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Abstract 

Dry-cured ham is protected from infestations of Tyrophagus putrescentiae (Schrank) 

(Sarcoptiformes: Acaridae) with the fumigant methyl bromide. Developing feasible alternatives 

to methyl bromide is necessary due to the phase out of methyl bromide. The effectiveness of 

food-safe compounds for preventing infestations of T. putrescentiae on dry-cured hams was 

evaluated by dipping ham pieces in solutions of various food additives. Propylene glycol (1, 2-

propanediol), lard, ethoxyquin and butylated hydroxytoluene prevented or significantly reduced 

mite population growth. A combination of carrageenan + propylene glycol alginate + 40% 

propylene glycol was effective in reducing mite numbers on treated whole-aged hams compared 

with untreated hams. 

Dose/response tests with twelve registered residual insecticides were conducted to assess 

contact toxicity to T. putrescentiae. Three of these insecticides were evaluated for persistence 

over a 2-month period on different surfaces. Commercial formulations of deltamethrin plus 

chlorpyrifos-methyl, chlorfenapyr, and malathion showed promising results for contact toxicity 

against  T. putriscentiae. Chlorfenapyr applied to metal, concrete, and wood resulted in 100% 

mortality of treated ham mites for up to 8 weeks. 

The effect of high and low temperatures on mortality of T. putrescentiae was studied in 

the laboratory. Groups of 10 eggs and groups of a mixture of 40 adults and nymphs were 

separately exposed to several high and low temperatures, ranging from +35 to 45°C and from 

−20 to +5°C, for several time periods. Eggs were found to be more tolerant to both high and low 

temperatures compared with adults and nymphs. Results showed that high temperatures from 40-

45°C killed all T. putrescentiae eggs, adults, and nymphs within 4-1 d, while −10°C or lower 

killed all the same stages in less than 1 d.  



  

Combinations of the fumigant sulfuryl fluoride (SF) applied under high temperatures 

ranging from 25-40ºC, were studied to determine the highest temperature, shortest exposure 

time, and the lowest value of a concentration-by-time product (CTP) of SF against  T. 

putrescentiae. Results showed that complete control of all life stages of T. putrescentiae was 

achieved at 40ºC with SF. More than one day of exposure was required to kill adults and nymphs 

and eggs at 40ºC at a CTP close to the EPA labeled rate of 1500 gh.m-3. Results indicated that 

adults and nymphs were more susceptible to SF compared to eggs. This study focused on 

investigating different control methods for T. putrescentiae in dry-cured ham facilities and most 

of examined techniques are preventive, although some of them can be applied as remedial 

methods after mite infestations are noticed. 
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Abstract 

Dry-cured ham is protected from infestations of Tyrophagus putrescentiae (Schrank) 

(Sarcoptiformes: Acaridae) with the fumigant methyl bromide. Developing feasible alternatives 

to methyl bromide is necessary due to the phase out of methyl bromide. The effectiveness of 

food-safe compounds for preventing infestations of T. putrescentiae on dry-cured hams was 

evaluated by dipping ham pieces in solutions of various food additives. Propylene glycol (1, 2-

propanediol), lard, ethoxyquin and butylated hydroxytoluene prevented or significantly reduced 

mite population growth. A combination of carrageenan + propylene glycol alginate + 40% 

propylene glycol was effective in reducing mite numbers on treated whole-aged hams compared 

with untreated hams. 

Dose/response tests with twelve registered residual insecticides were conducted to assess 

contact toxicity to T. putrescentiae. Three of these insecticides were evaluated for persistence 

over a 2-month period on different surfaces. Commercial formulations of deltamethrin plus 

chlorpyrifos-methyl, chlorfenapyr, and malathion showed promising results for contact toxicity 

against  T. putriscentiae. Chlorfenapyr applied to metal, concrete, and wood resulted in 100% 

mortality of treated ham mites for up to 8 weeks. 

The effect of high and low temperatures on mortality of T. putrescentiae was studied in 

the laboratory. Groups of 10 eggs and groups of a mixture of 40 adults and nymphs were 

separately exposed to several high and low temperatures, ranging from +35 to 45°C and from 

−20 to +5°C, for several time periods. Eggs were found to be more tolerant to both high and low 

temperatures compared with adults and nymphs. Results showed that high temperatures from 40-

45°C killed all T. putrescentiae eggs, adults, and nymphs within 4-1 d, while −10°C or lower 

killed all the same stages in less than 1 d.  



  

Combinations of the fumigant sulfuryl fluoride (SF) applied under high temperatures 

ranging from 25-40ºC, were studied to determine the highest temperature, shortest exposure 

time, and the lowest value of a concentration-by-time product (CTP) of SF against  T. 

putrescentiae. Results showed that complete control of all life stages of T. putrescentiae was 

achieved at 40ºC with SF. More than one day of exposure was required to kill adults and nymphs 

and eggs at 40ºC at a CTP close to the EPA labeled rate of 1500 gh.m-3. Results indicated that 

adults and nymphs were more susceptible to SF compared to eggs. This study focused on 

investigating different control methods for T. putrescentiae in dry-cured ham facilities and most 

of examined techniques are preventive, although some of them can be applied as remedial 

methods after mite infestations are noticed. 
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Chapter 1 - Introduction and Objectives 

  



2 

 

Dry-cured hams and related pests  

The history of preparing dry-cured ham can be traced back to ancient times when dry 

curing initially was used as a preservation process. Today, salting is not needed as a preservative 

method for meats due to refrigeration technology, and incorporation of additives like nitrates and 

ascorbic acid to preserve and produce a tasty meat product (Toldrá et al. 1997). American dry-

cured ham, also known as country ham, is a treasured tradition, produced from a hog`s hind leg 

and cured with dry salt through different procedures depending on the region (Marriott and 

Ockerman 2004). By definition, true American dry-cured ham is cured with a dry salt cure, loses 

at least 18% of its original weight in curing and aging process from dehydration, and contains a 

minimum of 4% salt (USDA 1999). This special type of ham is therefore cured with salts, 

sometimes smoked, and then aged for several months (Marriott and Ockerman 2004). Based on 

traditional procedures, preparing dry-cured ham involves several steps: curing, salt equalization, 

and aging (Zhao et al. 2016). The typical curing ingredients for American dry-cured hams 

include salt, sodium nitrate, sugar, and spices and each has a pivotal role the in curing process 

(Marriott and Schilling 2004). Salt inactivates spoilage microorganism  proliferation through 

reduction of water activity and elevates the solubility of myofibrillar proteins. Nitrate breaks 

down to nitric acid and changes the flavor and color of the ham to pink (Toldrá et al. 1997, 

Armenteros et al. 2012). During the curing step, hams are placed fat side down in one layer and 

completely surrounded by salt. Hams are typically kept for 6 weeks at temperatures between 2 

and 4°C, while treated with curing mixture and length of this stage can vary based on the weight 

of the fresh ham, and the processor's preference for meeting USDA requirements (Toldrá et al. 

1997, USDA 9 CFR 318.10 2011). Ingredients are dissolved by the ham`s natural moisture and 

diffuse slowly into the ham. The curing mixture is removed from surfaces of hams in the next 
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stage, usually by washing with water, and hams are then prepared for smoking when it favors the 

processors. Hams are stored at 10-13°C for about 2 weeks after curing stages for cure 

equalization. The hams shrink approximately 8-10% during curing treatment and equalization 

(Marriott and Schilling 2004, Graham et al. 2012). The relative humidity is less than 75% during 

this process to inhibit microbial growth and the production of unpleasant flavors (Marriott and 

Ockerman 2004). The last and more complex stage is the aging or ripening period. Hams are 

placed in ventilated rooms and kept under time-temperature-relative humidity cycles (Graham et 

al. 2012). Temperatures vary between 16 and 25°C during the aging for European dry-cured ham 

with relative humidity varying between 65 and 80%, while aging temperatures may go as high as 

28°C or more in the United States (Toldrá 2010, Rentfrow et al. 2012). More than half of country 

ham producers in the US age hams for 3-6 months. However many companies continue aging 

hams between 6 months to 2 years to intensify the ham flavor (Rentfrow et al. 2012). During the 

aging stage, hams lose 8-12% of their original weight (Graham et al. 1998,). The loss of moisture 

gives the ham a deeper color, firm texture, and desirable taste depending on the length of aging 

(Toldrá et al. 1997). The final product is a shelf-stable, dry-cured ham with unique flavor (Flores 

and Toldrá 1993). Country hams have considerable economic importance. In 2005, the National 

Country Ham Association (NCHA) members, including 20 companies, produced 3.4 million 

hams with the retail value of more than 340 million dollars. The total number of dry-cured hams 

produced in US in 2005, by both NCHA members and non-members, was estimated to exceed 

6.5 million (Ramos 2006).  
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Pest infestation of dry-cured hams 

Dry-cured hams contain a high level of protein and moisture, offering a good quality food 

source to different pests such as the ham mites Tyrophagus putrescentiae (Schrank) 

(Sarcoptiphormes: Acaridae), larder beetles, Dermestes lardarius L. (Coleoptera: Dermestidae), 

red-legged ham beetles, Necrobia rufipes (F.) (Coleoptera: Cleridae), and cheese skippers, 

Piophila casei (L.) (Diptera: Piophilidae) (Graham et al. 2012). Ham mite was first described by 

Schrank in 1781(Klimov and Oconnor 2010). It is an astigmatid mite in the family Acaridae. 

Astigmated mites lack stigmata or external breathing pores (Olsen 1995). Schrank proposed the 

name Acarus putrescentiae for this species collected from the ‘Austrian Empire’ in garden soil, 

flower pots, and rotting leaves. There are other synonyms for Tyrophagus putrescentiae such as 

Tyroglyphus lintneri Osborn (1893) and Tyroglyphus castellanii Hirst (1912), but an extensive 

survey indicated that the name Tyrophagus putrescentiae has been used in a majority of studies 

published during the past 20 years (Klimov and Oconnor 2010, Farrell and Nayak 2012). This 

mite is known under several common names such as mold mite, copra mite, cheese mite, cereal 

mite, forage mite, mill mite, and ham mite (Rentfrow et al. 2008, Farrell and Nayak 2012). 

Description and keys to identify storage mites have been provided by Robertson (1959) and 

Kucerova and Stejskal (2009).  

Adults are small, less than 350 µm long, pearly white, and slow moving. Their body’s 

cuticle is colorless (Edde et al. 2012). Principal body hairs, including 4-7 pairs at the posterior 

end of body, are long, flexible, either smooth or with minute pectinations. This mite has slender 

legs and a pair of opistonotal glands, located dorso-laterally and filled with a colorless liquid that 

turns dark after death and appears as a pair of large brown spots behind the posterior legs (Farrell 

and Nayak 2012). The eggs of T. putrescentiae are about 122.2 µm in length and 69.8 µm in 
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width (Kucerova and Stejskal 2009). Developmental stages of T. putrescentiae consist of egg, 

larva, resting larva, protonymph, resting protonymph, deutonymph, resting deutonymph, and 

adult (Hilsenhoff and Dicke 1963). The age structure of T. putrescentiae is affected by 

environmental factors. Under ideal conditions of food, and temperature and relative humidity, 

eggs make up about 50% of the population, and other mobile (nymphs/adults) and immobile 

resting life stages constitute the rest of the population (Boczek 1991). Egg and larval 

development complete at optimum temperature of 32.2°C and 98% RH, in about 80 and 139 

hours, respectively (Barker 1967). According to Bahrami et al. (2007), typical development 

times of egg, larva, and the two nymphal stages are 2, 3 and 5 days, respectively at a temperature 

of 25°C and 70% RH. There are different reports on longevity of adult mites depending on 

temperature, relative humidity, and food source. Lifespan of females and males reared on wheat 

germ at 25°C and 85% RH was 66 and 59 days, respectively. Longevity of adult mites at 

temperature of 9.3°C was 115 d and at 31°C was 42.8 d (Boczek, 1991).  Hilsenhoff and Dicke 

(1963) showed that T. putrescentiae completed one life cycle on cheese in 38 d at 13ºC and 

100% RH. Lifespan increased to 80 days when relative humidity changed from 75 to 85% at 

26°C and at a relative humidity higher than 85%, lifespan decreased. In terms of food impact on 

longevity, it was up to 120 d for mites reared on wheat germ, 80 d on pumpkin seeds, 75 d on 

powdered milk and 25 d on rolled oats (Boczek, 1991). Population of T. putrescentiae is female 

dominated. Adults mate soon after eclosion and females lay their first batch of eggs within 24 h 

after mating, but starved, mated females are not able to lay eggs. About 70% of eggs are 

produced during the first three weeks of life (Boczek, 1991). A female reared on wheat germ or 

yeast can produce 500 eggs. Number of eggs produced per female vary based on the food 

substrate. On rolled oats, dried plums, cotton seeds, dried milk, buck wheat, and pollen the 
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number of eggs per female were 8, 12, 84, 85, 150, and 600, respectively (Rivard 1961, Boczek 

1991, Chmielewski 1999, Bahrami et al. 2007). The capacity of egg laying for each female can 

be 60 egg/day, but the average is 4 per day (Boczek, 1991).  

T. putrescentiae is a cosmopolitan species that can be found in various habitats including 

stored products like grain, whole wheat flour, wheat germ, soy flour, peanuts, medicinal herbs, 

cheese, nuts, copra (dried coconut), dried eggs, cotton seed, rapeseed, sunflower seed, dried 

banana, tobacco, bacon, dried milk, mushroom, dry-cured ham, house dust, pollen, soil, litter and 

the nests of different animals (Farrell and Nayak 2012). It has also been found in greenhouses in 

flower heads of Gerbera (Gerbera sp. L., Asteraceae), Nerine (Nerine sp. 

Herb.,  Amaryllidaceae) and Kalanchoe (Kalanchoe sp. Adans., Crassulaceae) leaf tissue 

(Robertson 1946, Boczek 1991, Duek et al. 2001, Bahrami et al. 2007, Kheradmand et al. 2007). 

T. putrescentiae is a predator of some nematodes including Aphelenchus avenae Basin and 

Meloidogyne javanica (Treub) (Bahrami et al., 2007). This mite also is a potential vector of 

parasitic and saprophytic fungi, like Aspergillus flavus Link, Neosartorya fumigata 

O'Gorman, Fuller & Dyer, Aspergillus niger Van Tiegham, Mucor racemosus Bull and Nectria 

haematococca (Fr.) and by transporting these pathogens may cause significant economic damage 

in mushroom beds (Kheradmand et al., 2007). T. putrescentiae has been indicated as an egg 

predator of southern corn rootworm, Diabrotica undecimpunctata (L.) (Coleoptera: 

Chrysomelidae) (Brust and House 1988), under no-till condition. It can cause allergic reactions 

that induce asthma, perennial rhinitis, conjunctivitis, intestinal acariasis and dermal allergies to 

humans. When hay and other fodders are infested, these mites cause intestinal disorders in horses 

and other animals (Farrell and Nayak 2012). This mite dispersal to new places is through 

contaminated foodstuffs, plant and animal materials, or they move on the bodies of birds or 
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animals that have used mite-contaminated nests. Food processing machinery and facilities can 

provide refuges for mites after which they can infest the new products during manufacture 

(Farrell and Nayak 2012). Ham mite infestations in dry-cured ham facilities vary often closely 

related to the length of aging process due to the cured hams becoming more favorable to ham 

mites (Rentfrow et al. 2006, Toldrá et al. 1997). Mite infestations commonly happen on the 

surface of dry-cured hams and every so often mites may penetrate inside the hams and thus cause 

more severe economic losses (Zdárková 1991). Rentfrow et al. (2006) reported that facilities in 

which cured hams were aged more than five months and with less sanitation struggled more with 

ham infestations in comparison with ones that aged cured hams less than five month. 

N. rufipes, red-legged ham beetles, is a cosmopolitan pest that infests various stored-

products with high protein content like copra, cheese, dried fish, ham and cause substantial 

damage (Simmons and Ellington 1925). Adults are approximately 3.5 to 7 mm long with pale 

yellowish to reddish colored legs, and a dark blue to metallic green body color (Lambkin and 

Khatoon 1990, Odeyemi 1997). The life cycle ranges from 1 to 5 months or more based on the 

types of available food and temperature. The optimum development conditions for N. rufipes are 

30-34°C and 50% or higher relative humidity (Haines and Rees 1989). Adult red-legged beetles 

may live for more than 14 months, and females can lay up to 28 eggs per day and 3000 eggs in 

one life cycle under warm (30 to 33°C) and humid conditions (Roesli and Subramanyam 2002).  

Cheese skippers, P. casei, sometimes called ham skippers, are detritivores that are often 

found on overripe/moldy cheese and salted meats such as dry-cured ham, bacon and beef  (Lewis 

and Kaufman 2010). Adults are small metallic-colored flies and approximately half the size of 

the common house fly. Females lay 140-500 eggs on meat and cheese in one life cycle. A 

complete life cycle length is from 12 days to a month and adults lives for three to seven days 
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(Lewis and Kaufman 2010). Burrowing larva is the damaging stage, penetrating and feeding 

deeply into the materials (White et al. 2006).  

Larder beetle, D. lardarius,  is a cosmopolitan species and a common pest of cured 

meats, cheeses, dried fish, dried museum specimens and pet food (Haines and Rees 1989). 

Adults are 7–9 mm long, dark brown with a yellowish band across the front portion of the 

forewings. Females lay more than 100 eggs through the summer months and life cycle takes less 

than 2 months to be completed under ideal conditions (Jacobs 2013).  
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Fumigants for controlling ham mite infestation 

By definition a fumigant is a toxic chemical gas with the capacity for penetration into 

porous objects or throughout enclosed areas, under a range of temperatures and pressures, for 

eradication of all developmental stages of a pest organism (Thoms and Phillips 2004). Phillips et 

al. (2012) stated that major factors affecting proper fumigant application are made up of target 

pest, type of commodity fumigated, most tolerant life stage to that particular fumigant, fumigant 

concentration, length of exposure period, and the temperature of treated environment.   

Methyl bromide 

Methyl bromide (CH3Br) is an odorless, colorless and broad spectrum fumigant that can 

eliminate insects, mites, rodents, micro flora and nematodes and it has been used for more than 

40 years commercially  (Fields and White 2002). Methyl bromide can diffuse evenly throughout 

the fumigated space and commodity to achieve a constant exposure for pest disinfestation. 

Methyl bromide leaves little to no residues on commodities and is known as nonflammable and 

noncorrosive (Bond 1984). Dry-cured hams in the United States are considered adulterated if 

there is any mite infestation during the aging period, and it is mandatory for processors to 

remove mites (USDA 9 CFR 301 2011, USDA 9 CFR 416 2011). Methyl bromide has been the 

only known fumigant capable of ham mite controlling (Marriott and Schilling 2004). Thirty four 

dry-cured ham processing facilities were surveyed in 2006 in North Carolina, Virginia, 

Kentucky, Missouri, Tennessee and Georgia of which 20-25 were known to be major ham 

producers (Rentfrow et al. 2008). The reports showed 22 of these surveyed facilities used methyl 

bromide for mite control and almost half of these facilities use methyl bromide to control red-

legged ham beetles. The total amount of methyl bromide applied by these 34 facilities was 

approximately less than 10,000 kg per year. Methyl bromide was used 1 to 5 times a year to 
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control  T. putrescentiae and N. rufipes. Furthermore, survey results revealed that less than 1000 

kg/year of methyl bromide is used by other dry-cured ham facilities in the United States which 

were not included in the survey (Schilling et al. 2010). Methyl bromide is classified as a Class 1 

ozone depleting substance and its production and use have to be regulated under the United 

States Clean Air Act (US EPA 2016). According to the Montreal Protocol, which is an 

international treaty developed to protect the earth from detrimental effects of ozone depleting 

substances and signed by 196 countries, methyl bromide was to be phased out of according to 

time line for developed and developing countries (US EPA 2010). Therefore, there is a 

significant need to find safe, feasible, economic, and effective alternative compounds and 

methods in place of methyl bromide. According to the Montreal Protocol and the United States 

Clean Air Act, only critical use exemptions (CUE) for methyl bromide were nominated and 

approved to provide time for industries to evaluate methyl bromide alternatives and provide 

enough time to transition from using methyl bromide to using alternatives. One of the CUE, 

issued by EPA involves post-harvest uses including dry-cured pork products (US EPA 2012). 

Consequently, methyl bromide has been used in the ham-processing industry under a CUE since 

there were no suitable alternatives to control insects and mites associated with dry-cured hams 

(US EPA 2012). The nomination amount of CUE of methyl bromide for post-harvest dry-cured 

ham in 2016 was 3,240 kg/year, which is comparatively less than the nominated amount of 

methyl bromide (4,465 kg) in 2010 (Porter et al. 2014). 
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Potential viable alternatives to methyl bromide 

Some potential alternatives to methyl bromide have been investigated and there are a few 

reports on their effectiveness or feasibility (Zhao et al. 2016). Application of lard on dry-cured 

ham (García 2004) and contact insecticides in aging rooms of ham facilities are known 

preventive techniques against T. putrescentiae infestation (Graham et al. 2012). The majority of 

research on methyl bromide alternatives in dry-cured ham plants was initiated after 2007. In 

these studies, the efficacy of sulfuryl fluoride, phosphine, carbon dioxide, and ozone to control T. 

putrescentiae  and  N. rufipes  was investigated under laboratory conditions.  

Sulfuryl fluoride 

Sulfuryl fluoride (SF) is an odorless and colorless fumigant and its most common use is 

to control household infestations and structural pests such as dry wood termites (Kalotermitidae), 

bed bugs, Cimex lectularius Latreille, and cockroaches (Cochran and DiPaolo 2006). ProFume®, 

which is a trade name for one of the SF products, was developed as a replacement for methyl 

bromide for post-harvest settings (Phillips et al. 2012). SF was registered for use in dry cure ham 

facilities in 2005 (EPA 2005). SF is a broad spectrum fumigant with great efficacy against a 

broad range of insect pests and has good diffusion throughout the applied area (Baltaci et al. 

2009). Fluoride anion is a product of SF degradation and is a post-fumigation residue in food that 

is regulated. Penetration capacity of SF is 10 times greater than methyl bromide and it is a non-

ozone depleting fumigant (Rajendran 2001). SF is a promising fumigant against stored-product 

insects (Zettler et al. 2000). Phillips et al. (2008) reported that SF was effective for controlling all 

life stages of  N. rufipes adults at concentrations below the label rate. They also showed SF killed 

mobile life stages of T. putrescentiae at 23ºC, but some eggs survived concentrations as high as 

three times the SF label rate. Egg tolerance to SF can be due to the impermeability of egg shell 
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that causes limitation of SF diffusion into the egg (Outram 1970). Thus, efficacy of SF maybe 

limited if eggs survival is high.  

Phosphine 

Phosphine (PH3) is colorless and odorless gas, which has been used worldwide as an 

effective fumigant to protect stored products and disinfest storage facilities. The most important 

advantages of phosphine include its ease of application, low cost, and potency. The maximum 

allowable phosphine residues for stored-products is concentration of 0.01 ppm (USDA 40 CFR 

180.225, 1999). Phosphine does not deplete the ozone layer and decomposes to safe compounds 

after diffusion into the environment (Chaudhry 1997, Zuryn et al. 2008). Phosphine is labeled for 

application to several stored products like cereals, nuts, dried fruits, pulses, oilseeds and dried 

animal products. It is commonly produced from formulations of aluminum or magnesium 

phosphide tablets, pellets, sachets, ropes, and blankets that react with water vapor to release 

phosphine. It is most effective at higher temperatures and at longer exposure times (Hole et al. 

1976, Longobardi et al. 2008). Since phosphine molecular weight is similar to gases in ambient 

air, it can distribute or penetrate well and rapidly through targeted substrates and storage 

facilities.  

In a laboratory investigation, T. putrescentiae was completely controlled by phosphine 

under controlled conditions (3.7 L gas-tight jars in controlled environment chambers). With a 48 

h  exposure of 1000 ppm of phosphine, 100% mortality of all stages of T. putrescentiae was 

achieved (Sekhon et al. 2010a). Phillips and Schilling (2013) showed that complete control of T. 

putrescentiae occurred in aging rooms fumigated with phosphine. Substantial corrosion to 

electrical wiring and equipment was observed three weeks after the fumigation in treated aging 

room. Phosphine fumigation in a simulated dry-cured ham aging room resulted in 99.8% 
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mortality of T. putrescentiae in two weeks after fumigation (Zhao at al. 2015). Thus, phosphine 

could be a potential alternative to methyl bromide for ham mite control, but it has some 

limitations including flammability or explosion hazards. Furthermore, phosphine is corrosive to 

certain metals like gold, silver and most importantly, copper, which makes another shortcoming 

for its application. All electrical appliances, wiring, lighting, electronic equipment with 

integrated circuits, computer chips, telephones and other similar devices can be damaged under 

phosphine fumigation at higher humidities (Phillips et al. 2012). 

Ozone 

Ozone is a well-known antimicrobial agent due to its potential capacity for oxidization. It 

is generally recognized as a “safe (GRAS) substance” by the United States Food and Drug 

Administration (FDA) in 1982 (Guzel-Seydim et al. 2004). Also, ozone has been approved for 

use as a disinfectant or sanitizer in foods for food processing in the United States (Guzel-Seydim 

et al. 2004). Ozone can be applied as a fumigant to protect food storage room and packaged 

commodities against insect pests and pathogens. Previous research showed that the rice weevil, 

Sitophilus oryzae (L.) (Coleoptera: Curculionidae) and red flour beetle, Tribolium castaneum 

(Herbst) (Coleoptera: Tenebrionidae) adults were the most susceptible among six stored-product 

insect pests studied. Bonjour et al. (2008) showed 100% mortality after 2 days exposure to 50 

ppm and 4 days exposure to 25 ppm, respectively. Complete mortality of all life stages of T. 

putrescentiae was achieved at an ozone concentration of higher than 175 ppm after 48 h of 

exposure (Hasan et al. 2016). Ozone leaves no residue because it has unstable structure and 

decays naturally into oxygen; however, it does not penetrate porous surfaces as would other 

fumigants, while ham mites penetrate into meat surfaces. In addition, ozone can potentially cause 

oxidation of food products which results in off odors and it is expensive to use (Sekhon et al. 
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2010b). Hence, ozone may not be a suitable potential alternative to methyl bromide for 

disinfesting hams directly, but it could have potential as a sanitation and a space disinfestation 

method. 

Carbon Dioxide 

Carbon dioxide (CO2) could be used as a fumigant to control various insect pests and 

does not leave a residue (Hasan et al. 2016).The effectiveness of CO2 has been studied on black 

field crickets (Stevenson and Hurst 1995), green peach aphids (Van Epenhuijsen et al. 2002) and 

two spotted spider mites (Mitcham et al. 1997). CO2 fumigation causes 100 % mortality in onion 

thrips at a 30% or more concentration after at least 24 h (Page et al. 2002). Efficacy of CO2 relies 

on keeping an elevated CO2 atmosphere sustained until all insects die, so ensuring a leak-proof 

system is necessary. The length of exposure time depends on concentration of CO2 and 

environment temperature (Page et al. 2002). Other experimental results have shown mortality of 

all life stages of ham mite at concentration of 60% CO2 with144 hours of exposure (Hasan et al. 

2016). Two high pressures of CO2, 15 and 20 bars, caused greater than 99% mortality for mixed 

stages of T. putrescentiae on artificial standard diets after 15 and 30 min, respectively (Riudavets 

et al. 2010). Increasing the pressure of CO2 would probably increase the efficacy of the treatment 

and on the other hand the cost of treatment would increase which is counted as a drawback for 

this method (Riudavets et al. 2010).  CO2 application drawbacks consist of difficulties related to 

required long exposure time which interrupt the production process and is a safety hazard for 

people working close to ham aging rooms during fumigation due to high concentration of CO2. 

Highly airtight structures are necessary to reach a high level of fumigant concentration and pest 

mortality. In addition, CO2 is expensive and large quantities of a greenhouse gas must be 
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released to atmosphere which has its own environmental drawback (Phillips et al. 2012, Hasan et 

al. 2016).  
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Management of dry-cured ham insect/mite pests 

Up to now, there are no practical alternatives to methyl bromide in dry-cured ham 

facilities. Therefore, the Clean Air Act and the Montreal Protocol permitted methyl bromide 

usage under critical use exemptions. However, based on EPA’s annual inventory report in 2014, 

fumigation in dry-cured ham facilities would be dependent on available pre-phase-out stocks of 

methyl bromide, which are about 158 MT, and other alternatives must be practiced after the 

exhaustion of these supplies in the US (US EPA 2017). It is therefore important to develop 

effective and feasible alternatives to methyl bromide to maintain pest-free dry-cured ham 

facilities. Likewise, developing an Integrated Pest Management (IPM) program to control pests 

associated in these facilities is critical, as there is currently no comprehensive and practical IPM 

program specifically for ham mites in context of the dry-cured ham industry. Separate 

management possibilities have been studied and suggested for controlling T. putrescentiae 

previously (García 2004, Mueller et al. 2006, Hubert et al. 2007, Phillips et al. 2008, Sekhon et 

al. 2010a, Freitag and Kells 2013, Stara et al. 2014). IPM of T. putrescentiae has been neglected 

mainly due to the reliance on methyl bromide prior to its phase out. Two restricted IPM 

programs for T. putrescentiae have been proposed and studied by Rentfrow et al. (2006) and 

Nayak (2006). Sanitation practices in ham processing and aging rooms, and applying pesticides 

are major components of these programs. However, implementation of these tools might not 

easily provide a mite-free dry-cured ham facility as it has not been demonstrated in practice. 

Hence, improving and combining the current possible materials and techniques to control ham 

mite in dry-cured ham facilities and putting forward an environment- and customer-friendly IPM 

programs as alternative to methyl bromide are yet to realized.   
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This research was focused on investigating different control methods for T. putrescentiae 

to decrease populations of mites and to limit the occurrence of mites on dry-cured hams and 

surfaces in processing and aging rooms.  
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Objectives 

1. Investigate the effects of food-safe compounds for their effects on T. putrescentiae 

population growth 

2. Investigate the potential for edible gel coatings with food-safe additives on whole hams 

to protect against mite infestation 

3. Evaluate the activities of registered pesticides from horticulture, field crops, and stored-

products for their potential to control T. puterescentiae 

4. Assess the residual activity of the most active pesticides on mortality rates of mites 

exposed to three different surfaces treated with these pesticides and aged up to 8 weeks 

5. Determine the shortest effective exposure time over a range of low and high temperatures 

to control T. putrescentiae infestations 

6. Determine the lowest necessary SF concentration, shortest required exposure time and the 

most reasonable high temperature for use in dry cured ham plants to control T. 

puterescentiae 
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Chapter 2 - Efficacy of selected food-safe compounds to prevent 

infestation of the ham mite, Tyrophagus putrescentiae (Schrank) 

(Sarcoptiformes: Acaridae), on southern dry-cured hams 
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Abstract 

Tyrophagus putrescentiae (Schrank) (Sarcoptiformes: Acaridae), is a serious mite pest of 

dried meats and cheeses. Infestations of T. putrescentiae are controlled with the fumigant methyl 

bromide, which is an ozone-depleting substance and is currently being banned in most countries. 

Effective alternatives to methyl bromide are needed. The objective of this research was to use 

laboratory assays to investigate the effectiveness of food-safe compounds for preventing 

infestation of T. putrescentiae on dry-cured hams. Ham pieces dipped in solutions of either 

propylene glycol (1, 2-propanediol), lard, ethoxyquin or butylated hydroxytoluene prevented or 

significantly reduced mite population growth. Our results also indicated that a combination of 

carrageenan + propylene glycol alginate + 40% propylene glycol was effective in reducing mite 

numbers on whole aging hams compared with untreated whole hams. Several food-safe 

compounds can prevent infestation of T. putrescentiae on dry-cured hams and may represent 

alternatives for managing this pest.  
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Introduction 

Tyrophagus putrescentiae (Schrank) (Sarcoptiformes: Acaridae), commonly known as 

the mold mite, ham mite or cheese mite, is a widely distributed and common synanthropic 

stored-product pest (Qu et al. 2015). T. putrescentiae infests a large number of grains and other 

foods with high fat and protein contents with moisture content between 15 and 40%, such as 

dried eggs, seasoned hams, sausages, cheese and different kinds of nut (Lee et al. 2006, 

Macchioni et al. 2002, Hughes 1976). T. putrescentiae is a key pest in mushroom cultivation and 

storage facilities in China, and in pet food in Australia and the United States (Mueller 2010, 

Nayak 2006). T. putrescentiae causes heavy infestations on traditional ham in Spain and reduces 

the quality of this valuable product (Qu et al. 2015, Sánchez-Ramos and Castañera 2005). This 

mite has also been reported in animal feed factories, in house dust and as a pest in biological 

laboratory environments (Stara et al. 2014, Nayak 2006). A T. putrescentiae female can lay up to 

500 eggs on appropriate diet, and each egg can develop to the adult stage in 9–12 days under 

suitable temperature and relative humidity conditions (e.g. 25°C and >65% RH) 

(Boczek 1991). T. putrescentiae infestation is a serious problem to both European and American 

dry-cured ham producers (Rentfrow et al. 2008, Sánchez-Ramos and Castañera 2001).  

Dry curing is used to preserve pork without refrigeration and results in a specialty meat 

product of high value (Marriott and Schilling 2004). American dry-cured ham or ‘country ham’ 

is produced in the southern United States by treating the hind leg of a butchered hog with dry 

salts, preservative salts and other seasonings rubbed on the outer surface. Curing is sometimes 

followed by smoking to add flavor, and then by aging for several months under ambient 

conditions (Flores et al. 1997). Dry-cured hams lose at least 18% of their original weight during 

aging and will have a minimum of 4% salt (Marriott and Ockerman 2004). The aging process 
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can vary between 3 and 24 months, depending on the desired flavor, and longer-aged products 

have a higher market value (Marriott and Ockerman 2004). Dry-cured hams and processing 

facilities have been historically fumigated with methyl bromide to control ham mite infestations 

(US EPA 2012). However, methyl bromide is classified as a significant ozone-depleting 

substance (US EPA 2015) and is being phased out for all pest control uses for all industries. The 

US regulatory agencies consider ham mite infestation actionable, potentially resulting in 

cessation or delayed processing, with large economic losses to producers. Thus, methyl bromide 

has been an extremely important pest management tool for the dry-cured ham industry (Marriott 

and Schilling 2004). It is therefore vital for the dry-cured ham industry to implement effective 

alternatives to methyl bromide that can manage or control ham mites. 

The present study addresses the potential for using GRAS food ingredients (Generally 

Recognized As Safe by the US Food and Drug Administration) to mitigate pest populations of T. 

putrescentiae and to protect hams from mite infestations during the aging process. Milne (1963) 

was among the first to demonstrate the control of stored-product insect pests by using food 

ingredients. These researchers reported that sorbic acid and nicotine suppressed cigarette 

beetle, Lasioderma serricorne (F.), infestations. Common cooking oils have been used for 

centuries to control mite and insect pests in horticulture, and many of them are still used to 

control crop and ornamental plant arthropod pests (Hoy 2011). The mode of action is presumed 

to be a physical blockage of respiration, with death resulting from suffocation (Lewis 2014). 

Larding, using lard or other animal fats as meat coatings, was recorded in England to enhance the 

shelf life of meat products (Labuza and Contreras-Medellin 1981). In addition, dry-cured hams 

are coated with hot lard in Spain to control mite infestations (García 2004). Edible food coatings 

have been applied to slow down water loss and give a shiny appearance to fruits and vegetables, 
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and meat products have been coated with gelatin to sustain quality (Baldwin et al. 2011). Edible 

coatings are inhibitory to off-flavors resulting from oxidation, discoloration, shrinkage and 

microbial contamination (Ustunol et al. 2009).  

Recent work has evaluated xanthan gum, agar, propylene glycol alginate (PGA) and 

carrageenan + PGA for their efficacy in suppressing T. putrescentiae populations by using water 

solutions of propylene glycol (PG) at 10–50% (by weight). Results indicated that a combination 

of xanthan gum + 20% or more PG and a combination of carrageenan + PGA + 10% or more PG 

were effective at inhibiting mite population growth (Zhao et al. 2016). The objective of the 

research reported here was to investigate the effects of GRAS compounds and other food-safe 

compounds for their effects on T. putrescentiae population growth. This work also studied the 

potential for edible gel coatings with food-safe additives on whole hams to protect against mite 

infestation. 
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Materials and Methods 

Mite cultures and hams used 

The T. putrescentiae were from our laboratory cultures that have been maintained in the 

Department of Entomology at Kansas State University for more than 4 years and have not been 

subjected to any pesticides. Mites were reared in glass jars (85 mm diameter, 160 mm height) 

containing mite diet and sealed with labeled filter paper (Whatman No. 1, 90 mm diameter; GE 

Healthcare UK Limited, Amersham, UK) in the metal lid ring. The rearing diet was composed of 

agar (ICN Biomedicals, Inc., Aurora, OH), yeast (MP Biomedicals, LLC, Santa Ana, CA), 

alphacel (ICN Biomedicals, Inc.), mixed vitamins (Vanderzant modification vitamin mixture for 

insect diet; MP Biomedicals, LLC) (5:5:5:5 g), dog food (160 g), glycerol (Fisher BioReagents, 

Fisher Scientific, Pittsburgh, PA), antifungal salt solution in ethanol (methyl-p-hydroxybenzoate, 

15:85 g mL−1) (ICN Biomedicals, Inc.) and water (25:25:475 mL), which were mixed and 

cooked for about half an hour and then added to the dog food in rearing jars. Mites were 

introduced to new cultures when the diets had been cooled to 25°C and stored in an incubator at 

25°C and 70% RH in darkness. All experiments described below used meat from whole country 

hams that were 6–8 kg and had been aged for at least 3 months at the time of purchase (Harper's 

Country Hams, Clinton, KY). 

Mite reproduction assay 

GRAS and other food-safe compounds (Table 2-1) were evaluated in separate 

experiments using completely randomized designs in which individual cubes of dry-cured ham 

(25 × 25 × 25 mm3) were coated or dipped with test compounds. Ham cubes were dipped in 500 

mL of a given solution for 1 min and were then left on filter paper in a 14 cm glass petri dish 

(Pyrex®, Frankfurt, Germany) to dry for 1.5 h. Treated ham cubes were placed separately inside 

http://onlinelibrary.wiley.com/doi/10.1002/ps.4196/full#ps4196-tbl-0001
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small glass Mason jars (216 mL, 65 mm diameter, 55 mm height; Ball Corp., Broomfield, CO) 

into which 20 adult mites were introduced for infestation. Ham cubes were coated with pure lard 

using a small artist's paint brush with natural bristles of approximately 5 mm width by 7 mm 

length, and were then placed in the test jars immediately. Other compounds were tested at one or 

several concentrations applied in a solvent or undiluted. Water was the solvent used for most test 

compounds, with other solvents and their test compounds as follows: ethanol (98% purified) for 

butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT); acetone (98% purified) 

for ethoxyquin; acetic acid (8% purified) for natamycin; hexane (97% purified) for lard. There 

were five experimental units for each concentration of a given compound in an experiment. Jars 

were sealed with labeled filter paper (Whatman No. 1, 70 mm diameter; GE Healthcare UK 

Limited) under the jar ring after mite inoculation to prevent escape of mites from the assay jar. 

The control treatment included untreated ham cubes and/or ham cubes treated with a given 

solvent, depending on the type of chemicals tested on treatment cubes. The numbers of living 

adults, larvae and nymphs after 2 weeks of incubation at 25°C and 70% RH with a 16:8 h L:D 

photoperiod were counted for each jar using a binocular microscope. 

Mite residency on coated ham 

Seven different treatments, including gel treatments and uncoated controls, were 

prepared. For each treatment, four whole hams were randomly selected as experimental units. 

Two experimental units of each treatment were randomly selected to be placed on each of two 

separate metal racks. The seven treatments included control, xanthan gum only, carrageenan + 

PGA only, 20% PG + xanthan gum, 40% PG + xanthan gum, 20% PG + carrageenan + PGA and 

40% PG + carrageenan + PGA. Gel solutions of 300 mL were prepared in separate jars for each 

experimental unit (ham), and hams were coated with 150–200 mL of each gel using a paint brush 
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(5 cm width). Each ham was painted with gel treatments 3 times, with a 15 min period between 

each. Large S-hooks were attached to each ham with a bolt driven into the ham bone, and they 

were hung on metal racks for 24 h at 25°C and ≤40% RH. They were then transferred to a 

simulated ham aging room for mite residency studies. This room was established to mimic a 

commercial ham aging room and was maintained at 25°C and 70% RH in total darkness. 

The residency of mites on treated hams was recorded at 6 and 12 weeks after hams were 

placed in the aging room. Attempts to create a ham mite infestation by artificially introducing 

approximately 14 000 lab-reared mites weekly failed to generate a detectable infestation at 6 

weeks. Thus, about 900 mites were then introduced directly onto the top of each ham with an 

open 1.5 mL plastic centrifuge tube cap, and the number of mites remaining on each ham at 6 h 

was determined. At 12 weeks after the start of aging we observed an established endemic mite 

infestation, presumably a result of earlier inoculations, and we therefore counted resident mites 

at this time with no need for inoculation. Mites were counted in six randomly selected sampling 

areas on each ham for each observation period. Each sampling area was a circle of 23.8 cm2, 

three on each side (proximal versus distal to the body of the pig) for each ham. Preliminary 

studies determined that representative mite samples could be obtained from the central 80% 

surface area of each ham side (i.e. excluding the top and bottom ends). Mites from randomly 

selected circular areas on each side of a given ham were visually counted without disturbance, 

and the sum of the six samples was recorded as a representative number of mites residing on a 

given ham. 

Data Analysis 

For mite reproduction assays the treatment means within an experiment were separated 

on the basis of Fisher's protected least significant difference (LSD) when the F-test of the 
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ANOVA per treatment was significant at P < 0.05 (SAS Institute Inc. 2010). Residency of mites 

on whole hams with different coatings was subjected to ANOVA for each observation time, and 

mean observation times were separated by the honest significant difference Tukey–Kramer test 

when the F-test of the ANOVA per treatment was significant at P < 0.05 (SAS Institute Inc. 

2010). 
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Results 

Mite reproduction assays 

Experiments with solutions of the following nine compounds had no significant effects 

on mite reproduction relative to controls: corn oil, olive oil, calcium citrate, potassium citrate, 

sodium citrate, potassium propionate, potassium sorbate, sodium carbonate and natamycin. The 

results relating to all other tested compounds that had significant effects on mite reproduction 

and population growth suppression are reported in Tables 2-2 to 5. Mite reproduction in the five 

experiments conducted with ham cubes dipped in aqueous solutions of a variety of free acids and 

salts was significantly lower in all treatments compared with the water controls (Table 2-2), with 

calcium sorbate eliciting a fourfold reduction in mites produced. Vegetable oils and non-

vegetable oils caused a reduction in mite reproduction compared with untreated ham cubes 

(Table 2-3). Canola oil caused a fourfold decrease in reproduction. Undiluted lard prevented all 

reproduction, and a 50% lard solution caused a threefold reduction in mites. Mite populations 

from ham cubes dipped in short-chain alcohols all had substantial reductions compared with the 

water controls, with the greatest effect recorded from 1,2-propanediol, commonly referred to as 

propylene glycol (PG). Ham cubes dipped into pure PG and also in a 50% water solution 

prevented all mite reproduction (Table 2-4). Of the food preservatives tested, 10% solutions of 

ethoxyquin and BHT totally prevented mite reproduction on treated ham cubes (Table 2-5).

 Experiments with formulations of PG and carrageenan showed that carrageenan alone 

had a small but significant effect on mite reproduction (Table 2-6). Pure PG or when mixed with 

2% carrageenan prevented mite reproduction completely, but dilutions of 50% or less allowed 

substantial mite reproduction (Table 2-6). 

http://onlinelibrary.wiley.com/doi/10.1002/ps.4196/full#ps4196-tbl-0002
http://onlinelibrary.wiley.com/doi/10.1002/ps.4196/full#ps4196-tbl-0002
http://onlinelibrary.wiley.com/doi/10.1002/ps.4196/full#ps4196-tbl-0003
http://onlinelibrary.wiley.com/doi/10.1002/ps.4196/full#ps4196-tbl-0004
http://onlinelibrary.wiley.com/doi/10.1002/ps.4196/full#ps4196-tbl-0005
http://onlinelibrary.wiley.com/doi/10.1002/ps.4196/full#ps4196-tbl-0006
http://onlinelibrary.wiley.com/doi/10.1002/ps.4196/full#ps4196-tbl-0006
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Mite residency on coated ham 

Mite counts on whole aged hams coated with various formulations of PG in food gels at 6 

h after inoculation with approximately 900 mites were lowest on those coated with 20% or 40% 

PG in carrageenan + PGA (Table 2-7). Carrageenan + PGA without PG reduced the number of 

mites on treated hams; however, it was not significantly different from mite numbers on 

untreated hams (Table 2-7). Xanthan gum alone or in combination with PG did not lower the 

mite populations significantly (Table 2-7). Results of counting mites on the same coated hams 12 

weeks after treatment also revealed lower numbers in residence on hams with the combination of 

20% PG in carrageenan + PGA, xanthan gum and carrageenan + PGA, but mite numbers on all 

other coated hams were not significantly different from numbers on untreated control hams 

(Table 2-8). Coatings of carrageenan + PGA + 40% PG had significant effects on lowering 

resident mite numbers when compared with the controls (Table 2-8). 

  

http://onlinelibrary.wiley.com/doi/10.1002/ps.4196/full#ps4196-tbl-0009
http://onlinelibrary.wiley.com/doi/10.1002/ps.4196/full#ps4196-tbl-0009
http://onlinelibrary.wiley.com/doi/10.1002/ps.4196/full#ps4196-tbl-0009
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Discussion 

The results of this study provide information regarding the relationship between the 

effects of various food-safe compounds on ham mite population growth. Results from population 

growth experiments demonstrated that several food-safe compounds, specifically PG, BHT, lard, 

ethoxyquin and 1,3-butanediol, can inhibit growth of T. putrescentiae populations under 

experimental laboratory conditions. BHT was the most effective synthetic additive against T. 

putrescentiae, with 100% inhibition of population growth at a concentration of 10% in the dip. 

PG also inhibited mite populations by more than 99% at concentrations of 50 and 100%. Of the 

naturally derived oils tested, undiluted lard was also an effective treatment, providing more than 

99% inhibition. The 10% concentration dip of ethoxyquin inhibited the populations by 96.4%, 

whereas the 1% dip produced an inhibition of 69%. Mite populations were inhibited by 96.7% 

when dipped in pure 1,3-butanediol. Compounds that inhibited mite population growth by 50–

90% included calcium sorbate, sodium sorbate, 2-propanol, propionate salts, iodate salts, BHA, 

soybean oil, canola oil and lard at 50%. 

Our experiments on organic alcohols suggest that activity against T. putrescentiae could 

be dependent on molecular structure, such as the number of carbons and alcohols in the 

molecule. Pankiewicz-Nowicka et al. (1986) studied the feeding and orientation of T. 

putrescentiae on artificial diets containing common food additives and reported equivocal 

structure–activity relationships for monosaccharides and their alcohols. In our work here with 3-

carbon and 4-carbon polyols, mite population growth was minimally reduced by dips in the 

monoalcohols, but was dramatically lowered by diols of both 3-carbon and 4-carbon molecules, 

except for 1,2-butanediol. PG (1,2-propanediol) had the best suppression effects, but 1,2-

butenediol, although very similar to PG by having its alcohols on adjacent carbons, was not very 
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effective. Thus, conclusions about structure–activity effects with short-chain diols and T. 

putrescentiae biology are not clear cut and will require further study. 

Food-safe compounds such as those studied here are commonly used in the food industry 

to protect meats from microbial infection and to preserve quality. Sodium propionate at 0.03% 

inhibited aerobic and gram-negative bacterium population growth for about 2 weeks in fresh 

sausage, while calcium and sodium propionate also showed preventive effects 

on Salmonella Newport population growth for about 1 month in cooked chicken (Boudreaux 

and Matrozza 1993). Sorbate salts (calcium, sodium and potassium) had a great impact as 

inhibitors of fungi, including mycotoxin producers, and certain bacteria (Branen et al. 2001). 

Potassium sorbate at concentrations of 2.5–5 g 100 ml−1 dipping solution caused extensive 

inhibition of Listeria monocytogenes Pirie population growth in cooked pork (Samelis 2005). In 

addition, the antifungal efficacy of potassium sorbate against Botrytis cinerea Pers was 

determined in another study (Junqueira-Gonçalves et al. 2013). 

The control of stored-product insect pests with food additives was suggested by Milne 

(Milne 1963), who found suppression effects of sorbic acid and nicotine on populations of 

cigarette beetle, L. serricorne. Propionic acid at 2% (by weight), BHA at 2% (by weight) and 

BHT at either 0.5 or 2% (by weight) caused significant mortality in first-instar larvae of 

both Trogoderma variabile Ballion (Coleoptera: Dermestidae) and Attagenus megatoma (F.) 

(Coleoptera: Dermestidae) (Burkholder et al. 1973). Citric acid is a common food preservative, 

but our work showed a positive, rather than negative, effect on ham mite population growth. 

Early work showed that a grasshopper bait containing citric acid stimulated feeding 

in Camnula sp. (Thorsteinson 1960). One study found that low efficacy of citric acid 
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on Varoa mite mortality can be a result of its poorer dissociation constant in comparison with 

other organic acids such as oxalic acid (Milani 2001). 

The efficacy of various types of salt and free acid incorporated into mite diet has been 

examined in the past for mortality or fecundity of stored-product mites as chemosterilants 

(Collins 2006). Potassium iodate at >0.25% (by weight) suppressed egg laying of T. 

putrescentiae and Acarus siro (L.) (Sarcoptiformes: Acaridae) (Ignatowicz 1982a, 1982b). Boric 

acid produced 100% mortality of T. putrescentiae at >0.5% by weight (Ignatowicz 1986). 

Caproic acid and propionic acid at 1 and 2% (by weight) prevented 100% egg laying of T. 

putrescentiae (Rodriguez 1972). Tricalcium phosphate at 31.5% (by weight) reduced the 

fecundity of T. putrescentiae by 84% (Boczek and Ignatowicz 1978). Potassium sorbate, benzoic 

acid and calcium propionate at 0.01–1% (by weight) inhibited the development of T. 

putrescentiae and A. siro (Boczek and Czajkowska 1968). Sodium propionate, 3,3′-

thiodipropionic acid, malonic acid and cholesteryl chloride reduced development of T. 

putrescentiae through immature life stages (Rodrigues and Potts 1975, Boczek and Czajkowska 

1968). 

Although lard showed strong inhibitory effects on mite population growth in our 

experiments, further studies are required to find a suitable way for the application of lard. Dry-

cured hams in Spain are apparently protected from mite infestation by coating with hot lard 

(Baldwin et al. 2011), but no details are given for its application. American dry-cured hams need 

to lose at least 18% of the original water weight during the aging process (Marriott 

and Ockerman 2004), and simultaneously the presence of oxygen is needed for proteolysis and 

lipolysis, resulting in the characteristic flavors of dry-cured hams (Marriott and Schilling 2004). 

Thus, water vapor permeability of the lard needs to be considered when choosing it as a suitable 
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coating. Therefore, it is important to develop an economical food additive coating for preventing 

mite infestations that allows both high oxygen effects and water vapor permeability. 

PG possesses fungicidal and bactericidal efficacy and inhibits odor-causing bacteria, 

animal-pathogenic bacteria, mites, fleas, red lice, Shigella bacteria, A. niger fungus and some 

other pathogens (US EPA 2006). The efficacy of PG has not been assessed previously on 

population growth inhibition of T. putrescentiae in the context of dry-cured ham. Results here 

showed that coating ham pieces with a 50% water solution of PG can provide the same 

prevention effects for mite infestation as dipping ham pieces in undiluted PG. Dipping in water 

solutions of PG may not be practical for protecting whole hams during the aging process, but our 

work with polysaccharide coatings containing PG shows promise for developing a commercial 

product (Zhao et al. 2016). The GRAS status of PG as a food-safe additive should not limit the 

amounts used as direct coatings for hams, but meat quality effects and consumer acceptance of 

such hams will require further research. Coatings for dry-cured hams may effectively prevent 

infestation of T. putrescentiae, but the adoption of such coatings in practice will require, among 

other considerations, an economic cost-benefit analysis. The loss of methyl bromide as a 

fumigant for control of T. putrescentiae has motivated the development of integrated pest 

management (IPM) for this important pest. A critical component of any effective IPM 

programme is the prevention of pest infestation. Our work on food-safe compounds to treat 

whole hams could contribute to effective prevention practices against T. 

putrescentiae infestations. 
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Table 2-1 Food additives and other compounds studied for their ability to suppress ham 

mite population growth on small ham cubes using topical application 

Category                             Compound Title 21 CFRa  Supplierb 

Salts and Free Acids calcium propionate 184.1221 A 

sodium propionate 184.1784 A 

potassium propionate na B 

 calcium sorbate 184.1195 A 

sodium sorbate 184.1751 A 

potassium sorbate 184.1625 A 

 sodium citrate 184.1751 A 

calcium citrate 184.1195 A 

potassium citrate 184.1625 A 

 sodium iodate 184.1635 A 

calcium iodate 184.1206 A 

potassium iodate 172.375 A 

 sodium carbonate 184.1742 A 

 malic acid 184.1069 A 

 citric acid 184.1033 A 

Oils/Fat  canola oil na C 

 light-mineral oil 172.878 D 

 soybean oil na C 

 corn oil na C 

 olive oil na C 

 lard (pork fat) 182.70 E 

Organic Alcohols 1-propanol 172.515 D 

 2- propanol 172.515 D 

 1,2 propanediol 184.1666 D 

 1,3 propanediol na A 

 1,2 butanediol na A 

 1,3 butanediol na A 

 glycerol 182.1320 D 
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Miscellaneous Additives     

 carrageenan 184.1221 F 

 Propylene glycol-alginate 172.858 F 

 xanthan gum 172.695 F 

 butylated hydroxyanisole (BHA) 172.110 G 

 butylated hydroxytoluene  (BHT) 172.115 G 

 natamycin na H 

 ethoxyquin 573.380 G 

 
a Specific regulation number, except where not applicable (na), from Title 21 of the United States 

Code of Federal Regulations (CFR 21) addressing foods an drugs  (CRF) 
b Suppliers and vendors, by US state and city (where available) for food additives used here are 

by letter designation: A = Acros organics, New Jersey; B = Tokyo chemical industry Co., LTD, 

Oregon; C = Wal-Mart Stores Inc, Arkansas; D = Fisher, Pennsylvania; E = Armour Meats, 

Ohio; F = Ingredients Solutions INC, Maryland; G = MP Biomedicals, California; H=DSM Food 

Specialities, Delft, NL. 

  



51 

 

 

 

Table 2-2 Mean (SE) number of T. putrescentiae fed on small dry-cured ham cubes treated 

with different concentrations of salts and free acids after 2 weeks (n = 5).  

Salts and free acids % Concentration Mean number of mites (se) F, df, P 

Water control -- 312.8              (26.1) a 18.29, 3, 12 <.0001 

Calcium sorbate 1 185.2               (30.3) b  

Calcium sorbate 5 86.2               (16.7) c  

Calcium sorbate 10 81.4               (11.5) c  

      

Water control -- 328.4               (35.8) a 6.32, 3, 12, 0.0081 

Sodium sorbate 1 202.8               (33.7) b  

Sodium sorbate 5 212.0               (38.9) b  

Sodium sorbate 10 122.2               (31.0) b  

      

Water control -- 248.4               (35.6) a 7.30, 3, 12, 0.0048 

Calcium propionate 1 215.6               (19.7) a  

Calcium propionate 5 195.2               (24.4) ab  

Calcium propionate 10 99.8               (16.6) b   

      

Water control -- 648.2               (69.5) a 11.48, 3, 12, 0.0008 

Sodium iodate 10 290.4               (27.8) b  

Potassium iodate 10 277.0               (36.2) b  

Calcium iodate 10 415.0               (42.7) b  

      

Water control -- 184.4               (22.9) b 9.11, 3, 12, 0.0020 

Citric acid 10 298.4               (36.4) a  

Maleic acid 10 97.8               (34.9) c  

3,3 thiodipropionic acid 10 153.6               (11.1) bc  

For each experiment, means followed by different letters are significantly different (P < 0.05, by 

LSD test) 
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Table 2-3  Mean (SE) number of T. putrescentiae fed on small dry-cured ham cubes treated 

with different concentrations of oils and fat after 2 weeks (n = 5).  

Oils/Fat % Concentration Mean number of mites (se) F, df, P 

Untreated control -- 679.6        (127.0) a 22.26, 4, 16 <.0001 

Hexane control 100 453.8        (54.3) b  

Lard % in hexane 10 462.2        (46.6) b  

Lard % in hexane 50 166.8        (30.5) c  

Lard % in hexane 100 3.0        (1.4) c  

      

Untreated control -- 397.6        (61.4) a 10.54, 3, 12, 0.0011 

Soybean oil 100 197.0        (32.8) b  

Light-mineral oil 100 176.0        (37.5) b  

Canola oil 100 88.6        (8.1) c  

For each experiment, means followed by different letters are significantly different (P < 0.05, by 

LSD test) 
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Table 2-4 Mean (SE) number of T. putrescentiae fed on small dry-cured ham cubes treated 

with different concentrations of organic alcohols after 2 weeks (n = 5).  

Organic Alcohols %Concentration Mean number of mites (se) F, df, P 

Untreated control -- 698.8        (97.9) a 44.56, 7, 28 <.0001 

1-propanol 100 361.2        (63.0) b  

2- propanol 100 100.6        (14.2) c  

1,2 propanediol (propylene glycol) 100 4.6        (2.5) c  

1,3 propanediol 100 11.0        (3.5) c  

1,2 butanediol 100 473.8        (24.3) b  

1,3 butanediol 100 23.0        (5.2) c  

1,4 butanediol 100 32.6        (9.6) c  

      

Water control -- 172.2        (32.2) a 18.73, 3, 12, 

<.0001 

Propylene glycol in water 10 122.4        (18.0) a  

Propylene glycol in water 25 67.6        (17.6) b  

Propylene glycol in water 50 1.0        (0.6) c  

      

Water control -- 367.4 (24.2)  a 3.27, 3, 12, 0.0591 

Glycerol in water 20 343.6 (25.6) a  

Glycerol in water 50 323.2 (19.9) ab  

Glycerol in water 100 279.2 (20.3) b  

For each experiment, means followed by different letters are significantly different (P < 0.05, by 

LSD test) 
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Table 2-5 Mean (SE) number of f T. putrescentiae fed on small dry-cured ham cubes 

treated with different concentrations of food preservatives after 2 weeks (n = 5).  

Food preservatives % Concentration Mean number of mites (se) F, df, P 

Acetone control -- 400.6        (24.2) a 75.2, 2, 8, <.0001 

Ethoxyquin in 

acetone 

1 122.8        (4.3) b  

Ethoxyquin in 

acetone 

10 14.6        (17.4) c  

      

Untreated control -- 538.4        (109.3) a 10.30, 2, 8, 0.0061 

Ethanol control 100 362.6        (25.0) b  

BHT in ethanol 10 0.0        (0.0)   

BHA in ethanol 10 139.2        (51.8) c  

For each experiment, means followed by different letters are significantly different (P < 0.05, by 

LSD test). 
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Table 2-6 Mean (SE) number of T. putrescentiae fed on small dry-cured ham cubes treated 

with different concentrations of propylene glycol with carrageenan after 2 weeks (n = 5).  

  % Concentration mean number of mites (se) F, df, P 

Water control -- 321.2        (27.1) a 22.26, 3, 12, <.0001 

Water + carrageenan  98 + 2  233.6        (32.2) b  

PG + Carrageenan 98 + 2 3.0 (1.1) c  

PG 100 2.0        (0.8) c  

      

Carrageenan + water 2 + 98 404.8        (78.1) a 15.47, 4, 16 <.0001 

PG + carrageenan + 

water 

5 + 2 + 93 377.0        (11.9) ab  

PG + carrageenan + 

water 

25 + 2 + 73 249.2        (61.9) ab  

PG + carrageenan + 

water 

50 + 2 + 48 216.6        (26.3) ab  

PG 100 9.0        (2.8) c  

For each experiment, means followed by different letters are significantly different (P < 0.05, by 

LSD test). 
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Table 2-7 Mean (SE) of total number of mites counted at six sampled locations (142.5 cm2) 

on each of four treated hams (aged for 6 weeks) for different treatments following 

inoculation of each ham with approximately 900 mites.  

Treatment %Concentration mean number of mites (se) F, df, P 

Untreated control -- 166.5         (27.0) a 9.93, 6, 21, <.0001 

Xanthan gum + PG 2+ 40 137.25         (79.7) a  

Xanthan gum + PG 2+ 0 95.25         (35.8) a  

Xanthan gum + PG 2+ 20 100.5         (85.6) ab  

Carrageenan + PGA+ PG 1+1+0 58.5         (19.1) ab  

Carrageenan + PGA+ PG 1+1+20 9.0         (2.6) bc  

Carrageenan + PGA+ PG 1+1+40 7.25         (2.5) c  

For each experiment, means followed by different letters are significantly different (P < 0.05, by 

HSD test). 
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Table 2-8 Mean (SE) of total number of mites counted on whole sampled area (142.5 cm2) 

on each of four treated hams (aged for 12 weeks) for different treatments. Mite infestations 

were present through natural mite population growth from past inoculations.  

Treatment %Concentration mean number of mites (se)  F, df, P 

Untreated control -- 349.5         (105.2) a 4.92, 6, 21, <.0027 

Xanthan gum + PGa 2+ 40 274.8         (96.0) a  

Xanthan gum + PG 2+ 0 268.3         (148.5) a  

Xanthan gum + PG 2+ 20 209.0         (26.9) ab  

Carrageenan + PGAb+ PG 1+1+0 206.0         (53.5) ab  

Carrageenan + PGA+ PG 1+1+20 172.0         (43.2) ab  

Carrageenan + PGA+ PG 1+1+40 79.75         (63.7) b  

Means followed by different letters are significantly different (P < 0.05, by HSD test). 
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Chapter 3 - Efficacy of selected pesticides against Tyrophagus 

putrescentiae (Schrank): influence of applied concentration, 

application substrate, and residual activity over time 
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Abstract 

Dry-cured ham is protected from arthropod infestations using the fumigant methyl 

bromide. Tyrophagus putrescentiae (Schrank) (Sarcoptiformes: Acaridae), known as the cheese 

or ham mite, decreases the quality and quantity of dry-cured hams during the aging process and 

is a serious economic threat to dry-cured ham companies. Methyl bromide is a strong ozone-

depleting substance that is scheduled to be phased out from most uses in the near future. 

Consequently, developing effective, feasible, and economic alternatives to methyl bromide is the 

main purpose of the current project. More than ten registered residual pesticides were assessed 

for toxicity with glass vials treated with different concentrations. Twenty mites were transferred 

to each vial for 24 h of exposure on contact. Persistence of three of these residual pesticides was 

evaluated over a 2-month period by applying the recommended label rates to different surfaces. 

Results indicated that the commercial products of deltamethrin plus chlorpyrifos-methyl, 

chlorfenapyr, and malathion showed promising results for contact toxicity against mites, and 

chlorfenapyr was highly effective at very low concentrations. Chlorfenapyr was the only 

pesticide applied to metal, concrete, and wood that was effective at controlling ham mites for 8 

weeks. These pesticides are currently registered for use in similar contexts, so they could be 

considered as new potential control measures for ham mites in ham plants. 
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Introduction 

Tyrophagus putrescentiae (Schrank) (Sarcoptiformes: Acaridae), a serious pest of dry-

cured ham, infests a wide range of stored and processed foods including grain, flour, and cereal 

products, stored seeds, cheeses, hams, and sausages (Athanassiou et al. 2011, Ayguna et al. 2007, 

García 2004, Athanassiou et al. 2002, Thind and Clarke 2001). American dry-cured ham, also 

known as country ham, is produced from the hind leg of a pork carcass by rubbing salt, sugar, 

and other spices, sometimes followed by a smoke treatment, and then aged between 3 and 

24 months to develop desirable flavor (Marriott and Schilling 2004). Cured hams that are 

subjected to aging for longer than 5 months are exposed to a greater risk for infestation by T. 

putrescentiae (Rentfrow et al. 2008). Methyl bromide (MeBr, CH3Br) is a broad spectrum 

fumigant that controls insects, mites, rodents, micro flora, and nematodes, and has been 

commercially used for more than 40 years (Duniway 2002). This fumigant has been utilized as 

the most effective control method against T. putrescentiae by dry-cured ham producers in the 

United States (Rentfrow et al. 2008). However, methyl bromide is classified as a significant 

ozone-depleting substance and has been phased out for most uses. Therefore, there is a 

significant need to find safe, feasible, economic, and effective alternative pest control methods 

for dry-cured hams. 

Sanitation is a main key to avoid notable mite infestations, although, the complexity of 

racks in dry-cured-ham aging rooms makes it difficult to use sanitation as an effective preventive 

control method. All plants with aging periods less than 5 months that did not report infestation 

problems had aging times of around 3 months, good sanitation, and fly control (Rentfrow et al. 

2008). Sanitation is necessary because ham mites will survive and thrive if facilities are not 

completely cleaned. However, some plants with good sanitation can still have infestations when 
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hams are aged longer than 5 months. Furthermore, abundant refuges such as cracks, crevices, and 

pathways for pests help ham mites to survive and thrive. Hence, sanitation and exclusion 

practices alone are not effective at controlling ham mites. 

Pest-management programs for flour mills and grain storages involve contact insecticides 

(Athanassiou et al. 2014). Many pesticides that are used to control stored-product insects also 

show acaricidal activity, but research with pesticides targeted specifically at T. putrescentiaeand 

other stored-product mites is limited. There are various compounds used efficiently for acarine 

pest control in field crops, veterinary, and public health programs (Collins 2006). Diatomaceous 

earth, essential oils, and bean flour have toxic effects on stored product mites, but their use is 

very limited (Hubert et al. 2007, Palyvos et al. 2006, Sung et al. 2004). Several pyrethroids have 

been identified as effective control agents against stored products mites. Populations of Acarus 

siro L. and Lepidoglyphus destructor (Schrank) were suppressed by over 99 % when treated with 

2 ppm bifenthrin applied to grain (Collins et al. 2001). Moreover, deltamethrin and bifenthrin 

reduced the population growth of T. putrescentiae by approximately 80 % at 4 ppm applied on 

grain (Collins et al. 2001). Chlorfenapyr is a broad spectrum insecticide–acaricide that can 

control all developmental stages of phytophagous mites and various insect pests. It has moderate 

mammalian toxicity (LD50 = 441 mg/kg) and persists in the environment for a long period of 

time (DT50 > 365 days) (Dekeyser 2005). Athanassiou et al. (2014) assessed the residual effect of 

chlorfenapyr for control of stored-product psocid species, Liposcelis entomophila (Enderlein) 

and L. paeta Pearman. Chlorfenapyr caused 99–100 and 92–100 % mortality of L. 

entomophila and L. paeta, respectively, at rates of 13.8 mg/m2 or higher after 3 d of exposure. A 

commercial combination of chlorpyrifos-methyl and deltamethrin can be directly applied on 

wheat and other small grains in the United States (US), with activity against several species of 

http://link.springer.com/article/10.1007/s10340-016-0766-3?wt_mc=internal.event.1.SEM.ArticleAuthorOnlineFirst#CR11
http://link.springer.com/article/10.1007/s10340-016-0766-3?wt_mc=internal.event.1.SEM.ArticleAuthorOnlineFirst#CR14
http://link.springer.com/article/10.1007/s10340-016-0766-3?wt_mc=internal.event.1.SEM.ArticleAuthorOnlineFirst#CR22
http://link.springer.com/article/10.1007/s10340-016-0766-3?wt_mc=internal.event.1.SEM.ArticleAuthorOnlineFirst#CR28
http://link.springer.com/article/10.1007/s10340-016-0766-3?wt_mc=internal.event.1.SEM.ArticleAuthorOnlineFirst#CR36
http://link.springer.com/article/10.1007/s10340-016-0766-3?wt_mc=internal.event.1.SEM.ArticleAuthorOnlineFirst#CR15
http://link.springer.com/article/10.1007/s10340-016-0766-3?wt_mc=internal.event.1.SEM.ArticleAuthorOnlineFirst#CR15
http://link.springer.com/article/10.1007/s10340-016-0766-3?wt_mc=internal.event.1.SEM.ArticleAuthorOnlineFirst#CR16
http://link.springer.com/article/10.1007/s10340-016-0766-3?wt_mc=internal.event.1.SEM.ArticleAuthorOnlineFirst#CR11
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stored grain insects (Arthur 2012). Effects of other pesticides such as Azadirachtin have been 

assessed for controlling population growth of T. putrescentiae with up to 100 % inhibition at 

certain concentrations (Collins 2003). However, no studies that evaluated deltamethrin plus 

chlorpyrifos-methyl for controlling stored product mites were found in our literature review. 

In addition to limitations on the types of pesticides that can be used to protect stored-

products (Stara et al. 2011b), another challenge of pesticide use in storage and food-processing 

places is the persistence of these compounds on treated surfaces. Extended residual efficacy of a 

pesticide is highly desirable because long-term control reduces the need to repeat the application. 

Several studies have tested the efficacy and persistence of contact insecticides on various 

surfaces that are similar to those in food-processing facilities in order to assess a pesticide’s 

potential value in commercial application (Arthur 2008, , Arthur et al. 2009, Athanassiou et 

al. 2011, Wijayaratne et al. 2012, Athanassiou et al. 2013, 2014). Results obtained from these 

studies vary due to species susceptibility, life stage, pesticide absorption to the given surface, the 

material and method applied in surface preparation, persistence of pesticide related to its 

structure, exposure period, and aging intervals. 

Therefore, the general purpose of this study was to evaluate the activities of registered 

pesticides from horticulture, field crops, and stored products for their potential to control T. 

puterescentiae. Specifically, initial screening studies of several active ingredients were 

conducted to determine compounds with potential for controlling T. putrescentiae. The mortality 

rates of mites exposed to three different surfaces treated with the most active pesticides were 

evaluated and treated surfaces aged up to 8 weeks post-treatment to assess residual activity. 

http://link.springer.com/article/10.1007/s10340-016-0766-3?wt_mc=internal.event.1.SEM.ArticleAuthorOnlineFirst#CR2
http://link.springer.com/article/10.1007/s10340-016-0766-3?wt_mc=internal.event.1.SEM.ArticleAuthorOnlineFirst#CR13
http://link.springer.com/article/10.1007/s10340-016-0766-3?wt_mc=internal.event.1.SEM.ArticleAuthorOnlineFirst#CR34
http://link.springer.com/article/10.1007/s10340-016-0766-3?wt_mc=internal.event.1.SEM.ArticleAuthorOnlineFirst#CR1
http://link.springer.com/article/10.1007/s10340-016-0766-3?wt_mc=internal.event.1.SEM.ArticleAuthorOnlineFirst#CR5
http://link.springer.com/article/10.1007/s10340-016-0766-3?wt_mc=internal.event.1.SEM.ArticleAuthorOnlineFirst#CR9
http://link.springer.com/article/10.1007/s10340-016-0766-3?wt_mc=internal.event.1.SEM.ArticleAuthorOnlineFirst#CR40
http://link.springer.com/article/10.1007/s10340-016-0766-3?wt_mc=internal.event.1.SEM.ArticleAuthorOnlineFirst#CR10
http://link.springer.com/article/10.1007/s10340-016-0766-3?wt_mc=internal.event.1.SEM.ArticleAuthorOnlineFirst#CR11
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Materials and Methods 

Mite cultures 

Mites used in this study were from our laboratory colony that was started with locally 

field-collected mites in 2010. Mites were reared in 917-ml glass canning jars and sealed with 

filter paper (Whatman™/cat No. 1001 090, 90 mm) within the metal lid ring. The mite-rearing 

diet was prepared for six rearing jars and was composed of 5 g each of agar (ICN Biomedicals, 

Inc.); yeast (MP Biomedicals, LLC); alphacel (ICN Biomedicals, Inc.); mixed vitamins 

(Vanderzant modification vitamin mixture for insect diet; MP Biomedicals, LLC); 160 g 

commercial dry dog food; 25 ml glycerol (Fisher); 25 ml antifungal salt solution in ethanol 

(methyl-p-hydroxybenzoate, 15:85 g/ml) (ICN Biomedicals, Inc.); and 475 ml tap water. The 

water, dog food, and glycerol were mixed and brought to a boil; other dry ingredients and the 

antifungal salt solution were added and cooked at a slow boil for about 30 min. The hot diet 

mixture was then added to each of the six jars together with about 80 g of additional dog food 

per jar. After the diet was cooled, approximately 16,000 mixed life stages of mites were 

introduced to jars that were then held at 25 °C and 70 % RH in darkness for 14–28 days, after 

which new mites could be harvested for experiments. 

Pesticides 

The pesticides tested in the experiments were commercial formulations of products 

available in the USA. Pesticides were selected so that a variety of chemical classes were 

represented and that those selected were permitted for various uses by regulatory agencies. A list 

of pesticides tested and their active ingredients, chemical groups, and recommended amount of 

active ingredient per square meter of application, is listed in Table 3-1. 

http://link.springer.com/article/10.1007/s10340-016-0766-3?wt_mc=internal.event.1.SEM.ArticleAuthorOnlineFirst#Tab1
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Pesticide screening bioassays 

Initial experiments were conducted to determine toxic activity of the pesticides against T. 

putrescentiae. A volume of 100 ml for each commercial product was made with a concentration 

equal to twice the EPA-recommended label rate in distilled water. This starting solution was then 

further diluted in half for the recommended label rate, and then again diluted 50 % to make a 

solution at half of the label rate. Pesticide bioassays were conducted in completely randomized 

designs based on methods of Yang et al. (2001), with slight modifications. Glass vials (4 ml) 

were coated on the inside surface with 35 µl of each pesticide solution. There were five 

experimental units per concentration. For a given compound, vials treated with distilled water 

were used as controls. Twenty unsexed adults and nymphs were transferred into each vial, and 

vials were sealed with screw-on plastic nonventilated lids. A small piece of wet filter paper 

(25 mm2) was placed in each vial to provide humidity for mites during the bioassay. The 

experimental vials with mites were held for 24 h in an incubator at 25 °C, after which mites were 

transferred to a clean Petri dish (3 cm by 1 cm height, Fisher, PA) with 0.2 g of dog food and 

small piece of wet filter paper (25 mm2) for a recovery period of 24 h before assessing mortality. 

A mite that did not move after contact with a brush was considered dead compared to mites that 

moved, which were considered alive. 

Residual activity on different surfaces 

To investigate the residual effect of the two most highly toxic pesticides (deltamethrin 

plus chlorpyrifos-methyl and chlorfenapyr) from the screening assays, 200 vials were treated 

with the recommended label rate of each pesticide, or distilled water as controls (n = 10), and 

then aged for either 1–2–4–6 or 8 weeks at ambient conditions (approximately 25 °C, 40 % R.H.) 

under total darkness. Twenty mites were transferred to each vial at each time period and 

http://link.springer.com/article/10.1007/s10340-016-0766-3?wt_mc=internal.event.1.SEM.ArticleAuthorOnlineFirst#CR41
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mortality assessed following a recovery period as described above. These bioassays showed that 

deltamethrin plus chlorpyrifos-methyl and chlorfenapyr caused 100 % mortality of mites assayed 

8 weeks after application. Therefore, subsequent studies on residual activity were conducted 

using surfaces other than glass. All tests were conducted using disposable plastic Petri dishes 

(3 cm by 1 cm height, Fisher, PA) with a total inside surface area (bottom, top and side) of 

20 cm2. These experiments used a completely randomized design with a 4 × 6 factorial structure, 

of 4 different treatments and 6 post-application time periods, for each of three different surfaces. 

Wood, metal, and concrete were utilized as the floors of the experimental dishes in a manner 

similar to that of Arthur et al. (2008). The wood surface was a circular piece of 3.1-mm-thick 

plywood, and the metal surface was a zinc-plated washer (Home Depot, KS), with each being 

fitted inside the dish bottoms. Both of these surfaces were glued to the Petri dish on the bottom 

(Elmer, Elmer`s Products, Inc. OH) and the sides (hot glue, Adhesive Technologies, Inc. NH) so 

that mites only came in contact with the treated areas. The concrete surface was made using a 

driveway patching material (Midwest Products, IN®) mixed with water to form a thick fluid, and 

poured into the Petri dish bottom to create a smooth surface of about 2.5 mm in height. All 

surfaces were prepared 2 weeks prior to application of the pesticides. One hundred ml of the 

recommended label rates of deltamethrin plus chlorpyrifos-methyl, malathion, and chlorfenapyr 

were formulated in a glass beaker using distilled water as a diluent. Solutions were applied on 

the individual surfaces using a Badger 100 artists’ airbrush (Badger Corporation, Franklin Park, 

IL). The volume of spray was 180 µl applied to all inside surfaces of each dish. Distilled water 

sprayed at 180 µl served as a control. There were three insecticidal treatments and a control for 

each of the three surfaces and six residual testing periods. Ten experimental replicates were 

prepared and tested for each pesticide and control treatment for each surface. The dishes were 
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held in storage cabinets under ambient conditions (approximately 25 °C and 40 % R.H.) until 

they were used for the mortality bioassays. Six post-treatment testing time intervals were 1 day, 

1 week, and 2, 4, 6 and 8 weeks. Twenty unsexed adults and nymphs were placed in each dish at 

a given post-treatment time, and a small piece of wet filter paper (25 mm2) was added to each 

Petri dish and then the dishes were placed in a glass desiccator at 85 % R.H., 25 °C, and 

darkness. Mites were exposed to treated surfaces for 24 h and then transferred to a clean petri 

dish with 0.2 g of dog food and small piece of wet filter paper (25 mm2) for a 1-day recovery 

period, followed by mortality assessment as described above. 
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Data Analysis 

The data were adjusted using Arcsine transformation (Mosteller and Youtz 1961) of the 

proportion killed and then submitted separately for screening experiments and aged surface 

experiments to one-way and two-way ANOVAs, using GLM models, respectively (SAS Institute 

Inc. 2010). Means were separated by the Tukey's HSD (honest significant difference) test at 

P < 0.05. 
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Results 

Screening bioassays 

Mite mortality increased significantly with increasing concentration of many of the 

pesticides tested, including deltamethrin plus chlorpyrifos-methyl, chlorfenapyr, malathion, and 

rosemary. These pesticides caused 95 % or higher mortality of adults and nymphs when applied 

at half the label rate (Table 3-2). Furthermore, deltamethrin plus chlorpyrifos-methyl and 

chlorfenapyr elicited very high mortality rates at concentrations that were much lower than the 

label rate. Carbaryl, gamma-cyhalothrin, and deltamethrin had greater than 60 % toxicity against 

mites tested in these studies. For the other five pesticides evaluated, mite mortality was less than 

or equal to 10 %. Mortality at 1× or 2× label rates was low and not different from untreated 

controls for avermectin, azadirachtin, tau-fluvalinate, and bifenazate (Table 3-2). 

Residual activities on different surfaces 

The overall ANOVA showed that main effects of time and pesticide, and the interaction 

effect of time × pesticide for all surfaces were significant at P < 0.05 (Table 3-3). Adult mortality 

for water-treated control surfaces was below 5 %, except on metal (7.5 % mortality) at 4 weeks 

post-treatment, and on wood (9.5 % mortality) at 1 week post-treatment. 

Data for chlorfenapyr confirmed that this compound retained its efficacy to control ham mites for 

the entire experimental period on metal, concrete, and wood (Table 3-4). On metal, deltamethrin 

plus chlorpyrifos-methyl and malathion were most efficacious at 1 day post-treatment with about 

80.5 and 95.5 % mortality, respectively, and then the effectiveness of these pesticides gradually 

decreased (P < 0.05) over the experimental period. Deltamethrin plus chlorpyrifos-methyl 

applied to concrete exhibited only 17.5 % mortality 1 day post application, and this decreased to 

less than 10 % for the rest of the time intervals evaluated (Table 3-4). Malathion on concrete 

http://link.springer.com/article/10.1007/s10340-016-0766-3?wt_mc=internal.event.1.SEM.ArticleAuthorOnlineFirst#Tab2
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caused 71 % mortality at the first time interval, and then had a trend of decreased residual 

activity up to 6 weeks (Table 3-4). Mortality from malathion on concrete was then 51.5 % at 

8 weeks, which was unexpected and surprising (Table 3-4). Malathion applied to wood also 

showed variable residual activity over time, with low mortality at 1 day, 1 and 2 weeks, but then 

an increase to 61 % at 4 weeks and then down again to less than 10 % kill for 6 and 8 weeks 

(Table 3-4). Results indicated that on wood, deltamethrin plus chlorpyrifos-methyl did not kill 

more than 20 % of mites tested at any of the given post-treatment time intervals (Table 3-4). 
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Discussion 

Several studies have reported the efficacy of plant essential oils for the control of stored-

product mites (e.g., Gulati 1997, Sánchez-Ramos and Castañera 2001, Stara et al. 2011a, 

Collins 2003, Song et al. 2011, Assis 2011, Jeon et al. 2014). Jeon et al. (2014) showed 

that Rosmarinus officinalis oil was highly effective (LD50 = 8.24 µg/cm3) to control T. 

putrescentiae. This result was consistent with our result that showed rosemary oil caused 97 % 

mortality to mobile stages of T. putrescentiae at the recommended application rate. Commercial 

products of azadirachtin, a natural product from the neem tree (Azadirachta indica), have shown 

preventive control in combination with mite diet (Collins 2003, Gulati 1997). Stara et al. (2011a) 

indicated that neem had high toxicity against T. putrescentiae, Dermatophagoides 

farina (Hughes), and D. pteronyssinus (Trouessart). Our results were different from these earlier 

studies in that mite mortality was only 10 % when azadirachtin was tested. Sánchez-

Ramos and Castañera (2003) reported low efficacy for azadirachtin against immature stages of T. 

putrescentiae when it was combined with mite diet, but they did not study azadirachtin applied to 

surfaces. 

Pyrethroids and organophosphates vary in their effectiveness against stored-product 

mites. Variation in toxicity of a given compound in such research may be due to formulation, 

bioassay method, and the strain of mite species (Stara et al. 2014, Freitag and Kells 2013, Stara 

et al. 2011b). For instance, two formulations of chlorpyrifos-ethyl showed high and low toxicity 

of T. putrescentiae (Stara et al. 2011b). However, results from the current project demonstrated 

high levels of toxicity against ham mites with a diversity of compounds: malathion, deltamethrin 

plus chlorpyrifos-methyl, and deltamethin alone. Stara et al. (2011b) showed that single 

pyrethroids were ineffective (two formulations of deltamethrin) or had high LD90 (cyphenothrin, 
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permethrin, pyrethrum, and bifenthrin) against T. putrescentiae. However, the combination of 

deltamethrin with S-bioallethrin decreased the LD50 remarkably, suggesting that it was a highly 

effective mixture at controlling T. putrescentiae (Stara et al. 2011b). Our study indicated that a 

combination of chlorpyriphos-methyl with deltamethrin was highly toxic to T. putrescentiaeand 

deltamethrin was relatively toxic to T. putrescentiae when applied on glass vials. In previous 

studies, the combination of chlorpyriphos-methyl with deltamethrin was reported to be toxic to 

psocids (Athanassiou et al. 2009). On the other hand, Stara et al. (2014) showed that using some 

formulations of deltamethrin did not decrease the T. putrescentiae growth and that chlorpyrifos-

methyl was highly effective against T. putrescentiae (Stara et al. 2011b). In contrast to these 

results, other researcher reported that mixing 10 ppm of chlorpyrifos-methyl with wheat did not 

control T. putrescentiae after 4 weeks of storage (Nayak 2006a, 2006b). 

Chlorfenapyr results from the current study suggest that this pesticide could potentially 

be used as part of a T. putrescentiae management program. Chlorfenapyr is a pyrolle insecticide 

that is effective at controlling stored-product insects (Athanassiou et al. 2014) and has controlled 

Tribolium castaneum (Herbst) at lower recommended label rate (Arthur 2013). Other studies 

have evaluated the persistent nature of chlorfenapyr to control stored-product pests on different 

surfaces like plywood, concrete, metal, and tile (Arthur et al. 2009, Arthur 2013, 2015). Stara et 

al. (2014) also showed that chlorfenapyr was highly toxic to three different strains of T. 

putrescentiae. However, according to the LD99, the field strain (0.1 μg/cm2) was most sensitive 

to chlorfenapyr while the sensitivity of the mite strain from dog food (2 μg/cm2) and the 

laboratory strain (3 μg/cm2) were similar. These researchers reported that the lethal doses of 

chlorfenapyr (LD99 = 0.1–3 μg/cm2) were lower than the recommended dose for insects. Results 
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from the current study confirmed this. The current study reveals that chlorfenapyr was highly 

toxic, and the residual activity for chlorfenapyr controlled T. putrescentiae completely. 

Variation in the susceptibility of T. putrescentiae to different pesticides on three surfaces 

may have been due to the pesticide mode of action or the loss of activity over time as a function 

of the surface to which the pesticide was applied. We evaluated each surface separately, since the 

effects of the two main factors, post-treatment time interval and pesticide, were of interest. 

Chlorfenapyr was persistent for the entire time period on all surfaces. The time interval effect 

changed significantly on metal from 1 day to 1 week and again at 6 weeks post-treatment for 

deltamethrin plus chlorpyrifos-methyl, as indicated by decreases from 80.5 % mortality to 42 % 

mortality at 1 week, and a decrease to 1.0 % after 6 weeks. Malathion mortality decreased 

between 1 day and 1 week, between 2 and 4 weeks, and between 4 and 6 weeks on metal. In 

addition, malathion performed better than deltamethrin plus chlorpyrifos-methyl at all-time 

intervals on metal. Time interval effect significantly changed after 1 week for deltamethrin plus 

chlorpyrifos-methyl and after every post-treatment interval for malathion on concrete with the 

exception of week 6. The wood that was used for this study was unpainted in order to mimic the 

condition of real ham plants, and our observation showed that persistent activity of pesticides 

tested on wood was quite low. In previous studies, it has been reasoned that porous surfaces like 

concrete affect the persistency of synthetic chemicals. However, persistence of pesticide 

effectiveness also depends on differences among materials such as concrete, wood, and metal 

(Arthur et al. 2009). Arthur et al. (2009) showed that pyriproxyfen had greater residual 

persistence on the painted wood (28 days) than on metal and concrete surfaces (21 days each). 

The results of the present work showed that chlorfenapyr controlled T. putrescentiae entirely up 

to 8 weeks. Similarly, previous studies have shown long residual activity for other compounds. 
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For example, azamethiphos was active against L. bostrychophila Badonnel for 36 weeks on steel 

and 24 weeks on concrete surfaces, and was active against L. paeta infestations for 28 weeks on 

a steel surface. However, this compound did not control L. paetaon the concrete surface and did 

not control L. entomophila infestations on either concrete or steel surfaces (Collins et al. 2000). 

Furthermore, it was reported that chlorpyrifos-methyl at concentration of 20 ml/L/m2 did not 

prevent or control T. putrescentae infestations on a conveyor belt and storage floors in a food-

processing plant (Nayak 2006a, 2006b). 

The overall objective of our research has been to provide tools for inclusion in integrated 

pest-management programs to control T. putrescentiae after methyl bromide which is no longer 

available. The population growth rate of T. putrescentiae under ideal conditions has been 

estimated to increase 500fold monthly (Hughes 1976, Haines 1991). Tolerance for mite 

infestations in commercial dry-cured ham facilities is very low (Rentfrow et al. 2008), and 

methyl bromide fumigation had been used frequently to keep mite numbers low (Rentfrow et 

al. 2008). Use of residual pesticides like those studied here could be adopted as preventive 

control measures to keep mite populations low in dry-cured-ham aging rooms. 
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Table 3-1 General information of examined registered pesticides to control T. putrescentiae at laboratory level.  

Pesticide group Active ingredients Trade name 

% Active 

Ingredient 

in Stock 

Solution 

Applied Label Rate 

Active Ingredient      

( per m2) 

Manufacture 

botanical  azadirachtin Ornazin® 3       6.2 µg SePRO 

botanical rosemary oil Ecosmart® 1       2.5 µl Ecosmart Technologies Inc 

organic fatty acids saturated fatty acid 

mixture:C8, C9, C10 

Emerion™8000 

C8910 

15 
       -- a 

Emery Oleochemicals 

microbial avermectin Abamectin® 2     86.1 µg Nufarm 

microbial pro-

insecticide 

chlorfenapyr Phantom® 21.4 1348.3 µg Bayer CropScience 

synthetic pyrethroid tau-fluvalinate Mavrik® 22.3    0.05 µg Zeocon 

synthetic pyrethroid deltamethrin Centynal® 4.8  145.7 µg Wellmark International 

synthetic pyrethroid gamma-cyhalothrin Bug Stop® 0.025  6.61-5 µl Spectracide Home Barrier 

synthetic pyrethroid + 

organophosphate 

deltamethrin +   

chlorpyrifos methyl 

Storcide II® 3.7 + 21.6     129 µg + 748 µg Bayer CropScience 

organophosphate malathion Malathion® 50    505 µg Spectracide 

carbamate carabryl Sevin® 22.5    75-4 µl Garden Tech 

carbazate bifenazate Floramite® 22.6 18.72 µg OHP, Inc. 
 

a There is no label available for this pesticide yet. 
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Table 3-2 Mortality of T. putrescentiae exposed to several pesticides at three concentrations in screening bioassay using glass 

vials 

Pesticide    % Mortality  (SE)   

   Concentration   F(3, 16)  P-value* 

 Control 1/2 x Label rate 1 x Label rate 2 x Label rate   

bifenazate  0.0  (0.0) a  0.0 (0.0) a 0.0 (0.0) a 1.7 (1.7) a   1.0     0.4 

tau-fluvalinate  0.0  (0.0) a 2.5 (1.2) a 2.5 (0.6) a 6.7 (0.7) a   2.5     0.1 

avermectin  2.5 (1.1) a 1.7 (1.2) a 3.3 (1.7) a 3.3 (2.1) a   0.21     0.9 

azadirachtin  0.0  (0.0) a 0.0 (0.0) a 5.8 (1.5) b 10.0 (3.2) b  10.1 < 0.01 

deltamethrin  1.7 (1.1) a 66.7 (3.1) b 65.7 (3.1) b 76.7 (5.7) b  89.7 < 0.01 

carabryl  0.0  (0.0) a 88.0 (3.7) b 80.0 (5.5) b 87.0 (6.6) b  64.0 < 0.01 

gamma-cyhalothrin  0.0  (0.0) a 71.0 (4.9) b 84.0 (4.9) b   NAa   108.9 < 0.01 

rosemary oil  1.0  (1.0) a 96.0 (3.0) b 97.0 (3.0) b  NA   178.3 < 0.01 

deltamethrin + 

chlorpyrifos methyl 
1.0  (1.0) a 98.0 (1.2) b 97.0 (3.0) b 100.0 (0.0) b  260.0 < 0.01 

malathion 1.0  (1.0) a 99.0 (1.0) bc 98.0 (2.0) c 98.0 (2.0) c  247.0 < 0.01 

 Control 0.7 g/ml 1.4g/ml    

C8910 9.0  (1.9) a 100.0 (0.0) b 100.0 (0.0) b NAb  1514.9 < 0.01 

 Control 1/2 x Label rate 1/4 x Label rate 1/8 x Label rate   

deltamethrin + 

chlorpyrifos methyl 
0.83 (1.0) a 98.0 (1.2) b 95.8 (1.6) b 96.0 (1.8) b 171.3 < 0.01 

 Control 0.01 x Label rate 0.1 x Label rate    

chlorfenapyr c 5.0   (1.6) a 96.0 (1.0) b 99.0  (1.0) b  NA 367.2 < 0.01  

 Control 0.0025 x Label rate 0.005 x Label rate 0.01 x Label rate   

chlorfenapyr   1.7  (1.0) a 94.9 (3.9) b 97.5 (1.0) b 99.2 (1.0) b 208.8 < 0.01 
a NA indicates there were pesticides purchased in solution at the label rate concentration, therefore a double label rate could not be 

tested. Degree of freedom equals 2, 12 for these experiments. 

b This recently approved (US EPA) pesticide did not have a recommended application rate at the time of this work 

c Preliminary experiments with chlorfenapyr determined that 0.1 label rate killed nearly 100 % of T. putrescentiae, concentrations for 

chlorfenapyr consisted of lower label rate 

 
* Within each row means followed by the same lower case letter are not significantly different; HSD test at P<0.05 
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Table 3-3 ANOVA for main effects residual exposure time and pesticide on different surfaces 

Surface Source  df        F   P-value 

Metal     

 Time   5     99.1 < 0.001 

 Pesticide   2 1458.6 < 0.001 

 Time x Pesticide 10     35.5 < 0.001 

     

Concrete     

 Time   5     41.3  < 0.001 

 Pesticide   2 2453.9 < 0.001 

 Time x Pesticide 10     29.1 < 0.001 

     

Wood     

 Time   5   167.0 < 0.001 

 Pesticide   2 1677.6 < 0.001 

 Time x Pesticide 10     12.4 < 0.001 
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Table 3-4 Residual effects of chlorfenapyr, deltamethrin + chlorpyrifos methyl, and malathion for up to 8 weeks after application to wood, metal, and concrete surfaces 

on the mortality of T. putrescentiae 

Surface Pesticide  % Mortality (se) per Time Perioda    

  1 DAY 1 Week 2 Weeks 4 Weeks 6 Weeks 8 Weeks      F(5,54), P 

Metal              

 control     3.5 (1.5) Aa      2.5 (1.1) Aa     1.0 (0.7) Aa     7.5 (3.2) Ba     3.5 (2.5) Ba     3.5 (1.3) Aa       1.2, 0.3 

 chlorfenapyr   100.0 (0.0) Ab 100.0 (0.0) Ab 100.0 (0.0) Ab 100.0 (0.0) Ab 100.0 (0.0) Ab 100.0 (0.0) Ab       0.0, 1.0 

 deltamethrin + chlorpyrifos methyl   80.5 (1.2) Ac   38.5 (3.9) Bc   46.5 (5.3) Bc   42.0 (4.5) Bc     1.0 (0.7) Ca     3.5 (2.0) Ca   110.5, < 0.01 

 malathion   95.5 (1.2) Ad   89.0 (1.9) Bd   88.5 (2.7) Bd   72.0 (5.0) Cd   29.5 (5.8) Dc   30.0 (3.6) Dc     93.3, < 0.01  

 F(3,36), P 266.7, < 0.01 270.8, < 0.01 279.8, < 0.01 212.4,  < 0.01 310.7, < 0.01 294.8, < 0.01  

         

Concrete             F(5,54), P 

 control     2.0 (1.3) Aa     0.5 (0.5) Ba     0.0 (0.0) Ba     2.0 (1.1) Ba     0.5 (0.5) Ba     3.0 (1.1) Ba     1.2, 0.3 

 chlorfenapyr   100.0 (0.0) Ab 100.0 (0.0) Ab 100.0 (0.0) Ac 100.0 (0.0) Ab 100.0 (0.0) Ac 100.0 (0.0) Ab     0.0, 1.0  

 deltamethrin + chlorpyrifos methyl   17.5 (3.1) Ac     0.5 (0.0) Bc     2.5 (2.0) Aa     3.5 (1.1) Aa     6.5 (2.8) Ab     0.5 (0.5) Aa   15.9, < 0.01 

 malathion   71.0 (4.3) Ac   36.5 (2.0) Bc   17.0 (2.5) Cb     5.0 (1.8) Dc     6.5 (3.7) Db   51.5 (5.5) Ec   111.4, < 0.01 

 F(3,36), P 379.7, < 0.01 447.2, < 0.01  444.1,  < 0.01 445.9, < 0.01 447.8, < 0.01 434.6, < 0.01  

         

Wood            F(5,54), P 

 control     0.0 (0.0) Aa     9.5 (2.3) Ba     2.5 (1.1) Ca     1.5 (1.1) Ca     1.5 (1.1) Ca     3.5 (1.1) Ca      4.3, 0.4 

 chlorfenapyr   100.0 (0.0) Ab 100.0 (0.0) Ab 100.0 (0.0) Ab 100.0 (0.0) Ab 100.0 (0.0) Ab 100.0 (0.0) Ab      0.0, 1.0 

 deltamethrin + chlorpyrifos methyl     6.5 (2.2) Ac   16.0  (2.7) Bc     9.0 (3.5) Cc     4.0 (3.0) Ca     5.5 (2.9) Ca     3.0 (2.1) Ca      6.7, < 0.01 

 malathion   17.0 (4.1) Ad    31.5 (3.3) Bd   10.5 (1.9) Cc   61.0 (6.9) Dc     7.5 (2.1) Ea     9.0 (1.0) Ec    42.8, < 0.01 

 F(3,36), P   77.3, < 0.01 217.4, < 0.01 278.9, < 0.01 315.7, < 0.01 313.3, < 0.01 304.2, < 0.01  
a Within each row, means followed by the same upper-case letter are not significantly different ; within each column, means followed by the same lower-case letter are not 

significantly different; HSD test at 0.05. 
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Chapter 4 - Time-Mortality Relationships to Control Tyrophagus 

putrescentiae (Schrank) (Sarcoptiformes: Acaridae) Exposed to High 

and Low Temperatures 
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Abstract 

Tyrophagus putrescentiae (Schrank) (Sarcoptiformes: Acaridae) is a widely distributed 

pest species that is of significant economic importance for dry-cured country hams. Methyl 

bromide was used for decades in country ham plants to control this pest, but now this fumigant is 

recognized as an atmospheric ozone-depleting compound and will be phased out for all uses in 

the near future. Of various chemical and nonchemical alternatives to methyl bromide, extreme 

temperatures are viable and straightforward nonchemical methods to control pests. This study 

evaluated the efficacy of high and low temperatures on mortality of mold mite in the laboratory. 

Ten eggs and a mixture of 40 adults and nymphs were separately exposed to different high and 

low temperatures, ranging from +35 to 45 °C and from −20 to +5 °C, for several periods of time. 

Mortality was assessed after a recovery period for each life stage. Tyrophagus putrescentiae eggs 

were found to be more tolerant to both high and low temperatures than were the mobile stages. 

Results showed that high temperatures from 40-45 °C killed all mites within 4 to 1 d, 

respectively, while −10 °C or lower killed all mites in less than 1 d. Regression analyses of 

mortality data as a function of exposure predicted times for achieving desired levels of mite 

mortality. This study suggests that extreme temperature treatment can play an important role in 

integrated pest management programs for dry-cured ham as an alternative to methyl bromide or 

other chemical treatments. 
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Introduction 

Tyrophagus putrescentiae (Schrank) (Sarcoptiformes: Acaridae), known as the mold 

mite, copra mite, cheese mite, and ham mite, is a common and sometimes significant pest of 

stored-products in many countries (Cunnington 1976). It has been reported in stored cheese, 

cultivated mushrooms, dry-cured ham aging, pet food, grain, living plants, and fruits 

(Cunnington 1976, Hughes 1976, Nayak 2006, Qu et al. 2015, Rentfrow et al. 2008). Tyrophagus 

putrescentiae infestation is a serious problem for both European and American dry-cured ham 

producers (Sánchez-Ramos and Castañera 2001, Rentfrow et al. 2008). Mite infestation can 

make the product unacceptable and may potentially be allergic to sensitive consumers after 

ingestion or contact (Armentia et al. 1994). American dry-cured ham or “country ham” has a 

valued tradition that is well-known in the southern United States. Hams are produced by treating 

the hind leg of a butchered hog with dry salts and other seasonings, sometimes followed by 

smoking to add flavor, followed by aging for several months under ambient conditions (Flores et 

al. 1997). The aging process can vary between 3 to 24 months, depending on the desired flavor, 

with longer aged products having a more developed flavor and a higher market value (Marriott 

and Ockerman 2004). 

Tyrophagus putrescentiae females are able to complete a generation in 8 to 21 d at 

suitable conditions of humidity and temperature (25 °C, > 65% RH). Up to 500 eggs can be laid 

during a female’s life span at a favorable temperature between 25–32°C and high relative 

humidity between 70-90% (Boczek 1991). Mite infestations have generally been controlled by 

fumigation or other pesticide applications that are being reduced mostly because of 

environmental safety concerns and cost (Žďárková and Voráček 1993). Methyl bromide is 

commonly used to control mite infestations in the United States, but it is classified as a 

http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-6
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-6
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-18
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-24
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-27
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-29
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-32
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-29
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-2
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-14
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-14
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-23
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-23
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-3
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-38
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significant ozone-depleting substance (US EPA 2016) and is being phased out for all pest control 

uses in the United States. 

Research has been conducted on controlling T. putrescentiae infestations through the use 

of subfreezing temperature application (Eaton and Kells 2011), CO2 and ozone fumigation 

(Sekhon et al. 2010), modified atmosphere packaging and improved packaging systems 

(Riudavets et al. 2009), sanitation (Rentfrow et al. 2006), diatomaceous earth application 

(Palyvos et al. 2006), low barometric pressure and certain light regimes (Žďárková and Voráček 

1993), and high temperature (Fields 1992). 

Physical control methods are gaining interest as fumigation alternatives, because they are 

compatible with organic production, leave no residues, have little or no negative effect on 

product quality, and are comparatively safe for workers (Hagstrum and Subramanyam 2006). 

Using extreme temperature is one of the simplest and most environmentally friendly methods of 

pest control. Heat disinfestations of grain and processing facilities have been used for many 

years to control stored-product insects (Fields 1992, Fields et al. 2012). Artificial cooling or 

freezing has also been identified as a means of pest control (Evans 1987,Hagstrum and Flinn 

1994, Donahaye et al. 1995, Imai and Harada 2006, Abdelghany et al. 2010,Eliopoulos et al. 

2011). Preserving stored-products between −10°C and −20°C for a short period can be an option 

for disinfestation of high-value products (Hagstrum and Subramanyam 2006). A few studies 

have addressed the ability of T. putrescentiae to survive high and low temperatures (Cunnington 

1969, 1976, Žďárková and Voráček 1993, Eaton and Kells 2011). However, additional 

information on a range of cold and heat treatment conditions could be useful. Determining 

critical temperatures and exposure times for T. putrescentiae mortality under extreme 

temperatures will help to design an improved integrated pest management program in dry-cured 

http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-36
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-9
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-34
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-30
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-28
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-25
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-38
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-38
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-12
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-16
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-12
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-13
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-11
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-15
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-15
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-8
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-19
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-1
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-10
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-10
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-16
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-5
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-5
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-6
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-9
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ham facilities and ensure disinfested products. This study aimed to determine the shortest 

effective exposure time over a range of low and high temperatures to control T. 

putrescentiae infestations. 
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Materials and Methods 

Mite Culture 

Mites were reared in glass jars (85 mm diameter, 160 mm height) containing mite diet 

and sealed with labeled filter paper (90 mm, Fisher Scientific, Pittsburgh, PA) in the metal lid 

ring. The rearing diet was a combination of approximately 80 g of dry whole dog food kernels 

per jar and 100 ml of thick gravy prepared from cooked dog food with water and other 

ingredients described below. To prepare the liquid part of the diet for six rearing jars, dog food 

(160 g) was mixed with 475 ml tap water and heated to a boil. Then, 5 g each of agar (Mooragar, 

Incorporated Loomis, CA), yeast (MP Biomedicals, LLC, Solon, OH), alphacel (MP 

Biomedicals, LLC, Solon, OH), and mixed vitamins (Vanderzant modification vitamin mixture 

for insect diet; MP Biomedicals, LLC, Solon, OH), and 25 ml of glycerol (Fisher Scientific, 

Pittsburgh, PA) were added to the mixture and cooked to a boil again. An antifungal agent (25 ml 

of methyl-p-hydroxybenzoate in ethanol, 15:85 g.ml − 1; ICN Biomedicals, Inc. Aurora, OH) was 

added to the mixture and it was cooked for 30 min. Approximately 500 ml of the mixture was 

then added to 80 g of dry whole dog food in each rearing jar and allowed to cool prior to 

inoculation with mites. Tyrophagus putrescentiae cultures have been maintained at 25°C and 

70% RH in darkness at our laboratory at Kansas State University for more than 4 years and they 

have never been exposed to extreme temperatures (< 5°C or >40°C). 

High and Low Temperatures Treatment Assay 

All experiments with extreme temperatures used a standard experimental unit comprising 

a 4-ml glass vial (Fisher Scientific, Shell vial, 12 × 35 mm, Pittsburgh, PA) with a plastic cap 

modified with a 2-mm-diameter hole for ventilation that secured a fine fabric mesh (125 µm) 

screen to retain mites in the vial. Each vial had a small piece of dog food (200 mg), and either 10 
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mite eggs or a group of 40 mobile mites comprising adults and large nymphs. For heat treatment, 

five vials were exposed to 30, 35, 38, 40, 42, and 45 °C for 0.5 to 96 h in a laboratory oven 

(Imperial III, Lab Line Instruments, INC. IL). For the cold treatment, five vials were exposed to 

temperatures of −20, −10, −7, −5, −3, 0, and 5 °C for 0.25 to 192 h. Bioassays were conducted 

separately for each temperature and life stage in this study. Vials were placed into a closed 

Styrofoam box that was then put inside a typical home freezer (Criterion, 5.0 cu. Ft. chest 

freezer, Menards, WI) with a maximum freezing temperature of −22 °C. A hair-curling iron 

(Remington, 1” 2-in-1 Curling Iron, Walmart, KS) was in the Styrofoam box and controlled by a 

thermostat (Fisher Scientific, Temperature controller with timer, Pittsburgh, PA) that allowed us 

to set the desired temperature above −22 °C by heating the air inside the box. The timer started 

when the freezer door was closed, so that the time taken to reach the desired temperature was 

included as part of the exposure duration. Some mite mortality may therefore have occurred 

before the desired temperature was achieved. The relative humidity inside the jars in the oven 

and freezer was approximately 90% and 30%, respectively, which are the conditions one would 

expect in a treated building under these temperatures. Temperatures and relative humidity were 

monitored and recorded at 5-min intervals with HoBo data loggers (Oneset, Bourne, MA) that 

were placed on the shelves of the oven or inside the Styrofoam box in the freezer. An 

experimental control set of vials was held at 25 °C and 70% RH in a growth chamber. There 

were five experimental units of mobile stages and nine experimental units of eggs for each time–

temperature combination. After exposure, the mobile stages and eggs in vials were held under 

control conditions until their viability was determined 3 d after treatments. Mortality of eggs was 

based on those that failed to hatch. For mobile stages, the criterion for viability assessment was 

any movement following physical stimulation.  
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Data Analysis 

The 50 and 99% lethal times (LT50, and LT99) were calculated using a complementary 

log-log (CLL) regression model, using SAS software, in which percentage mortality (y) was 

transformed to the loge (_loge [1 _ y/100]) scale, and exposure time (x) was transformed to the 

log10 scale. The goodness-of-fit of the CLL model to the data was compared using a chi-square 

statistic (SAS Institute Inc. 2010, Robertson and Preisler 1992). 

  

http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-33
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-31
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Results 

The times required to reach target high temperatures in our treatment chambers after 

adding mites ranged from 35 min for 30 °C and 240 min for 45 °C. Times for reaching target cold 

temperatures in our freezer ranged from 150 min for −20 °C to 50 min for 5 °C. The times 

required to achieve different levels of mortality, as percent of test groups killed, under high and 

low temperatures are reported in Table 4-1. In all cases, the time required to kill eggs was longer 

than the times required for killing the mobile stages, the adults and nymphs, of T. 

putrescentiae at the same temperature. Control mortality at 25 °C for mobile stages ranged 

between 0 to 2.5% and for egg mortality from 0 to 5.6%. Mortality of all mite stages was less 

than 100% at times of 72 h or longer in experiments with 38, 35, 30, 5, 0 °C, and −3 °C; these 

data were not included in further analyses in this study. Mortality of 100% of mites was achieved 

at 45 °C for mobile stages at 4 h. Eggs required 21 h to achieve 100% mortality at the same 

temperature. Time for 100% kill at the extreme cold temperature of −20 C was 2 h for the mobile 

stages and 12 h for eggs. At intermediate temperatures such as 42, 40, −5, −7 °C, and −10 °C, 

100% mortality of eggs was achieved at times ranging between 21 h and 96 h. 

Results of regression analyses for estimations of the times required to kill a certain 

percentage of mites at different temperatures are given in Tables 4-2 and 4-3 for mobile stages 

and eggs, respectively. Chi-square values were not significant (P > 0.05) for accurately 

predicting mortality at 42 °C and −20 °C for the mobile stages and at all temperatures studied for 

egg mortality, indicating a generally good fit of data to the CLL models (Tables 4-2 and 4-3). 

Significant chi-square values (P < 0.05) for the remaining time–mortality curves showed that the 

responses of T. putrescentiae stages were heterogeneous among the data sets. This heterogeneity 

can be a result of different life stages, sex, and extreme temperature acclimation in the treatment 

http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#T1
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#T2
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#T3
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#T2
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#T3
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vials, and this will need further study. The upper confidence levels of the LT99 estimates from the 

regression analyses concur nicely with times at which we observed 100% mortality in our direct 

experiments with a given temperature or life stage. 

  



94 

 

Discussion 

The extreme temperatures that we evaluated were well beyond optimal conditions for 

development of T. putrescentiae, and our results provide good information for the development 

of nonchemical controls for this pest. Tyrophagus putrescentiae eggs were more tolerant to 

extreme temperatures than mobile stages, including adults and large nymphs. Results also 

indicated that T. putrescentiae were more susceptible to extreme cold temperatures, requiring 

shorter exposure times, than extreme high temperatures. The extreme high and low temperatures 

killed eggs and mobile stages in 2 d or less, and lethal temperatures just within the extreme high 

of 45 °C and low of −20 °C resulted in good mortality within reasonable time periods. 

Previous studies investigated the effects of low or high temperatures on the mortality 

of T. putrescentiaeand other stored-food mites. Cunnington (1976) found that T. 

putrescentiae adults could survive for up to 7 months at 5 °C, and females laid on average just 

four eggs within that time period. In addition, Cunninton (1976) showed that none of several 

hundred new eggs hatched, nor did immature mites progress in their development, when held at 

5 °C for 7 months. Žďárková and Voráček (1993) found that adults of T. putrescentiae were 

killed at −15 °C after 30 min, but only 10% mortality was recorded after 1 h after exposure to 

either −5 or 0 °C. 

There are no studies to our knowledge explaining the effects of cold or heat acclimation 

on survival of T. putrescentiae under short-term pest mitigation treatments. Eaton and Kells 

(2011) showed the super-cooling point of T. putrescentiae ranged from −24 to −26 °C for adults 

and nymphs and was −35.6 °C for eggs, but they did not determine if gradual decreases in 

temperature from ambient would provide acclimation such that the supper-cooling point would 

be lowered. However, studies on other arthropod species indicated that cold acclimation can 

http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-6
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-6
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-38
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-9
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-9
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increase the survival of, for example, Cryptopygus antarcticus (Willem) (Collembola: 

Entomobryidae) (Worland and Convey 2001) and Tetranychus urticae Koch (Trombidiformes: 

Tetranychidae) (Khodayari et al. 2013). Furthermore, sugar alcohols (polyols) are well-known 

for accumulating in cold acclimated arthropods, and such accumulation may make them more 

cold-tolerant (Cannon and Block 1988). Nevertheless, using extreme temperatures for short-term 

applications against mold mites, which involves a rapid increase or decrease in temperature to 

meet a target killing temperature, is unlikely to be affected by any previous acclimation of mites 

in the pest population within their stored-product habitats. 

A review of past literature on stored-product mite susceptibility to extreme temperatures 

reveals that different research groups report contrasting results for similar experiments. In 

contrast to our finding that eggs of T. putrescentiae are most tolerant of both high and low 

extreme temperatures compared with other life stages, Eaton and Kells (2011) reported that eggs 

were the most cold-susceptible life stage for their experiments at −5 and −10 °C. Cunnington 

(1984) showed that eggs of Acarus siro (L.) (Sarcoptiformes: Acaridae) were all killed in 30 min 

at −15 °C, while Žďárková and Voráček (1993) found that 1.5 h at −15 °C applied to eggs of the 

predator Cheyletus eruditus (Prostigmata: Cheyletidae) (Schrank) resulted in substantial 

mortality. Further, Pulpán and Verner (1959) found that mixed life stage A. siro and C. 

eruditustreated with −15 and −10 °C, respectively, caused complete mortality after 48 h, 

but Sinha (1964) reported that A. siro and Lepidoglyphus destructor (Schrank) (Sarcoptiformes: 

Glycyphagidae) were controlled at 72 and 196 h, respectively, at −18 °C. Hubert et al. 

(2010) showed that temperatures for optimal oviposition and development varied across stored-

product mite taxa, though it is unknown if such physiological differences could contribute to 

difference in lethal conditions from extreme temperatures across taxa and within species. The 

http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-37
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-20
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-4
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-9
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-7
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-7
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-38
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-26
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-35
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-17
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-17


96 

 

studies on lethal temperatures discussed above used different experimental procedures for 

heating, cooling, and exposure times, all applied to different mite species or different strains 

within species on different mite diets, any or all of which may have contributed to variation 

found in lethal effects from extreme temperatures. 

A key limitation for the development of a cost-effective extreme temperature pest 

mitigation method is the time and/or temperature required for killing the most tolerant life stages. 

Results demonstrated that eggs are the most heat-tolerant stage of T. putrescentiae, which is 

consistent with research reported by Cunnington (1976) for T. putrescentiae and adds to the data 

on heat tolerance of mite eggs reported by Žďárková and Voráček, (1993) for A. siro and C. 

eruditus. Heat tolerance of eggs was demonstrated much earlier for A. siro, L. destructor, and C. 

eruditus by Pulpan and Verner (1959). Heat treatment has been used to control insect pests in 

stored-products with attention to the most tolerant life stage. Mahroof et al. (2003) showed that 

young larvae of Tribolium castaneum Herbst (Coleoptera: Tenebrionidae) were the most tolerant 

life stage at 50°C, while eggs, adults, and pupae required less time to kill at this 

temperature. Callosobruchus maculatus (F.) (Coleoptera: Chrysomelidae) pupae were the most 

heat- and cold-tolerant life stage, compared with the adults, eggs, and larvae, in work 

by Loganathan et al. (2011). 

The research reported here provides useful data to develop practical temperature 

treatments (ºC) to control populations of T. putrescentiae. Despite variation in the most tolerant 

life stages of insects and mites discussed above, all concur that similar levels of mortality can be 

achieved either at the most extreme temperatures for short time periods or at less extreme 

temperatures for longer times. However, using these temperatures or long exposure times may 

not result in the most cost-effective application for controlling T. putrescentiae in the dry-cured 

http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-6
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-38
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-26
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-22
http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-21
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ham or processed food industries. Our data for killing eggs of T. putrescentiae indicate that 

adequate control should be achieved at temperatures of 42 to 45ºC or temperatures of −10 or 

−20ºC in less than 48 hr. Cold temperatures for controlling mites in large rooms or buildings is 

not practical, though can be effective for killing mites on or inside hams, or mites contaminating 

other materials, by placing these inside commercial freezers. Heat treatments for buildings are 

commercially viable and have been applied to food-processing facilities in recent years with no 

reports of structural damage (Fields et al. 2012). Additional research should be conducted to 

determine critical hold time–temperature combinations for killing mites inside food products 

(i.e., aged hams), and the effect of temperature–time treatments on product quality. The ongoing 

reduction and eventual cessation of methyl bromide fumigation in most post-harvest contexts is 

facilitating adoption of various nonchemical control methods for mites, and heat and cold 

treatments represent viable alternatives. 

  

http://jee.oxfordjournals.org/content/early/2016/07/22/jee.tow159.full?ijkey=cRZWatXYm1TiPmT&keytype=ref#ref-13
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Table 4-1 Mean percent mortality (SE) of T. putrescentiae at various exposure times 

exposed to extreme high and low temperatures. 

Temp. 

(°C) 

                   Mobile stages 
                          Eggs 

 Exp. time (h) Mean % Mortality   

(SE) 

Exp. time (h) Mean % Mortality 

(SE) 

 0.5 15.0  (2.2)   

 1 39.5  (7.4) 1 7.8  (2.8) 

 2 80.5  (5.2)   

 2.5 91.5  (5.6)   

45 

3 98.5  (1.0) 3 28.9  (2.0) 

4 100.0 (0.0)   

  6 73.3  (4.1) 

  9 82.2  (5.2) 

  12 86.7  (3.3) 

  15 91.1  (3.5) 

   18 9.8    (1.5) 

   21 100.0 (0.0) 

 3 14.5  (0.9)   

42 

6 23.5  (1.3) 6 16.2  (1.9) 

9 31.5  (2.6) 9 29.9  (5.8) 

12 45.5  (2.9) 12 46.9  (5.1) 

15 52.0  (2.9) 15 42.8  (4.8) 

18 66.5  (2.3) 18 58.7  (5.8) 

21 85.0  (3.5) 21 76.8  (7.9) 

24 96.0  (2.30 24 88.2  (8.7) 

36 100.0 (0.0) 36 92.9  (7.1) 

  48 94.2  (5.8) 

   12 13.3  (6.2) 

40 

18 23.0  (3.8) 18 23.3  (3.7) 

  21 27.8  (4.0) 

24 25.0  (1.8) 24 40.0  (4.1) 

28 35.5  (3.9)   

32 58.0  (6.4)   

36 72.5  (4.5) 36 62.2  (4.3) 

40 99.0  (0.6)   

48 100.0 (0.0) 48 75.6  (4.1) 

  72 94.4  (2.3) 

   96 100.0 (0.0) 
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-5 

3 14.5  (1.8) 3 10.0  (3.3) 
6 18.0  (1.7) 6 15.6  (4.5) 
9 39.5  (1.8) 9 21.1  (5.1) 
12 66.0  (2.6) 12 28.9  (4.2) 
15 74.0  (8.5) 15 35.6  (6.5) 
18 93.0  (4.0) 18 46.7  (6.0) 
21 100.0 (0.0) 21 55.6  (2.9) 

   24 66.7  (6.0) 

 

 

  36 82.2  (6.0) 

  40 92.2  (2.8) 

  48 100.0 (0.0) 

 2 14.0  (1.0)   

-7 

3 26.5  (5.8) 3 6.7    (2.9)  

6 38.5  (4.5) 6 17.8  (4.7) 

9 64.5  (4.6) 9 31.1  (5.1) 

12 77.5  (3.3) 12 38.9  (4.2) 

  15 44.4  (5.6) 

21 100.0 (0.0) 21 66.7  (5.3) 

  24 85.6  (4.7) 

   36 91.1  (2.1) 

   40 100.0 (0.0) 

 1 26.0  (5.1)   

 2 38.5  (4.0)   

-10 

3 66.0  (2.0) 3 27.8  (4.3) 

4 78.0  (2.2)   

5 89.0  (1.3)   

6 100.0 (0.0) 6 58.9  (4.2) 

  9 63.3  (3.7) 

  12 78.8  (4.6) 

  15 88.9  (3.5) 

   18 94.4  (2.4) 

   21 100.0 (0.0) 

-20 

0.25 9.5   (2.0)   

0.5 16.0 (1.7)   

0.75 58.5  (2.5)   

1 98.0  (0.9) 1 50.0  (5.0) 

2 100.0 (0.0)   

  3 60.0  (4.1) 

  6 75.6  (2.9) 

  9 96.7  (2.4) 

  12 100.0 (0.0) 
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Table 4-2 Lethal time in hours to kill 50 and 99% of the mobile stages of T. putrescentiae exposed to different constant high 

and low temperatures. 

Temp 

°C 

Na  LT50 (95% CL) (h) LT99 (95% CL) (h) Slope (SE) Intercept  (SE) χ2  df P-value  

45 1400 1.23 (1.10-1.35) 3.57 (3.21-4.07) 4.09  (0.30) -0.73 (0.11) 54.88  32 0.01 

42  2000 13.72 (12.56-14.65) 32.77 (30.00-37.07) 5.01  (0.46) -6.06 (0.59) 59.09  48 0.13 

40 1600 29.79 (27.27-31.57) 48.28 (44.75-55.66) 9.04  (1.22) -13.68 (1.91)  125.96 38 0.01 

         

-5 1600 10.57 (9.09-11.64) 22.60 (20.47-26.43) 5.74  (0.74) -6.24  (0.86) 102.05 38 0.01 

-7 1600 6.01 (4.74-7.11) 25.91 (22.55-31.26) 2.98  (0.29) -2.69  (0.34) 73.91 38 0.01 

-10 1400 2.27 (2.01-2.50) 7.62 (6.71-9.03) 3.60  (0.29) -1.65  (0.17) 44.89 28 0.02 

-20 1200 0.72 (0.69-0.75) 1.04 (1.00-1.11) 11.86 (1.05)  1.31  (0.12) 19.09 23 0.70 

a N= total number of individuals used for each time-mortality experiment. 
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Table 4-3 Lethal time in hours to kill 50 and 99% of the eggs of T. putrescentiae exposed to different constant high and low 

temperatures. 

Temp. °C Na LT50 (95% CL) (h) LT99 (95% CL) (h) Slope  (SE) Intercept  (SE) χ2  df P-value  

45 810 4.03 (3.13-4.87) 21.15 (18.47-25.06) 2.63  (0.23) -1.96  (0.55) 78.63  79 0.49 

42  900 13.92 (12.58-15.03) 33.13 (29.69-38.75) 5.03  (0.51) -6.12  (0.66) 56.72 79 0.97 

40 810 32.19 (29.23-34.99) 89.54 (79.28-104.66) 4.26  (0.33) -6.79  (0.54) 63.8 70 0.68 

         

-5 1080 20.26 (18.05-22.17) 55.59 (49.18-65.76) 4.32  (0.40) -6.01  (0.59) 115.37 97 0.10 

-7 990 14.03 (12.14-15.65) 49.25 (43.50-58.20) 3.47  (0.31) -4.35  (0.43) 100.85 97 0.37 

-10 720 6.26 (5.27-7.13) 24.74 (21.70-29.46) 3.17  (0.28) -2.89  (0.31) 56.78 70 0.87 

-20 540 1.66 (1.13-2.15) 18.60 (13.79-29.29) 1.80  (0.22) -0.76  (0.16) 43.61 43 0.44 

a N= total number of individuals used for each time-mortality experiment.
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Chapter 5 - Combination of sulfuryl fluoride with heat to control the 

ham mite, Tyrophagus putrescentiae (Schrank) (Sarcoptiformes: 

Acaridae), a serious pest of country ham 
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Abstract 

This work investigated the feasibility of using sulfuryl fluoride (SF) as an alternative to 

methyl bromide to control the ham mite, Tyrophagus putrescentiae (Schrank) (Sarcoptiformes: 

Acaridae). The combination of SF and heat was used to determine the lowest effective 

temperature with the shortest exposure time and lowest concentration-by-time product (CTP) of 

SF to control mites within the US EPA label rate of 1500 gh.m-3. Mites were controlled at 

temperatures greater than 30ºC. More than one day exposure was required to kill mobile stages 

and eggs at 40ºC with an acceptable CTP of SF. When mites were exposed to 300 or 1000 gh.m-3 

of SF at 40ºC, the mobile stages were all killed after 36 h with 300 gh.m-3 and at 3 h with 1000 

gh.m-3. Egg mortality at 300 gh.m-3 was 98.9% after 96 h and 97.8% after 48 h when exposed to 

1000 gh.m-3. Eggs were very tolerant to SF. Applying heat with SF under the maximum 

allowable CTP will increase the efficacy of fumigant against the eggs. However, when the target 

CTP of SF for eggs was either 300 gh.m-3 or 1000 gh.m-3 at longer exposure times, mortality was 

not as high as with SF at 1400 gh.m-3. 
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Introduction 

 Dry-cured hams are valuable processed meat products that are obtained from the hind leg 

of a hog carcass. A typical American dry-cured ham is cured with salt, sugar and other spices 

under refrigeration (4ºC) for approximately 6 weeks, after which it is aged for six to 24 months. 

A cured ham loses at least 18% of its original weight during the curing and aging processes and 

obtains a unique flavor from this process. The nutrient composition, water activity and flavor 

characteristics make dry-cured hams a suitable food for various pests such as mites and beetles. 

(Renfrow 2008).  

Tyrophagus putrescentiae (Schrank) (Sarcoptiformes: Acaridae) infests dry-cured ham through 

the aging process. T. putrescentiae, commonly known as ham mite or cheese mite, is an invasive 

species to cheese, dry meat, pet food, and grain (Thind and Clarke 2001, Thind 2005, Rentfrow 

et al. 2008). Ham mites reproduce rapidly and complete a generation within 8 to 21 days under 

ideal growth conditions. The average fecundity rate of females is four eggs/day at 25ºC and 90% 

R.H. (Boseck 1991), which results in a high population buildup. Mites that reproduce and 

penetrate inside the ham can considerably decrease the economic value of dry-cured ham 

(Zd'árková 1991). In highly infested ham plants, massive mite populations are visually detectible 

on ham and rack surfaces (Zhao et al. 2016).   

Methyl bromide (MB) is a very effective fumigant that has been used for decades to control ham 

mites in the US (Marriott and Schilling, 2004). However, it is classified as a significant ozone 

depleting substance under the Montreal Protocol (US EPA 2006). Therefore, MB is scheduled to 

be phased out for all industries in US and consequently, many MB alternatives, including 

sulfuryl fluoride (SF) and extreme temperatures, have been explored (Fields 1999, Boina et al. 

2008, Athanassiou et al. 2012).  
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SF is a colorless, odorless and non-flammable fumigant that was registered in US for use in 

stored-products in 2005 (Reichmuth et al. 1997, Phillips et al. 2012). Compared to MB and 

hydrogen phosphide, SF is a non-ozone depleting and non-corrosive gas that has a faster 

diffusion rate than MB (Navaro 2006, Baltaci et al. 2009). A satisfactory SF application can be 

achieved by using an adequate concentration (C) of SF for a determined exposure time (T). 

Therefore, the SF application label rate is a product (P) of C and T (CTP). The US 

Environmental Protection Agency (EPA) established a maximum application dosage of SF use 

on stored-products, including ham, at a CTP of 1500 gh.m-3. 

Previous studies showed that SF controlled the post-embryonic stages of stored-product pests 

such as the red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae); 

Mediterranean flour moth,  Ephestia kuheniella Zeller (Lepidoptera: Pyralidae); cigarette beetle, 

Lasioderma serricornne (F.) (Coleoptera: Anobiidae), and other beetles and moths (Bell and 

Savvidou 1999, Reichmuth et al. 2003, Small 2007, Athanassiou et al. 2012). However, stored-

product insect eggs are more difficult to control with SF than post-embryonic life stages. Phillips 

et al. (2008) studied SF efficacy for control of T. putrescentiae life stages at 23°C, a typical 

temperature in ham-aging rooms, during experimental fumigation. They estimated the lethal 

concentration of SF needed to kill 95% of mite eggs was about 90 g.m-3 SF at 23°C after 48 h, 

which is equivalent to a CTP of 4320 gh.m-3, or nearly 3-fold higher than the maximum 

allowable CTP. It was hypothesized that a higher fumigation temperature would improve the 

efficacy of SF against T. putrescentiae and lower the CTP. 

Potential solutions studied for improving the mortality of insect eggs can be the use of SF 

at higher concentrations, in combination with heat, modified atmosphere or/and other fumigants 

such as hydrogen cyanide (Su and Scheffrahn 1990, Bell and Drinkall 2000, Reichmuth et al. 
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2003, Reichmuth and Klementz 2008, Baltaci et al. 2009, Emekci 2010). Temperature has a 

considerable impact on the fumigation efficacy for insect control. Higher temperature increases 

the insects metabolism and respiration and consequently insects intake more fumigant (Fields et 

al. 2012). Similarly, using heat in combination with SF may allow for a lower SF concentration 

to control post-embryonic stages of stored-product insect pests. Bell et al. (1999) and Reichmuth 

et al. (2003) reported that increased temperatures reduced the amount of SF needed to control E. 

kuehniella, T. castaneum, Tenebrio molitor L. (Coleoptera: Tenebrionidae) and Oryzaephilus 

surinamensis (L.) (Coleoptera: Silvanidae) adults. T. putrescentiae eggs were not controlled 

using SF at the EPA label rate with a treatment temperature of 23°C. The objective of the 

research reported below was to investigate the efficacy of combining SF with high temperatures 

to control T. putrescentiae as a fumigation alternative to using MB. 
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Materials and Methods 

Mites 

Mite cultures 

Mites were reared on a diet that was a mixture of approximately 80 g of dry whole dog 

food kernels per jar and 100 ml of thick gravy. The gravy ingredients for six rearing jars included 

dog food (160 g), 475 ml tap water, 5 g of each of agar (Mooragar, Incorporated Loomis, CA), 

yeast (MP Biomedicals, LLC, Solon, OH), alphacel (MP Biomedicals, LLC, Solon, OH), mixed 

vitamins (Vanderzant modification vitamin mixture for insect diet; MP Biomedicals, LLC, 

Solon, OH), antifungal salt solution in ethanol (methyl-p-hydroxybenzoate, 15:85 g.ml−1) (ICN 

Biomedicals, Inc. Aurora, OH), and 25 ml of glycerol (Fisher Scientific, Pittsburgh, PA).  Dog 

food (160 g) was mixed with water and brought to a boil. With the exception of antifungal salt, 

other ingredients were added to the mixture and cooked to a boil again. The antifungal salt 

solution was then added to the gravy and cooked for 30 min to reach the desired thickness. The 

80 g of hot mixture was then added to dry whole dog food in rearing jars (85 mm diameter, 160 

mm height) and cooled to room temperature (20oC) prior to inoculation with mites.  After mites 

were added to diets, the jars were sealed with labeled filter paper (90 mm, Fisher Scientific®, 

Pittsburgh, PA) in the metal lid ring. T. putrescentiae cultures have been stored for more than 

four years at 25ºC and 70% RH in darkness at our laboratory at Kansas State University and have 

never been exposed to extreme temperatures. 
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Pre- and Post-fumigation Bioassay Preparation and Mite Mortality Assessment  

Mite life stages were separated into eggs and mobile stages for all SF fumigation 

bioassays and placed into ventilated glass vials (4.0 ml; Fisher Scientific®, Shell vial, 12 ˟ 35 

mm, Pittsburgh, PA), each including 0.2 mg of soft dog food. Each experimental vial included 

either a combination of twenty 7-10 d-old adults and nymphs or 10, 1-2 d-old eggs. Mites and 

eggs were added to each vial from the mite colony using a one-haired brush. Eggs were placed 

on a narrow piece of black paper (4 ˟ 25 mm) that was covered with double-side tape. Vials were 

covered with fine mesh cloth (125 µm) to retain mites and to provide a fumigant gas pathway 

during the bioassay and humidity during the fumigation and post-fumigation periods. After 

fumigation, the vials were stored in fresh air within the incubator at 25ºC and 70% RH. Mortality 

of adults and nymphs was assessed based on lack of movement under physical stimulus after a 2-

day recovery period, and unhatched eggs were considered dead four days after fumigation.  

SF fumigation 

SF gas from a ProFume™ gas cylinder (99.9% purity, Dow AgroScience LLC, 

Indianapolis, IN) was transferred to Tedlar® gas bags (CEL Scientific Crop, Santa Fe Spring, 

CA). The appropriate amount of SF was drawn and injected into each air-tight fumigation jar 

following the removal of an equal volume of air to achieve the desired SF concentration. SF at 

99.9% purity was used as a standard for quantitative analysis. SF was introduced using a gas 

tight syringe. The start and ending concentrations of SF were measured three times by GC-MS 

(17A, Schimadzu Scientific Instruments, Inc., Columbia MD) right after SF injection to the 

fumigation jar (3.8 L, 25 cm tall by 15 cm diameter, with neck diameter of 11.4 cm) and just 

before the end of the fumigation period, respectively. The average of these two concentrations 
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was then calculated and compared to the standard SF concentration to understand the 

discrepancy of actual and target amounts of gas during the bioassay.   

Fumigation Bioassays 

Efficacy of Temperature 

Vials with different life stages of mites were placed in the air tight fumigation jars. These 

jars were fitted out with a port in the center of the metal screw-on cap which was covered with a 

rubber septum through which gas was injected. Water (150 µl) was added to each jar to provide 

sufficient humidity to avoid desiccation of the mites. For each treatment, there were three 

replications of fumigation jars for a given target temperature and three sub-replicates of 

experimental vials in each fumigation jar. To generate the target CT product of 1400 gh.m-3, the 

amount of 29.2 g.m-3 of SF was injected to each jar, SF concentration was quantified by GC-MS 

and jars then were transferred in separate incubators at 25, 30, 35 and 40ºC for 48 h. Three non- 

fumigated control jars were stored at 25ºC for 48 h. The recovery period and mortality 

assessment were conducted as previously described. 

Efficacy of Exposure Time  

Three jars including three experimental vials of mites were fumigated with different 

amounts of SF ranging from 29.2 to 116.7 g.m-3 for each desired exposure time period. To adjust 

the CT product to 1400 gh.m-3 of SF, exposure times of 12, 24, 36 and 48 h were assigned to 

treatments. Bioassays were conducted at 40ºC and then immediately ventilated after fumigation 

was completed. Three non-fumigation control jars were prepared the same way and stored at 

25ºC for 48 h. Recovery periods and evaluation of mortality was completed as previously 

described. 

Time-Mortality Relationship Bioassays 
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CT products of SF at 300 and 1000 gh.m-3 were targeted to determine the shortest time 

that could result in 50 and 99% mortality of mobile mite stages and eggs. Three prepared 

fumigation jars with mite vials were exposed to several doses of SF ranging from 15.5 to 105.5 

g.m-3 for 6 to 96 h at 40ºC to result in approximately 300 gh.m-3. Two sets of non-fumigated 

control jars were stored at 25 and 40ºC for 96 h. A similar set of jars was prepared and fumigated 

from 3 to 48 h with SF doses ranging from 20.8 to 333.3 g.m-3 to produce 1000 gh.m-3. Control 

treatment jars were prepared likewise and stored at 25 and 40ºC for 48 h.   
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Data Analysis 

Percent mite mortality exposed to combinations of SF and heat were adjusted using 

angular values (Mosteller and Youtz 1961) of the proportion killed and then subjected to analysis 

of variance (ANOVA) using the GLIMMIX procedure for each experiment. Means were 

separated by Tukey’s HSD test when the F-test of the ANOVA was significant at P <0.05 (SAS 

Institute Inc. 2010). Probit analysis was used to calculate the 50 and 99% lethal times (LT50 and 

LT99) of the mortality response rate utilizing PROC PROBIT. The goodness-of-fit of the model 

to the data was compared using a Chi-square statistic (Robertson and Preisler 1992). 
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Results 

Mortality of mobile stages and eggs in non-fumigated control jars, kept at 25ºC for the 

longest exposure time at each experiment reported below, ranged from 0 to 5.5% for all 

experiments and therefore treatment mortality was not corrected for control mortality. Fumigated 

jars in the first and second experiments (Tables 5-1 and 5-2) that targeted a CTP of 1400 gh.m-3 

had a measured average (± SE) CTP of 1250.6 ± 40.1 gh.m-3 and 1240 ± 28.1 gh.m-3, 

respectively. Fumigant jars with target CTPs of 300 and 1000 (Table 5-2) gh.m-3 had average 

CTPs of 305.8 ± 8.8 gh.m-3 and 1101.3 ± 71.1 gh.m-3, respectively.  

Mortality at 1400 gh.m-3 for a fumigation period of 48 h was 100% for mobile stages held 

at either 35 or 40°C and 100% mortality of eggs was observed only at 40°C (Table 5-1). 

Therefore, 40ºC was the temperature used in all subsequent experiments in which holding time 

and/or target CTP values were varied. Mobile stages treated in jars at CTP of 1400 gh.m-3 were 

all killed at every exposure time from 12 to 48 h.  Eggs held at this same CTP had variable 

mortality with 36 and 48 h exposure resulting in 100% mortality (Table 5-2).  

Exposure time also affected mortality of T. putrescentiae at the two lower target CT 

products of 300 and 1000 gh.m-3 (Tables 5-2). Mobile stages were all killed at 36 h and longer 

(Table 5-2), but egg mortality averaged 98.9% at the longest hold time of 96 h (Table 5-2). All 

mobile stages treated with the CTP of 1000 gh.m-3 were killed at 3 h and longer, while mortality 

of eggs varied between 20.0% at 3 h and 97.8% at 96 h (Table 5-2). Mortality of eggs held with 

no SF at 40ºC for the longest hold times in these last two experiments averaged 83.3% at 48 h, 

and this was significantly lower than the 95.5% mortality for those held with SF for 48 h (F1, 16 

=9.7, P ˂ 0.01), while mite eggs held at 40ºC with air only for 96 h experienced 95.5% mortality, 

which was not different from the 98.9% killed during the same time period with SF in the jars 
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(F1, 16 = 2.6, P= 0.1). Probit analyses estimated that the lethal times to kill 99% of T. 

putrescentiae eggs were 46.4 h at 1000 gh.m-3 of SF and 87.7 h for 300 gh.m-3 of SF (Table 5-3). 

Results indicate that approximately 99% of all mites (eggs and mobile stage) could be killed in a 

48-h exposure to 21.5 mg.m-3, but a longer hold time of 96 h or more was necessary at a 

concentration of 3.4 mgm-3 to achieve a similar mortality. 
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Discussion 

The possibility of controlling all T. putrescentiae life stages through altering the 

temperature, exposure time, and SF concentration with the requirement keeping the SF CTP 

under the maximum EPA label rate, 1500 gh.m-3 was evaluated in this study (Thoms et al. 2008). 

It has been demonstrated in a former study that T. putrescentiae eggs are the most tolerant life 

stage to control by SF at room temperature (Phillips et al. 2008). Complete mortality of eggs was 

not achieved even at SF concentrations that were three times greater than the EPA label rate after 

48 h (Phillips et al. 2008). Results from the current study indicated that T. putrescentiae eggs are 

more difficult to control than adults and nymphs with SF as they required higher temperatures, 

longer exposure times and a higher gas concentration when the other two variables were held 

constant. 

Parallel trends among life stage susceptibility to SF have been noted in several insect 

species for which eggs either require higher concentrations or longer exposure times to control. 

For instance, eggs of the beetles furniture carpet beetle, Anthrenus flavipes (LeConte) 

(Coleoptera: Dermestidae),  black carpet beetle, Attagenus unicolor (F.) (Coleoptera: 

Dermestidae), L. serricorne, and hide beetle, Dermestes maculatus De Geer (Coleoptera: 

Dermestidae), were controlled at 7 to 30 times higher SF concentrations for 22 h than adults and 

larvae at 26.5ºC (Su and Scheffrahn 1990). Adults of psocids, Lepinotus reticulatus Enderlein 

(Psocoptera: Trogiidae) and Lepinotus decolor Pearman (Psocoptera: Trogiidae), were killed at 

one third and half of the SF concentration (g.m-3) when compared to the required concentration 

to control eggs of the same species after 48 h at 27.5ºC (Athanassiou et al. 2012). The Japanese 

pine sawyer beetle, Monochamus alternatus Hope (Coleoptera: Cerambycidae), egg mortality 
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was 100% at 2400 gh.m-3 of SF at 25°C for 24 h, and this dose was five-fold greater than the 

dose required for either larvae or pupae of M. alternatus (Soma et al. 1997). Baltaci et al. (2009) 

reported 208.8 gh.m-3 of SF at 15°C was adequate to kill all larvae and pupae of the tobacco 

moth, Ephestia elutella (Hübner) (Lepidoptera: Pyralidae), but an SF CTP that was five times 

greater at 25°C was necessary to control eggs. The poor ovicidal activity with SF has been 

attributed to inhibition of gas penetration by the proteinaceous chorion and embryonic 

membranes (Outram 1967).  

Phillips et al. (2012) stated that the major factors affecting proper fumigation include 

target pest species, the most tolerant life stage to that particular fumigant, fumigant 

concentration, length of exposure period, and the temperature of the fumigated environment. 

Elevated temperature has been suggested to increase SF toxicity through greater fumigant uptake 

and accelerated metabolism (Reichmuth and Klementz 2008). In addition, greater temperatures 

have been shown to increase the mortality of eggs of other stored product pests, including wood 

borers and bed bugs (Reichmuth et al. 2003, Barak et al. 2006, Phillips et al. 2014).  Mueller 

(2007) reported that 20 g.m-3 of SF at 20ºC for 64 h did not control the mobile stages of T. 

putrescentiae and low mite mortality (˂50%) was obtained. Results from the current study 

indicated that all life stages of T. putrescentiae could be controlled at 40ºC, which is in 

agreement with Thoms et al. (2008), who reported that all life stages of several stored-product 

pests can be controlled by SF with temperatures ranging from 20 to 40°C without required 

dosages that are greater than 1500 gh.m-3. Moreover, all life stages of the sawtoothed grain 

beetle, O. surinamensis, lesser grain borer, Rhyzopertha dominica (F.), rice weevil, Sitophilus 

oryzae (L.) (Coleoptera: Curculionidae), red flour beetle, T. castaneum and Khapra beetle, 

Trogoderma granarium Everst (Coleoptera: Dermestidae), pests that are known to infest bagged 
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rice and wheat stacks were controlled by SF at about 960 gh.m-3 after 24 h at 32 ± 7°C 

(Rajendran et al. 2008). Flour mill fumigation in Germany indicated that all life stages of the 

stored product insects, E kuehniella, Plodia interpunctella ( Hubner ) (Lepidoptera:Pyralidae), T. 

castaneum, T. molitor and O. surinamensis mortality were greater than 99% at 2255 gh.m-3 of SF 

and 40 °C after 48 h (Reichmuth et al. 2003). Infestation of the confused flour beetle, Tribolium 

confusum Jacquelin du Val (Coleoptera: Tenebrionidae), decreased by more than 96% at 3 

months post-fumigation with SF at 30°C (Small 2007).  

Previous studies indicated that fumigation at greater temperatures reduce the 

concentration of SF. Phillips et al. (2014) studied bed bugs, Cimex lectularius L. (Hemiptera: 

Cimicidae), and showed that the SF needed for achieving LAD99 (Lethal accumulated dose) of 

eggs at 15ºC could be reduced by 50% to achieve the same mortality at 25ºC. A 10C increase in 

temperature reduced the required SF CTP (gh.m-3) by one third to control adults of E. kuehniella 

(Bell et al. 1998, Reichmuth et al. 1999, Bell et al. 2003). Bonifácio et al. (2014) reported that 

pinewood nematodes were completely controlled with half as much SF (2141 gh.m-3) that was 

required at 30ºC after 24 h when compared to the amount (4407 gh.m-3) needed at 15ºC. 

Reichmuth et al. (1998) showed that a small increase in temperature can considerably affect 

mortality of stored-product moth eggs with lower concentrations of SF. Results from the current 

study indicated that increased temperature can offer complete control of ham mites at a lesser 

CTP of SF as compared to the very high CTPs tested by Phillips et al. (2008) at 23ºC. However, 

comparison of egg tolerance to SF indicates that ham mite eggs are among the most tolerant egg 

stages of various stored-product pests. Bell et al. (2003) reported that an SF CTP of 1,000 gh.m-3 

was needed to achieve 100% mortality of L. bostrychophila eggs after 48 h exposure at 25ºC. 
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Another study indicates that approximately 1000 gh.m-3 of SF at 15ºC caused 100% egg 

mortality in E. elutella after 48 h (Baltaci et al. 2009).  

Increasing exposure times of T. putrescentiae life stages to SF, while staying at the same 

approximate CTP values (decreased gas concertation at longer hold times), can improve control, 

which has also been the case for other pest species. For instance, when SF fumigation time was 

prolonged from one day to two days, greater mortality of several postharvest pest species was 

obtained (Reichmuth et al. 1998, Schneider and Hartsell 1999, Williams and Schneider 1999, 

Reichmuth and Klementz 2008). The current study indicates that longer exposure times for CTPs 

of either 300 or 1000 gh.m-3 of SF caused greater mortality in all stages of T. putrescentiae at 

40ºC. Egg mortality was moderate during the first 12 h of fumigation under heat, then increased 

markedly from 12 to 36 h, with100% mortality of eggs achieved at 96 h. A tolerant life stage like 

the egg may develop to the next susceptible stage under a relatively short fumigation, but a 

longer fumigation or a second fumigation would be needed to kill all stages and offer a complete 

infestation extermination (Reichmuth and Klementz 2008). 

No single control method can likely replace methyl bromide for post-harvest pest control 

(Field and white 2002). Phosphine is very effective in controlling ham mites within the label rate 

(Schilling et al. 2010) but it causes metallic corrosion to electrical devices and thus is very 

impractical (Phillips et al. 2012). Bell (2003) conducted SF fumigations at 50ºC and CTP of over 

22,000 gh.m-3 demonstrated no sign of corrosion on computers and copper pieces exposed to the 

gas. Additionally, SF is a gas under every applied condition since it has a boiling point of -

55.4ºC and very good penetration capacity as compared to methyl bromide                                                                                                                             

(Baltaci et al. 2009, Zettler and Arthur 2000). Combining SF with controlled atmospheres such 

as high CO2 improved pest control when compared to SF alone (Scheffrahn et al. 1995). Fields 
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and White (2002) concluded that some of the best alternatives to methyl bromide fumigation 

include extreme temperature treatment and also fumigation with SF. The current project suggests 

that the combination of SF and heat could be a useful methyl bromide alternative as part of an 

integrated pest management program in dry-cured ham facilities. Commercial application of SF 

with heat in ham facilities will require additional research on fumigation methods, food safety 

and food quality.    
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Table 5-1 Mortality of T. putrescentiae exposed to 1400 gh.m-3 of SF after 48 h at different 

temperatures. 

Life Stage Temperature °C % Mean Mortality (SE)a ANOVA   Results 

F(3, 8)                                  P 

Mobile Stages 25 87.2  (2.2) b 24.2         ˂ 0.01 

 30  88.3  (2.8) b   

 35 100.0 (0.0) a    

 40 100.0 (0.0) a   

Eggs 25 11.1  (4.2) b 104.8 ˂ 0.01 

 30  12.2  (4.3) b   

 35 26.7  (4.1) b   

 40 100.0 (0.0) a   

a Mean values within a given experiment that have the same lower case letter are not significantly 

different (P ≥ 0.05; HSD)  



131 

 

Table 5-2 Mortality of T. putrescentiae exposed to different SF CTPs at 40ºC for different 

exposure times. 

Target SF CTP (gh.m-3) Life stage Time (h) % Mean mortality ( SE)a ANOVA  Results 

1400 Eggs 12 58.6  (4.3) b F3, 8 = 96.7, P < 0.01 

  24 97.8  (1.5) a  

  36   100.0  (0.0) a  

  48   100.0  (0.0) a  

300 Mobile Stages 6 66.7  (0.7) c F6, 14 = 13.6, P ˂ 0.01 

    12   82.8  (0.9) ab  

    24   93.9  (0.4) ab  

    36   100.0  (0.0) a  

    48   100.0  (0.0) a  

     72  100.0  (0.0) a  

     96  100.0  (0.0) a  

300 Eggs 6 2.2  (0.2) d F6, 14 = 132.7, P ˂ 0.01 

    12 8.9  (0.3) d  

     24   43.3  (0.5) c  

     36     57.8  (0.3) bc  

     48   63.3  (0.4) b  

      72   75.6  (0.1) b  

      96    98.9  (0.1) a  

1000 Eggs 3   20.0  (0.3) e F6, 14 = 19.2, P ≤ 0.05 

  6    43.3  (0.6) de  

  9    56.7  (0.7) cd  

    12      71.1  (1.1) bcd  

    24    84.4  (0.3) ac  

    36  98.9  (0.1) a  

   48    97.8  (0.2) ab  
a Mean values within a given experiment that have the same lower case letter are not significantly 

different (P ≥ 0.05; HSD) 
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Table 5-3 Probit analysis of mortality for T. putrescentiae eggs fumigated with SF at 40ºC. 

 

 

Life Stage Target SF CTP 

(gh.m-3) 

LT50 (95% CL)  LT99 (95% CL)  Slope (SE) Intercept (SE) χ 2  df P 

Eggs 300 34.89 (32.37-37.39) 87.70 (71.43-125.71) 4.37  (0.68) -1.40  (1.90) 43.48 60 0.95 

Eggs 1000 8.78 (7.42-9.98) 46.42 (38.22-60.93) 2.62  (0.25) -0.11  (0.63) 70.72 60 0.16 
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