应用异色瓢虫防治蚜虫的研究

袁荣才 子 明 文景

异色瓢虫 Harmonia (Leis) azyridis 的幼虫1～4龄日食蚜量分别为 32.85, 159 和 208
头，各龄平均 120 头，成虫 160 头。比其它害虫中，异色瓢虫食蚜量大，有捕食蚜虫的特性。因此，是一个值得开发利用的天然昆虫。

国内自从 60 年代出现了异色瓢虫繁殖蚜虫的发现以来，对它进行过许多有价值的研究所，有对其繁殖特性进行研究的，有关于生活习性研究的等。对于其防治的重要性，有对防治方法的试验等等。但是，由于异色瓢虫的食蚜特性，不易建立种群基地，蚜虫有自相残杀的特性，不易大规模饲养。因此，在生产应用上，异色瓢虫一直没有开发出应有的作用。

长白山是异色瓢虫繁殖蚜虫数量最大的地区，也是首次发现这一习性的地方。作者从 1987 年开始对异色瓢虫的繁殖特性进行了试验研究。在总结前人经验的基础上，本试验“取自检选，用于农田，室内饲养，田间释放”原则，实现了对异色瓢虫的繁殖试验，模拟农户自养异色瓢虫防治蚜虫的试验。现将试验结果整理如下。

1 材料与方法

1987 年 10 月采集后放在室温中越冬的异色瓢虫，在 1988 年 9 月开始进行试验。取 60 头冬眠蚜虫分别放在养虫室内 23℃恒温下 9～15℃变温条件下各 30 头观察其繁殖活动及交配产卵的情况。

在 23℃条件下，将交配过的 15 头越冬蚜虫放在养虫箱（用罐头箱即可），每隔 1～2 天，用破璃片盖住，吸食蚜虫留下的蜜液。每日换食一次，换食的同时取出上次换食后产下的卵块，逐日记载卵块数和卵粒数，直到成虫死亡为止。结果见表 1。把这 15 头越冬蚜虫所产卵的卵块按每块卵粒多少进行分组：1～10, 11～20, … 61～70 粒共分 I, I, …, II 组，见表 2。

倍数	1	2	3	4	5	6	7	8	9 10-11 12-13 14-15	平均			
越冬代	41.1												
卵数（粒）	23	45	65	87	19	33	45	60	83	81	42	34.5	
蚜虫数（条）	528	717	479	1061	664	815	1110	645	459	1765	1875	837	934.6
汇总	11.9	11.9	11.9	11.9	11.9	11.9	11.9	11.9	11.9	11.9	11.9	11.9	11.9
孵化率（%）	100	100	100	100	100	100	100	100	100	100	100	100	100

（1988.3.4 蒋定）
1994年第1期

31

表3

| 分级编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10-11 | 12-13 | 14-15 | 合计
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | ---
| 1.1-1.5 | 3 | 10 | 1 | 8 | 1 | 5 | 11 | 1 | 19 | 9 | 2 | 78 | 25 |
| 1.6-2.0 | 14 | 18 | 14 | 18 | 13 | 10 | 16 | 10 | 14 | 19 | 22 | 71 | 180 | 45 |
| 2.1-2.5 | 12 | 14 | 9 | 15 | 11 | 16 | 16 | 2 | 29 | 2 | 17 | 172 | 33 |
| 2.6-3.0 | 5 | 12 | 1 | 3 | 10 | 1 | 5 | 13 | 1 | 69 | 133 | 33 |
| 3.1-3.5 | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 14 | 2.7 |
| 3.6-4.0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 4.1-4.5 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

用成虫产下的513粒卵，分11组分别在23℃和9-15℃条件下孵化。记录孵化期时和
孵出幼虫数，并且计算孵化率，结果见表3。

表4

<table>
<thead>
<tr>
<th>比较条件</th>
<th>23℃孵育</th>
<th>9-15℃孵育</th>
</tr>
</thead>
<tbody>
<tr>
<td>分级编号</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>分级编号</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>特点卵数（个）</td>
<td>9</td>
<td>15</td>
</tr>
<tr>
<td>幼虫孵化率（%）</td>
<td>43</td>
<td>75</td>
</tr>
<tr>
<td>幼虫孵化期（天）</td>
<td>3-4</td>
<td>3-5</td>
</tr>
</tbody>
</table>

幼虫孵出后，分别在23℃和9-15℃条件下饲养20头幼虫，每日喂食菜蚜
1-2次，使之满足食物。观察并记载初孵幼虫的静止时间及发育历期和整个幼虫生长期，结果见表4。

6月初，在大豆田中选有蚜株和无蚜株各放20头即龄幼虫，每小时24小时后
检查它们离开原株的直接扩散距离，取各虫距离的平均值。

1988-1989年连年在大豆田中进行了药剂防治试验。施药方法是每隔2周施
一剂，在放虫点每株1.5米放1点，每点放一株卵的初孵幼虫，观察点调查大豆单株受害量，
施药后5天、10天两次调查单株受害，计算药液减退率，和对照比较计算药正点减退率
来表示防治效果。两年试验结果见表5。
1990年我们在进行了农户自繁异色瓢虫治蚜的模拟试验，成虫的饲养和卵的孵化由我们
单独一个农民在自己的家中进行，放蚜治蚜试验在我所试验的果树菜叶上进行，试验
面积一户农民及三块面积的作物品种是：0.33公顷大田种0.2公顷玉米，0.13公顷大豆，
0.02公顷菜园种了黄瓜、豆角等菜菜。还有3棵李树和2棵山楂树，6月2～3日采集出盛
瓢虫450头，饲养到7月29日，其间除去230头交配过的雌成虫释放到5棵果菜上，剩余
250头雌成虫平均12天，共产下2500卵块卵，当孵化出幼虫在静止期时陆续释放到试验
田有蚜株上，试验至全年不喷洒杀虫药剂。

2 结果与分析

越冬成虫在5～15℃条件下，很快恢复活动并取食蚜虫，但行动缓慢，也不交配，在23±
℃条件下，第二天天内开始交配，交配后1～7天内陆续产卵，成虫一天可产卵1～3次，每次
交配时间1～3小时不等，一头雌虫一目可产卵1～2次，根据瓢虫有一次性交配终生受精的
习性，在人工饲养条件下雌虫一交配一次后即去雄，这样有利于雌虫产卵，也能节约饲料。成虫交
配，产卵的最适温度为23～25℃。

从表1可以看出，卵的孵化期为38.1天（68～83天），日平均孵化0.91块，19.4粒，
孵化率平均27.1%。一头雌虫一生可产卵34.5块（19～45块），732.4（439～1110）粒，
125头雌虫一生可产卵5180块。

从表2中可以看出，在518块卵中，每块卵11～20粒共180块，占总数的51.2%；21～30
粒卵块178块，占总数33.2%，这两级数量最多，占总数66%。

从表3中可以看出，在23℃条件下，卵的孵化期为3～5天，孵化率为43.6%～70%；在9
～15℃条件下，孵化期为12～15天，孵化率为83%～88%。在一定范围内，温度与卵的孵化
期、孵化率成正比。

从表4中可以看出，温度与卵孵化率呈正相关，但各龄发育历期呈反比。在适宜条件
下，温度高，发育快，历期短，温度低，发育慢，历期长。这一点对人工饲养时温度调节卵发
育速度和幼虫发育温度计算田间幼虫发育历期十分有用。

由表4中数据看出：幼虫在田间扩散情况是：0小时后有蚜株为0米，无蚜株平均0.3米，
24小时后为0.1米，无蚜株为0.9米。

从表5中看出，在1988～1989两年试验中，尽管一次每公顷放45000头幼虫没能控制
住大豆蚜虫，但十天后的防效分别达到93%和95%以上。

1990年模拟试验是成功的，试验田内各种作物上的蚜虫均被瓢虫控制住，全年
放蚜用杀虫剂，各种试验植物没有发现卷叶现象。