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Abstract

In spatial applications, kernel averaged predictors have been used in disciplines such as

entomology and ecology. Most of the approaches entomologists and ecologists use are ad-

hoc implementations of kernel averaged predictors. In this report, I discuss a general way

to compute the kernel averaged predictors. I evaluate two numerical integration methods to

approximate kernel averaged predictors. Using a simulation study, I evaluate the approxi-

mation of kernel averaged predictors with a combination of three factors. The combinations

consist of Gaussian and uniform kernel functions, quadrature rule and Monte Carlo nu-

merical integration, and various numbers of numerical integration points. I illustrate the

approximation of the kernel averaged predictor using field data on Hessian fly abundance.

The results of the approximations are evaluated by comparing the reliability of the estimated

regression coefficients and the run time under each setting. My simulation experiment and

data illustration show that the rate of convergence using quadrature rule is faster than us-

ing Monte Carlo integration. In addition, my results demonstrate that a small number of

numerical integration points can achieve a reasonable approximation for the kernel averaged

predictors, which result in reliable statistical inference.
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Chapter 1

Introduction

In spatial applications, traditional regression models assume that the expected value of

the response can be explained by a linear combination of predictors measured at the same

location. For example, a linear combination of the predictors specifies the expected value

such that E(y(s)|β0,β) = β0 + x′(s)β, where y(s) is the univariate response at location

s ≡ (s1, s2)
′, x(s) ≡ (x1(s), x2(s), ..., xp(s))′ are the predictors measured at location s, and

β = (β1, β2, ..., βp)
′ are the regression coefficients. However, predictor variables x(u) at

another location u, could influence E(y(s)) if u is close to s. Therefore, using x(s) only

may not correctly specify the expected value of the response, E(y(s)) (Heaton and Gelfand,

2011).

Heaton and Gelfand (2011) define a new predictor that incorporates the influence of

surrounding predictors within an unknown neighborhood over the domain D. Specifically,

the new kernel averaged predictor, x̃j(s), can be written as

x̃j(s) =
1

K(s|φj)

∫
D

K(s,u|φj)xj(u)du , (1.1)

where j are the indices of the predictors at location s and j =1,2,3,...,p, K(s,u|φj) is a kernel

defining a weight that is a function of the distance between s and u with parameter φj and

0 < K(s|φj) =
∫
D
K(s,u|φj)du <∞ (Heaton and Gelfand, 2011).

The kernel averaged predictor method developed by Heaton and Gelfand (2011) has seen
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use in fields such as ecology and entomology (Chandler and Hepinstall-Cymerman, 2016;

Goedhart et al., 2018), however many researchers rely on ad-hoc implementations such as

choosing fixed values for the parameters φj (e.g., Belaire et al., 2014; Schmid et al., 2019),

using model selection techniques to “estimate” parameters associated with the kernel (e.g.,

Bradter et al., 2013; Hefley et al., 2015; Stuber et al., 2017), or consider only a single func-

tional form of the kernel (e.g., a uniform kernel). In my experience working with researchers

in other disciplines, the failure to appropriately implement the kernel averaged predictor

method developed by Heaton and Gelfand (2011) is due to difficulty performing the in-

tegration in 1.1. In most practical situations the integration in 1.1 cannot be performed

analytically, and the numerical integration techniques required to approximate 1.1 can be

challenging to implement.

In application, 1.1 can be approximated using

x̃j(s) ≈ 1

K(s|φ)

Q∑
q=1

∆sqK(s, sq|φ)xj(sq) (1.2)

where Q is the number of integration points, sq are all the spatial locations inside D , where

q = 1, 2, 3...,Q, and ∆sq = 1
Q
|D|. In spatial application, Q has the potential to be very large.

For example, the National Land Cover Database (NLCD) provides nationwide data on land

cover in the United States at a 30-m spatial resolution (Homer et al., 2015), which results in

over 20 billion individual grid cells with unique values of xj(s). In practice, however, using

over 20 billions integration points for 1.2 is an extremely time-consuming process. In this

report, I evaluate quadrature rule and Monte Carlo integration method to approximate the

kernel averaged predictors. Several different numbers of numerical integration points are

used for the approximation.

In chapter 2, I review two numerical integration methods, quadrature rule and Monte

Carlo integration. In chapter 3, I conduct the simulation study. In chapter 4, I provide an

example that uses field data on Hessian fly abundance in agricultural fields to illustrate the

approximation of the kernel averaged predictor of winter wheat. In chapter 5, I present the

conclusions and future work.
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Chapter 2

Review of numerical integration

methods

Below I review two commonly used numerical integration methods in spatial applications:

quadrature rule and Monte Carlo integration. I discuss using these two approaches to ap-

proximate the integral
∫
D
f(s)ds, f(s) is a two-dimensional function over the domain D.

2.1 Quadrature rule

To approximate
∫
D
f(s)ds using the quadrature rule, I divide the two-dimensional domain

D into Q subdomains of equal area, such that D = ∪Qq=1Aq and |Aq| = Q−1|D|. For each

subdomain, let sq
∗ be the centroid of Aq. I approximate the integral with

∫
D

f(s)ds ≈
Q∑

q=1

|Aq|f(sq
∗). (2.1)

Quadrature-rule is related to the commonly known Riemann sum integral approximation

technique. In this report I use the term quadrature rule and Riemann sum interchangeably.

2.2 Monte Carlo integration

Monte Carlo integration uses random sampling of a function to compute an estimate of

its integral numerically. Given a set of Q random sample locations over the domain D,
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q = 1, 2, 3, ..., Q, and sq
∗ is the sample location. The Monte Carlo approximation is

∫
D

f(s)ds ≈ 1

Q

Q∑
q=1

|D|f(sq
∗). (2.2)

Intuitively, the Monte Carlo approximation in 2.2 computes the mean of the product of

f(sq
∗) and |D|.

Different types of approximations can cause different error terms. The error term is the

difference between the approximated value and the exact value of
∫
D
f(s)ds. The error bound

is the theoretical largest error term, denoted by O. The quadrature rule results in an error

bound O(Q−2/r) where Q is the number of integration points, r is the dimension of D, which

equals two in my study. The error bound then can be written as O(Q−1). For Monte Carlo

numerical integration, the error bound is O(Q−1/2), regardless of the dimensionality of f(s)

(Liu, 2008). Theoretically, quadrature rule should converge faster (when Q increase) than

Monte Carlo.
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Chapter 3

Simulation study

3.1 Introduction

I conduct a simulation experiment to evaluate two numerical integration methods for the

kernel averaged predictor. The results of the approximation are evaluated by comparing the

reliability of the estimated regression coefficient and the run time under each computational

setting.

3.2 Generating data

For my simulation, I use a unit square domain D = [0, 1] × [0, 1]. I divide D into 40,000

equal area square grid cells. I define one location-specific spatially correlated point-level

predictor x(s), which was generated using a low-rank Gaussian predictive process (Banerjee

et al., 2008). I then randomly select the sample locations si uniformly from D, where

i = 1, 2, 3, ..., 1000. For each spatial location si, I use 1.2 to generate the kernel averaged

predictor x̃(si) with Q equals to the total number of the grid cells 40,000. The kernel

functions I use are Gaussian kernel and uniform kernel.

After I generate x̃(si), I then use x̃(si) to generate y(si). I generate y(si) using four

different generalized linear models with canonical link functions, which includes: Poisson,

normal, binomial, and Bernoulli regression models. In my simulation study, I choose the

intercept β0 = 0 and the regression coefficient β1 = 1 for all the regression models. The

link functions I use are log, identity, and logit, for Poisson, normal, binomial and Bernoulli,
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respectively. The variance I choose for the normal regression model is 1. I set the total

number of trials for binomial regression model as 100.

3.3 Computational settings

I use different computational settings to approximate the kernel averaged predictor x̃j(s).

The computational settings I evaluate consist of a combination of two factors (Table 3.1).

Table 3.1: Computational settings for the simulation study. For each kernel averaged predictor
scenario, I use two types of numerical integration methods and 11 different number of numerical
integration points for a total of 22 different settings.

Integration Method Integration Points (Q)

quadrature rule 50, 100, 150, 200, 250, 300

Monte Carlo 350, 400, 450, 500, 550

3.4 Simulation settings

I conduct 100 simulations for each computational setting under each generalized linear model.

In each simulation of one individual computational setting, I generate a new data set, I then

use 1.2 to approximate the kernel averaged predictor x̃(si) with that computational setting.

The kernel function I use for 1.2 is the same with what I use for generating the data. I then use

this new predictor x̃(si) and the response from the generated data for the generalized linear

model. The regression coefficient is estimated using maximum likelihood estimation. I can

then extract the 95% Wald confidence interval from the covariance matrix for β̂1. As a result,

I will obtain 100 different regression coefficient β̂1 along with 95% Wald confidence interval

for β1 for each computational setting. I then compute whether the 95% Wald confidence

interval cover the true value of β1 we assumed and get the coverage probability. Using

this coverage probability from 100 simulations, the 95% confidence interval of population

proportion of the coverage probabilities for β1 can be obtained. I also report the run time

for each simulation setting. The run time is the time in seconds required to maximize the

likelihood function using the Nelder-Mead algorithm (Nelder and Mead, 1965).

I expect that for quadrature rule, after the number of the integration points in 1.2 arrives

to a specific value Q1 and Q1 � 40,000, the 95% coverage probability of β1 will stay stable
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and close to 95%. Meanwhile, for Monte Carlo integration, I expect the specific value is Q2

and Q2 should be larger than Q1. In addition, β̂1 will become unbiased with the number of

numerical integration points increases for both methods.

3.5 Results

From my simulation study results, I observed that using quadrature rule and Monte Carlo

integration had different performances on approximating the kernel average predictor. To

avoid duplication, I reported the worse simulation results (Figure 3.1). Under this scenario,

I used the Gaussian kernel function to approximate x̃(si) and performed Poisson regression

model to estimate β0 and β1. I also provided the simulation results from the other seven

scenarios in appendix A.

In this scenario, the coverage probabilities of β1 using Monte Carlo integration were

much lower than using quadrature rule. The rate of convergence for using Monte Carlo

integration was also slower than using quadrature rule. However, with the number of nu-

merical integration points increased, the coverage probability increased for both numerical

integration methods. Meanwhile, the trend of the distribution of β̂1 estimated from the 100

simulated data sets also highlighted the result. The variances of β̂1 were larger when using

Monte Carlo integration than using quadrature rule. In addition, the quadrature rule needed

smaller number of integration points than Monte Carlo integration to obtain unbiased esti-

mates. Moreover, the run time for each computational setting had an approximately linear

relationship with the number of numerical integration points for both methods. There are

no big differences in the run time between the two numerical integration methods.
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Figure 3.1: Results from the simulation experiment obtained using Gaussian kernel function and
Poisson regression model. Panel a and d show the 95% confidence interval of the coverage probability
for the regression coefficient, β1. The red lines in panel a and d represent 95% coverage probability.
Panel b and e show violin plots for the β̂1 obtained from 100 simulated data sets. The red lines in
panel b and e represent the true value which is β1 = 1. The black dots in panel b and e represent
the mean of β̂1 obtained from 100 simulated data sets for each computational setting. Panel c and f
present the run time to obtain the MLE for a single data set for each simulation setting. The black
dots in panel c and f represent the mean of 100 run time for each computational setting.
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Chapter 4

Hessian fly data example

4.1 Data

The Hessian fly, Mayetiola destructor, is a harmful pest and can reduce wheat yields dra-

matically (Schmid et al., 2018). I use the Hessian fly abundance data to illustrate how to

approximate the kernel averaged predictor of winter wheat. The Hessian fly abundance data

include the count of Hessian fly pupae at multiple locations within six different fields from

Kansas (Figure 4.1). The sample locations chosen for counting the number of Hessian fly are

laid out evenly inside each field. Because wheat is the first choice host for the Hessian fly

(Harris et al., 2001; Chen et al., 2009), I expect that the value of kernel averaged predictor

of winter wheat can influence the number of Hessian fly in the following spring.

4.2 Statistical analysis

The simulation study shows me that the quadrature rule performs better than Monte Carlo

integration for approximating the kernel average predictor. Therefore, I use quadrature rule

to approximate the kernel averaged predictor of winter wheat x̃w(si). The response y(s) is

the count of Hessian flies and x̃w(si) is the predictor. The kernel functions I use are the

uniform kernel and truncated Gaussian kernel. I assume that the number of Hessian fly in

one sample location can be influenced by at most 5 kilometers range of winter wheat away

from that location. For each field, I use the same domain for all the sample locations in that

field to compute x̃w(si). Hence, the whole domain D = ∪6k=1Dk. The total number of grid
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Figure 4.1: Locations and numbers of Hessian fly pupae from six fields in Kansas, USA in 2016.

cells inside the domains then results in approximate 340,000. The predictor xw(s) inside

each grid cell is a binary predictor. I set xw(s) as one if the value of xw(s) is winter wheat,

otherwise zero. I compare the estimated results using 170,000 numerical integration points

with the results obtained using 340,000 points.

I assume that the number of the Hessian fly pupae has a Poisson distribution because the

counts can only have non-negative integer values. Practitioners care about the relationship

between the number of Hessian fly and the value of kernel averaged predictor of winter wheat.

To infer this relationship, I use quadrature rule and Poisson regression model to estimate

the parameters. The estimators I am interested are the kernel parameter φ̂, the intercept

β̂0, and the regression coefficient β̂1. I report the 95% confidence interval of φ, β0, and β1.

4.3 Results

The results show that using 170,000 numerical integration points can produce close estimates

with using 340,000 integration points (Table 4.1). Additionally, the results show that the

expected number of Hessian flies estimated using uniform kernel is lower than using the

truncated Gaussian kernel. The values of kernel averaged predictor of winter wheat is slightly

larger when using a uniform kernel than using a truncated Gaussian kernel (Figure 4.2). The

10



Table 4.1: Maximum likelihood estimates and 95% CIs for kernel parameter and the regression co-
efficients: the intercept and the coefficient for kernel averaged predictor of winter wheat. The kernel
averaged predictor of winter wheat is approximated using quadrature rule along with two different
numbers of numerical integration points. Two different kernels are compared for the approxima-
tions. The values in the parentheses give the 95% CI for the parameters.

Kernels Points φ̂ (m) β̂0 β̂1 AIC

uniform 170,000
2295

(2293,2298)
6.37

(6.33,6.41)
-10.89

(-11.11,-10.67)
12077

uniform 340,000
2295

(2292,2298)
6.40

(6.36,6.44)
-11.16

(-11.38,-10.93)
11762

Gaussian 170,000
1815

(1774,1857)
6.48

(6.43,6.53)
-11.09

(-11.34,-10.83)
13154

Gaussian 340,000
1813

(1770,1857)
6.44

(6.38,6.48)
-10.73

(-10.98,-10.48)
13248

Akaike information criterion (AIC) value is smaller when using a uniform kernel than using

a truncated Gaussian kernel.
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Figure 4.2: Results from approximating the kernel averaged predictor of winter wheat using 170,000
numerical integration points for uniform kernel and truncated Gaussian kernel functions with Pois-
son regression model. Panel a and d show the expected number of Hessian flies (black curve) with
the 95% confidence interval (light blue shaded area). Panel b and e show the approximated kernel
averaged predictor of winter wheat for field 4 and the number of Hessian flies. The black dots in
panel b and e indicate the number of Hessian flies. Panel c and f present how the winter wheat was
distributed around field 4. The red circle in panel c denotes the estimated area that contains 100%
of the uniform weights. The red circle and purple circle in panel f show the estimated areas that
contain 68% and 95% of the Gaussian weights when approximate the kernel averaged predictor of
winter wheat using truncated Gaussian kernel, respectively.
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Chapter 5

Discussion

The simulation study show that the rate of convergence for the quadrature rule is faster than

the Monte Carlo integration in two dimensions, which matches the theory that quadrature

rule performs better than Monte Carlo integration in low dimension (Liu, 2008). The quadra-

ture rule requires a smaller number of integration points to obtain unbiased estimations for

the parameters than the Monte Carlo integration highlight the result. Those results show

that using full number of grid cells as the total number of integration points is not necessary,

as using smaller number of integration points can also produce reliable and unbiased esti-

mates. The run time of using quadrature rule is similar with using Monte Carlo numerical

method, but the run time of using uniform kernel are mostly longer than using Gaussian

kernel. Overall, from my simulation study, I find that quadrature rule performs better than

Monte Carlo integration. Hence, I recommend using quadrature rule to approximate the

kernel averaged predictors in spatial applications.

In the previous research, researchers used a one kilometer uniform kernel to approximate

the kernel averaged predictor of winter wheat (Schmid et al., 2019). However, using 2295

meters (m) radius to implement the approximation is more supported by the Hessian fly

abundance data. Besides, the Poisson regression model using quadrature rule along with

uniform kernel to approximate the kernel averaged predictor of winter wheat has a smaller

AIC value when compared to the same regression model, but using a Gaussian kernel. The
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smaller AIC value means that using uniform kernel is preferred to Gaussian kernel in this

scenario. The negative regression coefficient show that the winter wheat proportion around

one location has negative effect on the number of Hessian flies in the coming spring. Those

findings help me better understand the outbreak of Hessian flies, and then implement a

suitable management for the field plantings. For example, if I know the proportion of winter

wheat two kilometers around one location, I can obtain an estimated number of Hessian flies

at that location in the coming spring, and then I can better maintain the arrangements of

field plantings. My study involves the estimation of the kernel parameter, which can provide

researchers some ideas for their future research. In conclusion, the results from Hessian fly

abundance data show me that two kilometers area of wheat proportion is needed, to gain

a better estimation on the relationship of the number of Hessian fly and kernel averaged

predictor of winter wheat. Meanwhile, a smaller number of integration points can capture

adequate information for approximating the kernel averaged predictor of winter wheat.

For the future work, I can try using some other quadrature rules, such as trapezoidal,

Simpson’s, and Gaussian quadrature rules to approximate the kernel average predictor. The-

oretically, these quadrature rules should perform better than the Riemann sum rule used in

this study. In addition, using the Bayesian approach would enable me to show uncertainty

in derived quality quickly. The Bayesian method has prior distribution for the parameters,

which can also make the model structure more flexible.
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Figure A.1: Results from the simulation experiment obtained using uniform kernel function and
Poisson regression model. Panel a and d show the 95% confidence interval of the coverage probability
for the regression coefficient, β1. The red lines in panel a and d represent 95% coverage probability.
Panel b and e show violin plots for the β̂1 obtained from 100 simulated data sets. The red lines in
panel b and e represent the true value which is β1 = 1. The black dots in panel b and e represent
the mean of β̂1 obtained from 100 simulated data sets for each computational setting. Panel c and f
present the run time to obtain the MLE for a single data set for each simulation setting. The black
dots in panel c and f represent the mean of 100 run time for each computational setting.
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Figure A.2: Results from the simulation experiment obtained using Gaussian kernel function and
normal regression model. Panel a and d show the 95% confidence interval of the coverage probability
for the regression coefficient, β1. The red lines in panel a and d represent 95% coverage probability.
Panel b and e show violin plots for the β̂1 obtained from 100 simulated data sets. The red lines in
panel b and e represent the true value which is β1 = 1. The black dots in panel b and e represent
the mean of β̂1 obtained from 100 simulated data sets for each computational setting. Panel c and f
present the run time to obtain the MLE for a single data set for each simulation setting. The black
dots in panel c and f represent the mean of 100 run time for each computational setting.
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Figure A.3: Results from the simulation experiment obtained using uniform kernel function and
normal regression model. Panel a and d show the 95% confidence interval of the coverage probability
for the regression coefficient, β1. The red lines in panel a and d represent 95% coverage probability.
Panel b and e show violin plots for the β̂1 obtained from 100 simulated data sets. The red lines in
panel b and e represent the true value which is β1 = 1. The black dots in panel b and e represent
the mean of β̂1 obtained from 100 simulated data sets for each computational setting. Panel c and f
present the run time to obtain the MLE for a single data set for each simulation setting. The black
dots in panel c and f represent the mean of 100 run time for each computational setting.
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Figure A.4: Results from the simulation experiment obtained using Gaussian kernel function and
binomial regression model. Panel a and d show the 95% confidence interval of the coverage prob-
ability for the regression coefficient, β1. The red lines in panel a and d represent 95% coverage
probability. Panel b and e show violin plots for the β̂1 obtained from 100 simulated data sets. The
red lines in panel b and e represent the true value which is β1 = 1. The black dots in panel b and
e represent the mean of β̂1 obtained from 100 simulated data sets for each computational setting.
Panel c and f present the run time to obtain the MLE for a single data set for each simulation
setting. The black dots in panel c and f represent the mean of 100 run time for each computational
setting.
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Figure A.5: Results from the simulation experiment obtained using uniform kernel function and bi-
nomial regression model. Panel a and d show the 95% confidence interval of the coverage probability
for the regression coefficient, β1. The red lines in panel a and d represent 95% coverage probability.
Panel b and e show violin plots for the β̂1 obtained from 100 simulated data sets. The red lines in
panel b and e represent the true value which is β1 = 1. The black dots in panel b and e represent
the mean of β̂1 obtained from 100 simulated data sets for each computational setting. Panel c and
f present the run time to obtain the the MLE for a single data set for each simulation setting. The
black dots in panel c and f represent the mean of 100 run time for each computational setting.
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Figure A.6: Results from the simulation experiment obtained using Gaussian kernel function and
Bernoulli regression model. Panel a and d show the 95% confidence interval of the coverage prob-
ability for the regression coefficient, β1. The red lines in panel a and d represent 95% coverage
probability. Panel b and e show violin plots for the β̂1 obtained from 100 simulated data sets. The
red lines in panel b and e represent the true value which is β1 = 1. The black dots in panel b and
e represent the mean of β̂1 obtained from 100 simulated data sets for each computational setting.
Panel c and f present the run time to obtain MLE for a single data set for each simulation setting.
The black dots in panel c and f represent the mean of 100 run time for each computational setting.
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Figure A.7: Results from the simulation experiment obtained using uniform kernel function and
Bernoulli regression model. Panel a and d show the 95% confidence interval of the coverage prob-
ability for the regression coefficient, β1. The red lines in panel a and d represent 95% coverage
probability. Panel b and e show violin plots for the β̂1 obtained from 100 simulated data sets. The
red lines in panel b and e represent the true value which is β1 = 1. The black dots in panel b and
e represent the mean of β̂1 obtained from 100 simulated data sets for each computational setting.
Panel c and f present the run time to obtain the MLE for a single data set for each simulation
setting. The black dots in panel c and f represent the mean of 100 run time for each computational
setting.
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