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Abstract 

Kochia (Kochia scoparia (L.) Schrad), one of the most troublesome weeds in the North 

American Great Plains, including Kansas (KS), has become a significant concern in croplands 

ever since the evolution and spread of glyphosate resistance in this weed. Dicamba, an important 

synthetic auxin herbicide, is a useful substitute for managing glyphosate-resistant (GR) broadleaf 

weeds. As a result of extensive and intensive use, kochia populations have also developed 

resistance to dicamba. However, the precise mechanism(s) of dicamba resistance in kochia is still 

unknown. In the first part of this dissertation, the physiological, biochemical and genetic basis of 

dicamba resistance in dicamba-resistant (DR) kochia from KS was investigated. The results 

suggest that the mechanism of dicamba resistance in this kochia is not due to decreased 

absorption, reduced translocation or enhanced detoxification of dicamba. In contrary, reduced 

translocation of dicamba was found to contribute to the dicamba resistance in DR kochia from 

Colorado (CO). Further investigation of DR kochia from KS revealed a possible role of single 

nucleotide polymorphism (SNP) in TIR1 (the receptor gene of auxin) in the dicamba resistance 

evolution. Genetic analyses of data from inheritance studies demonstrated that an incomplete 

dominant nuclear gene controls the dicamba resistance in kochia from KS. Also, it was found 

that the genes controlling dicamba resistance in kochia from KS and CO are not linked. 

Similarly, although, GR and DR traits were found to be controlled by two distinct single 

dominant genes, they appear to co-exist in many kochia populations from KS. Nonetheless, these 

two genes were also found not to be linked.  

The second part of this dissertation focused on the development of reliable tools for the 

management of DR and/or GR kochia. The following experiments were conducted under 

greenhouse and field conditions in KS: a) the effect of temperature stress on the efficacy of 



  

dicamba or glyphosate; b) efficacy of dicamba and glyphosate when applied in combination; and 

c) efficacy of dicamba when used as pre-emergence (PRE) herbicide. The results suggest that the 

efficacy of both dicamba and glyphosate on kochia can be improved when applied at cooler 

temperature conditions. Also, it was found that the dicamba and glyphosate tank-mix should not 

be recommended to manage kochia, especially DR kochia, due to significant antagonistic 

interaction when applied in combination. On the other hand, application of dicamba as PRE 

compared to the postemergence application, was found to improve kochia control including DR 

kochia. Overall, this dissertation provided several novel outcomes both in basic and applied 

aspects of dicamba resistance in kochia. 
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nucleotide polymorphism (SNP) in TIR1 (the receptor gene of auxin) in the dicamba resistance 

evolution. Genetic analyses of data from inheritance studies demonstrated that an incomplete 

dominant nuclear gene controls the dicamba resistance in kochia from KS. Also, it was found 

that the genes controlling dicamba resistance in kochia from KS and CO are not linked. 

Similarly, although, GR and DR traits were found to be controlled by two distinct single 

dominant genes, they appear to co-exist in many kochia populations from KS. Nonetheless, these 

two genes were also found not to be linked.  

The second part of this dissertation focused on the development of reliable tools for the 

management of DR and/or GR kochia. The following experiments were conducted under 

greenhouse and field conditions in KS: a) the effect of temperature stress on the efficacy of 



  

dicamba or glyphosate; b) efficacy of dicamba and glyphosate when applied in combination; and 

c) efficacy of dicamba when used as pre-emergence (PRE) herbicide. The results suggest that the 

efficacy of both dicamba and glyphosate on kochia can be improved when applied at cooler 

temperature conditions. Also, it was found that the dicamba and glyphosate tank-mix should not 

be recommended to manage kochia, especially DR kochia, due to significant antagonistic 

interaction when applied in combination. On the other hand, application of dicamba as PRE 

compared to the postemergence application, was found to improve kochia control including DR 

kochia. Overall, this dissertation provided several novel outcomes both in basic and applied 

aspects of dicamba resistance in kochia. 
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Chapter 1 - Literature Review 

 

 1.1 Weeds, Herbicides, and Herbicide Resistance in Weeds 

A weed can be defined as ñplant out of placeò (WSSA, 1956) and weed infestation has 

been a major challenge in crop production (Hay, 1974). Among all other crop pests, weeds cause 

the most crop loss, followed by animals and pathogens worldwide (Oerke, 2006; Vats, 2015; 

Yaduraju, 2006). Weeds compete for light, moisture, and nutrient with crops (Vats, 2015) and if 

left uncontrolled can cause up to 52 and 49.5% of yield loss in corn (Zea mays L.) (Soltani et al., 

2016) and soybean (Glycine max (L.) Merrill ) (Soltani et al., 2017), respectively, resulting in 

41.4 billion and $16.3 billion annual economic losses in corn (Dille et al., 2015; Soltani et al., 

2016) and soybean (Dille et al., 2016; Soltani et al., 2017), respectively. 

The development of weed control methods almost co-exists with the history of 

agriculture (Bell, 2015; Hay, 1974). Earlier weed control methods including hand weeding, 

primitive tools to remove weeds, animal-powered implements, mechanically-powered 

implements, and biological and inorganic chemical methods have been reviewed extensively 

(Hay, 1974; Timmons, 1970). The discovery of the herbicidal properties of the phenoxyacetic 

acids in 1944 enabled the "Chemical Era of Agriculture" (Hay, 1974; Timmons, 1970; Vats, 

2015). Since then, hundreds of organic compounds have been developed and commercialized for 

weed management (Appleby, 2005; Timmons, 1970; Vats, 2015).  

Compared to other weed control methods, use of herbicides is time- and cost-effective, 

and more efficient with long-term weed control or suppression (Sharma and Gauttam, 2014). In 

the United States, over 90% of corn, soybean, and cotton (Gossypium hirsutum L.) have been 

treated with herbicides since the 1980s (Fernandez-Cornejo et al., 2014). A high percentage of 
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herbicide usage in other cash crops including rice, wheat, tomato, etc. has also been reported 

(Fernandez-Cornejo et al., 2014; Kniss, 2017). Herbicides accounted up to 65% of all pesticide 

expenditures, with an estimated cost of about $5.1 billion in 2007 (Fernandez-Cornejo et al., 

2014; Kniss, 2017). The most commonly used herbicides worldwide include glyphosate, 

atrazine, acetochlor, metolachlor, and 2,4-D (Fernandez-Cornejo et al., 2014).  

Repeated and extensive application of herbicides exerts strong selection pressure on weed 

species and eventually leads to the evolution and spread of herbicide resistance in weeds (Heap, 

2014; Vats, 2015). Herbicide resistance is, therefore, defined as ñthe inherited ability to survive 

and reproduce following exposure to a dose of herbicide normally lethal to the wild typeò 

(WSSA, 1998).  

The development of herbicide resistance in weeds as a result of extensive use of 

herbicides without proper stewardship is one of the major challenges for sustainable crop 

productivity (Délye et al., 2013; Vats, 2015). Introduction of herbicide-resistant crops in 1995, 

resulted in even more reliance on herbicides for weed control (Heap, 2014; Shaner, 2014). As a 

result, the evolution of resistance in the weeds increased rapidly. According to the international 

survey of herbicide resistant weeds, there are currently 486 unique cases of herbicide resistant 

weeds globally, with 253 weed species, including 147 dicots and 106 monocots in 92 crops in 70 

countries. The global distribution of herbicide-resistant weeds is presented in Fig. 1.1. (Heap, 

2017) 
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Figure 1.1 The number of unique cases of herbicide resistant weeds globally (Adopted from 

www.weedscience.org (Heap, 2017)) 

The types of herbicide resistance in weeds can be grouped into three categories. I) single 

herbicide resistance, meaning weeds are resistant to only a single mode of action of herbicide; II) 

cross-resistance, refers to weeds that are resistant to two or more herbicide classes within the 

same mode of action, or different modes of action of herbicides with a common mechanism and 

III) multiple herbicide resistance, defined as resistance to two or more herbicides with different 

modes of action with different mechanisms (Cobb and Reade, 2011). The evolution of multiple 

herbicide resistance is a challenge because such resistance limits the herbicide options for weed 

management in cropping systems. To date, 86 cases of multiple herbicide resistance in weeds 

including resistance to two or up to seven herbicide modes of action have been reported (Heap, 

2017) (Fig. 1.2), e.g. rigid ryegrass (Lolium rigidum Gaud.), horseweed (Conyza canadensis L. 

Cronq.), Palmer amaranth (Amaranthus palmeri S. Wats), wild oat (Avena fatua L.), and kochia 

(Kochia scoparia (L.) Schrad.), etc. (Heap, 2017). The focus of this dissertation is to investigate 

the mechanism(s) and management of dicamba resistance in kochia, one of the most troublesome 
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weeds of Kansas, USA. Furthermore, multiple herbicide resistance in kochia is also common in 

the United States. Kochia, biology, management, distribution and evolution of herbicide 

resistance is discussed below. 

 

Figure 1.2 The reported occurrence of multiple resistance within the same weed population from 

1975 to 2015. (Adopted and modified from www.weedscience.org (Heap, 2017))  
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 1.2 Kochia Biology and Management 

Kochia is an annual broadleaf weed species native to Eurasia and introduced as an ornamental to 

the Americas by immigrants in the mid to late 1800s (Friesen et al., 2009). This species soon 

naturalized and became an economically important weed of North America Great Plains in crop 

production systems in semiarid to arid regions, as well as pastures, waste areas, and roadsides 

(Dille et al., 2017; Friesen et al., 2009). Kochia can be used as a forage, especially in the early 

growing stage (Garduño, 1993). It is palatable to livestock, with nutrient value including protein 

content similar to that of alfalfa (Medicago sativa L.) (Finley and Sherrod, 1971) but can be toxic 

if it constitutes as the major percent of the diet or consumed at older growing stages (Sprowls, 

1981). Kochia seeds can be a source of phytochemicals that are potentially beneficial to human 

health and has been used in Chinese medicine (Choi et al., 2002; Lee et al., 2013; Yoo et al., 

2017). Kochia also can be used for phytoremediation of soils contaminated with heavy metals, 

hydrocarbons, or pesticides (Kafi et al., 2010; Moubasher et al., 2015; Perkovich et al., 1996). 

However, kochia is a troublesome weed in cropping systems in North America due to its 

tolerance to cold (Al-Ahmadi and Kafi, 2007; Anderson and Nielsen, 1996), heat (Khan et al., 

2001), drought (Liu et al., 2008; Waldron et al., 2010), salinity (Friesen et al., 2009; Gul et al., 

2010), and heavy metals (Zhao et al., 2015). In addition, with its ability to exert allelopathic 

properties (Hierro and Callaway, 2003; Karachi and Pieper, 1987; Lodhi, 1979) as well as its 

rapid growth under both cool and warm temperatures (Dille et al., 2012; Dille et al., 2017; 

Friesen et al., 2009) kochia can be highly competitive to crops. Also, this weed can disperse 

seeds by a tumbling mechanism facilitated by strong winds in the winter spreading seed across 

the Central Great Plains (Baker et al., 2008; Becker, 1978; Dille et al., 2017; Stallings et al., 

1995a). This highly efficient mechanism of seed propagation enables kochia to reach the new 
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ecological niches and assists to become one of the fastest-spreading weeds in North America 

(Blackshaw et al., 2001; Forcella, 1985). The protogynous flowers (Guttieri et al., 1995; 

Stallings et al., 1995b) enables outcrossing, thereby, high genetic diversity in kochia (Mengistu 

and Messersmith, 2002), which contributes to rapid adaptation to new environments (Mengistu 

and Messersmith, 2002; Wiersma, 2012). Kochia has been listed as one of the top five problem 

weeds in the North American Great Plains cropping systems (Culpepper et al., 2017) including 

soybean, corn, sorghum (Sorghum bicolor (L.) Moench.), wheat (Triticum aestivum L.), and 

sunflower (Helianthus annuus L.) (Kumar and Jha, 2015; Osipitan, 2016; Wolf et al., 2000). 

 One of the most effective practices for kochia management includes tillage (Waite, 

2010), because I) disturbance of the soil surface by tillage can bury most of the kochia seeds in 

deeper soil and reduce the seed germination, and also can prevent season-long kochia emergence 

(Zorner et al., 1984); and II) the size of the seed bank kochia in deeper soil will be reduced 

rapidly due to short seed longevity (Burnside et al., 1981; Thompson et al., 1994). However, 

wide adoption of no-till agriculture to prevent soil erosion and conserve the soil moisture 

(Pimentel et al., 1995), tillage is not a viable option for kochia control. Therefore, use of 

herbicides has been the major means of kochia management, including preplant (PP), 

preemergence (PRE) and postemergence (POST) application of herbicides. 

Commonly used herbicide active ingredients for kochia management include glyphosate, 

dicamba, atrazine, mesotrione, and others (Thompson et al., 2018). However, prolonged and 

repeated herbicide application resulted in the evolution of resistance in kochia including multiple 

resistance to different modes of action herbicides (Heap, 2017; Osipitan, 2016; Varanasi et al., 

2015).  
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 1.3 Herbicide Resistance in Kochia 

To date, 54 unique cases of herbicide-resistant kochia biotypes have been reported in Canada, 

Czech Republic, and the United States (Heap, 2017), including resistance to four herbicide 

modes of action: acetolactate synthase (ALS)-inhibitors (WSSA group 2), synthetic auxins 

(WSSA group 4), photosystem (PS) II-inhibitors (WSSA group 5), 5-enolpyruvate-shikimate-3-

phosphate synthase (EPSPS)-inhibitor (WSSA group 9) (Heap, 2017; WSSA, 2017). In 1979, the 

first case of kochia resistance to PSII-inhibitors was reported from KS, USA (Johnston and 

Wood, 1976). In 1980s, due to rapid and wide adoption of ALS-inhibitors, 16 cases of kochia 

resistant to ALS-inhibitors were reported in less than 10 years (Green, 2007; Warwick et al., 

2008) including an initial report in North Dakota, in 1987 (Saari et al., 1990; Shaner, 1997). 

Overall, in North America, ALS-resistant kochia has been reported in 23 states and provinces 

(Fig. 1.3). Later, in late 1990s, glyphosate (EPSPS inhibitor) was widely applied in cropping 

systems, primarily as a result of widespread adoption of glyphosate-resistant technology in corn, 

soybean, cotton, canola (Brassica napus), etc., which provides a weed control program that is 

simple and effective to a broad spectrum of weeds without injuring crops or restricting crop 

rotation (Carpenter and Gianessi, 2000). In 2005, the first glyphosate-resistant kochia population 

was found in KS, USA, which was documented and reported in 2007 (Heap, 2014; Wiersma et 

al., 2015). Soon after, 15 more cases of glyphosate-resistant kochia populations have been 

reported (Fig. 1.3) across the Great Plains of North America (Heap, 2017). Synthetic auxin 

herbicides are the first group of herbicides commercialized for use in agriculture and have been 

in use for more than 70 years to selectively control broadleaf weeds. Especially, dicamba, a 

synthetic auxin has been found to be an option to manage kochia after the widespread incidence 

of glyphosate resistance. Nonetheless, resistance to dicamba has also been reported in several 
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states and provinces in North American Great Plains (Heap, 2017) after the initial case in MT, 

USA in 1994 (Cranston et al., 2001; Heap, 2017). 

 Resistance to a single mode of action of herbicide is common in kochia. However, 

multiple herbicide-resistant kochia is also emerging rapidly. To date, 11 out of 54 herbicide-

resistant kochia populations are resistant to two or more modes of action herbicides (Heap, 

2017). Particularly, a single kochia population from Kansas has been found to be resistant to four 

modes of action (Heap, 2017; Varanasi et al., 2015). 

 

Figure 1.3 Distribution of herbicide-resistant kochia in North America. (Adapted from 

www.weedscience.org (Heap, 2017) 
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 1.4 Mechanisms of Herbicide Resistance 

In general, the processes that lead to plant death in response to herbicide application 

include: I) herbicide penetration into the plant via leaf or root absorption after foliar or soil 

application; II) herbicide movement to plant tissues/organs via apoplast and/or symplast 

pathways to reach the target-site; and III) finally, the interaction of herbicide molecules with 

target site resulting in irreversible abnormal biochemical and physiological reactions, which 

ultimately trigger the death of the plants (Ashton and Crafts, 1973; Audus, 1964; Cobb and 

Reade, 2011; Devine et al., 1992).  

 Weed species can evolve mechanism(s) to cope with or reduce the damage caused by 

herbicides. Any alteration to the processes described above can result in the evolution of 

resistance to herbicides in weeds (Gasquez, 1997; Jasieniuk et al., 1996). The mechanisms of 

weed resistance to herbicides can be grouped into two major categories (Délye et al., 2015; Holt 

et al., 1993; Yu and Powles, 2014). In the first type, weeds can develop a specific mechanism(s) 

to prevent the herbicide molecules from reaching the target-site, by altering the absorption, 

translocation, or detoxification of the herbicide molecules. This type of mechanism is referred as 

a non-target-site mechanism of herbicide resistance. The second mechanism includes, weeds that 

exhibit alterations in the target site, resulting in lack of herbicide binding or reduced interaction 

with the target. 

 1.4.1 Non-Target-Site Resistance Mechanisms 

Three different mechanisms can be involved in non-target-site resistance to limit the amount of 

herbicide to reach the herbicide target, which includes reduced absorption, restricted 

translocation, and increased metabolism of the herbicide molecules (Powles and Yu, 2010; Yuan 

et al., 2007). Restricted translocation of herbicide as a mechanism of resistance to herbicide has 



10 

been reported in several populations of glyphosate-resistant horseweed (Feng et al., 2004; Ge et 

al., 2010), hairy fleabane (Conyza bonariensis L.) (Moretti et al., 2013), ryegrass (Wakelin et al., 

2004; Yu et al., 2009; Yu et al., 2007; Yu et al., 2004), and johnsongrass (Sorghum halepense 

(L.) Pers.) (VilaȤAiub et al., 2012) and also in paraquat-resistant populations of barley (Hordeum 

leporinum (L.) Link) (Preston et al., 2005), hairy fleabane (Moretti, 2016), capeweed (Arctotheca 

Calendula (L.) Levyns) (Soar et al., 2003), horseweed (Moretti, 2016; Váradi et al., 2000), and 

ryegrass (Powles and Holtum, 1994; Preston et al., 2009; Yu et al., 2007). Reduced translocation 

has also found to contribute to dicamba resistance in kochia (Pettinga et al., 2017) and 2,4-D 

resistance in wild radish (Raphanus raphanistrum L.) (Goggin et al., 2016). 

 The other major category of non-target-site resistance mechanism is herbicide 

detoxification (i.e., metabolism-based) that endowed as a result of four-phase chemical reactions: 

Phase I involving oxidation, typically facilitated by the catalytic activity of cytochrome P450 

monooxygenases (P450s) or mixed function oxidases. Phase I detoxification exposes certain 

functional groups to further metabolism in phase II resulting in the conjugation of the 

oxidized/activated xenobiotic product usually with a thiol or sugar molecule. This can enable the 

recognition of the product to Phase III transporters, which includes sequestration of molecules 

into vacuole or extracellular spaces in the plant, which is most commonly carried out by 

adenosine triphosphate (ATP)-binding cassette (ABC) transporters. The phase IV detoxification 

process includes further degradation to less toxic compounds (Bartholomew et al., 2002; 

Martinoia et al., 1993; Sandermann, 2004; Yuan et al., 2007). The four major groups of enzymes 

known to be involved in non-target-site herbicide resistance include P450s, glutathione-S-

transferases (GSTs), glycosyltransferases, and ABC transporters (Powles and Yu, 2010; Yuan et 

al., 2007).  
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Metabolism-based herbicide resistance to PSII-, ALS-, acetyl CoA carboxylase 

(ACCase)-inhibitors (WSSA group 1), and synthetic auxins, has been reported in several weed 

species, including velvetleaf (Abutilon theophrasti L.) (Anderson and Gronwald, 1991; 

Gronwald et al., 1989), smooth amaranth (Amaranthus hybridus (L.) Amach.) (Manley et al., 

1999), Palmer amaranth (Nakka et al., 2017a; Nakka et al., 2017b), common waterhemp 

(Amaranthus tuberculatus (L.) Moq.) (Figueiredo et al., 2017), downy brome (Bromus tectorum 

L.) (Park et al., 2004), blackgrass (Alopecurus myosuroides (L.) Huds.) (Letouzé and Gasquez, 

2003), rigid ryegrass (Cocker et al., 2001; VilaȤAiub et al., 2005), Italian ryegrass (Lolium 

multiflorum (L.) Lam.) (Gronwald et al., 1992), wild oat accession (Avena sterilis L.) 

(Shimabukuro et al., 1979), littleseed canarygrass (Phalaris minor (L.) Retz.) (Chhokar and 

Malik, 2002), late watergrass (Echinochloa phyllopogon (Stapf) Koss.) (Bakkali et al., 2007; 

Yasuor et al., 2009; Yun et al., 2005), chickweed (Stellaria media (L.) Vill. ) (Coupland et al., 

1990; Saari et al., 1992), large crabgrass (Digitaria sanguinalis (L.) Scop.) (Everman et al., 

2009), and wild mustard (Sinapis arvensis (L.) Sinar.) (Peniuk et al., 1993; Veldhuis et al., 

2000), etc. Metabolism-based herbicide resistance is particularly threatening, because the weed 

populations can potentially detoxify other classes of herbicides, including never-used herbicides 

or newly developed herbicides (Délye et al., 2011; Ghanizadeh et al., 2017; Powles and Holtum, 

1994; Powles and Preston, 2006; Yuan et al., 2007).  

 1.4.2 Target-Site Resistance Mechanisms 

Four possible mechanisms can be involved in target-site herbicide resistance: a) altered target-

site, b) target gene over expression (increased synthesis of target protein), c) target gene 

amplification, and d) regulatory changes in the target-site (Délye et al., 2013; Nakka, 2016; 

Powles and Yu, 2010). The most common target-site mechanism of herbicide resistance is due to 
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mutation(s) in the herbicide target gene resulting in the modification of tertiary and/or quaternary 

target protein structure to prevent the ligand (herbicide)-receptor (target protein) binding 

interaction and keep the normal protein function (e.g. enzymatic activities) at the same time. For 

example, mutations in the herbicide target genes such as, psbA, ALS, ACC, and EPSPS can 

confer resistance to PS II-, ALS-, ACCase- or EPSPS-inhibitor herbicides, respectively (Délye et 

al., 2013; Heap, 2017; Powles and Yu, 2010). Although less frequent, an entire codon deletion in 

the target gene is also known to endow resistance to protoporphyrinogen oxidase (PPO)-

inhibitors (WSSA group 14) in common waterhemp (Lee et al., 2008; Patzoldt et al., 2006; 

Thinglum et al., 2011) and Palmer amaranth (Salas et al., 2016; Salas-Perez et al., 2017). Also, it 

has been reported that different amino acid substitutions at the same codon of ALS gene can 

confer different levels of resistance to different spectrums of ALS-inhibitors in wild radish (Han 

et al., 2012), whereas, accumulation of mutations at non-consecutive codons conferred higher 

level of glyphosate resistance in goosegrass (Eleucine indica (L.) Gaetner) (Jalaludin et al., 

2013). 

Target gene amplification is also a novel mechanism conferring herbicide resistance in 

weeds, especially for glyphosate. The first such case was reported in glyphosate-resistant Palmer 

amaranth, which had more than 100 copies of EPSPS gene distributed throughout the genome 

(Gaines et al., 2010). Later, such mechanism has been reported in a number of other glyphosate-

resistant weed species, such as kochia, common waterhemp, spiny amaranth, and Italian 

ryegrass, etc. (Chahal et al., 2017; Jugulam et al., 2014; Kohrt et al., 2017; Mohseni-Moghadam 

et al., 2013; Nandula et al., 2014; Salas et al., 2012; Sosnoskie et al., 2011; Varanasi et al., 2015; 

Wiersma et al., 2015). Till recently, the herbicide target gene amplification has been shown to 

confer only glyphosate resistance, and one of the reasons for this occurrence may be because this 
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mechanism may be more ñcost-effectiveò compared to other mechanisms in these weed species 

to withstand glyphosate selection (Bradshaw et al., 1997; Tranel, 2017). However, amplification 

of the ACCase gene conferring resistance to ACCase-inhibitors was recently reported in large 

crabgrass (Laforest et al., 2017). In this large crabgrass population 6- to 8-fold amplification of 

the ACCase gene and 4.4-10.3 times more expression of the ACCase transcript relative to a 

known sensitive population were detected without any known mutation in the gene. As 

mentioned above, enhanced metabolism-based resistance to ACCase-inhibitors is also common. 

Therefore, the assumption that the herbicide target gene amplification-based resistance evolution 

appears to be not specific to glyphosate (Laforest et al., 2017; Tranel, 2017), and mechanism of 

gene amplification may not be as rare as it was assumed earlier, especially there are only a small 

portion of the documented herbicide-resistant weeds have been tested for this mechanism of 

resistance to herbicides.  

The focus of this dissertation was to investigate the mechanism(s) and management of 

dicamba resistance in kochia, and the following sections provide a more detailed description of 

the mode of action and mechanism of resistance of synthetic auxin herbicides, such as dicamba.   
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 1.5 Mode of Action of Synthetic Auxin Herbicides 

Synthetic auxin herbicides have been in use for more than 70 years around the world, primarily 

because of their high efficacy, selectivity, low toxicity, and low costs, (Peterson et al., 2016). 

When used at low concentrations, these herbicides mimic several physiological and biochemical 

responses as that of the natural plant hormone ï indole-3-acetic acid (IAA), which is referred as 

the ñmaster hormoneò in higher plants (Grossmann, 2010; Ross et al., 2001). IAA is virtually 

involved in every aspect of plant growth and development, including cell division, cell 

elongation, vascular tissue development, tissue differentiation, organ formation, senescence, 

apical dominance, tropic responses. Auxins also interact with other phytohormones to form a 

complex network to regulate plant growth and development (Davies, 2013). The synthetic auxin 

herbicides have a similar chemical structure (Fig. 1.4) as IAA. When used at low concentrations, 

2,4-D can stimulate embryo development in vitro (Dudits et al., 1991). Furthermore, low 

concentrations of synthetic auxin herbicides are also used in plant biology research to study the 

binding affinity alterations among the auxin target transport inhibitor response 1 (TIR1) 

homologs (Dayan et al., 2010; Walsh et al., 2006). However, when present at high 

concentrations, these compounds, can be herbicidal resulting in deregulation of biochemical and 

physiological processes in plants, eventually leading to plant damage and death via a three-phase 

response (Fig. 1.5).  
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Figure 1.4 Structures of natural indole-3-acetic acid (IAA ) and examples of synthetic herbicides 

from different chemical classes. 

Upon auxin herbicide treatment, the three-phase response starts with a stimulation phase, 

which involves metabolic activation including ATPases, gene expression, ethylene formation, 

and abscisic acid (ABA) accumulation. At the same time, in the auxinic herbicide-sensitive dicot 

plants, notably abnormal growth including stem curling, tissue swelling, and leaf epinasty can 

occur within hours after application of these herbicides. The second phase is inhibition phase, 

where stunted plant growth (root and shoot growth) and intensification of green leaf 

pigmentation can occur. Also, other alterations such as stomatal closure, resulting in reduced 

transpiration, carbon fixation and starch synthesis can occur during this phase. All these 

reactions will increase formation and accumulation of the reactive oxygen species (ROS) in cells, 

including both free radicals (O2Åī, superoxide radicals; OHÅ, hydroxyl radical; HO2Å, perhydroxy 
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radical and ROÅ, alkoxy radicals) and molecular forms (e.g. H2O2, hydrogen peroxide and 1O2, 

singlet oxygen) (Gill and Tuteja, 2010). The last phase is decay phase, due to the formation and 

accumulation of ROS, leading to membrane damage, vascular system disruption, impaired cell 

homeostasis, resulting in red discoloration, chlorosis, wilting, necrosis of tissues and ultimately 

plant death (Grossmann, 2003; Grossmann, 2010). 

 

Figure 1.5 Three-phase response to synthetic auxin herbicide in wild biotype of dicot weeds 

(Modified from Grossmann(2010)) 

In 2005, after more than 100 years of research efforts across many laboratories world-

wide, the molecular target for IAA was discovered (Dharmasiri et al., 2005a; Kepinski and 

Leyser, 2005). A family of six receptors including TIR1, and five auxin-related F-box (AFB) 

proteins AFB1, AFB2, AFB3, AFB4, and AFB5 were identified as auxin receptors in plants. 

Auxin plays the role of ñmolecular glueò of TIR1 protein with the co-receptor Aux/IAA 

transcription repressor (Gray et al., 2001; Tan et al., 2007). The degradation of Aux/IAA 

repressors is required for de-repression of the auxin response factors (ARFs) and initiate the 

downstream biochemical and physiological reactions in the cell. ARFs are also the pre-existing 

DNA-binding transcriptional activator proteins, including 1-aminocyclopropane-1-carboxylic 

acid synthase that leads to ethylene and Aux/IAA repressors biosynthesis that are used for 

feedback inhibition (Guilfoyle, 2007; Hagen and Guilfoyle, 2002).  
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After unveiling the basis of auxin perception, signaling and gene expression in 

Arabidopsis (Arabidopsis thaliana (L.) Heynh.), a better understanding of how synthetic auxin 

herbicides work in plants has been suggested. Several models of the mode of action of auxinic 

herbicides have been proposed (Grossmann, 2010; Jugulam et al., 2011; Tan et al., 2007), which 

depict the chronology of events after IAA or synthetic auxin herbicide (e.g. 2,4-D) application 

(summarized in Fig. 1.6). Briefly, when IAA or 2,4-D reach the apoplast of a plant cell (in the 

case of IAA, by de novo synthesis or release from stored forms; whereas for 2,4-D, by herbicide 

application and/or phloem transportation), perception of these molecules by auxin-binding 

protein 1 (ABP1) in cell membrane, causes rapid cascade of events in cytoplasm including 

proton pumping, K+ channel activation, cell wall loosening, and cell expansion/division. At the 

same time, the IAA and 2,4-D can be actively transported into the cell by carrier proteins. In the 

cytoplasm, the IAA or 2,4-D is recognized by Skp, Cullin, F-box containing complex 

(SCFTIR1/AFB), with the co-receptor Aux/IAA that is also the repressor protein of auxin 

responding factors (ARFs). This results in the formation of a ñsandwichò of SCFTIR1/AFB protein 

complex and Aux/IAA, which is ñgluedò together by the IAA or 2,4-D. This then can lead to 

ubiquitination of the Aux/IAA protein and finally degraded by 26S proteasome. The degradation 

of Aux/IAA protein removes the repression effect, which activates the ARFs and rapidly 

increases the auxin-responsive gene expression for further biochemical and physiological 

responses (Dharmasiri et al., 2005a; Dharmasiri et al., 2005b; Gray et al., 2001; Grossmann, 

2010; Hagen and Guilfoyle, 2002; Jugulam et al., 2011; Kepinski and Leyser, 2005; Tan et al., 

2007).  

When the concentration of IAA increases in the cell, biosynthesis of Aux/IAA repressor 

are induced at the same time to repress the ARFs to deactivate the IAA induced gene expression 
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(Jugulam et al., 2011; Kelley and Riechers, 2007; Staswick et al., 2005). In addition, GH3- 

mediated conjugation of IAA with amino acids can rapidly decrease the concentration of IAA in 

the cytoplasm. Therefore, the IAA perception, signaling, and gene expression are balanced to 

maintain the auxin homeostasis in plant cells (Bajguz and Piotrowska, 2009; Ludwig-Müller, 

2011; Petersson et al., 2009; Staswick, 2009).  

Synthetic auxin herbicide 2,4-D and others can also be actively transported into plant 

cells by active transporters and bind to the TIR1/AFB protein on the SCFTIR1/AFB complex and 

ñglueò to the ARF repressor Aux/IAA protein to cause the Aux/IAA ubiquitination and 

ultimately degradation by 26S proteasomes. However, 2,4-D and other synthetic auxin herbicides 

are not substrates of GH3 mediated conjugation and cannot be hydroxylated or detoxified rapidly 

by P450s or other metabolic pathways in sensitive plants. The uncontrolled high concentration of 

2,4-D or synthetic auxin herbicides induce the irreversible three-phase responses to synthetic 

auxin herbicides as described in Fig. 1.5, which eventually lead to plant death (Grossmann, 2010; 

Jugulam et al., 2011). 
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Figure 1.6 Proposed model describing the sequential biochemical and physiological events in 

cells of sensitive dicot plant after treatment with 2,4-D (a synthetic auxin) and natural auxin 

indole-3-acetic acid (IAA) (modified from (Grossmann, 2010; Jugulam et al., 2011; Tan et al., 

2007)).   
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 1.6 Mechanisms of Synthetic Auxin Herbicide Resistance 

 To date, 69 unique cases of synthetic auxin herbicide resistance in 36 weeds species have 

been documented (Fig. 1.7) (Heap, 2017), but the thorough investigation of mechanisms of 

resistance has been reported only in some cases, and the knowledge of molecular basis of 

synthetic suxin herbicide resistance is still limited. 

  

Figure 1.7 Number of weed species (in scientific names) with reported resistance to synthetic 

auxin herbicides (Adapted and modified from www.weedscience.org (Heap, 2017)), Kochia 

scoparia is highlighted by the arrow. 
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 1.6.1 Barnyardgrass (Echinochloa crus-galli (L.) Beauv. var. crus-galli) and Other 

Grasses 

Quinclorac, a synthetic auxin herbicide, belongs to quinolone carboxylic acid class, is the 

auxin herbicide which has activity on certain grass weeds (Grossmann and Kwiatkowski, 2000), 

probably because of its distinct mode of action on grasses. Some studies suggested that the 

accumulation of cyanide in cells after quinclorac application may result in plant death (Busi et 

al., 2017; Grossmann, 2010; Jugulam et al., 2011; Yasuor et al., 2012). So far, five grass weeds 

were found to have evolved resistance to quinclorac, e.g. barnyardgrass, smooth crabgrass 

(Digitaria ischaemum (Schreb.) Muhl.), gulf cockspur grass (Echinochloa crusgalli (L.) Beauv. 

var. zelayensis), gulf cockspur (Echinochloa crus-pavonis L.), and junglerice (Echinochloa 

colona (L.) Link) (Heap, 2017). The investigation of quinclorac resistance in barnyardgrass 

revealed that the resistant biotypes had reduced translocation of quinclorac, but this was not 

conclusively attributed to the resistance mechanism (LopezȤMartinez et al., 1997; Lovelace et al., 

2007). More recently, a 6-10 fold over expression of a GST homologue EcGST1 protein was 

identified in a quinclorac-resistant barnyardgrass population from China. This over expression 

may be partially responsible for GST-based metabolism of quinclorac in resistant plants (Li et 

al., 2013). Also, a quinclorac-resistant smooth crabgrass showed reduced accumulation of ABA 

and cyanide, and quadrupled ɓ-cyanoalanine synthase activity relative to a sensitive plant. This 

suggests a higher level of cyanide detoxification and possibly a target-site based resistance may 

be involved in quinclorac resistance in this smooth crabgrass population (Abdallah et al., 2006). 

However, more studies are needed to fully uncover both quinclorac mode of action and 

mechanism of resistance in grasses (Busi et al., 2017).  
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 1.6.2 Wild mustard (Sinapis arvensis (L.) Sinar.)  

The first case of synthetic auxin herbicide resistant wild mustard was reported in Manitoba, 

Canada in 1990 (Debreuil et al., 1996; Heap, 2017). A biotype of wild mustard, found in spring 

barley and wheat cropland, was resistant to 2,4-D, dicamba, dichlorprop, MCPA, mecoprop, and 

picloram (Debreuil et al., 1996). The dose-response studies revealed high resistance to MCPA, 

2,4-D, picloram, and dicamba, relative to sensitive biotypes from the same field (Heap and 

Morrison, 1992). Synthetic auxin herbicide resistance in wild mustard is not as a result of 

reduced absorption, translocation, or enhanced metabolism (Penuik et al., 1993). The resistance 

was attributed to an altered auxin binding site (Deshpande and Hall, 2000). Although, the 

modification of auxin binding site was not further investigated in wild mustard, reduced ethylene 

production leading to reduced ACCase expression in resistant biotypes was reported to have 

played a role in the resistance (Grossmann, 2000; Grossmann, 2010; Hall et al., 1993; Penuik et 

al., 1993). Also, the role of ABP1 binding affinity to synthetic auxins was investigated in this 

species and a low affinity-binding site was found in the resistant compared to susceptible wild 

mustard biotypes. However, other studies did not find a conclusive role of ABP1 in conferring 

synthetic auxin herbicide resistance in wild mustard (Jugulam and Hall, 2005; Webb and Hall, 

1995). More recently, morphological and molecular markers closely-linked to synthetic auxin 

herbicide resistance were found by amplified fragment length polymorphism (AFLP) analyses in 

this species (Mithila et al., 2012). 

 1.6.3 False cleavers (Galium spurium (L.) var. echinospermon)  

In 1996, a quinclorac-resistant false cleaver population was found in a canola and wheat rotation 

field in central Alberta, Canada (Hall et al., 1998; Heap, 2017). The quinclorac resistance in false 

cleavers was not because of reduced absorption, translocation or metabolism of this herbicide 
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(Hall et al., 1998; Van Eerd et al., 2004). However, compared to susceptible biotypes, reduced 

production of ethylene and ABA was recorded in resistant false cleaver plants (Van Eerd et al., 

2005). The results of a genetic study indicated that the quinclorac resistance in this false cleaver 

population was inherited by a single recessive nuclear gene, and this gene was found not linked 

to ALS-inhibitor resistance, which is controlled by a single dominant nuclear gene in this 

multiple herbicide-resistant population (Van Eerd et al., 2004). 

 1.6.4 Yellow starthistle (Centaurea solstitialis (L.) Censo.) 

Picloram resistance in yellow starthistle was first reported in the United States in 1988 (Callihan 

et al., 1990; Heap, 2017). Later, cross-resistance to clopyralid is also found in the same 

population (Sabba et al., 2003). No difference in absorption, translocation, or metabolism of both 

picloram and clopyralid was found between the resistant and the susceptible yellow starthistle 

biotypes, but a 20-fold reduction in ethylene production was observed only in the resistant 

biotype (Sabba et al., 1998; Valenzuela-Valenzuela et al., 2001). Furthermore, genetic analyses 

confirmed that the quinclorac resistance is endowed by a recessive nuclear gene in this species 

(Sabba et al., 2003).  

 1.6.5 Common hempnettle (Galeopsis tetrahit (L.) Gaete) 

The first MCPA-resistant common hempnettle population was found in a cereal crop field in 

Alberta, Canada in 1998, where spring barley and wheat were planted in the rotation (Heap, 

2017). This common hempnettle population was also found to be resistant to fluroxypyr, 

dicamba, and 2,4-D (Beckie et al., 2001). Investigation of the mechanism of resistance in this 

species revealed that the resistant plants translocated less MCPA out of the treated leaf and also 

metabolized more in roots relative to a susceptible biotype (Weinberg et al., 2006). Further, it 
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was reported that MCPA resistance in this common hempnettle population is conferred by at 

least two nuclear genes with additive effects (Weinberg et al., 2006).  

 1.6.6 Prickly lettuce (Lactuca serriola L.) 

In 2007, the first case of prickly lettuce resistance to synthetic auxin herbicide was documented. 

This prickly lettuce population was found in a cereal field in Washington, USA. The resistant 

biotype was cross-resistant to 2,4-D, dicamba, and MCPA, and also found resistant to glyphosate 

(Burke et al., 2009; Heap, 2017; Riar et al., 2011). The resistant biotype absorbed and 

translocated less 2,4-D compared to the susceptible biotype, but no difference in 2,4-D 

metabolism between these two biotypes was found (Riar et al., 2011). It was proposed that 

reduced overstimulation response compared to that in the susceptible biotype after 2,4-D 

application may be associated with the resistance (Riar et al., 2011). Furthermore, genetic 

analyses revealed that the 2,4-D resistance was inherited by a single codominant gene in this 

species (Riar et al., 2011). 

 1.6.7 Corn poppy (Papaver rhoeas L.) 

Corn poppy is a major weed impacting cereal production in Europe. In 1993, the first case of 2,4-

D-resistant corn poppy was reported from a wheat field in Spain (Cirujeda et al., 2000; Heap, 

2017). This population was also resistant to tribenuron, which is an ALS-inhibitor (Cirujeda 

Ranzenberger, 2001). Later in 1998, two other 2,4-D-resistant corn poppy populations were 

reported in Italy, one of them is also resistant to two ALS-inhibitors including iodosulfuron, and 

tribenuron (Heap, 2017). More recently, other corn poppy populations were identified resistant to 

2,4-D, dicamba and aminopyralid again, in Spain (Rey-Caballero et al., 2016). Also, a population 

of corn poppy from France was reported to have evolved resistance to 2,4-D, MCPA, 

iodosulfuron, mesosulfuron and tribenuron (Délye et al., 2016; Heap, 2017). With the spread of 
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multiple herbicide resistance, corn poppy is threatening cereal production, especially in southern 

Europe (Busi et al., 2017). Reduced translocation of 2,4-D resulting in less ethylene production 

has been attributed to 2,4-D resistance in one of the above populations (Rey-Caballero et al., 

2016); whereas, enhanced metabolism by P450s conferring resistance was reported in two other 

populations (Torra et al., 2017). 

 1.6.8 Wild radish (Raphanus raphanistrum L.) 

Wild radish is one of the major problem weeds in Australia (Jones et al., 2005). Evolution of 

resistance to four modes of action including synthetic auxin herbicides, ALS-, EPSPS-, and 

carotenoid biosynthesis-inhibitors (WSSA group 11) is a challenge for sustained crop production 

(Busi et al., 2017; Heap, 2017). First two cases of 2,4-D-resistant wild radish were reported in 

1999 (Heap, 2017; Walsh et al., 2004). Subsequent surveys of herbicide-resistant wild radish in 

western Australian wheatbelt were carried out in 2003, 2010 and 2015, and it was found that 2,4-

D resistance had increased from 60% in 2003 to 74% in 2010 and maintained at the same level in 

2015 (Owen et al., 2015; Walsh et al., 2007). Reduced translocation of 2,4-D, which could be 

due to loss of function of an ATP-binding cassette subfamily B (ABCB)-type long-distance 

auxin efflux transporter, was attributed to 2,4-D resistance in two wild radish populations. The 

genetic analyses of these populations revealed a nuclear inherited incompletely dominant gene 

that controls the resistance to 2,4-D (Busi et al., 2017; Busi and Powles, 2017). Similar results 

were reported in other 2,4-D and MCPA-resistant wild radish populations (Goggin et al., 2016; 

Jugulam et al., 2013). Furthermore, a difference in auxin perception and/or signal transduction 

among resistant biotypes was also reported. A genome-wide transcriptomics study of auxin-

induced transcriptional repressors and defense genes in wild radish is being conducted by 
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Australian scientists, which may shed new lights regarding the precise mechanism of synthetic 

auxin herbicide resistance in wild radish (Busi et al., 2017). 

 1.6.9 Common waterhemp (Amaranthus tuberculatus (L.) Moq.) 

Common waterhemp is one of the top five economically important weeds in the United States, 

especially the rapid and wide spread multiple herbicide resistance is challenging the crop 

production in many Midwestern states. The first case of 2,4-D-resistant common waterhemp was 

reported in Nebraska, USA, in 2009 (Bernards et al., 2012). This population is also resistant to 

aminopyralid, picloram, atrazine, chlorimuron, and imazethapyr (Heap, 2017). In 2016, a 

common waterhemp was reported in Illinois, USA with resistance to five different modes of 

action of herbicides, e.g. ALS-, PSII-, PPO-, hydroxyphenylpyruvate dioxygenase (HPPD, 

WSSA group 27)-inhibitors, and synthetic auxin herbicides (Heap, 2017). Rapid metabolism of 

2,4-D via cytochrome P450s activity was found to confer resistance in common waterhemp 

population from Nebraska, USA (Figueiredo et al., 2017).  

 1.6.10 Kochia (Kochia scoparia (L.) Schrad.)  

Among several synthetic auxins, dicamba is found to be most effective on kochia control. 

Nonetheless, dicamba-resistant kochia was first reported in 1990ôs in Montana, North Dakota, 

Idaho, and Colorado, USA (Heap, 2017). Currently, dicamba-resistant kochia is commonly 

found, especially in wheat-fallow fields in Colorado and Kansas. The physiological, 

biochemical, and molecular basis for dicamba resistance in kochia from Montana and Colorado 

has been studied extensively (Cranston et al., 2001; Kern et al., 2005; Pettinga et al., 2017). In 

the Montana population, no difference in absorption, translocation or metabolism of dicamba 

was detected between dicamba-resistant and -susceptible biotypes (Cranston et al., 2001). The 

molecular study indicated several auxin-related transcripts up- or down-regulated upon dicamba 
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treatment. However, if these genes are directly involved in dicamba resistance mechanism or just 

auxin-related downstream response remains unknown in this kochia population (Grossmann, 

2010; Kern et al., 2005; Zhang and Riechers, 2008). Recently, it was reported that reduced 

translocation of dicamba contributes to the resistance in a Colorado population (Pettinga et al., 

2017). Additionally, an up-regulation of chalcone synthase gene (CHS), resulting in over 

production of the flavonols quertecin and kaemperfol was discovered that can compete with 

dicamba for intercellular movement and vascular loading via ABCB-type membrane 

transporters, leading to reduced dicamba translocation in the CO kochia population (Pettinga et 

al., 2017). Furthermore, in the same kochia population, a double mutation in auxin co-receptor 

gene Aux/IAA was identified, which confer low dicamba affinity in Aux/IAA protein complex 

and thus, kochia plants can cope with high level of dicamba in cells (LeClere et al., 2018).  
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 1.7 Summary 

Management of kochia is a major problem in the Great Plains of North America, especially, with 

rapid spread of dicamba resistance after the evolution and increase in glyphosate and ALS-

inhibitor resistant populations in this region (Stahlman et al., 2015). The precise mechanism of 

dicamba resistance in weeds, including kochia is still not completely known. It is important to 

investigate the underlying mechanism(s) of dicamba resistance in kochia to formulate best 

management strategies for its control (Busi et al., 2017; Délye et al., 2013). It is also essential to 

examine the inheritance and genetic basis of dicamba-resistant trait in kochia, which will help 

understand the evolutionary dynamics and possible spread of resistance and importantly, to 

recommend effective and sustainable weed management approaches (Délye et al., 2013; 

Varanasi et al., 2016; Zheng and Hall, 2001). Also, understanding the influence of climate 

factors on the efficacy of herbicides, such as dicamba on kochia, will also help to provide 

recommendations for effective use of herbicides and slow down the development of herbicide 

resistance (Busi and Powles, 2009), especially with the emerging climate fluctuations across the 

globe (Bailey, 2004; Millar et al., 2007). Overall, it is important to develop feasible approaches 

to include in ñtoolboxò for kochia management, especially dicamba-resistant kochia (Soltani et 

al., 2016; Soltani et al., 2017).  

Thus, the overall goal of this dissertation was to investigate the mechanisms and genetic 

basis of dicamba resistance in kochia. Furthermore, several management options to control 

dicamba-resistant kochia were also investigated. The specific objectives of this thesis include: 

Chapter 2: 1) determine the level of dicamba resistance in kochia; 2) investigate the 

physiological basis of dicamba resistance in kochia, including dicamba absorption, translocation, 
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and metabolism; and 3) investigate the biochemical and molecular basis of dicamba resistance in 

kochia. 

Chapter 3: 1) investigate the inheritance of dicamba resistance in dicamba-resistant kochia 

populations collected from different geographical regions; 2) determine possible linkage of this 

trait with glyphosate resistance in populations from Kansas. 

Chapter 4: 1) evaluate the effect of temperature on the efficacy of dicamba in kochia control; 2) 

examine the efficacy of preemergence application of dicamba on dicamba-resistant kochia; and 

3) determine the efficacy of dicamba and glyphosate combinations (tank-mixes) on dicamba and 

glyphosate-resistant kochia control. 
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Chapter 2 -  Investigation of Mechanism(s) of Dicamba Resistance 

in Kochia  

 

 2.1 Abstract 

Synthetic auxin herbicides (e.g. 2,4-D, dicamba, picloram, etc.) are widely used to control dicot 

weeds in cereal crops around the world. Dicamba, in particular is used widely to control Kochia 

(Kochia scoparia (L.) Schrad), one of the most troublesome weeds throughout the Great Plains 

of North America. Especially, after the wide spread prevalence of glyphosate resistance in 

kochia populations in this region, dicamba has been an option for the management of this weed. 

To date, 69 unique cases of synthetic auxin herbicide resistance in 36 weed species have been 

documented. The first cases of dicamba resistance in kochia was reported in 1990s in MN, ND, 

ID, CO, and more recently in KS in 2012. However, the mechanism of resistance to dicamba in 

kochia from KS is still elusive. The objectives of this study were to characterize the non-target-

site and target-site resistance mechanisms to dicamba using kochia populations from KS (KSUR) 

and CO (CSUR) along with known dicamba-susceptible kochia populations from KS (KSUS) 

and CO (CSUS) for comparison. A series of experiments were conducted with [14C] dicamba, to 

determine uptake, translocation and metabolism of dicamba in these kochia populations. 

Furthermore, presence of any single nucleotide polymorphism (SNP) and over expression of 

auxin receptor genes (TIR or AFBs), the possible target sites of dicamba was also investigated. 

The results of these studies revealed two different mechanisms conferring dicamba resistance in 

KSUR and CSUR kochia. While reduced translocation of the dicamba contributes to the 

resistance in CSUR kochia, a SNP in one of TIR1 homologues was identified in several KSUR 

kochia plants. Although co-segregation of this SNP with dicamba-resistant phenotype needs 
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further investigation. Overall, the outcome of this research clearly demonstrates kochia 

populations can evolve non-target-site or target-site resistance or potentially even both to 

dicamba, in response to different types of dicamba selection pressure.   
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 2.2 Introduction  

Dicamba, a benzoic acid synthetic auxin herbicide, also known as Banvel®, Clarity®, etc., is 

used widely to control dicot weeds in cereal crops around the world. In Kansas, dicamba has 

become one of the important herbicide options to control kochia (Kochia scoparia (L.) Schrad.), 

an economically important weed, especially following the wide spread incidence of glyphosate 

resistance in this region. After the initial incidence of dicamba resistance reported in MT, ND, ID 

and CO in early 1990s (Heap, 2017), more recently evolution of dicamba resistance in kochia 

has been documented in numerous fields, especially in wheat-fallow in CO and KS (Heap, 

2017). A number of previous studies investigated the mechanism of dicamba resistance in kochia 

(Cranston et al., 2001; Kern et al., 2005; Pettinga et al., 2017). In a MT population, no difference 

in absorption, translocation or metabolism of dicamba was found between dicamba-resistant and 

-susceptible biotypes (Cranston et al., 2001). Further investigation using a differential display 

technique indicated up- or down-regulation of several auxin-related transcripts in response to 

dicamba treatment. However, if these genes are directly involved in dicamba resistance 

mechanism or just auxin-related downstream response remains unknown in this kochia 

population (Kern et al., 2005). Recently, it was reported that reduced translocation of dicamba 

contributing to the resistance in a kochia population from CO (Pettinga et al., 2017). 

Additionally, up-regulation of chalcone synthase gene (CHS) was discovered, which results in 

over production of the flavonols quertecin and kaemperfol that can compete with dicamba for 

intercellular movement and vascular loading via ABCB-type membrane transporters, leading to 

reduced dicamba translocation in this dicamba-resistant kochia population (Pettinga et al., 2017). 

Furthermore, in this same kochia population, a double mutation in Aux/IAA, an auxin co-receptor 

gene, was also identified, leading to low dicamba affinity in Aux/IAA protein complex, thereby, 
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kochia plants can cope with the high level of dicamba in cells (LeClere et al., 2017). However, 

the mechanism of dicamba resistance in kochia from KS is still not clear. The recent research 

(Pettinga et al., 2017) was also a part of this dissertation and therefore, the objectives of this 

research were to: 1) investigate the physiological basis of dicamba resistance in kochia from KS 

and CO, by determining the [14C] dicamba absorption, translocation, and metabolism; and 2) 

investigate the biochemical and molecular basis of dicamba resistance in kochia from KS.   
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 2.3 Materials and Methods 

In 2012, kochia seed were collected from a field in Haskell County, KS, USA (37°29'48.5"N, 

100°46'53.0"W) (Brachtenbach, 2015). Kochia plants generated from these seeds were self-

pollinated by keeping the plants in isolation and upon maturity seed were harvested separately 

from each of ten plants. One hundred seedlings were generated separately after harvesting the 

seed from each of the above 10 plants. When plants reached 10-12 cm height, 50 plants each 

were treated with a field rate of dicamba (560 g ae ha-1). In response to dicmaba treatment, all the 

progeny of a single plant that were found susceptible to dicamba were selected as dicamba-

susceptible kochia (KSUS). The remaining seed harvested from the KSUS mother plant was used 

in this research. Likewise, all the progeny of single plant that were found resistant to the field 

rate of dicamba were selected as dicamba-resistant kochia (KSUR). Similarly, the rest of the seed 

harvested from KSUR mother plant was used in this research. Inbred dicamba-resistant (CSUR, 

also known as 9425R) and dicamba-susceptible (CSUS, also known as 7710S) kochia lines from 

CO, derived by single-seed descent for four generations followed by bulk seed production for 13 

generations (Howatt et al., 2006; Preston et al., 2009) were also used in this research. 

 Experiments were conducted in weed science greenhouse attached to the Department of 

Agronomy at Kansas State University, Manhattan, Kansas, United States. The following 

greenhouse conditions were maintained: 25/20 °C (day/night, d/n) temperatures, 60 ± 10% 

relative humidity, and 15/9 h d/n photoperiod supplemented with 120 ɛmol m-2 s-1 illumination 

provided with sodium vapor lamps. The physiological studies were conducted in growth 

chambers maintained at following conditions: 25/15°C d/n temperature, 60 ± 10% relative 

humidity, and 15/9 h d/n photoperiod, light was provided by incandescent and fluorescent bulbs 

delivering 750 µmol m-2 s-1 photon flux at plant canopy level. Solvents and reagents were used in 
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the studies in this chapter that are not specified in the context were purchased from Thermo 

Fisher Scientific (Waltham, MA, USA) or MilliporeSigma Corp. (Burlinton, MA, USA).  

 2.3.1 Dose Response of Dicamba in KSUR, KSUS, CSUR, and CSUS kochia  

KSUR, KSUS, CSUR, and CSUS kochia seeds were germinated in trays (25 × 15 × 2.5 cm) 

filled with commercial potting mixture (Pro-Mix Potting-Mix, Premier Tech Horticulture, 

Ontario, CA). Individual seedlings at 6-leaf stage were transplanted into plastic pots (6.5 × 6.5 × 

9 cm) containing the same type of soil and kept in the same greenhouse as above. When the 

kochia seedlings were 10-12 cm height, they were treated with dicamba (Clarity®, BASF Corp., 

Florham Park, NJ, USA) without AMS at 0, 70, 140, 280, 560 (label recommended field, i.e. 1X 

dose), 1120, 2240, 4480, and 8960 g ae ha-1.  

 The above treatments were applied as follows. Herbicides were mixed according to the 

labels and applied using a bench-type sprayer (Research Track Sprayer, De Vries Manufacturing, 

Hollandale, MN, USA) equipped with a single moving even flat-fan nozzle tip (8002E TeeJet 

tip, Spraying Systems Co., Wheaton, IL, USA) delivering 187 L ha-1 at 207 kPa in a single pass 

at 4.85 km h-1. At four weeks after herbicide treatment (WAT), glyphosate- and dicamba-induced 

visual injury was rated based on composite visual estimation of growth inhibition, epinasty 

(downward curling of plant parts), necrosis, and plant vigor on a scale of 0 (no effect) to 100 

(plant death). Plant were clipped off at soil level at 4 WAT and individual plants were placed in 

separate paper sacks. Dry biomass data was obtained by weighing after oven dried at 60 °C for 

72 h. 

 2.3.2 Absorption and Translocation of [14C] Dicamba 

 Prior to conducting the absorption and translocation experiments, a preliminary study was 

conducted to test whether absorption or translocation of [14C] dicamba in KSUR, CSUR, KSUS, 
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and CSUS kochia would be affected by spraying plants with formulated dicamba (Clarity® 

herbicide, BASF Corp., Florham Park, NJ, USA) using the method described by Perez-Jones et 

al. (2007). Briefly, two newly expanded leaves were marked and wrapped with small pieces of 

aluminum foil on kochia at height of 10-12 cm, then the plants were sprayed with 560 g ha-1 of 

dicamba using a bench-type sprayer (Research Track Sprayer, De Vries Manufacturing, 

Hollandale, MN, USA) equipped with a single moving flat-fan nozzle tip (80015E TeeJet tip, 

Spraying Systems Co., Wheaton, IL, USA) delivering 187 L ha-1 at 222 kPa in a single pass at 

3.21 km h-1. After the herbicide droplets dried (~30 min), the aluminum foil was removed. Two 

newly expanded leaves were marked on another set of same size kochia seedlings without the 

560 g ha-1 of dicamba application. On both sets of plants, the absorption and translocation of 

[14C] dicamba were tested using the method described below. Results (data not shown) showed 

that neither absorption nor translocation of [14C] dicamba in both dicamba-resistant (DR) and 

dicamba-susceptible (DS) kochia was affected by spray of dicamba at 560 g ha-1. Hence, in all 

other experiments using [14C] dicamba, the plants were not pre-sprayed with formulated 

dicamba. 

 Preliminarily testing of [14C] dicamba translocation in kochia also revealed only less than 

5% of dicamba translocated to roots at 72 hours after treatments (HAT) and majority (88 to 95%) 

was recovered from the aboveground parts of kochia. Hence, the amount of [14C] dicamba 

translocated to roots was not measured in subsequent experiments. 

 The absorption and translocation experiments were conducted according to the method 

that reported by Ou et al. (2016), which is also summarized in Fig. 2.1. A working stock solution 

of 1 mL of [14C] dicamba (equal to 560 g of dicamba in a carrier volume of 187 L) with 0.33 kBq 

µL-1 of radioactivity was prepared by mixing 29.3 µL of dicamba-(ring-UL-14C) ethanol solution 
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(11.4 kBq µL-1, specific activity: 2.87 kBq µg-1, BASF Corp., Florham Park, NJ, USA), 6.4 µL 

of Clarity herbicide (BASF Corp., Florham Park, NJ, USA) and 964.3 µL of water. Ten µL of 

[14C] dicamba working solution was applied on the upper surface of two newly expanded leaves 

(5 µL per leaf) for each plant using a Wiretrol® capillary syringe (10 µL, Drummond Scientific 

Co., Broomall, PA, USA). Thirty minutes later, plants were returned to growth chamber. Plants 

were harvested at 24, 48, 72, 96, 168, and 336 HAT, and then dissected into treated leaf (TL), 

tissue above the treated leaf (ATL), and tissue below the treated leaf (BTL). After the TL was 

washed twice in 20-mL scintillation vials for 1 min using 5 mL of 10% (v/v) ethanol aqueous 

solution with 0.5% of Tween-20) at each time, 15 mL of Ecolite(+) (MP Biomedicals, LLC. 

Santa Ana, CA, USA) was added in each vial and the radioactivity in TL rinsates was measured 

using liquid scintillation spectrometry (Beckman Coulter LS6500 Multipurpose Scintillation 

Counter, Beckman Coulter, Inc. Brea, CA, USA). Dissected plant sections were dried at 60 °C 

for 72 h and radioactivity in TL, ATL, and BTL was quantiýed by liquid scintillation 

spectrometry (LSS) after combusting for three minutes using a biological oxidizer (OX-501, RJ 

Harvey Instrument, New York, NY, USA). Four replicates were included in each treatment, and 

the experiment was repeated twice in time. 

The calculation of percentage of [14C] absorption, and translocation was done using 

following formulae. Percentage of absorption=(Rapplied-Rrinsate)/Rapplied×100, percentage of 

translocation=100-RTL/(Rapplied-Rrinsate)×100, percentage in ATL= RATL/(Rapplied-Rrinsate)×100, 

percentage in TL= RTL/(Rapplied-Rrinsate)×100, and percentage in BTL= RBTL/(Rapplied-Rrinsate)×100. 

Where, Rapplied is total amount of radioactivity applied on the plant; Rrinsate is the radioactivity 

recovered in leaf rinsates; RATL is the radioactivity recovered in tissue above the treated leaf; RTL 
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is the radioactivity recovered in the treated leaf; and RBTL is the radioactivity recovered in tissue 

below the treated leaf. 

 

Figure 2.1 Illustration of steps followed in [14C] dicamba absorption and translocation studies in 

kochia 

 2.3.3 Metabolism of [14C] Dicamba 

To determine the metabolism of dicamba, kochia plants were treated with [14C] dicamba as 

described above for absorption or translocation study, except the working stock solution was 

newly mixed with 0.5 kBq µL-1 of radioactivity (Fig. 2.2). The samples were harvest at 24, 48, 

72, 96, 168, and 336 HAT according to the method that reported by Godar et al. (2015). At the 

time of plant harvest, the TLs were dissected and washed as described above in absorption and 

translocation study. The aboveground part of the plant combing with the washed TL was then 

frozen in liquid nitrogen and homogenized with a mortar and pestle. The plant powder was 

extracted with 15 mL of 90% acetone aqueous solution at 4°C for 24 h. Samples were 

centrifuged at 10,000 g for 10 min at 4°C in centrifuge (Sorvall RC-5B Refrigerated Superspeed 

Centrifuge, DuPont Company, Newtown, CT, USA). Supernatant was concentrated down to 

approximately 500 ɛL at 45ÁC for 2 h using a rotary evaporator (Centrivap, Labconco, Kansas 

City, MO, USA). The concentrated samples were transferred to microcentrifuge tubes and 

centrifuged at 10,000 g for 10 min in centrifuge (Sorvall Legend Micro 21 Microcentrifuge, 
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Thermo Fisher Scientific, Waltham, MA, USA) and transferred into new tubes. Concentration of 

radioactivity in each sample was measured by LSS prior to high performance liquid 

chromatography (HPLC) analysis and samples were adjusted to 1.0 Bq µL-1 by adding 50% (v/v) 

acetonitrile aqueous solution. All samples and a [14C] dicamba parent sample in acetonitrile with 

1.0 Bq µL-1 of radioactivity were analyzed by reverse-phase HPLC (System Gold, Beckman 

Coulter, Pasadena, CA, USA) using a Zorbax SB-C18 column (250Ĭ4.6 mm, 5ɛm particle size; 

Agilent Technologies, Santa Clara, CA, USA) at a flow rate of 1 mL min-1 with eluent A (water 

with 0.1% trifluoroacetic acid, TFA) and eluent B (acetonitrile with 0.1% TFA). The following 

elution method was used: 0 to 1 min, 0 to 20% (of eluent B) linear gradient; 1 to 3 min, 20 to 

40% linear gradient; 3 to 7 min, 40 to 60% linear gradient; 7 to 19 min, 70 to 90% linear 

gradient; 19 to 21 min, 90 to 40% linear gradient; 21 to 23 min, 40 to 0% linear gradient; 23 to 

25 min, 0% isocratic hold to re-equilibrate the column for the next sample injection (25 min 

total). A radioflow detector (EG &G Berthold, LB 509, Bad Wildbad, Germany) was used to 

detect radioactivity of the samples after mixing with Ultima-Flo M cocktail (PerkinElmer, 

Waltham, MA, USA). Via this HPLC method, the [14C] dicamba parent compound exhibited a 

retention time of 10.9 min. The amount of [14C] dicamba parent was quantified as a percentage 

of total detected radioactivity based on peak area in the chromatograph. Treatments were 

replicated four times and the experiment was repeated. 
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Figure 2.2 Illustration of steps followed in [14C] dicamba metabolism study 

In the absorption, translocation, and metabolism studies, a complete randomized 

experimental design was used. Analysis of variance was conducted in Prism 7 (GraphPad 

Software, Inc., La Jolla, CA, USA). 

 2.3.4 Phosphor Image Analysis 

A separate working stock solution of [14C] dicamba with 3.3 kBq µL-1 of radioactivity and equal 

to 560 g of dicamba in a carrier volume of 187 L was prepared (Fig. 2.3). Kochia seeds were 

germinated in potting mixture (Pro-Mix Potting-Mix, Premier Tech Horticulture, Ontario, CA). 

Individual seedlings from each population at 2 to 3 cm height were transplanted into plastic pots 

(6.5× 6.5 × 9 cm) that filled up with silica sand (Granusil® Handy Sand, Fairmount Santrol, 

Sugar Land, TX, USA) that has rinsed in 0.1% (w/v) of fertilizer (Miricle-Gro water soluble all-

purpose plant food, N:P:K of 24:8:16, Scotts Miracle-Gro Products Inc. Marysville, OH, USA), 

and kept in growth chamber maintained at the same settings as described above. When the 

kochia seedlings were 6-8 cm height, they were treated with 1 µL of the working solution on a 

newly expanded leaf. At 48, 72, and 96 HAT, the treated plants were gently uprooted and the 

roots were washed with water carefully to remove soil particles. Subsequently, the whole plant 
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was washed twice with 10 mL of 10% (v/v) ethanol aqueous solution that contains 0.5% of 

Tween-20, and then pressed using a plant press (Lacey et al., 2001) and dried at 60°C for 72 h. 

The pressed kochia plants were exposed to BAS-IP MS 2040 E Multipurpose Standard Storage 

Phosphor Screen (GE Healthcare Life Sciences, Pittsburgh, PA, USA) for 24 h, and the screen 

was read using Bio-Rad Molecular Imager FX (Bio-Rad Laboratories, Inc. Hercules, CA, USA). 

The phosphor images were processed using Quantity One software (v4.6.9, Bio-Rad 

Laboratories, Hercules, CA, USA). The RGB images used for visualization were processed in 

GNU Image Manipulation Program 2.8.20 (GIMP development team, https://www.gimp.org). 

Four replicates were included in each treatment using complete a randomized experimental 

design, experiment was repeated twice. 

 

Figure 2.3 Illustration of steps followed in phosphor imaging analysis using [14C] dicamba 

 2.3.5 RNA Extraction, cDNA Synthesis and TIR1 Homologs Expression and 

Sequencing 

Fresh plant tissue from KSUR and KSUS kochia plants (non-treated with dicamba) were 

collected and flash frozen in liquid nitrogen and stored at -80°C for RNA isolation. The frozen 

tissue was homogenized in liquid nitrogen using a pre-chilled mortar and pestle. One hundred 

mg of homogenized tissue was transferred into a 2.5 mL microcentrifuge tube. Total RNA was 

isolated using InvitrogenTM TRIzolTM RNA extraction kit (Thermo Fisher Scientific, Waltham, 

MA, USA). In brief, 1 mL of TRIzolTM reagent was added into the 100 mg homogenized plant 










































































































































































































































































