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Abstract

Since the introduction of new curriculum standards-d2Kschools, computational
thinking has becoma major research area. Creating and delivering content to enhance these
skills, as well as evaluation, remain open probleérhss work describes different interventions
based on the Scratch programming languaged toward improvingtudent selefficacyin
computer science and computational thinking. sEireterventions were applied at a STEM
outreach prograrfor 5"-9" grade students. Prexis experience in STENlated activities
and subjed, as well as student sefficacy,weresurveyedusing adeveloped preand post
survey. The impact of these interventions on student performance and confidence, as well as
the validity of the instrument are discussed. To complement attitude surveys, a translation of
Scratch to Blockly is proposed. This willaord student programming behaviors for
guantitative analysis of computational thinking in support of studenefelécy. Outreach
work with Kansas Starbase, as weltlasGirl Scoutsof the USA is also described and
evaluated.

A key goalfor computaional thinking in the past 10 years has been to bring computer
science to other disciplines. To test the gap from computer science to STEM, computational
thinking exercises were embedded in an electromagnetic fields course. Integrating
computation intotteory courses in physics has baecurricular needyet there are many
difficulties and obstacles to overcome in integrating with existing curricula and programs.
Recommendations from this experimental study are given towards integrating CT into physics
a reality. As part of a ontinuing collaboration with physics, a comprehensive system for
automated extraction of assessment data for descriptive analytics and visualization is also

described.
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Abstract

Since the introduction of new curriculum standards-d2Kschools, computational
thinking has become a major research area. Creating and delivering content to enhance these
skills, as well as evaluation, remain open probleérhss work describes different interventions
based on the Scratch programming languaged toward improvingtudent sk-efficacy in
computer science and computational thinking. sEireterventions were applied at a STEM
outreach prograrfor 5"-9" grade students. Prexis experience in STENlated activities
and subjed, as well as student sefficacy,weresurveyedusing a developed prand post
survey. The impact of these interventions on student performance and confidence, as well as
the validity of the instrument are discussed. To complement attitude surveys, a translation of
Scratch to Blockly is proposed:his will record student programming behaviors for
guantitative analysis of computational thinking in support of studenefelécy. Outreach
work with Kansas Starbase, as well as the Girl Scouts of the USA, is also described and
evaluated.

A key goalfor computational thinking in the past 10 years has been to bring computer
science to other disciplines. To test the gap from computer science to STEM, computational
thinking exercises were embedded in an electromagnetic fields course. Integrating
computdion into theory courses in physics has been a curricular need, yet there are many
difficulties and obstacles to overcome in integrating with existing curricula and programs.
Recommendations from this experimental study are given towards integratingp@hysics
a reality. As part of a continuingollaboration with physics, a comprehensive system for
automated extraction of assessment data for descriptive analytics and visualization is also

described.
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Chapterl-l nt roducti on

Computer science hagcome one of the mostegant,fastest growingand highest
payingfields; however, Kansaand many other statesebelbend the curve for being an
advocate of computer science. According to Code.org, 9 out of 10 parents want their children
to studyComputer ScienceS), butonly 1 in 4 schools teach computer programming. There
are2,9800pen computing jobs in Kansas, loumly 338CS college graduaté€ode.org,

2017) Thecore problem in Kansas is that CS is not widely offered-it2 schoolswhere
thereare no CS curriculum standar@S does not count towards high school graduatod
no statdevel funding for computer science professional development for teg€ais.org,
2017) Nationwide, there hasglen a 17% increase 54,379 students in 2016 wtaok AP

CS; 23% of which were female and 16% were from underrepresented min@daass.org,
2017) Kansas also saw an increase in the number of students in AP CS; haleeweimber
of students from underrepresented minorities decreased to only 7% and only 7% female
(Code.org, 2017)

The evergrowing popularity of computer science has fostered the need for
computational thinking (CT), eecially in K-12 education. Creating and delivering content to
enhance these skills, as well as evaluation, remain open problems. In recent years, countries
have begun to develop and incorporate computing in th2 Education system. From these
curriculaand reports, succinct definitions of CT provide broader impacts in terms of
education. Currently, the US does not have country wid@ KS education standards
Organizationhave been dedicated in creating CS standards that incorporate CT, although

these standardare not widely adoptelly the statesSince Jeanetti ngés ACM Vi ewpoi



2006 CT has gained traction as an essential 21st century learning/ékigf J. M.,
Computational Thinking, 2006 T draws from compat science fundamentals; however,
few definitions of CT give a succinct synopsis of what fundamentals CT includes. This is an
important distinction to make as computer science standards are being formetfor K
education in the United States. CT iAlR, as well as higher education, gives students a firm
foundation for a higher level of thinking not only in computer science, but also a plethora of
ot her STEM fields. As Barr and Stephenson
ultimately be copled with examples that demonstrate how computational thinking can be
i ncorporated in the classroom [2] .0

The novel contributions of this work center on a clear synopsis of CT and what
computer science principles are included therein as descril@mputational Thinking:
ConceptsPractices, and Perspectivekhis report also includes new surveys for qualitatively
assessing student selfficacy in CT. Current survey work is presented inShenmer STEM
Institute 2015chapter, followed by adaptations of that suriregummer STEM Institute
2016 Novel curricula, supported by the student-séficacy survey, are also presented,
designed for K12 outreach andrabedding CT.Apart from CT in k12, results from an
experimental study incorporating CT into an undergraduate physics course is predented.
new method for automatically extracting sestructured assessment data in physics is
presented Although this methodology is first being applied to the domain of phytitss
approach is designed to be applicable across domains for future@Se Trhis also provides
capability foradvancednalytics with assessment dagnally, future work, icluding
proposed work for quantitatively analyzing CT by going beyond the portfolio and static

analysis of completed or compiled programs is presenfbis research is published in part by

St
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(Weese, 2016; Weese & Feldhausen, 2017; Weese & Hsu, 2016; Weese, Feldhausen, & Bean,
2016) The goals of this research are aimed at answering the following questions:

1. Can the attitude surveys created reliably assess student ability in conmaltatio
thinking? Thisis answered by the survey analysis in the summer STEM Institute
2015 and 2016.

2. Are the underlying computer science principles being taught through outreach
curricula reflected in student performanc8imilarly, this mostly comes out the
analysis of survey work done for the summer STEM institutes. Some anomalies
were found and are described in the findings.

3. Is there a link betweeself-efficacy in computational thinking and seifficacy in
problem solving skills? An initial answerto this question was found during the
2016 summer STEM Institute; however, further studies will need to be done to
thoroughly answer this research question.

4. Does introducin@T to physicsstudents without any training in computer
programming leadto gainsn st udent so6é abilitilgtal i n comp
experiences and recommendations are made, but a more formal and larger
experiment will be needed to study the effects of CT on students in the physics

classroom.



Chapter2-Comput ati onal Thinking

The abilityto define, incorporate, and assess computational thinking is the main
purpose of this researchhe Next Generation Science Standards (NGESSS Lead States,
2013)and Common Core Standards (CC8%tional, 2010have influenced a STEM
movement with eveincreasing needs faomputational thinking CT has been defined in a
variety of ways, but discussion between researchers on what the definition of CT should
include was bor momiake €Ta fuNdamenial skillfor evaryone, not just
computer scientist@Ving J. M., Computational Thinking, 200&Jomputational Thinking: A
Digital Age Skill foremphasizesthenpor t ance of Wingds vision and
CT as a vital 2% century skill, which is noted in the P21 Framework foi €&ntury Learning
(P21 Partnership for 21st Century Learning, 201989t all definitons of CT are created
equal; however, among various definitigBarr & Stephenson, 2011; Barr, Harrison, &
Conery, 2011; National Academy of Sciences, 2010; Sengupta, Kinnebrew, Biswask& Clar
2013; Wing J. M., Computational Thinking, 200&pstraction and algorithms are two main
concepts that everyone agrees upon. More so,d8a Stephenson point out that whatever an
educatoro6s interpretation omateldletcaupledwithon of CT
examples that demonstrate how computational t
(Barr & Stephenson, 2011)This leads to a conclusion that educators do understand the
importance of CT skillshowever, they lack a clear, practical definition with established
pedagogy to help bring CT to their classroqBarr, Harrison, & Conery, 2011; Barr &
Stephenson, 2011)Solving this problem would also remove thequnceived notion that
computational thinking i€S or computer programming, and show educators that CT is a skill

used across many disciplin@¥ing J. M., Computational Thinking, 2006; Sengupta,



Kinnelrew, Biswas, & Clark, 2013; Bennett, loannidou, Repenning, Kyu Han, &

Basawapatna, 2011; Repenning, et al., 2015)
Defining Computational Thinking

AComputational thinking involves sol vi

understanding human behavior,dy awi ng on the concepts fundame

(Wing J. M., Computational Thinking, 2006 As mentioned earlier, this is not intended to be
interpreted as equating computer science outright to computational thirdtimgy;, the essence
of CT comes from thinking like a computer when faced with problems from any discipline
(Grover & Pea, 2013)In 2011, Wing expanded the definition of CT, mentioning that CT is
At he t hought indormulategpsoblems &nd therr sotltions so that the solutions
are represented in a form that can be effectively carried out by an information processing
a g e (Wing J. M., 2011)The inclusion of intelligent agents in whahbodies CT creates a
pathway to fostering CT in multiple disciplines by means of scientific simulation and real
world problem sets. This is the key point when defining CT: the ability to connect core
computer science concepts to rrymputer science donmes.

In recent years, countries have begun to incorporate computing intBeslucation
system. From these curricula and reports, sucdefmitions of CT provide broader impacts
in terms of educationThe U.S.A. does not have country wide CS etlanastandards;
however, some organizations, like the CSTA, have been dedicated in creating CS standards
that incorporate CT, although their standards are not widely officially adopted. The CSTA
defines CT as solving problems in a way that can be impledevith a computer, including
concepts like abstraction, data, recursion, and iteré8eahorn, et al., 2011; Seehorn, et al.,

2016) CSK12 is also a collaborative effort by CS educators and professionals aiming fo

ng

P



creating a standardized CS curriculum in the U.S.A. Many states have begun to adopt their

own CS standards; however, there is no uniformity among them. Countridselikdaited
Kingdomhavehad a large push for reforming their educational systenctoporate

computer science and CThe U.K. has had CS standards in their education system in the

past encompassing ICT (Information and Communication Technology). Howeaereport

by the Royal Academythe ICT curricula has left students only comag of the school

system with digital literacy skills and not a true handle on computer sciengal Society,

2012) The report encourages to move away from ICT and to use a combination of

information technology, digitaltéracy, and computer science. The report also emphasizes the
need to incorporate CT, defined as Athe proce
world, and applying tools and techniques from computer science to understand and reason
aboutbothmaur al and arti fi ¢RoylSocety,@l2)Ths and process
encompasses the vision of CT, drawing from traditional computer science to encourage new

ways of thinking about the world.
Computational Thinking: Concepts, Practices, and Perspectives

Computational thinking can be expanded by defining in terms of concepts, practices,
and perspectiveBrennan & Resnick, Using artifabsed interviews to study the
development of computational think in interactive media design, 2012)T concepts have
been a popular target for research and curricula develogBemf Harrison, & Conery, 2011,
Grover & Pea, 2013; Sengupknnebrew, Biswas, & Clark, 2013; Royal Society, 2012;
National Academy of Sciences, 2010; Seehorn, et al., 2B@hjever, the concepts vary
across domains. Somsch aBrennan and Resnick, present CT concepts as referenced in

their problem domain (3atch), while othersuch aghe Computer Science Teachers



Association (CSTA), present CT concepts for application acrek2 &urricula. Even from

within the general domain application, what authors include in their definition of CT concepts
vary (Grover & Pea, 2013; Seehorn, et al., 2011; Bort & Brylow, 2013; Chuang, Hu, Wu, &

Lin, 2015; Google, 2016 Brennan and Resnick define computational concepts (also referred
toasCTconceptsdse ficoncepts that desi gaenconspase mpl oy
more fields, CT concepts are generalized as the usage of one of the following computer
science principles in solving a problem: algorithmic thinking, abstraction, problem
decomposition, dat parallelization, and control flow. These concepts are first generalized,

and when necessary, broken into subtopics. Many computer science principles could arguably
be included as or fall under one or more of these CT concepts; howeverposgaiothis

research, domaimdependent language is used where possible, and definition of the concepts
are kept finite.

Algorithmic Thinking Algorithms are sequences of steps used to solve anything from
simple to complex tasksProcedural knowledge, suck agorithmsapply to a plethora of
domains, like chemistry, math, and physics. An example applicable to everyday life is
cooking. Recipes provide a wdtirmed plan for cooking food. Thisilkequintessence of
algorithmic thinking: the ability to chely define a sequence of steps. Onecuiicept that is
included under algorithmic thinking is operatio@geratorshave been presented as a CT
concept in Scratc{Brennan & Resnick, Using artifabased interviews to studyeh
development of computational thinking in interactive media design, 2Bt2have been
absent in others. Operations are defined in context of algorithmic thinking as logical,

mathematical, symbolic, and textual expressions. While expressions cmoitarnayers of



traditional abstraction and usage of data concepts, they require a systemalkig;st&sp
approach to implement and solve.

Abstractioni An abstraction is a generalized representation of a complex problem.
Often this representation ot holistic in nature. Abstraction allows one to ignore certain
aspects or details in order simplify and understand a difficult problem, although what gets
included or excluded in the abstraction should be done with greataedraditional
definition of abstraction differs from that of computational abstractooh that
computational abstractions may generalize beyond mathematical and physical science
properties and tend to be more symbolic in naiivkeng J. M., Compudtional Thinking and
Thinking about Computing, 2008)Ving continues to show that the abstraction process
involves multiple layers A cakeitself, for examplejs an abstraction thabntainsseveral
interconnected layers of abstractions. The layespohge, separated with layers of frosting
or other fillings, are results of detailed recipes by various combinations of ingredients and
cooking. The relationship betweerach layemust also be understoooktherwise the cake
maynot be structurally sounar taste very goadThisidealeadsst o ar gue t hat the
bolts of computational thinking are defining abstractions, working with multiple layers of
abstraction, and understanding (Wihgl M,el ati onsh
Computational Thinking and Thinking about Computing, 2008)

Problem Decomposition Problem decomposition involves breaking down a problem
into smaller, more manageable parts where each part can be solved independently of each
other. These can then be recombined to solve the problem as a whole. Problem
decomposition is not to be confused with abstraction. Abstraciohelp in decomposing

problemspecaus@ach decomposed part, while smaled more manageablis not



guaranteedb beconceptuallysimpler. Abstraction is intended only for generalizing or
simplifying, whereas problem decomposition is used to sepaat@blem into independent
sub problems

Datai Data can reference an extremely wide variation of informatings, and
ideas. Data in computational thinking can be broken down into three parts: collection,
representation, and analy¢{soogle, 2016; Chuang, Hu, Wu, & Lin, 2015; Bort & Brylow,
2013; Seehorret al., 2011) Data collection is the act of gathering information. For example,
students could measure the height of everyone in their class and record it in a variety of
mediuns, like on a digital spreateet or a simple piece of paper. This leatisdata
representation: the depiction and organization of @ategle, 2016) Students could choose
to use metric, standard, or an arbitrary form of measurement. The heights can also be
organized, maybe by being sortedeven grouped by male or female. This prompts data
analysis: gaining an understanding or developing insight from(Gatagle, 2016) Students
should formulate questions to answer from the heights they collected. The walidseyto
represent their data can have a direct impactdnese we | | . | f hotisithe questi on
shortestad t al | est p eirwiltake lohger tatdiscevercifitha data % nod
organized. Some data that is collected may be irrelevainé tguestions that need answered.
Analysis of the data, which can be a primitive form of abstraction, brings focus to data that is
relevant.

Parallelizationi Par al | el i zati on is the fAsimultaneou
larger task to reach@o mmo n (Gpagke,|2@16) For example, a restaurant will often have
different cooks for different parts of the menu (a person that fries food, one who grills, one

who bakes, and different people for prepping the food béfgets cooked). Parallelization



also includes simultaneous processing of the same task to improve efficiency. In the restaurant
example, adding more than one person at each station can improve the speed at which food can
be sent from the kitchen. Sywronization is also an import concept in parallelization.
Synchronization is the coordination of the tasks that are being executed in parallel.

Control Flowi Without control flow, algorithms are simple, linear problem solving
traces. Inotherwordspecnt r ol f | ow di r e andwehenamalgaithgor i t hmdés
complets. This includes allowing the algorithm to repeat swpseratimes, complete steps
under certain condition®ased on observed data or everdkip steps, or even stop before all
steps are completed. Control flaan makelgorithms moreefficient by reducing duplicated
or redundant steps, and ultimately, this can improve the way problems are solved using
algorithms, giving one the ability to solve a problem in a-lwear manner.

Brennan and Resnick argued that assessing CT only by computational concepts does
not provide proper representation the learning and participation that ¢Boemsan &
Resnick, Using artifadbased interviews to study the @spment of computational thinking
in interactive media design, 2012)hus,computational practices and perspectives are
included in assessmefdrennan & Resnick, Using artifabased interviews to studyeh
development of computational thinking in interactive media design, 2012; Seehorn, et al.,
2011; Royal Society, 2012) AComputational practices focus
learning, moving beyon@hatyou are learning thhowy o u  a r e (Brearam &Resnigkd
Using artifactbased interviews to study the development of computational thinking in
interactive media design, 2012Zrom this framework, practices include: being incremental

and iterative, testing and loiggging, and reusing and remixing.
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1 Being incremental and iterative: Instead of finishing a problem all at once, being
incremental or taking the problem one step at a time can decrease the difficulty of
complex problems. This is in relation to the emginng design process where
problems are cycled through multiple times, often making incremental improvements
before settling on a final solution.

1 Testing and debugging: Testing and debugging refers to troubleshooting a problem
solution. Often the soluions are not perfect the first time they are implemented.
Troubleshooting is usually test driven, where a set of standards or conditions are
checked each time something in the solution is modified.

1 Reusing and remixingMany problems are rooted in onéat have already been
solved. This practice refers to taking an existing solution to a similar problem and
adapting itto solve your own.

Abstraction is also included as a practice from the framework done by Brennan and Resnick;
however, as abstractios & concept that is rooted deeply in many of the CT concepts, it is
included as a CT concept in this research, rather than a practoeputational perspectives

are the way students understand the effect of computation and technology in the world around
them, as well as with their relation to others and themséBresinan & Resnick, Using
artifactbased interviews to study the development of computational thinking in interactive
media design, 2012)Brennan and Resnick addsethe following perspectives:

9 Expressing: Especially with visual languages, computer science provides people with
a way to interact through various media. This pecsive looks at when someone sees
computation as a medium. This allows students whepgids perspective to use

computation as an opportunity to create, express, and implement their ideas.
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1 Connecting:This perspective points out the value of networking, where learning is
social practice. This gives further motivation for students aratang such that see
the value of creating with and for others. Whether it is by entertaining, engaging, or
equipping (examples solutions or parts of solutions meant to be reused) others, having
some form of connection with others makes the learning psaoere valuable.

1 Questioning: The idea of this perspective is to get learners to inquire and investigate
the role that computation has in their life and world around them. It prompts students
to go from being able to use technologytmsideringhow those technologies and
devices work and how they can take part in it.

Problem Solving and Computational Thinking

Incorporating CT into existing curricula and programs is not always an easy task,
especially in K12 where problem solving (PS) skills are trawfially emphasized. Most nen
computer science educators see the importance of CT; however, it is difficult to distinguish CT
from PS so it is common for CT to be seen asviRlsin computational domain$lany of the
CT concepts and practices describechia previous section are not necessarily unique to
computer scienceor are they restricted to being used with technology (computers,
electronics, etc.) They have roots in manyher disciplines, as well as problem solying
however, using these concept&lgractices collectively in mutuallginforcing ways to solve
problems is typically limited to computer scientists

Aut hors Voskoglou and Buckley define PS as
or cognitive and physical means to overcome an olesfproblem) and develop a better idea
of the worl d (Vdskoglou & Buckiey R04a2JTkis defisition originates from

Polya: fAsolving a problem means finding a way
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ataining an aim that wa 9qPolyayp1973) Ontmoa tthinkend, e | v unde
though there are a plethora of definitions, ¢
formulation of beliefs or statements byiraanal st andardso and can be
thinko not A wh(daughny2008) hi nk about 0

Critical thinking is often included when discussing problem solving; however, there
i sndt a consensus a nasogwhptithe relatisnehip bhetweesn thatwad e d u c
really is(Giannakopoulos, 2012)The discussion ranges from wondering if critical thinking is
a form of problem solving, a part of problemlving, shouldt include problem solwig, or is
it complementary to problem solviiBapastephanou & Angeli, 2007; Giannakopoulos, 2012)
For this work, critical thinking is treated as its own distinctive process, but complementary to
problem solving. Asuch, one who has sufficient critical thinking skills and knowledge can

solve a problem. These aspects can be sdeigumel with addition of cognitive processes.

Cognitive
Processes

> Goal

Problem
Y

Solution Application

Knowledge

Figure 1 Conceptual model of the aspcts and processes involved in problem solving
adapted from (Giannakopoulos, 2012; Voskoglou & Buckley, 2012)

Cognitive processes are leveraged to infproblem solvingprocess But like critical
thinking, these mcesses are distinct, higindered levels of thought. Probleolving uses
specific strategies ideveloping solutions that overcome a problem to reach the goal state.

These strategies are informed by aepersonbs Kk
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abilities. Wang and Chiew offer summative collection of problem solving strategies can be

seen from:

)l
T

Direct factsi finding a direct solution path based on known solutions.

Heuristici adopting rule of thumb or the most possible solutions.

Analogyi reducing a new problem to an existing or similar one for which solutions
have already been known.

Hill climbing T making any move that approaches closer to the problem goal step by
step.

Algorithmic deductiori applying a known and well defined solution #oproblem.
Exhaustive searchusing a systematic search for all possible solutions.

Analysis and synthesisreducing a given problem to a known category and then

finding particular solutionéWang & Chiew, 2010)

Arguably, some of these strategies could be considered critical thinking and vice versa.

The same could also be said about computational thinking. For example, hill climbing can be

related to being incremental, analogy to abstraction, algorithmic deduction tithafgor

thinking, etc.It is important to note, however, that these comparisons can be true only within a

finite set of defined problemsAbstraction, for example, will typically only be used in one or

two layers in most disciplineand cognitive processes$iowever, CTtypically emphasizes

many layers of abstraction, as well as the relationship between famexample, the OSI

model used by all internebnnected technologies involvesverdistinct layers of abstraction.

The real essence of CT is tliais about the idea and way of thinkingpt the application

product, orartifact. Voskoglouand Buckleydescribe CT as a hybrid mode of thinking,

leveragindogical, abstract, andonstructive thinking. Bgynthesizing critical thinking and
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existing krowledge, these modes of thinking assential in solving redife, complex
problems(Voskoglou & Buckley, 2012) Thus,PScan be described as activity that
combinessarious components of cognitigoskoglou & Buckley, 2012; Green & Gilhooly,
2005) CT, as wdlas critical thinking, can bgeen as a prerequisito overcomingroblems
in certain problem space€oncluding,CT is treated as a distinctive cognitive proaessd to
overcome types of problems in conjunction with existing knowledge and critical thinking

skills.
Computational Thinking Assessments

Clearly and definitively defining computational thinking within existing methods and
domains (as with problem solving) remaind&an open problem. As such, there is no clear
pathway to nreasuring computational thinkingseveralapproaches, however, exist, ranging in
theme and methodology. Many focus using evideregered desig(Enow, Haertel,

Fulkerson, Feng, & Nichols, 201®)hen creating assessments, while others study the
psychological state of students using cognitive science andféedcy(Ramalingam,

LaBelle, & Wiedenbeck, 2004)Developed curricula vary f@assessments, but video games

seem to be a very common theme as it provides a high level of interest for students, especially
in K-12. For example, Wilson evaluatedeightweekcourse on game programming in

Scratch for primary grades in ScotlaiWlilson, Hainey, & Connolly, 2012)Games were

encoded under three main categories: programming concepts, code organization, and
designing for usability. Each of these contained sub categories which were coded for the
presence/absean of or to the extent of which that sub category was used ranging from zero to
three. Another study looked at a semester long gaming course using Alice by analyzing the

presence of abstraction, control structures, and events. Denner et al. alsodopkesence
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of computer science concepts in an a#ielnool program for game programming in Stagecast
Creator, a ruldased visual programming langug@enner, Werner, & Ortiz, 2012)
Repenning et al . ingobCY aspattdrnsgathardhanncondepts Usiega r n
Agent SheetéKoh, Basawapatna, Bennett, & Reppening, 20I)is led to an automatic
analysis tool using latent semantics to determine student growth in CT. Recently, the same
group created a system entitled R€ahe Evaluation and Assessment of Computational
Thinking (REACT), a reatime assessment tool allowing teachers to get immediate feedback
on what students are struggling with or where they are succe@tingwapatna, Repenning,
& Koh, 2015) Seiter developed the Progression of Early Computational Thinking model
(PECT)(Seiter & Foreman, 2013)The PECT model combined evidence of programming
concepts in Scratgbrojects with levels of proficiency (basic, developing, and proficient) in a
set of design patterns to understand student ability in CT. Other works focused on assessing
concepts through rubri¢granklin, et al., 2013and ceating and validating traditional
computer science assessments within the visual programming d@uoéum, et al., 2015)

Apart from evidenceentered assessments, Yadav et al. created areoped
guestionnaire, as well as attitude survey to understand if introducing computational thinking
material in preservice education courses influencedgrer vi ce t eachersdé under
and attitudes toward computifgadav, Mayfield, Zhou, Hambruk¢c& Korb, 2014) Bean et
al. developed a twpart selfefficacy survey for a prservice teacher training prograBean,
Weese, Feldhausen, & Bell, 201%he first measured thepsee r vi ce t eachersodé co
that they ag capable of incorporating computer programming into their classroom, as well as
recognizing how programming concepts relate to NGSS and CCSS. The second survey delved

into their selfefficacy in their understanding of CT concepts in relation to progragnin
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another related project, Bell conducted a CT intervention as part oflaasad program
component of a summer STEM institute; his experimental approach served as a basis for this

work (Bell, 2014)
Chapter3-Out r each

Outreach ppgrams vary in theme, as well as target audiences, ranging from primary
and secondary education tegarvice and preservice teachers. These programs are essential
for both student and professional development, exposing them to topics and training they
otherwise would not have access to. This chapter outlines effective teaching methods and
curricula in STEM, targeting computational thinkinome, such as Brennan and Resnick,
present CT as referenced in their problem domain (Scratch), while otherassheh
Computer Science Teachers Association (CSai# the College Board for AP Cfresent
CT concepts for application aceK-12 curricula(Seehorn, et al., 2011; College Board, 2016;
Seehorn, et al., 2016 hese definitions of CT that are described in detail in Chagen2
as the foundations for the curricula and instruments presented in this chffests of a
STEM institute for -9 grade studentarepresented, as well as the adaptatmrttie next
iteration of that institute. Outreach efforts with the Girl Scouts of America&TEM
program callecbtarbaseare alsaliscussed.

Visual Based Programming

Visual based programming tools have become largely popular due to their ease of use
for beginner programmers in not onlylR, but also higher education. These bibeked
programming languages have made their way into rBamnce, Technology, Engineering,
and Math STEM) outreach program® train both students and educators. Code.org

(Code.org, 2015has been a major leader advocating for CS in ti€ iKlassroom by
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providing materials for educators, as well as providing interactive tutorials on programming
using Blockly(Fraser, R15) Most recently, Code.org released two new programming

tutorials themed around the popular game, Minecraft, and up and coming relStse\Wars

VII. These were in preparation for the Hour of Code, an event encouraging children and adults
alike o program for one hour during computer science education week. Touch Develop,
Agent Cubes, codeSpark, Lightbot, Tynker, and Scratch are popular visual programming
platforms that also developed Hour of Code exercises for kids as young as four years old.

The Hour of Code has been the largest computer science outreach effort with nearly
200,000 events around the world and over 240 million participants since its inception. CS
outreach programs have a large range of focus. Scalable Game Design (SGD), fibe,exam
developed CT tools using AgentSheets and AgentCubes which enabled middle school students
to develop video gamgRepenning, et al., 2015)The tools increased student understanding
of CT concepts, which then allowed thémapply their new skills on scientific simulations,
not just video games. While still using blelbksed programming tools, another outreach
program, GK12 INSIGHT, worked with-A2 teachers and graduate studentsicorporate
embedded systems and sertsghnology with emphasis on CT irX curriculum(Neilsen,

Shaffer, & Johnson, 2015pther researchers have focused on creating various outreach
programs, such aomputer Science for High Scho@%4HS, that emphasize tramy
teachers in computer scienN@&um & Cortina, 2007) Another CS4HS workshop focused on
the measurement of the ability of teachers to incorporate CT concepts into less@Bqians

& Brylow, 2013. While Bort & Brylow developed a rubric for general CT concepts (i.e.

abstraction, algorithms, etc.), they did not measure tlketear 6 s own under st andi

Bean et al. created a workshop targetinggewice teacher®ean, Weese, Feldhausen, &
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Bell, 2015) During thisworkshop pre-service teachers went through Scratch exercises to
learn not only CT concepts, but how to incorporate CT into their future classrooms. Similarly,
Bell created a Scratch curriculum dusic in a STEM outreach program fdf-8" grade
studentgBell, 2014) Preservice teachers also participated in this program by observing and

assisting in the Scratch activitiBell, 2014)

Methods

While theinterventions vary in theme, both center on the same learning and
scaffolding theory. One of the major challenges of teaching CT concepts through computer
programming in both KL2 and higher education environments is that students guiekbme
overwhelmed with learning a new language. By starting withldeged languages, beginning
programmers spend more time struggling with the syntactic structure of programming
languages instead of learning the core concepts like algorithms, tibetrand data analysis.

By using Scratch, a bloeliased language, students can learn the language quickly. This
providesmore focuon teaching CT concepts, rather than giving drawn out instructions on
how to use the programming language. This is eafpganportantbecausglike most
outreach programs and school distrititee to work with students about CT and &S
extremely limited

Using a blockbased programming languaggectively reduest he st udent s o
load. Cognitive Load Theory (CD)TPlass, Moreno, & Brunken, 2018)pports the
hypothesis hat an i ndividual 6s ability to | earn
task exceeds their working memory capacity. Morrisbal.developed sub goal latsein
worked examples which reduced cognitive load in-baded programmin@Morrison,

Margulieux, & Guzdial, 2015)Aa similar approacls usedoy using seed Scratch programs
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for theintervention activities. The seed progsaare partially completed. This skeleton
outlinesthe structure of the program and complete low learning potential portions of the
program (for example, have sprites, costumes, andgbahkds already created), which
focuseeson any new CT skills or compartscience principles in a limited timeframe while
reducing cognitive load.

The cognitive loadtontinues to be reducgespecifically extraneous log¥orrison,
Margulieux, & Guzdial, 2015)y putting scaffolding in place fomeh activity or project in
the interventions. Scaffolding is a support structure put in place for learners to accomplish
tasks that they could otherwise not comp(&tiess & Askew, 1996) The approach of
instructional scafflaling, which correlates to programming tutoriaks used However, as
Repenning notes, direct instruction demit student motivation, especially in females
(Repenning, et al., 2015Problembased Learning (PBL(5avery, 2009)alongside Inquiry
based_earning (IL) to keep students motivaiedle used PBL is ad | e acenteed approach
that empowers learners to conduct research, integrate theory and practice, and apply
knowledge and skilstdevel op a vi abl e s ol (faveryp2009tilos a def i r
like the PBL approach, but in IL, the facilitator acts as a provider of information. In PBL, this
is left to the studentKirschner argues that PBL aiiddo not provide enough guidance for
students to learn based on human cognitiorschner, Sweller, & Clark, 2006Hmelo-Silver
refutes this statement by providing evidence that PBL and IL have enough scaffolding to be
effedive learning practicegHmelo-Silver, Duncan, & Chinn, 2007The coding activities in
day 1 use mostly direct instruction scaffolding (dbgpstep instruction of what blocks to use),
but as the class progresses into latejguts, guided discovery or inquibased learnings

used which has been shown to increase student abilities in scientific lit@hacg Hsieh,
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2006; Gormally, Brickman, Hallar, & Armstrong, 2008 well as studesitd mot i vat i on
learn(Repenning, et al., 2015)As the interventioprogressesPBL s also utilized This

allowsthe researchets let students who are progressing quickly in activities to work ahead

or on their own whilessising others who are struggling. By asking the students questions

about the task, often relating it to real world or previous classroom experiences, they will often
discover how to use the blocks available to them in Scratch to solve the taskghGutoiine
intervention, scaffoldings removeduntil the last day where students are tasked with their final
project.

The goalof themethodology is to maximize the increase in studertesétfacy. Self

t

(

efficacy can be defimnmkat ashéwncamdaovcadm@ll 6sh b:

(Bean, Weese, Feldhausen, & Bell, 201B)easuring seléfficacy relative to CS and even

more so in CT is required, because there does not yet exist any-atlgdied standardized
assessments which measure student progress (apart from AP CS). Bandura notes that self
efficacy can by improved through enactive attainment, vicarious experiences, verbal
persuasion, and psychological st@andura, 1982) PBL enable the students to achieve

tasks on their own without direct instruction. This relates to enactive attainment (individual
mastery of skills), althougthe problemsare structuredarefully so that they are not too easy
(students will get bored) doo difficult (increased anxiety). This is also referred to as the
zones of proximal flow and developméRepenning, et al., 2015Verbal persuasion occurs

in theintervention through IL. Though IL is indirectly guidinget student (asking the right

guestions)students are convinceédat theycans ol ve t he tasks at hand,

with a CT concept or a technical problem with placing the correct blocks in Scratch. Vicarious

experiences are achieved throggbup activity. During activities, students are encouraged to
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talk to their neighbors about how they solved the programming tasks, and in others, students
are partnered up for group projects. Finally, a stable psychological state is achieved through
thescaffolding and use of a blotlased language to reduce the cognitive load. By designing
thei nt erventi ons around B a neffcacyapbwerfuhantd hods of

achievable learning experienca® crafted
Summer STEM Institute 2015

This secton, published in part bfiWeese, Feldhausen, & Bean, The Impact of STEM
Experiences on Student Séfficacy in Computational Thinking, 2016escribes a summer
STEM institute where thBlanhattarOgden Unified School District88 has partnered with
the Department of Educationt&ansas Stat&niversity. This program lasts four weeks and is
designed to expose STEM careers and subjects {@thtirade students through haiuts
activities. The program covers a large range addsrecluding robotics, computer
programming, agriculture, food science, unmanned aerial vehicles, clean energy, and
construction science. Educators, who are experts isuthjectmatter, are paired with small
groups (24) of preservice teachers to r@ach class (maximum size of 18). This allows pre
service teachers to get practical, handsxperience, as well as to learn new STEM activities
to include in their own future classrooms. This also gives an excellent teacher to student ratio,
providing aoneon-one learning experience for program participants.

This chapter will covenew interventions with similar pedagogy implemented for the
institute which focuses on video game design and robotic agents. Each intervention used the
visual programing laguage ScratcfResnick, et al., 2009)s a tooto seed CT and CS
concepts in both institute participants and-geevice teachersA self-efficacy instrument

used to measure STEM experiences! @intury learning skills, an@T is described The
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importance of this research is to discowietherpast STEM activities and experiences will
transfer to student sedffficacy in CTor not as well as develop a method for delivering and
measuring CT skills in the-H2 environment.

Mission to Mars

Students in the lower grade level§ (8", and 1 grade) attended a program called
Mission to Mars. The goal of this intervention design was to introduce students to CT through
many different activities revolving around tasks that nestompleted to send an
autonomous rover to Mars. Each session of the program consisted of four days of activities
(each day being 3 hours long).

The first dayconsistegorimarily of an introduction to the Scratch visual programming
language. The studiEnwere led through many short activities to familiarize themselves with
the language, culminating in a challenge to draw regular polyd=aa, Weese, Feldhausen,

& Bell, 2015)using methods very similar to the turtle graghieatures of the classic Logo
programming language. As the students slowly built shapes with more sides, concepts such as
iteration, variables, user input, and mathematical operators were introduced, leading to a
generalized program that could draw anyular polygon.This programalsodemonstrated a
fundamental theory of calculus.

The second day focused on using computers to simulatevoela ideas. The students
began by playing with humamowered compressed air rockets (Stomp Rockets). While doing
so, they plotted the distance each rocket traveled and discussed reasons for the wide variance
of results. This led to a discussion of the scientific method, independent and dependent
variables, and how to design an accurate experiment. Afterwards, studgatled through an

activity to simulate a rocketbés trajectory
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variable. With that knowledge, students were introduced toegformance computing as a
way to solve even bigger problems, such agithjectory of a real rocket, and were given a
guided tour of a nearby supercomputer. Students then learned how to create a simple acceptor
finite state machine that accepts a secret key though a series of clicks.

The third day introduced the concepiaofificial intelligence (Al). First, students were
led through a project to recreate three of the four enemy Al ghosts from the classic Pac Man
arcade game. In doing so, they were introduced to stepartificial agent pattern of
perceiving the enviranent and acting based on that perception. Following that, students were
assigned an activity to explain how more complex Al, such as neural networks, can be trained.
After completing that activity, the students were introduced to the final projectiriguéd Al
for an autonomous Mars rover. The concept was first shown to them as a game, where they
were challenged to get the highest score possible. This required planning ahead to find the
best path and learning how the rover operates. These activ#i®on many areas of CT,
including modeling and simulation, abstraction, and data representation.

On the fourth day, the rover wasirgroduced as a game, but this time the rover could
only see the squares immediately adjacent to it. Thisrequireglstdds t o0 fisense o0 t he
surroundings and act based on limited information, just as the rover would. This helped
reinforce the Aperceived phase of an artifici
thought process to match that of an algorithm.alynthe students were given a rover project
that allowed them to build an Al following the percemdact model previously used. They
worked independently but with some guidance on how to build the best rover Al possible, and

compared their results thi other students.
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Game Design

The second intervention was for tHeéa@hd 9" grade students. This intervention
focused on video game design within Scratch. While game design contains a significant
amount of established theotiie focus wasnly on a small subset of common principles of
game design inspired B0 Principles of Game Desigbespain, 2013and a popular
YouTube seriegsnomaN, 2015) While the delivery focus of this intervention svgame
design principles, the development of different games in Sonastusedo teach CT
concepts. LikeMission to Marsthis program consisted of four days of activities.

Day one began with an introduction to game design principles. These coosisted
seven principles: (1) Principle of isolation: introducing new elements in a way that allows
players to familiarize with new enemies or mechanics before they are set in a real situation. (2)
Principle of accomplishment: gives players a sense of motivatid direction either through
story progression or the mastering of skills. (3) Teach without teaching principle: help players
learn by doing instead of relying on stiep-step tutorials. (4) Growing stronger principle: a
game storyline can often be rew#ng alone; however, progression can be improved by letting
the player grow stronger and accomplish tasks that they could not earlier in the game. (5)
Silent storytelling principle: allow the player to experience the story for themselves instead of
havirg it spelled out. (6) Hidden reward principle: give the player extras (bonus levels,
collectables, etc.) to add an extra feeling of accomplishment beyond the original
gameplay/story. (7) Balance principle: gameplay must have a good balance betweem boredo
and anxiety to keep the player interested and coming haelse principals were chosdue
to their relation to educational theory and hibwscaffolding is constructed. Examples of

these principles were discussed in popular video games. Studeatslseeasked to give
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examples of the principles from games that they play at home. This discussion was followed
by an introduction to scratch using shapes as mentioned in day onévb$sien to Mars
intervention. Students were then asked to splitrdéf pairs or groups of three to brainstorm

their own game for as a final project of the course.

The second day focused on introducing basic Al concepts, an important aspect of video
games. Students were asked to think about what it means to be intelMygsitresponses
tended to be things |ike fismart. o After desc
ability to construct knowledge, planning, learning, and perception (of which all relate back to
the core concepts of CT), students were pttesewith the Turing test and how computers
coul d be cons i dhempodanceiofrAtirevidéoigagmesernphasizedand
then,the first game tutorial called Cat and Mouwsa&s started This is a partially completed
game where students are ted through implementing a basic Al for a cat that chases a
mouse, the player, which tries to eat pieces of cheese. After they had a working game,
students were presented a problem to improve the Al to exhibit more complex behavior. As a
follow up, students wereworked with to complete the starter Al for the gaBtekers 1945
The day ended with time for students to complete storyboards for their final project.

The theme of day three was dungeon crawlers, a classic game style. To demonstrate
this, stu@nts were given a starter project @@ne Tap Quesh simple, yet popular dungeon
crawler/RPG. This game was used to illustedt¢he game design principles taught since the
first day. One Tap Quesequires only a single click from the player andtiheiro starts off
on a quest through a randomized set of enemies to slay for experience andpoteecollect
before reaching the bosResearcherwalked students through setting up randomization of

the first level of monsters. They were then tasket adding another level of monsters, as
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well as a poweup. The rest of the day was left for students to work in their group on their
final project. Before students left for the day, a discussion was led on career options in the
video game industry.
The final day was reserved time for groups to work on their projects veséarchers
walked around to assist. At the end of the day, groups got up in front of the class to
demonstrate their games and describe what game design principles they used.c&ldups
use any of the seed projects used any of the previous days, as long as they added additional
content or mechanics. Some groups did use the seed projects, but most designed their own
game and used what they learned from programming the seed pagjéioésbasis for their
mechanics. To encourage the students to continue to collaborate, all projects from each week
were added to a Scratch studio.
Instrument Design
A hybrid instrumentvas developedcombining the questions®7 from the Self
Efficacy for Computational Thinking (SECT) survey (with the addition of a question about
Boolean operationgBean, Weese, Feldhausen, & Bell, 20d&h questions extracted from
the math (27, 28, 31,and @zomewpgusestoi onhefil sa
science (387, 40, 42), engineering and technology {4hanged products to things, 45; 50
52),and2¥century skills (38, 44, 46, 48, and a ne
my time wisely when workinginagrpu0) sections in a survey buil
towards STEMFaber, Unfried, Corn, & Townsend, 2012)he new questions were added for
better coverage dheinterventions. Additional questions were asked about tlikestn t 6 s
previous experience in STEM activities (if they attended this institute before or any other

STEM-related outreach activities), as well as whether they had previous experience
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programming in the Hour of Code, Scratch, Blockly, TouchDevelopb@s#l languages, or

any other computer language. A teacher survey was also created in a similar fashion by

extending the Teacher Sdifficacy for Computational Thinking (TSECT) survey fr¢Bean,

Weese, Feldhausen, & Bell, 20150

ncl

ude

teacher so

background

in teaching STEM, and experiences with programming languages. The full scavelys

found in the appendiSTEM Institute 2015 Survey

Mission to Mars Game Design | Total

Grade 5th | 6th | 7th | Total | 8th | 9th | Total

Level

Week 1 O |8 |5 13 8 2 10 23
Week 2 3 7 |3 13 6 3 9 22
Week 3 1 9 |6 16 6 5 11 27
Week 4 O |5 |3 |8 5 6 11 19
Total 4 29 |17 |50 25 |16 |41 91

Table 1: Number of students (dter survey exclusion) in each intervention

Presurveys were administered online at the beginning of waelklong session. The

postsurvey (excluding initial background questions) was given on the last day of each session

(day four) after ending discusas. While both the student survey and the teacher survey were

optional, the student survey was administered during each session, and the teacher survey was

only emailed each session. Out of 94 surveys sent to all educators @edvice teachers

involved with the institute, only 33 responded to theguesey and fewer than 10 responded

each week for the poesurvey. For this reason, results for the teacher survey are excluded

from analysis. Student response rate (after exclusions) can be seandookeinTablel.

Out of 101 student respondents, 7 were excluded for not taking thsypesy (absent those

days), one was excluded for not taking theguevey (absent), and two were excluded for
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incomplete surveys (the nsisg data in these responses were classified as MCAR). The

reliability ofthei nst r ument

Findings

Part oftheinstrument was to gather background information in STEM, including

programming experience as seeifable2. Surprisingly, over 30% of students had been

wa s

confir med

with a

Chr onbe

exposed to a textiased programming language. Over 59% of students had experienced some

sort of blockbased programming language, and half padicipatedn the Hour of @de.

Less than half of those who participated in the Hour of Code (which is written using the

Blockly language) knew that they were using Blockly. From students who had previously

attended some sort of STEM program before the institute, 70% of thenséd&cratch.

This shows that most outreach programs in this geographic area highly favor the Scratch

language. With more than 80% of students having used some programming language, it shows

that all students are being exposed as much to computer progrguainiome or school as

those who participated in outreach programs. However, the low level of exposure is reflected

in theselfefficacy in CT conceptsStudents who had previously attended outreach programs

improved more in CT concepts such as algorgthpnocedures, parallelization, data collection,

and data representation, as showmable3(this includes students who attended thsitute

before as well as those who attied other outreach programshis hints that everhbugh

both samples of students had about meesamount of experiences usprggramming

languages, STEM outreach programs have better success in seeding CT skills in students,

comparedo exposures in school or at home.

Any

Language

Hour of
Code

Scrdch

Blockly

TouchDevelof

Text
based

Other
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No Previous | 83.78%
Attendance in
STEM

Programs (37

students)

51.35% | 56.76%

18.92%| 16.22%

Previous 81.48%
Attendance in
STEM

Programs (54

students)

51.85%| 70.37%

20.37%| 18.52%

Overallg 84.00%
Mission to

Mars

52.00% | 58.00%

18.00%| 16.00%

Overallg 80.49%

Game Design

51.22% | 60.98%

21.95%| 19.51%

Table 2 Programming experience before the interventions

. _ Overall
No Previous Previous —
AbbreviatedQuestion Attendance in Attendance in | Mission| ~_
STEM Programs | STEM Program{ {© Design
Mars
218t Century Learning Math
Math is my worst subject -.132 0 -117 .024
Consider a career that use 264 127 156 215
math
Perform well in other
subjects, but not math ~193 050 ~125 1 044
Apply math to other 058 020 129 | -079
subjects
Consider a career in math 138 151 143 .149
218t Century Learning Engineering
Like to_lmaglne creating 036 098 -106 291
new things
If I learn engineering can
improve things people use 191 196 165 .230
everyday
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35.14%| 35.14%

35.19%| 31.48%

32.00%| 34.00%

39.02%| 31.71%




Would like to use creativit)

and innovation in my .087 199 .064 .262
future work

Math and science togethe

will help me invent useful 251 .064 .255 0
things

| can be successful in a

careerin engineering or 113 -.039 -.021 077
technology

215t Century Learning Leadership

Lead others to accomplish 501 - 023 198 181
goals

Work well with others who

have different -.033 135 .097 .030
backgrounds and opiniong

Make changes when thing

doy Qi 32 & U .036 .098 132 0
Manage my time wisely 027 074 060 | .048
when working on my own

Manage my time wisely 088 141 153 | .0798
when working in a group

Computational Thinking

Executes a sequence of 352 632 496 546
commands

Uses loop to repeat 641 785 683 | .779
commands

Responds to events .259 539 .584 231
Parallelism 482 .656 .556 .621
Conditional commands 498 .508 .582 .408
Perform math operations .265 .387 481 162
Perform Boolean 606 626 626 | .608
operations

Store, update, and retrieve 405 550 429 568
values

Ask user for input 292 .694 537 522
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Iterative development 331 417 322 456

Frequent tests/debugging 519 481 .533 452

Share and collaborate witl 337 573 445 517

programs

Break program intgarts 537 412 448 482

Table 3 Comparison of effect sizes for the 21st century learning and CT focused
guestions

One could say as well theecause thstudents who attended STEM programs
previously had more exposure to Screft®.37% vs. 56.76%), theypuld move more quickly
throughthe activities and focus more on learning CT concepts rather than the language itself.
Students who had not attended STEM programs previously showed higiseireg sek
efficacy than those whioad. It is hypothesizd that since they may not have been exposed to
CT as much, this led to overconfidence, which is reflected in the amount of improvement
when looking at possurveys. This shows evidence of the Dunniguger Effect(Kruger &
Dunning, 1999) By comparison with the overall program, the two interventions were less
distinguishable, though studentshiission to Marshad a strong improvement in selfficacy
in writing programs that respond to events and @&ndp able to perform math operations in
their programs. Howeveit,was found thathe mean prsurvey seHefficacy forMission to
Marsin these questions was much lower than that oGdme Desigintervention, although
the mean posturvey responsesease nearly equivalent. This verifies that even though the
topic of interest in each intervention is different (as well as the age groups), the end results for
both are comparable.

When looking at 2% century learning skills, improvements were less natite as
most ofthe students came in with high confidence in these areas. For example, over 80% of
students came intiie sessions highly confident in math, which led to little improvement.

However, students who had previously not attended STEM outreagtams showed
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stronger improvement for their value of math and science in inventing new things. Leadership
also showed a strong improvement in these students, which reveals that the STEM outreach
programs are doing well in improving student confidendeading others to accomplish
goals. Only weak improvements are present when comparing the two interventions, though
Game Desigiinad slightly stronger results in imagination and creativity. THewmusehe
Game Desigmtervention offered more roonoif students to create and implement their own
ideas in their final project video game.
Conclusions

Though both interventions differed in topics (video games vs. Marsgoteey
showed similarly strong improvements in student-e#fltacy in CT conceptsThis pedagogy
shows that it has a positive impact how CT concepts are delivered through CS and computer
programming at the K2 level. Likewise, by expanding the survey done by Bell, more insight
into specific CT concepts learned by students in a aimaitvironmentvas gainedBell,
2014) Furthermore, some lasting impacts that STEM outreach programs have on students
who continue to stay active in science, technology, engineering, and math astierges
revealed Thesestudents who have participated in the outreach programs show greater
capacity in improving their CT skills over those who have not. This important finding cannot
be explained completely withedata collected htough conjectures were madad warrants
further investigation through revised instruments or longitudinal studies. Background survey
guestions also revealed that the STEM outreatheareas (apart from this summer institute)
does not have large patrticipation by upper middle school and Higblsstudents (19 students

in 5"-7"" grade vs 4 students if-@").
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Summer STEM Institute 2016

This sectiondescribes aontinuation of the STEM program describe&immer
STEM Institute 201%nd is publisheth part by(Weese & Feldhausen, 2017)he focus is on
measuring the impact of two interventions on the program participants. Each intervention
employed similar pedagogy and the Scrgfésnick et al., 2009programming language;
however, one relied heavily on computer science theory and Mars as a theme, while the other
used micro controllers as the basis for the activities. The goals of this rese@tiobie from
the 2015 STEM Institute drare as follows: 1. Develop effective curricula for improving
student selefficacy in CT, 2. Develop a reliable and effective way of measuring student self
efficacy in CT, and 3Enforce the notion that CT is not PS, but a component of cognition.
Methods

Teaching programming can be a difficult task when involving students who have no
background in foundational computer science skillse curriculum emphasizes reducing
cognitive load through scaffolded examples and the Scratch programming environnoént whi
eliminates complex syntax and programming err@rablentbasel learning and inquiry
learning wasitilized as described iSummer STEM Institute 201 &ffectively improving
student selefficacy through vicarios experiences, verbal persuasion, enactive attainment,
and psychological state (reducing cognitive lo@Bndura, 1982) From these methods, two
different curriculavere createas part of the summer STEM outreach progrdime Saving
the Martian (Mars) class was an intervention focusedtan@l ' grade students and
introduced CT using the Scratch programming environment. Many of the activities were
modeled on situations or ideas taken frohe Martian by Andy Weir, to nake them more

interesting and exciting for the students. The Mighty Micro Controllers (MMC) class was an
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intervention for ¥-9" graders focused on teaching CT through programming Arduino Uno
micro controllers using Scratch, as well as a small expostine tdrduino IDE and texbased
language. Overall, the format of this class included guided examples on how to create certain
circuits and programs, followed by problem driven exploration to help enforce programming,
electrical, and CT skills. MMC heayiltilized pair programming. Each class consisted of
four days of activities lasting three hours each.

Saving the Martian

Students were first to the Scratch environment and some basic ideas involved in
programming. The main activity was to build a compptegram that could draw angon
(regular polygon with n sides). At first, students were shown a sample program that drew three
lines and were asked to modify it to create a triangle. From there, they further modified the
program to draw a pentagon by adgimore lines and adjusting the angles. As the number of
sides grew larger, students were introduced to iteration as a way to reduce the amount of code
in the program. In addition, mathematical concepts such as the geometric formula to calculate
exteriorangles of a polygon were used to determine the angles between each line. Finally, the
students modified the program to accept user input, and were encouraged to try and draw
shapes wittmanysides. As students determined that the shape would appear tirdle,a
they were introduced to other concepts such as the fact that a smooth shape such as circle can
be approximated by argon with a sufficiently large number of sides, which is how most
computer games represent such objects.

For the second day, stewits were introduced to sorting algorithms. First, the students
participated in a sorting network activity where they followed lines on the floor that

intersected. At each intersection, students would change their direction based on some factor,
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with all gudents having a higher value going one direction and all students with a lower value
going the other. Afterwards, students were given some kamdgperience by learning how

to sort decks of playing cards into sorted order using several common algauttimas

insertion sort and bubble sort. While doing so, students recorded the number of steps needed to
perform the algorithm, and their results were shared on the board. Students were then asked to
use that data to determine which algorithm might befakan the other, and then were

introduced to a simple form of algorithm analysis which showed that both algorithms

performed similarly. Students were shown the merge sort algorithm, and given information
about why it takes fewer steps than the other Awgopart of the discussion around bubble sort,
students were also introduced to the concept of "swapping" two variables in computer
programming by using a third temporary variable. After discussing the algorithms, students
were lead through the first adtiy of the day to write a computer program in Scratch to

perform the bubble sort algorithm. Thagilt upon their knowledge of iteration from the

previous day while adding in a conditional statement as well. For the second activity, students
were given aituation from The Martian where the main character must determine how to

grow enough food on the surface of Mars with limited resources. In the book, he creates water
by a chemical reaction involving hydrazine (rocket fuel) and oxygen. For the activdgnss

were shown how to create a simple simulation program in Scratch to demonstrate how the
chemical reaction would alter the presence of different materials in the atmosphere of the Mars
habitat. The simulation had several{alt parts that would hplvisualize the results. Once

the simulation was started, plants would slowly grow, but if the presence of certain materials

became too high, the simulation would stop due to a failure. Students were encouraged to
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adjust the variables of the simulationsie if they could find a way to grow plants fast enough
to sustain life.

On the third day, students were introduced to the concept of a binary number system.
The activity started with students using small cards to represent different place values in the
binary number system, and they slowly learned how to convert numbers from decimal to
binary and back. The students were also briefly introduced to the way addition in binary works
similarly to addition in a decimal system. Once the students were comfostiétbleinary,
they were also introduced to the hexadecimal representation of simple binary numbers, as well
as how more complex data such as text or images can be expressed in binary. For the activity,
students were shown the scenario from The Martian whermain character must
communicate with others using only a camera that rotates. He does so by placing sixteen signs
around the camera representing hexadecimal values, and recording the signs that the camera
points to and converting each pair of valuegg equivalent ASCII value. Students were given
a similar situation in Scratch, and were lead through the process of translating the data to
ASCII. This involved calculating the angle of the camera, converting it from a degree value to
a hexadecimal vafy and then converting a sequential pair of values into an ASCII character.
The activity itself mainly focused on using nested conditional statements as a decision tree to
determine the ASCII character. As an added learning experience, the original géth®n
program contained an intentional typo in the message received, leading to ambiguity in the
message. Students were encouraged to describe ways the system could be improved to
minimize or eliminate ambiguous messages.

On the last day, students wenéroduced to several concepts in artificial intelligence.

The students discussed the Turing Test and how it works, and then participated in an activity
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that simulates how a neural network learns using training data. Afterwards, students were lead
through & activity to create simple Al agents for an arcade video game following a simple
perceptron model that required decision making using conditional statements based on the
sensed inputs. The final activity built upon that structure by using a situatiom rem
Martian, where the main character must plot a course around several terrain obstacles while
driving across the surface of Mars. The students were given a program that randomly
generated simple obstacles on a terrain, and upon reaching an obstdetgsdtad to use a
simple perceptron model to determine how to get around the obstacles while still moving
toward the goal.

Mighty Micro Controllers

Students were first introduced to the basic principles of electricity. Most had their first
exposure to wéit electricity really is, as well as the concepts of conductivity and insulation.
By using an example of marbles in a tkephaldt, 2014)students could visualize and
understand the flow of electricity. Once this basiaggle was established, circuits were
introduced. For this intervention, students were introduced to resistance, voltage, and current
(Ohmés Law), as well as digital, analog, and
this introduction to electronicircuits, students learned how to make their first basic circuit
using a solderless breadboard, the Arduino Uno, and Scratch. This was the blinking LED
tutorial that most complete their first time using Arduino. Although, before wiring their
circuit, sudents were required to create a circuit diagram using Fritzing to visualize how the
circuit should be laid ouKnorig, Wettach, & Cohen, 2009)This introduced the idea of the
engineering design process. After everyone detag the blinking LED example, students

were introduced to an activity called fAResi st
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ranging in strength from 220 ohms to 1 million ohms. They were challenged to rank the
resistors in order of strengtlBy using the previous blinking LED circuit and program,
students could visualize the effects of resistors and how they impede the flow of electrons with
the dimming of the LED.

Then the single blinking LEDvas expandetb introduce the idea of abstragtiand
other highlevel programming and CT skills. Students were challenged to change the single
LED circuit to include five LEDs of different colors. On their own, students needed to create
the circuit, as well as get each LED to blink in successioris [&€d to a discussion about
abstraction and problem decomposition. The programs created to achieve this task were
duplicated code from the original blinking LED program. The class was guided through the
process to recognize patterns in the programdoae the number of blocks that were
repeated. This led to using Scratch custom blocks which imitate functions. Students were left
to identify which variables changed between each blink and which ones could be kept the
same. The next activity extendedstprogram to include pushbuttons. Students were given a
circuit diagram and materials to wire a circuit with an LED and a pushbutton. This was a
guided activity focused on teaching analog signals;gmin circuits, open/closed circuits,
and control fbw.

On day threeactivitiesfor PWM signals that were introduced on the first deye
done as well as time to plan for a final project where studemitd design, build, and
program their own circuits. The first activity of this day utilized RGB LEBsst, students
wired the circuit from a given diagram. Before being able to program, students needed to
learn how to convert colors to traditional RGB format and how that was translated to the RGB

LED connected to the ArduindCommon anode LEDwere sedas well, so the students
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discovered that they needed to invert the color before sending it to the Arduino. Abstraction
and custom blocks were emphasized to make setting the different intensities of red, green, and
bluesimple. Students were guideddhgh this process until they could turn on the red, green,
and blue colors individually. Students were then given a large amount of discovery time to see
what kind of colors they could produce using this circuit. At the end of the activity, a

complete pogram that gradually chang#dough all the colors the LED could make was
demonstrated. A video of an RGB LED matrix was also used to inspire students with more
ideas for a final project. The day concluded with a guided activity using small moti@nssens

and the applications of how the sensor could be used in their everyday lives.

The last day featured a guided activity using ultrasonic sensors. This activity used the
Arduino IDE because Scratch was not able to accurately detect distance withstive gen
side-by-side comparison was used with Scratch and the Arduino IDE to demonstrate how the
textbased language translated into Scratch blocks. After this activity, students were given
time to complete their group projects. However, they had taupeod design document,
containing a circuit diagram and materials list, before dueyd start building or
programming. This helped emphasize the engineering design process, as students had to keep
revising their design when they discovered flaws inrtbeginal circuit. At the end of the
day, students presented their projects to the class.

Instrument

To measure student learning, a gffcacy survey to collect attitudes towards
studentsé abil it ywasdadevelogedThdsurveylaggywetpantdsiwork al | y
donein the 2016 Summer STEM Institubtg adjusting question language to be more age

appropriate withheaudience, as well as with the addition of questions assessing student self
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efficacy in problem solvingWeese, Feldhausen, & Bean, The Impact of STEM Experiences

on Student SelEfficacy in Computational Thinking, 2016)T'hese questions are framed to
correlate to appropriate computational thinking skills. As stnehsurvey is organizead four

main setions: problem solving, computer programming skills, computer programming
practices, and computer programming impact. Within each section, questions are categorized
by relevant CT concept, practice, or perspedisgeen inTable4. Each of these questions

measured se#fficacy on a fivevalue Likert scale: strongly agree, somewhat disagree, not

sure, somewhat agree and strongly ageart from these questions, the survey also

contained questions collecting information abgender, participation in STEM

activities/camps, and background in computer programming

When solving a problem I... | canwrite a computer program which
1 | create a list of steps t¢ Algorithms runs a stejby-step
solve it 10 | sequence of Algorithms
commands
2 | use math Algorithms does math operations
11 | like addition and Algorithms
subtraction
3 | try to simplify the Abstraction
probllem by ignoring 1o | Uses loops to repeat Control Elow
details that are not commands
needed (3)
4 | look for paterns in the| Abstraction responds to events lik
problem 13 | pressing a key on the| Control Flow
keyboard
5 | break the problem int¢ Problem only runs commands
smaller parts Decomposit| 14 | when a specific Control Flow
ion condition is met
6 | work with athers to Parallelizati
solve different parts o] on 15 does more than one Parallelization
the problem at the thing at the same time
same time
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done only in certain
situations (9

7 look how information | Data
uses messagés talk
can be collected, . ) L
16 | with different parts of | Parallelization
stored, and analyzed the proaram
help solve the problen prog
8 create a solution Control
can store, update, anc
where steps can be | Flow 17 . Data
retrieve values
repeated (8)
9 create a solution Control
Where some steps arg Flow 18 | uses custom blocks | Abstraction

used in my daily life.

When creating a computer program l... | When creating a computer program |...

make improvements Bein break my progam into

one step at a time anc g K my proga Problem
19 ) . Incremental | 22 | multiple parts to carry

work new ideas in as : ) : Decomp.

and lterative out different actions

have them

run my program

frequently to make :
20 | sure it does what | -[I;(Z%tlljng i‘f;nd Impact

want and fix any gging

problems | find

share my programs Reuse 23 | lunderstand how

with others and look a L computer I
21 . Remix . Questioning

others' programs for r programming can be

ideas Connecting

Table 4 The four core sections of the seléfficacy survey, denoting which CT skill each
question falls under.

Theexperiment was carried out in a goest survey formaPresurveys were

administered online on the first day of each whkwlg session before any class material was

given. The possurvey, which did not contain demographic or STEM participation questions,

was given on the last day of each session once all projects were finished. Survey participation

wasvoluntary. Out of 110 students between both interventions, one student was excluded for

opting out of the survey, one student was excluded for missengrésurvey, and three

student s

wer e

excl

uded f

or havi

ng

i ncompl et e

pre-survey and .908 on thmostsurvey shows thdahesurvey described iiable4 is reliable
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% of Avg. Pre Avg. Post Avg. Std.

Students Mean Mean Dev.
Mars 53.33% 3.763 4,187 1.016
MMC 46.67% 3.619 3.884 1.056
Male 65.71% 3.71 4.083 1.048
Female 34.29% 3.661 3.978 1.032
No-STEM 29.52% 3.642 4.016 1.074
STEM 70.48% 3.718 4.058 1.026
g?g,a'DE 35.24% 3.673 4.108 1.043
_ANON_ 27.62% 3.671 4.165 0.988
STEM INST 35.24% 3.764 4.008 1.006

Table 5 The distribution of students included in the survey within each compared group
as well as average pre and post sedfficacy.

OUT
Cat | Skill Mars | MMC | Male | Female | NS | sTEM| sipE | STEM) Star
STEM INST | base
STEM
PS | Algorithms | 0.400 | 0.061 | 0.194 | 0.306 | 0.245 | 0.229 | 0.269 | 0.186 | 0.344
PS | Abstraction | 0.215 | -0.082 | 0.101 | 0.036 | 0.056 | 0.089 | 0.058 | 0.117 | 0.153
Control 0.434 | 0.230 | 0.299 | 0.427 |0.279 | 0.371|0.558 | 0.173 | 0.645
PS | Flow I -
PS | Data 0.082 | 0.291 | 0.166|0.178 |0.028 | 0.251 | 0.349 | 0.157 | 0.387
PS |Parallel. |0.181|0.037 |0.165|0.000 |-0.086 |0.192|0.203 | 0.181 | 0.135
Prob. 0.254 | 0.154 | 0.270|0.059 |0.090 | 0.268|0.367|0.173 | 0.310
PS | Decomp.
CT | Algorithms | 0.828 | 0.370 | 0.667 | 0.448 |0.723 | 0.538 | 0.702 | 0.373 | 0.878
CT | Abstraction | 0.501 | 0.625 | 0.513 | 0.639 |0.362 | 0.653 | 0.545 | 0.769 | 0.692
Control 0.480 | 0.353 | 0.361 | 0.574 |0.444 |0.408|0.583|0.232 | 0.682
CT | Flow
CT | Data 0.728 | 0.537 | 0.629 | 0.642 |0.716 | 0.603 | 0.818 | 0.395 | 0.892
CT |Parallel. |0628|0513 | 0.633|0.468 |0.706 | 0.521 | 0.653 | 0.381 | 0.704
Prob. 0.530 | 0.196 | 0.371|0.380 |0.432 | 0.344 | 0.560|0.111 | 0.621
CT | Decomp. — —
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CT

Being
Incremental
and
Iterative

0.229

0.269 | 0.278|0.189

0.295

0.224

0.274

0.169

0.344

CT

Questioning

0.631

0.083 | 0.478 | 0.203

0.429

0.339

0.540

0.141

0.752

CT

Reuse,
Remixing,
Connecting

0.248

0.198 | 0.305| 0.054

0.248

0.211

0.024

0.412

0.132

CT

Testing and
Debugging

0.091

0.230 | 0.167 | 0.143

0.309

0.093

0.126

0.056

0.176

Table 6 The effect size for each sumy question, broken into each comparison group.
Italicized indicatesapval ue of O

Findings

. 05,
and bolded indicatesapr a |l u e

ital i wvatee, ofinder DI

of

O

. 001.

In the analysis of survey resultee 8 groups outlined iffable5 were investigated

Saving the Martian (Mars), Mighty Micro Controllers (MMC), male, female, no previous

participation in STEM activities/groups (N&TEM), previously attended this STEM program

(STEM INST), previously attendea different STEM program (Outside STEM), previously

attendedstarbas€Starbas@, and previously attended any STEM program (STEM). Average

over questions-23 pre and posimeans can also be observed able5 Table6 shows the

effect sizgSullivan & Feinn, 2012)calculated using pooled standard deviation, for each

guestion, broken down by group. Note that effect sizes of 0.2 are considered small, 0.5 are

medium, and.8 are large.

Overall, 70.42% of students had previously attended some STEM related group activity

or program, while nearly all students in the program had used a-based programming

language, mostly though Scratch, Hour of Code, and Lego robdtnese results show that in

thearea, outreach efforts are beginning to spread through the lekpidpulation. Due to

small sample sizes, the groupsTiable6 were not broken dowimto language background
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(Scratch vs Lego robiots for example)Students who had never attended any type of STEM
program showed to perform just as well as those who had attended a STEM program, apart
from problem solving skills. The inverse applies when comparing the outside STEM group to
those who hd previously attended this STEM progralnis hypothesizd that this result is
partially due to a selection bias with this STEM camp &taslbasewhich accounts for 78% of
the outside STEM group. Those who had participat&tarbaseén the past shoead
significantly higher effect sizes on most CT concepts. This could be explained by the
difference in the two programs. The summer camp focuses on gettiegtsthdving fun in
STEM. While Starbasmcludes many fun, handm activities, it has a ricinedeeper focus in
STEM learning outcomes. Also, tBearbasgarticipants are from complete classes, whereas
this STEM camp contains participants who volunteered.

When comparing the two interventions, Saving the Martian had a larger positive effect
on student sekefficacy in all four question suéireas. This is further confirmed when looking
at the average initial selffficacy inTable5, wher e MMC coul d not capit e
higher potential to learn (lower irgii seltefficacy compared to Mars)t is hypothesizd that
this was caused by additional overhead from making and controlling circuits, even though the
activities were designed to reduce cognitive load. Breaking down the results to specific
concepts, td Mars curriculum emphasized algorithmic thinking through sorting algorithms,
using CS unplugged to explain sorting before implementing in Scratch. This is shown to be
highly effective compared MMC, which focused on using LEDs as a method to teach
algorithms. MMC focused creating and programming parts of each circuit one component at a
time. For example, to make a circuit with five LEDs, students first had to make a circuit with

only one. Surprisingly, MMC had no significant result for problem decortiposilt was
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alsosurprising o see no effect on MMC studentsd under

used in their daily lives. The MMC curriculum leveraged physical computing to provide
tangible results from programming lights and sensors that ceulddd at home in practical
applications; however, it was unsuccessfuhmcontext.

Across all groupghe curriculum did not perform well for questions-29, when
compared to CT concepts. This shows that CT practices need to be balanced moresalongsid
the other CT skills. Problem solving skills also performed poorly overall, revealing little to no
effect in many areas. Skills like algorithms and control flow show some relation the effects in
CT skill questions; however, there is no discernable pattResults between male and female
were interesting, particularly with conditionals in control flow, though sample sizes were too
small to make conjectures.
Conclusions

In this section, the application of two interventions applied t8-85grade STEM
outreach programwas discussedFrom reviewing the survey resulitswas discoverethat
using micro controllers as a tool for teaching CT was less effective than a pure computer
science related curriculum. Although MMC was effective at fostering imepnent in CT
skills, the curriculum has room to improve when using physical computing. By adjusting the
language from the 2015 summer instit(éeese, Feldhausen, & Bean, The Impact of STEM
Experiences on Student Sélfficacyin Computational Thinking, 2016 be more age
appropriate, as well as a smaller Likert scale, a survey that was more consistent within student
responses and effective at measuringesti€acy in CTwas created Finally, it is shown that
CT framed iside PS is largely decoupled from CT. This may be the starting indicators toward

supportinghe goal to show that CT is not PS; however, due to the small sample sthes of
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experiment, future studies would be needed to fully confirm that goal. Duatlong of the

STEM programthe research was conducisitransparelyt as possible. Knowledgeased
assessments would likely provide more insight theresearch questions; however, this

would make it feel like a normal classroom and not a summer cifope so, seHefficacy

has been shown to be a good predictor of student learning outflastesski, Yadav, Good,

& Enbody, 2016) Apart from knowledgéased assessments, static analysis on code produced
by students. Sinamanytheactivities were heavily scaffolded, most solutions that students

produced were identical leaving little information to be gained.
Starbase

Starbasds a STEM outreach prograopento 4™-6"" grade studentprimarily funded
by the Department of &ense Since its inception in 1992, it has engaged thousands of
students in STEM topics. In a study by Wilder Researchteng effects of the Minnesota
Starbaserogram showed that high school students who had participattdrimaseshowed
high inteest in technology and science, as well as engineering and math, when compared to a
control group(Mohr & Mueller, 2012) Moreover, students who had participate®tarbase
were more likely to graduate high school on time emabll in college or interest in joining the
military. The authors note that while this was not statistically significant, it reveals a potential
longer term track the program may take. For the purposes of this research, &téribase
program in Manhttan, KS will be considered, though there are four @tembasegrograms
in Kansas.

The ManhattarStarbaseconsists mainly 05" grade students, though someahd6e™
graders participate in the program later in the academic fadents who partigate in a

week (spread throughout a month) of handsxperiments. These cover the engineering
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design process (EDP), Newt onbébs Laws of Motion
chemical reactions, nanotechnology, rocketry, computer aided draftigg@sen (CAD
program made for primary grades), robotics with Lego EV3, and many other experiments.
However, the Manhatta®tarbaseh ave a uni que partnership with
Department of Computer Science. This partnership gives particgraoigportunity to learn
Scratch programmingThis activity focuses on algorithmic design and parallel computing by
having students transl ate the (BeannVgeesB,Ode t o Jo
Feldhausen, & Bell, 2015)Students are shown how to program the first couple notes in
Scratch, then they are tasked with translating as much of the song as they can with their
partner (pair programming). Students are given scales with note letters if they are unfamiliar
with reading music and are asked to swap roles with their partner during the activity (one
programs while the other translates). They are also split into groups and get guided tours of
Beocat, the supercomputing cluster at KSU. At the end of the actividgndtuare asked
AAre you computer programmers?0 Many are hesi
encouragement, they usually all say yes. The motivation behind this question is to help
students connect computer programming to more than just limeslef Whether they are
making their robot move (they also program in their EEXallenge}or telling their computer
how to play Ode to Joy, they are still programmers. This helps students connect computing to
the technology people use in their dailyelivand realize the endless applications of
computing.
Findings
Starbasas assessed in a prand postest with questions over material covered in the

experiments done by participants. The surveys also contain a small numbeetffcaaf/
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guestions, ame of which were done in consultation with the group at KShkse questions
can be found in the append&tarbase?ost The goals of this researanecomplimentary
with the work done with the USD 383 summ@&iE3/ Institute, looking at the effects of
experience and knowledge in STEM on student ability in Ddta is collected anonymously
from the Manhattastarbaseas existing data, as such, the KSU researchers do not have
control over survey questions admiristration. Datdas been collected duritige spring
2016, all 2016, andpring 2017 semesteandcontairs anonymized student demographics
and responses from individual survey questiddata from309 studenthave been
transcribed35 were excluded fanot taking the preor postsurveys, leaving 274 students for
data analysis. Gender and demographic information of these students can be Tabid7n
Findings between comparisons of genders and race, while informativeednie to be
explained with current data. Future work will be needed, such as student interviews, to

investigate these findings.

Male | Female| Caucasiar Afncap Asian '\'a“V‘? Hispanic| Multinational | Other
American American
131 | 143 176 23 3 1 17 37 17

Table 7 Distribution of Starbase student democraphics and race.

Group | Prog. Outside
Work Robot | CS

Pre 8.786 |1.191 |1260 |1.191 |1351 |1.076 |1.336 |1.305
Post 14.145 | 1.687 |1.267 |1.168 |1.229 |1.191 |1.130 |1.183
SThbv |[1819 (1819 (1819 |1819 |1.819 |1.819 |1.819 |1.819
Effect |2.946 |0.273 |0.004 |-0.013 |-0.067 |0.063 |-0.113 |-0.067

P 0.00000| 0.00000| 0.87948| 0.61396| 0.02593| 0.00493| 0.00005| 0.02593
Table 8 Starbase test results for male students

Male | Score | Math Science| Tech Prog

Group | Prog. Outside

Female| Score Math Science| Tech Prog Work Robot | CS
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Pre 8.028 |1.168 |1.112 |1.168 |[1.490 |1.028 |1.406 |1.392
Post 14.706 | 1.874 1.224 1.238 1.343 1.252 1.196 1.140
STDV |1.904 [1.904 1904 [1904 |1.904 |1.904 |1.904 |1.904
Effect |3.507 |0.371 |0059 |0.037 |-0.077 |0.118 |-0.110 |-0.132
P 0.00000| 0.00000| 0.01533| 0.23329| 0.01910| 0.00000| 0.00032| 0.00002
Table 9 Starbase test results for female students.
Caucasiar Score | Math Science| Tech Prog \(/Bv?rl:(p E:)Obg(;t 8gt5|de
Pre 8.443 |1.210 |1.148 |1.210 |1.415 |1.040 |1.403 |1.313
Post 14955 | 1.778 |1.216 |1.199 |1.250 |1.210 |1.136 |1.148
STDV 1846 |1.846 |1.846 |1.846 |1.846 |1.846 |1.846 |1.846
Effect 3.528 |0.308 |0.037 |-0.006 |-0.089 |0.092 |-0.145 |-0.089
P 0.00000| 0.00000| 0.08326| 0.80340| 0.00216| 0.00001| 0.00000| 0.00149
Table 10 Starbase test results for Caucasian students.

’CA)It_rlw_er Score | Math Science| Tech Prog \(/Bv?rl:(p E:)Obgo't ggtside
Pre 8296 |1.122 |1.245 |1.122 |1.439 |1.071 |1.316 |1.418
Post 13.510 | 1.796 1.296 1.214 1.357 1.245 1.214 1.184
STDV |1.888 |1.888 |1.888 |(1.888 |1.888 |1.888 |1.888 |1.888
Effect |2.761 |0.357 |0.027 |0.049 |-0.043 |0.092 |-0.054 |-0.124
P 0.00000| 0.00000| 0.42615| 0.16095| 0.21879| 0.00027| 0.05839| 0.00032

Table 11 Starbase test results for all races except Caucasian.

In Table8, Table9, Tablel10, andTablell, pre and postscores are calculated by

grading the knowledgbased questionsa0 in the Starbase test showrthe Appendix:

Starbase PreestandStarbaséosttest Overall, an effect size of 2.946 shows a significant

improvement in students understanding oESMtopics after participating in the Starbase

program. Breaking this down by gender, females saw better improvement compared to males

in understanding of STEM topics. Female-pceres indicated that they came in with less

knowledge, but ended up scoringher on the pogtest compared to their male classmates.
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An opposite trend is seen when comparing the scores of Caucasian students and students of
other nationalities. Noefaucasian students had similar levels of understanding to Caucasian
students; bwever, they scored significantly lower on the piest.

All students devalued group/teamwork at the end of the Starbase program. There are
many activities that are done in pairs and small groups, but this may indicate that the method
of assigning groupneeds to be changed. Likewise, these activities may need to be adjusted to
better fit group work over the individua\ll students seemed to dislike Math even more after
the Starbase progr am. Most gr oupsologyfddst udent
not change, indicating that they enjoy these areas of STEM; however, female students disliked
Science more after the program. All students showed a significant (exceanoasian
students) increase in attitudes toward computer programmitigatimg that exercisedone
with Lego robotics and Scratch are effective at getting young students interested in computer
programming. All students indicated a better understanding that computer science can be
applied in a variety of areas. This allogtadents to not see computer science as a closed
field, but as a gateway to many STEM disciplines or even the arts. This is the core philosophy
of computational thinking. Leading students to the realization that they do not have to be
computer scientist® use those tools and techniques, and that they can continue to use what
they learned in whatever they decide to pursue as a career.

Conclusions

Like the summer STEM Institute, the Starbase program is set in getting young minds
excited about and interest in STEM, but more so in educating them. There are many
activities in Starbase that begin widtture material and followed up with harais

experiments. These always have learning goals in mind, which are apparent in the strong
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performance from stuaés in the postest knowledge assessment. However, this traditional
approach in teaching STEM does not seem to captivate student interest in some areas in
STEM, particularly math (all groups) and science (only for femalEsgre was also evidence

of this in comments made by students in the jsosvey(see below) As part of the Starbase
program, students are exposed to programming thrbegb robotics, as well as Scratch.

Both activities are designed as challenges, rather than lectures or experforestudents to
overcome with a wide breadth for tinkering and creativity, and have been shown to increase
student selefficacy as well as attitudes towards programming. These activities also contain
the base constructs for CT, which gives the stigdeaim Starbase who participate in the
summer STEM Institute a greater capacity to learn Mdving forward, Starbase will need to
change an adapt activities, possibly by taking from the successful model from the STEM
Institute, to captivate student atiites towards more areas of STEMhen students at
Starbase Werer lastkkaldk iabout STARBASE ,to my
responses were mostly positive, though some did not enjoy the program. Here are a few

samples:

AStarbase was fun and atlé challenging but I like it! | would go back. Starbase

is awesome | want to do an experiment at home!

fiWe learn about programming engineering, mathematics, we learn about

science and they make learningdun

filt was amazing to learn about STEM becauddhed activities told me about

new stuff that my teacher could not tellane

il do not like it It was too much instructions and did not let us be free and do

what we want. But | liked it and liked the rockets

52

f ami



Al like Starbase because we get to usgorobots, and launch and make a rocket

and we got to go to-&tated

AiWhat | learned that day and please pass the sodium chloide
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Chapter4-Comput ati onal Thinking 1in

As stated irChapter 2 computational thinkig is intended to be a fundamentaf'21
century skill;a tool envisioned by Jeannette Wing to be accessible by everyone in a day of
modern technologgWing J. M., Computational Thinking, 2006; P21 Partnership fst 2
Century Learning, 2015)However, it is important to know where computational thinking
plays its roll in integration with STEAM disciplines and moder? @dntury learning
competenciegDede, Mishra, & Voogt, 2013 onmputational thinking should be something
students can learn as a fundamental skill, and not be forced into computer science as a
discipline. Rather, students should learn the rolepl@ys in other domaingddemmendinger
also argues that the aim of CTnigt trying to force everyone to think like a computer scientist,
but to fAteach t hem h o pwhydicstan dntistakd td understandhow e c o n o
to use computation to solve problems, to create, and to discover new questions that can
fruitftul 1| y b e (Hemmehdingee 20@0Hemmendinger continues that maybe
computer scientists have turned too much focus on computattndmiehgand less towards
computationatloingi being able to implement and carry out nedeas through computational
tools(Hemmendinger, 2010)This also leads into more of the original ideas of Seymour
Papert who promoted computational l iteracy th
programming languag@apert, 1980) Scratch continues Papertos
creative computing, enabling a wide breadth of access to the ability to create personalized
computational artifactand ul t i mat el y all owi ng ectoestoidevel op
computingo and the devel op(Brenmdn, Balcht&Chuing, o mput at

Creative Computing, 2014) his begins to bring together the idea that CT extends ordinary
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humancomputer interactions, extendihgman creativity and intuition into a modern age
(Mishra & Yadav, 2013)

Leveraging its constructionist approaches to teaching programming, Scratch has been
and still is an excellent tool for introducing CT in various disogdi especially in the arts
(Brennan, Balch, & Chung, Creative Computing, 2012gratch is commonly used to
introduce CT through storytelling, letting new learners focus on being creative and telling a
story, altthe-while learning CT concepts like algorithmic thinking, iteration, and conditionals
(Burke & Kafai, 2010) Scratch has also been successful embedding CT in the music domain
(Bean, Weese, Feldhausen, & Bell18) Creativity in engineering though robotics has also
been a prominent area for embedding CT for new leatheonard, et al., 2016particularly
due to robotic systems like LEGO that are controlled using vizasgd laguages.

Computational thinking has even made its way into the Ethics classnoaking student think
critically and systematically on the choices machines are programmed make, particularly smart
cars, and the moral and ethical ramifications that aremted with those choicSeoane

Pardo, 2016) CT hasalsobegun making progress integratingo science and mathematics
through maleling,simulatiors, and video game desi@¢Weintrop, et al., 2016; Wilensky,

Brady, & Horn, 2014; Sengupta, et al., 2015; Repenning, et al.,.2015)

Computation in physics, however, has been very slow toistaigher education
Content is often tightly packed into courses and pressufacoilty to deliver is high, making
it exceedingly difficult to work in new computational physics matéRalos, 2006)

Likewise, teaching loads, alongside research and service requirements, leaves faculty and
departmentsvith no room to add new courses that emphasize computational thiRaog,

2006) Researchers are advocating for the need of introducing CT into physics and looking for
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various ways to embed it in undergraduate curricul@honacky & Winch, Integrating
computation into the undergraduate curriculum: A vision and guidelines for future
developments, 2008)The Partnership for Integration of Computation into Undergraduate
Physics (PICUP) is communitgif educatorsvho are looking for ways to incorporate
computation into their physics classroof@honacky & Winch, PICUP, 2017)PICUP
continues to create and publish a large amount of curriculum and resources, ranging from
mocdels, simulations, problem sets, and programming exercises that emphasize computational
thinking in physics.

Othershave taken the challenge to embed computation into existing courses. Roos
di s c us sresbvibub dawback af integrating computand physics into the traditional
format of physics courses is its poteénti al i n
(Roos, 2006) CT in STEM is not necessarily intended to be its on subject matter of a course,
but atool to enhance students learning and comprehension of course content. Still, depending
on studentsoOé previous experience with technol
for shallow coverage, relying on student stlidy to learn the selectednsputational tools
(Roos, 2006) In their university, Roos first looked at using commersadtware; however, it
Aproduced a barrier between stud#édoxts and t he
algorithms in languages likdatLab add a level of user friendliness, but also prevents students
comprehending what is really going on in the background. This lead Roosctadmthat
computati onal physics can be adequately | earn
fimaximizes comptational learning and helps students achieve maximum understanding and
control in numerically solving equations®bn the other end of the spectra, Austin Peay State

University reorganized their physics major to include three new courses that progress from
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theoretical, experimental, and computational metlfddglor & King, 2006) Computational
tools introduced to the major were not unique to the new courses, but added throughout the
maj or 6s cour se of f eversity(Ross, 2006 thany cokrmercBlrarddGUle y Un
tools were used, such as LabView, MatLab, and Electronics Worklf€aglor & King,
2006) The curriculum also leveraged the direct programming appraéth C++, Fortran,
and C#; however, students are not left to-stlfly. They required to take two levels of
introductory programming and one object oriented programming cflagr & King,
2006)
CT has also made mio K-12 physics.Dukeman et. al. introduced the C3STEM
framework to teach students CT skills in the traffic donfBwkeman, et al., 2013)Through
C3STEM, students worked to identifying patterns by analyzing real tratic ddne students
had a support system where they had the opportunity to communicate with traffic engineers,
city planners, and members of the research team for guidance and feedback on data analysis
and their initial models. Students then created alggesedd models and introduced
interventions in a simulation to study how their decisions affected traffic flow. Farris and
Senguptaised agerbased modeling to bring physics t8 &nd &' graders. In this study,
students learned about kinetics by creatimaglels and simulations in VIMAP, a custom
visuatbased programming | anguage that supports fc

(Farris & Sengupta, 2014)
Exploratory Study: Computational Thinking in Electromagnetics

This sedbn outlines an exploratory study in integrating computational exercises into
PHYS 532, Electromagnetic Fields I, at Kansas State UnivefSithedding computational

thinking into physics classroonhgs taken on a slow start. Given the previous exaroples
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attemptdan undergraduate coursdbere is not a clear consensus on what is the best approach.
The past integrations of computation into physics, including the integration of direct
programming using Fortran and C¢Roos, D06)into existing courses and a broader
approach to complete physics major overhaul outlindd@iaylor & King, 2006) Neither of
these approaches have any formal measure to provide empirical justification for one approach
over the other.The approach chosen was to use direct programming using the Python
language through a series of computational problems to reinforce topics covered in lecture.
Python was chosen over the dominant languages Fortran, C++, and MatLabtslue to i
exceptionally low entry barrier. Python has previously gained popularity as an introductory
language and scientific computing language for many reasons, including:
1 Pseudocodéevel syntax makes Python EnghBke, making it much easier to read for
novice programmers
1 Free and open source, making it more accessible compared to other popular
commercial tools
1 Crossplatform compatibility
1 Wide breadth of libraries and modules built for visualization and scientific computing,
including NumPy, SciPy, VPythoand PyQt
1 Dynamically typed, allowing fast development and prototyping through a variety of
programming paradigms like imperative, objedented, and functional programming
Ot hers have also expressed Pyt hon(@liphast,i abi |l ity
2007)and as a viable language in computational phy#asker, 2007; Borcherds, 2007)

The purpose of this study is to investigate the feasibility of incorporating the Python
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programming language into an undergraduate physics classroom and how it effects student
self-efficacy in computational thinking.
Experiment Design
This exploratory study was introduced to the Fall 2016 PHYS 532 course that lasted
sixteen weeks. As part tife traditional course, students were given five computational
thinking problems:
1. CT171 Pi: Students were asked to calculate pihree methods of calculating pi were
given: a) Use of the area of a unit circle and generation of random points between 0
and1 and comparing the number of points within the cirale (w  p) to those

outside the circle. b) Averaging the perimeters of a circumscribed sqyditee

MacLaurin series expansion givénO A @A T B p ——. Students were

tasked to write pseudocode for method (a) andnethod (b) or (c). Then, by using the
pseudocode as comments, implement the two chosen methods in python to be accurate
to at least six digits.

2. CT2i1 Dipole: Students receive a base starting file where they must add comments to
explain what is happening the code. Afterwards, they make various adjustments to
the plot, different dipole fields, charges, anfietd.

3. CT3i Bars and PlanesAdjust the code from their solution in CT2 to find and plot the
electric field everywhere from a bar of length L datil charge Q. Then they must
show that the field is appropriate in the limits of infinite length and constant non
charge density. Theode must allow for a location based charge density and able to

find the electric field from a disc.
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4. CT41 Capacitors:Using the method of relaxation, find the potential everywhere near
a finite disc capacitor. Then show that the results are reasonable in the limits of large
radiuses, separation, and zero charge. Plot the equipotential and electric field lines.
5. CT51 Toroidal lon TrapDesign a toroidal trap which uses electric potential to keep
charged particles in a ring. Show that the trap has a potential profile that could trap
positively charged ions in a ring.
Due to flexibility issues with course curriculum, d&mts were not given training in
programming in Python and were required to rely on any prior experiences asuigdglf
Each CT problem lasted approximately one to two weeks, and students could collaborate with
each other and use online resources afiveper citations. For each problem, students were
required to add sufficient documentation to explain the code they wrote. All CT problems
were assigned and completed by week eight of the course
Part oftheevaluation included qualitative analysis loétcode submitted for the CT
problems, this included the course population, which consisted of 20 students: 12 physics
majors (the majority were seniors) and 8 students from 6 other majors including physics
education, computer science, mathematics, arudrielal, mechanical, and nuclear
engineering.Other demographic data was excluded to preserve anonyiig/second part
of theevaluation includes results from a modified sdficacy survey fronBummer STEM
Institute 201Gandcan be seen iMable12.This survey was used to measure attitudes towards
computational thinking, problem solving, and the use of computer programming. The survey
was administered before the first CT problem was assigned amelexid of the coursell
20 students responded to the-ptevey; however, 8 were excluded from analysis for not

completing the posturvey and two students optedt for using theisurveydata in research.
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When solving a problem I...

| canwrite a conputer program which.

1 |create alist of Algorithms 10 | runs a stegby-step Algorithms
steps to solve it sequence of
commands
2 | use mathematics | Algorithms 11 | does math operations| Algorithms
3 | try to simplify the | Abstraction 12 | uses loops to repeat | Control Flow
problem by commands
ignoring details
that are not
needed
4 | look for patterns in | Abstraction 13 | takes input from a Control Flow
the problem to user
create an efficient
solution
5 | break the problem | Problem 14 | only runs commands | Control Flow
into smaller parts | Decompositio when a specific
condition is met
6 | work with others to| Parallelization | 15 | runs commands in Parallelization
solve parts of the parallel
problem in parallel
7 | look how data can | Data 16 | uses messages and | Abstraction
be collected, other information to
stored, and talk with different
analyzed tdhelp parts of the program
solve the problem
8 | create a solution | Control Flow | 17 | can store, update, an¢ Data
where steps can be retrieve data
repeated
9 | create a solution | Control Flow |18 | uses custom functiong Abstraction
where some steps
are doneonly in
certain situations
When creating a computer program l... | When creating a computer program |...
19 | make Being 22 | break my program Problem
improvements one | Incremental into multiple parts to | Decomp.

step at a time and

and lterative
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work new ideas in carry out different

as | have tam (1) actions (4)

20 | run my program Testing and Impact
frequ_?rgjtly to n;]alt<el Debugging 23 | I understand how Questioning
sure it does wha computer

want and fix any

problems | find (2) programming can be

used in my daily life.

21 | share my programg Reuse/Remix, | 24 | | am confident I can | Questioning

with others and Connecting use/apply computer
look at others' programming to my
programs for ideas field of study.
3)
Table 12 Self-efficacy survey given to students in the E&M class.
Results
This study was not setup to study i mpact o

understanding of phys.i gran,inPgtloon. Aa sushfeuvathationtob s a b i
student submissions was done qualitatively and not through static analysis, unit testing, or

grading rubrics. First, levels of abstraction were looked for in student submissions.

Abstraction was chosen over othef €oncepts due to its difficulty compared to concepts like

iteration and conditionalsvhich nearly all students showed basic understandin@oftie

efficiency is considered for CT4 and CThlo students demonstrated efforts in parallelism.

Comments madim the code were also analyzed, coding for levels of understanding of the

code and the physics/computational concepts covered in the CT pr@memrment codes

were not exclusiveThese codes can be foundTiable13. Completionrate of each CT

problem were 85%, 95%, 75%, 70%, and 60% respectively.

General Label Description

Abstraction Python functions, apart from any starter code, were defined and u

Efficiency Poor algorithmic design that causes the code to run long, maliné
to inefficient/nested loops.
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No Comments No effort was made to generate comments.

Code Comments | Sufficient comments were made, but only described actions of the
code and not the physics concepts.

Pseudocode (basic) The comments made gaueoverall outline to what was
Comments happening in the code, along with general description of the physi
involved. (depth) The comments made gavel@pth detailon the
physics concepts and linking them to how the code was executed

Commented Codeg Some actuatode was commented out, leaving behind evidence of
tinkering.
Table 13 Annotation labels and descriptions used to analyze student code submissions.

Most students did not show understanding of abstraction in their code. Thdfirst C
problem was simple with only two students using functions. These were only single use
functions; however, it indicated that these students had a better understanding of Python and
the ability decompose and organize a problem into smaller, reusablefartee second CT
problem, students were given starter code to modify. The starter file contained one function,
but four students introduced more to better organize and reuse code. The upward trend of
students understanding abstraction and the ukeofions continued into CT3 with eight
students utilizing functions. Nine students implemented functions for CT4; however, most
(6/9) used only a simple accessor function that was more suitable to be a lambda expression
instead of a functionStudents cold work together on each of the CT assignments, with each
one having 23.5%, 10.5%, 53.3%, 50%, and 75% of the students who had turned in code
working in small groups, respectively. This ended up having a negative impact on CT4 with
the unnecessary useafstraction. The negative impact of group work continued into CT5
where only two students used functiohg/o other students had poorly optimized solutions
that had many triple and quadruple nested lpajtsough the method of relaxation used was
inherantly inefficient so this finding was not surprisinthe rest of the students for CT5

created mostly flat scripts and many haadled valueslt is believed that group work was one
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core part of the degradation in quality in both code and CT conceptbirhGWever, many
students did not show mastery of the physics concept in comments. Only 15% of the students
in CT5 had comments that indicated understanding of the physics problem, compared to 60%
and 42.85% in CT3 and CT4 respectivatyseen iTable14. The prevalence of few/simple
comments was also present in CT2, where most of the work done was modifying existing
code. While this gave in to higher completion rate, there was much less effort given to
commenting and understding the existing code. This was flipped in CT3, where students

had to modify their solution to CT2 but were given more abstract directions. This resulted in a

higher number of kdepth comments explaining the physics concepts that were happening in

code
Label CT1 CT2 CT3 CT4 CT5
None 0 2 0 2 5
Only Code |3 6 6 3
Basic 3 8 3 6 4
Pseudocode
In-depth 10 3 9 6 2
Pseudocode
Commented | 4 4 3 5 0
Out Code

Table 14 Number of labels annotated for each degree of commenting made bydéents in
their CT problem submissions.

Category| SKill Pre Post | Pooled Averfage Eﬁfect P
Mean | Mean Stdv Gain Size | Value
PS Algorithms 3.625 |3.667 |0.911 |0.042 |0.029 |0.545
PS Abstraction | 4.083 |3.667 |0.919 |-0.417 |-0.464|0.193
PS Control Flow | 4.167 |4.083 |0.867 |-0.083 |-0.096|0.777
PS Data 3.292 |3.583 |0.948 |0.292 |0.320 |0.372
PS Parallel. 3.083 |3.333 |0.917 |0.250 |0.273 |0.191
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PS Prob.

Decomp. 4167 |4.083 |0.867 |-0.083 |-0.096|0.777
CT Algorithms 3.625 |[4.167 |1.215 |0.542 0.443 | 0.129
CT Abstraction 2.458 |3.625 |1.132 1.167 1.022 | 0.002
CT Control Flow | 3.361 | 4.056 | 1.222 |0.694 0.572 | 0.086
CT Data 2917 |3.500 |1.238 |0.583 0.471 | 0.027
CT Parallel. 2.333 |3.000 |0.959 | 0.667 0.696 | 0.039
CT Prob.

Decomp. 3.083 |3.667 |1.178 |0.583 0.495 | 0.306

Being
CT Incremental

and lteratve | 2.750 |3.917 |1.167 1.167 1.000 | 0.019
CT Questioning | 4.083 |4.375 |1.015 |0.292 0.288 | 0.392

Reuse,
CT Remixing,

Connecting 2500 |3.667 |1.128 1.167 1.034 | 0.023
CT Testing and

Debugging 3.833 |4.083 |1.163 |0.250 |0.215 |0.571

Table 15 Self-efficacy pre- and postsurvey results.
In the analysis of survey results, most students had no-gir@gtamming

background; however, three students had a class on Java programming and showed high initial
self-efficacy in CT. Otherwise, backgroundMatLab or Octave accounted for 75% of the

prior programming experience among studamts had no correlated effect in reported-self
efficacy. Results showing the pigost selfefficacy in CT and PS concepts and practices can

be found inTable1l5. CT concepts reported mostly medium effect sizes; however,

abstraction had a significantly large effect. Abstraction is arguably one of the most important
and difficult CT concepts, yet without being explicitly taught, studdatsonsrated varying

levels of abstraction in code as well as their-effitacy. Breaking down abstraction, self

efficacy for creating a program that uses custom functions was X}198{( 1)¢ Couple this

with question 16 (using messages and information to talk with different parts of the program)
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that reported an effect size .849 ( 8t m)@nd it shows that students not only understood how
to create functions, but also understoodapseter passing and return values. This could also
be attributed to the starter code given in CT2 where students were required to provide
comments to explain the function given, as well as the number of libraries students used to
create and visualize model This also works well with using variables (store, modify, and
retrieve data) that had significant results; however, with the large emphasis on models and
usage of variables in the code turned in, a lgogst selefficacy scoravas expected. A
dynamcally typed language, like Python, can be a great benefit to new programmers because
data types are not required and variables are quite flexible. This cdraaésa negative
impact, particularly in complex applications or problems, where studemseeaplicitly
forced to learn data structures or types and how to utilize them as in statically typed languages.
Iteration had significant, large effect in student-gdlicacy, but some of the later CT
problems showed inefficient use of flmops.There were no significant results from CT
concepts framed as problem solving skills, though data and iteration had a medium and large
effect size respectively. Similar disconnection between PS and CT was seeSumitner
STEM Institute 2016&urvey, but further studies, including student interviews that target
problem solving skills, will be required to make any significant claim.

Apart from CT skills, students reported significantly higher-séitacy in CT
practices like beingerative and incremental, as well as reusing, xergj and connecting.
This is supported by student collaboration on the CT problems as previously noted.
Consequently, by the end of the CT problems, students began to rely too heavily on the
collaborative aspect and hindered their understanding of the problems and the uniqueness of

their solutions. Iterative development can also be seen in student solutions through code that

66



students comment out. Students expressed that they had good understandingoohpoter

programming could be used in daily life, but experienced a significant increaseeffisalfy

in apply programming to their field. This 1is
programming in the future where students reportedtfiegtwould sometimes use

programming as part of a class, work or hobby (3.5p® Xx3.5, p8t cand 3.08,

p& 1 and would usually use programming (3,92 p® ) as part of researciSome students

expressed that they liked having programming as part of the class; however, most students

struggled learning a programming language:

Al think that getting us involved in progr
we were taught how to do so was an unmitigated disaster. When over 60% of our
class had never programmed before this class and we weren't even taught basic
languages or whyve need to import files to make our program work it was
unbelievably frustrating. | accept the fact that programming is/will be very
important for some of our futures but this is not the correct class to introduce us

to it. There simply wasn'tenoughdas t i me . 0

This was a common theme among student, both the lack of class time dedicated to the CT

problems and little to no support given to learning how to program in Python:

filt would have been much more beneficial to me if we did more in class work on

the computational problems rather than being left to figure it out ourselvoes

AiMore guidance, maybe in the form of an online video series, would be welcome.
The lack of information at the beginning of the course made the projects very

difficult.o
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Teachingyourself how to program in a new language, especially if you have never
programmed before, can also be very difficult to overcome. Some students expressed a mix of

success in trying to find help online for their problems

Alt would be nice if we actuallgad time in class to be taught the syntax and
functions we need to know to complete the assignment. Only one person in the
class had seen Python before, but the homework assignments were pretty much

Google it yourself and figure out how to d@it.

AWhile 1did learn a lot of the basics and could really easily write pseudocode. |
found that | had an incredip hard time making the actuabde. While google
did solve a few problems | often didn't know what to search to findrwer

that | was lookind or . 0

Another student found it difficult not only to be able to learn programming, but also the added

difficulty and overhead in applying programming within physics:

Al think it would be better to take a course on programming before dealing with
it in a physicgontext. It was difficult to learn a new language (and programming

in general for some people) and apply physics without coercion, which was using
physics to avoid programming. | think a class before would have helped me know
what to do and be more efigrit/comfortable. Also, we spent a total of two class
days for five assignments which took, at a minimum, five hours. This made them

feel unimportant

However, not all students had a completely negative experience:
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AiProgramming is awesome, | can't waitilhactually become natural at putting

this knowledge to use.

Conclusions

Introducing computational thinking into undergraduate curriculunbkasshown to
be a difficut task. Similar problems found in the literature, particularly being able tovit ne
concepts and techniques into an already bloated curriculum. The approach of using direct
programming has promise. Students could demonstrate levels of abstraction and algorithmic
thinking, as well as CT practices like reusing/remixing and being incitatrend iterative in
their Python code, as well as their sefficacy. While students expressed a general
understanding of the benefits of incorporating computational physics into the class, they found
the lack of support for learning the Python progmanyg language debilitatingTo continue
incorporating CT into existing physics curricula, supplemental material, such as video lectures,
will be required to alleviate some of the cognitive load from the studéumtsther area for
future study is focusingn how introducing CT effects student comprehension of the physics
content. In the experiment conducted, some levels of this were present in the comments of
student code; however, this does not capture how CT effects student learning outcomes in

other hanework, exams, dabs.
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Chapter5-The Data Explorer

This chapterpublished in part ifWeese & Hsu, Work in Progress: Data Explarer
Assessment Data Integration, Analytics, and Visualization for STEM Education Research,
2016) de<xribes the primary components of an analytics system for STEM education research,
developed for the American Association for Physics Teachers (AAPT). The purpose of this
data exploration system is to allow instructors to comparatively assess studamgectoin
intraclass, longitudinal, and interinstitutional contexts. The interface allows instructors to
upload course data including student demographics and exams to a secure site, then retrieve
descriptive statistics and detailed visualizations ofdhis.For Physics Education Research
(PER), the Data Explorer will be one of the largest repository of assessment data. This enables
research on significantly larger populations and diverse groups, while providing users of the
Data Explorer detailed compsons and analysis, as well as expert recommendations tailored

for teaching physics in their own classrooms.
Automated Assessment Extraction

While some work focuses on automatic analysis of prog(&mis, Basawapatna,
Bennett,& Reppening, 2010for evaluating student performance, others use sentiment
analysis and topic modeling of things like student comments to predict student performance
(Sorour, Goda, & Mine, 2015)However, in CS, little works done modeling students by
using student assessments. This section presents various approaches from table extraction
schema inference for the assessment extraction researchdissigigation One approach,
exemplified in the previous work of Doaddpmingos, and Halevy, uses machine learning to
produce classifiers for schema matchi{Bgan, Domingos, & Halevy, 2003)Cafarella et al.

extend this approach by targeting relational schema and using constraints on relatiienal
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formednessgCafarella, Halevy, Wang, Wu, & Zhang, 2008lore recently, Venetis et al.
infer semantic properties of web data by using observed weak typing constrafts (is
relations, also known ds/ponymyin online krowledge source@/enetis, et al., 2011)In a
variation on this general approach, the research dahésichapteralso uses pattern matching
heuristics and constraints, but restricts the matching to type constraints suchresative
types on multiplechoice questions.

Another approach, holistic information extraction from tables, is characteristic of
systems such as that of Nagy et al., which use syntactic elements of tbéeter paths in
particulari to extract relabnal tupleg{Nagy, et al., 2011) This approach subsumes tabular
data cleaning. For example, Fang, Mitra, Tang, and Giles use supervised inductive learning to
learn the concept of a genuine table (as opposed to spacersaratide elementsgnd
empirically validate heuristics for physical structure analysis (table segmentation, which is
obviated inthetask) and logical structure analy§isang, Mitra, Tang, & Giles, 2012)
Suchanek and Weikuexamine how to capture such tables in the wild, e.g., as embedded in
articles on the web or in print; some relevant ideas from this approach are how to-use rule
based data transformations to segment uploaded data (remove headers, trim extraneous
elementspand validate them against known good tugfschanek & Weikum, 2013Mdelfio
and Samet specifically addrebe chief problem of schema extraction for tabular data by
using a conditional random field (CRF) classifier learmedhfdata; this approach has
achieved marked success in shallow parsing tasks such as named entity recognition in text
(Adelfio & Samet, 2013) Finally, Zhang reexamines the problem of capturing relations in
tables using a cobination of named entity recognition and the kinds of semantic constraints

applied by the second approgang, 2014)
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Data Flow

The first component consists of a Hilased system for pattern analysis that infers
multiple canmon assessment formats with minimal metadata, and in some cases without
headers. This paper describes the incremental development of a {lrésety inference
mechanism with matching heuristics, based on real and synthetic sample data, and further
discusses the application of machine learning and data mining algorithms to the adaptation of
probabilistic pattern analyzers. Early results indicate potential for user modeling and adaptive
personalized recognition of document types and abstract type desnitio

The second component is an information retrieval and information visualization
module for comparative evaluation of uploaded and preprocessed data. Views are provided for
inspection of aggregate statistics about student scores, comparison over himemat
course, or comparison across multiple years. These visualizations include tracking of student
performance on a range of standardized assessmssessments can be viewed as prel
posttests with comparative statistics (e.g., normalized gdagpmposed by answer in the
case of multiplechoice questions, and manipulated using prespecified data transformations
such as aggregation and refinement (drill down and roll up). The system is designed to
support inclusion of a range of supervised intgckearning methods for schema inference,
unsupervised learning algorithms for similatiitygsed retrieval, supervised learning for
regressiorbased time series prediction, and Bayesian models for causal inference on the

decision support end.
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Figure 2 Data flow for importer of Data Explorer.
The users othesystem who are usually Physics educators upload their historical

assessments through an iterative data upload interfdeedata upload interface accepts
assessment filegbat are in a limited set of formats in the current system. The accepted file
formats are xls, xlIsx, and csv. Simplistic file requirements, which include having a header row
and one student per data row, help assure extraction of the correct headardaridiata

while allowing users to uploaalwide range of data formatspart from accepting and

verifying the integrity of the uploaded files the data upload interface prompts the user to
specify meta i nf or maiguied),suci a8 apdroximite rturaberdfa t a o
students that took the assessment and whether the file contains eithpogieor pre and

posttest assessment data. Some of these assessment features are required, while others are
optioral. The assessment specific information, such as assessment name and assessment type
(belief survey or standard multiple choice), provide a rough estimate of the number of
guestions (usually represented as columns) that are present within the uploadeals Wieer
number of students gives an estimate of the number of rows with student scores. The data
upload interface checks the integrity of the file and extracts all the data that is present within
the various file types. The extracted data is saved asdrdate, a twalimensional data

structure, where the atomic data items present in the input fisgcaesl in individual cells of
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the data frame. The reeolumn relationships of the data items in the uploaded files are

preserved in the data frame.
Parsing Data

The objective of the file parser is to identify the boundaries of the assessment scores
within the data frame, as well as identify the location of the headers. The presence of other
extraneous legacy information within the data makes the task atertg payload data from
the data frame a complicated exercise. Some of the various kinds of information that is
available within these files, apart from the payload, could be the rubric or the scoring criteria
for the particular assessment; it could dlawe information dealing with aggregate student
demographic information and other extraneous data. Considering all these variadilities,
heuristics based parser that takes the meta information that is provided during the file upload
process to extract thalid assessment payload from the test dataeatedThe presence of
both pre and postassessment scores within the same data frame is another degree of freedom

that adds to the complexity of the parsing approach.

Heuristic | Description Conditionto Count ,, Contributed
Value 1

String cells The number of cells i

a row that are text. ot 1Xp 1

Integer cells The number of cells i
a row that contain oQ X 1
integers.

Float cells The number of cells i
a row that contain
floating-point
numbers

Duplicate cells The number of
duplicate cells in a oQ X 1
row
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Unique cells The number of unique

. E0AOQI 0'Q 6 Q -1
cells in a row

Pre/Post Detects whether or
not the row contains T 1
GLINBE 2NJ ¢

Long gestion Detects the number
number of large question _ _
numbers (helps when & 6 @ @' Qi1 § "Q0 6 Pim
assessment data is EO0A MmOl Q) 6 Qi
outputted by online
tools)

Max consecutive Detects the largest
number consecutive number
series in a row after
stripped of alpha
characters (Q1, Q2,
Q3, etc.)

Unique markers The number of unique
known headers >
(Student ID, Gender, P

etc.)

gl ‘X 3

Repeated markers | The number of
repeated known
headers (question,
ques, q, pre, post)

Table 16 Heuristics for identifying the header row

dh X o 2

To identify the boundaries of the payload withire datathe header row of the
payloadis identified The header row consists of column names of the various celumn
available in the assessment scores. These could be student particulars such as name, identifier,
or gender, or the particular assessment information, such as grade, question number, or
aggregate scor@dhemodel consists a series of heuristics that samss and columns for
identifying which row contains column headers, and which rows contain the student data.
This helps eliminate user added calculations and miscellaneous data, and extracts relevant

student informationTable16 shows the heuristics for determining the header row, where
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€ 0awQi U Q0 diskEhual éhe humber of questions in the assessment (collected in the
add metadata phase) aii@ 0 &o6a @' Qi U "Q0 6 Qi HEBE BRI 0 Q0 #'Gi0O Q¢ ¢ i

This threshold gauges an approximate number of columns to expect for questions; the
buffer adds tolerance for poorly formatted filEsom Table16, the header row is defined as

bini ¢iol AB .1 "QQwhere  is the heuristics for row. The header row is then

used to determine the table boundaries for relevant student data by comparing each row to row
markers from known templates; otherwise,ha tase a row is absent of markers, the length of

the row (number of neempty cells) is compared @ CX) as defined forable16. If a row

is blank, a combination of 80% of the class size (given by the user as metadaaj@row
marginto allow small gaps in student dasaused If this margin is exceeded, and the number
rows in the current block of data parsed is less than 80% of the class size, the start of the
student data is moved after the blank rows and pacgintinues. This allows the parser to

skip over blocks of precomputed statistics and other user specific information; however, if the
user gives a greatly over or under estimate on class size, files with more than two row gaps in
the data underneath headvill be unsuccessfully parsed.

The schema inference modaelnsuccessfully parse 77/80 testing files (a mixture of
sanitized real data submitted to the project and synthetic data). A file is parsed successfully if
it identified the header row andcided all rows of student data. If the parser includes
miscellaneous columns of data, the t@sipass as these columns can be excluded in post
processing; 23 tests were passed in this manner. The last three tests failed due to the
assessment answer kdyeing included as part of the block of student data. This problem can
be solved for templated files; however, for sextnuctured filesthe answer keys cannot be

differentiated from student responsAscuracy of the schema inference during beta tgstin
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and future production deployment is partly dependent on user feedback (missing student rows
or columns), as well as the headers that are verified by the user (columns thought to be student
data but was not).
Guesser

The guesser module (positioningysh as fA Fi | eFigMe2p ysésma gybridd 1 n
similarity measure to detect approximate matches between candidate header strings and
template strings. This consists of a convex combination of two edit digtarat®ns
(Levenshtein and Jaiinkler), both computed by dynamic programming. The weights are

calculated using a generalized logistic function:

L =
L« = Equationl

L 1R
Folrml <" &
where0 6 p,6 ™0 ' O uv,06 ¢&, andoisthe Levenshtein distancé.is

the lower asymptote) is the upper asymptoté, is the growth rate) is the baseline distance
(input), his a skew parameter (for controlling the inflection point), @rid the baseline
weight (output). The final distance measure for strimgand ¥ can then be defined as:

o owav A - A Equation2
where'Q andQ are normalized Jay@/inkler and thresholded Levenshtein edit distances,

respectively,Q is the raw JarWinkler distance and:
Al
[ m = 1 Equaion 3
ar
The confidence of a column header labeled as a given class is then given by:

ool ™ et fas Equationd

If the header and the class label both contain numeridpa (i . e. AQuesti on
of the numeric and alpha padgeseparatelyompareccombinedwith weights .75 and .25

respectively. This increases the likelihood of labeling alphanumeric question columns with the
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correct question number. If tikenfidence of the best candidate label for a column header is
|l ess than .45, the inferred header in the Fil
otherwise the inferred header is shown.

From initial beta testing, inference of column headers slstmng positive results.
Although it can match columns in the synthetic data, the model's performsgandgedon the
data which users have uploaded and completed the file mappings process. In order measure
performance, true positives (TP), false pue# (FP), true negativesl), and false negatives
(FN) are framed within thproblem. Iftheinferredcolumn header is verified as correct by the
user it is counted as a TP. However, if the inferred header was verified as something different
(inferredheader is overridden), it is counted as a FP. This incorrect guess would normally be
counted as a TN; however, whtleetask is to infer column headers, excluding columns of
extraneous data mingled in with student datalso required For this reasaqrif the inferred
column header is AUnknown, 06 and t hitds user ver.
countedas a TN since this column is confirmed to be unnecessary for analysis and
visualizati on. I f a col umn shheaotummrasactal i Unknow

student datat is countedhs a FN.

Dat -
Assessmen a Column !l TN FP | EN Accurac| Precisio Recall F1
t S y n
Sets
CLASS 3 34 16 |15 |1 2 0.888 | 0.914
Chem 0.9118 0.9412 9 3
CLASS 66 659 51660 |54 |29 0.946 | 0.925
0.8741 0.9053 8 6
BEMA 38 204 11738 |25 |24 0.829 | 0.826
0.7598 0.8239 8 9
FCI 198 | 1193 7111 113|249 120 0.855 | 0.794
0.6907 0.7406 6 0
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MEAT 2 4 2 0 0 2 0.500 | 0.666
0.5000 | 1.0000 |O 7
ChCl 1 8 8 0 0 0 1.000 | 1.000
1.0000 |1.0000 (O 0
FMCEV98 |10 |64 54 |3 5 2 0.964 | 0.939
0.8906 |0.9153 |3 1
FMCE 68 | 317 245113 |35 |24 0.910 | 0.892
0.8139 | 0.8750 |8 5
MPEX 6 14 9 0 4 1 0.900 | 0.782
0.6429 |0.6923 |0 6
CSEM 18 | 141 56 |2 53 |30 0.651 | 0.574
0.4113 | 0.5138 |2 4

Table 17 Results showing the performance of the base guesser model by assessment.
The resultgrom the initial user testing are foundTable17. Data was collected

through 84 unique users who have uploaded 410 datasets spread across ten different

assessments. Data showrablel7 shows the prformance of the guesser module on

student metadata only (demographics, student records, etc.). Question columns were excluded

from analysis due to the system's ability to verify question columns in batches. Once the first
guestion is verifiedthe resof the set for that assessment are automatically verified. There is

also a significantly larger quantity of question columns compared to student metadata, which

inflates the results to be more positive. Still, most assessments maintain asughefl

Some of the assessments cannot be evaluated sufficiently due to lack of datibesets.

inspecting some of the poorly performing files, most of the incorrectly guessed headers are

from ill formatted header rows that contain text not related to the dergéthe column.

Though, in some casdbe modified edit distance model does not perform well among target
headers that contain similar text. For examp
up matching a varietybpfofuudent hEader Nafme &t u

on the columns that were matched eatrlier.
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To overcome this weakness, an active learning approach is used to leverage historical
guesses that are overridden by the user. This adds learning to the edit distahe¢gherede
guesses towards a target label are overridden if the raw header has beseveedmes ()
before. If this occurs, the guess is overridden with the most frequently verified target label for
that raw header text. This new model, with sufficient data, can be trained to recognize headers
that are unique to a specific user. However, less3@&6 of beta users have uploaded more
than two files and even fewer have sufficient student metadata. Training a model for each user
does provide better results when compared to the original model that has not been trained, but
until the Data Explorer reéives more data, models are trained per assessiignte3
comparsthe original model that has no override to results from training models requiring a
minimum of 1, 2 and 3 historical guesses before override occurs. Legeagingle
historical guess provided over 10% increase +sddre. Requiring 2 or 3 historical guesses
still provides an improvement over the original model; however, this increases the number of
datasets to be uploaded before the model is trained.d@mbdack with this method is when
therearemany duplicate raw headers in a dataset. This increases the number of target headers
associated which decreases the accuracy of correctly overriding the original guess. This same
situation arises fromgeneriemv  header s | i ke ONamed and 6Stude

if they have been verified differently within the same user. This is less likely as the number of

samples seen increases.
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Figure 3 F1-Score of the base model tthe active learning model.

Visualization

The information visualization facility of the Data Explorer contains a variety of
functions implemented using ti8.js JavaScript libraryBostock, Ogievetsky, & Heer,
2001) Figure4 shows how normalized (Hake) gain is plotted, with order statistics (mean and
medi an) and standard deviati on, Fijuebshas cl ass ds
howthe visualization services also allow ddllo wn ( Aibr eakdowno) by quest
type of analytical query that results in the display of a distribution of answers for each question
and facilitates comparative analytics for{mad postinstructioral assessments. The objective
of these visualizations is to provide instructors with actionable insight concerning: topics

covered; the impact of instruction and classwork on student learning as assessed formally
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using tests such as FCIl, FMCE, and BEMAd &ngitudinal trends of concern. In continuing
work, additional ways to drill down into multidimensional assessment data, such as using the

TableLenssisualization(Rao & Card, 1994)are being explored
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Your students' average normalized
gain of -0.31 £0.02 is near the
bottom of the range for traditional

lecture classes . See typical results.

The effect size of the change
between pre and post for your
class is -1.20. This is a low effect
size

Your students' average score
changed from 32% + 1% on the
pre-test to 21% + 1% on the post-
test. See typical results.

You have 200 "matched” students
(who took both the pre- and post-
test) in your class. All calculations
are based on matched students.

&l a4

Recommendations

Courses that are taught using interactive
engagement techniques tend to have higher
normalized gains than those using traditional lecture.
The key to these methods is getting students actively
engaged in constructing their own understanding and
not just passively listening.

This can be accomplished in many ways. Popular
methods that you could try include: Peer Instruction,

PhET Interactive Simulations, Interactive Lecture
Demonstrations, and Just In Time Teaching.

As we collect more data on how teaching practices
correlate with learning gains, we will eventually
provide more customized recommendations.

Figure 4. Data visualizer component of the Data Explorer, displaying a histogram of
normalized gain for a hypothetical class on the Force Concept Inventory (FCI)

assessment.
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from point "a" to peint "b" on a frictionless horizontal surface. Forces exerted by
the air are negligible. You are looking down on the puck. When the puck reaches
40% - point "b," it receives a swift horizontal kick in the direction of the heavy print
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Figure 5. A "Breakdown by Question" view, showing drill -down for a single question
and multiple-choice responses, together with the distribution of student responses, on a
postinstructional assessment question (also for the FCI).
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Figure 6. Visualization of student performanceon pre- and post assessment, organized
by classification of question. Class labels are assigned by subject matter experts (physics
education researchers).

Continuing Work: Information Retrieval and Data Mining

A further capability, designed to facilitnstructor exploration of assessment data, is
that of grouping questions by known or discovered categéigure6 shows the results of
visualizing handabeled categories (which are knowrcksssesn machindearning,clusters
in statistics, andegment# business analytics). Work in progress aims at using unsupervised
learning to perform clustering of assessment questions (by topic modeling or by other
similarity-based learning). The key capability thasttuture work aims at is that of retrieving
classes like mineelative to longitudinal data (short time series) and similarity measures

adapted to such time series. Meanwhile, clustering can also enable sirhdaety queries for
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time series datéRafiei & Mendelzon, 1997)Thetime series consisbtf student assessment
scores and normalized gain measures, and thus admit the same kind of dimensionality
reduction and indexin(Keogh, Chakrabarti, Raani, & Mehrotra, 2001) Ultimately,the

goal is to develop a datiriven approach towards concept similarity in assessment data in
STEM education, as Madhyastha and Huolddo to some degree for diagnostic

assessmen{dadhyastha & Hunt, 2009)
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Figure 7. Visualization of courses over time: tracking performance across classes in
multiple offerings (semesters and sections) in a longitudinal study.

Future Work: Instructional Decision Support and Adaptive

Recommendation

Figure7 includes a visualization of assessments across multiple courses taught at a

single institution, typically by a single instructor under whose login the data are grouped for
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multiple £mester combinations. The visualization subsystem also provides a facility for
drilling down by section. This provides the analytical setting for-@mgn objectives: to
progress from interactive visualization within this federated display to adaptigeothe

support systems and tuing systemgBrusilovsky & Millan, 2007)
Conclusion

This chaptepresented a data integration and information management system for
STEM education research. The functionality outlined in ttzemgte screen captures is
focused arounthecontinuing research regarding schema inference and educational data
mining from student assessments. The key novel contributions with respect to data integration
are intelligent systems components for schenmerénice where columns and other elements
are unlabeled, nonstandard, and may include missing data. The novel contribution with respect
to analytics are the interactive information visualization components that both provide insights
into assessment data ageherate requirements for similaribgsed retrieval and comparative

evaluation of student performance.
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Chapter6-Su mmaarnyd Fut ure Wor Kk

Summary

Computer science undoubtedly plays a role in all disciplines andlifiajlynaking
computational thinking a necess&4#' century learning skill. As a country, the United States
still lacks the support to embed this skill into thelK curriculum. This leaves CS and
education professionals room to only advocate, promote, and create. As part of the research in
this rgoort, multiple curricula and pedagogy have been employed and testetRimitreach
environments. These methods have shown effectiveness at fostering CT, yet maintain an
accessible level for educators who do not have a CS backgr&wed. moving into
undergraduate education, this work shows the possibilities and benefits of incorporating CT

into other discipline like physics.
Future Work

The work done in this dissertation has room to grow. Work done with the summer
STEM Institute will continue. To furtér the conclusions drawn from selfficacy,
knowledgebased questions are going to be introduced to the camp lessons. These will be
introduced throughtrivih i ke games to prevent the class fro
Il i ke a 0 c a mpadjdgstmentswil bemade o aame of the microcontroller
curriculum to further reduce cognitive load and to put more emphasis on CT apart from the
electronics.Student interviews will also be needed in the futareorroborate findings in
links or nonexisting links between CT and P8lo changes are currently slatied Starbase;
however, the girl scoututreach event is going to be expanded to be a full day event to cover
more topics and will include brownies™t8'), juniors (4"-5"), and cadettes{-8"). CT

work done for undergraduate physics will also continue to be pursued. The work done in this
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dissertation was only an experimental study to look at feasibiitypossible ways of
approaching the incorporation of CT in physics. Moving fodyére direct programming
approach will still be used, but online lecture and support materials will be created to help and
support students as they learn the programming language. Rubrics will be created for the CT
problems to help link the effectsof @Tn st udent s®6 abWobrkwity t o | earn
physics and the Data Explorer will also continue as the user feedback from the open beta
shapes and improves the visualizations, features, and user experience. Future research in the
Data Explorer includeautomatic clustering of assessment data through topic modeling and
student responseisientifying studentdike-mine so users can compare their students to similar
data across the entire site, and expansion of assessment support, including custorarassessm
that can be made within the Data Explorer.
Girl Scouts

This section discusses material used for a thoee, artificial intelligencehemed
Scratch event for Girl Scout Juniord'@nd %" grade), as well as observations made during
the event and ture goals for the program. Underrepresented groups in STEM have been a
large focus in college recruitment, as well as outreach programs. Females in particular, are a
largely underrepresented group in computer sci@is&ina, Pontelli, Jensen, & Haebe, 2009;
Vekiri & Chronaki, 2008) Research has shown that girls cope equally well with computer
science as boys; however, sefficacy in computers and value in computers is significantly
lower in females vs mald¥ekiri & Chronaki, 2008) Some outreach programs, designed
specifically for young women, have had success in teaching computer science concepts
(Pivkina, Pontelli, Jensen, & Haebe 02) Denner, Werner, & Ortiz, 2012; Webb & Rosson,

2013) Webb and Rosso also designed an outreach program for young women and showed
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that scaffolded examples are an efficient method for teach computational thinking to women
(Webb & Rosson, 2013)The Girl Scout event drew from a mixture scaffolding theory and
direct instruction, very similar to the work done at the summer STEM InstituteSaat&
Attendance consisted of 25 Girl Scout Juniors, as well as three BrowHiaad23® grade)
and one Daisy (Kindergarten antidrade). The younger scouts were brought by parents with
Juniors and were allowed to participate. Only five or six scouts mentioned they had used
Scratch before.

Activities

The first lesson involved guided exploration of Scratch. In this activity, students
were shown how to place, move, and delete blocks, how to move, draw, and use basic loops,
and how to modify, add, and delete Sprites and Backdrops. Scouts who had used Scratch
before, as well athose who were catching on much faster than others, were encouraged to
work ahead and explore what they could find in the language. After this introduction, scouts
participated in an activity to draw regular shapes similar to the activity outlir{@bam,
Weese, Feldhausen, & Bell, 20138} this time, the class was split into two groups. One went
onaguidedtourofiSt at eds computing cluster, Beocat, w|
exercise.

Once the groups got tmmplete the program and the tour, the scouts participated in a
CS unplugged activity centered on artificial neural networks (ANNSs). In this activity, students
were given a paper with segments of ten different pictures. Their task was to guess, solely on
their fragment, if a picture was a cat or a dog. Ten numbers were lined around the room with
everyone starting at one number in the beginning. If they guessed the picture correctly, they

moved up a number, if wrong, they moved down a number. Thisysioimbduced the basic
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understanding of how the brain works. As the activity moved on, different groups started to
form that knew certain knowledge of cats and dogs (similar segments of the picture). In the
middle of the activity, the students are tridkey being shown a picture of a bear. This

initiates a discussion about how humans and computers are only able to make conjectures
based on current knowledge, and in this case, students were only given knowledge that they
were looking at a picture segmaexita cat or a dog. At the end of the activity, there are

generally many smaller groups and a couple large groups. Discussion about how the larger
groups (generally the students who get segments of pictures with more details like a nose) are
more reliabé in guessing if a picture is a cat or dog and that their vote carries more weight if
the vote for pictures was as a whole, rather than individually.

The theme of artificial intelligence was carried into the last activity, where scouts
programmed an Alnla game called Cat and Mouse. The lesson plan for this activity can be
found in the Appendixintroduction to Al: Cat and Mouse Lesson PlaBgfore scouts started
to program, they were asked what it means tmtedligent. While the most common answer
is fAbeing smart, o0 it opens discussion about <c
sensing. Scouts were then asked to link human intelligence to artificial intelligence. After the
opening discussion, sats were directed through how to program a basic completed Cat and
Mouse game. Then they were prompted to openly discuss how they could improve the Al (the
cat) to make the game more interesting. The event was then wrapped up with the video from
Codeog entitled AWhat Most Schools Dond6ét Teach,
computer science can do for them as a career.

Summary
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Overall, this event was received way beyond what was originally planned. The girls,
as well as parents who stayed, waghly engaged and maintained that excitement throughout
the time they were there. Many scouts went above and beyond the activities by exploring what
they could do in Scratch to make the programs their own. One observation with the Brownies
and Daisy thaattended was that they did not require any special attention to stay caught up in
the activities. This was unexpected, especially with the Daisy scout, although the younger
scouts did exhibit some shyness when compared to their older peers. Becassnthwsent
over so well, a larger, full day workshop is being organized for 2017. The Girl Scouts of
America, especially the size of the organization, provides a great partnership to get girls
excited about STEM.

Computational Thinking: Qualitative to Qu antitative

Current work for thiglissertatiorhas centered on mostly qualitative analydi€T
though sekefficacy. While seHefficacy has been shown to be an accurate measure for
computational thinkingBell, 2014;Bean, Weese, Feldhausen, & Bell, 20aByi computer
programmingRamalingam, LaBelle, & Wiedenbeck, 2004his report proposes to combine
self-efficacy with quantitative analysis, such as static analysis of programs. cfivation
for this connection is that previous sefficacy work (discussed in tfBummer STEM
Institute 2015hapter) showed that attitude surveys are not a reliable measurement for CT
when students have not hpievious exposure to computer science. Students were
overconfident in their abilities in the psairvey, leading to a net loss in the piest after
being introduced to the topics. Some inconsistencies are also present in student answers from
within eat survey and from pre to post, most likely due to confusion in language or not

understanding the question. With these observations in mind, the proposed research will use
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guantitative analysis of student problem solving traces and programs. The hyploéness
that quantitative analysis will reveal studen
studentsd6 actual abil ity -efftacpintgetpostest. It he cour s
other words, this will most likely lead to opposingafjtative and quantitative results early in a
class, with quantitative results fluctuating as concepts are introduced and plateauing once the
corcept is learned, and finallypoverging with postest selefficacy.
Scratch to Blockly

Program logging and alysis, including compilation and programming process, is
present in current tesiased programming literaturgjch asBlackbox(Altadmri & Brown,
2015) a data logging system from the popular IDE BlueJ used in CS0 and OSés;@and
CloudCodel(Spacco, et al., 20153 web based programming exercise delivery system. With
these systems in mind, a translation from Scratch to Blockly is proposed. While Scratch is a
mature visual programming todtis not supported by mobile devices or iPads (a fairly
common device in KL2 classrooms). Blockly is developed using JavaScript which is cross
platform and runs well on mobile devices. While containing the basis for a lot of visual
programming languadeinctionality, it does not provide similar sprite and animation
functionality that is present in Scratch and other popular visual based languages. Touch
Develop by Microsoft provides cross platform and mobile support, as well as sprite
functionality; howe er , after i nspecting source code of
code base was a better option for reskinning and tooling for the purposes of this research.
Bl ockly also i mplements blocks as a Ytool box.
creating custom blocks, but also gives the ability to limit blocks, providing educators a way to

target CT concepts without distracting students with extraneous options. Once Scratch
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functionality has been added into Blockly, a new layer will be adalatidw finegrained
logging. This will include user interactions with the Blockly interface (button clicks, opening
and closing of the block toolbox, switching views, etc.), and more importantly, logging block
placement, deletion, movement, and lengttimé between these actions. The overarching
goal of this data logger is to gain an understanding on how students solve programming
problems and to detect when they may be having difficulties with a particular concept. This
guantitative analysis will prade the basis for interpreting student sefficacy, as well as a
potential predictor of performance.
The current development progress of this tool has been done by a group of senior

undergraduate CS students. While the tool has not been completeilpthimg are some of
the major features that have been implemented:

1 Blocks have been skinned to look more like scratch. This gives it a more vibrant color

and a familiar feel.

1 Motion, Pen (drawing), and Scratch control loop blocks have been added

1 Basic $age and Sprite functionality, as well as a console for program output
A major component missing are message blocks. These are used to communicate between
scripts and sprites in Scratch and are essential for a multithreaded program. Since Blockly
generags JavaScript from blocks and executes it within a sandboxed environment (unlike
Scratch which uses Adobe Flash), it will require some major improvements to its interpreter.
JavaScript is natively a single threaded programming languageesecute a Rickly
program, the Blockly interpreter must share the execution environment with the web browser.
The proposed solution to increase the efficie

scheduling policy, as well as execute blocks in chunks ratheptieat a time. By also using

94



a timer, this will allow more execution time for Blockly (currently each block command is
gueued and yields until the browser stack is empty) without starving the Ul thread.

Once this functionality is complete, the ScratcBlackly translation will be piloted in
the CSO course at Kansas State University which currently uses Scratch as its programming
language. Seléfficacy will be collected using prand postsurveys at the beginning and end
of the semester, respectivelyata will be logged from the course programming assignments
and tracked throughout the semester. This data will be analyzed using a modified PECT
framework(Seiter & Foreman, 2013} fit the programming assignments, as welt@aspared
to student course grades. Machine learning tools like regression models and Bayesian
networks will also be used with features generated from the modified PECT framework to
studywhetherstudent performance the course and CT can be predidtedlive deeper in
understanding transfer and sefficacy of CT, future work will also include studying the
move from blockbased to texbased programming langua@®'eintrop & Wilensky, Using
Commutative Assessments to Compaométptual Understanding in Blotdased and Text
based Programs, 2015%Yhich is also why Blockly was chosen as the base tool as it provides a
block to textbased language translation. This, as well as potential intelligent tutoring system

implementatios, will be reserved for future work.
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AppendixA-STEM I nstitute
Student Survey

A * notes questions inspired by or used frafiRaber, Unfried, Corn, & Townsend,
2012) and ** notesquestions inspired by or used fro(Bean, WeeseFeldhausen, &
Bell, 2015)
Background; STEM Camp

0 | Which grade will you be ir] 51 g 7th gth 9th
this coming school year?

1 | How manyprevious 0 1 2 3 4
summers have you
attended the STEM camp|

1.1 | What STEM activities did | Free text
you partigpate in?

2 | Which classes are you Four drop down boxes or a list of ----- 7-9" grade-----
taking during this STEM | check boxes for the sessions: 3D Printing
camp? ---5-6" grade------ Chemistry of Candy

CSI: Undercover
Electronic Textiles

GPS and Secret Hideouts
Hollywood Science
Mission to Mars

Monster Storms

Outdoor Biology

Robotics 1 aS5TARBASE
Robotics 2 at STARBASE
w2O01AyQ
Solar Construction
Science of Sports
Vet Med

Wind Energy

YR w2t

City of Minecratft

Exploring Drone
Techology

Feed Your Head
with Tech Ed

Flour, Food, and
Fido

Need for Speed
Game Design
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3 | Which classes have you | Same as above question.
already taken during this
STEM camp?
4 | Have you participated in | Yes No
other STEM camps,
groups, or activities
outside of this pogram?
4.1 | If so, please list. Free text
Background; Computer
Technology
5 | Please check all that appl
with the location
F3a20AF 0SR®
5.1 participated in the hour of| School In the Home | Outside| Other
code? Activity Classroom Event
5.2 | programmed using School In the Home | Outside| Other
Scratch? Activity Classroom Event
5.3 | programmed using School In the Home | Outside| Other
Blockly? Activity Classroom Event
5.4 | programmed using Touch| School In the Home | Outside| Other
Develop? Activity Classpom Event
5.5 | programmed using a text | School In the Home | Outside| Other
based language? Activity Classroom Event
5.6 | programmed using School In the Home | Outside| Other
languages not listed Activity Classroom Event
above?
Background; Math Strongly Disagree | Neither | Agree | Strongly
Disagree Agree or Agree
Disagree
6 | *Math has been my worst
subject.
7 | *I would consider
choosing a career that
uses math.
8 | *I can handle most

subjects well, but | cannot
do a good job with math.
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| can apply math concepts
to other subjects.

10

| would consider a career
in math.

Background; Science

Strongly
Disagree

Disagree

Neither
Agree or
Disagree

Agree

Strongly
Agree

11

*| am sure of myself when
| do science.

12

*| would consider a career
in science.

13

*| expect to use science
when | get out of school.

14

*| know | can do well in
science.

15

*| can handle most
subjects well, but | cannot
do a good job with
science.

Background; Engineering
and Technology

Strongly
Disagree

Disagree

Neither
Agree or
Disagree

Agree

Strongly
Agree

16

*| like to imagine creating
new things.

17

*If | learn engineering,
then | can improve things
that people use every day

18

*| would like to use
creativityand innovation
in my future work.

19

*Knowing how to use
math and science togethe
will allow me to invent
useful things

20

*| believe | can be
successful in a career in

engineering or technology
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Background; Leadership
and GralzL] X&® ® 0|
Century Learning**)

Strongly
Disagree

Disagree

Neither
Agree or
Disagree

Agree

Strongly
Agree

21

*| am confident | can lead
others to accomplish a
goal.

22

*| am confident | can work
well with students with
different backgrounds ang
opinions.

23

*| am confident | can makg
changes when things do
not go as planned.

24

*| am confident | can
manage my time wisely
when working on my own,

25

| am confident | can
manage my time wisely
when working in a group.

Programingg | can write a
computer program which
X

25

50

75

100

26

**Executes a stefby-step
sequence of commands

27

**Uses loops to repeat
commands

28

**Responds to events like
pressing a key on the
keyboard

29

**Does more than one
thing at the same time

30

**Only executes
commands when a specifi
condition is met
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31

**Perform math
operations like addition
and subtraction

32

Perform Boolean
operations like 5 <10 < 1!

33

**can store, update, and
retrieve values

34

**can ask for input from
the user

Programing; When 0 25 50 75 100
creating a computer
LINE AN Y L >

35

**Make improvements
one step at a time, and
work new ideas in as |
have them

36

**run my program
frequently to make sure it
does what | want, and fix
any problems I find

37

**share my programs with
20KSNAR | yR f
programs for ideas

38

**preak my program into
multiple parts to carry out
different actions

Teacher Survey

A * notes questions inspiteby or used from(Faber, Unfried, Corn, & Townsend, 2Q1
and ** notesquestions inspired by or used frofBean, Weese, Feldhausen, & Bell,
2015)

Background;
STEM Camp
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0 | Checkhose that | College | Pre Primary | Secon | Collegiate | Administ

I LILI e Y | Student | Service | Teacher | dary Instructor | rator
Teacher Teach | /Professor
er

1 | Is this your first Yes No
time teaching at
the summer STEM
camp?

1. | If not, howmany |1 2 3 4 5

1 | previous summers
hawe you taught?

1. | What STEM Free

2 | activities did you | text?
teach?

2 | Which classes are| Four drop down boxes or a list of cheq ----- 7-9" grade-----
you teaching boxes for the sessions: 3D Prining
S;rrrl]r;)%thls STEM | .. 56" grade------ Chemistry of Candy

CSI: Undercover City of Minecraft
Electronic Texkes Exploring Drone
GPS and Secret Hideouts Technology
Hollywood Science Feed Your Head with
Mission to Mars Tech Ed

Monster Storms Flour, Food, and Fido
Outdoor Biology Need for Speed
Robotics 1 at STARBASE Game Design
Robotics 2 at STARBASE

w2O01AYyQ YR w2ftfAa

Solar Construction

Science of Sports

Vet Med

Wind Energy

3 | Which classes hay Same as above question.
you already taught
during this STEM
camp?

4 | Have you Yes No
participated in
other STEM
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camps, groups, or
activities outside
of this program?

4. | If so, please list. | Free text
1
Background;
Computer
Technology
5. | participated in the | School | In the Home | Outsid | Other
1 | hour of code? Activity | Classroom e
Event
5. | programmed using School | Inthe Home Outsid | Other
2 | Scratch? Activity | Classroom e
Event
5. | programmed using School | In the Home Outsid | Other
3 | Blockly? Activity | Classroom e
Event
5. | programmed using School | In the Home Outsid | Other
4 | Touch Develop? | Activity | Classroom e
Eent
5. | programmed using School | In the Home | Outsid | Other
5 | atextbased Activity | Classroom e
language? Event
5. | programmed using School | In the Home | Outsid | Other
6 | languages not Activity | Classroom e
listed above? Event
5. | participated in the | School | In the Home | Outsid | Other
1 | hour of cale? Activity | Classroom e
Event
Background; Strongly | Disagree | Neither | Agree | Strongly Agree
Teaching Disagree Agree or
Disagree
6 | | am comfortable
in teaching Math.
7 | I am comfortable

in teaching

Science.
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| amcomfortable
in teaching
Technology.

| am comfortable
in teaching
Engineering.

10

Which areas do
you teach?

11

Which areas woulc
you like to teach?

Background;
Engineering and
Technology

Strongly
Disagree

Disagree

Neither
Agreeor
Disagree

Agree

Strongly Agree

12

*If I learn
engineering and
technology, then |
can | integrate it
into my classroom,

13

*| would like to
use creativity and
innovation in my
classroom.

14

*Knowing how to
use math and
science together
will alow me to
better integrate
engineering and
technology into
my classroom.

Background;
Leadership and

D NR dzLJ SX @ ¢
Century
Learning**)

25

50

75

100

15

*| am confident |
can lead others to

accomplish a goal,
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16

*| am confident |
can teachstudents
with different
backgrounds and
opinions.

17

*| am confident |
can make changeg
when things do
not go as planned.

18

*| am confident |
can manage my
time wisely when
working on my
own.

19

| am confident |
can manage my
time wisey when
working in a
group.

Teaching;
Programming

25

50

75

100

20

** | feel confident
writing simple
programs for the
computer.

21

** | know how to
teach
programming
concepts
effectively.

22

** | can promote a
positive attitude
towards
programming in
my students.

23

** | can guide
students in using
programming as a
tool while we
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explore other
topics.

24

** | feel confident
using
programming as
an instructional
tool within my
classroom.

25

** | can adapt
lesson plans
incorparating
programming as
an instructional
tool to meet my
students' learning
level.

26

**| can create
original lesson
plans
incorporating
programming as
an instructional
tool.

27

** | can identify
how programming
concepts relate to
Common Core
Stardards.

28

** | can identify
how programming
concepts relate to
Next Generation
Science Standardg

AppendixB-STEM | nstitut e

** notes questions inspired by or used fro(Bean, Weese, Feldhausen, & Bell, 201

Background STEM
Institute
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Biomechanical Engineering
CSI: Uncovering the Truth
Electronic Textiles
Hollywood Science
Monster Storms

Robotics 1 at STARBASE
Robotics 2 at STARBASE

Rockindéd and Ro

0 | What is your gender? | Male Female
Which grade were you i 5" 6" 7t g 9th
at the time you enrolled
for the STEM Institute
2 | How manyprevious 0 1 2 3 4
summers have you
attended the STEM
Institute?
2.1 | What STEM activities | Four drop down boxes or| ----- 7-9" grade-----
did you participate in? | a list of qheck boxes for | 3p Printing
the setismns: Chemistry of Candy
~--5-6" grade-——- City of Minecraft
CSI: Un(_jercovc_er Exploring Drone Technology
Electronic Textiles Feed Your Head with Tech
GPS and Secret Hideouty g(
Hollywood Science Flour, Food, and Fido
Mission to Mars Need for Speed
Monster Storms Game Design
Outdoor Biology
Robotics 1 at STARBASE
Robotics 2 at STARBASE
Rockind and
Coasters
Solar Construction
Science of Sports
Vet Med
Wind Energy
3 | Which classes are you | Four drop down boxes or a list| ----- 7-9" grade-----
taking this year at the | of check boxes for the sessions 3p Printing
STEM Institute? ----5-6" grade------ Chemistry of Candy

City of Minecratft

Engineering

Nanotechnology
Exploring Drone

Technology

Fill Your Toolbox
Introduction to Passive

Architecture

with
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Rube Goldberg Challenge

Simulating the Martian

Solar Construction
Science of Sports

Vet Med

Wind Energy

Grain and Bakery

Science

Mighty Micro

Controllers

Robotic Design and
Programming

Have youparticipated in
other STEM camps,
groups, or activities
outside of this program?

Yes

No

4.1

If so, please list.

Free text

Background Computer
Technology

Please check all that
apply with the location
associated.

At School

At Home

At a STEM camp,
group or activity

Other

participated in the hour
of code?

programmed using
Scratch?

programmed using
Blockly?

programmed using
Touch Develop?

programmed using a tex
based language?

programmed using
languages not listed
above?

When solving a problem
| é

Strongly
Disagree

Disagree

Not
Sure

Agree

Strongly
Agree

Create a list of steps to
solve it.

Use math operations

Try to simplify the

problem by ignoring
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details that are not
needed.

Look for patterns in the
problem

Break the problem into
smaller parts

Look at how information
can be collected, stored
and analyzed to help
solve the problem

Break problem into parts
to be solved by different
people at theame time

Create a solution where
steps can be repeated

Create a solution where
certain steps are only
done when a condition ig
met

Programing | can write
a computer program
whi ch &

Strongly
Disagree

Disagree

Not
Sure

Agree

Strongly
Agree

**runs a stepby-step
sequence of commands

**Uses loops to repeat
commands

**Responds to events
like pressing a key on th
keyboard

**Does more than one
thing at the same time

**QOnly executes
commands when a
speific condition is met

**Perform math
operations like addition
and subtraction
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Uses messages to
communicate with
different parts of the
program

**can store, update, and
retrieve values

**can ask for input from

the user
Programing When Strongly Disagree | Not Agree Strongly
creating a computer Disagree Sure Agree

program |

**Make improvements
one step at a time, and
work new ideas in as |
have them

**run my program
frequently to make sure
does what vant, and fix
any problems | find

**share my programs
with others and look at
ot hersdé pro
ideas

**preak my program into
multiple parts to carry
out different actions

AppendixC-St ar batsestPr e

1. What is the first step in the engineering design process?
A. Create a prototype
B. Choose the best solution
C. Define the problem
D. Select the best Computer-Aided Design (CAD) software to use
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Based on the graph above, which prediction is the most logical for the reaction
shown?

A. The temperature of Ch e mi ¢ a | AAO0O and Chemical ABoOo will

B. The temperature of Chemical AAO wi I | i ncr e

C.The temperature of Chemical AAO wi I | decr e
constant.

D The temperature of Chemmceaehbh!| iABowiwll |l deoce

3. When measuring the volume (or amount) of a liquid, what standard unit of
measurement would you use?

A. Liter
B. Gram
C. Celsius
D. Meter
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