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Abstract

Kochia Kochia scoparigL.) Schrad, one of the most troublesome weeds in the North
American Great Plains, including Kansas (Ki&3s become a significant concerrcroplands
ever since the evolution and spread of glyphosate resistance in this weed. Dicaimipay tamt
synthetic auxin herbicide, & usefulubstitutefor managing glyphosatesistant (GR) broadleaf
weeds As a result of extensive and intensive keshiapopulations have also developed
resistance to dicamba. However, the precise mechanisfrd&amba resistance kochiais still
unknown. In the first part of this dissertation, the physiological, biochemical and genetic basis of
dicamba resistance in dicamhlesistant (DRkochiafrom KSwas investigatedT he results
suggest that the mechanism of dicamba resistance ikatisais not due to decreased
absorption, reduced translocation or enhanced detoxification of dicamba. In contrary, reduced
translocation of dicamba was found to contribute to thenali@aresistance in DRochiafrom
Colorado CO). Further investigation of DRochiafrom KS revealed a possible rolesafgle
nucleotide polymorphism (SNP) THR1 (the receptor gene of auxin) in the dicamba resistance
evolution. Genetic analyses of datarh inheritance studies demonstrated #raincomplete
dominant nuclear gene controls the dicamba resistance in kochia froAld6Sit was found
that the genes controlling dicamba resistandeahiafrom KS and CO are not linked.
Similarly, althoughGR and DR traits were found to be controlled by two distinct single
dominant genes, they appear teexast inmany kochigoopulations from KSNonethelesghese
two genes were also found not to be linked.

The second part of this dissertatimeusedon the development of reliable tools for the
management of DRnd/orGR kochia The following experiments were conducted under

greenhouse and field conditions in KS: a) the effect of temperature stress on the efficacy of



dicamba or glyphosate; b) efficacyditamba and glyphosate when applied in combination; and
c) efficacy of dicamba when used as-preergence (PRE) herbicidEhe results suggest that the
efficacyof both dicamba and glyphosate kwchiacan be improved when applied at cooler
temperature catitions. Also, itwas foundthat the dicamba and glyphosate tamix should not

be recommended to manakgchia especially DRkochig due to significant antagonistic
interaction when applied in combination. On the other hand, application of dicamba as PRE
compared to the postemergemgmplication was found to improvkochiacontrol including DR
kochia Overall, this dissertation provided sevaraleloutcomes both ibasicand applied

aspects of dicamba resistancéachia
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dicamba or glyphosate; b) efficacy of dicamba and glyphosate when applied in combination; and
c) efficacy of dicamba when used as-preergence (PRE) herbicidEhe results suggest that the
efficacyof both dicamba and glyphosate kwchiacan be improved when applied at cooler
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Chapter1-Lietat ure Revi ew

1.1 Weeds, Herbicides, and Herbicide Resistance in Weeds

A weed carbe definedasfi p | awntt o f(WSSIA,d@56knd weed infestatiohas
been amajorchallengean crop productior{Hay, 1974) Among allother croppests, weedsause
the most crop loss, followed by animals and pathogem&lwide (Oerke, 2006; Vats, 2015;
Yaduraju, 2006)Weedscompete for light, moisture, and nutrient with cr@gats, 2015and if
left uncontrolled can cause up to 52 and 49.5% of yield loss in(Zeenmayd..) (Soltani et al.,
2016)and soybea(Glycine maxL.) Merrill) (Soltani et al., 2017)Yespectively, resulting in
41.4 billion and $16.3 billion annual economic losses in ¢Dilte et al., 2015; Soltani et al.,
2016)and soybea(Dille et al., 2016; Soltani et al., 201 F@spectively.

The development of weed control methadfaost ceexistswith the history of
agriculture(Bell, 2015; Hay 1974) Earlier weed control methodscluding hand weeding,
primitive tools to remove weeds, anin@wered implements, mechanicapipwered
implementsandbiological andnorganicchemicalmethodshave been reviewesktensively
(Hay, 1974; Timmonsl970) The discovery ofhe herbicidal properties of thghenoxyacetic
acids in 1944&nabledhe"Chemical Era of Agriculture(Hay, 1974; Timmons, 1970; Vats,
2015) Since then, hundreds of organic compounds have been developed and commercialized for
weed manageme(ppleby, 2005; Timmons, 1970; Vats, 2015)

Compared to other weed control methods, use of herbicides isandeostkeffective
and moreefficientwith long-termweed control or suppressi¢B8harma and Gauttam, 2014)
the United States, over 90% of corn, soybean, and cdiossf/pium hirsuturh.) have been

treated with herbicides since th880s(FernandezCornejo et al., 2014A high percentage of



herbicide usage in other cash crops including rice, wheat, tomato, etc. haseaigeported
(FernandezCornejo et al., 2014; Kniss, 201'Herbicides accounted up 65% of all pesticide
expenditures, witlinestimatedcostof about $5.1 billion in 200{fFernandezCornejo et al.,
2014; Kniss, 2017)The most commonly used herbicides worldwide include glyphosate,
atrazine, acetochlor, metolachlor, and-B,4FernandezCornejo et al., 2014)

Repeated and extensive applicatiornefbicides exertstrongselection pressure on weed
species and eventually leads to the evolution and spread of herbicide resistances {iHeamed
2014; Vats,2015) Her bici de resistance is, therefore,
and reproduce following exposuredalose of herbicide normally lethal to the wild type
(WSSA, 1998)

The development of herbicide resistance in weeda result oéxtensiveuse of
herbicides without proper stewardskspone of thanajorchallengedor sustainable crop
productivity (Délye et al., 2013; Vats, 2019ntroduction ofherbicideresistantcrops in 1995,
reailted in even more reliance on herbicides for weed coftiedp, 2014; Shaner, 2014s a
result, the evolution of reg@nce in the weeds increased rapidly. According to the international
survey of herbicide resistaweeds there are currently 486 unique cases of herbicide resistant
weedgglobally, with 253 weed species, including 147 dicots and 106 monocots in 92rcifps i
countries. Te global distribution ofierbicideresistantveedsis presentedéh Fig. 1.1.(Heap,

2017)



1 . 160
Figure 1.1 The number of unique cases of herbicide resistant weeds globally (Adopted from

www.weedscience.or(Heap, 2017)

The types oherbicideresistance imnveedscanbegroupedinto three categorie$). single
herbicide resistance, meaning weeds are resistant to only a single mode of action of herbicide; II)
crossresistance, refers to weeds that are resistant to two or more herbicide classes within the
same mode of adn, or different modes of action of herbicides wethommon mechanism and
[Il) multiple herbicide resistancégfined asesistance to two or more herbicides with different
modes of actionvith different mechanism@obb and Reade, 201The evolution of multiple
herbicide resistance is a challefmprauseuch resistance limithe herbicideoptions for weed
management in cropping systenis.date 86 cases of multiple herbicide resistance in weeds
including resistance to two or up to seven herbicide modes of action have been répeaped
2017)(Fig. 1.2) e.qg. rigidryegrassl(olium rigidumGaud), horseweedGonyza canadensis
Crong), Palmer amanth Amaranthus palmei$. Wat3, wild oat Avena fatud..), and kochia
(Kochia scoparigL.) Schrad), etc.(Heap, 2017)The focus of this dissertationtis investigaé

themechanisr(s) and management dicamba resistance kochig one of the most troublesome



weeds of Kansas, USA. Furthermore, multiple herbicgsdéstance itkochiais also common in
the United StatesKochia, biology, management, distributiandevolution of herbicide

resistanceas discussedtelow.
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Figure 1.2 The reported occurrence of multipksistancevithin the same weed population from

1975 to 2015. (Adopted and modified from www.weedsciencétbegp, 2017)



1.2Kochia Biology and Management
Kochiais an annual broadleaf weed species native to Eurasia and introduced as an ornamental to
the Americas by immigrants in the mid to late 18(Bsesen et al.,@9). This species soon
naturalized and becanameconomically importaniveed ofNorth AmericaGreat Plainsn crop
production systems in semiarid to arid regiasyell as pastures, waste areas, and roadsides
(Dille et al., 2017; Friesen et al., 2008)chia carbe usedas a forage, especially in tharly
growing stagéGardufio, 1993)it is palatable to livestock, with nutrient value including protein
content similar to that of alfalfaedicago sawal.) (Finley and Sherrod, 197but can be toxic
if it constitutes as thegor percent of theliet or consumed atldergrowing stagegSprowls,
1981) Kochia seeds can be a source of phytochemicals that are potentially beneficial to human
health and haeen usedh Chinese medicingChoi et al., 2002; Lee et al., 2013; Yoo et al.,
2017) Kochia alsaan be used for phytoremediation of soils contaminaidtdheavy metals,
hydrocarbons, or pesticidéisafi et al., 2010; Moubasher et al., 2015; Perkovich et al., 1996)
However, kochia is a troublesome weed in cropping systems in North America due to its
tolerance to coldAl-Ahmadi and Kafi, 2007; Anderson and Nielsen, 199&pt(Khan et al.,
2001) drought(Liu et al., 2008; Waldron et al., 201®glinity (Friesen et al., 2009; Gul et al.,
2010) and heavy metal@Zhao et al., 2015)n addition, with its abity to exert allelopathic
propertiegHierroand Callaway, 2003; Karachi and Pieper, 1987; Lodhi, 183%ell as its
rapid growth under both cool and warm temperat(Déte et al., 2012; Dille €al., 2017;
Friesen et al., 200Kochia can be highly competitive to cropdso, this weed cadisperse
seeds by a tumbling mechanism facilitated by strong winds in the winesxdpg seed across
theCentralGreat PlaingBaker et al., 2008; Becker, 1978; Dille et al., 2017; Stallings et al.,

1995a) This highly efficient mechanism of seed propagation en&olelsiato reach the new



ecologicalnichesand assists to become one of the fastpstading weeds in North America
(Blackshaw et al., 2001; Forcella, 1985he protogynous flowergGuttieri et al., 1995;
Stallings et al., 1995@nablesutcrossingtherdy, high genetic diversity ikochia(Mengistu
and Messersmith, 2002)hich contributes teapid adapton to new environmenté@Mengistu
and Messersmith, 2002; Wiersma, 20KX)chia has beelisted as one of the top five problem
weeds in the North American €at Plains cropping syster(Gulpepper et al., 201T)cluding
soybean, corn, sorghurBgrghum bicolofL.) Moench), wheat Triticum aestivurL.), and
sunflower Helianthus annuuk.) (Kumar and Jha, 2015; Osipitan, 2016; Wolf et alg®0

One of the most effective practices for kiaclnanagement includes tillagé/aite,

2010) because |) disturbance of the soil surface by tillage can bury most of the kochia seeds in
deeper soil and reda the seed germination, and also can prevent séasgphkochia emergence
(Zorner et al., 1984pnd 1) thesize of theseed bank kochia in deeper soil Vi reducel

rapidly due to short seed longevitBurnside et al., 1981; Thompson et al., 19%wever,

wide adoption of netill agriculture to prevent soil erosion and conserve the soil moisture
(Pimentel et al., 1995jillageis na aviable option forkochiacontrol. Therefore, use of

herbicides has been the major meankazhiamanagement, includingreplant(PP),

preemergence (PRE) and postemergence (POST) application of herbicides.

Commonly usedherbicide activengredients fokochiamanagemerincludeglyphosate,
dicamba, atrazinenesotrione, and othe(Fhompson et al., 2018However, prolonged and
repeated herbicidapplicationresulted in the evolution of resistancekothiaincluding multiple
resistance to different modes of action herbicidtsap, 2017; Osipitan, 2016; Varanasi et al.,

2015)



1.3 Herbicide Resistance in Kochia

To date, 54unique cases of herbicidesistant kochidiotypeshave been reported in Canada,
Czech Republic, and the United Statidsap, 2017)including resistance to four herbicide
modes of ation: acetolactate synthase (ALBjibitors (WSSA group 2), synthetic auxins
(WSSA group 4), photosystem (PSJnthibitors (WSSA group 5),-Bnolpyruvateshikimate3-
phosphate synthase (EPSR®)ibitor (WSSA group 9fHeap, 2017; WSSA, 2017n 1979, the
first case okochiaresistance to PSihhibitorswas reportedrom KS, USA (Johnston and
Wood, 1976)In 1980s, due to rapid and wide adoption of AibSibitors, 16 cases of kochia
resistant to ALSinhibitors were reported in less than 10 yg&eseen, 2007; Warwick et al.,
2008)including an initial reportri North Dakota, in 198¢Saari et al., 1990; Shan 1997)
Overall, n North America, ALSresistankochiahas been reported in 23 states and provinces
(Fig. 1.3).Later, in late 1990s, glyphosate (EPSPS inhibitor) was widely applied in cropping
systems, primarily as a resultwidespreadidoptionof glyphosateresistant technology in corn,
soybean, cotton, canolBr@assica napus etc., which provides a weed control program that is
simple and effective to a broad spectrum of weeds without injuring crops or restricting crop
rotation(Carpenter and Gianessi, 200) 2005, the first glyphosatesistankochiapopulation
wasfoundin KS, USA, which was documented and reported in 2(&ap, 2014; Wiersma et
al., 2015) Soon after, 15 more casesgbfphosateresistankochiapopulations haveeen
reported(Fig. 1.3) across the Great Plains of North Ame(idaap, 2017)Synthetic auxin
herbicides are the first group of herbicides commercialized for use in agriculture and have been
in use for more than 70 yedrsselectively control broadléaveeds Especially, dicamba, a
synthetic auxin has been found to be an optiomanageéochiaafter the widespread incidence

of glyphosateesistase Nonethelesggesistancéo dicambahas alsdeen reporteth several



states and provinces in North American Great Plgiezap, 2017after the initial case in W,
USAin 1994(Cranston et al., 2001; Heap, 2017)

Resistance to a single mode of action of herbicide is commkuwcima However
multiple herbicideresistankochiais also ererging rapidly.To date, 11 out of 54 herbicide
resistankochiapopulations are resistant to two or more modes of abtobicidegHeap,
2017) Particularly a singlekochiapopulation fromKansashas been found to esistanto four

modesof action(Heap, 2017; Varaasi et al., 2015)

@ ALS inhibitors

@ Psilinhibitors
EPSPS inhibitors

@ Synthetic Auxins

Figure 1.3 Distribution ofherbicideresistankochiain North America. (Adapted from

www.weedscience.orHeap, 2017)



1.4 Mechanisms ofHerbicide Resistance

In general, the processes that lead to plant deagsponse therbicide application
include: 1) herbicide penetration into the plant via leaf or root absorption after foliar or soil
application; Il)herbicide movement to platissuesdrgans via apoplasind/or symplast
pathways to reach the targste and lll) finally, the interaction of herbicide molecules with
target site resulting in irreversibdédnormal biochemical and physiological reactions, which
ultimately trigger the death of the plarffsshton and Crafts, 1973; Audus, 1964; Cobb and
Reade, 2011; Devine et al., 1992)

Weedspeciescan evolve mechamg(s) to cope with or reduce the damage caused by
herbicides. Any alteration to the processes described above can resuévplth®snof
resistance to herbicides in wed@asquez, 1997; Jasieniuk et al., 1996)e mechanisms of
weed resistance to herbicides ¢tengroupednto two major categorigélye et al., 2015; Holt
et al., 1993; Yu and Powles, 201#) the first type, weeds can developpecificmechanism(s)
to prevent the herbicide moleculiesm reaching the targedite, by altering the absorption,
translocation, or detoxification of the herbici®lecules. Thisype of mechanisns referredas
anontargetsite mechanism of herbicide resistance. The second mechardes, weeds that
exhibit alterations in th&argetsite, resulting in lack of herbicide binding or reduced interaction
with thetarget.

1.4.1Non-Target-Site Resistance Mechanisms

Three different mechanisms can be involved in-tavgetsite resistance to limit the amount of
herbicide to reach the herbicide target, which includes reduced absorption, restricted
translocation, and ereased metabolism of the herbicide molec(fResvlesand Yu, 2010; Yuan

et al., 2007)Restricted translocation of herbicide as a mechanism of resistance to herbicide has



been reported in several populations of glyphesagestant horsewedéeng et al., 2004; Ge et
al., 2010) hairy fleabane@onyza bonariensis.) (Moretti et al., 2013)ryegrasgWakelin et al.,
2004; Yu et al., 2009; Yu et al., 2007; Yu et al., 20@4p johnsongras$orghum halepense
(L.) Pers) (VilaZAiub et al., 2012pnd also in paraquagsistant populations of barled¢grdeum
leporinum(L.) Link) (Preston et al., 2005hairy fleabanéMoretti, 2016) capeweedArctotheca
Calendula(L.) Levyng (Soar et al., 2003horseweedMoretti, 2016; Varadi et al., 2000and
ryegrasgPowles and Holtum, 1994; Preston et al., 2009; Yu et al., 2B@duced translocation
has also found to contribute to dicamba resistan&echia(Pettinga et al2017)and 2,4D

resistance in wild radistR@phanus raphanistruin) (Goggin et al., 2016)

The other majocategory ohontargetsite resistancemechanismis herbicide
detoxification (.e., metabolisrAbased}hatendowel as a result dbur-phasechemical reactions
Phasel involving oxidation, typically facilitated byhe catalyticactivity of cytochrome P450
monooxygenases (P450s) or mixed function oxidaRleasd detoxificationexposs certain
functional groups to further metabolism in phase Il resultingetonjugationof the
oxidized/activated xenobiotiroductusuallywith a thiol or sugar molecul@his can enable the
recoghnition of the product to Phase Il transporters, which includes sequestratioteotiles
into vacuole or extracellular spaces in the plant, which is oeyemonly carried out by
adenosine triphosphate (ATBInding cassette (ABC) transporters. The phase IV detoxification
process includes further degradation to less toxic compd@adtholomew et al., 2002;
Martinoia et al., 1993; Sandermann, 2004; Yuan et al., 200i&) four major groups of enzymes
known to be involved in netargetsite hebicide resistancancludeP450s glutathioneS
transferases (GSTSs), glycosyltransferaaaed ABC transporter@owles and Yu, 2010; Yuan et

al., 2007)

10



Metabolismbased herbicide resistance to PSALS-, acetyl CoA carboxylase
(ACCase)inhibitors (WSSA group 1), and synthetic auxins, has been reparseveral weed
species, including velvetleadputilon theophrasti.) (Anderson and Gronwald, 1991,
Gronwald et al., 1989smooth amaranti(maranthus hybriduélL.) Amach) (Manley et al.,
1999) Palmer amarantfNakka et al 2017a; Nakka et al., 2017lmommon waterhemp
(Amaranthus tuberculatu..) Moqg.) (Figueiredo et al., 2017)downy bromeBromus tectorum
L.) (Park et al., 2004 pblackgrassAlopecurus myosuroidd€k.) Huds) (Letouzé and Gasquez,
2003) rigid ryegrasgCocker et al., 2001; Viliub et al., 2005)Italian ryegrassLlium
multiflorum(L.) Lam.) (Gronwald et al., 1992)wild oat accessiorAvena sterilid_.)
(Shimabukuro et al., 1979)ttleseed canarygrasPlfalaris minor(L.) Retz) (Chhokar and
Malik, 2002) late watergras@echinochloa phyllopogo(Stapf) Kosg (Bakkali et al., 2007;
Yasuor et al., 2009; Yun et al., 2006hickweed $tellaria medigL.) Vill. ) (Coupland et al.,
1990; Saari et al., 1992parge crabgras®fgitaria sanguinalis(L.) Scop) (Everman et al.,
2009) and wild mustardSinapis arvensié..) Sinar) (Peniuk et al., 1993; Veldhuis et al.,
2000) etc.Metabolismbasedherbicide resistance is particularlye¢atening, because the weed
populations can potentially detoxify other classes of herbicides, includinguseeherbicides
or newly developed herbicidéBélye et al., 2011Ghanizadelet al, 2017; Powles and Holtum,

1994; Powles and Preston, 2006; Yuan et al., 2007)

1.4.2Target-Site Resistance Mechanisms

Four possible mechanisms can be involved in tasgetherbicide resistance: a) altered target
site, b) target genaver expressiofincreased synthesis of tatgwotein), c) target gene
amplification, and d) regulatory changes in the tasjet(Délye et al., 2013; Nakka, 2016;

Powles and Yu, 2010Yhe most common targsite mechanism of herbicide resistance is due to

11



mutatior(s) in the herbicide target gene resulting in the modification of tertiary and/or quaternary
target protein structure to prevent the ligand (herbieideg¢ptor (target protein) binding
interaction and keep the normal protein function (e.g. enzymatic agsivét the same time. For
example, mutations in the herbicide target genes sug@sls, ALS ACC, andEPSPSan

confer resistance to PS,IALS-, ACCase or EPSPSnhibitor herbicides, respective(@élye et
al., 2013; Heap, 2017; Powles and Yu, 2020hough less frequengnentire codon deletion in
the target gene is also known to endow resistance to prptogorogen oxidase (PPO)
inhibitors (WSSA group 14) in commavaterhemgLee et al., 2008; Patzoldt et al., 2006;
Thinglum et al., 2011and Palmer amaran{Balas et al., 2016; Sal&erez et al., 2017Also, it
has been reported that different amino acid substitutions at the same céd@gehe can
confer different levels of resistance to different spectrums of-ish#itors in wild radishiHan

et al., 2012)whereas, accumulah of mutations at nowwonsecutive codons conferred higher
level of glyphosate resistance in goosegr&ssucineindica (L.) Gaetney (Jalaludin et al.,

2013)

Target gene amplification is alsanavelmechanism conferring herbicide resistance in
weeds, especially for glyphosaiehe firstsuch case wa®ported inglyphosateresistant Palmer
amaranth, Wich hadmore than 100 copies BPSPS)ene distributed throughout the genome
(Gaines et al., 2010).ater, such mechanism has been reported in a number of other glyphosate
resistant weed species, suctkashiag commonwaterhempspiny amaranth, and Italian
ryegrass, etdChahal et al., 2017; Jugulam et a012; Kohrt et al., 2017; MohseMoghadam
et al., 2013; Nandula et al., 2014; Salas et al., 2012; Sosnoskie et al., 2011; Varanasi et al., 2015;
Wiersma et al., 20157ill recently the herbicide target gene amplification has been shown to

confer onlyglyphosate resistance, and one of the reagarthis occurrence may be because this

12



mechani sm ma ye fbfee antoirwee di cosmpar ed to ot her
to withstand glyphosate selecti(Bradshaw et al., 1997; Tranel, 201FApwever, amplification
of the ACCaseayene conferring resistance to ACCasieibitors was recently reported in large
crabgrasgLaforest et al., 2017)n this large crabgragmpuldion 6- to 8fold amplification of
the ACCaseggene and 4-40.3 times more expressiontbe ACCase transcript relative to a
known sensitive population were detected without any known mutation in the gene. As
mentioned aboyeenhanced metabolisbased resistance to ACCaséibitors is also common.
Therefore, the assumption that the herbicide target gene amplifitets®d resistanassolution
appears to be not specificgtyphosatglLaforest et al., 2017; Tranel, 201&nd mechanism of
gene ampfication may not be as rare as it was assumed eadtipeciallythereareonly a small
portion of the documentduerbicideresistaniveedshave been tested ftnis mechanisnof

resistance to herbicides

The focus of this dissertation wasihwestigatehe mechanism(s) and management of
dicambaresistace inkochia,andthe followingsectiors provide anoredetailed description of

themodeof action and mechanism of resistance of synthetic auxin herhisiggs as dicamba.
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1.5Mode of Action of Synthetic Auxin Herbicides

Synthetic auxin herbicides have been in use for more than 70 years around the world, primarily
because of thehigh efficacy, selectivity, low toxicity, and low cos(®eterson et al., 2016)

When used at low concentrations, these herbigitesic several physiological and biochemical
responses as that thie natural plant hormorieindole-3-acetic acid (IAA), which is referred as
the fAmaster hor n(Grosemannj2010;Rosg ét al.r 200BA & virtualy

involved in every aspect of plagtowth and developmenincluding cell division, cell

elongation, vascular tissue development, tissue differentiation, tygaation, senescence,

apical dominance, tropic resposs@uxinsalso interact with other phytohormones to form a
complex network to regulate plant growth and developr(i2gavies, 2013)The synthetic auxin
herbicideshave asimilar chemical structure (Fig. 1.4) as IAWhen used dbw concentratios,

2,4-D can stimulate embryo developmémtitro (Dudits et al., 1991)Furthermore, low
concentrations of synthetic auxin herbici@esalso used in plant biologgsearch to study the
binding affinity alterations among the auxin target transport inhibitor respqiidR 1)
homologs(Dayan et al., 2010; Walsh et al., 2008pwever, when present at high

concentrations, these compounds, can be herbicidal resulting in deregulation of biochemical and
physiological processes in plants, eventually leadingant damage andeathvia a threephase

response (Fig. 1.5).
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Upon auxin herbicide treatmertihe threegphase response starts wathtimulation phase,
which involves metabolic activation including ATPases, gene expression, ethylene formation,
andabscisic acidABA) accumulation. At the same timia,theauxinic herbicidesensitivedicot
plants notably abnormal growth including stem curling, tissue swelling, and leaf epoasty
occurwithin hours after application of teeherbicides. The second phase is inhibition phase,
where stunted plant growth (root and shoot growth) and intensificdtgmneen leaf
pigmentation can occur. Alsother alterations such atomatal closure, resulting in reduced
transpiration, carbon fixation and starch syntheais occur during this phase. All these
reactions willincreasdormation and accumulatioof thereactive oxygen species (RO8)cells,

including both free radicals (8, super oxi de r adi cal-28perhy@idd,
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radi cal and ROA, al k ox ye.gH#Dg hydrayénpdroxiderad®2,mo | e c u |
singlet oxygen)Gill and Tuteja, 2010)The last phase is decay pbadue to théormationand
accumulatiorof ROS, leading to membrane damage, vascular system disruptpaired cell
homeostasis, resulting in red discoloration, chlorosis, wilting, necrosis of tissues and ultimately

plant deatiGrossmann, 2003; Grossmann, 2010)

e STIMULATION PHASE INHIBITION PHASE DECAY PHASE PLANT
”’“he:gfci’d';’"” (5 HAT) (24 HAT) (72 HAT-) DEATH

Abnormal growth Stunted growth Senescence

* Stem curling * Shoot/root * Disruption of chloroplasts,

= Tissue swelling * Intensified green leaf membranes, vascular

* Leaf epinasty pigmentation system

Metabolic activation Physiological response * Red discolorations,

* lon channels H*-ATPases * Stomatal closure chlorosis, wilting, necrosis

* Gene expression * Reduced transpiration, of tissues

* Ethylene formation carbon fixation, starch

* ABA accumulation synthesis

* ROS production

Figure 1.5 Threephase response to synthetic auxin herleiadvild biotype ofdicot weed

(Modified from Grossman2010)

In 2005, after more than 100 years of research efforts across many labsvabold-
wide, the molecular target for IAA was discovef(&harmasiri et al., 2005a; Kepinski and
Leyser, 2005)A family of six receptors including TIR1, and five auxelated Fbox (AFB)
proteins AFB1, AFB2, AFB3, AFB4, and AFB5 were identified as auxin receptors in plants.
Auxin plays the role of Amol-emcdAu/ Al uedo of T
transcription repress¢Gray et al., 2001; Tan et al., 200The degradation of Aux/IAA
repressors is required for-depression of the auxin response factors (ARFs) and initiate the
downstream biochemical and physiologieactions in theell. ARFs are also the pexisting
DNA-binding transcriptional activator proteins, includinghinocyclopropané-carboxylic
acid synthase that leads to ethylene and Aux/IAA repressors biosynthesis that are used for

feedback inhibitio (Guilfoyle, 2007; Hagen and Guilfoyle, 2002)
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After unveiling thebasisof auxin perception, signaling and gene expression in
Arabidopsis Arabidopss thaliana(L.) Heynh), abetterunderstanding dfiow synthetic auxin
herbicideswvork in plants has been suggest8dveral models of thmodeof action of auxinic
herbicides have been propog&tossmann, 2010; Jugulam et al., 2011; Tan et al., 260h
depict the chronology of events after IAA or synthetic auxin herbigdeZ,4-D) application
(summarized in Fig. 1.6). Briefly, when IAA or 2[# reachtheapoplast of a plant cell (in the
case of IAA, by de novo synthesis or release from stiameds; whereas for 2;B, by herbicide
applicationandbr phloem transportation), perception of these molecules by-aindmg
protein 1 (ABP1) in cell membrane, causes rapid cascade of events in cytoplasm including
proton pumping, Kchannel activatiorgell wall loosening, and cell expansion/division. At the
same time, the IAA and 2B can be actively transported into the cell by carrier proteins. In the
cytoplasm, the IAA or 2D is recognized bgkp Cullin, Fbox containing complex
(SCH'RVAFB) "with the cereceptor Aux/IAA that is also the repressor protein of auxin
responding factors (ARFs). Thi sSCPF®/&Rploteie i n t h
complex and AX/IAA, whichisigl uedo t oget héerThibthentahleadt AA or 2
ubiquitination of the Aux/IAA protein and finally degraded 2§Sproteasome. The degradation
of Aux/IAA protein removes the repression effect, which activates the ARFs and rapidly
increases the auxiresponsive gene expression for further biochemiadidaysiological
responsegDharmasiri et al., 2005a; Dharmasiri et al., 2005b; Gray et al., 2001; Grossmann,
2010; Hagen and Guilfde, 2002; Jugulam et al., 2011; Kepinski and Leyser, 2005; Tan et al.,

2007)

When the concentration of IAA increases in tiedl, biosynthesis of Aux/IAA repressor

areinduced at the same time to repress the ARFs to deactivate the IAA induced gene expression
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(Jugulam et al., 2011; Kelley and Riechers, 2007; Staswick et al.,.20@®s)dition, GH3

mediated conjugation of IAA with amino acids can rapidly decrease the concentration of IAA in
thecytoplasm Therefore, the IAA perception, signalingydagene expression are balanced to
maintain the auxin homeostasis in plant c@lajguz and Piotrowska, 2009; Ludwiduller,

2011; Petersson et al., 2009; Staswick90

Synthetic auxin herbicide 22 and others can also be actively transported into plant
cells by active transporters and bind to the TIR1/AFB protein on thé" S complex and
Agl ueo F&represshr@ux/MAR protein to cause the Aux/IAA ubiquitination and
ultimately degradation by 26S proteasomes. HoweveiD234d other synthetic auxin herbicides
are not substrates of GH3 mediated conjugation and cannot be hydroxylated or detoxiflgd rapid
by P450sor other metabolic pathways in sensitplants The uncontrolled high concentration of
2,4-D or synthetic auxin herbicides induce the irreversible tplesese responsés synthetic
auxin herbicides as describedFig. 1.5, which eventuallyehd to plant deattGrossmann, 2010;

Jugulam et al., 2011)
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Figure 1.6 Proposed modalescribingthe sequential biochemical and physgtal events in
cells of sensitive dicot plant after treatment with-B,4a synthetic auxinand natural auxin
indole-3-acetic acid (IAA) (modified fronfGrossmann, 2010; Jugulam et al., 2011; Tan et al.,

2007).

19



1.6 Mechanisms of SyntheticAuxin Herbicide Resistance

To date, 69 unique cases of synthetic auxin herbicide resistance in 36 weeds species have
been documented (Fid.7)(Heap, 2017)but the thorough investigation of mechanssof
resistance has been reported only in some cases, and the knowledge of molecular basis of

syntheticsuxinherbicide resistance is still limited.

40
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Figure 1.7 Numberof weed species (in scientific names) with reported resistance to synthetic
auxin herbicideg¢Adaptedandmodified from www.weedscience.or@Heap, 2017) Kochia

scopariais highlighted by the arrow.
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1.6.1Barnyardgrass (Echinochloa crusgalli (L.) Beauv. var. crus-galli) and Other
Grasses
Quinclorag asyntheticauxin herbicidebelongs to quinolone carboxylic acid classthe

auxin herbicidevhich has activity on certain grass wed@ossmann and Kwiatkowski, 2000)
probably because @& distinct mode of action on grasses. Some studies suggested that the
accumulation of cyanide in cells after quinclorac application may resukim geatiBusi et

al., 2017; Grossmann, 2010; Jugulam et al., 2011; Yasuor et al., 3012y, fve grass weeds
were found to have evolved resistance to quinclorachargyardgragssmooth crabgrass
(Digitaria ischaemun{Schreb.) Muh), gulf cockspur gras€€hinochloa crusgall{L.) Beauv.
var. zelayensig gulf coclkspur Echinochloa crugpavonisL.), andjunglerice(Echinochloa
colona(L.) Link) (Heap, 2017)The investigation of quinclorac resistancdannyardgrass
revealed that the resistant biotypes had reduced translocation of quinclorac, but this was not
conclusively attributed to the resistance mechairfisspezaviartinez et al., 1997; Lovelace et al.,
2007) More recently, a0 fold over expressionf a GSThomologueEcGST1 protein was
identified in a quincloracesistanbarnyardgraspopulation from China. Thisver expression
may be partially responsible for GSlbased metabolism of quinclorac in resistant pléntst

al., 2013) Also, aquincloraeresistaat smooth crabgrass showed reduced accumulation of ABA
and cyanidea n d q u a eyamopldnieeal/ntHase activity relative to a sensitive plant. This
suggests a higher level of cyanide detoxification and possibly a-stgdtased resistance may
be inwlved in quinclorac resistance in this smooth crabgrass popu{atiatallah et al., 2006)
However, more studies are needed to fully uncover both quinclorac mode of action and

mechanism of resistance in gras@#@ssi et al., 2017)
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1.6.2Wild mustard (Sinapis arvensigL.) Sinar.)

The first case of synthetic auxin herbicigsistant wild mustard was reported in Manitoba,
Canada in 199(Debreuil et al., 1996; Hpa 2017) A biotype of wild mustard, found spring
barley and wheat cropland, was resistant tel®,dicambagdichlorpronp MCPA, mecoprop, and
picloram(Debreuil et al., 1996)The dosaesponse studies revealed high resistance to MCPA,
2,4-D, picloram, and dicamba, relative to sensitive biotypes from the sam¢Hiedgh and
Morrison, 1992) Synthetic auxin herbicide resistancevitd mustard is not as a result of

reduced absorption, translocation, or enhanced metab@isnuik et al., 1993)I'he resistance
wasattributed to an altered auxin binding gileeshpande and Hall, 200®Ithough, the
modification of auxin binding site was not further investigated in wild mustard, reduced ethylene
production leading to reduced ACCase expression in resistant ésotygs reported to have
played a role in the resistan@rossmann, 2000; Grossmann, 2010; Hall et al., 1993; Penuik et
al., 1993) Also, the role of ABP1 binding affinity to synthetic auxins was investigated in this
species and a low affinitlginding site was found itheresistant compared to susceptible wild
mustard biotypes. However, other studies did not find a conclusive role of ABP1 in conferring
synthetic auxin herbicide resistance in wild mustdudyulamand Hall, 2005; Webb and Hall,
1995) More recently, morphological and molecular markers clekeked to synthetic auxin
herbicide resistance were fadiby amplified fragment length polymorphigAFLP) analyses in

this speciegMithila et al, 2012)

1.6.3False cleaversGalium spurium(L.) var. echinospermoi
In 1996, a quincloracesistant false cleaver population was found in a canola and wheat rotation
field in central Alberta, Canad#&all et al., 1998; Heap, 2017Jhe quinclorac resistance in false

cleavers was notdzause of reduced absorption, translocation or metabolism of this herbicide
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(Hall et al., 1998; Van Eerd et al., 2004)owever, compared wusceptible biotypeseduced
production of ethylene and ABA was recordedesistant false cleaver plaift&an Eerd et al.,

2005) The results o& genetic study indicatethatthe quinclorac resistance in this false cleaver
population was inherited by a single recessive nuclear gene, and this gene was found not linked
to ALS-inhibitor resstance, which is controlled by a single dominaumtleargene in this

multiple herbicideresistant populatiofVan Eerd et al., 2004)

1.6.4Yellow starthistle (Centaurea solstitialigL.) Censo)

Picloram resistance in yellow starthistkasfirst reported in the United States in 198&llihan

et al., 1990; Heap, 201 M ater,crossresistanceo clopyralid is also found in the same
population(Sabba et al., 2003No difference in absorption, translocation, or metabolism of both
picloram and lopyralid was found between the resistant and the susceptible yellow starthistle
biotypes, but a 2fold reduction in ethylene production walsservednly in the resistant
biotype(Sabba et al., 1998; Valenzudlalenzuela et al., 2001furthermoregeneticanalyses
confirmed that the quinclorac resistance is endowed by a recessive nuclear gene in tBis specie

(Sabba et al., 2003)

1.6.5Common hempnettle Galeopsis tetrahifL.) Gaete)

The first MCPAresistant commohempnettlgopulation was found in a cereal crop field in
Alberta, Canada in 1998, where spring barley and wheat were planted atatinen(Heap,
2017) This commorhempnettlgpopulation was also fourtd be resistant turoxypyr,
dicambaand2,4-D (Beckie et al., 2001 )nvestigation of themechanisnof resistance in this
species revealed that the resistant plants translocated less MCPA outedtideaf and also

metabolized more in roots relative to a susceptible biofyesnberg et al., 2006)-urther, it
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was reported that MCPA resistance in this comimampnettlgoopulation is conferred by at

least two nuclear genes with additive effdtigeinberg et al., 2006)

1.6.6Prickly lettuce (Lactuca serriolal.)

In 2007, the first case of prickly lettuce resistance to synthetic auxin herbicide was documented.
This prickly lettuce population was foumtla cereal field in Washington, USA. The resistant
biotype was crossesistant to 2,8, dicamba, and MCPA, and also found resistant to glyphosate
(Burke et al., 2009; Heap, 2017; Riar et al., 20Thge resistant biotype absorbed and

translocated less 22 compared to the susceptible biotypet, haol difference in 2,4

metabolism between these two biotypes was fq&iar et al., 2011)It was projsed that

reduced overstimulation resporsEmpaedto that in thesusceptible biotype after 2[2

application may be associated wikie resistancéRiar et al., 2011)Furthermore, genetic

analyses revealed that the-B4esistancevasinherited by asingle codominant gene in this

specieqRiar et al., 2011)

1.6.7Corn poppy (Papaver rhoeas..)

Corn poppy is a major weed impacting cereal production in Europe. In 1993, the first case of 2,4
D-resistant corn poppy was reported from a wheat field in @ainjeda et al., 2000; Heap,

2017) This population was also resistantribenuron which is an ALSinhibitor (Cirujeda
Ranzenberger, 2001)aterin 1998 two other 2,4D-resistant corn poppy populations were

reported in Italy, one of them is also resistant to two Atl8bitors includingiodosulfuron and
tribenuron(Heap, 2017)More recently, other corn poppy populations were identigsistant to
2,4-D, dicambaandaminopyralid again, in SpaifiRey-Caballero et al., 2016Also, a population

of cornpoppy from France was reportediave evolved resistante 2,4D, MCPA,

iodosulfuron mesosulfurorandtribenuron(Délye et al., 2016; Heap, 201TVith the spread of
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multiple herbicide resistance, corn poppy is threatening cereal production, especially in southern
Europe(Busi et al., 2017)Reduced translocation of 24resulting in less ethylene production

has been attributeto 2,4D resistance in one of the above populatighsy-Caballero et al.,

2016) whereasenhanced metabolism by P450s conferring resistance was ceotieo other

populationgTorra et al., 2017)

1.6.8Wild radish (Raphanus raphanistruni..)

Wild radish is one of the major problem weeds in Austi@ies et al., 2005k volution of
resistance to four modes of action including synthetic auxin herbicides, EPSPS and
carotenoid biosynthesimhibitors (WSSA group 11) is a challenge for sustained crop production
(Busi et al., 2017; Heap, 201 Hirst two cases of 2;B-resistant wild radish were reported in
1999(Heap, 2017; Walsh et al., 2008ubsequent surveys of herbicidsistant wild radish in
western Australiawheatbeltwverecarried out in 2003, 2010 an@15, and it was found that 2,4

D resistancdadincreased from 60% in 2003 to 74% in 2010 and maintained at the same level in
2015(Owen et al., 2015; Walsh et al., 200Reduced translocation of 2[4 which could be

due to loss of function of an ATBinding cassette subfamily B (ABCBype longdistance

auxin efflux transporter, was attributed to-B4esistance in two wild radish populations. The
genetic analyses of these populasicevealed a nuclear inherited orapletely dominant gene
thatcontrok the resistance to 2@ (Busi et al., 2017; Busi and Powles, 2Q1Similar results

were reported in other£2D and MCPAresistant wild radish populatio&oggin et al., 2016;
Jugulam et al., 2013JFurthermore, a difference in auxin pgytien and/or signal transduction
among resistant biotypes was also reported. A gemwoiahe transcriptomics study euxin

inducedtranscriptional repressors and defense genes in wild radish is being conducted by

25



Australian scientists, which may shed neghts regarding the precise mechanism of synthetic

auxin herbicide resistance in wild rad{@usi et al., 2017)

1.6.9Common waterhemp Amaranthus tuberculatugL.) Moq.)

Commonwaterhemps one of the top five economically important weeds in the United States,
especially the rapid andlide spreadnultiple herbicide resistance is challenging the crop
production in many Midwestern statdse first case of 2/4D-resistant commowaterhempvas
reported in Nebrask&JSA, in 2009(Bernards et al., 20127 his popuétion is also resistant to
aminopyralid picloram atrazine, chlorimuron, and imazethagyteap, 2017)In 2016, a
commonwaterhempwvas reported in Illinois, USA with resistance to five different modes of
action of herbicides.g.ALS-, PSII, PPO, hydroxyphenylpyruvate dioxygenase (HPPD,
WSSA group 27)nhibitors,and synthetic auxin herbicid@ideap, 2017)Rapid metabolismfo
2,4-D via cytochrome P450s activity was found to confer resistance in convaterhemp

population from Nebrask&SA (Figueiredo et al., 2017)

1.6.10Kochia (Kochia scopariaL.) Schrad.)

Among several synthetic auxins, dicamba is found to be most effectik@cbiacontrol.
Nonetheless, dicambasistankochiawas first reported in 1998 in Montana, North Dakota,
Idaho, and Colorado, US@deap, 2017)Currently, dicambaesistankochiais commoty

found especially in wheafallow fields in Colorado and Kansas. The physiological,
biochemical, and molecular basis for dicamba resistankecimafrom Montana and Colorado
has been studied extensivéfranston et al., 2001; Kern et al., 2005; Pettinga et al., 201.7)
theMontana population, no difference in absorption, translocation or metabolism of dicamba
was detected betwa dicambaesistant andsusceptible biotypeCranstoret al., 2001) The

molecular study indicated sevegralxinrelatedtranscripts upor downregulated upon dicamba
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treatment. However, if these genes are directly involved in dicamba resistance mechanism or just
auxinrelateddownstream response remaumgknown in thiskochiapopulation(Grossmann,

2010; Kern et al., 2005; Zhgrand Riechers, 2008Recentlyt wasreported that reduced
translocation of dicamba contributes to thestsice in a Colorado populati(fettinga et al.,

2017) Additionally,anup-regulation of chalcone synthase ge@é&l§), resuling in over

productionof the flavonolquertecinandkaemperfolwvas discoverethat can compete with

dicamba for intercellular movement andsealar loading via ABCBype membrane

transporters, leading to reduced dicamba translocatithe i@Okochiapopulation(Pettinga et

al., 2017) Furthermore, in the sankechiapopulation, a double mutation in auxin-xeptor
geneAux/IAAwas identified, which confer low dicamba affinity in Aux/IAA protein complex

and thuskochiaplants can cope with high level of dicamba in c@lisClere et al.2013).
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1.7Summary

Management okochiais a major problem in ther@at Plains of North America, especially, with
rapid spread of dicambasistaceafterthe evolution and increase gtyphosate and ALS
inhibitor resistant populations in this regi¢@tahiman et al., 2015 heprecisemechanism of
dicamba resistance in weeds, includikaghiais still not completely known. It is important to
investigate the underlying mechanism(s) of dicamba resistatkoelmato formulat best
management strategié® its control (Busi et al., 2017; Délye et al., 201&)is also essential to
examinethe inheritance and genetic basis of dicasrdmastant trait irkochig which will help
understandhe evolutionary dynamics and possible spreagsittance ananportantly,to
recommend effective and sustainable weed management appr{aélyeset al., 2013;

Varanasi et al., 2016; Zheng and Hall, 20040, understanding the influence of climate
factors on the efficacy of herbicides, such as dicambaohig will also help to provide
recommendations for effective useharbicides and slow down the development of herbicide
resistancgBusi and Powles, 2009¢specially with the emerging climate fluctuations across the
globe(Bailey, 2004; Millar et al., 20070verall, it is important to develdpasible approaches
to incl ude kochiamanagemeiiespeadrlly dicambeesistankochia(Soltani et

al., 2016; Soltani et al., 2017)

Thus, the overall goal of this dissertation was to investigate the mechanisms and genetic
basis of dicamba resistancekiochia Furthermore, several management options to control

dicambaresistankochiawere also investigated. The speciflijectives of this thesis include:

Chapter 21) determine the level of dicamba resistandeoithig 2) investigate the

physiological basis of dicamba resistanc&achia including dicamba absorption, translocation,
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and metabolism; and 3) investigate thechemical and molecular basis of dicamba resistance in

kochia

Chapter 31) investigate the inheritance of dicamba resistance in dicaesgstankochia
populations collected from different geographical regi@psletermine possible linkage of this

trait with glyphosate resistance in populations from Kansas

Chapter 41) evaluatehe effect of temperature on the efficacy of dicambleohiacontrol; 2)
examinethe efficacy of preemergence application of dicambdicambaresistankochig and
3) determine the efficacy of dicamba and glyphosate combinationsr{teek) on dicamba and

glyphosateresistankochiacontrol.
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Chapter2- I nvestigati on of Mechanism(s

i n Kochi a

2.1 Abstract

Synthetic auxin herbicides (e.g. Z¥4 dicamba, picloram, etc.) are widely used to control dicot
weeds in cereal crops around the world. Dicamba, in particular isndely to control Kochia
(Kochia scoparigL.) Schrad), one of the most troublesome weeds throughout the Great Plains
of North America. Especially, after the wide spread prevalence of glyphosate resistance in
kochia populations in this region, dicamba has been an option for the managemenveéthis
Todate, 69 unigue cases of synthetic alharbicide resistance in 36 weggecies have been
documented. The first casef dicamba resistance in kochia was reported in 19908NNND,

ID, CO, and more recently in KS in 2012. However, the mechanisrasistance to dicamba in
kochia from KS is still elusive. The objectives of this study were to characterize thargeh

site and targesite resistance mechanisms to dicambiagkochia populations from KS (KSUR)
and CO (CSUR) along with known diodasusceptible kochia populations from KS (KSUS)
and CO (CSUS) for comparisof.series of experiments were conductéth [1“C] dicambato
determine uptake, translocation and metabob$ulicamban these kochia populations.
Furthermore, presence ofyasingle nuatotide polymorphisniSNP) and over expression of
auxin receptogeneqTIR or AFBs), the possible target s#ef dicamba was also investigated.
The results of these studies revealed two different mechan@msrringdicambaresistance in
KSUR and CSUR kochia/Nhile reduced translocation of the dicamba contributéiseto
resistance in CSUR kochia, a SNP in on&l6f1 homologues was identified in several KSUR

kochia plants. Although esegregation of this SNP with dicambesistant phenotype needs
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further investigation. Overall, the outcome of this research clearly demonstrates kochia
populations can evolve ndargetsite or targesite resistance grotentiallyevenboth to

dicambajn response tdifferent types of dicamba selection pressure.
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2.2 Introduction

Dicamba, a benzoic acid synthetic auxin herbicide, also known as Banvel®, Clarity®, etc., is
usedwidely to control dicot weeds in cereal crops around the world. In Kansas, dicamba has
become one of the important herbicide options to control ko&luehja scoparigL.) Schrad.),

an economically important weed, especially following the wide spread incidegbgphbbsate
resistance in this region. After the initial incidence of dicamba resistance reported in MT, ND, ID
and CO in early 1990¢1eap, 2017)more recently evolidn of dicamba resistance kochia

has been documented in numerous fields, especially in viddeay in CO and KSHeap,

2017) A number of previous studies investigated mechanism of dicamba resistance in koch
(Cranston et al., 2001; Kern et al., 2005; Pettinga et al., 200@MT population, no difference
in absorption, translocation or metabolism of dicamba was found betweenbdioasistant and
-susceptible biotyperanston et al2001) Further investigation using a differential display
technique indicated ur downregulation of severauxinrelatedtranscripts in response to
dicamba treatment. However, if these genes are directly involved in dicamba resistance
mechanism ojust auxinrelateddownstream response remains unknown inkbchia
population(Kern et al., 2005) Recentlyt wasreportedthatreduced translocation of dicamba
contributing to the resistance in a kochigplation from CQ(Pettinga et al., 2017)

Additionally, upregulation of chalcone synthase ge@e&l§ was discoveredwvhich results in
overproductionof the flavonolsjuertecirandkaemperfokhat can compete with dicamba for
intercellular movement and vascular loaduig ABCB-type membrane transporters, leading to
reduced dicamba translocation in this dicamsistankochiapopulation(Pettinga et al., 2017)
Furthermore, in thisamekochiapopulation, a double mutation Aux/IAA,an auxin cereceptor

gene, waslsoidentified,leading to low dicamba affinity in Aux/IAA protein complex, thereby,
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kochiaplants can cope with the high level of dicamba in ¢géClere et al., 2017However,
the mechanism of dicamba resistance in kochia from KS is stille@t €herecent research
(Pettinga et al., 201%yas also a part of this dissertation and therefore, the objectives of this
research were to: 1) investigate the physiological basis of dicamba resistkockianfrom KS
and CQ by determining the'f{C] dicamba absorjutn, translocation, and metabolism; and 2)

investigate the biochemical and molecular basis of dicamba resistakmehia from KS
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2.3Materials and Methods

In 2012, kochia seed were collected frarfieldin Haskell County, IS, USA(37°29'48.5"N,
100°46'53.0"W)Brachtenbach, 2015Kochia plants generated from these seeds were self
pollinated by keeping the plants in isolation and up@turity seedwereharvested separately
from each often plants. One hundred seedlings were generated sepaftteharvesing the
seed fromeach oftheabove 10 plants. When plants reachedl2@m heght, 50 plants each
weretreated with a field rate of dicamba (560 g a8)hin response tdicmabareatmentall the
progeny of a single plant thaterefoundsusceptible to dicamba were selected as dicamba
susceptible kochia (KSUSThe remaining seddarvested from the KSUS mother plant was used
in this research.ikewise,all the progeny of single plant thatrefoundresistant to the field
rate of dicamba were selected as dicamdsastant kochia (KSURBimilarly, the rest of the seed
harvested fom KSUR mother plant was used in this research. Inbred dicassisgant (CSUR,
also known as 9425R) and dicanshssceptible (CSUS, also known as 7710S) kochia lines from
CO, derived by singlseed descent for four generations followed by bulk seed piodudot 13
generationgHowatt et al., 2006; Preston et al., 200&re also used in this research
Experiments were conducted in weed science greenhouse attached to the Department of
Agronomy at Kansas S&atJniversity, Manhattan, Kansas, United States. The following
greenhouse conditions were maintained: 25/20 °C (day/night, d/n) temperatures, 60 + 10%
relative humidity, and 15/ 9 h dFPslilprinatbroper i od
provided wit sodium vapor lamps. The physiological studies were conducted in growth
chambers maintained at following conditions: 25/15°C d/n temperature, 60 + 10% relative
humidity, and 15/9 h d/n photoperida@jht was provided by incandescent and fluorescent bulbs

delivering 750 umol n? s photon flux at plant canopy level. Solvents and reagents were used in
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the studies in this chapter that are not specified in the context were purchased from Thermo
Fisher Scientific (Waltham, MA, USA) or MilliporeSigma Corp. (Boton, MA, USA).

2.3.1 Dose Response @ficamba in KSUR, KSUS, CSUR, and CSUochia

KSUR, KSUS, CSUR, and CSUgochiaseeds were germinated in trays (25 x 15 x 2.5 cm)
filled with commercial potting mixture (P#®lix Potting-Mix, Premier Tech Horticulture,

Ontario, CA). Individual seedlings atléaf stage were transplanted into plastic pots (6.5 x 6.5 x
9 cm) containinghe same type of soil and kept in the same greenhouse as above. When the
kochiaseedlings were 02 cm height, thewere treated with dicamba (ClafityBASF Corp.,
Florham Park, NJ, USA) without AMS at 0, 70, 140, 280, 560 (label recommended fielX i.e.

dose), 1120, 2240, 4480, and 8960 tak

The above treatmentgereapplied as follows. Erbicideswere mixed according to the
labels and applied using a berigpe sprayer (Research Track Sprayer, De Vries Manufacturing,
Hollandale, MN, USA) equiped with a single moving even flédn nozzle tip (8002E TeelJet
tip, Spraying Systems Co., Wheaton, IL, USA) delivering 18i&Lat 207kPain a single pass
at 4.85 kmht. At four weeks after herbicide treatment (WAT), glyphosateldicambainduced
visual injurywasrated based ocompositevisual estimation of growth inhibition, epinasty
(downward curling of plant parts), necrosis, and plant vigor on a scale of 0 (no effect) to 100
(plant death). Plant were clipped off at soil level &AT and indivdual plants were placed in
separate paper sacks. Dry biomass data was obtained by weighing after oven dried at 60 °C for

72 h.

2.32 Absorption and Translocation of [*4C] Dicamba

Prior to conducting the absorption and translocation experinmeeptgliminary study was

conducted to testhether absorption or translocation 8tJ] dicamba in KSUR, CSUR, KSUS,
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and CSUS kochia would be affected by spraying plants with formulated dicamba (Clarity®
herbicide, BASF Corp., Florham Park, NJ, USA) usimg itnethod described by Perd&anes et

al. (2007) Briefly, two newly expanded leaves were marked and wrapped with small pieces of
aluminum foil on kochia at height of 112 cm, then the plants were sprayed with 560-fdia
dicamba using a bendkipe sprayer (Research Track Sprayer, De Vries Manufacturing,
Hollandale, MN, USA) equipped with a single moving-fiah nozzle tip (80015E TeeJet tip,
Spraying Systems Co., Wheaton, IL, USA) delivering 187 L&t222 kPa in a single pass at
3.21 km ht. After the herbicide droplets dried (~30 min), the alumirfailwas removed. Two
newly expanded leaves were marked on another set of same size kochia seedlings without the
560 g ha of dicamba application. On both sets of plants, the absorption and translocation of
[*4C] dicamba were tested using the method desdrbelow. Results (data not shown) showed
that neither absorption nor translocation*¢€] dicamba in both dicamb@sistant (DR) and
dicambasusceptible (DS) kochia was affected by spray of dicamba at 568 gléace, in all

other experimentasing[1“C] dicambathe plants were ngre-sprayed with formulated

dicamba.

Preliminarily testing of J*C] dicamba translocation in kochia also revealsty less than
5% of dicambadranslocated to roots at 72 hours after treatments (HAT) and majority g884p
was recovered from the aboveground parts of kochia. Hence, the amoii@f digamba

translocated to roots was not measured in subsequent experiments.

The absorption and translocation experiments were conducted according to the method
that reportedy Ou et al(2016) which is also summarized in Fig. 2.1. A working stock solution
of 1 mL of [**C] dicamba (equal to 560 g of dicamba in a carrier volume of 187 L) with 0.33 kBq

uL! of radioactivity was prepared by mixing 29.3 pL of dicartbag-UL-1“C) ethanol solution
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(11.4 kBg pL?, specific activity: 2.87 kBg ué BASF Corp., Fldnam Park, NJ, USA), 6.4 pL

of Clarity herbicide (BASF Corp., Florham Park, NJ, USA) and 964.3 uL of water. Ten uL of
[*4C] dicamba working solution was applied on the upper surface of two newly expanded leaves
(5 uL per leaf) for each plant using a Wirdfroapillary syringe (10 puL, Drummond Scientific

Co., Broomall, PA, USA). Thirty minutes later, plants were returned to growth chamber. Plants
were harvested at 24, 48, 72, 96, 168, and 336 HAT, and then dissected into treated leaf (TL),
tissue above thedated leaf (ATL), and tissue below the treated leaf (BTL). After the TL was
washed twice in 20nL scintillation vials for 1 min using 5 mL of 10% (v/v) ethanol agqueous
solution with 0.5% of Tweef0) at each time, 15 mL of Ecolite(+) (MP Biomedicals, LLC.

Santa Ana, CA, USA) was added in each vial and the radioactivity in TL rinsates was measured
using liquid scintillation spectrometry (Beckman Coulter LS6500 Multipurpose Scintillation
Counter, Beckman Coulter, Inc. Brea, CA, USBjssected plant sectiomgere dried at 60 °C

for 72 h and radioactivity in TL, ATL, and BT
spectrometry (LSS) after combusting for three minutes using a biological oxidizes@O>)RJ

Harvey Instrument, New York, NY, USA). Four replicatesrevincluded in each treatment, and

the experiment was repeated twice in time.

The calculation of percentage éfC] absorption, and translocation was doség
following formulae. Percentage of absorptionafiRdRrinsatd/Rappliedx 100, percentage of
translocation=100RTL/(RappliectRrinsatd X100, percentage in ATL=ARL/(RappliedRrinsatdx100,
percentage in TL= R/(RapplietRrinsatd* 100, and percentage in BTL=aR/(RappliedRrinsatg*100.
Where, Rppiiedis total amount of radioactivity applied time plant; Rnsateis the radioactivity

recovered in leaf rinsatesaR is the radioactivity recovered in tissue above the treated leaf; R
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is the radioactivity recovered in the treated leaf; agtl R the radioactivity recovered in tissue

below the teated leaf.

\Nas“ Unabsorbed [“C] dicamba
a4, [14C] dicamba S / (ABSORPTION)

TL, ATL, BTL, Roots
(TRANSLOCATION)

:_—:_ _ Y W . /
10 uL | V) Harvest ATL
= v ? — i | i > ICombust Radioactivity in

Formulated Working solution: I l ] BTL
dicamba 560 g ae ha |

solution 0.33 kBq uL-!

Roots =~

Figure 2.1 lllustration of steps followed in*{C] dicamba absorption and translocation studies in

kochia

2.33 Metabolism of [*“C] Dicamba

To determine the metabolism of dicamba, kochia plamet® treated with'fC] dicamba as
described above for absorption or translocation study, except the working stock solution was
newly mixed with 0.5 kBq pt: of radioactivity (Fig. 2.2). The samples were harvest at 24, 48,
72, 96, 168, and 336 HAT accondito the method that reported by Godar ef24l15) At the

time of plant harvest, the TLs were dissected and washed as described above in absorption and
translocation study. The aboveground part of the plant combinghetivashed TL was then
frozen in liquid nitrogen and homogenized with a mortar and pestle. The plant powder was
extracted with 15 mL of 90% acetone aqueous solution at 4°C for 24 h. Samples were
centrifuged at 10,009 for 10 min at 4°C in centrifuge (S@ll RC-5B Refrigerated Superspeed
Centrifuge, DuPont Company, Newtown, CT, USA). Supernatant was concentrated down to
approximately 500 &L at 45AC for 2 h using
City, MO, USA). The concentrated samples weadsferred to microcentrifuge tubes and

centrifuged at 10,000 g for 10 min in centrifuge (Sorvall Legend Micro 21 Microcentrifuge,
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Thermo Fisher Scientific, Waltham, MA, USA) and transferred into new tubes. Concentration of
radioactivity in each sampleas measured by LSS priorhah performance liquid
chromatographyHPLC) analysis and samples were adjusted to 1.0 Bgiptadding 50% (v/v)
acetonitrile aqueous solution. Ahmplesand a }*C] dicamba parent sample in acetonitrile with

1.0 Bq pL? of radioactivity were analyzed by reveigbaseHPLC (System Gold, Beckman

Coulter, Pasadena, CA, USA) using a ZorbaxGB8 col umn (2501 4.6 mm,
Agilent Technologies, Santa Clara, CA, USA) at a flow rate of 1 mlwith eluent A (water

with 0.1% trifluoroacetic acid, TFA) and eluent B (acetonitrile with 0.1% TFA). The following
elution method was used: 0 to 1 min, 0 to 20% (of eluent B) linear gradient; 1 to 3 min, 20 to
40% linear gradient; 3 to 7 min, 40 to 60% linear gradient; 7 t@ih970 to 90% linear

gradient; 19 to 21 min, 90 to 40% linear gradient; 21 to 23 min, 40 to 0% linear gradient; 23 to
25 min, 0% isocratic hold to +equilibrate the column for the next sample injection (25 min

total). A radioflow detector (EG &G Berthahl LB 509, Bad Wildbad, Germany) was used to
detect radioactivity of the samples after mixing with Ultifla M cocktail (PerkinElmer,

Waltham, MA, USA). Via this HPLC method, th&€] dicamba parent compound exhibited a
retention time of 10.9 min. The amnt of f4C] dicamba parent was quantified as a percentage

of total detected radioactivity based on peak area in the chromatograph. Treatments were

replicated four times and the experiment was repeated.
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\ 4 -
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Combined liquid N, Extracted HPLC detector

Figure 2.2 lllustration of steps followed in4C] dicamba metabolism study

In the absorption, translocation, and metabolism studies, a complete randomized
experimental design was used. Analysis of variance was conducted in R@saphPad

Software, Inc., La Jolla, CA, USA).

2.34 Phosphorl mage Analysis

A separate working stock solution éf€] dicamba with 3.3 kBq ptt of radioactivity and equal
to 560 g of dicamba in a carrier volume of 187 L was prepared (Fig. 2.3). Koctitavsee
germinated in potting mixture (Ridix Potting-Mix, Premier Tech Horticulture, Ontario, CA).
Individual seedlings from each population at 2 to 3henghtwere transplanted into plastic pots
(6.5% 6.5 x 9 cm) that filled up with silica sand (Gral@s$iandy Sand, Fairmount Santrol,
Sugar Land, TX, USA) that has rinsed in 0.1% (w/v) of fertilizer (MiriGle® water soluble all
purpose plant food, N:P:K of 24:8:16, Scotts Mira@e Products Inc. Marysville, OH, USA),
and kept in growth chamber maairied at the same settings as described above. When the
kochia seedlings were®&cmheight they were treated with 1 pL of the working solution on a
newly expanded leaf. At 48, 72, and 96 HAT, the treated plants were gently uprooted and the

roots were wased with water carefully to remove soil particles. Subsequently, the whole plant

64



was washed twice with 10 mL of 10% (v/v) ethanol aqueous solution that contains 0.5% of
Tween20, and then presseding a plant preqtacey et al., 2001and dried at 60°C for 72 h.

The pressed kahia plants were exposed to BAS MS 2040 E Multipurpose Standard Storage
Phosphor Screen (GE Healthcare Life Sciences, Pittsburgh, PA, USA) for 24 h, and the screen
was read using Bi#Rad Molecular Imager FX (Bi®ad Laboratories, Inc. Hercules, CA, USA)
The phosphor images were processed using Quantity One software (v4.6RxdBio

Laboratories, Hercules, CA, USA). The RGB images used for visualization were processed in
GNU Image Manipulation Program 2.8.20 (GIMP development team, https://www.gimp.org).
Four replicates were included in each treatment using congrlatelomized experimental

design, experiment was repeated twice.

Figure 2.3 lllustration of steps followed in phosphor imaging analysis ugit@] dicamba

2.35 RNA Extraction, cDNA Synthesis andTIR1 HomologsExpression and
Sequencing

Fresh plant tissue from KSUR and KSUS kochia plémis+treated withdicamba were

collected and flash frozen in liquid nitrogen and store@@tC for RNA isdation. The frozen

tissue was homogenized in liquid nitrogen using aghitbed mortar and pestle. One hundred

mg of homogenized tissue was transferred into a 2.5 mL microcentrifuge tube. Total RNA was
isolated using Invitrogelf TRIzol™ RNA extraction k (Thermo Fisher Scientific, Waltham,

MA, USA). In brief, 1 mL of TRIzolM reagent was added into the 100 mg homogenized plant
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