efA ± 0.30 0.68cD ± 0.06 1.44defB ± 0.09 

150 1.29bcdA ± 0.05 0.73efB ± 0.04 1.24ghA ± 0.05 0.36fgC ± 0.08 1.41defA ± 0.05 

180 1.12cdB ± 0.07 0.96cdeB ± 0.08 1.11ghB ± 0.10 0.34gC ± 0.05 1.44defA ± 0.04 

210 1.12cdC ± 0.12 1.06deC ± 0.08 1.47fgA ± 0.10 0.44efgD ± 0.05 1.26efB ± 0.08 

240 0.93deB ± 0.05 0.46fgC ± 0.04 1.22ghA ± 0.06 0.51eC ± 0.01 1.15efA ± 0.04 

270 0.83deB ± 0.07 0.40fgC ± 0.02 1.07ghA ± 0.08 0.55deC ± 0.02 1.12efA ± 0.12 

300 0.62eC ± 0.04 0.32gD ± 0.03 1.01ghA ± 0.04 0.48eD ± 0.02 0.88fB ± 0.06 

330 0.61eB ± 0.06 0.36gC ± 0.01 0.85hiA ± 0.01 0.46efC ± 0.02 0.82fA ± 0.04 

360 0.61eB ± 0.10 0.37fgC ± 0.00 0.45iBC ± 0.06 0.08hD ± 0.02 1.12efA ± 0.11 

Each value is the average ± standard deviation (n=3). Treatments were stored at 21oC in individually sealed bags in boxes to limit light exposure for 360 days. 

Values within columns not sharing a lowercase letter are significantly (p<0.05) different. Values within rows not sharing an uppercase letter are significantly 

(p<0.05) different. Treatments were analyzed by ANOVA (Tukey’s HSD).  
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Figure 2.3 Proanthocyanidin Content (Cranberry Standard Assay) versus time of sweetened dried cranberries 
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Anthocyanin Content  

For all treatments there was a significant (p<0.05) decrease in anthocyanins indicating 

that anthocyanins significantly degrade over time regardless of product matrix (Table 2.5) 

(Figure 2.4). Initial anthocyanin content in sweetened dried cranberries was comparable to values 

reported in Blumberg et., al (2013). As previously discussed with proanthocyanidins, slicing 

resulted in a significantly higher anthocyanin content (both initial and final) compared to whole 

treatments. Both whole treatments at the end of the study had no quantifiable anthocyanin 

content. Whole cranberries are larger individual pieces than sliced cranberries, so it is possible 

that a combination of higher heat and longer drying time to achieve the same Aw caused the 

significant reduction in anthocyanins. Anthocyanins are susceptible to heat degradation so 

increased time in the dryer or increased drying temperature in the whole treatments could 

significantly lower the anthocyanin content compared to the sliced treatments. In a study 

comparing the anthocyanin content of raw plums to prunes, high drying temperatures led to 

degradation of anthocyanins (Piga, et al., 2003) which was mirrored in this study. SCFG had the 

highest initial anthocyanin content (72.61 ppm) while WSDC had the lowest initial anthocyanin 

content (3.14 ppm). As previously discussed, SCFG bulking agents such as soluble corn fiber 

and glycerin may have insulated some of the anthocyanin compounds during processing, 

resulting in significantly higher initial and final anthocyanin values compared to other sliced 

treatments (Nowicka & Wojdylo, 2016).  

Overall degradation of anthocyanins (93.5% SAJ, 100% WAJ, 97.8% SSDC, 100% 

WSDC, and 98% SCFG) indicate that anthocyanins in sweetened dried cranberries are unstable 

and decrease more than proanthocyanidins. Flavonol monomer polymerization induced by 

oxidation via processing produces proanthocyanidins (Beecher, 2003), so as monomers are 
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polymerized proanthocyanidins may appear more stable than anthocyanins, which are not formed 

during this polymerization. While degradation of anthocyanins is a result of drying conditions 

such as time and temperature, further degradation occurs during storage indicating that 

enzymatic oxidation reactions occur and degrade anthocyanins further during storage. The rates 

of degradation during storage indicate that treatments with lower initial anthocyanin content 

degraded at a significantly slower rate than those with a higher anthocyanin content (Table 2.2). 

Treatments with higher anthocyanin content had a higher chance of reactions between 

anthocyanin molecules than those with a lower initial anthocyanin content, resulting in the 

difference in rates. Despite the difference in rate of degradation between treatments, 

copigmentation in sweetened dried cranberries does not provide stability in the lower quantities 

of anthocyanins displayed in this study. Copigmentation occurs when anthocyanin molecules 

stack on top of each other providing insulation of compounds from oxidation reactions which 

may degrade anthocyanins (Gomez-Miguez, et al., 2006) (Rustioni, et al., 2012). At low levels of 

anthocyanins seen in the treatments, there is not a large enough quantity of anthocyanins for 

stacking and copigmentation to prevent degradation of the anthocyanins. 

Compared to raw cranberries (604.2 ppm anthocyanins), sweetened dried cranberries are 

not a source of anthocyanins (Haytowitz, et al., 2018). HPLC spectra indicate that across 

treatments, after 360 days cyanidin-3-glucoside and peonidin-3-glucoside were not present, 

indicating that these anthocyanin compounds are the most susceptible to degradation (Figures 

2.5-2.14). SSDC was the only treatment with cyanidin-3-glucoside present in the initial sample. 

In soybean crackers it was reported that cyanidin-3-glucoside was degraded at an average of 

70.3% during high temperature with short baking time (Slavin, et al., 2013). Thermal processing 

of sweetened dried cranberries could have also resulted in this loss of cyanidin-3-glucoside, 
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which is why it was not present in most treatments. As previously stated sliced treatments like 

SSDC undergo shorter thermal processing due to the structure of the cranberry, making the 

anthocyanin content higher in sliced treatments than whole. Since SSDC is both sliced and has a 

larger anthocyanin content than other treatments, cyanidin-3-glucoside could be detectable 

initially, compared to other treatments with less anthocyanin content. All treatments however did 

not have any cyanidin-3-glucoside after 360 days, further validating the instability of the 

compound during storage, not just during processing. Peonidin-3-glucoside and cyanidin-3-

glucoside were present in no treatments after 360 days, indicating that glucoside substituents are 

more susceptible to degradation than galactoside and arabinoside, possibly due to being more 

susceptible to hydrolysis. 
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Table 2.5 Anthocyanin content of sweetened dried cranberries over time 

TIME (DAYS) SLICED APPLE JUICE 

INFUSED (SAJ) 

 

WHOLE APPLE JUICE 

INFUSED (WAJ) 

 

SLICED SUCROSE 

INFUSED (SSDC) 

 

WHOLE SUCROSE 

INFUSED (WSDC) 

 

SLICED SOLUBLE 

CORN FIBER, 

GLYCERIN, 

SUCROSE, AND 

SUCRALOSE INFUSED 

(SCFG) 

0 22.72aC ± 0.20 12.4aD ± 0.36 40.10aB ± 1.00 3.14aE   ± 0.10 72.61aA ± 2.50 

7 16.75bB ± 1.86 8.19bC ± 0.94 41.35aA ± 2.54 3.02aD ± 0.03 40.25bA ± 1.43 

14 16.58bB ± 0.90 6.53cC     ± 0.71 37.98abA ± 3.07 2.38bD    ± 0.26 23.07cB    ± 7.61 

21 12.21cB ± 1.84 6.31cBC ± 0.66 33.56bA ± 1.01 2.09bC ± 0.06 22.31cA ± 1.00 

28 13.61cB ± 0.09 4.77dC ± 0.95 28.73cA ± 2.98 1.55cD ± 0.07 16.88cB ± 1.94 

60 8.70dB ± 0.69 3.14eC ± 0.15 27.33cA ± 2.62 1.06dD ± 0.05 8.33dB ± 1.44 

90 6.03eB ± 0.47 2.26efC ± 0.16 10.68dA ± 0.75 0.67eD ± 0.07 6.20deB ± 0.63 

120 4.70efC ± 0.64 1.44fgD ± 0.09 9.31deA ± 0.97 0.30fE ± 0.31 6.71deB ± 0.21 

150 3.90efgB ± 0.16 1.10fghC ± 0.04 5.32efA ± 0.73 0.08fD ± 0.14 3.48deB ± 0.47 

180 3.22fghB ± 0.13 0.87ghC ± 0.38 4.93efA ± 0.13 0.00fD ± 0.00 3.17deB ± 0.33 

210 3.51fghB ± 0.29 0.78ghD ± 0.02 4.45fA ± 0.12 0.00fE ± 0.00 2.30deC ± 0.43 

240 2.70fghB ± 0.17 0.36ghC ± 0.15 4.57fA ± 0.18 0.00fD ± 0.00 1.97deB ± 0.33 

270 2.59fghB ± 0.11 0.08hD ± 0.14 3.59fA ± 0.31 0.00fD ± 0.00 1.83deC ± 0.17 

300 1.93ghA ± 0.22 0.08hB ± 0.14 2.07fA ± 0.08 0.00fB ± 0.00 1.57eA ± 0.10 

330 1.52hA ± 0.14 0.00hB ± 0.00 1.61fA ± 0.27 0.00fB ± 0.00 1.46eA ± 0.56 

360 1.47hA ± 0.28 0.00hB ± 0.00 0.89fAB ± 0.23 0.00fB ± 0.00 1.45eA ± 0.61 

Each value is the average ± standard deviation (n=3). Treatments were stored at 21oC in individually sealed bags in boxes to limit light exposure for 360 days. 

Values within rows not sharing an uppercase letter are significantly (p<0.05) different. Values within columns not sharing a lowercase letter are significantly 

(p<0.05) different. Treatments were analyzed by ANOVA (Tukey’s HSD).  
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Figure 2.4 Anthocyanin content versus time of sweetened dried cranberries

0

10

20

30

40

50

60

70

80

0 50 100 150 200 250 300 350 400

A
n

th
o

cy
an

in
 C

o
n

te
n

t 
(P

P
M

)

Time (days)

Anthocyanin Content vs. Time

SAJ

WAJ

SSDC

WSDC

SCFG



   

 

70 

 

 

 

Figure 2.5 Initial anthocyanin profile of SAJ 

 

 

Figure 2.6 Final anthocyanin profile of SAJ 
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Figure 2.7 Initial anthocyanin profile of WAJ 

 

 

 

Figure 2.8 Final anthocyanin profile of WAJ 
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Figure 2.9 Initial anthocyanin profile of SSDC 

 

 

Figure 2.10 Final anthocyanin profile of SSDC 
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Figure 2.11 Initial anthocyanin profile of WSDC 

 

 

 

Figure 2.12 Final anthocyanin profile of WSDC 
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Figure 2.13 Initial anthocyanin profile of SCFG 

 

 

 

 

Figure 2.14 Final anthocyanin profile of SCFG 
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Total Phenolic Content 

For all treatments, there was a significant (p<0.05) difference in the initial total phenolic 

content, however, no significant difference in the final total phenolic content, indicating that total 

phenolic content stabilizes over time regardless of initial value (Table 2.6) (Figure 2.15). Total 

phenolic content values were comparable to values reported in Grace et al., 2012 for sweetened 

dried cranberries. Unlike previously discussed with proanthocyanidins and anthocyanins, 

structure had no impact on the overall total phenolic content in the samples, with WAJ having 

the highest initial total phenolic content (5.87 mg/g) while WSDC had the lowest initial total 

phenolic content (2.64 mg/g). WAJ and SAJ contain added apple juice which provides additional 

polyphenols resulting in higher total phenolic content than SSDC and WSDC. This increase is 

not mirrored in anthocyanins and proanthocyanidins because the major polyphenols in apple 

juice are in the form of chlorogenic acid, as well as some quercetin (Gliszczynska-Swiglo & 

Tyrakowska, 2003) which would not be read as anthocyanins or proanthocyanidins. Compared to 

raw cranberries (1.6 mg/g total phenolic content), all matrices of sweetened dried cranberries had 

significantly higher initial total phenolic content as well as final total phenolic content. 

Treatments with the highest total phenolic content compared to the raw cranberries were WAJ, 

SCFG, and SAJ. WAJ and SAJ both are composed of apple juice concentrate containing 

quercetin, which in studies have been showed to retain total phenolic content and can be 

regenerated upon heated to various quercetin glycosides which may result in the higher total 

phenolic content (Michalska, et al., 2018) (Aherne & O'Brien, 2002) (White, et al., 2011). 

Compared to proanthocyanidins and anthocyanins, total phenolic content is significantly more 

stable, only decreasing by 42.7% in SAJ, 56.9% in WAJ, 13.9% in SSDC, 10.9% in WSDC, and 

51.6% in SCFG. Proanthocyanidins and anthocyanins are only two compounds that make up the 
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overall total phenolic content in cranberries, so while proanthocyanidins and anthocyanins saw 

more degradation throughout shelf-life, the rest of the total phenolic content such as acids and 

other flavonols were more stable, leading to more stability in overall total phenolic content. 

SSDC and WSDC had the lowest initial proanthocyanidin content (2.69 mg/g for SSDC and 2.64 

mg/g for WSDC, respectively), but there was no significant decrease in total phenolic content for 

these treatments throughout shelf life. SAJ, WAJ, and SCFG saw significant decreases in their 

total phenolic content due to higher initial content which eventually decreased to the content 

initially seen in SSDC and WSDC. This is confirmed in the rates of degradation for the 

treatments, with the treatments having the highest initial content having the largest rate of total 

phenolic content degradation (Table 2.2). 
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Table 2.6 Total phenolic content of sweetened dried cranberries over time 

TIME (DAYS) SLICED APPLE JUICE 

INFUSED (SAJ) 

 

WHOLE APPLE JUICE 

INFUSED (WAJ) 

 

SLICED SUCROSE 

INFUSED (SSDC) 

 

WHOLE SUCROSE 

INFUSED (WSDC) 

 

SLICED SOLUBLE 

CORN FIBER, 

GLYCERIN, 

SUCROSE, AND 

SUCRALOSE INFUSED 

(SCFG) 

0 4.37aC ± 0.20 5.87aA ± 0.46 2.69aD ± 0.06 2.64aD ± 0.08 5.04aB ± 0.03 

7 4.51abcB ± 0.25 5.34abA ± 0.09 2.60abcC ± 0.02 2.62aC   ± 0.11 4.35bcdB ± 0.54 

14 4.59abC   ± 0.08 5.42abA   ± 0.15 2.50abcDde ± 0.02 2.59aD   ± 0.07 4.95Ba   ± 0.03 

21 4.28abcC ± 0.11 5.27bA    ± 0.06 2.61abD    ± 0.04 2.49abD   ± 0.02 4.67Babc ± 0.17 

28 4.51abcB ± 0.08 5.58abA   ± 0.20 2.54abcCd ± 0.11 2.44abcC ± 0.04 4.85abB   ± 0.12 

60 3.84cC ± 0.11 5.36abA   ± 0.24 2.53abcdD ± 0.09 2.56aD   ± 0.10 4.04dB   ± 0.08 

90 3.99bc ± 0.07 3.29c ± 0.32 2.66ab ± 0.13 2.55ab ± 0.03 4.28cd ± 0.11 

120 2.85dA   ± 0.33 2.75cdA   ± 0.08 2.28deA   ± 0.09 2.40abcAd ± 0.09 2.87eA   ± 0.43 

150 2.57dA    ± 0.02 2.65dA   ± 0.08 2.22eA    ± 0.08 2.27bcdAe ± 0.06 2.33eA   ± 0.05 

180 2.58dA ± 0.04 2.43dA ± 0.05 2.26deA ± 0.09 2.09deA ± 0.05 2.37eA ± 0.01 

210 2.56dA    ± 0.07 2.80cdA   ± 0.11 2.24eA    ± 0.07 2.23bcdAe ± 0.20 2.46eA    ± 0.02 

240 2.56dA ± 0.05 2.79cdA ± 0.07 2.29deA ± 0.08 2.40abcAd ± 0.18 2.47eA   ± 0.03 

270 2.51dA ± 0.06 2.94cdA ± 0.22 2.38bcdeA ± 0.03 2.43abcA ± 0.08 2.46eA ± 0.03 

300 2.55dA ± 0.09 2.94cdA ± 0.05 2.24eA ± 0.11 2.16cdeA ± 0.08 2.41eA ± 0.05 

330 2.61dA ± 0.17 2.64dA ± 0.10 2.26deA ± 0.23 2.05eA ± 0.08 2.58eA ± 0.15 

360 2.51dA    ± 0.18 2.53dA    ± 0.04 2.32cdeA ± 0.05 2.35abcdeA ± 0.17 2.44eA    ± 0.02 

Each value is the average ± standard deviation (n=3). Treatments were stored at 21oC in individually sealed bags in boxes to limit light exposure for 360 days. 

Values within rows not sharing an uppercase letter are significantly (p<0.05) different. Values within columns not sharing a lowercase letter are significantly 

(p<0.05) different. Treatments were analyzed by ANOVA (Tukey’s HSD). 
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Figure 2.15 Total phenolic content versus time of sweetened dried cranberries
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Antioxidant Activity 

While sweetened dried cranberries contained no viable antioxidant activity when 

analyzed by DPPH assay (Table 2.7), similar results seen for analysis of raw cranberries indicate 

that other methods of antioxidant analysis may be better suited to identify cranberry polyphenol 

antioxidant activity. Significantly higher IC50 values for all treatments compared to ascorbic acid 

standard (79.84 mg/ml) confirms that the significant processing of sweetened dried cranberries 

depletes antioxidant activity. The DPPH method however did show that the sweetened dried 

cranberries are comparable to raw cranberries which scavenged 36.71% of DPPH free radicals 

with an IC50 of 2.91 x 106 mg/mL. While this is contrary to what was seen with 

proanthocyanidins, anthocyanins, and total phenolic content (where degradation from processing 

degraded polyphenols compared to raw cranberries) there have been studies which show that 

thermal processing may increase antioxidant activity (Turkmen, et al., 2005) (Nicoli, et al., 1999) 

(Gazzani, et al., 1998) (Manzocco, et al., 1998). Various studies have found that in fruits, 

vegetables, and teas, thermal processing may increase antioxidant activity by production of 

antioxidant forming compounds during thermal treatment or inactivation of pro-oxidant 

compounds already in the fruits and vegetables (Turkmen, et al., 2005) (Nicoli, et al., 1999) 

(Gazzani, et al., 1998) (Manzocco, et al., 1998). These findings would support what was seen in 

this study, where sweetened dried cranberries showed comparable antioxidant scavenging 

activity compared to raw cranberries. SSDC had the most antioxidant activity and was able to 

scavenge 51.85% of the DPPH free radicals, compared to ascorbic acid standard which had a 

maximum DPPH scavenging of 95.30%. Despite agreement with previous research which 

validates the findings in this study, there are studies which show that compared to other fruits 

such as apples, plums, and oranges, raw cranberries possess higher antioxidant capacity (Vinson, 
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et al., 2001). Since different fruits may not have the same antioxidant mechanism, other methods 

should be evaluated on raw cranberries compared to dried cranberries to determine the best 

method for cranberry antioxidant capacity analysis as there are indications that different 

antioxidant assays can yield different results based on the antioxidant mechanism of the food 

product (Roy, et al., 2010) 

 

Table 2.7 Antioxidant activity of sweetened dried cranberries 

TREATMENT DPPH SCAVENGING (%) IC50 (MG/ML) 

Sliced Apple Juice Infused (SAJ) 30.18b ± 1.83  5.38 x 107a ± 3.04 x 107  

Whole Apple Juice Infused (WAJ) 35.15b ± 1.05 2.14 x 107a ± 2.53 x 106  

Sliced Sucrose Infused (SSDC) 51.85a ± 2.55  2.54 x 106a ± 3.50 x 106 

Whole Sucrose Infused (WSDC) 36.71b ± 0.76  1.33 x 107a ± 3.02 x 106  

Sliced Soluble Corn Fiber, Glycerin, Sucrose, and 

Sucralose Infused (SCFG) 

11.01c ± 0.58  3.49 x 1013b ± 3.32 x 1013  

Each value is the average ± standard deviation (n=5). Treatments were stored at 21oC in individually sealed bags in 

boxes to limit light exposure for 360 days. Values within columns not sharing a lowercase letter are significantly 

(p<0.05) different. Treatments were analyzed by ANOVA (Tukey’s HSD).  

 

Water Activity and Moisture Content 

 Water Activity 

For all treatments Aw did not significantly (p>0.05) change from initial to final indicating 

that Aw is stable over time regardless of product matrix (Table 2.8) (Figure 2.16). Despite no 

significant changes in Aw over time within treatments, there were significant (p<0.05) 

differences in the Aw between treatments and in the rates of degradation between treatments 

(Table 2.2). According to Sillick and Gregson (2010), Aw is impacted by the type of sugar in the 

matrix, with sucrose having a lower impact on Aw and a lower impact on the glass transition 
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temperature (Sillick & Gregson, 2010). Glass transition temperature is the temperature at which 

a material goes from the glassy state to rubbery (Bell & Hageman, 1994). Both Aw and glass 

transition temperature can have effects on the reactions that occur in a system (Bell & Hageman, 

1994). This finding would corroborate that SSDC and WSDC have the lowest Aw and have a 

positive rate of change, as they have the largest amount of sucrose, followed by SAJ and WAJ 

treatments which have fructose from apple juice concentrate, and then SCFG which contains 

soluble corn fiber and glycerin in addition to sucrose which would increase the glass transition 

temperature and cause the Aw to be larger. SAJ and WAJ, as well as SSDC and WSDC, did not 

have significantly different Aw among them indicating that slicing of the cranberries does not 

impact Aw despite the higher surface area. Sweetened dried cranberries are not significantly 

impacted by Aw throughout shelf life, therefore the Aw levels seen in these sweetened dried 

cranberry treatments are stable and would not pose a risk to product quality or food safety. 

 

Table 2.8 Comparison of initial and final Aw of sweetened dried cranberries 

TREATMENT INITIAL FINAL 

Sliced Apple Juice Infused (SAJ) 0.536bA ± 0.011 0.523bcA ± 0.004 

Whole Apple Juice Infused (WAJ) 0.542bA ± 0.005 0.510cA ± 0.003 

Sliced Sucrose Infused (SSDC) 0.483cA ± 0.002 0.504cA ± 0.005 

Whole Sucrose Infused (WSDC) 0.495cA ± 0.007 0.541bA ± 0.017 

Sliced Soluble Corn Fiber, Glycerin, Sucrose, and Sucralose Infused 

(SCFG) 

0.597aA ± 0.005 0.590aA ± 0.007 

Each value is the average ± standard deviation (n=3). Treatments were stored at 21oC in individually sealed bags in 

boxes to limit light exposure for 360 days. Values within columns not sharing a lowercase letter are significantly 

(p<0.05) different. Values within rows not sharing an uppercase letter are significantly (p<0.05) different. 

Treatments were analyzed by ANOVA (Tukey’s HSD).  
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Figure 2.16 Aw versus time of sweetened dried cranberries 

 

 Moisture Content 
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in the matrix (Table 2.9) (Figure 2.17). Structure does not appear to significantly impact 
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have moisture absorption properties which would help in the drying process and would cause the 

Aw and moisture content to be higher in SCFG (Yan, et al., 2012).  SSDC and WSDC had a 

significantly lower initial moisture content (14.37% and 13.40% respectively). As previously 

seen with Aw sucrose has a lower effect on glass transition temperature, so sucrose infused 

treatments (SSDC and WSDC) also have a lower moisture content and positive rate of change, 

compared to other treatments with negative rates of change (Sillick & Gregson, 2010). This 

effect is mirrored in Aw, indicating that sucrose infusion in the cranberries pre-drying also 

resulted in a lower amount of free water in SSDC and WSDC treatments. While final Aw 

between treatments differed, differences in initial moisture content did not cause significant 

differences in final moisture content between treatments. A study with dried apricots 

demonstrated that diffusivity (the ability of water to move through the material) in dried apricots 

during storage was affected by the glass transition (as was previously seen with Aw) resulting in 

a decrease in moisture content over time (Miranda, et al., 2014). This effect is seen in sweetened 

dried cranberries except for WSDC which increased in moisture possibly due to the fructose 

from the apple juice, resulting in more free moisture compared to treatments with sucrose. 
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Table 2.9 Comparison of initial and final moisture content of sweetened dried cranberries 

TREATMENT INITIAL (%) FINAL (%) 

Sliced Apple Juice Infused (SAJ) 16.52 ± 1.24aA 15.28 ± 0.25aB 

Whole Apple Juice Infused (WAJ) 16.70 ± 0.38aA 14.82 ± 0.36aB 

Sliced Sucrose Infused (SSDC) 14.37 ± 0.11bA 14.70 ± 1.66aA 

Whole Sucrose Infused (WSDC) 13.40 ± 0.26bA 15.65 ± 1.45aB 

Sliced Soluble Corn Fiber, Glycerin, Sucrose, and Sucralose Infused 

(SCFG) 

18.42 ± 0.89aA 16.30 ± 0.15aB 

Each value is the average ± standard deviation (n=3). Treatments were stored at 21oC in individually sealed bags in 

boxes to limit light exposure for 360 days. Values within columns not sharing a lowercase letter are significantly 

(p<0.05) different. Values within rows not sharing an uppercase letter are significantly (p<0.05) different. 

Treatments were analyzed by ANOVA (Tukey’s HSD). 

 

Figure 2.17 Moisture content versus time of sweetened dried cranberries 
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Colorimetric and Texture Analyses 

 Color 

SAJ and SCFG were the only treatments with a significant (p<0.05) decrease in the initial 

(11.51 for SAJ and 12.07 for SCFG, respectively) and final (8.84 for SAJ and 6.25 for SCFG, 

respectively) a* values, indicating that most sweetened dried cranberry samples do not 

significantly change in redness over time (Table 2.11). WSDC had the lowest initial a* value 

(4.64) and final a* value (5.47), so while this treatment is significantly less red than the other 

treatments, there was not a significant change in the redness of the treatment over time. The 

possible reason for WSDC being significantly lower in a* is because it is infused with apple 

juice concentrate which is brown in color and may lower a* value, compared to others with no 

apple juice concentrate. The apple juice concentrate, in conjunction with longer drying times for 

whole treatments compared to sliced treatments, could lower a*. While there was a strong 

positive correlation (p=0.003) between initial a* and initial anthocyanins, there was no 

correlation between final a* and final anthocyanins (p=0.153), due to overall high degradation in 

anthocyanins over time, compared to a* which decreased 23.3% for SAJ, increased 5.2% for 

WAJ, decreased 25.3% for SSDC, increased 6.9% for WSDC, and decreased 48.2% for SCFG. 

There was a significant increase in DE over time, indicating color change in all 

treatments over time (Table 2.13). L*, a*, and b* values used for DE calculations can be seen in 

Tables 2.9-2.11. Studies have reported that blueberries and strawberries undergo enzymatic 

browning after food processing which deteriorates color (Siddiq & Dolan, 2017) (Bermejo-Prada 

& Otero, 2016). Polyphenol oxidase (PPO) is a naturally occurring enzyme that causes browning 

in the presence of oxygen when the PPO reacts with oxygen causing phenols to convert to 

melanin (brown pigment) (Siddiq & Dolan, 2017) (Fang, et al., 2007) (Institute of Food Science 
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and Technology, 2017). PPO can degrade anthocyanins to brown, black, or yellow colors from 

the natural red, purple, and blue pigments (Bermejo-Prada & Otero, 2016). Processing, such as 

juicing and drying, as well as storage conditions, can promote PPO reactions causing most color 

changes and anthocyanin polymerization reactions (Siddiq & Dolan, 2017) (Bermejo-Prada & 

Otero, 2016) (Jaiswal, et al., 2010). Color change was not influenced by slicing, as SCFG had the 

largest ΔE (6.75) but WAJ had the second largest DE (4.28). SCFG had the largest rate of 

change in color, which could be due to the significantly higher amount of proanthocyanidins and 

anthocyanins in that treatment available for PPO reactions to occur (Table 2.2). WAJ also had 

the largest total phenolic content which could explain why it was higher in DE and second 

largest rate of change. SCFG had the highest rate of change also due to having the largest 

proanthocyanidin and anthocyanin content for reactions to occur, which coincides with the 

largest overall change in color. There was no significant difference in the overall rate of change 

between SAJ and WAJ or SSDC and WSDC, indicating that rate of change for DE is dependent 

on product matrix. Consumer testing may need to be done to indicate whether the change in 

color seen in the treatments impact acceptability. 
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Table 2.10 Comparison of initial and final L* in sweetened dried cranberries 

TREATMENT L* INITIAL L* FINAL 

Sliced Apple Juice Infused (SAJ) 21.15aA ± 0.67 19.73aA ± 0.75 

Whole Apple Juice Infused (WAJ) 16.01dB ± 0.53 20.08aA ± 0.56 

Sliced Sucrose Infused (SSDC) 18.91bA ± 0.24 18.77aA ± 0.27 

Whole Sucrose Infused (WSDC) 17.50cB ± 0.21 19.80aA ± 0.40 

Sliced Soluble Corn Fiber, Glycerin, 

Sucrose, and Sucralose Infused (SCFG) 

18.78bA ± 0.53 20.38aA ± 0.75 

Each value is the average ± standard deviation (n=3). Treatments were stored at 21oC in individually sealed bags in 

boxes to limit light exposure for 360 days. Values within columns not sharing a lowercase letter are significantly 

(p<0.05) different. Values within rows not sharing an uppercase letter are significantly (p<0.05) different. 

Treatments were analyzed by ANOVA (Tukey’s HSD). 

 

Table 2.11 Comparison of initial and final a* in sweetened dried cranberries 

TREATMENT A* INITIAL A* FINAL 

Sliced Apple Juice Infused (SAJ) 11.51aA ± 0.74 8.84aB ± 0.25 

Whole Apple Juice Infused (WAJ) 6.78bA ± 0.70 7.15bA ± 0.14 

Sliced Sucrose Infused (SSDC) 7.32bA ± 0.97 5.47cA ± 0.42 

Whole Sucrose Infused (WSDC) 4.64cA ± 0.37 4.98cA ± 1.09 

Sliced Soluble Corn Fiber, Glycerin, Sucrose, and Sucralose Infused (SCFG) 12.07aA ± 0.91 6.25bcB ± 0.28 

Each value is the average ± standard deviation (n=3). Treatments were stored at 21oC in individually sealed bags in 

boxes to limit light exposure for 360 days. Values within columns not sharing a lowercase letter are significantly 

(p<0.05) different. Values within rows not sharing an uppercase letter are significantly (p<0.05) different. 

Treatments were analyzed by ANOVA (Tukey’s HSD).  
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Table 2.12 Comparison of initial and final b* in sweetened dried cranberries 

TREATMENT B* INITIAL B* FINAL 

Sliced Apple Juice Infused (SAJ) 3.62aA ± 0.66 2.30aA ± 0.40 

Whole Apple Juice Infused (WAJ) 1.26bA ± 0.25 0.17bB ± 0.03 

Sliced Sucrose Infused (SSDC) -0.30cA ± 0.27 -0.32bA ± 0.11 

Whole Sucrose Infused (WSDC) -0.30cA ± 0.11 0.07bA ± 0.51 

Sliced Soluble Corn Fiber, Glycerin, Sucrose, and Sucralose Infused (SCFG) 0.52bcA ± 0.27 -0.49bB ± 0.05 

Each value is the average ± standard deviation (n=3). Treatments were stored at 21oC in individually sealed bags in 

boxes to limit light exposure for 360 days. Values within columns not sharing a lowercase letter are significantly 

(p<0.05) different. Values within rows not sharing an uppercase letter are significantly (p<0.05) different. 

Treatments were analyzed by ANOVA (Tukey’s HSD).  

 

Table 2.13 ∆E in sweetened dried cranberries 

TREATMENT ∆E 

Sliced Apple Juice Infused (SAJ) 3.39bc ± 0.33 

Whole Apple Juice Infused (WAJ) 4.28b ± 0.56 

Sliced Sucrose Infused (SSDC) 2.43c ± 0.43 

Whole Sucrose Infused (WSDC) 2.50c ± 0.70 

Sliced Soluble Corn Fiber, Glycerin, Sucrose, 

and Sucralose Infused (SCFG) 

6.75a ± 0.12 

Each value is the average ± standard deviation (n=3). Treatments were stored at 21oC in individually sealed bags in 

boxes to limit light exposure for 360 days. Values within columns not sharing a lowercase letter are significantly 

(p<0.05) different. Treatments were analyzed by ANOVA (Tukey’s HSD).  
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Figure 2.18 DE versus time of sweetened dried cranberries 

 

 Texture 

Treatments of similar product matrix (SAJ/WAJ and SSDC/WSDC) did not have 

significantly (p>0.05) different texture indicating that slicing does not have an impact on texture 

compared to whole (Table 2.14) (Figure 2.19). SCFG had significantly higher adhesion force 

initially, indicating that SCFG was significantly more sticky than other treatments. SCFG also 

was the only treatment with a significantly higher rate of change in texture. SCFG had the 
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more significant rate of change of the adhesion force. Studies of pear fruit leather reported 

similarly that additional water (moisture content or Aw) increased cohesion and surface moisture 

or adhesion (Huang & Hsieh, 2005). The same pear fruit leather study also reported that both 

corn syrup and pectin in pear fruit leather increased adhesion, which could be seen similarly in 

SCFG with the added bulking ingredients (Huang & Hsieh, 2005). Adhesion force decreasing is 

an indication of the treatments drying out during shelf life. SAJ, WAJ, and SSDC retained their 

initial adhesion properties while WSDC became more adhesive, and SCFG became less adhesive 

and drier. For WSDC and SCFG this change in adhesion was mirrored with the increase 

(WSDC) and decrease (SCFG) in moisture content. WSDC increased significantly in moisture 

content throughout shelf life, becoming stickier and thus increasing in adhesion properties. 

SCFG conversely decreased significantly in moisture content, leading to decreased adhesion 

properties and becoming drier. Aw properties also were mirrored in adhesion properties, with 

SSDC and WSDC having the lowest initial Aw and moisture content and therefore having the 

lowest adhesion force.  Across treatments, apple juice concentrate infused treatments were 

significantly more adhesive than sucrose infused treatments, but less adhesive than SCFG, 

mirroring the results found in moisture content and Aw. SCFG was the only treatment with a 

significantly lower rate of change indicating that the additional bulking ingredients that led to 

higher Aw may also lead to a reduced rate of change compared to other treatments. Consumer 

testing would be needed to indicate whether these textural changes would impact consumer 

acceptability. 
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Table 2.14 Comparison of initial and final adhesion force of sweetened dried cranberries 

TREATMENT INITIAL (G) FINAL (G) 

Sliced Apple Juice Infused (SAJ) 199.70bA ± 58.03 214.88 aA ± 21.06 

Whole Apple Juice Infused (WAJ) 180.11bA ± 27.03 176.83aA ± 13.89 

Sliced Sucrose Infused (SSDC) 90.00cA ± 15.54 111.91bA ± 19.97 

Whole Sucrose Infused (WSDC) 61.25cA ± 7.87 96.70bB ± 16.03 

Sliced Soluble Corn Fiber, Glycerin, 

Sucrose, and Sucralose Infused (SCFG) 

292.52aA ± 29.88 182.02aB ± 13.89 

Each value is the average ± standard deviation (n=3). Treatments were stored at 21oC in individually sealed bags in 

boxes to limit light exposure for 360 days. Values within columns not sharing a lowercase letter are significantly 

(p<0.05) different. Values within rows not sharing an uppercase letter are significantly (p<0.05). Treatments were 

analyzed by ANOVA (Tukey’s HSD).  
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Figure 2.19 Adhesion force versus time of sweetened dried cranberries 

 

 Conclusions 

Regardless of product matrix, sweetened dried cranberry polyphenols are unstable and 

undergo significant degradation over time, with anthocyanins and proanthocyanidins being more 

unstable than total phenolic content. Sliced sweetened dried cranberries provide a better product 

matrix for polyphenol stability and content due to increased infusion and decreased thermal 

processing compared to whole sweetened dried cranberries. Stability of polyphenols during 

processing is also increased by bulking ingredients, such as soluble corn fiber and glycerin, 

which provide protection from degradation of polyphenols. Rates of degradation were increased 
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for treatments with higher initial polyphenol content, and the rates followed the first order kinetic 

model. 

Despite insulation, increased stability of polyphenols, and increased polyphenol content, 

antioxidant activity when measured using DPPH assay showed negligible antioxidant capacity, 

most likely due to the processing conditions that sweetened dried cranberries undergo, as well as 

the mechanism of antioxidant scavenging which may not be fully represented using DPPH assay. 

While treatments did not show a significant change in Aw, change in moisture content varied 

between treatments.  

While sweetened dried cranberries are a convenient option for a snack or ingredient, 

compared to raw cranberries, the bioactive compounds are negatively impacted by processing 

over time limiting application as a bioactive food, except for antioxidant activity, which was 

comparable to raw cranberries when measured using DPPH assay. Processing and storage 

parameters could be optimized to minimize polyphenol degradation and better position 

sweetened dried cranberries as bioactive foods. 

Examples include 1) reducing the time and temperature of the drying process to better 

retain the bioactive compounds found in raw cranberries, 2) introducing a nitrogen flush to the 

packaging to limit oxygen exposure and oxidation reactions during storage, and 3) utilizing 

different packaging materials which may be better inhibitors of oxidation. 
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Chapter 3 - Polyphenol Stability and Antioxidant Capacity of 

Cranberry Supplements 

 

 Abstract 

Cranberries are fruits containing phenolic compounds, such as anthocyanins and 

proanthocyanidins, which can be concentrated in extract form and used as supplements for 

health-conscious consumers. Supplements may be consumed in two common product matrices, a 

spray-dried capsule or a chewable gummy with filler ingredients, however while there is research 

showing the phenolic composition of cranberry supplements, there is little research on how 

product matrix and processing affect phenolic compounds in supplements over time. The 

objectives of this research were to 1) assess the polyphenol content of various cranberry 

supplements, 2) determine the stability of those components over time, and 3) assess any 

relationship between product matrix and polyphenol stability. 

This research assessed 3 different commercially available cranberry supplements: 1) 

Theracran® One Cranberry Supplement (spray-dried treatment), 2) Azo Cranberry® Gummy 

(high filler ingredient bulk treatment), and 3) Ocean Spray® Cranberry + health™ Gummy (low 

filler ingredient wrapped treatment) (3 replicates/treatment). Anthocyanins (HPLC), 

proanthocyanidins (BL-DMAC and cranberry standard DMAC assay), total phenolic content 

(Folin-Ciocalteu), antioxidant capacity (DPPH), water activity, moisture, color, and texture were 

evaluated over 12 months at 21°C. Data were analyzed by ANOVA (p<0.05). 

The results demonstrate that the spray-drying and encapsulation of cranberry extracts 

provide greater polyphenol stability and content than gummy supplements due to the protective 
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properties that are a result of encapsulation compared to wrapped or bulk gummies, the absence 

of filler ingredients, higher quality and quantity of extracts, and the impacts of lower moisture 

content and Aw from optimized time and temperature conditions of spray-drying compared to 

gummy manufacturing. Within gummy treatments it was seen that product matrix, as well as 

packaging type impacted polyphenol content and stability, with the individually wrapped 

treatment with fewer filler ingredients having increased initial polyphenols compared to the bulk-

packed high filler ingredient treatment. 

These results were also seen with regards to antioxidant capacity, indicating not only that 

the same conclusions can be drawn regarding product matrix between spray-dried supplements 

and gummy supplements, but also that there is a strong correlation between phenolic content and 

antioxidant activity in cranberry supplements across treatments. More research is needed to 

optimize gummy supplement processing, product matrix, and packaging attributes to increase 

polyphenolic content and stability of polyphenols over time, as well as to better understand 

health-conscious consumer attitudes and preferences to consume raw fruit, spray-dried 

supplements, or gummy supplements. 

 

 Introduction 

Nutraceuticals harness the biologically active compounds in whole fruits, for example, in 

a nonconventional form of a food such as a pill or gummy. Ginger shots and extracts are used to 

relieve symptoms of nausea (Semwal, et al., 2015), and cranberry extracts can aid in urinary tract 

health via bacterial anti-adhesion effects (Singh, et al., 2016). Nutraceuticals are aimed at health-

conscious consumers who may want to self-diagnose the need for select bioactives, however, the 

FDA requires companies to place disclaimers on packaging to alert the public that the claims that 
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the products are making have not been evaluated by the FDA and are not intended to replace 

pharmaceutical medications. An example is a claim suggesting that a product may aid in urinary 

tract health is allowed, but a claim stating that a product cures UTI is not allowed.  The statement 

required is the following: “This statement has not been evaluated by the Food and Drug 

Administration. This product is not intended to diagnose, treat, cure, or prevent any disease” 

(21CFR101.93). Nutraceuticals are an easy option for consumers compared to the rigor that 

comes with preparing meals or the amount of a whole fruit needed to be consumed to get the 

same benefits as an extract, which removes the water in the fruit to concentrate bioactive 

compounds in a more convenient form.  The extract, which is then more concentrated in 

bioactive compounds, can be added to different forms of products such as a spray-dried capsule 

or a gummy supplement. While the different product forms may be more appealing to different 

consumers, the way they are processed are also different, leading to potential differences in the 

content and stability of the bioactive compounds in the nutraceutical.   

Millennials make up the largest age group in the United States and thus drive a large 

majority of the eating trends in the United States (Rosenbloom, 2018). Eating healthy by 

preparing meals at home is expensive and time consuming. A 2017 study found that 55% of 

Millennials are driven by the convenience of a food over the taste of food (Rosenbloom, 2018). 

In addition to convenience, sugar is an ingredient that many Millennials are looking to avoid. As 

many processed fruit products, such as juices and dried fruits, contain high amounts of sugar, 

supplements may appeal more to these health-conscious sugar-avoidant consumers.  Within the 

supplement category, consumers have the choice between a non-caloric spray-dried extract pill 

or a chewy gummy which mimics fruit more than a traditional pill supplement. 
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Cranberries (Vaccinium macrocarpon) are fruits composed of bioactive compounds such 

as anthocyanins and proanthocyanidins which are polyphenols that make up some of the overall 

phenolic content of cranberries. By extracting the bioactive compounds in cranberries and 

putting them in an easy to consume supplement form, consumers can add the benefit of 

cranberries to their diet without the inconvenience and sugar of whole fruits or processed fruit 

products. Polyphenols are abundant in fruits and vegetables, however the amount needed to 

provide health benefits tend to be larger than a person might consume on a daily basis.  

Consumers would need to eat large quantities of fruits and vegetables to get these polyphenol 

benefits, however consumers are now eating on-the-go and live a fast-paced lifestyle, which 

makes eating whole fruits and vegetables less conducive to their busy lifestyle. The convenient 

option of supplements allows consumers to get the health benefits of polyphenols in fruits in a 

smaller and more manageable form. 

Anthocyanins are a class of flavonoid which give pigmentation to fruits and vegetables, 

usually in the form of reds, blues, purples, and blacks (Steyn, 2009).  Cranberries are made up 

primarily of cyanidin and peonidin, two out of six classes of anthocyanidins (Figure 3.1) (Kato, 

et al., 2015). The metabolites of cyanidin and peonidin have been reported to be antioxidants 

possessing anti-inflammatory properties (Fang, 2015) (Kakkar & Bais, 2014). Studies with 

mulberry extracts fed to mice and rats, as well as introduced to human cancer cells, report that 

anthocyanins (cyanidin-3-glucose, cyanidin-3-rutinoside, and peonidin-3-glucoside) possess 

other beneficial health attributes, especially in relation to cancer prevention (Huang, Chang, Wu, 

Hung, & Wang, 2011) (Long, et al., 2018) (Li, et al., 2016). A 2011 study reported anthocyanin 

extracts from mulberries (cyanidin-3-glucoside and cyanidin-3-rutinoside) were effective in 

inhibiting gastric cancer cells in mice by inducing apoptosis in the cancerous glandular cells, 
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thus reducing the amount of cancer cells that could grow via p38 caspase 8 signaling and p38 

Bac signaling pathways (Huang, Chang, Wu, Hung, & Wang, 2011). Anthocyanin-induced 

apoptosis of cancer cells was reported again with mulberry anthocyanins in relation to thyroid 

cancer where mulberry anthocyanins acted as thyroid tumor suppressors by deactivating 

Akt/mTOR signaling in cancer cells (Long, et al., 2018). Anthocyanins induce cell death in 

cancer cells independent of where the cells are derived from. In patients with trastuzumab-

resistant breast cancer, anthyocyanin extracts of mulberry (cyanidin-3-glucoside and peonidin-3-

glucoside) were once again reported to induce apoptosis in the cancerous cells which limited 

cancer cell migration and overall growth, both in vitro and in vivo (Li, et al., 2016). Cyanidin-3-

glucoside and peonidin-3-glucoside found in mulberry extracts are also found in cranberries, 

supporting the important role fruit bioactive consumption can have on human health. 

Proanthocyanidins are a part of the flavonoid group also known as condensed tannins; 

they are polymers of flavan-3-ols and are commonly consumed in the human diet (Gnanavinthan, 

2013) (Santos-Buelga & Scalbert, 2000). Proanthocyanidins are produced when flavanol 

monomers are polymerized, which can occur naturally within plants or from oxidation during 

processing (Beecher, 2003). Proanthocyanidins are found as either B-type carbon-carbon 

linkages or A-type carbon-oxygen linkages. Figure 3.2 shows a comparison of proanthocyanidin 

dimers between a B-type linkage and an A-type linkage (Xu, et al., 2015). The main difference 

between A-type and B-type linkages, as illustrated, is the addition of an ether bond within the A-

type linkages. Foods such as grapes and blueberries contain the widely appearing B-type 

linkages, while cranberries and plums contain A-type linkages (Xu, et al., 2015) (Howell, 2007) 

(Gu, et al., 2004). A-type linkages are associated with anti-adhesion activity (Howell, 2007) (Gu, 

et al., 2004). Cranberries have A-type proanthocyanidins and the anti-adhesion properties 



   

 

105 

associated with A-type proanthocyanidins make cranberries good promotors of urinary tract 

health (Howell, 2007). Anti-adhesion properties make it so that harmful bacteria such as P-

fimbriated uropathogenic E. coli cannot adhere within the body and cause infections (Howell, 

2007). This effect occurs because the A-type proanthocyanidins bind to E. coli fimbrial tips 

which inhibits the bacteria from adhering (Hisano, et al., 2012). 

 A 2003 study reported that B-type proanthocyanidins from apple juice, green tea, and 

dark chocolate provided no anti-adhesion in vitro while A-type proanthocyanidins from 

cranberry juice cocktail showed in vitro anti-adhesion (Howell, et al., 2005). While A-type 

proanthocyanidins are more well-known for their anti-adhesion properties in urinary tract health, 

a 2010 study reported that A-type proanthocyanidins are responsible for the antioxidant capacity 

of lychee seeds in vivo, and proanthocyandin litchitannin A2 exhibited anti-coxsackie virus B3 

activity in vitro, indicating that A-type proanthocyanidins are beneficial to health as an 

antioxidant, an anti-viral agent, as well as for anti-adhesion (Xu, et al., 2010). 

The USDA database states that raw cranberries contain 60.42 mg/100 g cyanidin and 

peonidin anthocyanin (Haytowitz, et al., 2018), 30.74 mg/100 g total polyphenols (Haytowitz, et 

al., 2018), and 354.9 mg/100 g proanthocyanidins (Bhagwat & Haytowitz, 2015). While raw 

cranberries are rich in bioactive compounds which may possess health benefits, cranberries are 

generally not consumed raw. Only 5% of cranberries are sold as raw fruit, with the rest being 

sold as juices, dried cranberries, sauces, or supplements (Grace, et al., 2012). Cranberry 

supplements harness the bioactive components of cranberries in an easier to consume form such 

as a spray-dried capsule or a chewable gummy. The gummies are available in two formats, bulk 

packaging with many filler ingredients or individually wrapped with fewer filler ingredients.  

The quality and quantity of cranberry extract may also differ. 
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While information on the processing effects on content and stability of bioactive 

compounds in juices is well established, there is a need for research on the polyphenol content 

and stability of different cranberry supplements to ensure that supplements are meeting claims 

and providing viable bioactive compounds not just initially, but over time. 

 

Figure 3.1 Structure of anthocyanidins 
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Figure 3.2 a) B-type epicatechin dimer from granny smith apples and b) A-type epicatechin 

dimer from red peanut skin (Xu et al., 2015) 

 

 Materials and Methods 

This research assessed 3 types of commercially available cranberry supplements 1) 

individually wrapped low filler ingredient gummy supplement (OSC), 2) bulk high filler 

ingredient gummy supplement (AZO), and 3) spray dried encapsulated supplement (TC) (Table 

3.1). Treatments were stored for 360 days at 21oC in original packaging within a sealed box to 

reduce light exposure. Bulk plastic containers were opened for each time point. Analytical 

measurements were taken on the treatments initially (t=0), weekly for the first month, then 

monthly until 360 days were obtained. Analyses were terminated prior to 360 days if two 

consecutive analyses contained no quantifiable polyphenols. At each time point 3 replicates were 

analyzed for each treatment. Reagents were analytical grade and were purchased from Fischer 

Scientific (Waltham, MA) unless otherwise noted. 
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Table 3.1 Cranberry Supplements Sample Overview 

TREATMENT STRUCTURE PACKAGING INGREDIENT 

OSC Gummy Supplement Individually wrapped Cranberry Fruit Extract, Apple 

Juice Concentrate, Apple Puree, 

Pectin 

AZO Gummy Supplement Bulk plastic container Cranberry Whole Fruit Powder, 

Glucose Syrup, Sugar, Water, 

Natural Flavors, Pectin, Sodium 

Citrate, Colors (Grape Juice 

Concentrate, Titanium Dioxide), 

Citric Acid, Coconut Oil, 

Carnauba Wax 

TC  Spray-Dried Capsule 

Supplement 

Bulk plastic container Cranberry Extract, Tricalcium 

Phosphate, Gelatin (bovine), 

Calcium Silicate, Magnesium 

Stearate, Silicon Dioxide, Rice 

Flour 

 

Proanthocyanidin Content 

 Extraction of OSC and AZO 

Replicates were added to a Warren blender with deionized (DI) water (1:11) and blended 

for 3 min on the low setting. The liquid replicate (5 g) was placed into a centrifuge tube along 

with 15 mL extraction solution (75% acetone, 24.5% DI water, 0.5% acetic acid (v/v)). The 

centrifuge tube was vortexed for 10 s, sonicated using a Branson ultrasonic water bath (Danbury, 

CT) for 15 min, and then centrifuged at 7954 x g for 20 min. The supernatant was removed from 

the pellet and placed into a 50 mL Falcon tube. The extraction was repeated two more times with 
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the extraction solution added to the pellet each time and the supernatants combined. After the 

final extraction each replicate was placed in a glass tube in a Buchi Syncore extraction device 

(Flawil, Switzerland) and placed under vacuum at 45oC for 5 h. Vacuum settings were based on a 

five step gradient where 1) 450 mbar – 350 mbar for 10 min 2) 350 mbar – 300 mbar for 5 min 

3) 300 mbar – 265 mbar for 105 min 4) 265 mbar – 125 mbar for 80 min 5) 125 mbar – 25 mbar 

for 100 min. A vacuum pump was connected to a recirculating chiller set to -10oC. 

 

 Extraction of TC  

Replicates (2.5 g) were placed into a centrifuge tube along with 7.5 mL of extraction 

solution (75% acetone, 24.5% DI water, 0.5% acetic acid (v/v)). The test tube was vortexed for 

10 s, sonicated using a Branson ultrasonic water bath (Danbury, CT) for 15 min, and then 

centrifuged at 7954 x g for 20 min. The supernatant was removed from the pellet and placed into 

a 50 mL Falcon tube. The extraction was repeated two more times with the extraction solution 

added to the pellet each time and the supernatants combined. After the final extraction each 

replicate was placed in a glass tube in a Buchi Syncore extraction device (Flawil, Switzerland) 

and placed under vacuum at 45oC for 5 h. Vacuum settings were based on a five step gradient 

where 1) 450 mbar – 350 mbar for 10 min 2) 350 mbar – 300 mbar for 5 min 3) 300 mbar – 265 

mbar for 105 min 4) 265 mbar – 125 mbar for 80 min 5) 125 mbar – 25 mbar for 100 min. A 

vacuum pump was connected to a recirculating chiller set to -10oC. 

 

 Proanthocyanidin Content – BL-DMAC Assay 

Treatments were assessed for proanthocyanidin content using an A2 dimer procyanidin 

standard following a modified method of Prior et al (2010). For proanthocyanidin analysis a 
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Precision XS with 96 well plate (Bio-Tek Instruments, Inc., Winooski, VT) was used for serial 

dilutions. A2 dimer standard was made by taking 5 mg of procyanidin in a 50 mL volumetric 

flask and bringing up to volume with ethanol. Using a 96-well plate, 140 µL of blank (80% 

ethanol in DI water), A2 dimer standard, and the replicates were loaded onto the first column. 

Precision XS performed serial dilutions by taking 70 µL of blank solution and filling all 7 

columns. Taken from each well was 70 µL and then mixed with the next well in the series, with 

the last 70 µL from the final column being discarded so that a final working volume of 70 µL 

was in each cell. 4-dimethylaminocinnamaldehyde (DMAC) (Sigma-Aldrich, St. Louis, MO) 

(210 µL) (0.1 DMAC powder in 100 mL 75% ethanol, 12.5% HCl, and 12.5% deionized water 

(v/v)). The well plate was loaded into Synergy 2 microplate reader with GEN5 software (Bio-

Tek Instruments, Inc., Winooski, VT) and analyzed at 25oC and 640 nm every min for 30 min. A 

calibration curve was generated from the A2 standard used. The concentration of 

proanthocyanidins in each replicate was determined using a calibration curve (A2 dimer standard 

absorbance versus A2 dimer concentration) regression line and the below equation where c is the 

concentration of proanthocyanidins in the extraction (g/L), d is the dilution factor, v is the 

volume of the extraction fluid after vacuum (mL), and w is the weight of the replicate used for 

extraction (g). 

𝑃𝐴𝐶𝑠 =
𝑐 𝑥 𝑑 𝑥 𝑣

(1000 𝑥 𝑤)
 

 

 Proanthocyanidin Content – Cranberry Standard Assay 

Treatments were assessed for proanthocyanidin content using a modified method of 

Krueger et. al (2016). Bio-Rad Poly-prep® columns (Hercules, CA) (2 per replicate) were set up 

in column racks and pre-hydrated lipophilic Sephadex® LH20 (22%) (Sigma-Aldrich, St. Louis, 
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MO) was added to the column to a volume of 1.2 mL. Each replicate was read in duplicate. DI 

water was then added to the column to 7.5 mL. Once the column was drained 1 g of replicate 

was added to the column. DI water was then added to the top of the column. Once the column 

was drained 10 mL of 25% reagent alcohol in DI water was added to the column and allowed to 

drain. The columns were then transferred to 15 mL Falcon tubes and washed twice with 2.5 mL 

70% acetone in DI water. The liquid collected in the Falcon tube was then vortexed for 5 s. The 

liquid (1 mL) was added to glass test tubes by auto-pipette using 70% acetone as the blank. 

DMAC solution (0.1% DMAC) (Sigma Aldrich, St. Louis, MO) in HCl:Methanol (30:70). 

DMAC solution (3 mL) was transferred by autopipette to a test tube and vortexed for 5 seconds. 

After 3 min the liquid was vortexed for 3 s. After 5 min the absorbance of the sample was read 

spectrophotometrically (640 nm).  Proanthocyanidin content was calculated using the below 

equation where ABS is the absorbance, RF is the response factor, w is the weight of the replicate 

loaded onto the column, d is the dilution factor if used (Replicate Weight/Water + Replicate 

Weight), and %S is the percent solids (100-Moisture Content). Proanthocyanidin content was 

then converted to mg/g. Replicates were diluted prior to analysis so that the absorbance was 

between 0.2 and 0.8 when read spectrophotometrically. 

 

𝑢𝑔 𝑃𝐴𝐶𝑠

𝑔 𝐷𝑊𝐵
=

𝐴𝐵𝑆 𝑥 5
𝑅𝐹 𝑥 𝑤 𝑥 𝑑 𝑥 %𝑆

0.95
 

 

Anthocyanin Content 

An Agilent 1260 HPLC (Agilent Technologies, Santa Clara, CA) was used for HPLC 

analysis of anthocyanins (Brown and Shipley 2011). Replicates (1.5 g) were added to 20 mL of 
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2% HCl:Methanol (2:98) (OSC and AZO treatments used 1:11 DI water dilution). The solution 

was sonicated for 15 min, shaken for 30 min, and centrifuged at 2324 x g for 5 min. The 

supernatant was removed from the pellet and used in HPLC analysis.  

The HPLC was run with 2 mobile phases (v/v) consisting of A) DI water (99.5%) and o-

phosphoric acid (0.5%) and B) deionized water (50%), acetonitrile (48.5%), acetic acid (1%), 

and o-phosphoric acid (0.5%). Each replicate was analyzed via HPLC for 35 min with a 10 µL 

injection volume, 1.0 mL/min flow rate, and the absorbance at 520 nm and 25oC, using a Water 

X-Select HSS T3 5µm, 4.6 x 150 mm reversed-phase C18 column. Replicates were analyzed for 

cyanidin-3-galactoside (cy-3-gal), cyanidin-3-glucoside (cy-3-glu), cyanidin-3-arabinoside (cy-

3-arab), peonidin-3-galactoside (peo-3-gal), peonidin-3-glucoside (peo-3-glu), and peonidin-3-

arabinoside (peo-3-arab). Standards for cy-3-gal, cy-3-glu, cy-3-arab, and peo-3-glu were 

obtained via Phytolab (Vestenbergsgreuth, Germany). Peo-3-glu and peo-3-arab were reported as 

peo-3-glu equivalents due to limited commercial manufacturing of the standards and the 

retention times were based on those validated by Brown & Shipley (2011). The minimum 

detection limit for cyanidins is 0.02 µg/mL and for peonidins 0.01 µg/mL. Flow rate was kept 

consistent throughout the run (1.0 mL/min) and ratio of mobile phase A to mobile phase B was 

decreased for the first 32 min and then increased to the initial settings for the remaining 3 min. 

The anthocyanin content of each sample was calculated using Agilent Open lab software 

(Agilent Technologies, Santa Clara, CA) based on the extraction dilution and reported as ppm. 

 

Total Phenolic Content 

Total phenolic content was measured using the Folin-Ciocalteu colorimetric assay 

(Singleton & Rossi, 1965) (Asami, et al., 2003). For gummy treatments the 1:11 water dilution 
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was used, and replicates were further diluted 1:20 in DI water for OSC and 1:2 for AZO. TC (1.2 

g) were dissolved in 45 mL of DI water then further diluted 1:45. Each replicate was analyzed in 

duplicate and DI water was used as the blank. Diluted sample and blank (100 µL) were pipetted 

into a glass test tube. DI water (3.9 mL) was added to each test tube and vortexed for 5 s. Folin-

Ciocalteu reagent (1:10 2N Folin-Ciocalteu Phenol Reagent in DI water) (250 µL) was added to 

the test tube and vortexed for 5 s. Sodium carbonate solution (7.5%) (750 µL) was added to each 

test tube and vortexed for 5 s. The replicates were stored in the dark for 30 min and absorbance 

was read spectrophotometrically (765 nm). Gallic acid (Sigma-Aldrich, St. Loius, MO) was used 

to create a standard calibration curve where 0.5% gallic acid solution was prepared and diluted to 

0, 10, 50, 100, 150, and 200 mg/L of gallic acid and the standard curve was made by plotting 

absorbance versus concentration. Total phenolic content in the replicates was determined by 

using the gallic acid calibration curve, dilution factor of the replicate, and the moisture content of 

the replicate to report TPC as mg/g gallic acid equivalent (GAE). 

 

Antioxidant Activity 

Antioxidant activity was assessed using a reaction with 2,2’-Diphenyl-1-Picrylhydrazyl 

(DPPH) (Sigma-Aldrich, St. Louis, MO) (AOAC 2012.04). For OSC and AZO treatments a 1:11 

water dilution was used and 15 g of each replicate was added to a 100 mL volumetric flask with 

50 mL 95% ethanol. TC (0.2 g) were added to a 100 mL volumetric flask with 50 mL 95% 

ethanol. The solution was shaken on a shaker table for 2 h then filtered through Whatman #4 

filter paper. Solutions were diluted to 0.1, 0.5, 1.0, 2.0, 5.0, and 7.0 g/mL in 95% ethanol and 

vortexed. Each solution (0.1 mL) was placed in a glass test tube with 0.1 mL of 95% ethanol as a 

control. 2.9 mL of DPPH solution (2.9 mL of 0.0394 g in 1000 mL methanol) was added to the 
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test tube and vortexed for 5 s. Dilutions were stored in the dark for 30 min and read 

spectrophotometrically (517 nm). DI water was used as the blank. Percentage radical scavenging 

activity was calculated with the below equation. 

 

𝐷𝑃𝑃𝐻 𝑆𝑐𝑎𝑣𝑒𝑛𝑔𝑖𝑛𝑔 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (%) =
𝐴𝐵𝑆(𝑐𝑜𝑛𝑡𝑟𝑜𝑙) − 𝐴𝐵𝑆(𝑠𝑎𝑚𝑝𝑙𝑒)

𝐴𝐵𝑆(𝑐𝑜𝑛𝑡𝑟𝑜𝑙)
 𝑥 100 

 

The concentration of antioxidant required to inhibit 50% of the oxidation reaction (IC50) 

was calculated by plotting % DPPH scavenging activity against the concentration and using the 

logarithmic trendline. Equations for these calculations are below where g replicate (g) is the 

weight of the powder used in the extraction and mg dilution (mg) is the weight of the serial 

dilutions. For the IC50 calculation, a is the slope of the natural logarithmic tread line of the plot 

of % scavenging versus concentration, and b is the y-intercept of the natural logarithmic tread 

line of the plot of % scavenging versus concentration. 

 

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛
𝑚𝑔

𝑚𝐿
= ( 

𝑔 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑒

50 𝑚𝐿
 𝑥 1000) 𝑥 (𝑚𝑔 𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛) 

𝐼𝐶50: 50 = 𝑎𝑙𝑛(𝑥) + 𝑏 

 

Water Activity and Moisture Content 

 Water Activity 

Water activity (Aw) was measured using a calibrated Aqua Lab 4TE (Meter Group Inc., 

Pullman, WA). Each replicate was measured in triplicate. 
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 Moisture Content 

Moisture content was assessed via Karl-Fischer titration using a calibrated Metrohm KF  

901 Titrando auto-titrator (Metrohm, Herisau, Switzerland). For OSC and AZO treatments each 

replicate (5 g) was added to a stainless-steel homogenization flask and 50g of 50:50 Karl-Fischer 

Grade low water methanol and Formamide was added. The replicate was then homogenized for 5 

min using an Omni Mixer (Omni International, Kennesaw, GA) set to speed 4. After 

homogenization, the flask was disconnected and covered with parafilm. The liquid sat 

undisturbed for 5 min before being analyzed for moisture content. Each replicate was then taken 

into a 3 mL syringe and was run through the auto-titrator. Each replicate was run in triplicate. TC 

(1 g) was added to a 50 mL volumetric flask with 20 g of Karl-Fischer Grade low water 

methanol. The replicate was shaken for 5 min and then the flask sat undistributed for 5 min 

before being analyzed for moisture content. Each replicate was then taken into a 3 mL syringe 

and was run through the auto-titrator. Each replicate was run in triplicate. 

 

Colorimetric and Texture Analyses 

 Color 

Color was analyzed for OSC and AZO using a calibrated Digieye color analyzer 

(VeriVide Ltd., Leicester, UK). Each replicate was read in triplicate and measured for L*, a*, 

and b* values which were used to calculate ΔE according to the below calculation. 

∆𝐸 = √(𝐿 ∗1− 𝐿 ∗2
2) + (𝑎 ∗1− 𝑎 ∗2)2 + (𝑏 ∗1− 𝑏 ∗2)2 
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 Texture 

Texture was analyzed for AZO and OSC treatments only using a calibrated TA.XT.Plus 

from Texture Technologies Corporation (Hamilton, MA). The TA.XT.Plus was configured with 

a TA-52 2 mm probe, 1.0 mm/s pre-test speed, 2.0 mm/s test speed, 5.0 mm/s post-test speed, 

20.0 mm target distance, 5.0 g auto trigger, and return to start in compression test setting. Each 

replicate was loaded onto the base plate and the test was run. Hardness (g/sec), toughness (g/sec), 

and adhesion force (g) was recorded by the texture analysis software (Exponent 32, version 6, 

Texture Technologies Corp, Scarsdale, NY). 

 

Statistical Analysis 

Data were analyzed using Minitab 16 Software (State College, PA) for analysis of 

variance (ANOVA) for all treatments. Shapiro-Wilk test for normality was assessed. Tukey’s 

Honest Significant Difference Test (HSD) was used for post-hoc analyses. Significance level of 

p<0.05 was used for all analyses. 

 

 Results and Discussion 

Proanthocyanidin Content  

While analysis using BL-DMAC assay indicated a significant (p<0.05) decrease in 

proanthocyanidin content regardless of product matrix, analysis using cranberry standard DMAC 

assay did not yield the same results, indicating that method of analysis for proanthocyanidin 

analysis should be taken into consideration when determining proanthocyanidin content in 

cranberry supplements as well as comparing results between tests (Table 3.3) (Table 3.4) (Figure 

3.3) (Figure 3.4) (Figure 3.5) (Figure 3.6). In all treatments, BL-DMAC yielded 
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proanthocyanidin content significantly lower than when assessed using cranberry standard 

DMAC assay. Significantly lower proanthocyanidin values from BL-DMAC assay compared to 

cranberry standard DMAC assay were also seen in previous studies (Martin, et al., 2015) 

(Krueger, et al., 2016). Lower proanthocyanidin values from BL-DMAC assay could be due to 

the standard utilized (A2 dimer standard in BL-DMAC compared to cranberry derived standard 

used in the cranberry standard assay). Proanthocyanidins in cranberries are more complex than 

other fruits which may only have procyanidin A2 dimer, so underestimation occurs as the more 

complex oligomers are not quantified from the A2 dimer standard (Krueger, et al., 2016). 

Although BL-DMAC assay is the industry standard for proanthocyanidin quantification, 

cranberry supplements containing complex proanthocyanidin oligomers should be analyzed 

using cranberry standard DMAC assay so that more complex proanthocyanidins are quantified as 

well. 

When analyzed using BL-DMAC assay there was a significant decrease in 

proanthocyanidin content from initial (t=0) to final (t=360) regardless of product matrix. Across 

treatments initially there was a significant difference in proanthocyanidin content, with TC 

having the highest (77.17 mg/g), OSC next (3.22 mg/g), and AZO having the lowest (0.32 mg/g). 

Final proanthocyanidin content across treatments indicated that TC was still significantly higher 

(48.81 mg/g) while there was no difference in final proanthocyanidin content between OSC and 

AZO (0.33 mg/g and 0.11 mg/g, respectively). TC had a significantly higher rate of change 

compared to OSC and AZO due to the higher initial content (Figure 3.2). A reason for the 

difference in proanthocyanidin content across treatments is likely due to product matrix, which is 

linked to processing conditions. Studies have reported that spray-drying preserves heat sensitive 

compounds such as polyphenols compared to gummy manufacturing which relies on longer heat 
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treatments, slower water removal, and incorporation of filler ingredients (Fang & Bhandari, 

2011) (Garcia-Ruiz, et al., 2017). Spray-drying and encapsulation can provide stability of the 

phenolic compounds by protecting them from reactivity during procesing (heat, oxidation, 

moisture, light) (Desai & Park, 2005).  Both OSC and AZO are gummy supplements which are 

subject to longer exposure to heat and slower water removal compared to spray drying and also 

contain other filler ingredients. The added filler ingredients change the composition resulting in 

less proanthocyanidin content by weight compared to TC. Within the gummy treatments, AZO 

has more ingredients (12) compared to OSC (4), so having lower proanthocyanidin content could 

be attributed to the type and amount of cranberry extract added as well as more ingredients 

reducing the concentration of proanthocyanidins in the treatment. Both AZO and OSC are also 

produced via depositing technology, which undergoes heat treatment to remove water through 

evaporation. Polyphenols, including proanthocyanidins, are heat sensitive and water soluble so 

the combination of heat and water evaporation during processing could also cause the lower 

initial proanthocyanidin content compared to spray-dried TC. There were also differences in the 

polyphenol content of OSC compared to AZO despite both of them being gummy supplements, 

indicating that even within a product matrix (gummy supplements), content can be significantly 

impacted by other factors such as other ingredients and type and quantity of extract used in the 

formulation. OSC had significantly higher initial proanthocyanidin content compared to AZO 

despite DMAC assay used. The overall decrease in proanthocyanidins was significantly larger in 

OSC and AZO, amounting to 36.8% decrease in TC compared to 89.7% decrease in OSC and 

64.5% decrease in AZO. The larger overall degradation of proanthocyanidins in AZO and OSC 

compared to TC further validates that spray-drying and encapsulation aids in stabilization of 
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proanthocyanidins (Desai & Park, 2005), while also validating that even within gummy 

treatments, packaging and product matrix can impact proanthocyanidin content and stability. 

When analyzed by cranberry standard DMAC assay, OSC was the only treatment that 

showed a significant decrease in proanthocyanidin content (15.14 mg/g to 3.13 mg/g), indicating 

that complex proanthocyanidin oligomers may be in larger quantities and have more stability. TC 

had a significantly higher initial proanthocyanidin content (306.6 mg/g) as well as a significantly 

higher final proanthocyanidin content (278.0 mg/g) than both OSC and AZO (15.14 mg/g to 3.13 

mg/g for OSC and 2.50 mg/g to 1.73 mg/g for AZO, respectively). Overall degradation between 

treatments were significantly less in all treatments compared to BL-DMAC assay (79.3% 

decrease for OSC, 30.8% decrease for AZO, and 8.70% decrease for TC), once again confirming 

that the complex proanthocyanidin oligomers are more stable than the dimers that are quantified 

using BL-DMAC. Compared to BL-DMAC, there was no significant difference in the rates of 

degradation between treatments. 

Compared to the proanthocyanidin content of raw cranberries (3.59 mg/g), OSC is 

comparable initially, AZO has significantly less, and TC has significantly more, making TC the 

best option for proanthocyanidins as a supplement for cranberry proanthocyanidins (Bhagwat & 

Haytowitz, 2015).  Even though TC may be the best option for consumers wanting to add in 

proanthocyanidins to their diet, the appeal of taking a very medicinal looking supplement as 

opposed to whole fruit or gummies may deter purchase intent of the TC, even though it may 

provide more benefits. The ability of future research to increase quantity of proanthocyanidins in 

gummy supplements and increase gummy supplement proanthocyanidins stability to equal level 

of spray-dried supplements may increase consumer purchase. 
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Table 3.2 Rates of Change of Cranberry Supplements 

TREATMENT OSC AZO TC 

Proanthocyanidin Content (BL-

DMAC Assay) 

-0.0080a ± 0.0002 -0.0006a ± 0.0002 -0.0788b ± 0.0067 

Proanthocyanidin Content 

(Cranberry DMAC Assay 

-0.0334a ± 0.0026 -0.0021a ± 0.0008 -0.0740a ± 0.0505 

Anthocyanin Content -0.7269b ± 0.0605 -0.0454a ± 0.0404 0.2112a ± 0.2067 

Total Phenolic Content -0.0044a ± 0.0113 -0.0021a ± 0.0009 -0.0997b ± 0.0167 

Aw -0.0000a ± 0.0000 -0.0005a ± 0.0008 -0002a ± 0.0000 

Moisture Content -0.0139c ± 0.0015 -0.0059b ± 0.0016 0.0000a ± 0.0000 

DE 0.0092a± 0.0005 0.0054b ± 0.0009 - 

Hardness 0.4264a ± 0.2623 0.5628a ± 0.1245 - 

Toughness 1.659a ± 0.8770 1.047a ± 1.455 - 

Adhesion 0.2532b ± 0.0980 0.5726a ± 0.1262 - 

Each value is the average ± standard deviation (n=3). Treatments were stored at for 360 days at 21oC. OSC were stored in individually wrapped gummy 

supplements in a larger box. AZO and TC were stored in loose bulk containers and treatments were pulled and containers resealed after each time point. Bulk 

containers of AZO and TC were stored in larger boxes. Values within rows not sharing a lowercase letter are significantly (p<0.05) different. Treatments were 

analyzed by ANOVA (Tukey’s HSD).  
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Table 3.3 Proanthocyanidin content of cranberry supplements by BL-DMAC assay over time 

TIME (DAYS) OSC AZO TC 

0 3.22bA ± 0.05 0.32cA ± 0.06 77.17aBCDE ± 1.98 

7 2.92bAB ± 0.42 0.20cB ± 0.02 65.39aCDEF ± 5.35 

14 3.17bAB ± 0.24 0.20cB ± 0.04 105.42aA ± 5.29 

21 2.80bB ± 0.09 0.16cBC ± 0.01 69.45aBCDE ± 3.68 

28 3.07bAB ± 0.18 0.12cBCD ± 0.02 85.90aAB ± 9.68 

60 2.06bC ± 0.08 0.10cBCD ± 0.01 80.11aBC ± 3.85 

90 1.71bCD ± 0.03 0.18cBC ± 0.02 87.39aAB ± 2.55 

120 1.54bDE ± 0.05 0.12cBCD ± 0.01 88.84aAB ± 3.81 

150 1.19bEF ± 0.08 0.16cBC ± 0.05 77.67aBCD ± 3.41 

180 0.98bFG ± 0.05 0.13cBC ± 0.01 60.16aDEF ± 3.10 

210 0.84bFG ± 0.03 0.10cCD ± 0.03 64.50aCDEF ± 0.76 

240 0.59bGHI ± 0.04 0.11cBCD ± 0.01 58.13aCDEF ± 12.74 

270 0.74bGH ± 0.00 0.02cD ± 0.04 57.49aEF ± 3.02 

300 0.61bGHI ± 0.04 0.10cCD ± 0.01 69.36aBCDE ± 9.22 

330 0.28bI ± 0.02 0.08bCD ± 0.06 79.17aBCD ± 15.26 

360 0.33bHI ± 0.04 0.11bBCD ± 0.01 48.81aF ± 0.97 

Each value is the average ± standard deviation (n=3). Treatments were stored at for 360 days at 21oC. OSC were stored in individually wrapped gummy 

supplements in a larger box. AZO and TC were stored in loose bulk containers and treatments were pulled and containers resealed after each time point. Bulk 

containers of AZO and TC were stored in larger boxes. Values within columns not sharing an uppercase letter are significantly (p<0.05) different. Values within 

rows not sharing a lowercase letter are significantly (p<0.05) different. Treatments were analyzed by ANOVA (Tukey’s HSD).  

 

 

 



   

 

122 

 

Figure 3.3 Proanthocyanidin content (BL-DMAC Assay) versus time of TC 
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Figure 3.4 Proanthocyanidin content (BL-DMAC Assay) versus time of OSC and AZO 
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Table 3.4 Proanthocyanidin content of cranberry supplements by DMAC assay utilizing cranberry standard over time 

TIME (DAYS) OSC AZO TC 

0 15.14bA ± 0.67 2.50bAB ± 0.04 306.60aABC ± 11.27 

7 14.83bAB ± 0.19 2.43bABC ± 0.29 286.47aBC ± 13.47 

14 13.67bABC ± 0.97 2.75bA ± 0.17 272.17aBCDE ± 5.63 

21 12.82bC ± 0.11 1.97bABCDE ± 0.19 248.27aCDEF ± 8.36 

28 13.15bBC ± 0.44 2.07bABCD ± 0.39 356.23aA ± 29.30 

60 10.77bD ± 1.09 2.36bABCD ± 0.41 263.71aBCDEF ± 40.76 

90 9.03bDE ± 0.26 2.01bABCDE ± 0.63 198.78aF ± 12.33 

120 7.56bEF ± 1.26 2.02bABCD ±0.15 216.16aDEF ± 14.35 

150 7.37bEF ± 0.50 1.88bABCDE ± 0.49 257.32aBCDEF ± 21.65 

180 6.28bFG ± 0.37 1.53bCDE ± 0.28 304.74aABC ± 6.68 

210 5.41bGH ± 0.49 1.45bDE ± 0.38 297.52aABC ± 24.60 

240 3.23bI ± 0.47 1.64bBCDE ± 0.41 287.08aBC ± 28.19 

270 3.11bI ± 0.38 1.50bCDE ± 0.17 208.44aEF ± 9.11 

300 3.75bHI ± 0.29 1.56bCDE ± 0.11 306.56aABC ± 22.17 

330 3.04bI ± 0.12 1.01bE ± 0.04 317.39aAB ± 44.42   

360 3.13bI ± 0.25 1.73bABCDE ± 0.28 280.00aBCD ± 23.73 

Each value is the average ± standard deviation (n=3). Treatments were stored at for 360 days at 21oC. OSC were stored in individually wrapped gummy 

supplements in a larger box. AZO and TC were stored in loose bulk containers and treatments were pulled and containers resealed after each time point. Bulk 

containers of AZO and TC were stored in larger boxes. Values within rows not sharing a lowercase letter are significantly (p<0.05) different. Values within 

columns not sharing an uppercase letter are significantly (p<0.05) different excluding rate of degradation. Treatments were analyzed by ANOVA (Tukey’s HSD). 
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Figure 3.5 Proanthocyanidin content (Cranberry Standard Assay) versus time of TC 
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Figure 3.6 Proanthocyanidin content (Cranberry Standard Assay) versus time of OSC and AZO



   

 

127 

Anthocyanin Content 

TC was the only treatment with no significant (p>0.05) difference between initial 

(3862.67 ppm) and final (3938.69 ppm) anthocyanin content, indicating that spray dried 

encapsulated supplements provide higher anthocyanin stability than gummy supplements (Table 

3.5) (Figure 3.7) (Figure 3.8).  TC had a significantly higher initial anthocyanin content than 

OSC and AZO treatments (270.69 ppm and 24.51 ppm, respectively) as well as a significantly 

higher final anthocyanin content than OSC and AZO treatments (9.02 ppm and 0.00 ppm, 

respectively). TC also had a positive rate of change of anthocyanins compared to AZO and OSC 

which has negative rates of anthocyanin change (Table 3.2).  As seen with proanthocyanidins, 

OSC and AZO both are processed with longer exposure to heat and slower water removal which 

destabilize the active components, as well as both contain other filler ingredients which reduces 

the concentration of active components, resulting in less anthocyanin content, where TC is a 

spray dried extract which concentrates and stabilizes the anthocyanins resulting in larger 

anthocyanin content. Another cause of anthocyanin degradation could be polyphenol oxidase 

(PPO) - a naturally occurring enzyme that causes browning in the presence of oxygen (Siddiq & 

Dolan, 2017) (Fang, et al., 2007) (Institute of Food Science and Technology, 2017). PPO can 

degrade anthocyanins to brown, black, or yellow colors from the natural red, purple, and blue 

pigments (Bermejo-Prada & Otero, 2016). Processing, such as drying, as well as storage 

conditions, can promote PPO reactions causing most color changes and anthocyanin 

polymerization reactions (Siddiq & Dolan, 2017) (Bermejo-Prada & Otero, 2016) (Jaiswal, et al., 

2010). Anthocyanins in the gummy format of cranberry supplements are extremely unstable due 

to processing conditions and product matrix, decreasing 96.7% in OSC and 100% in AZO 

compared to TC which saw no significant change in anthocyanins and remained stable over time. 
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A study with bayberry polyphenols reported that spray-drying of bayberry juice preserved 

anthocyanins 94% indicating spray-drying as an adequate method for anthocyanin preservation 

(Fang & Bhandari, 2011). The stability of anthocyanins and lack of degradation throughout the 

study in TC compared to OSC and AZO confirms that spray-drying is a more stable method for 

anthocyanins than heat treatment using depositing technology seen in the gummy treatments. 

Within the gummy supplement treatment, both OSC and AZO had differences, indicating that 

even within product matrix for gummy supplements, there are significant differences in the 

anthocyanin content over time. As with proanthocyanidins, the cranberry extract type and 

amount in the two gummy treatments may impact initial amount of anthocyanins, and as OSC 

has fewer filler ingredients to reduce the concentration of anthocyanins, resulting in a larger 

quantity of anthocyanins initially compared to AZO as well as at the end of the study, where 

there was no anthocyanin content for AZO, but OSC had 9.02 ppm. While the anthocyanin 

content within the gummy supplement treatments were significantly different initially and finally 

due to product matrix and composition, there was no significant difference in the overall rate of 

degradation of the two treatments (decrease of 96.7% in OSC and 100% in AZO) signifying that 

with regards to anthocyanins, packaging does not impact rate of degradation. OSC was stored 

individually wrapped, ideal packaging as it limits oxygen exposure over the study, compared to 

AZO which were stored in a bulk container and were exposed to more oxygen when the 

container was opened during each time point. Since this difference in packaging did not 

significantly impact the decrease in anthocyanins within the gummy treatments, product 

composition is likely responsible for the negative impact on anthocyanin content in gummy 

supplements.  
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The significantly larger amount of anthocyanins in TC combined with the stability that 

TC anthocyanins have throughout shelf life indicate that anthocyanin copigmentation and 

stacking occurs at this larger anthocyanin level (Gordillo, et al., 2012). Copigmentation of 

various anthocyanins cause a π-π stacking effect, which insulates the anthocyanin compounds 

from oxidation and provides enhances stability (Gordillo, et al., 2012). OSC and AZO do not 

have anthocyanin compounds at the larger levels seen in TC, so no insulation effect from 

stacking of anthocyanin was observed, resulting in significant decreases in anthocyanin over 

time. HPLC anthocyanin spectra for treatments initially and finally can be seen in Figures 3.9-

3.14.  

Compared to raw cranberry anthocyanin content (604.2 ppm), both OSC and AZO have 

significantly less anthocyanin content while TC has a significantly larger anthocyanin content 

(Haytowitz, et al., 2018). By concentrating and stabilizing the cranberry anthocyanins into a 

spray dried encapsulated form, TC can increase the amount of anthocyanin by 6x that of raw 

cranberries. Consuming cranberry supplements in a spray dried encapsulated pill form compared 

to eating 6x w/w of raw cranberries is a more convenient alternative though it may be cost 

prohibitive for some consumers as TC is $0.92 per serving compared to AZO ($0.32/serving) 

and OSC ($0.90/serving). However, as Millennials move away from medicinal-like supplements, 

consuming multiple gummies may be more acceptable and affordable to consumers. 
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Table 3.5 Anthocyanin content of cranberry supplements over time 

TIME (DAYS) OSC AZO TC 

0 270.69bA ± 21.79 24.51cA ± 4.72 3862.67aABC ± 36.00 

7 243.12bA ± 22.56 12.34cBC ± 2.62 3962.17aAB ± 63.53 

14 154.07bB ± 32.74 14.74cAB ± 0.15 3998.40aAB ± 65.18 

21 141.09bB ± 3.89 5.29cCD ± 1.27 3922.69aAB ± 16.71 

28 130.25bB ± 17.93 8.94cBCD ± 3.70 4098.46aA ± 109.92 

60 83.26bC ± 4.00 12.38cABC ± 3.49 3841.22aABC ± 33.44 

90 59.59bCD ± 3.01 9.93cBCD ± 1.47 3917.61aAB ± 100.84 

120 31.25bDE ± 1.84 3.93cCD ± 1.81 4110.86aA ± 44.86 

150 26.59bDE ± 1.22 3.83cCD ± 0.08 3490.76aCD ± 194.37 

180 22.48bDE ± 3.73 0.00cD ± 0.00 3630.52aBCD ± 60.08 

210 16.23bE ± 1.00 3.33cD ± 3.45 3756.22aABC ± 69.94 

240 12.49bE ± 0.76 0.00cD ± 0.00 3797.22aABC ± 69.94 

270 10.70bE ± 1.10 0.00cD ± 0.00 3278.12aD ± 446.24 

300 9.68bE ± 1.11 0.00cD ± 0.00 3873.21aABC ± 28.54 

330 10.91bE ± 0.42 0.00cD ± 0.00 3908.50aAB ± 6.81 

360 9.02bE ± 0.61 0.00cD ± 0.00 3938.69aAB ± 38.44 

Each value is the average ± standard deviation (n=3). Treatments were stored at for 360 days at 21oC. OSC were stored in individually wrapped gummy 

supplements in a larger box. AZO and TC were stored in loose bulk containers and treatments were pulled and containers resealed after each time point. Bulk 

containers of AZO and TC were stored in larger boxes. Values within columns not sharing an uppercase letter are significantly (p<0.05) different. Values within 

rows not sharing a lowercase letter are significantly (p<0.05) different. Treatments were analyzed by ANOVA (Tukey’s HSD).  
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Figure 3.7 Anthocyanin content versus time of TC 
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Figure 3.8 Anthocyanin content versus time of OSC and AZO 
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Figure 3.9 Initial anthocyanin profile of OSC 

 

 

Figure 3.10 Final anthocyanin profile of OSC 
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Figure 3.11 Initial anthocyanin profile of TC 

 

 

Figure 3.12 Final anthocyanin profile of TC 
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Figure 3.13 Initial anthocyanin profile of AZO 

 

 

Figure 3.14 Final anthocyanin profile of AZO 
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Total Phenolic Content 

OSC was the only treatment without a significant (p>0.05) decrease in total phenolic 

content, indicating that the addition of apple juice concentrate and apple paste to OSC may 

stabilize total phenolic content and have more stability than other phenolic compounds found in 

TC or AZO (Table 3.6) (Figure 3.15) (Figure 3.16). Overall, as seen in both proanthocyanidin 

and anthocyanin content, TC had a significantly higher initial total phenolic content (220.18 

mg/g) compared to OSC and AZO (18.31 mg/g and 4.45 mg/g, respectively), as well as a 

significantly higher final total phenolic content (184.28 mg/g) compared to OSC and AZO 

(16.73 and 3.82 mg/g, respectively). As previously discussed with proanthocyanidins and 

anthocyanins, spray-drying is a superior method to gummy manufacturing for preserving 

phenolic compounds during processing, resulting in larger total phenolic content in TC compared 

to OSC and AZO. The addition of apple paste and apple juice concentrate, which contain high 

amounts of phenolic compounds, in OSC could make the total phenolic content in OSC 

significantly more stable than AZO and TC. It has been reported that apple phenolic compounds 

are stable in varying ranges of heat, validating this hypothesis (Chen, et al., 2012). Stability of 

OSC stemming from additional apple juice concentrate and apple paste is not mirrored in 

anthocyanin content or proanthocyanidin content as the major polyphenols seen in apples are 

chlorogenic acid and quercetin which would only increase total phenolic content stability in the 

increased amounts compared to AZO and TC (Gliszczynska-Swiglo & Tyrakowska, 2003). 

Quercetin has been shown to increase total phenolic content stability and result in larger total 

phenolic content (Michalska, et al., 2018) (Aherne & O'Brien, 2002) (White, et al., 2011). The 

rates of degradation of total phenolic content was not significantly different at the lower levels of 

phenolics seen in AZO and OSC, however TC had the largest rate of degradation, stemming 
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from the significantly larger total phenolic content (Table 3.2). While there are significant 

differences between the TC spray-dried treatment and the gummy treatments, differences within 

the gummy treatments also occurred, further indicating that product matrix is a significant factor 

in polyphenol content and stability. As previously seen with proanthocyanidins and 

anthocyanins, OSC product matrix resulted in higher total phenolic content compared to AZO 

due to product composition. OSC also showed no significant degradation between initial and 

final total phenolic content while there was a significant difference within AZO, signifying that 

apple stabilized phenolics. This difference within the treatments could also indicate that for total 

phenolic content the individually wrapped OSC did provide more protection than the bulk 

packaging of AZO. Although packaging was not a significant factor for proanthocyanidins or 

anthocyanins, the compounds that make up the majority of total phenolic content could be more 

sensitive to oxidation thus the individually wrapped OSC was more stable with regards to total 

phenolic content than AZO. 

Compared to proanthocyanidins and anthocyanins content, total phenolic is the most 

stable phenolic measure for gummy cranberry supplements, only decreasing 8.6% for OSC and 

14.2% for AZO, while TC saw a 16.3% decrease in total phenolic content.  Compared to raw 

cranberries (0.307 mg/g total phenolic content), all supplements are better options for delivering 

phenolic content, with TC having the largest amount of total phenolic content (Haytowitz, et al., 

2018). 
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Table 3.6 Total phenolic content of cranberry supplements over time 

TIME (DAYS) OSC AZO TC 

0 18.31bA ± 1.97 4.46cA ± 0.24 220.18aA ± 5.15 

7 16.84bAB ± 0.98 3.98cAB ± 0.06 231.31aA ± 4.09 

14 15.86bAB ± 0.17 3.99cAB ± 0.25 229.42aA ± 2.37 

21 17.01bAB ± 0.46 3.56cBCD ± 0.18 214.78aA ± 2.99 

28 16.64bAB ± 0.16 3.81cBC ± 0.20 184.84aB ± 5.44 

60 16.93bAB ± 0.42 3.64cBCD ± 0.20 159.71aC ± 5.78 

90 14.76bB ± 1.49 3.72cBCD ± 0.38 159.71aC ± 5.78 

120 16.45bAB ± 0.19 3.32cCD ± 0.16 148.54aC ± 2.38 

150 16.71bAB ± 0.21 3.44cBCD ± 0.16 182.95aB ± 6.09 

180 18.40bA ± 1.13 3.56cBCD ± 0.20 181.75aB ± 7.08 

210 17.52bAB ± 0.29 3.36cCD ± 0.22 185.18aB ± 5.22 

240 16.27bAB ± 0.09 3.75cBC ± 0.19 187.71aB ± 3.58 

270 16.54bAB ± 0.21 3.75cBC ± 0.09 196.74aB ± 11.89 

300 15.94bAB ± 0.04 3.14cD ± 0.10 192.49aB ± 4.76 

330 16.52bAB ± 0.27 3.46cBCD ± 0.16 186.41aB ± 5.72 

360 16.73bAB ± 2.28 3.82cBC ± 0.16 184.28aB ± 3.97 

Each value is the average ± standard deviation (n=3). Treatments were stored at for 360 days at 21oC. OSC were stored in individually wrapped gummy 

supplements in a larger box. AZO and TC were stored in loose bulk containers and treatments were pulled and containers resealed after each time point. Bulk 

containers of AZO and TC were stored in larger boxes. Values within columns not sharing an uppercase letter are significantly (p<0.05) different. Values within 

rows not sharing a lowercase letter are significantly (p<0.05) different. Treatments were analyzed by ANOVA (Tukey’s HSD). 
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Figure 3.15 Total phenolic content versus time of TC 
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Figure 3.16 Total phenolic content versus time of OSC and AZO 

 

Antioxidant Activity 

All treatments had significantly (p<0.05) different maximum DPPH scavenging (%) and 

IC50 values (mg/mL) (Table 3.7). TC demonstrated the ability to scavenge 15.0% more DPPH 

free radicals than OSC and 62.8% more DPPH free radicals than AZO. TC also has the lowest 

IC50 value, indicating that it has the most antioxidant capacity. Comparatively, ascorbic acid 

standard had a maximum DPPH scavenging of 95.3% with an IC50 of 79.84 mg/mL, indicating 

that TC and OSC are both not as potent an antioxidant as ascorbic acid. Studies have reported 
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that cranberries are among the fruits with the highest levels of antioxidants (177.0 mol/g vitamin 

C equivalents compared to apples at 97.6 mol/g vitamin C equivalents) (Sun, et al., 2002). The 

larger amount of DPPH scavenging antioxidant compounds seen in both TC and OSC compared 

to AZO confirm that while not as potent an antioxidant as ascorbic acid, cranberry supplements 

do display antioxidant capacity. More studies on how DPPH and antioxidant capacity in vitro 

compares to in vivo models should be done, as previous studies have indicated that different 

polyphenol pathways and bioavailability of those polyphenols react differently in vitro than in 

vivo, so the antioxidant effect cannot be directly translated to how antioxidant pathway would 

work in the human body (Prior, et al., 2007) (da Silva Pinto, et al., 2010). Further analyzing a 

complete phenolic profile may assist in this determination of antioxidant capacity between in 

vivo and in vitro models by isolating the most abundant phenolics in each treatment (da Silva 

Pinto, et al., 2010). 

 

Table 3.7 Antioxidant activity of cranberry supplements 

TREATMENT DPPH SCAVENGING (%) IC50 (MG/ML) 

OSC 69.17 ± 2.32b  8.55 x 104 ± 1.41 x 104b 

AZO 21.47 ± 5.55c  1.27 x 109 ± 1.64 x 109a 

TC 84.28 ± 1.70a  1.07 x 103 ± 229.61c 

Each value is the average ± standard deviation (n=48) except for AZO (n=15). Treatments were stored at for 360 

days at 21oC. OSC were stored in individually wrapped gummy supplements in a larger box. AZO and TC were 

stored in loose bulk containers and treatments were pulled and containers resealed after each time point. Bulk 

containers of AZO and TC were stored in larger boxes. Values within columns not sharing a lowercase letter are 

significantly (p<0.05) different. Treatments were analyzed by ANOVA (Tukey’s HSD).  
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Water Activity and Moisture Content 

 Water Activity 

TC was the only treatment with a significant (p<0.05) decrease in initial (0.366) and final 

(0.282) Aw (Table 3.8) (Figure 3.17). The significantly lower initial Aw of TC (0.366 compared 

to 0.588 for OSC and 0.500 for AZO) and significantly lower final Aw of TC (0.282 compared to 

0.581 for OSC and 0.491 for AZO) is due to processing and composition differences, with TC 

being a spray-dried extract compared to OSC and AZO which are manufactured with other high 

moisture ingredients and subjected to different target moisture contents. Despite the differences 

in Aw between the treatments, there was no significant difference in their rates of change, 

indicating that Aw is stable analytical measurement for cranberry supplements (Table 3.2). From 

a microbial standpoint, stability in Aw is desired as there is certain microbial threshold that the 

Aw cannot exceed from a food safety and spoilage perspective. However, studies have reported 

that lower Aw may result in more stable phenolic compounds (Fang & Bhandari, 2011). Spray-

dried bayberry polyphenols showed that at Aw of 0.11 to 0.33, TPC were significantly more 

stable than above 0.33 Aw (Fang & Bhandari, 2011). The lower Aw of TC compared to OSC and 

AZO, despite being stored at the same temperature, validates this hypothesis that lowering Aw 

can aid in preservation of total phenolic content during processing, once again making spray-

drying a superior method to long heat exposure and slow water removal gummy manufacturing 

for phenolic stability. Although initial Aw within the gummy treatments showed significant 

differences, there was no significant difference in the final Aw within the gummy treatments, 

indicating that Aw throughout these gummy treatments will stabilize over time. Initial variation 

in Aw between OSC and AZO can be attributed to differing processing parameters that would 

dictate the Aw of the product. Even though packaged differently the Aw of both treatments were 
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not significantly different, so packaging did not affect Aw which reach a similar point for both 

treatments. 

Further work to potentially stabilize compounds in OSC and AZO could be to evaluate 

glass transition temperatures of the products, and ensure that storage temperatures of the 

treatments are below the glass transition temperatures, as this has been shown to significantly aid 

in total phenolic content retention, as it slows down the rate of reactions in the product (Fang & 

Bhandari, 2011). Glass transition temperature is the temperature at which a material goes from 

the glassy state to rubbery state, which can have effects on the reactions that occur within a 

system (Bell & Hageman, 1994). 

 

Table 3.8 Initial and final comparison of Aw of cranberry supplements 

SAMPLE INITIAL FINAL 

OSC 0.588 ± 0.006aA 0.581 ± 0.006aA 

AZO 0.500 ± 0.018bA 0.491 ± 0.036aA 

TC 0.366 ± 0.001cA 0.282 ± 0.006bB 

Each value is the average ± standard deviation (n=3). Treatments were stored at for 360 days at 21oC. OSC were 

stored in individually wrapped gummy supplements in a larger box. AZO and TC were stored in loose bulk 

containers and treatments were pulled and containers resealed after each time point. Bulk containers of AZO and TC 

were stored in larger boxes. Values within columns not sharing a lowercase letter are significantly (p<0.05) 

different. Values within rows not sharing an uppercase letter are significantly (p<0.05) different. Treatments were 

analyzed by ANOVA (Tukey’s HSD).  
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Figure 3.17 Aw versus time of cranberry supplements 

 

 Moisture Content 

All treatments had a significant (p<0.05) difference between initial and final moisture 

content indicating that moisture changes in cranberry supplements occurs regardless of product 

matrix or packaging (Table 3.9) (Figure 3.18). TC saw an increase in initial moisture content 

(0.01% to 0.02%) while OSC and AZO both saw reductions in moisture content (19.98% to 

14.93% for OSC and 15.07% to 12.96% for AZO, respectively). The spray-dried nature of TC 

left it more susceptible to moisture integration as powders can undergo plasticization and 

increased glass transition due to an increase in moisture content caused by water vapor from the 
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atmosphere or other ingredients such as gelatin calcium silicate, or silicon dioxide that may have 

available water to increase moisture content (Montes, et al., 2011) (Sandler, et al., 2010). The 

product matrices of OSC and AZO which are more complex, composed of high moisture 

ingredients, and not dried to the same initial moisture level as TC, leads to higher initial moisture 

content. However, unlike TC which gained moisture over time and had a positive rate of change, 

OSC and AZO decreased in moisture content with OSC moisture content degrading significantly 

faster than AZO (Table 3.2). This loss in moisture content could be a result of diffusivity during 

storage which is affected by the glass transition temperature and could result in a decrease in 

moisture content over time (Miranda, et al., 2014). 

Packaging also could be a factor in moisture content changes. OSC were individually 

wrapped while AZO were in a bulk container which was opened and closed for each time pull 

similarly to TC. The opening and closing of the container could have resulted in an increase in 

moisture content in TC, as spray dried capsules are more likely to pick up moisture in the air 

resulting in clumping, plasticization, and increased moisture content due to the smaller particle 

size of the powder compared to a larger, solid, gummy (Montes, et al., 2011). While this is true 

for the spray-dried powder, there did not appear to be a significant difference in the package 

between gummy supplements, as both lost moisture over time. 
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Table 3.9 Initial and final comparison of moisture content of cranberry supplements 

SAMPLE INITIAL (%) FINAL (%) 

OSC 19.95 ± 0.07aA 14.93 ± 0.70aB 

AZO 15.07 ± 0.71bA 12.96 ± 0.13bB 

TC 0.01 ± 0.00cB 0.02 ± 0.00cA 

Each value is the average ± standard deviation (n=3). Treatments were stored at for 360 days at 21oC. OSC were 

stored in individually wrapped gummy supplements in a larger box. AZO and TC were stored in loose bulk 

containers and treatments were pulled and containers resealed after each time point. Bulk containers of AZO and TC 

were stored in larger boxes. Values within columns not sharing a lowercase letter are significantly (p<0.05) 

different. Values within rows not sharing an uppercase letter are significantly (p<0.05) different. Treatments were 

analyzed by ANOVA (Tukey’s HSD).  

 

Figure 3.18 Moisture content versus time of cranberry supplements 
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Colorimetric and Texture Analyses 

 Color 

AZO had a significant (p<0.05) increase in a* while OSC saw no significant impact to 

a*, indicating that AZO redness was increased compared to OSC (Table 3.10) (Table 3.11) 

(Figure 3.19). OSC had a significantly lower initial a* (1.80) compared to AZO (5.02) and a 

significantly lower final a* (1.19) compared to AZO (6.62). a* represents the red color in a 

sample, with larger positive a* values indicating that the sample is more red. Despite the OSC 

treatment being darker than AZO and the AZO treatment looking purple in color, AZO was 

measured as being more red. This discrepancy is because OSC is extremely dark, almost black in 

color, so a* value is not as relevant as it is in AZO, likely attributed to different types of 

cranberry extract, filler ingredients, and processing conditions.  There was both a strong negative 

correlation between initial a* and initial anthocyanins and final a* and final anthocyanins despite 

the large decrease in anthocyanins content compared to a* which did not change for OSC and 

increased 31.8% for AZO. There was an overall color change (∆E) in all treatments, which takes 

into consideration L*, a* and b* values (L* and b* data not shown) (Table 3.11). OSC had a 

significantly higher change in overall color (3.31) compared to AZO (1.94) and had a 

significantly higher rate of change compared to AZO (Table 3.2). ∆E encompasses any deviation 

in color from the initial sample to the final sample with regards to all aspects of the Hunter 

L*a*b* scale, so while OSC had a significantly larger change in overall color compared to AZO, 

the cause of the color change could be from different causes such as different ingredient 

composition, different processing conditions, browning and color deterioration due to oxidation 

and heat (Burdurlu & Karadeniz, 2003) (Damasceno, et al., 2008). 
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Despite differences in color throughout the study, consumer acceptability of color 

differences may be different in supplements than in other food matrices. Supplements are 

consumed whole and often come in a form that may not be indicative of freshness compared to 

color changes that occur in raw fruits. More work should be done to determine the consumer 

detectable threshold for ∆E to understand at what point color changes become important to the 

consumer in supplements.  

 

Table 3.10 Initial and final comparison of a* of cranberry supplements 

SAMPLE A* INITIAL A* FINAL 

OSC 1.80 ± 0.28bA 1.19 ± 0.40bA 

AZO 5.02 ± 0.04aB 6.62 ± 0.33aA 

TC - - 

Each value is the average ± standard deviation (n=3). Treatments were stored at for 360 days at 21oC. OSC were 

stored in individually wrapped gummy supplements in a larger box. AZO and TC were stored in loose bulk 

containers and treatments were pulled and containers resealed after each time point. Bulk containers of AZO and TC 

were stored in larger boxes. Values within columns not sharing a lowercase letter are significantly (p<0.05) 

different. Values within rows not sharing an uppercase letter are significantly (p<0.05) different. Treatments were 

analyzed by ANOVA (Tukey’s HSD).  

 

Table 3.11 Overall color change (∆E) of cranberry supplements 

SAMPLE ∆E 

OSC 3.31 ± 0.17a 

AZO 1.94 ± 0.33b 

TC - 

Each value is the average ± standard deviation (n=3). Treatments were stored at for 360 days at 21oC. OSC were 

stored in individually wrapped gummy supplements in a larger box. AZO and TC were stored in loose bulk 

containers and treatments were pulled and containers resealed after each time point. Bulk containers of AZO and TC 

were stored in larger boxes. Values within columns not sharing a lowercase letter are significantly (p<0.05) 

different. Treatments were analyzed by ANOVA (Tukey’s HSD).  
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Figure 3.19 DE versus time for cranberry supplements 

 

 Texture 

Across adhesion and toughness there were no significant (p>0.05) difference in initial 

and final values indicating that OSC and AZO both maintain textural adhesion and toughness 

properties throughout shelf life (Table 3.12) (Table 3.13) (Table 3.14) (Figure 3.20) (Figure 

3.21) (Figure 3.22). Except for initial hardness where OSC and AZO had statistically the same 

hardness (308.80 for OSC and 474.07 for AZO, respectively), AZO had significantly more 

adhesion force and was significantly tougher than OSC. AZO had a significantly higher initial 

adhesion force (511.97 g) compared to OSC (124.88 g), and a significantly higher final adhesion 

force (654.00 g) compared to OSC (462.30) indicating that AZO overall was chewier than OSC. 

AZO also had a significantly higher initial toughness (5065.7 g/sec) compared to OSC, and a 

significantly higher final toughness (5441.6 g/sec) compared to OSC (3171.4 g/sec) indicating 
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that AZO is also significantly tougher than OSC. Hardness of both treatments were initially the 

same (308.80 g for OSC and 474.07 g for AZO, respectively) while AZO was significantly 

harder at the end of shelf life (654.00 g/sec compared to 462.30 g/sec for OSC). Despite OSC 

and AZO having Aw that were the same, OSC had a significantly higher initial and final moisture 

content than AZO, which would explain the treatment being less hard and tough compared to 

AZO. As the moisture content in the treatment is lower, it is drier because there is less water to 

soften the sample. AZO has a lower moisture content than OSC, which means it has less water 

and is drier, resulting in a harder and tougher treatment compared to OSC. As with moisture, 

packaging could be a factor in the increase in hardness and toughness in AZO compared to OSC. 

As AZO was packaged in a bulk container and dried out over time, since the package was open 

and shut multiple times throughout the study, it could have caused the treatment to dry out even 

more. OSC does not have this issue to the same degree as AZO, as the treatments were in 

individually wrapped packaging. Despite differences in initial and final textures across the 

treatments, the rate of change was not significantly different with the exception of OSC adhesion 

force which had a rate of change significantly slower than AZO (Table 3.2). Packaging 

conditions of OSC (individually wrapped versus bulk container) could have accounted for the 

slow rate of increase in hardness seen in OSC compared to AZO. 
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Table 3.12 Comparison of initial and final hardness of cranberry supplements 

SAMPLE HARDNESS INITIAL (G) HARDNESS FINAL (G) 

OSC 308.82 ± 46.83aB 462.36 ± 47.97bA 

AZO 474.16 ± 131.40aA 654.01 ± 69.24aA 

TC - - 

Each value is the average ± standard deviation (n=3). Treatments were stored at for 360 days at 21oC. OSC were 

stored in individually wrapped gummy supplements in a larger box. AZO and TC were stored in loose bulk 

containers and treatments were pulled and containers resealed after each time point. Bulk containers of AZO and TC 

were stored in larger boxes. Values within columns not sharing a lowercase letter are significantly (p<0.05) 

different. Values within rows not sharing an uppercase letter are significantly (p<0.05) different excluding rate of 

change. Treatments were analyzed by ANOVA (Tukey’s HSD).  

 

Figure 3.20 Hardness versus time of cranberry supplements 
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Table 3.13 Comparison of initial and final adhesion of cranberry supplements 

SAMPLE ADHESION INITIAL (G) ADHESION FINAL (G) 

OSC 124.90 ± 39.66bA 216.10 ± 26.78bA 

AZO 512.01 ± 85.23aA 718.13 ± 111.12aA 

TC - - 

Each value is the average ± standard deviation (n=3). Treatments were stored at for 360 days at 21oC. OSC were 

stored in individually wrapped gummy supplements in a larger box. AZO and TC were stored in loose bulk 

containers and treatments were pulled and containers resealed after each time point. Bulk containers of AZO and TC 

were stored in larger boxes. Values within columns not sharing a lowercase letter are significantly (p<0.05) 

different. Values within rows not sharing an uppercase letter are significantly (p<0.05) different excluding rate of 

change. Treatments were analyzed by ANOVA (Tukey’s HSD).  

 

 

Figure 3.21 Adhesion versus time for cranberry supplements 
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Table 3.14 Comparison of initial and final toughness of cranberry supplements 

SAMPLE TOUGHNESS INITIAL 

(G/SEC) 

TOUGHNESS FINAL 

(G/SEC) 

OSC 2574.33 ± 371.76bA 3171.36 ± 119.77bA 

AZO 5066.02 ± 395.54aA 5442.28 ± 584.76aA 

TC - - 

Each value is the average ± standard deviation (n=3). Treatments were stored at for 360 days at 21oC. OSC were 

stored in individually wrapped gummy supplements in a larger box. AZO and TC were stored in loose bulk 

containers and treatments were pulled and containers resealed after each time point. Bulk containers of AZO and TC 

were stored in larger boxes. Values within columns not sharing a lowercase letter are significantly (p<0.05) 

different. Values within rows not sharing an uppercase letter are significantly (p<0.05) different excluding rate of 

change. Treatments were analyzed by ANOVA (Tukey’s HSD).  

 

 

Figure 3.22 Toughness versus time of cranberry supplements 
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 Conclusions 

There were significant differences in the proanthocyanidin, anthocyanin, and total 

phenolic content between spray-dried supplement and gummy supplements, and even between 

the two gummy supplements studied, indicating that product matrix and processing conditions 

are significantly important for anthocyanin, proanthocyanidin, and total phenolic content stability 

in cranberry supplements. The spray-dried treatment showed significantly higher anthocyanins, 

proanthocyanidins, total phenolic content, and antioxidant activity compared to gummy 

supplements, indicating that spray-dried encapsulated cranberry supplements not only are better 

contributors of various polyphenols compared to gummy supplements, but they are also in a 

more stable configuration during processing than gummy supplements. Spray-drying and 

encapsulating cranberry extracts proved to be a more adequate way of polyphenol stabilization 

during processing than gummy supplements. Within the gummy treatments, product matrix 

proved to be important in initial and final polyphenol content, with the treatment with fewer filler 

ingredients having larger content and more antioxidant capacity. Rates of change across 

treatments followed a first order kinetic model. Cranberry supplements are more easily 

consumed than raw cranberries or other processed cranberry products like juices or dried fruits, 

so comparatively they may be a more viable option for consumers who want to add health 

benefits to their diet in a more convenient form than raw fruit. To further enhance the stability of 

cranberry supplements in gummy form, further research is needed to evaluate processing 

parameters and storage conditions. 

Examples include 1) optimization of type and amount of filler ingredients to increase 

content and stability of active cranberry polyphenols 2) evaluation of glass transition 
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temperatures to observe optimal storage temperatures and conditions and 3) lowering Aw to 

further promote polyphenol stability. 
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Chapter 4 - Overall Conclusions 

Various sweetened dried cranberry products and cranberry supplements were evaluated 

over time for their polyphenol content (proanthocyanidin, anthocyanin, and total phenolic 

content), resulting in the conclusion that complex product matrices with increased Aw and 

moisture content lead to decreased stability of polyphenols and fewer initial polyphenol content. 

Within sweetened dried cranberries it was proven that slicing cranberries increased 

infusion rate, leading to a large amount of initial polyphenol content. Whole sweetened dried 

cranberries had significantly fewer polyphenols as they are dried to a similar Aw and moisture 

content due to food safety and food quality guidance, leading to more degradation of 

polyphenols. Sweetened dried cranberries with ingredients proven to insulate and provide 

stability to polyphenols such as soluble corn fiber and glycerin resulted in the most polyphenol 

stability and highest polyphenol content. Due to processing conditions, sweetened dried 

cranberries lack antioxidant capacity when analyzed by DPPH assay. This assay, while used 

heavily in the food industry, yielded results that conflicted with literature on antioxidant capacity 

in raw cranberries, indicating that the mechanism in which cranberries inhibit oxidation may not 

be adequately represented by DPPH assay. 

Within cranberry supplements spray-drying of cranberry extract powder into a capsule 

proved to be a superior method for yielding higher polyphenol content as well as increased 

stability compared to gummy supplements. Spray-drying by concentrating the polyphenols 

enhances the initial polyphenol content while also providing insulation from degradation of 

polyphenols. Gummy supplements did not have the stability or content that was seen with the 

spray-dried treatment. While spray-drying was the superior preservation method, within gummy 

cranberry supplements product formulation proved to significantly impact initial and final 
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polyphenol content, with the treatment with additional apple and fewer ingredients having larger 

polyphenol content. Despite the initially larger content of polyphenols, degradation of 

polyphenols was inferior to the other gummy treatment, indicating that larger amounts of 

polyphenols that may be too small for copigmentation to occur and provide insulation and may 

decrease at a faster speed than those with significantly smaller polyphenol content. Compared to 

raw cranberries supplements provide more total phenolic content, while only spray-drying 

provides increased proanthocyanidin and anthocyanin content. Consumer acceptance towards 

supplements compared to fresh fruit needs to be further explored. 

Overall cranberries are a source of proanthocyanidins, anthocyanins, and other 

polyphenols, but the way in which they degrade and appear in product matrices is processing, 

packaging, and product dependent. Even within similar product matrices, differences occurred 

due to formulation and processing parameters, indicating that process has a significant impact on 

polyphenols. In order to leverage the polyphenols available in cranberries in these more 

convenient forms (sweetened dried cranberry snacks and cranberry supplements) processing 

parameters, product formulation, and packaging format needs to be further optimized and 

evaluated to understand the optimal combination to preserve polyphenols while providing a 

product that is appealing to the consumer. 

 

 


