Quantitative genomic analysis of agroclimatic traits in sorghum

By

Olatoye Olalere Marcus

B.Sc., Olabisi Onabanjo University, Nigeria, 2008
M.Sc., Universität Hohenheim, Germany, 2014

AN ABSTRACT OF A DISSERTATION

submitted in partial fulfillment of the requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Agronomy
College of Agriculture

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2017
Abstract

Climate change has been anticipated to affect agriculture, with most profound effects in regions where low input agriculture is being practiced. Understanding of how plants evolved in adaptation to diverse climatic conditions in the presence of local stressors (biotic and abiotic) can be beneficial for improved crop adaptation and yield to ensure food security. Great genetic diversity exists for agroclimatic adaptation in sorghum (*Sorghum bicolor* L. Moench) but much of it has not been characterized. Thus, limiting its utilization in crop improvement. The application of next-generation sequencing has opened the plant genome for analysis to identify patterns of genome-wide nucleotide variations underlying agroclimatic adaptation.

To understand the genetic basis of adaptive traits in sorghum, the genetic architecture of sorghum inflorescence traits was characterized in the first study. Phenotypic data were obtained from multi-environment experiments and used to perform joint linkage and genome-wide association mapping. Mapping results identified previously mapped and novel genetic loci underlying inflorescence morphology in sorghum. Inflorescence traits were found to be under the control of a few large and many moderate and minor effect loci. To demonstrate how our understanding of the genetic basis of adaptive traits can facilitate genomic enabled breeding, genomic prediction analysis was performed with results showing high prediction accuracies for inflorescence traits.

In the second study, the sorghum-nested association mapping (NAM) population was used to characterize the genetic architecture of leaf erectness, leaf width, and stem diameter. About 2200 recombinant inbred lines were phenotyped in multiple environments. The obtained phenotypic data was used to perform joint linkage mapping using ~93,000 markers. The proportion of phenotypic variation explained by QTL and their allele frequencies were estimated. Common and moderate effects QTL were found to underlie marker-trait associations. Furthermore, identified QTL co-localized with genes involved in both vegetative and inflorescence development. Our results provide insights into the genetic basis of leaf erectness and stem diameter in sorghum. The
identified QTL will also facilitate the development of genomic-enable breeding tools for crop improvement and molecular characterization of the underlying genes.

Finally, in a third study, 607 Nigerian accessions were genotyped and the resulting genomic data [about 190,000 single nucleotide polymorphisms (SNPs)] was used for downstream analysis. Genome-wide scans of selection and genome-wide association studies (GWAS) were performed and alongside estimates of levels of genetic differentiation and genetic diversity. Results showed that phenotypic variation in the diverse germplasm had been shaped by local adaptation across climatic gradient and can provide plant genetic resources for crop improvement.
Quantitative genomic analysis of agroclimatic traits in sorghum

By

Olatoye Olalere Marcus

B.Sc., Olabisi Onabanjo University, Nigeria, 2008
M.Sc., Universität Hohenheim, Germany, 2014

A DISSERTATION
submitted in partial fulfillment of the requirements for the degree
DOCTOR OF PHILOSOPHY

Department of Agronomy
College of Agriculture

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2017

Approved by:

Major Professor
Geoffrey P. Morris
Copyright

© Olatoye Olalere Marcus 2017.
Abstract

Climate change has been anticipated to affect agriculture, with most the profound effect in regions where low input agriculture is being practiced. Understanding of how plants evolved in adaptation to diverse climatic conditions in the presence of local stressors (biotic and abiotic) can be beneficial for improved crop adaptation and yield to ensure food security. Great genetic diversity exists for agroclimatic adaptation in sorghum (*Sorghum bicolor* L. Moench) but much of it has not been characterized. Thus, limiting its utilization in crop improvement. The application of next-generation sequencing has opened the plant genome for analysis to identify patterns of genome-wide nucleotide variations underlying agroclimatic adaptation.

To understand the genetic basis of adaptive traits in sorghum, the genetic architecture of sorghum inflorescence traits was characterized in the first study. Phenotypic data were obtained from multi-environment experiments and used to perform joint linkage and genome-wide association mapping. Mapping results identified previously mapped and novel genetic loci underlying inflorescence morphology in sorghum. Inflorescence traits were found to be under the control of a few large and many moderate and minor effect loci. To demonstrate how our understanding of the genetic basis of adaptive traits can facilitate genomic enabled breeding, genomic prediction analysis was performed with results showing high prediction accuracies for inflorescence traits.

In the second study, the sorghum-nested association mapping (NAM) population was used to characterize the genetic architecture of leaf erectness, leaf width, and stem diameter. About 2200 recombinant inbred lines were phenotyped in multiple environments. The obtained phenotypic data was used to perform joint linkage mapping using ~93,000 markers. The proportion of phenotypic variation explained by QTL and their allele frequencies were estimated. Common and moderate effects QTL were found to underlie marker-trait associations. Furthermore, identified QTL co-localized with genes involved in both vegetative and inflorescence development. Our results provide insights into the genetic basis of leaf erectness and stem diameter in sorghum. The
identified QTL will also facilitate the development of genomic-enable breeding tools for crop improvement and molecular characterization of the underlying genes.

Finally, in a third study, 607 Nigerian accessions were genotyped and the resulting genomic data [about 190,000 single nucleotide polymorphisms (SNPs)] was used for downstream analysis. Genome-wide scans of selection and genome-wide association studies (GWAS) were performed and alongside estimates of levels of genetic differentiation and genetic diversity. Results showed that phenotypic variation in the diverse germplasm had been shaped by local adaptation across climatic gradient and can provide plant genetic resources for crop improvement.
Table of Contents

List of Figures .. xi
List of Tables ..xiii
Acknowledgement .. xiv
Dedication .. xv

Chapter 1 – Agroclimatic adaptation in crops species ... 1
 Climatic adaptation .. 1
 Agroclimatic adaptation in crop species ... 1
 Genetic architecture of agroclimatic traits ... 2
 Quantitative genomic dissection of agroclimatic adaptation .. 3
 Population genomic analysis of agroclimatic adaptation .. 4
 Conclusion ... 5
Tables and Figures .. 6
References ... 7

Chapter 2 – The Genetic Architecture of Inflorescence Morphology in Sorghum 11
 Abstract .. 11
 Introduction ... 12
 Materials and Methods ... 14
 Plant Materials and Phenotyping ... 14
 Genomic Data Analysis ... 15
 Phenotype and Heritability Analysis ... 15
 Joint Linkage Mapping ... 16
 Genome-wide Association Studies ... 17
 Effect Size and Allele Frequency Estimation .. 18
 Grass homologs search around identified loci .. 19
 Cross-validation of NAM by Family .. 19
 Results ... 20
 Genome-wide polymorphism in the NAM population ... 20
 Variation in inflorescence morphology in the NAM population .. 20
 QTL for inflorescence morphology ... 20
 Comparison of NAM JL and diversity panel CMLM and GLM model results 20
 Genome-wide prediction of inflorescence morphology ... 21
 Discussion ... 21
 Genetic basis of sorghum inflorescence morphology .. 21
 Genomic enabled breeding of inflorescence morphology ... 23
 Conclusions ... 24
Tables and Figures .. 25
References ... 38
Chapter 3 - Joint Linkage Mapping of Vegetative Traits in Sorghum

Abstract .. 42

Introduction ... 42

Materials and Methods .. 45
- Plant materials and phenotypic evaluations ... 45
- Phenotypic data analysis ... 46
- Joint linkage mapping ... 46
- Estimation of QTL effect size and allele frequency ... 47
- Comparison of QTL regions with a priori genes ... 47

Results .. 47
- Phenotypic variation for traits ... 47
- Identified QTL and their effect sizes .. 48
- Plant and inflorescence morphology genes underlie identified QTL 48

Discussion .. 49
- Genetic variation associated with sorghum vegetative traits in the NAM 49
- Few moderate and many small effect size loci associated with sorghum vegetative traits .. 49
- Vegetative traits were associated with genes underlying plant and inflorescence development .. 50

Conclusion .. 51

Tables and Figures ... 52

References ... 58

Chapter 4 - Population and Quantitative Genomic Analysis of Clinal Adaptation in Nigerian Sorghum

Abstract .. 61

Introduction ... 62

Materials and Methods .. 64
- Plant materials ... 64
- Genotyping-By-Sequencing Pipeline .. 64
- Linkage disequilibrium, neighbor-joining, and principal component analysis 65
- Genetic diversity and population differentiation ... 65
- Genome scans for signature of adaptation ... 66
- Genome-wide association mapping for environmental and phenotypic data 66

Results .. 67
- Nigerian and global germplasm ... 67
- Germplasm genetic diversity and relatedness ... 67
- Relationships between adaptive traits and climatic factors 68
- Genome scans for selection, GWAS, and allele distributions 68

Discussion .. 69
- Genetic diversity in Nigerian sorghum germplasm ... 69
- Sorghum phenotypic variation in Nigeria has been shaped by climatic factors 70
- Genes associated with adaptive traits underlie GWAS ... 71
List of Figures

Figure 1.1: Climatic variation in plant architecture .. 6
Figure 2.1: Phenotypic description and distribution of sorghum inflorescence morphology. .. 28
Figure 2.2: Pairwise correlation between traits .. 29
Figure 2.3: QTL mapping for inflorescence morphology using joint linkage model. 30
Figure 2.4: Comparison of sorghum diversity/association panel (SAP) and nested association mapping (NAM) populations based on linkage disequilibrium decay and genome-wide association mapping ... 31
Figure 2.5: Prediction accuracies for five-fold cross-validation and leave-one-family-out subagging approaches for lower branch length and rachis length ... 32
Figure 2.6: Joint linkage and nested joint linkage (NJL) additive effects heatmap for lower branch length (LBL) .. 33
Figure 2.7: Joint linkage and nested joint linkage (NJL) additive effects heatmap for upper branch length (UBL) .. 34
Figure 2.8: Joint linkage and nested joint linkage (NJL) additive effects heatmap for rachis length (RL) .. 35
Figure 2.9: Joint linkage and nested joint linkage (NJL) additive effects heatmap for rachis diameter (RD) .. 36
Figure 2.10: Prediction accuracies for five-fold cross-validation 37
Figure 3.1: Phenotypic variation in vegetative morphology ... 55
Figure 3.2: QTL mapping for vegetative morphology using joint linkage model 56
Figure 3.3: Distribution of QTL effects and allele frequencies .. 57
Figure 4.1: Distribution of sorghum accessions across precipitation zones in Nigeria ... 73
Figure 4.2: Genome wide single nucleotide polymorphisms (SNPs) density 74
Figure 4.3: Minor allele frequencies and linkage disequilibrium decay 75
Figure 4.4: Genetic relatedness among in global, West African, and Nigerian accessions. .. 76
Figure 4.5: Discriminant analysis of principal components (DAPC) of the Nigerian germplasm .. 77
Figure 4.6: Pairwise correlation between traits and climatic variables 78
Figure 4.7: Pairwise correlation between geographical factor and traits 79
Figure 4.8: Proportion of SNP variation explained by climatic factors, space and phenotypes.. 80

Figure 4.9: Genome-wide association studies of phenotype and climate in Nigerian germplasm.. 81

Figure 4.10: Geographic distribution of inflorescence QTL alleles... 82
List of Tables

Table 1.1: Selected list of traits responsible for clinal adaptation 6
Table 2.1: The sorghum NAM founders, their origin and number of RILs used for analysis from each diverse founder derived family ... 25
Table 2.2: Location, climate, year, precipitation (rainfall October of previous year to October of current year) and environmental code information of field experiments for the nested association mapping population ... 25
Table 2.3: Mean, range, and broad sense heritability (H^2) for lower branch length (LBL), upper branch length (UBL), rachis length (RL), and rachis diameter (RD) 25
Table 2.4: Within family additive effect size (AES) for QTL identified using joint linkage mapping with marker nested within family (NJL) and joint linkage with no nesting (JL). .. 26
Table 2.5: Across population (whole NAM) additive effect size (AES) and proportion of phenotypic variation explained for QTL identified using joint linkage mapping with marker nested within family (NJL) and joint linkage with no nesting (JL). .. 26
Table 3.1: Sorghum nested association mapping population founders, their countries of origin and number of recombinant inbred lines (RILs) present in each family 52
Table 3.2: Multi-environmental phenotypic evaluation of sorghum nested association mapping population. Phenotypic traits evaluated are Leaf erectness (LET), pre-flag leaf width (PFLW), vegetative leaf width (VLW), stem diameter (STM), height (HGT), and flowering time (FLT). ... 53
Table 3.3: Narrow sense heritability, additive effect size (AES) and proportion of phenotypic variation explained by QTL .. 54
Acknowledgement

I am thankful to God for blessing me with the privilege to work with Dr. Geoffrey Morris, a man who wasn’t just a supervisor but a great mentor as well. I will like to thank Dr. Ramasamy Perumal for his tremendous efforts in always providing me with all the resources needed to conduct my fieldwork at the Kansas State University Agricultural Research Center, Hays, Kansas. I will also like to thank my committee members Dr. Kathrin Schrick, Dr. Mary Beth Kirkham and Dr. Jesse Poland for invaluable advice and guidance.

My sincere appreciation goes to all my lab members Sophie Bouchet, Sandeep Marla, Zhenbin Hu, Jianan Wang, Kebede Muleta, Sridevi Nakka, Terry Felderhoff, Brian Wempen, Kelly Qinling Li, Fanna Maina, Jacques Faye, Matt Davis, Rich Brown, Ruth Bartel, and Obembe Oladipo.

To my wife and helpmeet, Deborah Isimemen Olatoye, thank you for your support all along. And to my son Eleazer Olatoye sorry for the times I had to leave you at home even when you wanted to play with me. I love you guys.

My appreciation also goes to the Westview Wesleyan community, the Wolters’, Cranfords, Nelsons, Hendricks, McHenrys and Smiths.
Dedication

To the Lord God and giver of life, to the memory of innocent students and National Youth Service Corps members massacred by Islamic extremists in Northern Nigeria during the 2011 post election violence, and to the unknown godly Moslem man that gave me a ride in the midst of the chaos. I hold no prejudice.
Chapter 1 – Agroclimatic adaptation in crops species

Climatic adaptation

Organisms have adapted to a wide range of ecological and geographic environments. Adaptation of a particular specie is dependent on the movement of its population towards a optimal phenotype, which best suits that specific environment (Orr, 2005). Adaptation to diverse environments results in intraspecific variation of morphological and physiological traits. The major climatic factors influencing trait adaptation in biological systems are ultraviolet (UV) radiation, photoperiodicity, temperature, and precipitation. These factors shape the organismal response to UV intensity, disease, heat, cold and drought. Climatic adaptation has been reported in both model and non-model systems (Table 1.1).

Agroclimatic adaptation in crop species

Climate adaptation has been observed in crop species (Harlan, 1992). For instance, latitudinal flowering time adaptation in maize (Camus-Kulandaivelu et al., 2006; Buckler et al., 2009; Romero Navarro et al., 2017) and inflorescence variation due to agroclimatic adaptation in sorghum (de Wet & Huckabay, 1967; Harlan, 1992) are classic examples. In crop species, extensive genetic diversity exists for adaptive phenotypes that have been subjected to not only a natural, but also artificial (human) selection in response to local climatic conditions across diverse environments (Lasky et al., 2015). Landraces (traditional varieties) (Zeven, 1998) are typically adapted to local stress (biotic and abiotic) and are valuable plant genetic resources for crop improvement (Lasky et al., 2015). The resulting phenotypic divergence of traits in response to local adaptation across climatic zones is regarded as agroclimatic trait variation (Figure 1.1). Agroclimatic adaptive traits are often confounded with population structure (Camus-Kulandaivelu et al., 2006; Valdar et al., 2009; Samis et al., 2012; Morris et al., 2013; Bouchet et al., 2017), therefore it can be difficult to characterize their genetic architecture.
Genetic architecture of agroclimatic traits

A neo-Darwinian perspective of adaptation was given by Fisher stating that an allelic variant either from novel mutation or standing variation will increase in frequency and become fixed as an adaptive response to environmental changes (Hughes, 2012). Adaptive evolution is mostly dependent on polygenic characters (Lande & Barrowclough, 1996). The Fisher-Orr model of adaptation (Orr, 1998, 2005) describes the changing genetic architecture of complex adaptive traits using a geometric model (Orr, 1999, 2005). The model describes a pattern of diminishing returns, as few large effect loci are fixed first, followed by numerous small effect loci. One consequence of the model is that for a trait that is close to its fitness optimum, only small effect loci can bring it closer to the optimum (Orr, 2005). The genetic architecture entails the number of quantitative trait loci (QTL), allele frequency, the effect size of the QTL, identity of the genes and gene actions associated with a particular trait (Mackay, 2001). It is important for response to selection and can provide insight about its evolutionary history (Brown et al., 2011). Large effect loci have been found to underlie adaptive traits in *Sorghum bicolor* (Lin et al., 1995; Bouchet et al., 2017), while small effect loci were found to underlie adaptive traits in maize (*Zea mays*) (Buckler et al., 2009; Peiffer et al., 2014). For instance, small effect size loci (with an effect size of < 1 day) associated with flowering time have been identified in maize and sorghum (Buckler et al., 2009; Bouchet et al., 2017).

Furthermore, the expression of any complex trait resulting from developmental or chemical pathways is often comprised of a network of loci interacting at both genetic and molecular levels (Mackay, 2001). These genotype-by-genotype interactions are known as epistasis. In classical quantitative genetics, epistasis describes non-additivity of effects at multiple loci and exhibits various levels of complexity of interactions depending on the numbers of loci being considered (Lynch & Walsh, 1998). In a two loci model, there will be three levels of interactions: additive-by-additive, additive by dominance and dominance-by-dominance forms of interactions. However, in experiments using recombinant inbred lines (RILs) only the additive-by-additive interaction will be observed since there are only two homozygous classes of alleles. Epistatic interactions of
loci have been associated with flowering time in Arabidopsis (Juenger et al., 2005) and maize (Buckler et al., 2009).

Quantitative genomic dissection of agroclimatic adaptation

Quantitative trait dissection is the mapping of genetic regions responsible for a trait through marker-phenotype association (Lander & Schork, 1994). Most of the QTL identified in trait mapping in crops has been based on bi-parental mapping populations, either F2 individuals or recombinant inbred lines (RILs) generated from the cross between two parents contrasting for the trait of interest (Mackay et al., 2009). However, only QTL associated with the phenotypic variation generated from the controlled cross between the two parents can be identified. Thus, only a small fraction of the genetic diversity available for a particular species are captured (Myles et al., 2009). Additionally, due to small population sizes (< 250), the effect sizes of identified QTL are usually inflated (known as the Beavis effect) (Utz et al., 2000; Juenger et al., 2005). Also due to limited recombination, the QTL regions are usually large (Myles et al., 2009). Conversely, genome-wide association mapping, also known as linkage disequilibrium (LD) mapping exploits, LD between genotyped markers and functional variants/polymorphisms associated with phenotypic differences caused by the polymorphism (Ehrenreich & Purugganan, 2006). Association mapping populations (or diversity panels) offers increased mapping resolution and diversity for mapping due to historical recombination. The level of resolution with which a trait can be mapped depends on the extent of LD in a given genome region (Myles et al., 2009). However, population structure in the population leads to spurious associations, thereby limiting mapping power.

Population structure reflects genome-wide non-random association of alleles and correlation between allele frequencies and phenotypic variation (Myles et al., 2009). Population structure may lead to correlations between phenotypic variation and genetic relatedness. This results in spurious genotype-phenotype covariance, which makes genome-wide markers appear to be associated with the trait. This has been demonstrated by fitting a naive model (which does not account for population structure) to perform genome-wide association mapping of adaptive traits (Huang et al., 2010; Morris et al.,
Models accounting for population structure have been established and resulted in the identification of true associations (Yu et al., 2006; Zhang et al., 2010; Korte et al., 2012; Segura et al., 2012). However, for adaptive traits, the model accounting for structure can be biased against true variants associated with population structure, leading to false negatives (Myles et al. 2009; Lipka et al. 2015). This bias limits the characterization of genetic architecture underlying agroclimatic traits.

Multi-parental populations were designed to overcome the challenge associated with historical population structure. Examples include Multi-Advanced Generation Intercross (MAGIC) and Nested Association Mapping populations (NAM). The NAM design involves a cross between a common founder and a set of diverse founders, followed by selfing of the F1 for several generations to generate RILs (Paterson, 2013). NAM populations have been used to characterize the genetic architecture of adaptive traits in maize and sorghum (Buckler et al., 2009; Brown et al., 2011; Peiffer et al., 2014; Bouchet et al., 2017). In NAM populations, increased LD within families facilitates haplotype imputation for missing data when using low coverage genomic data (Brachi et al., 2011).

Population genomic analysis of agroclimatic adaptation

The availability of next-generation sequencing technologies has made possible genome-wide analysis of patterns of selection using population genomics in plants. The effects of selection on the pattern of genome-wide nucleotide variation vary. These are the extent of linkage disequilibrium around regions under selection, amount and structure of polymorphism, the degree of population differentiation, and the rate and percentage of nonsynonymous substitution (Siol et al., 2010). The methods used to explore patterns of nucleotide variation have been categorized into two categories: first, those that identify fingerprints of selection on linked neutral loci and second, those that deduce the action of selection on the loci (Siol et al., 2010). These approaches have been applied to genomic data of plants sampled across diverse climatic regions, both for biological model species and agricultural crop species. Genome scans have been used to identify molecular targets of selection (Olsen et al., 2006; Gore et al., 2009; Ishii et al., 2013; Yoder et al., 2014; Gouesnard et al., 2017). In addition, climatic variables have been used as proxies for
unknown traits underlying agroclimatic adaptation in GWAS (Hancock et al., 2011; Fournier-Level et al., 2011; Horton et al., 2012; Yoder et al., 2014; Lasky et al., 2015).

Some studies have integrated quantitative genomic approaches with population genomic approaches to dissect the genetic basis of climatic adaptation (Morris et al., 2013; Yoder et al., 2014; Lasky et al., 2015; Gouesnard et al., 2017).

Conclusion

Quantitative trait genomics, population genomics, and integrative genomic approaches can improve our understanding of crop adaptation and facilitate conservation and utilization of crop germplasm (Morris et al., 2013; Hu et al., 2015; Lasky et al., 2015). This will result in an increase in the amount of genetic diversity utilized in crop improvement (Morris et al., 2013), facilitate the characterization of the genetic architecture of adaptive traits and identification of underlying genes for genomic-enabled breeding applications. These will be helpful in low input agricultural systems of the world where the impact of climate change is expected to be greatest.
Tables and Figures

Table 1.1: Selected list of traits responsible for clinal adaptation

<table>
<thead>
<tr>
<th>Species</th>
<th>Adaptation</th>
<th>Literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arabidopsis thaliana</td>
<td>Flowering time</td>
<td>Samis et al. 2012</td>
</tr>
<tr>
<td>Arabidopsis thaliana</td>
<td>Seed dormancy</td>
<td>Kronholm et al. 2012</td>
</tr>
<tr>
<td>Arabidopsis thaliana</td>
<td>Freezing tolerance</td>
<td>Zhen et al. 2008</td>
</tr>
<tr>
<td>Drosophila melanogaster</td>
<td>Ultraviolet intensity</td>
<td>Bastide et al. 2016</td>
</tr>
<tr>
<td>Mus domesticus</td>
<td>Cold tolerance</td>
<td>Lynch 1992</td>
</tr>
<tr>
<td>Engraulis encrasicolus</td>
<td>Thermal adaptation</td>
<td>Harlan 1992</td>
</tr>
</tbody>
</table>

Figure 1.1: Climatic variation in plant architecture.

Plants of the same species in (A) humid climate and (B) arid climate with different architecture due to adaptation to different climatic conditions over a long period of time. Both plants maintain their natural architecture when planted in a common garden (C) sub-humid climate.
References

Chapter 2 – The Genetic Architecture of Inflorescence Morphology in Sorghum

Abstract

The morphology of sorghum inflorescence enables agroclimatic adaptation due to variations in its compactness across arid to sub-humid climates. In this study, the genetic basis of sorghum inflorescence traits including lower branch length (LBL), upper branch length (UBL), rachis length (RL), and rachis diameter (RD) were characterized using a nested association mapping (NAM) population. Phenotypic data were obtained from multi-environment experiments and used to perform joint linkage and genome-wide association mapping. Mapping results identified previously identified and novel loci underlying inflorescence traits in sorghum. Inflorescence traits were found to be under the control of mainly minor effect loci. Quantitative trait loci (QTL) co-localized with homologs of rice and maize inflorescence genes including ramosa2, sparse inflorescence1, and YUCCA5. Lack of colocalization between the lower and upper inflorescence branch QTL suggest they are under independent genetic control. Some of the associations that were regarded as false negatives in GWAS models for mapping lower branch length were identified as true associations in the joint linkage mapping result. Finally, cross-validation results showed high prediction accuracies for LBL, UBL, RL, and RD. This study provided an understanding of the genetic architecture of sorghum inflorescence and prospects for genomic-enabled breeding.
Introduction

Adaptive evolution has shaped the genetic architecture of complex traits. Adaptive traits with phenotypic divergence across climatic zones (Morris et al., 2013) can be referred to as agroclimatic traits. However, agroclimatic divergence often results in genetic differentiation and population structure that hinders effective characterization of trait genetic architecture and reduce genomic prediction accuracy. The genetic architecture of a trait is defined by the number, effect size, allele frequency, and gene action of the loci controlling it (Bouchet et al., 2017). The Fisher-Orr model hypothesized that only loci of small effects can bring an organism close to its fitness optimum. A situation where few large effect loci are fixed first followed by numerous small effect loci. Different effect sized loci have been identified to be associated with adaptive traits in organisms. Large effect sized variants were implicated in loss of body armor in Alaskan threespine stickleback populations (Cresko et al., 2004); large effect loci underlie cuticle melanin variation in African Drosophila melanogaster (Bastide et al., 2016); and inflorescence architecture in maize and rice are under the control of large and small effect loci (Brown et al., 2011; Crowell et al., 2016). Flowering time is controlled by numerous small effect loci in maize, an outcrosser, in contrast to large effect loci in selfing species like Arabidopsis, sorghum, and rice. Thus, genetic architecture is also influenced by reproductive biology (Buckler et al., 2009; Brown et al., 2011). The characterization of genetic architecture is dependent on the efficiency and power of trait genetic dissection.

Earlier mapping approaches utilized bi-parental populations. However, the efficiency of these populations for mapping is hindered by limited genetic diversity and small sample sizes that causes inflation of effect sizes. Genome-wide association studies (GWAS) offer a higher mapping resolution through historical recombination and higher genetic variation and resolution for mapping complex traits (Myles et al., 2009). However, because agroclimatic traits are often confounded by population structure, GWAS can be limited in power to find true associations (Myles et al., 2009; Huang et al., 2010; Morris et al., 2013). Multi-parental populations such as Multiple Advanced Generation Intercross (MAGIC) and Nested Association Mapping (NAM) (Rakshit et al., 2012; Paterson, 2013; Wallace et al., 2014) exhibit increased genetic diversity and
mapping resolution than bi-parental populations (Bouchet et al., 2017). In addition, they reduce the confounding of phenotypic variation with ancestral population structure and have more balanced allele frequencies for increased statistical power for mapping. NAM has been used to dissect quantitative traits such as for flowering time (Buckler et al., 2009), inflorescence morphology (Brown et al., 2011; Wu et al., 2016), and height (Peiffer et al., 2014) in maize and barley for flowering time (Maurer et al., 2015). Recently, a sorghum NAM was developed and shown to be effective for dissection of the genetic architecture underlying agroclimatic complex traits (Paterson, 2013; Bouchet et al., 2017).

Sorghum is a source of food, feed, and bioenergy in many parts of the world, especially in the semi-arid regions where maize and rice cannot thrive. In developing countries, sorghum is predominantly cultivated by smallholder farmers (National Research Council, 1996). The cultivated sorghum varieties are in most cases the locally preferred and adapted types. Sorghum has diffused to different agroclimatic zones with variations in traits such as height, leaf architecture, and inflorescence architecture through balancing selection. In particular, sorghum inflorescence varies in compactness across agroclimatic zones and play functional roles in yield components (Brown et al., 2006; Witt Hmon et al., 2013). In humid climates, the open inflorescence allows air movement among seeds to prevent grain damage. In the sub-Saharan African region (SSA), breeding programs are usually made up of germplasm of varied racial origins and inflorescence types. Furthermore, the application of genomic-enabled breeding methodologies in sorghum in the SSA is not well established either due to infrastructure or inadequate knowledge of the genetic basis of traits. Therefore, it is essential to characterize the genetic basis of sorghum inflorescence in order to utilize marker-assisted selection (MAS) approach for crop improvement. In addition, understanding the genetic basis of sorghum inflorescence can provide information about associated genes thus serving as a basis for further molecular characterization.

Until now, the genetic architecture of sorghum inflorescence morphology is poorly understood, and no genes have been characterized (Brown et al., 2006; Witt Hmon et al., 2013). However, as grass inflorescences share a close homology, studies
employing mutation and other cloning approaches have identified numerous genes controlling inflorescence morphology in maize, rice and barley. Many of these genes share homology across different grass species and are involved in regulatory functions, hormone metabolism, and transport (Kellogg, 2007; Tanaka et al., 2013). Some of the genes that have been characterized are maize Sparse inflorescence1 [Spi1; (Gallavotti et al., 2008)], rice liguless1 [OsLg1; (Ishii et al., 2013)], rice sped1-D (Jiang et al., 2014), maize branch angle defective1 (BAD1) (Bai et al., 2012) maize branched silkless1 (bd1) (Chuck et al., 2002), and maize ramosa genes (ra1, ra2, ra3) (Satoh-Nagasawa et al., 2006). Conserved functions of inflorescence genes have been shown among many grass species (Huang et al., 2017). The objective of this study was to characterize the genetic basis of inflorescence traits in sorghum in terms of numbers of QTL, their effect size, allele frequencies and genes underlying them. Genomic dissection was performed on the sorghum NAM population derived from a cross between an elite common parent (RTx430) and 10 diverse founders (Table 2.1). These founders originated from different agroclimatic zones, thereby capturing a wide genetic and morphological diversity.

Materials and Methods

Plant Materials and Phenotyping

The sorghum NAM population is comprised of ten diverse parents (Table 2.1) and one common parent, RTx430, which is an elite breeding line. Each diverse parent and its RILs represent a family of 250 RILs making a total of 2500 RILs in the whole population. The NAM RILs were phenotyped at F_6:7 and F_6:8 generations for upper primary branch length (UBL), lower primary branch length (LBL), and rachis length (RL). All traits were phenotyped in semi-arid (Hays, Kansas) and humid continental (Manhattan, Kansas) environments for two years (2014 and 2015). A single location/site by year was regarded as one environment (Table 2.2). In the second year (2015), NAM RILs were randomized within maturity blocks of families in a row-column design based on data from the first year flowering data. Each row (corresponding to a plot) was 3 m long with 1 m alleys between ranges. Three sorghum panicles were harvested after physiological maturity per row (RIL) and subsequently used for phenotyping. Inflorescence morphology traits were measured using barcode rulers (1 millimeter
precision) and barcode readers (Motorola Symbol CS3000 Series Scanner, Chicago IL, USA). Rachis length (RL) was measured on three randomly harvested panicles from a plot as the distance from apex of the panicle to the point of attachment of the lowest rachis lower primary branch (Brown et al., 2006; Pann et al., 2014). Rachis diameter (RD) was measured with a digital vernier caliper as the diameter of the peduncle at the point of attachment of the bottommost rachis lower primary branch. For UBL and LBL, six primary branches were randomly selected and carefully detached from the upper (UBL) and lower (LBL) regions of two panicles. The measured traits are illustrated in Figure 2.1A.

Genomic Data Analysis

Previously generated NAM population genomic data (Bouchet et al. 2017) were combined with a global sorghum panel to develop a large SNP data set of 14,440 total accessions. Sequence reads were aligned to the BTx623 reference genome version 3 using Burrow Wheeler Aligner 4.0 and TASSEL 5.0 (Glaubitz et al., 2014) was used for SNP calling. Missing data imputation was done in two stages. The sorghum NAM population and the sorghum association mapping population (SAP) GBS data were first extracted from the build. This data was first filtered to remove triallelic SNPs, followed by filtering to remove markers missing in more than 80% of the individuals, and filtering to keep markers with > 3% minor allele frequency prior to imputation. The NAM population and SAP were each imputed separately using Beagle 4 (Browning & Browning, 2013). After imputation, the two GBS datasets (NAM and SAP) were filtered at MAF of 0.05 and RILs with more than 10 percent heterozygosity were dropped from the NAM data. The effect of SNP variants were inferred by SnpEFF program (Cingolani et al., 2012) for the imputed NAM genomic data. Linkage disequilibrium (LD) decay was estimated using (BGI-shenzhen, 2017) and plotted in R.

Phenotype and Heritability Analysis

Phenotypic data analysis was carried out using R programming language and SAS (SAS Institute Inc., Cary, NC, USA). All traits were tested for normality and the only trait with skewed distribution (UBL) was log transformed. Analysis of variance was performed for each trait and the Pearson pairwise correlation between traits was also
performed using R. The best linear unbiased prediction (BLUP, for data from five environments) of each trait was estimated using *lmer* function in *LME4* package in R (Bates *et al*., 2017) with genotype, environment, and genotype-environment interactions fitted as random effects (Wu *et al*., 2016). A linear model was fitted with traits’ BLUPs and family effect and the residuals were used for pairwise correlations between traits. The variance components used for broad sense heritability estimation were analyzed using the maximum likelihood method by PROC VARCOMP of the SAS software (SAS Institute Inc., Cary, NC, USA) by fitting RILs nested within families, RIL nested within families by environments interaction as random effects (Equation 1). The resulting variance components were used to estimate the broad sense heritability following equation (3) in (Hung *et al*., 2012). The broad sense heritability on line mean basis were estimated as:

\[
H^2 = \frac{\hat{\sigma}^2_{RIL(family)_p}}{\hat{\sigma}^2_{RIL(family)_p} + \frac{\hat{\sigma}^2_{env-RIL(family)_p}}{n_{envlp}} + \frac{\hat{\sigma}^2_{\varepsilon}}{n_{plotp}}} \tag{1}
\]

where \(\hat{\sigma}^2_{RIL(family)_p}\) is the variance component of RIL nested within family \(p\), \(n_{envlp}\) is the harmonic mean of the number of environments in which each RIL was observed, and \(n_{plotp}\) the harmonic mean of the total number of plots in which each RIL. Also, Pearson pairwise correlation between traits was estimated using the residuals derived from fitting a linear model for family and trait phenotypic means:

\[
y = \mu + \gamma_i + \varepsilon_{ij} \tag{2}
\]

where \(y\) is the vector of phenotypic data, \(\gamma_i\) is the term for the NAM families, and \(\varepsilon_{ij}\) is the residual term.

Joint Linkage Mapping

Joint linkage analysis was performed using 92,391 markers and 2220 RILs. This approach is based on forward inclusion and backward elimination stepwise regression approaches implemented in TASSEL 5.0 (Glaubitz *et al*., 2014) stepwise plugin and the family effect was accounted for as a co-factor in the analysis. First, a nested joint linkage (NJL) model was fitted where markers were nested within families, due to the fact that it has been found to be effective for estimating QTL effects within families (Poland *et al*.,
In addition, a non-nested joint linkage model (JL) where markers were not nested within families was used for analysis due to its higher predictive power than NJL (Würschum et al., 2011). Entry and exit \(F_{\text{test}} \) values were set to 0.001 and based on 100 permutations, the \(P \)-value threshold was set to 1.84 E-6. One important advantage of joint linkage mapping is that it enables effective mapping of small effect and low frequency QTL that may be missed in GWAS. The JL model was specified as;

\[
y = b_0 + \alpha_f u_f + \sum_{i=1}^{k} x_i b_i + \epsilon_i
\]

where \(b_0 \) is the intercept, \(u_f \) is the effect of the family of founder \(f \) obtained in the cross with the common parent (RTx430), \(\alpha_f \) is the coefficient matrix relating \(u_f \) to \(y \), \(b_i \) is the effect of the \(i^{\text{th}} \) identified locus in the model, \(x_i \) is the incidence vector that relates \(b_i \) to \(y \) and \(k \) is the number of significant QTL in the final model (Yu et al., 2008).

Genome-wide Association Studies

Genome-wide association study (GWAS) was performed for all traits using 92,391 markers and 2220 RILs; first, for single environment and second, using BLUP adjusted by environments. The multi-locus-mixed model (MLMM) approach (Segura et al., 2012) implemented in R was used for GWAS. The MLMM approach performs stepwise regression involving both forward and backward regressions, accounts for major loci and reduces the effect of allelic heterogeneity. The family effect was fitted as a co-factor and a random polygenic term (kinship relationship matrix) was also accounted for in the MLMM model. A total of 92,391 SNPs were used in the GWAS analysis and coded as 2 and 0 for homozygous SNPs and 1 for heterozygous SNPs. Bonferroni correction of E - 07 (\(\alpha/\text{total number of markers} \sim 5.4 \text{E-07} \)) was used to determine the cut-off threshold for each trait association. Furthermore, GWAS was also performed on sorghum association diversity panel (SAP, consisting of about 334 accessions (Casa et al., 2008)) using Generalized Linear Model (GLM) and Compressed Mixed Linear Model (CMLM) using GAPIT package in R (Lipka et al., 2012). The GLM (naive model) did not account for population structure and was specified as;

\[
y = S\alpha + \epsilon
\]
where \(y \) is the vector of phenotypes, \(\alpha \) is a vector of SNP effects, and \(e \) is the vector of residual effects. And \(S \) is the incident matrix of 1s and 0s relating \(y \) to \(\alpha \). The CMLM model (full model) accounted for population structure and polygenic background effects (kinship) was specified as;

\[
y = X\beta + Qv + Zu + e
\] \[5\]

where \(y \) is the vector of phenotypic information, \(\beta \) is a vector of fixed effects other than SNP or population structure effects, \(v \) is a vector of fixed effects for population structure, \(u \) is an unknown vector of random additive genetic effects from multiple background QTL for RILs. \(X, Q, \) and \(Z \) are incident matrices of 1s and 0s relating \(y \) to \(\beta \) and \(u \) (Yu et al., 2006). The phenotypic data used for GWAS in the SAP had been previously described and published (Brown et al., 2008; Morris et al., 2013).

Effect Size and Allele Frequency Estimation

Allele frequencies of the SNPs for both JL and GWAS were estimated using snpStats package in R (Clayton 2015). The proportion of phenotypic and genotypic variation explained by the JL and GWAS QTL were estimated using equations 6 and 7 (Utz et al., 2000). The QTL additive effect sizes within and across families were both estimated as the difference between the mean of the two homozygous classes for each QTL divided by two. The additive effect size of each QTL identified in all models was estimated relative to RTx430 (Tian et al., 2011). The proportion of phenotypic variation explained by each QTL was estimated by fitting a regression model with family and QTL as fixed terms;

\[
y_{ijk} = \mu + \gamma_i + \Phi_j + \epsilon_{ijk}
\] \[6\]

where \(y_{ijk} \) is the phenotype, \(\gamma_i \) is the term for the NAM families, \(\Phi_j \) is the term for QTL, and \(\epsilon_{ijk} \) is the residual term. The sum of squares of QTLs divided by sum of squares total gave the proportion of variance explained by the detected QTL. In order to evaluate the within family variation explained by each QTL, a regression model was fit with terms for family and QTL nested within family as fixed effects (Würschum et al. 2011);

\[
y_{ijkl} = \mu + \gamma_i + \omega_{jk} + \epsilon_{ijkl}
\] \[7\]
where y_{ijkl} is the phenotype, γ_i is the term for the NAM families, ω_{jk} is the term for QTL nested within family, and ε_{ijkl} is the residual term. The sum of squares of QTLs (Family) divided by sum of squares total gave the within-family variance explained by the detected QTL (Würschum et al., 2011).

Grass homologs search around identified loci

A set of *a priori* candidate genes (n = 39) associated with inflorescence morphology development were compiled from literature consisting of 24 maize genes, 10 rice genes, three sorghum genes, one foxtail millet gene, and one barley gene (supplementary files). Based on this candidate gene set, 297 sorghum homologs were found using Phytozome (Goodstein et al., 2012). A custom R script was used to search for homologs within 150kb window both upstream and downstream of each association.

Cross-validation of NAM by Family

Cross-validation was performed using the ridge regression best linear unbiased prediction (rrBLUP) package in R (Endelman, 2011). First, the “leave-one-family-out” prediction approach was performed. This involves the removal of a family’s genotypic and phenotypic data out of the whole NAM population and using remaining nine families to predict that particular family (NAM population minus family1 to predict family1). At each step of the analysis, a subagging approach that randomly samples data without replacement was used to sample 80% of each family. This step was repeated for all the 10 families in the NAM population for LBL and RL. The second type of analysis involved a five-fold cross-validation analysis for LBL, UBL, RL, and RD for 100 runs. The last approach was to perform family-by-family prediction similar to pairwise prediction between NAM families for LBL and RL. Prediction accuracy was estimated in each cycle as a correlation between predicted and observed phenotypic trait’s value. Lastly, kinship relatedness between pairwise families and between the NAM and each family following the “leave-one-family-out” approach was estimated.
Results

Genome-wide polymorphism in the NAM population

A total of 116,405 SNPs were obtained after SNP calling, imputation, and filtering. SNP effect variant analysis identified a transition-transversion rate of 1. Missense, nonsense, and silent functional variants accounted for 71%, 6%, and 23%, respectively, with a missense-silent variation ratio of 3.0. In addition, 2% exon variants, 15% intergenic variants, 65% intron variants, and 0.002% intragenic variants were identified. After filtering for 0.96 inbreeding coefficient, a total of 92,391 markers and 2220 RILs were identified. The number of RILs in each family range between 202 in Segaolane to 233 in SC265.

Variation in inflorescence morphology in the NAM population

Phenotypic variation distribution for the traits for each family showed that the mean trait value/performance of the RILs is greater than the performance of both parents in some families (Figures 2.1D). Significant genotypic differences were observed for traits (Table 2.3). The broad sense heritability estimates for the traits were high, ranging from 0.59 to 0.92. Based on trait-by-trait phenotypic correlations, RL and LBL had the highest correlation of 0.71 (P-value < 0.01). UBL and LBL both had a low positive correlation of 0.19 (P-value < 0.01) while RL had no correlation with UBL and RD (Figure 2.2).

QTL for inflorescence morphology

Significant QTL associations were observed for all traits (Figure 2.3 (A-D)). The within family and across NAM population effect of each QTL for both NJL and JL models were estimated relative to RTx430. Overall, JL identified more QTL than NJL. The within family additive effects of QTL in both models (NJL and JL) for all traits are listed in Table 2.4. The additive effects and proportion of phenotypic variation explained (PPVE) by JL QTL were greater than PPVE by NJL QTL (Table 2.5).

Comparison of NAM JL and diversity panel CMLM and GLM model results

The comparison of extent of LD decay in the SAP and NAM showed that LD decay rate was different between the SAP and NAM with faster decay in SAP compared
to NAM (Figure 2.4A). Association mapping on the SAP for inflorescence lower branch length identified some of the genomic regions previously identified using the same data (Figures 2.3B). Most of the markers in the genome were associated with both LBL and RL in the naive GWAS model for SAP panel. However, in the CMLM model, only three associations were identified for LBL and no association for RL. The results of the SAP GLM and CMLM model were both plotted with the NAM LBL and RL JL results to see if there are co-localized associations between the mapping populations. Most of the significant associations (with \(P \)-values above permuted threshold) in the NAM were found at low significance levels below Bonferroni correction threshold in the SAP.

Genome-wide prediction of inflorescence morphology

For the leave-one-family-out approach, the mean prediction accuracy across all cycles for each trait was estimated and observed to range from 0.27 for SC1103 to 0.52 for SC971 for RL. For LBL, accuracy ranged from 0.21 in SC283 to 0.61 for SC1345. Relatively high prediction accuracies were observed for all the traits using the five-fold cross-validation approach. Prediction accuracies of 0.70, 0.65, 0.75, and 0.83 were observed for LBL, UBL, RL, and RD, respectively (Figures 2.5A, 2.5C, 2.10A, and 2.10B). Prediction accuracies were positively related to trait \(h^2 \) values \((r = 0.44) \). For the family-by-family pairwise prediction accuracy, there was a positive relationship between pairwise family prediction and mean pairwise kinship relatedness for both LBL \((r = 0.19 \) \(P \)-value < 0.05) and RL \((r = 0.1 \) \(P \)-value < 0.05). In the “leave-one-family-out” approach, there was a non-significant positive relationship between prediction accuracy and kinship relatedness for RL \((r = 0.47) \) and none for LBL \((r = 0.002) \).

Discussion

Genetic basis of sorghum inflorescence morphology

This study using the NAM population provides insight about the genetic architecture of sorghum inflorescence morphology. Inflorescence morphology is controlled by numerous loci of minor effects (Table 2.5). Few major and many minor effect loci were also found to underlie rice and maize inflorescence traits (Crowell *et al.*, 2016; Wu *et al.*, 2016). Additionally, the variable effect sizes of the underlying loci suggest multiple gene changes may be required to produce adaptive phenotypic change in
sorghum inflorescence (Lauter & Doebley, 2001). QTL detected in the whole NAM population using JL showed contrasting allele substitution effects within families. Some families had positive effects while others had negative effects for the same QTL (Figures 2.6–9). This differing effects direction can be attributed to possible epistatic interactions of the QTL with other loci within families.

Based on comparison with earlier mapping studies in sorghum, some QTL identified in this study were previously known while others are novel. Among the previously known QTL is a pleiotropic QTL, qSbRL7.59, associated with both LBL and RL, centered on the intragenic region of a YUCCA5 homolog (flavin monooxygenase gene) and 69.9 kb away from the sorghum height gene (Dw3, a phosphoglycoprotein gene, Sobic.007G163800) (Figure 2.3A and 2.3C). Previous linkage mapping studies identified association around this same Dw3 region for a QTL that increased rachis length and primary branch length (Brown et al., 2006; Shehzad & Okuno, 2015) and YUCCA5 was proposed as a candidate for the gene underlying branch length variation (Brown et al., 2008). Some of the QTL in this study were found to be novel associations when compared to associations from reanalyzed data from a previously published GWAS (Morris et al., 2013) in sorghum using GLM (naive model) and CMLM (full model) (Figure 2.4B). This could be due to the power of the NAM in reducing the effects of ancestral population structure on mapping.

About 46% (58 of 127) of the inflorescence QTL identified in this study co-localized with sorghum homologs of maize and rice inflorescence genes within a 150kb window (Table 2.6). A QTL (SbInf_03.4750) for UBL was found about 38 kb from the sorghum ortholog (Sobic.003G052900) of maize ramosa2 (ra2) (Figure 2.3B). For LBL, a QTL (qSbLBL9.49) was found in the intragenic region of Sobic.009G142200 (No Apical Meristem gene) involved in floral organ identity and development. For RL, a QTL (qSbRL3.57) was found outside the 150kb window, about 160 kb from the sorghum ortholog (Sobic.003G236900) of the maize YUCCA2 gene (spi1) (Figure 2.3C). Mutations in YUCCA gene(s) led to drastic reduction in inflorescence rachis length and branch length in maize and rice and general deformity in Arabidopsis inflorescence (Cheng et al., 2006; Yamamoto et al., 2007; Kim et al., 2007; Gallavotti et al., 2008). In
general, there was no colocalization between QTL for LBL and UBL except qSbUBL3.44 and qSbUBL3.47 which were ~300 kb from each other falling outside the LD range (150 kb) in this population. This suggests that LBL and UBL are under different genetic control. The fact that some QTL are far from a priori candidate genes may in part reflect lower mapping resolution in the NAM population compared to the SAP due to slower LD decay in the NAM population (Figure 2.4A).

Genomic enabled breeding of inflorescence morphology

The inflorescence traits evaluated in this study had high heritability, which signify the presence high genetic variation for increased selection gain. Given the high prediction accuracies observed for the traits (from $r = 0.65$ to $r = 0.83$; Figures 2.5A and 2.5C); thus, genomic prediction is possible for inflorescence morphology in sorghum. As this study was based on RTx430-derived NAM families, prediction in related or breeding populations of similar pedigree (e.g., from Texas A&M breeding lines) will also be beneficial for high accuracy genome-wide predictions in sorghum. The variation in prediction accuracies obtained in the “leave-one-family-out” approach can be a reflection of the differences in the genetic diversity captured by the NAM for each of the five sorghum botanical races. Between family predictions in the maize NAM also showed varied prediction accuracies (Peiffer et al., 2014). Only four of the five racial groups were represented in the NAM population with disproportionate number of families representing each race. Increasing the number of NAM founders with sufficient racial representation will be beneficial in capturing more genetic diversity underlying sorghum inflorescence for higher predictive power. However, prediction accuracies using family-to-family pairwise prediction approaches did not show a strong positive relationship ($r < 0.2$) with kinship relatedness for RL and LBL.

Sorghum breeding programs often must cross parental lines with contrasting panicle morphologies, especially to transfer traits from donor to recipient genetic backgrounds. Unfortunately, recovering recipient panicle morphology by backcross and/or intercross is slow, because phenotypic selection for inflorescence morphology can only be done close to harvest time, well after the window for pollination. Therefore, QTL markers from this study can be employed to facilitate recovery of desired inflorescence
morphology via marker-assisted recurrent selection. The pleiotropy of qSbRL7.59 with both LBL and RL and their high phenotypic correlation ($r = 0.71$, P-value < 0.01) can be beneficial for simultaneous selection of both traits, for example, in the recovery of large panicle from a cross between small and large panicle sorghum lines.

Conclusions

Sorghum NAM demonstrated its power in dissecting population structured adaptive traits in this study by validation of previously reported QTL and identification of novel ones. Sorghum inflorescence is controlled by loci of minor effects. Some, but not all, of the *a priori* candidate genes were associated with variation in inflorescence morphology. Most of the inflorescence *a priori* genes were identified in mutation studies; thus variants identified by such approach may not be reflective of natural populations, where deleterious large-effect variants will be purged by natural selection. There is also likely more genetic diversity in inflorescence morphology to be discovered, since the 11 NAM founder parents only captured about 70% of the U.S. sorghum association panel (Bouchet *et al.*, 2017). Therefore, increasing the number of the founders in the NAM population (i.e. adding new families) will be beneficial for both increased recombination and diversity. Although this may increase phenotyping burden, the use of high-throughput phenotyping platforms could overcome this challenge (Crowell *et al.*, 2016). Furthermore, since the NAM founders originated from diverse agroclimatic zones, QTL identified in this study should be transferable for MAS across breeding programs in various climatic zones. In breeding programs targeting smallholder-farming systems, my QTL offers an opportunity to recover farmer-preferred inflorescence traits. This will be possible by using them as markers to recover locally preferred inflorescence morphology when introgressing traits into local genetic backgrounds.
Tables and Figures

Table 2.1: The sorghum NAM founders, their origin and number of RILs used for analysis from each diverse founder derived family.

<table>
<thead>
<tr>
<th>Founder</th>
<th>Origin</th>
<th>Founder Type</th>
<th>RILs</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTX430</td>
<td>Texas A & M University</td>
<td>Common Parent</td>
<td>-</td>
</tr>
<tr>
<td>P898012</td>
<td>Purdue University</td>
<td>Diverse Founder</td>
<td>213</td>
</tr>
<tr>
<td>Ajabsido</td>
<td>Sudan</td>
<td>Diverse Founder</td>
<td>214</td>
</tr>
<tr>
<td>Macia</td>
<td>ICRISAT</td>
<td>Diverse Founder</td>
<td>231</td>
</tr>
<tr>
<td>SC1103</td>
<td>Nigeria</td>
<td>Diverse Founder</td>
<td>231</td>
</tr>
<tr>
<td>SC1345</td>
<td>Mali</td>
<td>Diverse Founder</td>
<td>231</td>
</tr>
<tr>
<td>SC265</td>
<td>Burkina Faso</td>
<td>Diverse Founder</td>
<td>232</td>
</tr>
<tr>
<td>SC283</td>
<td>Tanzania</td>
<td>Diverse Founder</td>
<td>223</td>
</tr>
<tr>
<td>SC35</td>
<td>Ethiopia</td>
<td>Diverse Founder</td>
<td>208</td>
</tr>
<tr>
<td>SC971</td>
<td>Puerto Rico, United States</td>
<td>Diverse Founder</td>
<td>233</td>
</tr>
<tr>
<td>Segaolane</td>
<td>Botswana</td>
<td>Diverse Founder</td>
<td>204</td>
</tr>
</tbody>
</table>

Table 2.2: Location, climate, year, precipitation (rainfall October of previous year to October of current year) and environmental code information of field experiments for the nested association mapping population.

<table>
<thead>
<tr>
<th>Location</th>
<th>Climate</th>
<th>Year</th>
<th>Precipitation (mm)</th>
<th>Environment Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manhattan, KS</td>
<td>Humid Continental</td>
<td>2014</td>
<td>698</td>
<td>MN14</td>
</tr>
<tr>
<td>Hays, KS</td>
<td>Semi-Arid</td>
<td>2014 (Upland)</td>
<td>639</td>
<td>HA14</td>
</tr>
<tr>
<td>Manhattan, KS</td>
<td>Humid Continental</td>
<td>2015</td>
<td>998</td>
<td>MN15</td>
</tr>
<tr>
<td>Hays, KS</td>
<td>Semi-Arid</td>
<td>2015 (Bottomland)</td>
<td>513</td>
<td>HI15</td>
</tr>
<tr>
<td>Hays, KS</td>
<td>Semi-Arid</td>
<td>2015 (Upland)</td>
<td>513</td>
<td>HD15</td>
</tr>
</tbody>
</table>

* National Oceanic and Atmospheric Administration, U.S. Department of Commerce.
Table 2.3: Mean, range, and broad sense heritability (H^2) for lower branch length (LBL), upper branch length (UBL), rachis length (RL), and rachis diameter (RD).

<table>
<thead>
<tr>
<th>Trait</th>
<th>Mean (mm)</th>
<th>Range (mm)</th>
<th>H^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBL***</td>
<td>82</td>
<td>267 – 176</td>
<td>0.86</td>
</tr>
<tr>
<td>UBL*</td>
<td>48</td>
<td>7 – 170</td>
<td>0.85</td>
</tr>
<tr>
<td>RL***</td>
<td>274</td>
<td>111 – 465</td>
<td>0.92</td>
</tr>
<tr>
<td>RD***</td>
<td>8.3</td>
<td>3.8 - 13.5</td>
<td>0.59</td>
</tr>
</tbody>
</table>

*, **, *** Significant genotypic differences at 0.05, 0.01 and 0.001 respectively.

Table 2.4: Within family additive effect size (AES) for QTL identified using joint linkage mapping with marker nested within family (NJL) and joint linkage with no nesting (JL).

<table>
<thead>
<tr>
<th>Trait</th>
<th>Model</th>
<th>Nos. of QTL</th>
<th>Range of AES (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBL</td>
<td>NJL</td>
<td>14</td>
<td>-30 to 16</td>
</tr>
<tr>
<td>LBL</td>
<td>JL</td>
<td>21</td>
<td>-26 to 19</td>
</tr>
<tr>
<td>UBL</td>
<td>NJL</td>
<td>1</td>
<td>-28.0 to 0</td>
</tr>
<tr>
<td>UBL</td>
<td>JL</td>
<td>17</td>
<td>-33 to 5</td>
</tr>
<tr>
<td>RL</td>
<td>NJL</td>
<td>16</td>
<td>-44 to 51.9</td>
</tr>
<tr>
<td>RL</td>
<td>JL</td>
<td>22</td>
<td>-49.5 to 51.9</td>
</tr>
<tr>
<td>RD</td>
<td>NJL</td>
<td>9</td>
<td>-2.0 to 0.9</td>
</tr>
<tr>
<td>RD</td>
<td>JL</td>
<td>21</td>
<td>-2.4 to 0.6</td>
</tr>
</tbody>
</table>
Table 2.5: Across population (whole NAM) additive effect size (AES) and proportion of phenotypic variation explained for QTL identified using joint linkage mapping with marker nested within family (NJL) and joint linkage with no nesting (JL).

<table>
<thead>
<tr>
<th>Trait</th>
<th>Model</th>
<th>Range of AES (mm)</th>
<th>Range of PPVE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBL</td>
<td>NJL</td>
<td>-4 to 2</td>
<td>0.1 to 2.0</td>
</tr>
<tr>
<td>LBL</td>
<td>JL</td>
<td>-12 to 8</td>
<td>0.6 to 5.0</td>
</tr>
<tr>
<td>UBL</td>
<td>NJL</td>
<td>-4</td>
<td>3.0</td>
</tr>
<tr>
<td>UBL</td>
<td>JL</td>
<td>-11 to 2</td>
<td>0.6 to 4.0</td>
</tr>
<tr>
<td>RL</td>
<td>NJL</td>
<td>-10 to 12</td>
<td>0.1 to 3.0</td>
</tr>
<tr>
<td>RL</td>
<td>JL</td>
<td>-20 to 20</td>
<td>0.6 to 3.0</td>
</tr>
<tr>
<td>RD</td>
<td>NJL</td>
<td>-0.4 to 0.2</td>
<td>0.1 to 1.0</td>
</tr>
<tr>
<td>RD</td>
<td>JL</td>
<td>-0.9 to 1.5</td>
<td>0.2 to 1.0</td>
</tr>
</tbody>
</table>
Figure 2.1: Phenotypic description and distribution of sorghum inflorescence morphology.

(A) Diagram of sorghum inflorescence traits evaluated. (B) Open inflorescence morphology represented by SC1103 parent. (C) Compact inflorescence morphology represented by Ajabsido parent. (D) Semi-compact inflorescence morphology as represented by RTx430 the common parent. (E) Phenotypic distribution of line means for inflorescence traits. The blue lines are the trait value for the common parent (RTx430), the green lines are the mean trait values for each of the other parent, and the red line is the trait mean within each family.
Figure 2.2: Pairwise correlation between traits.

Pearson correlation between lower branch length (LBL), upper branch length (UBL), rachis length (RL), and rachis diameter (RD) significant at 0.05, 0.01 and 0.001 (*, **, and ***).
Figure 2.3: QTL mapping for inflorescence morphology using joint linkage model.

Genomic location of associations with (A) lower branch length, (B) upper branch length, (C) rachis length, and (D) rachis diameter. The dashed red lines are the Bonferroni significance threshold (P-value < 0.05) estimated from 100 permutations. *A priori* candidate genes that colocalize with QTL within 150 kb are noted as follows. Black text indicates putative sorghum orthologs of *a priori* candidate genes while red text indicates paralogs. (E-F) Density plots showing the distribution of QTL allele frequency and phenotypic variation explained for each trait. (G) Plot showing the relationship between QTL allele frequency and phenotypic variation explained.
Figure 2.4: Comparison of sorghum diversity/association panel (SAP) and nested association mapping (NAM) populations based on linkage disequilibrium decay and genome-wide association mapping.

(A) Linkage disequilibrium decay curve color coded for sorghum association panel (SAP) and nested association mapping (NAM) populations and (B) Manhattan plot for the comparison of genome-wide association approaches for lower branch length in using generalized liner model (GLM) in shades of gray, compressed mixed linear model (CMLM) in shades of green, and NAM joint linkage (JL) model in red and orange.
Figure 2.5: Prediction accuracies for five-fold cross-validation and leave-one-family-out subagging approaches for lower branch length and rachis length.

(A) The prediction accuracy as correlation between observed phenotypic values and predicted phenotypic values for lower branch length cross-validation. The color intensity shows the density of data points in each region (from blue to red means few data points to highly dense data points). (B) Prediction accuracies using leave-one-out approach for each family for lower branch length. (C) The prediction accuracy as correlation between observed phenotypic values and predicted phenotypic values for rachis length cross-validation. The color intensity shows the density of data points in each region (from blue to red means few data points to highly dense data points). (D) Prediction accuracies using leave-one-out approach for each family for rachis length.
Figure 2.6: Joint linkage and nested joint linkage (NJL) additive effects heatmap for lower branch length (LBL).

The red boxes indicate families where the additive effects of the QTL are negative. While the blue boxes indicate families where the additive effects of the QTL are positive.
Figure 2.7: Joint linkage and nested joint linkage (NJL) additive effects heatmap for upper branch length (UBL).

The red boxes indicate families where the additive effects of the QTL are negative. While the blue boxes indicate families where the additive effects of the QTL are positive.
Figure 2.8: Joint linkage and nested joint linkage (NJL) additive effects heatmap for rachis length (RL).

The red boxes indicate families where the additive effects of the QTL are negative. While the blue boxes indicate families where the additive effects of the QTL are positive.
Figure 2.9: Joint linkage and nested joint linkage (NJL) additive effects heatmap for rachis diameter (RD).

The red boxes indicate families where the additive effects of the QTL are negative. While the blue boxes indicate families where the additive effects of the QTL are positive.
Figure 2.10: Prediction accuracies for five-fold cross-validation.

Prediction accuracy plots showing correlation between observed phenotypic values and predicted phenotypic values for (A) upper branch length and (B) rachis diameter. The color intensity shows the density of data points in each region (from blue to red means few data points to highly dense data points).
References

Shehzad T, Okuno K. 2015. QTL mapping for yield and yield-contributing traits in

Chapter 3 - Joint Linkage Mapping of Vegetative Traits in Sorghum

Abstract

Crop improvement strategies for increased yield often involve modification of plant morphology. In sorghum, the genetic basis of plant height has been well described, but traits such as stem diameter, leaf erectness, and leaf width are not well understood. In this study, the sorghum-nested association mapping (NAM) population was used to characterize the genetic architecture of leaf erectness, leaf width, and stem diameter. About 2200 recombinant inbred lines were phenotyped in multiple environments. The obtained phenotypic data were used to perform joint linkage mapping using ~93,000 markers. Minor effects quantitative traits loci (QTL) were found to underlie marker-trait associations as the explained very small proportion of the phenotypic variation (< 10%). A pleiotropic QTL was found to be associated with plant height, stem diameter, and leaf erectness. Furthermore, identified QTL co-localized with sorghum homologs of developmental genes in other grasses. Our results provide insights into the genetic basis of leaf erectness and stem diameter in sorghum. The QTL identified could facilitate molecular characterization of the genes underlying vegetative growth and development, and genomic-enabled breeding for improved plant architecture.
Introduction

Modification of plant morphology for crop improvement has contributed to global agricultural productivity during the last century (Khush, 2001; Duvick, 2005). This approach known as ideotype breeding involves the creation of a model plant with characteristics that facilitate efficient photosynthesis, growth, and yield (grain and biomass) (Donald, 1968; Hammer et al., 2009). Ideotype breeding also contributed to increased yield potential in maize, rice, and wheat during the “Green Revolution” (Khush, 2001). The Green Revolution ideotype in cereals includes reduced height, erect leaves, thick stalks, large and semi-compact inflorescence (ear, panicle, or head). Leaf erectness is defined the angle between the soil level and the leaf midrib, where more erect leaves have greater angle (Tian et al., 2011). Erect leaves are thought to have contributed directly or indirectly to increased grain yield in U.S maize through adaptation of hybrids to high planting densities (Duvick, 2005; Hammer et al., 2009). In sorghum, increase leaf erectness was shown to improve photosynthetic efficiency and thermal stress reduction by dispersing solar radiation from upper to lower parts of the canopy (Truong et al., 2015). Wide leaves may also facilitate efficient solar radiation capture for plant productivity. Thick stems may increase stalk strength and improve standability (lodging resistance) for combine harvesting (Kashiwagi et al., 2008). A wide genetic variation exists for these ideotype traits in cereals that can be further utilized in crop improvement (Khush, 2001). However, the genetic basis of these agronomically important traits is not well characterized in sorghum.

Characterization of trait genetic architecture is made possible by quantitative trait loci (QTL) mapping (Morrell et al., 2011). Previous and current crop trait dissection involved the use of bi-parental populations for mapping. But the power and reliability of dissection using biparental mapping are often undermined by small population size, reduced genetic diversity, and non-transferability of QTL to other backgrounds. Association mapping panels exploit wide genetic diversity and provide high mapping resolution for genetic dissection of traits. However, the effectiveness of association mapping is limited by population structure that causes spurious and synthetic associations (Myles et al., 2009; Korte & Farlow, 2013). Multi-parental mapping like the nested association mapping (NAM) and multiple advanced generation intercrosses (MAGIC)
reduce the confounding effect of historical population structure and phenotypic variation through crosses between founder lines and common founder in NAM and among founder lines in MAGIC (Myles et al., 2009; Korte & Farlow, 2013). The balanced allele frequencies in the NAM population also contribute to its high mapping power. Thus, it is an efficient approach for characterizing the genetic basis of complex agronomic traits (Bouchet et al., 2017).

Given that agronomic traits have shaped by selection, considering the evolutionary history of selection provides insights on genetic architecture of agronomic traits. Evidences of the impact of selection on the evolution history of genetic architecture have been shown in fish (Cresko et al., 2004), dogs (Boyko et al., 2010), chicken (Carlborg et al., 2006), maize (Doebley, 2004; Brown et al., 2011), and rice (McCouch et al., 2004; Ishii et al., 2013). Traits that have undergone recent selection have been found to be under the control of large effect loci in maize (Brown et al., 2011), rice (Ishii et al., 2013), and sorghum (Bouchet et al., 2017).

Sorghum is an important staple food crop in semi-arid and arid regions due to its resilience to harsh environmental conditions. Its cultivation in temperate climate during the last century was made possible by the conversion of tall photoperiod-sensitive tropical lines to dwarf photoperiod-insensitive high yielding lines with reduced height. This improved sorghum ideotype for temperate climates made sorghum commercial cultivation successful in the United States (Klein et al., 2008). Selection for reduced height led to indirect selection for increased erectness of sorghum leaves and stem diameter that made high-density cultivation more feasible. Genetic architecture of flowering time and height has been characterized in sorghum to a great extent unlike leaf morphology and stem diameter. The major genes underlying height in sorghum are \(Dw1 \), \(Dw2 \), and \(Dw3 \). \(Dw3 \) has been shown to have a pleiotropic effect on leaf erectness and inflorescence in the lower primary branch in sorghum (Brown et al., 2008). Flowering time in sorghum is under the control of maturity gene loci (\(ma1-ma6 \)). In maize, the genetic architecture of leaf erectness and leaf width has been well characterized and found to be controlled by small effect loci (Tian et al., 2011; Strable et al., 2017).
In cereals, the shoot apical meristem (SAM) determines the above ground architecture of the plant by maintaining pluripotent cells and forming lateral organs and stems which both determine the various plant architectures observed in nature (Wang & Li, 2008). Genes such as LA1 (LAZY), TAC1 (Tillering Angle Control 1) (Wang and Li 2008), Narrow leaf1 (Qi et al., 2008), LC1 (LEAF INCLINATION1) (Zhao et al., 2013), lg1 (liguless1), lg2 (liguless2), lg3 (liguless3), and lg4 (liguless4), and YABBY (Tian et al., 2011; Li et al., 2015; Strable et al., 2017) play essential roles in lateral organ branching, leaf formation, tiller angle, and leaf angle regulation. In addition, growth-promoting compounds as gibberellins and brassinosteroids also regulate plant architecture (Wang & Li, 2008). Currently, the genetic basis of leaf morphology and stem diameter in sorghum is poorly understood. In this study, the genetic basis of sorghum leaf erectness, leaf width, and stem diameter was characterized using the sorghum NAM population. This population comprised of approximately 2200 RILs, generated from a cross between 10 diverse founder lines with the common parent. The study objectives were (i) to characterize the genetic architecture (number, effect size, and allele frequencies of the underlying QTL) and (ii) to identify genes underlying QTL associated with the above-mentioned traits.

Materials and Methods

Plant materials and phenotypic evaluations

The sorghum NAM population was previously described (Paterson, 2013; Bouchet et al., 2017). It consists of 2500 recombinant inbred lines (RILs) derived from a cross between a common founder RTx430 and 10 other diverse founders (Table 2.1). This population was phenotyped in multiple environments (Table 2.2) for leaf erectness, leaf width, stem diameter, flowering time and height. The leaf erectness was measured as the angle between the soil surface (0°) and the pre-flag leaf midrib using a barcode reader and barcode protractor (Figure 2.1). Leaf erectness was measured from 3 plants per plot. The leaf width was measured as the width of the leaf at the widest point on both pre-flag leaf and the fourth leaf from the flag leaf on three plants per plot (Figure 2.1). Measurements were taken using a barcode ruler. Stem diameter was measured as the diameter of the stem at the second Internode above the ground surface on three plants per
plot in millimeters using a digital caliper and a barcode reader. Flowering time was scored as the number of days from planting to the day in which 50% of the individuals in a plot are in anthesis.

Phenotypic data analysis

Analysis of phenotypic data collected was performed using R and SAS (SAS Institute Inc., Cary, NC, USA). The phenotypic mean of each RIL across environments was estimated. The proportion of phenotypic variance explained by genetic variation in the NAM for each trait was estimated by fitting terms for the vector of phenotypic data and the matrix of kinship genetic relatedness (estimated from the genomic data) using the heritability package in R (Kruijer et al., 2015). Also, Pearson pairwise correlation between traits was estimated using the residuals derived from fitting a linear model for family and trait phenotypic means;

\[y_{ij} = \mu + \gamma_i + \epsilon_{ij} \] \[1\]

where \(y_{ij} \) is the phenotype, \(\gamma_i \) is the term for the NAM families and \(\epsilon_{ij} \) is the residual term. The BLUP for each phenotype was estimated by fitting RIL, environment, and RIL by environment interaction terms as random using LME4 R package (Bates et al., 2017).

Joint linkage mapping

To characterize the genetic architecture of these traits (STM, LET, PFLW, VLW, HGT, and FLT), joint linkage mapping was performed using trait BLUPs and genomic data using the stepwise regression approach implemented in TASSEL 5.0 (Glaubitz et al., 2014). The approach is based on forward inclusion and backward elimination stepwise methods. The entry and exit limit of the forward and backward stepwise regressions were set at 0.001. Also, the threshold cutoff was set at 1.8 E-6 based on 100 permutations. The genotypic data used for this analysis have been previously described (Bouchet et al., 2017). The JL model was specified as;

\[y = b_0 + \alpha_f u_f + \sum_{i=1}^{k} x_i b_i + e_i \] \[2\]

where \(b_0 \) is the intercept, \(u_f \) is the effect of the family of founder \(f \) obtained in the cross with the common parent (RTx430), \(\alpha_f \) is the coefficient matrix relating \(u_f \) to \(y \), \(b_i \) is the
effect of the i^{th} identified locus in the model, x_i is the incidence vector that relates b_i to y and k is the number of significant QTL in the final model.

Estimation of QTL effect size and allele frequency

The snpStats package in R (Clayton, 2015) was used to estimate the allele frequency of the QTL. While the proportion of phenotypic variation (PV) explained by each QTL were estimated by fitting a linear model with family and QTL as fixed terms;

$$y_{ijk} = \mu + \gamma_i + \Phi_j + \epsilon_{ijk}$$ \[3\]

where y_{ijk} is the phenotype, γ_i is the term for the NAM families, Φ_j is the term for QTL, and ϵ_{ijk} is the residual term. The sum of squares of QTLs divided by sum of squares total gave the proportion of variance explained by the detected QTL. The additive effect size of the QTL in the population was estimated as the average of the difference between the mean phenotypic values associated with the two-allele class of the QTL. The additive effect size of each QTL was estimated relative to RTx430 (Tian et al., 2011).

Comparison of QTL regions with a priori genes

A list of a priori genes was developed for leaf morphology, stem diameter, plant height, and flowering time based on homology with genes underlying these traits in other cereals. This list contained about 146 sorghum homologs in total with 130 of them associated with leaf and stem development, while 16 are known height and flowering time genes in sorghum. A custom R script was used to search for a priori genes within 150 kb window around the QTL associations identified in this study.

Results

Phenotypic variation for traits

Significant differences were observed for all traits and the proportion of phenotypic variation explained by genetic variation in the NAM for the traits are 0.56 for HGT, 0.67 for FLT, 0.60 for STM, 0.17 for PFLW, 0.16 for VLW, and 0.50 for LET. Pairwise phenotypic correlations were observed between traits (figure 2.2) with LET having a negative correlation of -0.12 (P-value < 0.001) with height, -0.05 (P-value < 0.05) with VLW and positive correlation of 0.10 (P-value < 0.001) with STM. HGT and
FLT were positively correlated ($r = 0.13$, P-value < 0.001), while STM had correlations of 0.23 (P-value < 0.001) with PFLW, -0.09 (P-value < 0.001) with HGT and 0.10 (P-value < 0.001) with LET.

Identified QTL and their effect sizes

The joint linkage analysis identified 13 QTL for STM, 17 QTL for LET, two QTL each for VLW and PFLW, 17 QTL for HGT, and 13 QTL for FLT. About 6 out of the 25 FLT QTL had an additive effect size of 2 days or more (qSbFLT10.78, qSb7.25, qSbFLT3.71, qSbFLT6.57, qSbFLT3.62 and qSbFLT6.79). For HGT, qSbHGT9.570 explained the largest proportion of variation (12%) followed by qSbHGT9.576 (6%). All leaf traits, and stem diameter QTL explained less than 3% of the phenotypic variation. Table 3.3 describes the summary of QTL effect sizes.

Plant and inflorescence morphology genes underlie identified QTL

QTL identified in this study were observed in the proximity of genes known to be associated with inflorescence and plant morphology. For STM, a QTL (qSbSTM7.59) was found about 34-35 kb to the Dw3 and YUCCA5 genes. Also, for LET, qSbLET7.63 was found at about 12kb from the sorghum ortholog of rice OsSPL14 (Ideal Plant Architecture1), qSbLET10.60 found at about 1.8 kb from the sorghum ortholog of maize Thick Tassel Dwarf1 (CLAVATA1), qSbLET7.59 was found at about 136 kb from YUCCA5, and qSbLET2.63 was found at about 28 kb from a sorghum paralog of maize Fasciated ear 4 (Fea4). Two HGT QTL (qSbHGT7.59 and qSbHGT7.59) were found about 35 kb and 139 kb from YUCCA5. Two STM QTL qSbSTM7.51 and qSbSTM3.63 were located at 33 kb and 77 kb from the sorghum paralogs of maize ROUGH SHEATH2 and BAD1. One of LET QTL (qSbLET7.59) was found about 300 kb from Dw3 and 230 kb from YUCCA5. qSbFLT6.79 was found about 99 kb from Ma6 (Sobic.006G004400), qSbFLT.3_6271 about 30 kb from SbCN12 (FLOWERING LOCUS T, Sb03g034580), and qSbFLT10.12 about 158 kb from SbCO. Likewise, a flowering time QTL qSbFLT6.51 was found at about 107 kb from the sorghum ortholog (Sb06g023770) of the maize leaf morphology gene yab1/drl1. The three major sorghum height genes, Dw1 (Sobic.009G229800), Dw2 (Sobic.006G067700) and Dw3 (Sobic.007G163800), were found at about 24 kb, 4.7 kb, and 34 kb from qSbHGT9.57, qSbHGT6.42, and
qSbHGT7.59, respectively. QTL qSbHGT7.59 was also found 35 kb from $YUCCA5$, the flavin monooxygenase gene. Also $SbCN4$ (Sobic.006G068300) a flowering time gene was found at about 117 kb from qSbHGT6.42 height QTL on chromosome 6.

Discussion

Genetic variation associated with sorghum vegetative traits in the NAM

Genetic variation is essential for breeding. Substantial genetic variation was identified for some of the plant morphology traits evaluated. Four of six traits evaluated in this study (HGT, FLT, STM, and LET) exhibited a high level of heritability genetic variation (Table 3.3). However, the two leaf width traits (PFLW and VLW) showed notably low heritability estimates. Leaf morphology exhibited high heritability in the maize NAM (Cook et al., 2012) and sorghum association panel (Zhao et al., 2016). It is not clear what could have led to the low heritability observed for VLW and PFLW in this study. Phenotyping error is a possible explanation. In this case, automated high-throughput phenotyping on multiple plants would be beneficial to reduce error that may result from manual measurements.

The inverse correlation between PHT and LET showed that a short plant would have more erect leaves. This correlated effect may facilitate adaptation for better light interception under high-density planting. The positive relationship between FLT, and STM, FLT, and HGT is consistent with the expectation that late-flowering plants should have increased stem width and height, and accumulate more biomass (Ashworth et al., 2016).

Few moderate and many small effect size loci associated with sorghum vegetative traits

This study revealed that few loci explaining moderate proportion of phenotypic variation underlie vegetative traits in sorghum. Most of the associated loci, explained less than 5% of the phenotypic variation. Only a single large effect locus was found to be associated with HGT (qSbHGT9.57, Dwl QTL explaining 12% of PV). All QTL associated with leaf traits were of small effect explaining less than 3% of phenotypic variation. In the maize NAM population, small effect loci were found to be associated with both leaf erectness and width (Tian et al., 2011). Earlier QTL mapping for leaf
erectness in sorghum using biparental population identified the average of four QTL per population with most QTL having an effect size of about 15% (Truong et al., 2015). However, the estimated effect size of these loci could have been inflated due to the Beavis effect (small population) (Xu, 2003). The estimated effects in this study are expected to be more accurate due to the large number of RILs in the NAM population (2200 RILs). A positive relationship was observed between heritability and the number of associated QTL since only the two low heritable leaf width traits were the ones with the least QTL number. This showed that the presence of high genetic variation is essential for QTL mapping.

Vegetative traits were associated with genes underlying plant and inflorescence development

QTL identified in this study were found to be in proximity of genes controlling plant morphology and inflorescence morphology. One important QTL (qSbHGT7.59) identified in this study was found to be pleiotropic with HGT, STM, and LET. The QTL was found at about 34 kb from Dw3 and YUCCA5 genes. Though there is limited knowledge about the genetic basis of leaf erectness in sorghum, associations underlying it have been found in the qSbHGT7.59 region (Hart et al., 2001; Truong et al., 2015; Zhao et al., 2016). Dw3 is an auxin transporter gene whose mutation led to dwarf plants in sorghum (Multani et al., 2003). The pleiotropic effect of Dw3 on leaf erectness was recently described (Truong et al., 2015). Dwarf lines carrying dw3 duplication to be more erect, while tall Dw3 revertants (those that changed from dwarf to tall stature) were less erect. YUCCA5 is a flavin monooxygenase gene involved auxin biosynthesis (Dai et al., 2013). YUCCA5 homologs have been found to control inflorescence morphology in maize (Gallavotti et al., 2008) and rice (Yamamoto et al., 2007), and have been proposed as candidates for inflorescence morphology in sorghum (Brown et al., 2008). In addition, a moderate effect loci underlying LET, OsSPL14 (Ideal Plant Architecture1, IPA1) was found about 12 kb from a LET QTL (qSbLET7.63). IPA1 has been found to play a critical role in both plant architecture and inflorescence morphology in rice (Si et al., 2016). Similarly, prior to this study, little is also known about the underlying genetic basis of stem diameter in sorghum (Mantilla Perez et al., 2014). But sorghum paralogs of
maize *ROUGH SHEATH2* and *BAD1* were found to underlie some of the STM QTL identified in this study.

Conclusion

This study provided insights into the genetic basis of plant architecture in sorghum. Leaf erectness and stem diameter were under the control of common moderate effect loci. A pleiotropic QTL (qSbHGT7.59) that co-localizes with YUCCA5 and Dw3 regions was found to be associated with HGT, STM, and LET. The colocalization and/or pleiotropy of these QTL and correlation relationships between the three traits showed that selection for dwarf height in sorghum might have led to an indirect selection for increased leaf erectness and increased stem diameter. These QTL can be used to develop molecular markers to facilitate simultaneous selection and improvement of vegetative morphology. The limited number of QTL and low heritability estimates found to be associated with leaf width traits in this study calls for a thorough investigation of the traits with more accurate high-throughput phenotyping methods. Interestingly, some of the QTL underlying vegetative traits in this study were found near candidate genes for inflorescence morphology. This suggest possible pleiotropy of these genes in both vegetative and inflorescence development biology for example liguleless gene in rice *OsLG1* (Ishii *et al.*, 2013). QTL identified in this study can help facilitate marker development for ideotypic breeding and further the study of the underlying genes.
Tables and Figures

Table 3.1: Sorghum nested association mapping population founders, their countries of origin and number of recombinant inbred lines (RILs) present in each family.

<table>
<thead>
<tr>
<th>Founder</th>
<th>Origin</th>
<th>Founder Type</th>
<th>RILs</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTX430</td>
<td>Texas A & M University</td>
<td>Common Parent</td>
<td>-</td>
</tr>
<tr>
<td>P898012</td>
<td>Purdue University</td>
<td>Diverse Founder</td>
<td>213</td>
</tr>
<tr>
<td>Ajabsido</td>
<td>Sudan</td>
<td>Diverse Founder</td>
<td>214</td>
</tr>
<tr>
<td>Macia</td>
<td>ICRISAT</td>
<td>Diverse Founder</td>
<td>231</td>
</tr>
<tr>
<td>SC1103</td>
<td>Nigeria</td>
<td>Diverse Founder</td>
<td>231</td>
</tr>
<tr>
<td>SC1345</td>
<td>Mali</td>
<td>Diverse Founder</td>
<td>231</td>
</tr>
<tr>
<td>SC265</td>
<td>Burkina Faso</td>
<td>Diverse Founder</td>
<td>232</td>
</tr>
<tr>
<td>SC283</td>
<td>Tanzania</td>
<td>Diverse Founder</td>
<td>223</td>
</tr>
<tr>
<td>SC35</td>
<td>Ethiopia</td>
<td>Diverse Founder</td>
<td>208</td>
</tr>
<tr>
<td>SC971</td>
<td>Puerto Rico, United States</td>
<td>Diverse Founder</td>
<td>233</td>
</tr>
<tr>
<td>Segaolane</td>
<td>Botswana</td>
<td>Diverse Founder</td>
<td>204</td>
</tr>
</tbody>
</table>
Table 3.2: Multi-environmental phenotypic evaluation of sorghum nested association-mapping population. Phenotypic traits evaluated are Leaf erectness (LET), pre-flag leaf width (PFLW), vegetative leaf width (VLW), stem diameter (STM), height (HGT), and flowering time (FLT).

<table>
<thead>
<tr>
<th>Location</th>
<th>Climate</th>
<th>Year</th>
<th>Precipitation (mm) Oct – Oct*</th>
<th>Environment Code</th>
<th>Traits measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manhattan, KS</td>
<td>Humid</td>
<td>2014</td>
<td>698</td>
<td>MN14</td>
<td>LET, PFLW, VLW, STM, FLT</td>
</tr>
<tr>
<td>Hays, KS</td>
<td>Semi-Arid</td>
<td>2014 (Upland)</td>
<td>639</td>
<td>HA14</td>
<td>STM, HGT</td>
</tr>
<tr>
<td>Manhattan, KS</td>
<td>Humid</td>
<td>2015</td>
<td>998</td>
<td>MN15</td>
<td>LET, VLW, FLT</td>
</tr>
<tr>
<td>Hays, KS</td>
<td>Semi-Arid</td>
<td>2015 (Bottomland)</td>
<td>513</td>
<td>HI15</td>
<td>LET, VLW, PFLW, HGT</td>
</tr>
<tr>
<td>Hays, KS</td>
<td>Semi-Arid</td>
<td>2015 (Upland)</td>
<td>513</td>
<td>HD15</td>
<td>VLW</td>
</tr>
</tbody>
</table>

* National Oceanic and Atmospheric Administration, U.S. Department of Commerce.
Table 3.3: Narrow sense heritability, additive effect size (AES) and proportion of phenotypic variation explained by QTL.

<table>
<thead>
<tr>
<th>Trait</th>
<th>h^2</th>
<th>Range of PPVE (%)</th>
<th>Range of AES</th>
</tr>
</thead>
<tbody>
<tr>
<td>HGT</td>
<td>0.54</td>
<td>0.2 to 12</td>
<td>-12 to 7 (cm)</td>
</tr>
<tr>
<td>FLT</td>
<td>0.71</td>
<td>0.1 to 6</td>
<td>-1 to 4 (days)</td>
</tr>
<tr>
<td>STM</td>
<td>0.60</td>
<td>0.3 to 1</td>
<td>-1 to 3 (mm)</td>
</tr>
<tr>
<td>LET</td>
<td>0.50</td>
<td>0.3 to 3</td>
<td>-7 to 4 (degree)</td>
</tr>
<tr>
<td>PFLW</td>
<td>0.17</td>
<td>0.8 to 1.8</td>
<td>-5 to -3 (mm)</td>
</tr>
<tr>
<td>VLW</td>
<td>0.16</td>
<td>0.6 to 0.9</td>
<td>-1 to 13 (mm)</td>
</tr>
</tbody>
</table>
Figure 3.1: Phenotypic variation in vegetative morphology.

(A) Leaf erectness and leaf width measurements. A barcode protractor and barcode ruler were both used for the measurements of these traits to ensure accurate and fast data acquisition. (B) Pairwise correlations among traits after accounting for family effect (Correlation of residuals of a linear model with a fixed family term). The correlation values shown are significant at P-value < 0.01. Blue lines indicate positive relationships while red lines indicate negative relationships.
Figure 3.2: QTL mapping for vegetative morphology using joint linkage model. Genomic location of associations with (A) plant height, (B) leaf erectness, and (C) stem diameter. The dashed red lines are the Bonferroni significance threshold (P-value < 0.05) estimated from 100 permutations. *A priori* candidate genes that colocalize with QTL within 150 kb are noted as follows. Black text indicates putative sorghum orthologs of *a priori* candidate genes while red text indicates paralogs.
Figure 3.3: Distribution of QTL effects and allele frequencies.

(A) Density plots summarizing the distribution of QTL effect sizes for each trait. Percent variance explained of the QTL was estimated from linear models with a fixed main effect of family and fixed main effect of QTL. (B) Density plots summarizing the distribution of QTL allele frequencies for each trait. FLT: Flowering time, HGT: Plant height, LET: Leaf erectness, STM: Stem diameter.
References

Clayton D. 2015. snpStats: SnpMatrix and XSnpMatrix classes and methods. R package version 1.28.0.

Chapter 4 - Population and Quantitative Genomic Analysis of Clinal Adaptation in Nigerian Sorghum

Abstract

Sorghum landraces have adapted to different environments, providing genetic diversity useful for crop improvement. Nigeria harbors abundant sorghum diversity, however, inadequate understanding of genetic diversity, population structure, and adaptive loci limits germplasm utilization. In this study, 607 Nigerian sorghum accessions were characterized at > 400,000 SNPs and compared regional West African germplasm and a global reference germplasm. Nigerian germplasm has a substantial level of genetic diversity (\(\pi \)) compared to global (~98%) and West African (~92%) germplasm. Discriminant analysis of principal components identified three distinct genetic groups that are moderately genetically differentiated from each other. Linkage disequilibrium in the Nigerian germplasm was slightly slower than that of the global germplasm, which indicated possible lower mapping resolution in the Nigerian germplasm. A genome scan for signatures of adaptation and genome-wide association studies identified signals in the proximity of candidate genes underlying flowering time, height, and inflorescence architecture. Results suggest that the genomic diversity in Nigerian landraces was shaped by clinal adaptation across a climatic gradient and can provide genetic resources for crop improvement.
Introduction

Intraspecific phenotypic variation exists for adaptive traits across a climatic gradient in natural populations. Latitudinal variations have been observed for seed dormancy, cold tolerance, height, and flowering time in Arabidopsis (Kronholm et al., 2012; Samis et al., 2012; Debieu et al., 2013). Likewise, in cultivated crop species, geographical distribution from tropical to cold temperate conditions became possible through adaptation of flowering time to local conditions (Camus-Kulandaivelu et al., 2006; Ducrocq et al., 2008; Buckler et al., 2009). Furthermore, local adaptation of traditional varieties has played essential roles in ensuring marginal yield under adverse climatic conditions in smallholder farmers’ fields and low input agricultural systems (Mercer et al., 2012; Feitosa Vasconcelos et al., 2013). These locally adapted varieties possess alleles that can be beneficial for the development of better-adapted lines in crop improvement to ensure food security (Zeven, 1998; Soler et al., 2013; Lasky et al., 2015). Therefore, we need to improve our understanding of adaptive genetic diversity in crop species for efficient utilization in crop improvement.

Characterization of genetic diversity and population structure of natural crop species populations is important for (Djè et al., 2000; Manzelli et al., 2007; Samis et al., 2012; Soler et al., 2013; Yoder et al., 2014). The genetics of local and clinal adaptation has been widely studied using population genomic approaches (Umina et al., 2005; Zhen & Ungerer, 2008; Samis et al., 2012; Yoder et al., 2014). Some of the approaches involve genome scans for fingerprints of selection at linked neutral loci (Siol et al., 2010). Another widely used approach is genome-wide associations between genomic variants and climatic factors (Hancock et al., 2011; Yoder et al., 2014). Population genomic tools have helped improve our understanding of phenotypic evolution in crop species like maize (Ducrocq et al., 2008; Hufford et al., 2012; van Heerwaarden et al., 2012), rice (Olsen et al., 2006), and sorghum (Morris et al., 2013; Lasky et al., 2015; Zhang et al., 2015)

Sorghum bicolor is an essential staple cereal crop in dryland regions of the world and it has adapted to a wide range of climatic environments with intraspecific phenotypic variation across clines for flowering time, plant architecture and inflorescence.
architecture (Thurber et al., 2013; Morris et al., 2013; Lasky et al., 2015; Zhang et al., 2015). For instance, in West Africa there is a strong north-south climatic gradient, from semiarid grasslands bordering the Sahara desert in the north (Sahelian zone), through subhumid savannah (Sudanian zone), to humid rainforest in the south (Guinean zone). Sorghum phenotypic variation varies along this climatic gradient. Open panicle sorghum types are predominant in the humid regions, while semi-compact to compact panicle types are predominant in the semi-arid and arid regions (Harlan, 1992). The diversity of climatic zones often varies from country to country in the region. The Nigerian geographical landscape is divided into about eight agroclimatic zones based on precipitation patterns (Oyenuga, 1967; Sowunmi & Akintola, 2010). Sorghum is a major cereal in the northern (Sudano-Sahelian) regions of Nigeria, which are characterized by prolonged dry seasons and hot weather. Nigeria is the second largest sorghum producer globally, with 5-10 million tons (Mg) of production per year (WSP, 2017).

The Nigerian population stands at about 190 million and is expected to be larger than the US population by 2050 (CNN, 2017), which raises concerns for food security. In addition, increasing temperature and erratic rainfall due to climate change also threaten agricultural food production. Therefore, it is important to develop better-adapted and high yielding sorghum varieties for farmers. However, the genetic diversity of sorghum in Nigeria is still not characterized compared to other West African germplasm (Ezeaku et al., 1999; Ezeaku & Gupta, 2004; Deu et al., 2008; Tesso et al., 2008; Bezançon et al., 2009; Vigouroux et al., 2011). Characterizing Nigerian sorghum germplasm diversity can facilitate the identification of potential sources of adaptive traits and genetic diversity relevant to crop improvement. The objectives of this study were thus: (1) to evaluate the genetic diversity of the Nigerian germplasm in relation to West African and global sorghum, (2) to examine whether traits have been shaped by local adaptation in response to climatic factors in Nigeria, and (3) to identify the genomic regions responsible for local adaptation. To understand the genetic diversity of Nigerian germplasm, 607 Nigerian accessions were sequenced using GBS. Sequence data were combined with previous sequencing data from 1785 georeferenced global accessions (Lasky et al., 2015) to perform population and quantitative genomics analysis.
Materials and Methods

Plant materials

A set of 553 Nigerian accessions was obtained from the USDA National Plant Germplasm System (NPGS) (https://www.ars-grin.gov/). From another set of 1943 georeferenced global accessions previously sequenced (Lasky et al., 2015), sequence information from 158 Nigerian accessions was obtained and combined with the Nigerian NPGS set. Duplicated accessions and those with the US sorghum conversion (SC) program identity number in the NPGS database were removed from the Nigerian germplasm. Thus, only 607 Nigerian accessions (of which only 443 were georeferenced) and 1785 georeferenced global accessions were used for downstream analysis.

Precipitation maps were generated using Nigerian average annual precipitation data (from 1960 to 1990) obtained from WorldClim 1.4 with Raster package in R (Hijmans 2016). The distribution of georeferenced Nigerian accessions across precipitation zones was plotted using the raster package in R (Hijmans, 2016). The 553 NPGS accessions were raised in the greenhouse for two weeks and about 50 mg of fresh leaf tissue was collected from each accession into 96 well plates. A control well was left empty on each plate. Leaf tissue was lyophilized (Labconco Freeze Dryer, Kansas City, MO USA) for two days and then ground using 96-well plate plant tissue grinder (Retsch Mixer Mill, Haan, Germany). Genomic DNA was extracted using BioSprint 96 DNA Plant Kit (QIAGEN, Valencia CA, USA), quantified using Quant-iTTM PicoGreen® dsDNA Assay Kit (ThermoFisher Scientific, Waltham MA, USA) followed by normalization to 10ng/ul.

Genotyping-By-Sequencing Pipeline

The GBS approach described by (Elshire et al., 2011) was used for GBS of 553 Nigerian accession. Individual DNA samples were digested using ApeKI restriction enzyme (NEB R0643L) followed by ligation of barcode and common adapters ligation using T4 DNA ligase (NEB M0202L). The ligated libraries were pooled (96-plex libraries) and purified with the QIAquick PCR purification kit (QIAGEN, Valencia CA, USA). Library size distribution was obtained using a Bioanalyzer (Agilent Technologies 2100, Santa Clara CA, USA). The 384-plex library was obtained by pooling four 96-plex libraries. Libraries were sequenced using single end 100-cycle sequencing using Illumina
HiSeq2500 (Illumina, San Diego CA, USA) at the University of Kansas Medical Center, Kansas City MO, USA. Raw reads for Nigerian germplasm were combined with raw reads obtained for 1943 accessions (Lasky et al., 2015) and tags were aligned to the sorghum reference genome v3.0 obtained from (Goodstein et al., 2012) using Burrow Wheeler Alignment algorithm (Li & Durbin, 2009). SNP calling was performed using TASSEL 5.0 (Glaubitz et al., 2014). Monomorphic markers and singletons were removed prior to the imputation of missing data using BEAGLE 4.0 (Browning & Browning, 2013).

Linkage disequilibrium, neighbor-joining, and principal component analysis

Linkage disequilibrium decay for the genomic data for Nigerian and global germplasm was estimated by PopLDdecay (BGI-shenzhen, 2017), with minor allele frequency parameter set at 0.05, and smoothing was done by the spline function in R. Phylogenetic analysis for neighbor-joining tree was performed using TASSEL 5.0 and APE (Analyses of Phylogenetics and Evolution) package in R (Paradis et al., 2004). Only two accessions from the global data did not have country information. The phylogenetic tree was constructed using 311,786 SNPs from the West African data after filtering for monomorphic and singleton markers. Likewise, monomorphic and singletons were removed from Nigerian germplasm remaining 268,326 SNPs. For the discriminant analysis of principal components (DAPC) analysis, the find clusters function in Adegenet package in R (Jombart et al., 2010) was first used to infer the possible number of groups or clusters in the 607 Nigerian accessions.

Genetic diversity and population differentiation

The estimate of nucleotide divergence was used as a measure of genetic diversity using --site-pi and –window-pi options in VCF tools (Danecek et al., 2011). This was performed for the Nigerian germplasm, West African germplasm (made up of Benin, Togo, Ghana, Senegal, Gambia, Burkina Faso, Sierra Leone, Niger, and Cameroon a border country to Nigeria on the east). Furthermore, the extent of population differentiation between Nigeria and the global germplasm and West African germplasm was estimated using --weir-fst-pop parameter (Weir and Cockerham’s F_{ST}) in VCF tools (Danecek et al., 2011).
Genome scans for signature of adaptation

Genomic signatures of adaptation in the Nigerian germplasm were identified using PCAdapt R package (Luu et al., 2017), with Nigerian accessions (601) and global reference accessions (1941) analyzed separately. An optimal cluster number of 11 and 17 was identified through the scree plot for the Nigerian and global reference sets, respectively. Outliers SNPs (putatively under selection) were identified using the PCAdapt function (Luu et al., 2017) with parameters for optimal cluster groups and minor allele frequency of 0.01 for both Nigerian and global reference data sets. An a priori candidate gene list of sorghum orthologs was compiled based on the literature search for genes underlying flowering time, inflorescence, and plant architecture in cereals.

Genome-wide association mapping for environmental and phenotypic data

Climate data (annual mean temperature, mean temperature wettest quarter, mean temperature driest quarter, mean temperature warmest quarter, mean temperature coldest quarter, annual precipitation, precipitation wettest quarter, and precipitation driest quarter from 1960 to 1990) were obtained from WorldClim 1.4 (Worldclim.org) using the Raster package in R (Hijmans, 2016) based on the coordinate (latitude and longitude) information for each of the 438 georeferenced Nigerian accessions. Passport data for flowering time, plant height, and panicle length for the Nigerian accessions were obtained from the USDA National Plant Germplasm System (NPGS) (https://www.ars-grin.gov/) database. Correlations between three adaptive traits (flowering time, panicle length, and plant height) and climatic factors (temperature and precipitation) were estimated. Genome-wide association mapping (GWAS) was performed using the climate data as the phenotypic data. Mixed linear model (GAPIT MLM; (Lipka et al., 2012)) and multi-locus mixed linear model (MLMM; (Segura et al., 2012)) that both accounted for population structure (Q, fixed effects) and a random polygenic term (K, representing kinship relationship matrix) were used to perform GWAS. The MLMM approach performs stepwise regression involving both forward and backward regressions. A total 189,750 were used in the GWAS analysis and coded as 2 and 0 for homozygous SNPs.
and 1 for heterozygous SNPs. Bonferroni correction of 2.6e-07 (α/total number of markers; where α = 0.05) was used to determine the cut-off threshold for the associations.

Results

Nigerian and global germplasm

A total of 431,698 SNPs were obtained for the total set of 2542 worldwide accessions. In the Nigerian genomic data, after removing monomorphic markers, singletons, and doubletons 189,750 SNPs were retained. This corresponds to an average of 1 SNP per 4 kb. In addition, a West African subset (325 accessions) of the genomic data was also created having about 311,786 SNPs after removing monomorphic markers and singletons. SNP density was found to be high around sub-telomeric regions, while reduced in sub-centromeric regions (Figure 4.2). About 51% of the Nigerian genomic data is composed of SNPs with minor allele frequencies (MAF) < 0.01. By contrast, 46% of the West African SNPs have MAF < 0.01, 36% of the global reference SNPs have MAF < 0.01, and 37% of the whole population SNPs have MAF < 0.01% (Figure 4.3A). Inbreeding coefficients of global (0.83) and west African accessions (0.82) were higher than that of Nigerian accessions (0.80) (P-value < 0.001 and P-value < 0.01, respectively). LD decayed to half its initial value at 12 kb and to background level (r² < 0.1) at 180 kb in the Nigerian germplasm (Figure 4.3B). The West African germplasm had the slowest LD decay rate compared to the Nigerian and global germplasm (Figure 4.3B).

Germplasm genetic diversity and relatedness

The average nucleotide diversity across 1 kb windows for global germplasm (without Nigeria), West African germplasm, and Nigerian germplasm are 0.00046, 0.00049 and 0.00045 respectively. The Nigerian germplasm had a negative Tajima’s D value of -0.2 while the global and West African accessions had Tajima’s D values of 0.1 and 0.2, respectively (using 1 kb windows). Neighbor-joining analysis showed that Nigerian accessions grouped together with West African accessions in the global germplasm (Figure 4.4A). Clustering by botanical race was also observed in the Nigerian germplasm neighbor-joining tree (Figure 4.4C). DAPC analysis identified 3 distinct genetic groups across geographical zones (Figure 4.5A–C). The DAPC groups were
genetically differentiated \((F_{ST}) \) from each other as follows: group 1 versus group 2 \((F_{ST} \) of 0.21), group 1 versus group 3 \((F_{ST} \) of 0.18), group, and 2 versus group 3 \((F_{ST} \) of 0.22).

Relationships between adaptive traits and climatic factors

Significant correlations were observed for flowering time with an annual temperature \((-0.14, P\text{-value} < 0.01)\) (Figure 4.6), mean temperature wettest quarter \((-0.15, P\text{-value} < 0.01)\), mean temperature warmest quarter \((-0.15, P\text{-value} < 0.01)\), mean temperature coldest quarter \((-0.11, P\text{-value} < 0.01)\). Plant height had correlation values of 0.28 \((P\text{-value} < 0.001)\), 0.24 \((P\text{-value} < 0.001)\), 0.29 \((P\text{-value} < 0.001)\), 0.18 \((P\text{-value} < 0.01)\), and 0.20 \((P\text{-value} < 0.01)\) with a mean temperature driest quarter, mean temperature coldest quarter, annual precipitation (Figure 4.6), precipitation in the wettest quarter and precipitation in the driest quarter respectively. Panicle length had correlations of 0.12 \((P\text{-value} < 0.05)\), 0.24 \((P\text{-value} < 0.001)\), 0.24 \((P\text{-value} < 0.001)\) with mean temperature coldest quarter, annual precipitation (Figure 4.6), and precipitation in the warmest quarter respectively. Latitude had significant negative relationships with plant height and panicle length \((-0.33 \text{ and } -0.21, P\text{-value} < 0.001)\) respectively (Figure 4.7). However, there was no relationship between latitude and flowering time. Redundancy analysis showed that climatic factors and space (latitude and longitude) both explained only 5% of the genetic variation in the Nigerian germplasm. However, when phenotypic information with no missing data (209 accessions) was later included in the model, climatic factors, space, and phenotypes explained 9% of the SNP variation (Figure 4.8).

Genome scans for selection, GWAS, and allele distributions

Two major selective sweeps were observed on chromosome 6 as well as other outliers distributed across the genome (Figure 4.9A). For the GWAS result, significant association signals were found for panicle length on chromosome 3 (Figure 4.9B). Association signal was found on chromosome 3 for plant height and chromosome 2 for panicle length (figure 4.9C). For flowering time, significant associations were found on chromosomes 3, 4, 6, 8, and 10 (Figure 4.9D). Among the climatic variables analyzed by GWAS, significant associations were only observed for annual precipitation and mean precipitation in the driest quarter (Figures 4.9E–F). Alleles of NAM inflorescence QTL had a distinct agroclimatic pattern of distribution (Figures 4.10A–B).
Discussion

Genetic diversity in Nigerian sorghum germplasm

The evaluation and comparison of the genetic diversity of Nigerian sorghum germplasm with West African and global germplasm in this study provided an informative description of the potentials of the Nigerian germplasm as a source of plant genetic resources for crop improvement. The extent of genetic diversity inherent in the Nigerian germplasm ($\pi = 4.5 \times 10^{-4}$ per 1 kb windows) was found to be slightly lower than that of the global germplasm ($\pi = 4.6 \times 10^{-4}$ [per 1 kb windows], P-value < 0.001) and West Africa ($\pi = 4.9 \times 10^{-4}$ [per 1 kb windows] P-value < 0.001). This level of genetic diversity observed in the Nigerian germplasm can be considered substantial relative to that of the global germplasm that has a larger number of accessions. A similar estimate of genetic diversity was found in the Nigerien germplasm (country: Niger, $\pi = 4.6 \times 10^{-4}$ (per 1 kb windows), (Maina et al. 2017, in review)). The level of genetic differentiation between the Nigerian germplasm and West African germplasm ($F_{ST} = 0.007$) is 10 times lower than the level of genetic differentiation between the Nigerian germplasm and global germplasm ($F_{ST} = 0.07$). Neighbor-joining tree analysis also showed that majority of the Nigerian accessions clustered together with accessions from West Africa (Figure 2B) while the Nigerian germplasm showed distinct clusters based on botanical races (Figure 2C). The genetic relatedness of the Nigerian germplasm to the rest of the West African germplasm can facilitate efficient exchange of genetic materials between Nigerian breeding programs and other West African national breeding programs.

Discriminant analysis of principal components grouped the Nigerian accessions into three major genetic groups (figure 4) with group 2 (mostly represented by Guinea and Guinea derivatives) found to be more prevalent in the middle-belt and humid southern part of Nigeria while groups 1 and 3 (Caudatum, Durra, and their derivatives) were found to be more prevalent in the northeastern and northwestern parts of Nigeria. These groups were found to be moderately genetically distant from each other (F_{ST} 0.18–0.22), which might suggest an agroclimatic and a racial pattern of distribution and differentiation within the Nigerian germplasm. This is consistent with prior studies where
sorghum germplasm was structured according to botanical race and geography (de Oliveira et al., 1996; Barnaud et al., 2007).

Differences in linkage disequilibrium decay were observed between the West African and Nigerian germplasm with the faster LD decay in the Nigerian germplasm. This difference may be attributed the effect of population structure which is higher in the West African germplasm. Genome-wide, LD decay rate in Nigerian germplasm was slower than the previous findings using global germplasm ((Hamblin et al., 2005) \(r^2 \) below 0.1 at 15–20 kb]; (Bouchet et al., 2012) \(r^2 = 0.18 \) (within 0–10 kb interval) and \(r^2 = 0.03 \) (within 100 kb – 1 Mb interval)]; (Morris et al., 2013) [half of its initial value by 1 kb and to background levels \(r^2 < 0.1 \) within 150 kb]), which were on more diverse panels. The LD decay rate, coupled with the rich genetic diversity present in the Nigerian germplasm, makes it a potential resource for trait mapping.

Sorghum phenotypic variation in Nigeria has been shaped by climatic factors

Intraspecific variations are often associated with phenotypes conferring adaptation across agroclimatic regions. In this study, significant relationships were found between adaptive traits and climatic factors and latitude. The negative relationship between plant height and panicle length and positive relationship of plant height with annual precipitation (0.29 and 0.24, \(P \)-values < 0.001) indicate that sorghum plants originating from lower latitudes in Nigeria are taller and have longer panicles than sorghum plants originating from higher latitudes. This is plausible since lower latitudes are associated with higher annual precipitation \((r^2 = -0.87, P\text{-value} < 0.001 \text{ between latitude and annual precipitation}), and humid climates can support more vigorous vegetative growth. Similarly, the negative relationship between flowering time and annual mean temperature suggests that sorghum plants in hot (dry) weather (correlation between annual temperature and annual precipitation is \(-0.18, P\text{-value} < 0.001\)) will tend to flower early to avoid prolonged drought and high temperature on the field as an escape mechanism (Tuinstra et al., 1997).

Redundancy analysis indicated that phenotypic variation explained more of the SNP variation than either of space and climatic factors. The small proportion of SNP
variation explained by space, climatic factors, and phenotypic information in this study could be due to the limited number of accessions evaluated (< 210 for SNP-Phenotype-Space-Climate model and < 450 for SNP-Space-Climate model). A distinct geographical pattern of distribution was found for the alleles of NAM QTL (qSbUBL3.47 and qSbLBL2.63) associated with inflorescence genes *ramosa2* and *Sobic.002G247800* (sorghum paralog of *OsSPL14*) underlying branch length and panicle length, respectively. The minor allele (qSbUBL3.47 - G) associated with short upper branches was found at high frequency in the guinea (80%) and caudatum (78%) accessions (figure 6A). The major allele (qSbLBL2.63 - A) associated with long lower branches was found at high frequency (69%) in the Guinea accessions and at low frequency (19%) in the Caudatum accession (Figure 6B). Guinea sorghum types are known to have very long lower branches and short upper branches. This suggests that these QTL can facilitate marker-assisted selection for long lower branches and short upper branches in Nigerian Guinea types.

Genes associated with adaptive traits underlie GWAS

Evidence of genomic footprints of clinal adaptation was found in the genome of Nigerian sorghum germplasm. A major selective sweep was observed on chromosome six while other signals of selection (outliers) were found on all chromosomes (figure 3.6A). The genome-wide average negative Tajima’s D observed in this study for the Nigerian compared to the positive Tajima’s D observed in the global and West African germplasm suggests the possible action of positive selection that could have purged deleterious alleles from the Nigerian germplasm. GWAS QTL for panicle length did not colocalize with NAM QTL for panicle length (Thesis chapter 2). This could be due to reduced power as a result of small sample size and population structure since panicle morphology is highly structured in sorghum (Brown et al., 2011). However, for flowering time, GWAS QTL co-localized with known sorghum flowering time genes *Ma1* and *Ma6* (S6_40491020 about 174 kb from *Ma1* and S6_799609 about 99 kb from *Ma6*). In addition, significant associations were only found for annual precipitation and mean precipitation in the driest quarter. One of the SNPs associated with precipitation in the driest quarter (S1_2374316) was found in the intragenic region of a *No Apical Meristem*
gene (Cheng et al., 2012). Since there is a spatial correlation between climatic factors and population structure in the data set, the small number of SNP-environment association may be due to the GWAS model, which accounted for population structure (Günther & Coop, 2013; Yoder et al., 2014).

Conclusion

In this study, a representative sample of the Nigerian sorghum germplasm was genotyped to characterize its genetic diversity, and population structure and to identify genomic signatures of selection present in its genome. This study provides an assessment of the Nigerian germplasm genetic diversity. The absence of genetic differentiation between the Nigerian and West African germplasm suggests possible gene flow between Nigerian and other West African countries probably due to the previous exchange of genetic materials. In addition, this can also foster germplasm exchange between national breeding programs. Results further showed that some phenotypic traits have been shaped by local adaptation across the Nigerian agroclimatic gradient. In addition, the genome-wide pattern of nucleotide variation showed signals of footprints of selection and association signals underlying adaptive traits. However, few association signals identified suggest the reduced power of the GWAS due to population structure associated with the adaptive traits. The sorghum nested association mapping (NAM) population has demonstrated higher power for mapping such adaptive traits (Bouchet et al., 2017).
Figure 4.1: Distribution of sorghum accessions across precipitation zones in Nigeria.

Accessions are coded by botanical race, with number of accessions given in parentheses. Only accessions with known botanical race information are represented on this plot.
Figure 4.2: Genome wide single nucleotide polymorphisms (SNPs) density.

SNPs distribution across the genome (200 kb window) with high density in telomeric and sub-telomeric regions and reduced density in centromeric regions.
Figure 4.3: Minor allele frequencies and linkage disequilibrium decay.

(A) Minor allele frequency distribution of global reference (orange), Nigerian (green), and West Africa (WA) (medium blue). (B) Linkage disequilibrium curves for global reference (orange), Nigerian (green), and WA (medium blue).
Figure 4.4: Genetic relatedness among in global, West African, and Nigerian accessions.

Neighbor joining analysis of (A) global germplasm (color-coded by panel), (B) West African germplasm (color-coded by country of origin), and (C) Nigerian germplasm (color-coded by botanical race).
Figure 4.5: Discriminant analysis of principal components (DAPC) of the Nigerian germplasm.

(A) Discriminant analysis of principal component (DAPC) genetic groups, (B) neighbor joining tree color-coded based on DAPC groups, and distribution of georeferenced accessions across Nigerian geographical space. Groups are color-coded and shapes represent the sorghum races.
Figure 4.6: Pairwise correlation between traits and climatic variables.

Pearson correlation between flowering time (FLOWERING), plant height (PLANTHGT), panicle length (PANICLELGT), annual temperature (Temp), and annual precipitation (Prec) significant at 0.05, 0.01 and 0.001 (*, **, and ***).
Figure 4.7: Pairwise correlation between geographical factor and traits.

Pearson correlation between latitude (Latitude), flowering time (FLOWERING), plant height (PLANTHGT), and panicle length (PANICLELGT) significant at 0.05, 0.01 and 0.001 (*, **, and ***).
Figure 4.8: Proportion of SNP variation explained by climatic factors, space and phenotypes.

Multivariate redundancy analysis showing the proportion (0.0 to 1.0) of genotypic variation explained by climatic factors (temperature and precipitation), space (latitude and longitude), and phenotypes (flowering time, plant height, and panicle length).
Figure 4.9: Genome-wide association studies of phenotype and climate in Nigerian germplasm.

Manhattan plot for (A) signatures of selection, showing outliers around *a priori* candidate genes. Broken lines shows the position of genes, text in red is the gene acronym for a paralog while texts in black are acronyms for gene orthologs in sorghum (B) panicle length, (C) plant height, (D) flowering time, (E) annual precipitation, and (F) precipitation in the driest quarter.
Figure 4.10: Geographic distribution of inflorescence QTL alleles.

(A) Geographic distribution of alleles of inflorescence upper branch length QTL (qSbUBL3.47 [S3_4750709]) associated with Ramosa2 (Sobic.003G052900). (B) Geographic distribution of alleles of inflorescence lower branch length QTL (qSbLBL2.63 [S2_63576699]) associated with OsSPL14 (Sobic.002G247800). Navy blue codes for ‘C’ allele, red codes for ‘G’ allele and Green codes for ‘A’ allele.
References

CNN. 2017. Nigeria to surpass the US as world’s 3rd most populous country - CNN.

components in sorghum (Panicoidae) and comparative genetics with rice (Oryzoidae). *BMC Plant Biology* **15**: 107.

Appendix A - NAM Inflorescence QTL

<table>
<thead>
<tr>
<th>Marker</th>
<th>QTL</th>
<th>Trait</th>
<th>Gene Name</th>
<th>Relationship</th>
<th>Similarity</th>
<th>Sorghum Gene ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>S7_59751994</td>
<td>SbLBL7.59</td>
<td>LBL_GWAS</td>
<td>sparse inflorescence1 (spi1)</td>
<td>Paralog</td>
<td>55.1</td>
<td>Sobic.007G163200</td>
</tr>
<tr>
<td>S7_59751994</td>
<td>qSbLBL7.59</td>
<td>LBL_GWAS</td>
<td>Dwarf3(Dw3)</td>
<td>Ortholog</td>
<td>NA</td>
<td>Sobic.007G163800</td>
</tr>
<tr>
<td>S2_63576699</td>
<td>qSbLBL2.63</td>
<td>LBL_JL</td>
<td>OsSPL14</td>
<td>Paralog</td>
<td>47.2</td>
<td>Sobic.002G247800</td>
</tr>
<tr>
<td>S3_4450819</td>
<td>qSbLBL3.44</td>
<td>LBL_JL</td>
<td>Barren Inflorescence 2 (bif2)</td>
<td>Paralog</td>
<td>43.9</td>
<td>Sobic.003G048700</td>
</tr>
<tr>
<td>S1_21494247</td>
<td>qSbLBL1.21</td>
<td>LBL_JL</td>
<td>Fasciated ear 2 (Fea2)</td>
<td>Paralog</td>
<td>37</td>
<td>Sobic.001G224000</td>
</tr>
<tr>
<td>S2_63576699</td>
<td>qSbLBL2.63</td>
<td>LBL_JL</td>
<td>Fasciated ear4 (Fea4)</td>
<td>Paralog</td>
<td>48.4</td>
<td>Sobic.002G247300</td>
</tr>
<tr>
<td>S3_8666433</td>
<td>qSbLBL3.86</td>
<td>LBL_JL</td>
<td>LEAFY HULL STERILE1 (LHS1)/OsMADS1</td>
<td>Paralog</td>
<td>59.5</td>
<td>Sobic.001G086400</td>
</tr>
<tr>
<td>S1_6775611</td>
<td>qSbLBL1.67</td>
<td>LBL_JL</td>
<td>Panicle Phytomer2 (PAP2)</td>
<td>Ortholog</td>
<td>90.2</td>
<td>Sobic.001G086400</td>
</tr>
<tr>
<td>S1_6775611</td>
<td>qSbLBL1.67</td>
<td>LBL_JL</td>
<td>Panicle Phytomer2 (PAP2)</td>
<td>Paralog</td>
<td>69.1</td>
<td>Sobic.001G086400</td>
</tr>
<tr>
<td>S1_6775611</td>
<td>qSbLBL1.67</td>
<td>LBL_JL</td>
<td>Sepetalla</td>
<td>Paralog</td>
<td>68.4</td>
<td>Sobic.001G086400</td>
</tr>
<tr>
<td>S10_51874918</td>
<td>qSbLBL10.51</td>
<td>LBL_JL</td>
<td>BARREN INFLORESCENCE 1</td>
<td>Paralog</td>
<td>22.9</td>
<td>Sobic.010G180600</td>
</tr>
<tr>
<td>S2_63475769</td>
<td>qSbLBL2.63</td>
<td>LBL_JL</td>
<td>Fasciated ear4 (Fea4)</td>
<td>Paralog</td>
<td>48.4</td>
<td>Sobic.002G247300</td>
</tr>
<tr>
<td>S7_57067166</td>
<td>qSbLBL7.57</td>
<td>LBL_JL</td>
<td>Fasciated ear 2 (Fea2)</td>
<td>Paralog</td>
<td>34.4</td>
<td>Sobic.007G141700</td>
</tr>
<tr>
<td>S10_51414143</td>
<td>qSbLBL10.51</td>
<td>LBL_JL</td>
<td>Fasciated ear 2 (Fea2)</td>
<td>Paralog</td>
<td>36.7</td>
<td>Sobic.010G177300</td>
</tr>
<tr>
<td>S10_51414143</td>
<td>qSbLBL10.51</td>
<td>LBL_JL</td>
<td>THICK TASSEL DWARF1/CLAVATA1</td>
<td>Paralog</td>
<td>49.2</td>
<td>Sobic.010G177300</td>
</tr>
<tr>
<td>S2_63475769</td>
<td>qSbLBL2.63</td>
<td>LBL_JL</td>
<td>OsSPL14</td>
<td>Paralog</td>
<td>47.2</td>
<td>Sobic.010G177300</td>
</tr>
<tr>
<td>S7_59953003</td>
<td>qSbLBL7.59</td>
<td>LBL_JL</td>
<td>Dwarf3(Dw3)</td>
<td>Ortholog</td>
<td>NA</td>
<td>Sobic.001G056100</td>
</tr>
<tr>
<td>S1_63043663</td>
<td>qSbLBL1.63</td>
<td>LBL_JL</td>
<td>DENSE AND ERECT PANICLE (DEP1)</td>
<td>Paralog</td>
<td>10.1</td>
<td>Sobic.001G341700</td>
</tr>
<tr>
<td>S2_60856616</td>
<td>qSbRD2.60</td>
<td>RD_JL</td>
<td>DENSE AND ERECT PANICLE (DEP1)</td>
<td>Paralog</td>
<td>15</td>
<td>Sobic.002G216600</td>
</tr>
<tr>
<td>S3_73412473</td>
<td>qSbRD3.73</td>
<td>RD_JL</td>
<td>Fasciated ear 2 (Fea2)</td>
<td>Paralog</td>
<td>35.2</td>
<td>Sobic.003G432000</td>
</tr>
<tr>
<td>S1_4131827</td>
<td>qSbRD1.41</td>
<td>RD_JL</td>
<td>BARREN INFLORESCENCE 1</td>
<td>Paralog</td>
<td>21.4</td>
<td>Sobic.001G056100</td>
</tr>
<tr>
<td>S1_4131827</td>
<td>qSbRD1.41</td>
<td>RD_JL</td>
<td>BARREN INFLORESCENCE 4</td>
<td>Paralog</td>
<td>27.4</td>
<td>Sobic.001G056100</td>
</tr>
<tr>
<td>S9_57369245</td>
<td>qSbRD9.57</td>
<td>RD_JL</td>
<td>WUSCHEL-related homeobox 1A</td>
<td>Paralog</td>
<td>13.8</td>
<td>Sobic.009G233000</td>
</tr>
<tr>
<td>S1_58623035</td>
<td>qSbRD1.58</td>
<td>RD_JL</td>
<td>Ramosa3 (ra3)</td>
<td>Paralog</td>
<td>55.5</td>
<td>Sobic.001G303900</td>
</tr>
<tr>
<td>S6_57581969</td>
<td>qSbRD6.57</td>
<td>RD_JL</td>
<td>Fasciated ear4 (Fea4)</td>
<td>Paralog</td>
<td>42.4</td>
<td>Sobic.006G233500</td>
</tr>
<tr>
<td>S7_57230541</td>
<td>qSbRD7.57</td>
<td>RD_JL</td>
<td>Fasciated ear 2 (Fea2)</td>
<td>Paralog</td>
<td>34.4</td>
<td>Sobic.007G141700</td>
</tr>
<tr>
<td>S3_61838244</td>
<td>qSbRD3.61</td>
<td>RD_JL</td>
<td>sparse inflorescence1 (spi1)</td>
<td>Paralog</td>
<td>70.8</td>
<td>Sobic.003G286500</td>
</tr>
<tr>
<td>S7_59751994</td>
<td>qSbRL7.59</td>
<td>RL_GWAS</td>
<td>sparse inflorescence1 (spi1)</td>
<td>Paralog</td>
<td>55.1</td>
<td>Sobic.007G163200</td>
</tr>
<tr>
<td>S7_59751994</td>
<td>qSbRL7.59</td>
<td>RL_GWAS</td>
<td>Dwarf3(Dw3)</td>
<td>Ortholog</td>
<td>NA</td>
<td>Sobic.007G163800</td>
</tr>
<tr>
<td>Chromosome</td>
<td>Gene Name</td>
<td>Gene ID</td>
<td>Description</td>
<td>Type</td>
<td>Ortholog</td>
<td>Accession Number</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>---------</td>
<td>------------------------------------</td>
<td>----------</td>
<td>----------</td>
<td>-----------------</td>
</tr>
<tr>
<td>S7</td>
<td>qSbRL7.59</td>
<td>RL_JL</td>
<td>sparse inflorescence1 (spi1)</td>
<td>Paralog</td>
<td>55.1</td>
<td>Sobic.007G163200</td>
</tr>
<tr>
<td>S1</td>
<td>qSbRL1.78</td>
<td>RL_JL</td>
<td>BARRENSTALK1 (BA1)</td>
<td>Paralog</td>
<td>23.7</td>
<td>Sobic.001G518900</td>
</tr>
<tr>
<td>S7</td>
<td>qSbRL7.59</td>
<td>RL_JL</td>
<td>Dwarf3(Dw3)</td>
<td>Ortholog</td>
<td>NA</td>
<td>Sobic.007G163800</td>
</tr>
<tr>
<td>S8</td>
<td>qSbRL8.58</td>
<td>RL_JL</td>
<td>BARRENSTALK1 (BA1)</td>
<td>Paralog</td>
<td>NA</td>
<td>Sobic.008G154100</td>
</tr>
<tr>
<td>S4</td>
<td>qSbRL4.58</td>
<td>RL_JL</td>
<td>Ramosa3 (ra3)</td>
<td>Paralog</td>
<td>58.5</td>
<td>Sobic.004G232900</td>
</tr>
<tr>
<td>S1</td>
<td>qSbRL1.63</td>
<td>RL_JL</td>
<td>DENSE AND ERECT PANICLE (DEP1)</td>
<td>Paralog</td>
<td>10.1</td>
<td>Sobic.001G341700</td>
</tr>
<tr>
<td>S1</td>
<td>qSbRL1.75</td>
<td>RL_JL</td>
<td>Branched silkless1 (bd1)</td>
<td>Paralog</td>
<td>14</td>
<td>Sobic.001G481400</td>
</tr>
<tr>
<td>S1</td>
<td>qSbRL1.21</td>
<td>RL_JL</td>
<td>Fasciated ear 2 (Fea2)</td>
<td>Paralog</td>
<td>37</td>
<td>Sobic.001G224000</td>
</tr>
<tr>
<td>S8</td>
<td>qSbRL8.58</td>
<td>RL_JL</td>
<td>BARRENSTALK1 (BA1)</td>
<td>Paralog</td>
<td>17.4</td>
<td>Sobic.008G154000</td>
</tr>
<tr>
<td>S8</td>
<td>qSbRL8.58</td>
<td>RL_JL</td>
<td>BARRENSTALK1 (BA1)</td>
<td>Paralog</td>
<td>NA</td>
<td>Sobic.008G153900</td>
</tr>
<tr>
<td>S8</td>
<td>qSbRL8.58</td>
<td>RL_JL</td>
<td>BARREN INFLORESCENCE 1</td>
<td>Paralog</td>
<td>26.2</td>
<td>Sobic.008G153900</td>
</tr>
<tr>
<td>S8</td>
<td>qSbRL8.58</td>
<td>RL_JL</td>
<td>BARREN INFLORESCENCE 4</td>
<td>Paralog</td>
<td>27.8</td>
<td>Sobic.008G153900</td>
</tr>
<tr>
<td>S7</td>
<td>qSbRL7.56</td>
<td>RL_NIL</td>
<td>Tunicate1</td>
<td>Paralog</td>
<td>42</td>
<td>Sobic.007G135301</td>
</tr>
<tr>
<td>S3</td>
<td>qSbRL3.69</td>
<td>RL_NIL</td>
<td>LEAFY HULL STERILE1 (LHS1)/OsMADS1</td>
<td>Paralog</td>
<td>49.8</td>
<td>Sobic.003G381100</td>
</tr>
<tr>
<td>S3</td>
<td>qSbRL3.69</td>
<td>RL_NIL</td>
<td>OsMADS58</td>
<td>Paralog</td>
<td>54.2</td>
<td>Sobic.003G381100</td>
</tr>
<tr>
<td>S3</td>
<td>qSbRL3.69</td>
<td>RL_NIL</td>
<td>Sepetalla</td>
<td>Paralog</td>
<td>52</td>
<td>Sobic.003G381100</td>
</tr>
<tr>
<td>S7</td>
<td>qSbRL7.59</td>
<td>RL_NIL</td>
<td>Dwarf3(Dw3)</td>
<td>Ortholog</td>
<td>NA</td>
<td>Sobic.007G163800</td>
</tr>
<tr>
<td>S3</td>
<td>qSbUBL3.47</td>
<td>UBL_GWAS</td>
<td>Ramosa2 (ra2)</td>
<td>Ortholog</td>
<td>82.8</td>
<td>Sobic.003G052900</td>
</tr>
<tr>
<td>S3</td>
<td>qSbUBL3.47</td>
<td>UBL_GWAS</td>
<td>Fasciated ear 2 (Fea2)</td>
<td>Paralog</td>
<td>36.2</td>
<td>Sobic.003G052100</td>
</tr>
<tr>
<td>S3</td>
<td>qSbUBL3.69</td>
<td>UBL_JL</td>
<td>LEAFY HULL STERILE1 (LHS1)/OsMADS1</td>
<td>Paralog</td>
<td>49.8</td>
<td>Sobic.003G381100</td>
</tr>
<tr>
<td>S3</td>
<td>qSbUBL3.69</td>
<td>UBL_JL</td>
<td>OsMADS58</td>
<td>Paralog</td>
<td>54.2</td>
<td>Sobic.003G381100</td>
</tr>
<tr>
<td>S3</td>
<td>qSbUBL3.69</td>
<td>UBL_JL</td>
<td>Sepetalla</td>
<td>Paralog</td>
<td>52</td>
<td>Sobic.003G381100</td>
</tr>
<tr>
<td>S3</td>
<td>qSbUBL3.47</td>
<td>UBL_JL</td>
<td>Ramosa2 (ra2)</td>
<td>Ortholog</td>
<td>82.8</td>
<td>Sobic.003G052900</td>
</tr>
<tr>
<td>S3</td>
<td>qSbUBL3.47</td>
<td>UBL_JL</td>
<td>Fasciated ear 2 (Fea2)</td>
<td>Paralog</td>
<td>36.2</td>
<td>Sobic.003G052100</td>
</tr>
<tr>
<td>S3</td>
<td>qSbUBL3.73</td>
<td>UBL_JL</td>
<td>Fasciated ear 2 (Fea2)</td>
<td>Paralog</td>
<td>35.2</td>
<td>Sobic.003G432000</td>
</tr>
<tr>
<td>S3</td>
<td>qSbUBL3.47</td>
<td>UBL_NJL</td>
<td>Ramosa2 (ra2)</td>
<td>Ortholog</td>
<td>82.8</td>
<td>Sobic.003G052900</td>
</tr>
<tr>
<td>S3</td>
<td>qSbUBL3.47</td>
<td>UBL_NJL</td>
<td>Fasciated ear 2 (Fea2)</td>
<td>Paralog</td>
<td>36.2</td>
<td>Sobic.003G052100</td>
</tr>
</tbody>
</table>
Appendix B - NAM Vegetative QTL

<table>
<thead>
<tr>
<th>Marker</th>
<th>QTL</th>
<th>Trait</th>
<th>Gene.Name</th>
<th>Relationship</th>
<th>Similarity</th>
<th>Sorghum Gene ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>S6_51325786</td>
<td>qShHGT6.51</td>
<td>HGT</td>
<td>BAD1</td>
<td>Paralog</td>
<td>11.6</td>
<td>Sobic.006G154000</td>
</tr>
<tr>
<td>S7_59611315</td>
<td>qShHGT7.59</td>
<td>HGT</td>
<td>Sparse inflorescence1 (Spi1)</td>
<td>Paralog</td>
<td>55.1</td>
<td>Sobic.007G163200</td>
</tr>
<tr>
<td>S9_57215490</td>
<td>qShHGT9.57</td>
<td>HGT</td>
<td>narrow sheath1</td>
<td>Paralog</td>
<td>14.1</td>
<td>Sobic.009G233300</td>
</tr>
<tr>
<td>S7_59787744</td>
<td>qShHGT7.59</td>
<td>HGT</td>
<td>Dwarf3 (Dw3)</td>
<td>Ortholog</td>
<td>NA</td>
<td>Sobic.007G163800</td>
</tr>
<tr>
<td>S7_59787744</td>
<td>qShHGT7.59</td>
<td>HGT</td>
<td>sparse inflorescence1 (spi1)</td>
<td>Paralog</td>
<td>55.1</td>
<td>Sobic.007G163200</td>
</tr>
<tr>
<td>S6_42798327</td>
<td>qShHGT6.42</td>
<td>HGT</td>
<td>Dwarf2 (Dw2)</td>
<td>Ortholog</td>
<td>NA</td>
<td>Sobic.006G067700</td>
</tr>
<tr>
<td>S6_42798327</td>
<td>qShHGT6.42</td>
<td>HGT</td>
<td>SbCN4</td>
<td>Ortholog</td>
<td>NA</td>
<td>Sobic.006G068300</td>
</tr>
<tr>
<td>S9_57065264</td>
<td>qShHGT9.57</td>
<td>HGT</td>
<td>Dwarf1 (Dw1)</td>
<td>Ortholog</td>
<td>NA</td>
<td>Sobic.009G229800</td>
</tr>
<tr>
<td>S3_71464034</td>
<td>qSbFLT3.71</td>
<td>FLT</td>
<td>BAD1</td>
<td>Paralog</td>
<td>17.4</td>
<td>Sobic.003G408400</td>
</tr>
<tr>
<td>S6_799602</td>
<td>qSbFLT6.79</td>
<td>FLT</td>
<td>Ma6</td>
<td>Ortholog</td>
<td>NA</td>
<td>Sobic.006G004400</td>
</tr>
<tr>
<td>S3_62717707</td>
<td>qSbFLT3.62</td>
<td>FLT</td>
<td>SbCN12</td>
<td>Ortholog</td>
<td>NA</td>
<td>Sobic.003G295300</td>
</tr>
<tr>
<td>S6_799654</td>
<td>qSbFLT6.79</td>
<td>FLT</td>
<td>Ma6</td>
<td>Ortholog</td>
<td>NA</td>
<td>Sobic.006G004400</td>
</tr>
<tr>
<td>S7_5137535</td>
<td>qShSTM7.51</td>
<td>STM</td>
<td>ROUGH SHEATH2</td>
<td>Paralog</td>
<td>11.4</td>
<td>Sobic.007G050400</td>
</tr>
<tr>
<td>S3_63584041</td>
<td>qShSTM3.63</td>
<td>STM</td>
<td>BAD1</td>
<td>Paralog</td>
<td>17.4</td>
<td>Sobic.003G305000</td>
</tr>
<tr>
<td>S3_63584041</td>
<td>qShSTM3.63</td>
<td>STM</td>
<td>BLADE-ON-PETIOLE1/2</td>
<td>Paralog</td>
<td>39</td>
<td>Sobic.003G308700</td>
</tr>
<tr>
<td>S6_51419656</td>
<td>qShLET6.51</td>
<td>LET</td>
<td>BAD1</td>
<td>Paralog</td>
<td>11.6</td>
<td>Sobic.006G154000</td>
</tr>
<tr>
<td>S2_3403756</td>
<td>qShLET2.34</td>
<td>LET</td>
<td>BAD1</td>
<td>Paralog</td>
<td>18.5</td>
<td>Sobic.002G035500</td>
</tr>
</tbody>
</table>