APPLICATION OF THE QUASILINEARIZATION TECHNIQUE
FOR PARAMETER ESTIMATION IN NONLINEAR
DIFFERENTIAL EQUATIONS

by

VINOD VASUDEV KALLIANPUR

B.E. (ME), University of Bombay (India), 1976

A MASTER'S THESIS

submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Mechanical Engineering
KANSAS STATE UNIVERSITY
Manhattan, Kansas
1978

Approved by

[Signature]
Major Professor
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF FIGURES</td>
<td>1</td>
</tr>
<tr>
<td>PART I</td>
<td>2</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>3</td>
</tr>
<tr>
<td>CHAPTER I. QUASILINEARIZATION TECHNIQUE</td>
<td>5</td>
</tr>
<tr>
<td>CHAPTER II. LINEARIZATION OF THE NONLINEAR ORDINARY DIFFERENTIAL EQUATION</td>
<td>7</td>
</tr>
<tr>
<td>CHAPTER III. NUMERICAL ANALYSIS</td>
<td>16</td>
</tr>
<tr>
<td>CHAPTER IV. CONCLUSION</td>
<td>19</td>
</tr>
<tr>
<td>PART II</td>
<td>20</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>21</td>
</tr>
<tr>
<td>CHAPTER I. THE BASIC DIFFUSION EQUATION</td>
<td>23</td>
</tr>
<tr>
<td>CHAPTER II. LINEARIZATION OF THE NONLINEAR PARABOLIC DIFFERENTIAL EQUATION</td>
<td>27</td>
</tr>
<tr>
<td>CHAPTER III. FINITE DIFFERENCE METHOD</td>
<td>38</td>
</tr>
<tr>
<td>CHAPTER IV. NUMERICAL ANALYSIS</td>
<td>65</td>
</tr>
<tr>
<td>CHAPTER V. CONCLUSION</td>
<td>68</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>69</td>
</tr>
<tr>
<td>APPENDIX A</td>
<td>73</td>
</tr>
<tr>
<td>APPENDIX B</td>
<td>78</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Concentration profiles with axial diffusion, showing the nature of convergence of the method</td>
<td>74</td>
</tr>
<tr>
<td>2</td>
<td>Flow chart for solving the nonlinear ordinary differential equation</td>
<td>75</td>
</tr>
<tr>
<td>3</td>
<td>Plot of the rate of drying against the average moisture content</td>
<td>76</td>
</tr>
<tr>
<td>4</td>
<td>Flow chart for solving the nonlinear parabolic differential equation</td>
<td>77</td>
</tr>
</tbody>
</table>
PART I
INTRODUCTION

The form of the differential equations used to describe a physical process can be specified from basic conservation principles. Very often the parameters associated with the differential equations are unknown. They are determined from a comparison of experimental measurements of the process and the solutions of the differential equations that describe the process. Parameter estimation is an integral part of the analysis of experimental data in terms of a model of known form with unknown coefficients.

There has been very little work done in the area of parameter estimation. The parameters or coefficients cannot be measured directly. The measurable variables are generally the dependent variables of the differential equations. Therefore it is not simple to identify the parameters.

The estimation of parameters in ordinary differential equations has received considerable interest in recent technical literature.

Rosenbrock and Storey [19] have presented a review of the techniques of generating and analyzing parameter estimates.

Bellman, Kagiwada and Sridhar [20] have shown how techniques from non-linear filtering and estimation theory can be applied to the estimation of parameters in ordinary differential equations.

Lee [11] has presented the problem of parameter estimation using the quasilinearization method.

The objective of the present work is to estimate parameters in the differential equations resulting from tubular flow chemical reactors with
axial diffusion. The physical process is assumed to be represented by a nonlinear ordinary differential equation. Linearization is carried through by considering the first two terms in the Taylor's series expansion of the original nonlinear equation. This technique is a generalized Newton-Raphson formula for functional equations. It is more commonly known as the quasilinearization method. The main advantage of this technique is that the procedure converges quadratically to the solution of the original equation, if it should converge.

Integration of the linearized equation is carried through by the fourth order Runge-Kutta-Gill method. An algorithm is devised based on the least squares method. Initial guesses are made for the parameters and also for the function value of concentration as a function of axial length. Initial values for the numerical integration are so chosen that the integration constants are identically equal to the unknown parameters. Parameters thus obtained are used recursively to obtain improved results.

Errors in the experimental data are considered small in magnitude. The mathematical model is devised to fit the data.
CHAPTER I

QUASILINEARIZATION TECHNIQUE

Solutions to initial value problems are well developed theoretically. They are also easily adaptable for solving on high speed digital and analog computers. Nonlinear differential equations having two or multipoint boundary values are common in engineering and physical sciences. There is no general proof for the existence and uniqueness of the solutions of such problems. Numerical difficulties in their solution are caused because not all the conditions are given at one point. A trial and error procedure is generally used to obtain the missing initial condition. This procedure has a relatively slow rate of convergence.

Quasilinearization is a useful technique for obtaining numerical solutions for these type of problems. In this method the nonlinear differential equation is solved recursively by a series of linear differential equations. The quasilinearization technique converges quadratically to the exact solution, if at all it should converge. Quadratic convergences implies that the error in every succeeding iteration tends to be proportional to the square of the error in its immediately preceding iteration.

Linearization of the original differential equation is carried through by considering the first two terms in the Taylor's series expansion. This is a generalized Newton-Raphson technique for functional equations. The Newton-Raphson technique is associated with two important properties. These are monotone convergence and quadratic convergence. The nature of the monotone convergence property depends on the function itself. The
monotone convergence property exists for the Newton-Raphson formula only if the function is a monotone decreasing or monotone increasing function. The function should be strictly convex or strictly concave. In general the Newton-Raphson formula always has the quadratic convergence property provided that it converges [11].

The Newton-Raphson equation is always linear even if the original function is nonlinear. Linear boundary value problems can be solved fairly routinely on modern computers.
CHAPTER II

LINEARIZATION OF THE NONLINEAR ORDINARY DIFFERENTIAL EQUATION

The mathematical formulation for estimating the parameters in the differential equation for homogeneous tubular flow chemical reactor with axial mixing is presented in this chapter. The physical process is assumed to be represented by a nonlinear second-order ordinary differential equation.

\[
\frac{1}{P} \frac{d^2x}{dt^2} - \frac{dx}{dt} - Rx^2 = 0
\]

(1)

where,

- \(P\) is the dimensionless Peclet group. Its magnitude is \(\frac{Lv}{D}\),
- \(R\) is the reaction rate group \(\frac{kl}{v}\),
- \(t\) is the dimensionless reactor length which varies between 0 and 1.
 - It is obtained by dividing the actual position along the axial direction of the reactor by the total reactor length \(L\),
- \(x\) is the concentration of the reactant,
- \(v\) is the flow velocity of the reaction mixture. It is assumed constant throughout the reactors,
- \(D\) is the mean mass axial dispersion coefficient. It is assumed constant,
- \(k\) is the specific chemical reaction rate. It is also assumed constant.
Boundary Conditions

\[x_e = x(0) - \frac{1}{P} \frac{dx}{dt} \bigg|_{t=0} = c, \text{ say at } t = 0 \] \hspace{1cm} (2)

\[\frac{dx}{dt} \bigg|_{t=t_f} = 0 \hspace{1cm} \text{ at } t = t_{\text{final}} \] \hspace{1cm} (3)

where,

\(x_e \) is the concentration of the reactant before it enters the reactor. It is a known quantity. \(x(0) \) is the concentration just after entering the reactor. There is a discontinuity of the concentration \(x \) of the reactant at the entrance to the tubular reactor.

Equation (1) is a second order nonlinear differential equation of the boundary-value type with \(P \) and \(R \) as parameters. These parameters are unknown values that are to be determined.

The preliminary step involved for estimating the parameters is to linearize the original nonlinear equation (1) by the generalized Newton-Raphson method.

\[\frac{1}{P} \frac{d^2 x}{dt^2} = \frac{dx}{dt} + Rx^2 \] \hspace{1cm} (4)

\[\frac{d^2 x}{dt^2} = P \frac{dx}{dt} + PRx^2 \] \hspace{1cm} (5)

Equation (5) can be rewritten as,

\[x' = \frac{dx}{dt} = y \] \hspace{1cm} (6a)

\[y' = \frac{dy}{dt} = Py + PRx^2 \] \hspace{1cm} (6b)
The parameters P and R are considered as dependent variables parallel to x and as functions of the independent variable t. The parameters satisfy the following equations,

\[
\frac{dR}{dt} = 0, \quad (6c)
\]

and

\[
\frac{dP}{dt} = 0. \quad (6d)
\]

The generalized Newton-Raphson formula is applied to equation (6a) as follows.

\[
x_{n+1}' = x_n' + \frac{\partial x_n'}{\partial y_n} \{y_{n+1} - y_n\} \quad (7a)
\]

The subscripts n and $n+1$ denote the n^{th} and $(n+1)^{\text{st}}$ iteration respectively.

From equation (6a),

\[
x' = y.
\]

Thus,

\[
x_{n+1}' = y_n + \frac{\partial y_n}{\partial y_n} \{y_{n+1} - y_n\} \quad (7b)
\]

\[
x_{n+1}' = y_n + 1 \cdot \{y_{n+1} - y_n\} \quad (7c)
\]

\[
x_{n+1}' = y_{n+1} \quad (8a)
\]

Similarly equation (6b) is written as,

\[
y' = Py + PRx^2 \quad (7d)
\]

Thus,

\[
y' = f(x,y,P,R) \quad (7e)
\]
\[y_{n+1}' = y_n' + \frac{\partial y_n'}{\partial x_n} (x_{n+1} - x_n) + \frac{\partial y_n'}{\partial y_n} (y_{n+1} - y_n) \]

\[+ \frac{\partial y_n'}{\partial p_n} (p_{n+1} - p_n) + \frac{\partial y_n'}{\partial r_n} (r_{n+1} - r_n) \]

(7f)

Thus,

\[y_{n+1}' = (p_n y_n + p_n r_n x_n^2) + \frac{\partial}{\partial y_n} (p_n y_n + p_n r_n x_n^2) (x_{n+1} - x_n) \]

\[+ \frac{\partial}{\partial r_n} (p_n y_n + p_n r_n x_n^2) (r_{n+1} - r_n) \]

(7g)

\[y_{n+1}' = (p_n y_n + p_n r_n x_n^2) + (0 + 2p_n r_n x_n) (x_{n+1} - x_n) \]

\[+ \frac{\partial}{\partial r_n} (p_n y_n + p_n r_n x_n^2) (r_{n+1} - r_n) \]

(7h)

\[y_{n+1}' = (p_n y_n + p_n r_n x_n^2) + (2p_n r_n x_n) (x_{n+1} - x_n) \]

\[+ p_n (y_{n+1} - y_n) + (y_n + r_n x_n^2) (p_{n+1} - p_n) \]

\[+ p_n x_n^2 (r_{n+1} - r_n) \]

(7i)
Rearranging the terms in equation (7i),

$$y'_{n+1} = P_n y_{n+1} + 2P_n R_n x_{n} x_{n+1} + P_n x_n^2 R_n + (y_n + R_n x_n^2) P_{n+1}$$

$$- (3P_n R_n x_n^2 + P_{n+1} y_n)$$

(8b)

Similarly equations (6c) and (6d) are written as,

$$R'_{n+1} = 0,$$

(8c)

$$P'_{n+1} = 0.$$

(8d)

The boundary conditions (2) and (3) are written below as

$$x_e = x(0) - \frac{1}{P} y(0) = c \text{ at } t = 0$$

(9a)

$$y(t_f) = 0 \text{ at } t = t_f$$

(9b)

$$x(t_1) = b_1 \text{ at } t = t_1$$

(9c)

$$x(t_2) = b_2 \text{ at } t = t_2$$

(9d)

where b_1 and b_2 are the true values of x at t_1 and t_2.

Applying the generalized Newton Raphson method to equations (9),

$$x_{n+1}(0) = c$$

(10a)

$$y_{n+1}(t_f) = 0$$

(10b)
\[x_{n+1}(t_1) = b_1 \]
\[x_{n+1}(t_2) = b_2 \]

Equations (8) together with the boundary conditions (10) are solved by the use of the principle of superposition. Since one initial condition equation (2) is given, three sets of homogeneous solutions are needed for solving the equations (8). Initial values for solving equations (8) are so chosen that they satisfy the initial boundary condition and also set the integration constants equal to the unknown parameters.

The particular solution is obtained with the following initial values.

\[x_{p,n+1}(0) = c \]
\[y_{p,n+1}(0) = 0 \]
\[R_{p,n+1}(0) = 0 \]
\[P_{p,n+1}(0) = 0 \]

where, the subscript \(p \) denotes the particular value.

The homogeneous solutions are obtained by integrating the following equations.

\[x'_{n+1} = y_{n+1} \]
\[y'_{n+1} = P_n y_{n+1} + 2P_n R_n x_n x_{n+1} + P_n x_n^2 R_{n+1} + (y_n + R_n x_n^2) P_{n+1} \]
\[R_{n+1}^i = 0 \quad (12c) \]
\[P_{n+1}^i = 0 \quad (12d) \]

The three sets of initial values of obtaining the homogeneous solution are given below. Subscripts \(h_1, h_2, h_3 \) denote the three homogeneous values.

\[x_{h1,n+1}(0) = 0 \quad (13a) \]
\[y_{h1,n+1}(0) = 1 \quad (13b) \]
\[R_{h1,n+1}(0) = 0 \quad (13c) \]
\[P_{h1,n+1}(0) = 0 \quad (13d) \]
\[x_{h2,n+1}(0) = 0 \quad (14a) \]
\[y_{h2,n+1}(0) = 0 \quad (14b) \]
\[R_{h2,n+1}(0) = 1 \quad (14c) \]
\[P_{h2,n+1}(0) = 0 \quad (14d) \]

and,

\[x_{h3,n+1}(0) = 0 \quad (15a) \]
\[y_{h3,n+1}(0) = 0 \quad (15b) \]
The general solutions of the system of equations (8) are obtained by the principle of superposition.

\[R_{n+1, n+1}(0) = 0 \]
\[P_{n+1, n+1}(0) = 1 \]

It will be seen from equations (16c) and (16d) that,

\[R_{n+1}(0) = a_{2, n+1} \]
\[P_{n+1}(0) = a_{3, n+1} \]

It was initially assumed that both \(R_{n+1}(t) \) and \(P_{n+1}(t) \) are constant functions. Thus equations (17) and (18) are true for all values of \(t \). Thus,

\[R_{n+1}(t) = a_{2, n+1} \]
\[P_{n+1}(t) = a_{3,n+1} \] \hspace{1cm} (18a)

The integration constant \(a_{1,n+1} \) can be expressed as a function of \(a_{2,n+1} \) and \(a_{3,n+1} \). The following equation is obtained from equation (16b) at \(t = t_f \).

\[
a_{1,n+1} = \frac{(y_{p,n+1}(t_f) + a_{2,n+1} y_{h2,n+1}(t_f) + a_{3,n+1} y_{h3,n+1}(t_f))}{y_{h1,n+1}(t_f)}
\] \hspace{1cm} (19)
CHAPTER III

NUMERICAL ANALYSIS

The fourth order Runge-Kutta Gill method has been used for carrying through the numerical integration. Integration over the interval \((0,1)\) is carried through with a step size of 0.01.

Assuming that a solution exists, the linear differential equation is solved in two steps. First one set of particular and three sets of homogeneous solutions are obtained numerically. Initial values for obtaining these have been discussed in the preceding chapter. Then the integration constants are obtained by the least square method.

The error between the general solution and the experimental values is minimized as follows

\[
Q_{n+1} = \sum_{s=1}^{m_l} [x_{n+1}(t_s) - b_s]^2
\]

(1)

\[
Q_{n+1} = \sum_{s=1}^{m_l} [x_{p,n+1}(t_s) + a_{1,n+1} x_{h1,n+1}(t_s) + a_{2,n+1} x_{h2,n+1}(t_s) +
\]

\[a_{3,n+1} x_{h3,n+1}(t_s) - b_s]^2
\]

(2)

From equation (19) of the preceding chapter,

\[
a_{1,n+1} = - \frac{(y_{p,n+1}(t_f) + a_{2,n+1} y_{h2,n+1}(t_f) + a_{3,n+1} y_{h3,n+1}(t_f))}{y_{h1,n+1}(t_f)}
\]

(3)
Introducing equation (3) in equation (2),

\[
Q_{n+1} = \sum_{s=1}^{m_1} [x_{p,n+1}(t_s) - \frac{x_{h1,n+1}(t_f)}{y_{h1,n+1}(t_f)} (y_{p,n+1}(t_f) + a_{2,n+1} y_{h2,n+1}(t_f)) + a_{3,n+1} y_{h3,n+1}(t_f)]^2
\]

(4)

Rearranging the terms and writing \(A_{n+1} = \frac{x_{h1,n+1}(t_s)}{y_{h1,n+1}(t_f)} \)

\[
Q_{n+1} = \sum_{s=1}^{m_1} [x_{p,n+1}(t_s) - A_{n+1} y_{p,n+1}(t_f) + a_{2,n+1} x_{h2,n+1}(t_s) - A_{n+1} y_{h2,n+1}(t_f)) + a_{3,n+1} x_{h3,n+1}(t_s) - A_{n+1} y_{h3,n+1}(t_f)) - b_s]^2
\]

(5)

Since all the particular and homogeneous solutions are known quantities, equation (5) can be written as

\[
Q_{n+1} = \sum_{s=1}^{m_1} [q_{1,n+1}(t_s) + a_{2,n+1} \cdot q_{2,n+1}(t_s) + a_{3,n+1} \cdot q_{3,n+1}(t_s) - b_s]^2
\]

(6)

Minimizing equation (6) wrt \(a_{2,n+1} \) and \(a_{3,n+1} \) the following two equations are obtained.

\[
\sum_{s=1}^{m_1} q_{3,n+1}(t_s)[q_{1,n+1}(t_s) + a_{2,n+1} \cdot q_{2,n+1}(t_s) + a_{3,n+1} \cdot q_{3,n+1}(t_s) - b_s] = 0
\]

(7a)
The two simultaneous algebraic equations (7a) and (7b) are to be solved to obtain the integration constants, which are equal to the unknown parameters. The parameters are used recursively to obtain improved results.

The flow chart figure (2), and the computer program for solving the problem appear in the Appendix.
CHAPTER IV

CONCLUSION

The quasilinearization method combined with the superposition method is unstable under certain conditions [11]. For example, during the process of iteration one or more values of the particular and homogeneous solutions can become unreasonable. The solutions will not converge to the exact values even if the exact values of the parameters are used as the initial approximations.

Extremely large or small values of the parameters are obtained at the end of the first few iterations. Since the original nonlinear equations are very sensitive to these values, extremely large positive or negative values are obtained for the dependent variable of the differential equation. Thus the final boundary condition cannot be fulfilled.

The linear differential equation is obtained by the generalized Newton-Raphson method. Therefore these unreasonable values of the parameters during the first few iterations should be expected.

In order to avoid these unreasonable values, the parameters should be changed to within reasonable ranges. When these restrictions are used, the convergence problems are reduced.

The method converged to the exact values in six iterations. Figure (1) shows the nature of convergence of the method.
PART II
INTRODUCTION

The estimation of parameters in nonlinear partial differential equations is much more difficult than in ordinary differential equations. If the model equations are linear an analytical solution is usually obtainable from which the parameters may be estimated. When the partial differential equation is nonlinear some sort of extremely time-consuming trial and error integration of the equations becomes necessary.

Parameter estimation for the humidity diffusion in concrete has been presented. The drying of concrete is one of the basic factors in creep, shrinkage and crack formation. In the construction of massive structures, knowledge of the rate and the amount of heat evolved during the process of hardening are desirable. The physical process is assumed to be represented by a nonlinear parabolic differential equation.

The phenomenological characteristics of the drying of concrete were studied experimentally by Pihlajavaara [1]. A mathematical equation for the moisture dependence of the diffusion coefficient was proposed. It was observed in the experiments that the diffusion coefficient underwent a significant change when the process of drying proceeded from 100 per cent to 70 per cent relative humidity of the pores. Definite conclusions have not been reached so far. This is partly due to the lack of experimental data for the drying of concrete.

Bazant and Najjar [2] performed numerical analysis with the diffusion coefficient proposed by [1]. Trial and error was used. Finite differencing
of the space and the time derivatives was carried through based on the Crank Nicolson method. A more pertinent form of the diffusion coefficient was proposed. It contained three parameters.

The objective of the present work is to estimate the parameters in the diffusion equation by the quasilinearization technique. The diffusion coefficient suggested by [2] is used. Experimental data of Abrams and Orals [3] is also used.

Integration of the linearized equation is carried through by the finite difference method. Both the space and the time derivatives are discretized. The Crank-Nicolson method has been used in the finite differencing. An algorithm is devised based on the least squares method. Initial guesses are made for the parameters and also for the function value of humidity as a function of space and time. The initial values chosen for the purpose of integration comply with the initial boundary condition and set the integration constants equal to the unknown parameters. The parameters thus obtained are used recursively to obtain improved values.

The error in the experimental data of [3] is considered small in magnitude. The mathematical model is devised to fit the experimental data. The concrete medium is assumed isotropic macroscopically. It has been assumed that the process of drying takes place isothermally.
CHAPTER I

THE BASIC DIFFUSION EQUATION

Concrete is a capillary porous colloidal material. It has a wide range of pore sizes. The complicated physico-chemical microstructure allows different kinds of individual flow to occur simultaneously. Vapor diffusion, saturated and unsaturated capillary transfer are typical examples of these flows.

The process of diffusion is a result of random particle motions within the medium. Matter is transported from one part of the system to another as a result of the random particle motions. The flow due to diffusion is not caused by external forces but it is due to concentration gradients.

Inadequate knowledge of the actual mechanisms of heat and mass transfer during the drying process makes the formulation of a detailed kinetic-mathematical model difficult. Generally engineering problems that have a multiplicity of fundamental laws in operation are nonlinear mathematical models.

Concentration dependent diffusion in an isotropic medium is governed by the Ficks equation,

$$ \frac{\partial Y_d}{\partial t} = \frac{\partial}{\partial x} [C(Y_d) \frac{\partial Y}{\partial x}] $$

or

$$ \frac{\partial Y_d}{\partial t} = \nabla(C(Y_d) \nabla Y_d) $$

(1)
Equation (2) is expressed in vector notation. The diffusion coefficient undergoes a significant change when the drying process progresses from 100 per cent relative humidity of the pores to 70 per cent relative humidity of the pores.

Pihlajavaara [1] proposed the following mathematical equation for the diffusion coefficient:

\[C[Y_d] = C_1 \cdot (1 + \alpha Y_d^\gamma) \]

(3)

where,
\(\alpha \) and \(\gamma \) are parameters,
\(C_1 \) is the diffusion coefficient at 100 per cent relative humidity of the pores,
\(Y_d \) is the relative humidity of the pores.

Bazant and Najjar [2] proposed the following equations:

\[C[Y_d] = C_1 \cdot \{1 + (1 - \alpha)(1 - Y_d)^\gamma\} \]

(4)

and

\[C[Y_d] = C_1 \cdot \left\{\alpha + \frac{1 - \alpha}{1 + \left(\frac{1-Y_d^\gamma}{1-h}\right)^\gamma}\right\} \]

(5)

where,
\(h \) is another parameter.

The diffusion coefficient characterizes the diffusion process and represents the rate of drying. Besides its dependence on the moisture,
the diffusion coefficient also depends on the properties of the cement paste, history of hydration, moisture concentration and the ambient temperature.

Figure (3) illustrates the various phases of drying experienced by concrete. It shows a plot of the rate of drying against the average moisture content.

The medium is initially at saturation, constant temperature and constant external condition. AB denotes the constant rate period. The surface of the medium is sufficiently wet during this phase. It enables to simulate a free water surface. The surface remains wet during the period.

BC denotes the first-following rate period. The rate of evaporation from the saturated surface is higher than the rate of liquid diffusion. The surface begins to dry out. The effective area of the wetted surface decreases linearly with the moisture content [17]. In this period the rate of drying is approximately a linear function of the moisture content. The first falling-rate period ends when dryness is reached at the surface. The moisture content will be in equilibrium with the moisture in the environment.

CD denotes the falling rate period. It is characterized by sub-surface evaporation. The plane of evaporation recedes further into the body. The liquid evaporates from a relatively dry surface. The evaporation rate depends on liquid transfer from the interior of the mass. The liquid transfer will be from the surface into the environment.
The rate of hydration tends to retard over extended time intervals. This is because of the dependence of the diffusivity on the pore humidity.
CHAPTER II

LINEARIZATION OF THE NONLINEAR PARABOLIC DIFFERENTIAL EQUATION

The development of high speed digital and analog computing devices has spurred a substantial growth of the mathematical science of numerical analysis. There is no extant theory for solving nonlinear partial differential equations. Many of the methods used are suggested from procedures that can solve linear equations. Extension of these ideas to nonlinear partial differential equations is very difficult if a thorough analysis of stability, convergence and error is carried through.

The preliminary step involved in all numerical methods is to introduce nondimensional variables in place of dimensional variables.

\[
\frac{\partial Y}{\partial t} = \frac{\partial}{\partial x} \left(C[Y] \frac{\partial Y}{\partial x} \right) \tag{1}
\]

The variables \(Y, t, x \) and \(C[Y] \) are dimensionless

where,

\[
x = \frac{x_d}{L_d},
\]

\[
y = \frac{Y_d - Y_{en}}{1 - Y_{en}},
\]

\[
t = \frac{(t_d - t_0) \cdot C_1}{L_d^2},
\]

\(x_d, t_d, Y_d \) are dimensional variables of space, time and relative humidity
of pores respectively. Y_{en}, t_0, L_d and C_1 are dimensional variables of relative humidity of the environment, curing time, half-length of slab and the diffusion coefficient at 100 per cent relative humidity of pores respectively.

The dimensionless diffusion coefficient $C[Y]$ is given by,

$$C[Y] = \alpha + \frac{(1 - \alpha)}{1 + \beta^Y (1-Y)^Y} \tag{2}$$

where,

$$\beta = \frac{1 - Y_{en}}{1 - h}, \quad \text{is a parameter.}$$

$$Y = \frac{Y_d - Y_{en}}{1 - Y_{en}}$$

Introducing equation (2) in the basic diffusion equation (1),

$$\frac{\partial Y}{\partial t} = \alpha \left(\frac{1 - \alpha}{1 + \beta^Y (1-Y)^Y} \right) \frac{\partial^2 Y}{\partial x^2} \tag{3}$$

Thus,

$$\frac{\partial Y}{\partial t} = \frac{\partial}{\partial x} \left\{ \alpha + \frac{(1 - \alpha)}{1 + \beta^Y (1-Y)^Y} \right\} \frac{\partial Y}{\partial x} + \frac{\partial}{\partial x} \left\{ \alpha + \frac{(1 - \alpha)}{1 + \beta^Y (1-Y)^Y} \right\} \frac{\partial^2 Y}{\partial x^2} \tag{4}$$

For simplicity in the derivation, equation (4) is written as,
\[
\frac{\partial Y}{\partial t} = \frac{\partial C}{\partial x} \frac{\partial Y}{\partial x} + C \frac{\partial^2 Y}{\partial x^2}
\] \hspace{1cm} (5)

Thus,

\[
Y' = f[Y, \frac{\partial Y}{\partial x}, \frac{\partial^2 Y}{\partial x^2}, \alpha, \beta, \gamma]
\] \hspace{1cm} (6)

Equation (5) is nonlinear and it is linearized by the generalized Newton-Raphson method as below:

\[
Y'_{n+1} = Y'_n + \frac{\partial Y'}{\partial Y_n} (Y'_{n+1} - Y_n) + \frac{\partial^2 Y'}{\partial Y_n^2} (Y'_{n+1} - Y_n - \frac{\partial Y}{\partial x} | _n)
\]

\[
+ \frac{\partial^2 Y}{\partial x^2} \left(\frac{\partial Y}{\partial x} | _{n+1} - \frac{\partial Y}{\partial x} | _n \right) + \frac{\partial Y'}{\partial \alpha_n} (\alpha_{n+1} - \alpha_n)
\]

\[
+ \frac{\partial Y'}{\partial \beta_n} (\beta_{n+1} - \beta_n) + \frac{\partial Y'}{\partial \gamma_n} (\gamma_{n+1} - \gamma_n)
\] \hspace{1cm} (7)

where the subscripts \(n+1\) and \(n\) denote the \((n+1)\)st iteration and the \(n\)th iteration respectively.

Equation (5) may be written for the \(n\)th iteration as,

\[
Y'_{n} = \frac{\partial C}{\partial x} \left| _n \frac{\partial Y}{\partial x} \right| _n + C_n \frac{\partial^2 Y}{\partial x^2} \left| _n \right.
\] \hspace{1cm} (8)

Introducing equation (8) in equation (7),

\[\begin{align*}
+ \left(\frac{\partial^2 C}{\partial x \partial \beta} \bigg|_n \cdot \frac{\partial Y}{\partial x} \bigg|_n + \frac{\partial C}{\partial \beta} \bigg|_n \cdot \frac{\partial^2 Y}{\partial x^2} \bigg|_n \right) (\beta_{n+1} - \beta_n) \\
+ \left(\frac{\partial^2 C}{\partial x \partial Y} \bigg|_n \cdot \frac{\partial Y}{\partial x} \bigg|_n + \frac{\partial C}{\partial Y} \bigg|_n \right) (\gamma_{n+1} - \gamma_n)
\end{align*} \]

(10)

Since,

\[C = g(Y) \]

(11)

\[\frac{\partial C}{\partial x} = \frac{\partial C}{\partial Y} \frac{\partial Y}{\partial x} \]

(12)

Thus,

\[\frac{\partial C}{\partial x} \bigg|_n \cdot \frac{\partial Y}{\partial x} \bigg|_n \]

(13a)

Similarly,

\[\frac{\partial^2 C}{\partial x \partial \alpha} \bigg|_n = \frac{\partial^2 C}{\partial Y \partial \alpha} \bigg|_n \cdot \frac{\partial Y}{\partial x} \bigg|_n \]

(13b)

\[\frac{\partial^2 C}{\partial x \partial \beta} \bigg|_n = \frac{\partial^2 C}{\partial Y \partial \beta} \bigg|_n \cdot \frac{\partial Y}{\partial x} \bigg|_n \]

(13c)

\[\frac{\partial^2 C}{\partial x \partial Y} \bigg|_n = \frac{\partial^2 C}{\partial Y \partial Y} \bigg|_n \cdot \frac{\partial Y}{\partial x} \bigg|_n \]

(13d)

\[\frac{\partial^2 C}{\partial x \partial \gamma} \bigg|_n = \frac{\partial^2 C}{\partial Y \partial \gamma} \bigg|_n \cdot \frac{\partial Y}{\partial x} \bigg|_n \]

(13e)
Introducing equations (13) in equation (10),

\[Y_{n+1} = \left(\frac{\partial C}{\partial Y} \right|_n \cdot \left(\frac{\partial Y}{\partial x} \right)^2 \left|_n + C_n \cdot \frac{\partial^2 Y}{\partial x^2} \left|_n \right) + \right. \]

\[\left(\frac{\partial^2 C}{\partial Y^2} \right|_n \cdot \left(\frac{\partial Y}{\partial x} \right)^2 \left|_n + \frac{\partial C}{\partial Y} \cdot \frac{\partial^2 Y}{\partial x^2} \left|_n \right) (Y_{n+1} - Y_n) + \right. \]

\[\left(\frac{\partial C}{\partial Y} \right|_n \cdot \frac{\partial Y}{\partial x} \left|_n \right) \left(\frac{\partial Y}{\partial x} \right|_{n+1} - \frac{\partial Y}{\partial x} \left|_n \right) + \right. \]

\[\left(\frac{\partial^2 C}{\partial Y^2 \partial \alpha} \right|_n \cdot \left(\frac{\partial Y}{\partial x} \right)^2 \left|_n + \frac{\partial C}{\partial \alpha} \cdot \frac{\partial^2 Y}{\partial x^2} \left|_n \right) (\alpha_{n+1} - \alpha_n) + \right. \]

\[\left(\frac{\partial^2 C}{\partial Y^2 \partial \beta} \right|_n \cdot \left(\frac{\partial Y}{\partial x} \right)^2 \left|_n + \frac{\partial C}{\partial \beta} \cdot \frac{\partial^2 Y}{\partial x^2} \left|_n \right) (\beta_{n+1} - \beta_n) + \right. \]

\[\left(\frac{\partial^2 C}{\partial Y^2 \partial \gamma} \right|_n \cdot \left(\frac{\partial Y}{\partial x} \right)^2 \left|_n + \frac{\partial C}{\partial \gamma} \cdot \frac{\partial^2 Y}{\partial x^2} \left|_n \right) (\gamma_{n+1} - \gamma_n) \right) \]

(14)

On cancellation of terms,

\[Y_{n+1} = \frac{\partial C}{\partial Y} \left|_n \cdot \frac{\partial Y}{\partial x} \left|_n \cdot \frac{\partial Y}{\partial x} \left|_{n+1} + C_n \frac{\partial^2 Y}{\partial x^2} \left|_{n+1} \right. \right. \right. \]

\[+ \left(\frac{\partial^2 C}{\partial Y^2 \partial \alpha} \right|_n \cdot \left(\frac{\partial Y}{\partial x} \right)^2 \left|_n + \frac{\partial C}{\partial \alpha} \cdot \frac{\partial^2 Y}{\partial x^2} \left|_n \right) (\alpha_{n+1} - \alpha_n) \right. \]

\[+ \left(\frac{\partial^2 C}{\partial Y^2 \partial \beta} \right|_n \cdot \left(\frac{\partial Y}{\partial x} \right)^2 \left|_n + \frac{\partial C}{\partial \beta} \cdot \frac{\partial^2 Y}{\partial x^2} \left|_n \right) (\beta_{n+1} - \beta_n) \right. \]
Equation (15) will determine the particular solution. To obtain the homogeneous solution, the equation is

\[
\gamma_{n+1}^{'} = \frac{\partial C}{\partial Y} \bigg|_n \cdot \frac{\partial Y}{\partial x} \bigg|_n \cdot \frac{\partial Y}{\partial x} \bigg|_{n+1} + C_n \cdot \frac{\partial^2 Y}{\partial x^2} \bigg|_{n+1}
\]

\[
+ \left(\frac{\partial^2 C}{\partial Y \partial \alpha} \bigg|_n \cdot \left(\frac{\partial Y}{\partial x} \right)^2 \bigg|_n + \frac{\partial C}{\partial \alpha} \bigg|_n \cdot \frac{\partial^2 Y}{\partial x^2} \bigg|_n \right) \cdot \alpha_{n+1}
\]

\[
+ \left(\frac{\partial^2 C}{\partial Y \partial \beta} \bigg|_n \cdot \left(\frac{\partial Y}{\partial x} \right)^2 \bigg|_n + \frac{\partial C}{\partial \beta} \bigg|_n \cdot \frac{\partial^2 Y}{\partial x^2} \bigg|_n \right) \cdot \beta_{n+1}
\]

\[
+ \left(\frac{\partial^2 C}{\partial Y \partial \gamma} \bigg|_n \cdot \left(\frac{\partial Y}{\partial x} \right)^2 \bigg|_n + \frac{\partial C}{\partial \gamma} \bigg|_n \cdot \frac{\partial^2 Y}{\partial x^2} \bigg|_n \right) \cdot \gamma_{n+1}
\]

\[
+ \left(\frac{\partial^2 C}{\partial Y^2} \bigg|_n \cdot \left(\frac{\partial Y}{\partial x} \right)^2 \bigg|_n + \frac{\partial C}{\partial Y} \cdot \frac{\partial^2 Y}{\partial x^2} \bigg|_n \right) \cdot \gamma_{n+1}
\]

(16)

In equations (8) to (16) the equations for \(C, \frac{\partial C}{\partial Y}, \frac{\partial^2 C}{\partial Y^2}, \frac{\partial^2 C}{\partial Y \alpha}, \frac{\partial^2 C}{\partial Y \beta}, \frac{\partial^2 C}{\partial Y \gamma} \), etc are as follows:
\[C = \alpha + \frac{(1-\alpha)}{1 + \beta^Y(1-Y)^\gamma} \quad (17a) \]

\[\frac{\partial C}{\partial Y} = \frac{(1-\alpha)\gamma\beta^Y(1-Y)^\gamma - 1}{(1 + \beta^Y(1-Y)^\gamma)^2} \quad (17b) \]

\[\frac{\partial C}{\partial \alpha} = 1 - \frac{1}{(1 + \beta^Y(1-Y)^\gamma)} \quad (17c) \]

\[\frac{\partial C}{\partial \beta} = -\frac{(1-\alpha)\gamma\beta^Y(1-Y)^\gamma}{(1 + \beta^Y(1-Y)^\gamma)^2} \quad (17d) \]

\[\frac{\partial C}{\partial \gamma} = -\frac{(1-\alpha)\beta^Y(1-Y)\gamma \ln[\beta(1-Y)]}{(1 + \beta^Y(1-Y)^\gamma)^2} \quad (17e) \]

\[\frac{\partial^2 C}{\partial Y^2} = \frac{(1-\alpha)\gamma\beta^Y(1-Y)^\gamma - 2(\beta^Y(1-Y)^\gamma + 1) - \gamma + 1}{(1 + \beta^Y(1-Y)^\gamma)^3} \quad (17f) \]

\[\frac{\partial^2 C}{\partial Y \partial \alpha} = \frac{\gamma\beta^Y(1-Y)^\gamma - 1}{(1 + \beta^Y(1-Y)^\gamma)^2} \quad (17g) \]

\[\frac{\partial^2 C}{\partial Y \partial \beta} = \frac{(1-\alpha)\gamma^2 \beta^Y(1-Y)^\gamma - (1-\beta^Y(1-Y)^\gamma)}{(1 + \beta^Y(1-Y)^\gamma)^3} \quad (17h) \]
\[\frac{a^2 C}{\partial Y^2} = \frac{(1-\alpha)B^Y(1-Y)^{Y-1}[(1-Y)^Y + \ln(\beta(1-Y))] + [1+\gamma \ln(\beta(1-Y))]}{(1+ \beta^Y(1-Y))^{3}} \]

Equations (15) and (16) are rewritten with the terms all rearranged as follows,

\[\gamma_{n+1} = \frac{aC}{\partial Y} |_n \frac{\partial Y}{\partial x} |_n \frac{\partial Y}{\partial x} |_{n+1} + C_n \frac{\partial^2 Y}{\partial x^2} |_{n+1} \]

\[+ \left(\frac{\partial Y}{\partial x} \right)^2 |_n \frac{\partial^2 C}{\partial Y \partial x} |_n \frac{\partial^2 C}{\partial Y \partial x} |_{n+1} \frac{\partial^2 C}{\partial Y \partial \beta} |_n \frac{\partial^2 C}{\partial Y \partial \beta} |_{n+1} \]

\[+ \frac{\partial^2 C}{\partial Y \gamma} |_n \cdot (\gamma_{n+1} - \gamma_n) + \frac{\partial^2 C}{\partial Y^2} |_n \cdot (\gamma_{n+1} - \gamma_n) \]

\[+ \frac{\partial^2 Y}{\partial x^2} |_n \cdot \left(\frac{\partial C}{\partial \alpha} |_n \cdot (\alpha_{n+1} - \alpha_n) + \frac{\partial C}{\partial \beta} |_n \cdot (\beta_{n+1} - \beta_n) + \right. \]

\[+ \frac{\partial C}{\partial \gamma} |_n \cdot (\gamma_{n+1} - \gamma_n) + \frac{\partial C}{\partial \gamma} |_n \cdot (\gamma_{n+1} - \gamma_n) \] \hspace{1cm} (15a)

\[\gamma_{n+1} = \frac{aC}{\partial Y} |_n \frac{\partial Y}{\partial x} |_n \frac{\partial Y}{\partial x} |_{n+1} + C_n \frac{\partial^2 Y}{\partial x^2} |_{n+1} \]

\[+ \left(\frac{\partial Y}{\partial x} \right)^2 |_n \frac{\partial^2 C}{\partial Y \partial x} |_n \frac{\partial^2 C}{\partial Y \partial x} |_{n+1} \frac{\partial^2 C}{\partial Y \partial \beta} |_n \frac{\partial^2 C}{\partial Y \partial \beta} |_{n+1} \]

\[+ \frac{\partial^2 C}{\partial Y^2} |_n \cdot (\gamma_{n+1}) \]
\[
\frac{\partial^2 Y}{\partial x^2} + \frac{\partial^2 Y}{\partial y^2} = \nabla \cdot \left(\nabla \cdot \nabla Y_{n+1} + \nabla \cdot \nabla Y_{n+1} + \nabla \cdot \nabla Y_{n+1} + \nabla \cdot \nabla Y_{n+1} \right)
\]

(16a)

Boundary Conditions

At the exposed surface,

\[Y(t) = Y_{environment}(t) , \quad \text{for all time } t. \]
(18)

At the center of the slab,

\[\frac{\partial Y(t)}{\partial x} = 0, \quad \text{for all time } t. \]
(19)

(i) **Initial boundary condition**

\[Y(0) = 1, \quad \text{at } t = 0 \text{ for all } x, \text{except at the exposed surface.} \]
(20)

(ii) **Final boundary condition**

\[Y(t_f) = b \quad \text{at } t = t_{final} \]
(21)

where,

\[b \text{ is the experimental value at } t = t_{final}. \]

Applying the generalized Newton-Raphson formula to equations (18) to (21),

\[Y_{n+1}(t) = Y_{environment}(t) , \]
(22)

\[\frac{\partial Y(t)}{\partial x} \bigg|_{n+1} = 0 , \]
(23)
\[Y_{n+1}(0) = 1, \quad (24) \]

and,

\[Y_{n+1}(t_f) = b. \quad (25) \]
CHAPTER III

FINITE DIFFERENCE METHOD

The equations (15a) and (16a) of the preceding chapter are solved by the finite difference method. Finite differences of both the space and the time derivatives are carried through. The increments in Y at each time step can be computed from either implicit or explicit methods. The explicit method leads to a numerically unstable solution even if the diffusivity is considered constant.

Backward or central differences in time steps reduce the instability of the problem. For both the schemes, the numerical process at constant diffusivity is stable [2]. They also allow the time-step to be increased or decreased as desired. The dampening of error in subsequent steps is stronger when the backward differences are used. The central differences are usually more advantageous because of their accuracy.

The Crank-Nicolson method of averaging the approximations in the \(t^{th} \) and \((t+1)^{st} \) rows is considered more accurate and has therefore been used. The explicit and implicit methods lead to discretization errors of \(O[\Delta t + (\Delta x)^2] \). The Crank-Nicolson method is stable for all values of the ratio \(\Delta t/(\Delta x)^2 \). It converges with a discretization error of \(O[\Delta t^2 + (\Delta x)^2] \) [18]. Although this is a distinct improvement over the explicit and the implicit methods, the computation is more complicated than for the implicit method.

The following difference equations are obtained based on the Crank-Nicolson method,
\[Y'_{n+1} = \frac{Y_{n+1}(p,t+1) - Y_{n+1}(p,t)}{\Delta t} \] \hspace{1cm} (1)

\[\frac{\partial Y}{\partial x} \bigg|_{n+1} = \frac{Y_{n+1}(p+1,t+1) - Y_{n+1}(p,t+1) + Y_{n+1}(p+1,t) - Y_{n+1}(p,t)}{2\Delta x} \] \hspace{1cm} (2)

\[\frac{\partial^2 Y}{\partial x^2} \bigg|_{n+1} = \frac{Y_{n+1}(p+1,t+1) - 2Y_{n+1}(p,t+1) + Y_{n+1}(p-1,t+1) + Y_{n+1}(p+1,t) - 2Y_{n+1}(p,t)}{2(\Delta x)^2} + \frac{Y_{n+1}(p-1,t)}{2(\Delta x)^2} \] \hspace{1cm} (3)

\[\frac{\partial Y}{\partial x} \bigg|_{n} = \frac{Y_{n}(p+1,t+1) - Y_{n}(p,t+1) + Y_{n}(p+1,t) - Y_{n}(p,t)}{2\Delta x} \] \hspace{1cm} (4)

\[\frac{\partial^2 Y}{\partial x^2} \bigg|_{n} = \frac{Y_{n}(p+1,t+1) - 2Y_{n}(p,t+1) + Y_{n}(p-1,t+1) + Y_{n}(p+1,t) - 2Y_{n}(p,t) + Y_{n}(p-1,t)}{2(\Delta x)^2} \] \hspace{1cm} (5)

\[Y_{n+1} = \frac{Y_{n+1}(p,t+1) + Y_{n+1}(p,t)}{2} \] \hspace{1cm} (6)

\[Y_{n} = \frac{Y_{n}(p,t+1) + Y_{n}(p,t)}{2} \] \hspace{1cm} (7)

Introducing equations (1) to (7) in equation (15a) of the preceding chapter,
\[
\frac{Y_{n+1}(p,t+1) - Y_{n+1}(p,t)}{\Delta t} = \\
\frac{\partial C}{\partial Y} \cdot \frac{Y_{n+1}(p+1,t+1) - Y_{n+1}(p,t+1) + Y_{n+1}(p+1,t) - Y_{n+1}(p,t)}{2\Delta x} \\
+ \frac{C_{n+1}}{2(\Delta x)^2} \left\{ \frac{Y_{n+1}(p+1,t+1) - Y_{n+1}(p,t+1) + Y_{n+1}(p+1,t) - Y_{n+1}(p,t)}{2\Delta x} \right\} \\
+ \frac{Y_{n+1}(p-1,t)}{2(\Delta x)^2} \\
+ \left\{ \frac{Y_{n+1}(p+1,t+1) - Y_{n+1}(p,t+1) + Y_{n+1}(p+1,t) - Y_{n+1}(p,t)}{2\Delta x} \right\}^2 \\
+ \left\{ \frac{Y_{n+1}(p+1,t+1) + Y_{n+1}(p,t)}{2} - \frac{Y_{n+1}(p,t+1) + Y_{n+1}(p,t)}{2} \right\} \\
+ \left\{ \frac{Y_{n+1}(p+1,t+1) - 2Y_{n+1}(p,t+1) + Y_{n+1}(p-1,t+1) + Y_{n+1}(p+1,t) - 2Y_{n+1}(p,t)}{2(\Delta x)^2} \right\}.
\]
\[
\left(\frac{\partial C}{\partial \alpha}\right)_{n} \cdot (\alpha_{n+1}-\alpha_{n}) + \left(\frac{\partial C}{\partial \beta}\right)_{n} \cdot (\beta_{n+1}-\beta_{n}) + \left(\frac{\partial C}{\partial \gamma}\right)_{n} \cdot (\gamma_{n+1}-\gamma_{n}) + \left(\frac{\partial C}{\partial \delta}\right)_{n} \cdot (\delta_{n+1}-\delta_{n})
\]

\[
\frac{Y_{n+1}(p,t+1)+Y_{n}(p,t)}{2} - \frac{Y_{n}(p,t+1)+Y_{n}(p,t)}{2}
\]

Writing \(r = \frac{\Delta t}{(\Delta x)^2} \) and rearranging the terms in equation (8) above,

\[
Y_{n+1}(p,t+1) \cdot r \cdot \left[\frac{1}{r} \cdot C_{n} + \left(\frac{\partial C}{\partial \alpha}\right)_{n} \cdot \frac{1}{2} \cdot (Y_{n}(p,t+1)-Y_{n}(p-1,t+1)+Y_{n}(p,t)) \right.
\]

\[-Y_{n}(p-1,t) \cdot \left(\frac{\partial C}{\partial \alpha}\right)_{n} \cdot \frac{1}{8} \cdot (Y_{n}(p+1,t+1) - Y_{n}(p,t+1) + Y_{n}(p+1,t)) \]

\[-Y_{n}(p,t)^2 \right] + Y_{n+1}(p+1,t+1) \cdot r \cdot (-1) \cdot \left(C_{n} \cdot \frac{1}{2} + \left(\frac{\partial C}{\partial \alpha}\right)_{n} \cdot \frac{1}{4} \cdot \left(Y_{n}(p+1,t+1) - Y_{n}(p,t+1) + Y_{n}(p+1,t) - Y_{n}(p,t) \right) \right) \]

\[+ Y_{n+1}(p-1,t+1) \cdot r \cdot (-1) \cdot C_{n} \cdot \frac{1}{2} = Y_{n+1}(p,t) \]

\[+ \frac{r}{2} \cdot [Y_{n}(p+1,t+1)-2Y_{n}(p,t+1)+Y_{n}(p-1,t+1)+Y_{n}(p+1,t)-2Y_{n}(p,t)+Y_{n}(p-1,t)] \]

\[
\left(\frac{\partial C}{\partial \alpha}\right)_{n} \cdot (\alpha_{n+1}-\alpha_{n}) + \left(\frac{\partial C}{\partial \beta}\right)_{n} \cdot (\beta_{n+1}-\beta_{n}) + \left(\frac{\partial C}{\partial \gamma}\right)_{n} \cdot (\gamma_{n+1}-\gamma_{n}) + \left(\frac{\partial C}{\partial \delta}\right)_{n} \cdot (\delta_{n+1}-\delta_{n})
\]

\[
Y_{n+1}(p,t)-Y_{n}(p,t+1)-Y_{n}(p,t)) + \frac{r}{4} \cdot [Y_{n}(p+1,t+1)-Y_{n}(p,t+1)+Y_{n}(p+1,t)-Y_{n}(p,t)]^2.
\]
\[
\left\{ \frac{\partial^2 C}{\partial Y^2} \right\}_n \cdot (\alpha_{n+1} - \alpha_n) + \left\{ \frac{\partial^2 C}{\partial Y \partial \beta} \right\}_n \cdot (\beta_{n+1} - \beta_n) + \left\{ \frac{\partial^2 C}{\partial Y \partial \gamma} \right\}_n \cdot (\gamma_{n+1} - \gamma_n) + \left\{ \frac{\partial^2 C}{\partial Y^2} \right\}_n \cdot \frac{1}{2} \cdot \\
(Y_{n+1}(p,t) - Y_n(p,t+1) - Y_n(p,t)) + \frac{r}{4} \cdot \frac{\partial C}{\partial Y} \cdot (Y_{n+1}(p+1,t+1) - Y_{n+1}(p,t+1)) \\
+ Y_n(p+1,t) - Y_n(p,t) \cdot [Y_{n+1}(p+1,t) - Y_{n+1}(p,t)] + \frac{r}{2} \cdot C_n \cdot \\
[Y_{n+1}(p+1,t) - 2Y_{n+1}(p,t) + Y_{n+1}(p-1,t)]. \tag{9}
\]

Equation (9) is written explicitly below:

\[
Y_{n+1}(p,t+1) \cdot r \cdot \left[\frac{1}{r} + \alpha_n + \frac{1 - \alpha_n}{1 + \beta_n \cdot \left(1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right)^2} \right] \\
- \frac{1}{4} \cdot \left(1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right)^{-1} \cdot \left\{ 1 + \beta_n \cdot \left(1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right)^2 \right\} \\
- Y_n(p-1,t) \cdot \frac{1}{8} \cdot \left(1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right)^{-2} \cdot \left\{ 1 + \beta_n \cdot \left(1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right)^3 \right\}
\]
\[
\left\{ \gamma_n \right\} \left\{ \frac{1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2}}{2} \right\} \cdot (\gamma_n + 1) - (\gamma_n - 1) \right\} \\
\left\{ 1 + \beta_n \left\{ 1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right\} \right\} \\
\left\{ \gamma_n(p+1,t+1) - Y_n(p,t+1) + Y_n(p+1,t) - Y_n(p,t) \right\}^2 \right\} \\
\left\{ Y_n(p+1,t+1) \right\} \cdot r \cdot \left\{ \left\{ \alpha_n + \frac{1 - \alpha_n}{1 + \beta_n \left\{ 1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right\}} \right\} \cdot \frac{1}{2} \right\} \\
\left\{ 1 + \gamma_n \left\{ 1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right\} \right\} \left\{ \gamma_n \right\}^2 \right\} \\
\left\{ Y_n(p+1,t+1) - Y_n(p,t+1) + Y_n(p+1,t) - Y_n(p,t) \right\} \right\} \\
\left\{ \gamma_n(p+1,t+1) \right\} \cdot r \cdot \left\{ \left\{ \alpha_n + \frac{1 - \alpha_n}{1 + \beta_n \left\{ 1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right\}} \right\} \right\} \\
\left\{ Y_n(p+1,t+1) \right\} \cdot r \cdot \left\{ Y_n(p,t) + \frac{r}{2} \cdot [Y_n(p+1,t+1) - 2Y_n(p,t+1) + Y_n(p-1,t+1) + Y_n(p+1,t) \\
- 2Y_n(p+1,t+1) + Y_n(p-1,t))] \right\} \
\]
\[
\frac{1}{\gamma_n} \left(1 - \frac{1}{1 + \beta_n \left\{ 1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right\}} \right) (a_n + 1 - a_n)
\]

\[
\frac{(1-a_n) \gamma_n}{\beta_n} \left\{ 1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right\}^{-1} \left(\frac{1}{\gamma_n} \right)^n \cdot \left(\frac{\beta_n + 1}{\beta_n} \right) \cdot (\beta_n + 1 - \beta_n)
\]

\[
\frac{(1-a_n) \gamma_n}{\beta_n} \left\{ 1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right\}^{-1} \cdot \left\{ 1 + \beta_n \cdot \left\{ 1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right\} \right\} \cdot (\gamma_n + 1 - \gamma_n)
\]

\[
\frac{1}{2} \cdot \frac{(1-a_n) \gamma_n}{\beta_n} \left\{ 1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right\}^{-1} \cdot \left\{ 1 + \beta_n \cdot \left\{ 1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right\} \right\} \cdot (\gamma_n + 1 - \gamma_n)
\]
\[
\begin{align*}
\frac{r}{4} \cdot [Y_n(p+1,t+1) - Y_n(p,t+1) + Y_n(p+1,t) - Y_n(p,t)]^2.
\end{align*}
\]

\[
\begin{align*}
\left\{ \begin{array}{l}
-\gamma_n^\beta_n \cdot \left[1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right]^{\gamma_n-1} \\
\left\{ 1 + \beta_n \left[1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right] \right\}^{\gamma_n^2} \cdot (\alpha_n + 1 - \alpha_n)
\end{array} \right.
\end{align*}
\]

\[
\begin{align*}
+ \frac{(1-\alpha_n)^2 \gamma_n^\beta_n \cdot \left[1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right]^{\gamma_n-1}}{\left\{ 1 + \beta_n \left[1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right] \right\}^{\gamma_n^3} \cdot (\beta_n + 1 - \beta_n) +}.
\end{align*}
\]

\[
\begin{align*}
\cdot \left\{ 1 - \gamma_n \cdot \left[1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right]^{\gamma_n} \right\} \cdot \gamma_n^3.
\end{align*}
\]

\[
\begin{align*}
(1-\alpha_n)^\beta_n \cdot \left[1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right]^{\gamma_n}.
\end{align*}
\]

\[
\begin{align*}
\left\{ 1 + \beta_n \left[1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right] \right\}^{\gamma_n^3}.
\end{align*}
\]
\[
\begin{align*}
&\left(\gamma_n \cdot \left(1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2}\right)\right) \cdot \left\{1 - \gamma_n \cdot \ln \left(\beta_n \cdot \left(1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2}\right)\right) + \left\{1 + \gamma_n \cdot \ln \left(\beta_n \cdot \left(1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2}\right)\right)\right\} \cdot (\gamma_n + 1 - \gamma_n) \\
&+ \frac{(1 - \alpha_n) \gamma_n \cdot \beta_n \cdot \left(1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2}\right)}{\left\{1 + \gamma_n \cdot \left(1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2}\right)\right\}} \cdot \left\{1 + \gamma_n \cdot \left(1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2}\right)\right\} \cdot (\gamma_n + 1) - (\gamma_n - 1)\right) \\
&\left.\left(1 + \gamma_n \cdot \left(1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2}\right)\right) \cdot \left\{1 + \gamma_n \cdot \left(1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2}\right)\right\} \cdot \left(\gamma_n + 1\right) - (\gamma_n - 1)\right) \\
&\cdot \frac{1}{2} \cdot \left\{(\gamma_n + 1(p,t) - Y_n(p,t+1) - Y_n(p,t)\right) \right) \\
\end{align*}
\]
\[
\frac{r}{4} \left(1 - \alpha_n \right) \gamma_n \left[1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right] \gamma_n^{-1} \\
+ \frac{1}{4} \left(1 + \beta_n \right) \gamma_n \left[1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right] \gamma_n \cdot \frac{1 - \alpha_n}{1 + \beta_n} \\
 \left[Y_n(p+1,t+1) - Y_n(p,t+1) + Y_n(p+1,t) - Y_n(p,t) \right] \\
\cdot \left[Y_{n+1}(p+1,t) - Y_{n+1}(p,t) \right] \\
+ \frac{r}{4} \left(1 - \alpha_n \right) \gamma_n \cdot \frac{1 - \alpha_n}{1 + \beta_n} \\
\left[Y_{n+1}(p+1,t) - 2Y_{n+1}(p,t) + Y_{n+1}(p-1,t) \right] \\
\left(10 \right)
\]

If the space domain is divided into \(M-1 \) equidistant spaces by \(M \) nodes, there will be \(M \) equations corresponding to equation \((10) \). The first and the last of these equations satisfy the boundary conditions,

\[
Y_{n+1}(1,t) = Y_{\text{environment}}(t), \quad (11a)
\]

and

\[
\frac{\partial Y_{n+1}(M,t)}{\partial x} = 0.
\]

Thus,
\[
\frac{Y_{n+1}(M+1,t) - Y_{n+1}(M-1,t)}{2\Delta x} = 0
\]

and

\[
Y_{n+1}(M+1,t) = Y_{n+1}(M-1,t)
\]

The system of \(M \) simultaneous algebraic equations is written in matrix form as,

\[
[A]_{M \times M} \cdot [Y]_{M \times 1} = [K]_{M \times 1}
\]

where,

\([A]_{M \times M}\) is a tridiagonal band matrix,

\([Y]_{M \times 1}\) is the column matrix with relative humidity predictions at the subsequent time step,

\([K]_{M \times 1}\) is the column matrix with elements of known values.

Typical values that constitute the \(p^{th} \) row of the matrices \([A]\) and \([K]\) are written below

\[
A[p,p-2] = 0, \quad p = 1, M
\]

\[
A[p,p-1] = r \left(-\frac{1}{2} \right) \cdot \left\{ \alpha_n + \frac{1 - \alpha_n}{1 + \gamma_n \left(1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right)} \right\}, \quad p = 1, M
\]
A[p,p] = r \cdot \left\{ \frac{1}{r} + \left\{ \alpha_n + \frac{1 - \alpha_n}{1 + \beta_n \cdot \left\{ 1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right\} \gamma_n} \right\} + \\ \frac{1}{4} \cdot \frac{(1-\alpha_n)\gamma_n\beta_n \gamma_n \cdot \left\{ 1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right\} \gamma_n^{-1}}{\left\{ 1 + \beta_n \cdot \left\{ 1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right\} \gamma_n \right\}^2} \right\} (Y_n(p,t+1) - Y_n(p-1,t+1) + Y_n(p,t) - Y_n(p-1,t)) \\
- \frac{1}{8} \cdot \frac{(1-\alpha_n)\gamma_n\beta_n \gamma_n \cdot \left\{ 1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right\} \gamma_n^{-2}}{\left\{ 1 + \beta_n \cdot \left\{ 1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right\} \gamma_n \right\}^3} \right\} \\
\left\{ \frac{\beta_n \gamma_n \cdot \left\{ 1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right\} \gamma_n}{\left\{ 1 + \beta_n \cdot \left\{ 1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right\} \gamma_n \right\}^3} \right\} \cdot (\gamma_n + 1) - (\gamma_n - 1)\right\} \right\} \\
\left\{ \frac{Y_n(p+1,t+1) - Y_n(p,t+1) + Y_n(p+1,t) - Y_n(p,t)}{2} \right\}, \quad p = 1,M \quad (13c)
A(p, p+1) = r \cdot (-1) \cdot \left\{ \frac{\alpha_n}{1 + \beta_n \cdot \left[1 - \frac{Y_n(p, t+1) + Y_n(p, t)}{2} \right]} \cdot \frac{1 - \alpha_n}{\gamma_n} + \frac{1 - \alpha_n}{\gamma_n} \cdot \frac{Y_n(p, t+1) + Y_n(p, t)}{2} \right\} \cdot \frac{1}{2}

+ \frac{(1 - \alpha_n) \gamma_n \beta_n}{\left\{ 1 + \beta_n \cdot \left[1 - \frac{Y_n(p, t+1) + Y_n(p, t)}{2} \right] \right\}^2} \cdot \left\{ 1 - \frac{Y_n(p, t+1) + Y_n(p, t)}{2} \right\} \cdot \frac{\gamma_n^{-1}}{\gamma_n}

\frac{1}{4} \cdot \left\{ Y_n(p+1, t+1) - Y_n(p, t+1) + Y_n(p+1, t) - Y_n(p, t) \right\}, \quad p = 1, M \quad (13d)

A(p, p+2) = 0, \quad p = 1, M \quad (13e)

K[p] = Y_{n+1}(p, t) + \frac{r}{2} \cdot \left[Y_n(p+1, t+1) - 2Y_n(p, t+1) + Y_n(p-1, t+1) + Y_n(p+1, t) - 2Y_n(p, t) + Y_n(p-1, t) \right]

\cdot \left\{ \frac{1}{1 + \beta_n \cdot \left[1 - \frac{Y_n(p, t+1) + Y_n(p, t)}{2} \right]} \cdot \left(\frac{1}{\gamma_n} \right) \cdot (\alpha_n+1 - \alpha_n) \right\}

- \frac{(1 - \alpha_n) \gamma_n \beta_n}{\left\{ 1 + \beta_n \cdot \left[1 - \frac{Y_n(p, t+1) + Y_n(p, t)}{2} \right] \right\}^2} \cdot \left\{ 1 - \frac{Y_n(p, t+1) + Y_n(p, t)}{2} \right\} \cdot \frac{\gamma_n}{\gamma_n} \cdot (\beta_n+1 - \beta_n)
\[
(1-\alpha_n) \gamma_n \cdot \left(1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right) \cdot \ln \left(\frac{1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2}}{\gamma_n} \right) \\
\left\{ 1 + \beta_n \cdot \left(1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right) \gamma_n \right\}^2
\]

\[
(\gamma_{n+1} - \gamma_n) + \frac{(1-\alpha_n) \gamma_n \beta_n}{2} \cdot \left(1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right) \gamma_n^{-1} \\
\left\{ 1 + \beta_n \cdot \left(1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right) \gamma_n \right\}^2
\]

\[
\frac{1}{2} \cdot \left[Y_{n+1}(p,t) - Y_n(p,t+1) - Y_n(p,t) \right] + \frac{r}{4} \cdot \left[Y_{n+1}(p,t+1) - Y_n(p,t+1) \right] \\
+ Y_n(p+1,t) - Y_n(p,t) \right]^2
\]

\[
-\gamma_n \beta_n \cdot \left(1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right) \gamma_n^{-1} \cdot (\alpha_{n+1} - \alpha_n) \\
\left\{ 1 + \beta_n \cdot \left(1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right) \gamma_n \right\}^2
\]

\[
(1-\alpha_n) \gamma_n^{2} \cdot \left(1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right) \gamma_n^{-1} \\
\left\{ 1 + \beta_n \cdot \left(1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right) \gamma_n \right\}^3
\]
\[
\left\{ 1 - \frac{\gamma_n}{2} \left[1 - \frac{Y_n(p, t+1) + Y_n(p, t)}{2} \right] \right\}.
\]

\[
\left\{ 1 + \frac{\gamma_n}{2} \left[1 - \frac{Y_n(p, t+1) + Y_n(p, t)}{2} \right] \right\}.
\]

\[
\cdot (\beta_{n+1} - \beta_n) + \frac{(1 - \alpha_n) \gamma_n}{1 + \frac{\gamma_n}{2} \left[1 - \frac{Y_n(p, t+1) + Y_n(p, t)}{2} \right] \gamma_n^{-1}}.
\]

\[
\left\{ 1 - \frac{\gamma_n}{2} \left[1 - \frac{Y_n(p, t+1) + Y_n(p, t)}{2} \right] \right\}.
\]

\[
\cdot \left\{ 1 - \gamma_n \left[\ln \left\{ \beta_n \cdot 1 - \frac{Y_n(p, t+1) + Y_n(p, t)}{2} \right\} \right] \right\}.
\]

\[
\left\{ 1 + \gamma_n \ln \left\{ \beta_n \cdot \left[1 - \frac{Y_n(p, t+1) + Y_n(p, t)}{2} \right] \right\} \right\} \cdot (\gamma_{n+1} - \gamma_n)
\]

\[
\cdot \left\{ 1 + \frac{\gamma_n}{2} \left[1 - \frac{Y_n(p, t+1) + Y_n(p, t)}{2} \right] \gamma_n^{-2} \right\}.
\]

\[
\cdot \left\{ 1 + \frac{\gamma_n}{2} \left[1 - \frac{Y_n(p, t+1) + Y_n(p, t)}{2} \right] \gamma_n^{-3} \right\}.
\]

\[
\left\{ \beta_n \cdot \left[1 - \frac{Y_n(p, t+1) + Y_n(p, t)}{2} \right] \right\} \cdot (\gamma_{n+1} - (\gamma_n - 1))
\]

\[
\left\{ 1 + \frac{\gamma_n}{2} \left[1 - \frac{Y_n(p, t+1) + Y_n(p, t)}{2} \right] \gamma_n^{-3} \right\}.
\]
\[
\cdot \frac{1}{2} \cdot \left\{ Y_{n+1}(p,t) - Y_n(p,t+1) - Y_n(p,t) \right\}
\]

\[
+ \frac{r}{4} \cdot \frac{(1-\alpha_n)Y_n \cdot \beta_n \cdot \left[\frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right] - 1}{1 + \beta_n \cdot \left[\frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right]} \cdot \left\{ \frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right\}^2
\]

\[
[Y_n(p+1,t+1) - Y_n(p,t+1) + Y_n(p+1,t) - Y_n(p,t)] \cdot [Y_{n+1}(p+1,t) - Y_{n+1}(p,t)]
\]

\[
+ \frac{r}{4} \cdot \left[\frac{Y_n(p+1,t) - 2Y_n(p,t) + Y_n(p-1,t)}{2} \right]
\]

\[
\cdot [Y_{n+1}(p+1,t) - 2Y_{n+1}(p,t) + Y_{n+1}(p-1,t)]
\]

(14)

Matrix \([Y]_{Mx}\) is composed of,
The initial values for obtaining the particular solution are,

\[
\begin{pmatrix}
Y_{p,n+1}(1,0) \\
Y_{p,n+1}(2,0) \\
Y_{p,n+1}(3,0) \\
\vdots \\
Y_{p,n+1}(j,t) \\
\vdots \\
Y_{p,n+1}(M-1,t) \\
Y_{p,n+1}(M,t) \\
\alpha_{p,n+1}(0) \\
\beta_{p,n+1}(0) \\
\gamma_{p,n+1}(0)
\end{pmatrix}
= \begin{pmatrix}
1 \\
1 \\
1 \\
\vdots \\
1 \\
1 \\
1 \\
0 \\
0 \\
0
\end{pmatrix}
\]
Equation (16a) of the preceding chapter is used to determine the homogeneous solution. It is rewritten below

\[Y'_{n+1} = \frac{aC}{\alpha Y} \left| n \cdot \frac{\partial Y}{\partial x} \right| n + \frac{\partial Y}{\partial x} \left| n + 1 \right| + C_n \cdot \frac{\partial^2 Y}{\partial x^2} \left| n + 1 \right| + \left(\frac{\partial Y}{\partial x} \right)^2 \left| n \right| \]

\[\left(\frac{a^2 C}{aY \partial \alpha} \left| n \cdot \alpha_{n+1} + \frac{a^2 C}{aY \partial \beta} \left| n \cdot \beta_{n+1} + \frac{a^2 C}{aY \partial Y} \right| n \cdot \gamma_{n+1} + \frac{a^2 C}{\partial Y^2} \right| n \cdot \gamma_{n+1} \right) \]

\[+ \frac{a^2 \gamma}{\partial x^2} \left| n \cdot \left(\frac{aC}{\partial \alpha} \left| n \cdot \alpha_{n+1} + \frac{aC}{\partial \beta} \left| n \cdot \beta_{n+1} + \frac{aC}{\partial Y} \right| n \cdot \gamma_{n+1} + \frac{aC}{\partial Y} \right| n \cdot \gamma_{n+1} \right) \]

(17)

Using the finite differences in equations (1) to (7) in equation (17) and proceeding in a similar manner as in equation (10), the final form obtained is,

\[Y_{n+1}(p, t+1) \cdot \left\{ \frac{1}{r} + \left\{ \frac{1 - \alpha_n}{1 + \beta_n \cdot \left(\frac{1 - \frac{Y_n(p, t+1) + Y_n(p, t)}{2}}{1 - \frac{Y_n(p, t+1) + Y_n(p, t)}{2}} \right)^2} \right\} \right\} \]

\[+ \frac{1}{4} \cdot \frac{(1 - \alpha_n)\gamma_n e_n \cdot \left(\frac{1}{1 + \beta_n \cdot \left(\frac{1 - \frac{Y_n(p, t+1) + Y_n(p, t)}{2}}{1 - \frac{Y_n(p, t+1) + Y_n(p, t)}{2}} \right)^2} \right)}{\left\{ 1 + \beta_n \cdot \left(\frac{1 - \frac{Y_n(p, t+1) + Y_n(p, t)}{2}}{1 - \frac{Y_n(p, t+1) + Y_n(p, t)}{2}} \right)^2 \right\}^2} \]

\[[Y_n(p, t+1) - Y_n(p-1, t+1) + Y_n(p, t) - Y_n(p-1, t)] \]
\[-\frac{1}{8} \cdot (1 - \alpha_n) \cdot \gamma_n \cdot \frac{\gamma_n}{(1 + \beta_n)} \cdot \left\{ \frac{1}{2} \left(\frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right) \right\} - \gamma_n^{-2} \]

\[1 + \beta_n \cdot \left\{ \frac{1}{2} \left(\frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right) \right\} 3 \]

\[\{ Y_n(p+1,t+1) - Y_n(p+1,t) - Y_n(p,t) \}^2 \]

\[+ Y_{n+1}(p+1,t+1) \cdot r \cdot (-1) \cdot \left\{ \alpha_n + \frac{1 - \alpha_n}{\gamma_n} \right\} \cdot \frac{1}{2} \]

\[\frac{(1 - \alpha_n) \cdot \gamma_n \cdot \frac{\gamma_n}{(1 + \beta_n)} \cdot \left\{ \frac{1}{2} \left(\frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right) \right\} - \gamma_n^{-1}}{1 + \beta_n \cdot \left\{ \frac{1}{2} \left(\frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right) \right\} 2} \]

\[\frac{1}{4} \cdot \{ Y_n(p+1,t+1) - Y_n(p+1,t) - Y_n(p,t) \} \]

\[+ Y_{n+1}(p-1,t+1) \cdot r \cdot (-\frac{1}{2}) \cdot \left\{ \alpha_n + \frac{1 - \alpha_n}{\gamma_n} \right\} \cdot \frac{1}{2} \]

\[\frac{1}{\gamma_n} \cdot \left\{ \frac{1}{2} \left(\frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right) \right\} 3 \]
\[Y_{n+1}(p,t) = Y_{n}(p,t) + \frac{r}{2} \cdot \left\{ Y_{n}(p+1,t+1) - 2Y_{n}(p,t+1) + Y_{n}(p-1,t+1) + Y_{n}(p+1,t) \right\} \]

\[- 2Y_{n}(p,t) + Y_{n}(p-1,t) \right\} \cdot \left\{ 1 - \frac{1}{1 + \gamma_{n} \cdot \left[1 - \frac{Y_{n}(p+1,t) + Y_{n}(p,t)}{2} \right]^{2}} \right\} \cdot \gamma_{n} \]

\[= (1-\alpha_{n})\beta_{n}^{\gamma_{n}^{-1}} \cdot \left\{ 1 - \frac{Y_{n}(p,t+1) + Y_{n}(p,t)}{2} \right\} \cdot \ln \left\{ \beta_{n} - \left[1 - \frac{Y_{n}(p,t+1) + Y_{n}(p,t)}{2} \right]^{2} \right\} \]

\[+ \frac{r}{4} \cdot \left[Y_{n}(p+1,t+1) - Y_{n}(p,t+1) + Y_{n}(p+1,t) - Y_{n}(p,t) \right]^{2}. \]
\[
\left(1 - \gamma_n \cdot \left\{1 - \frac{Y_n(p, t+1) + Y_n(p, t)}{2}\right\}\right) \cdot \alpha_{n+1} + \left(1 - \beta_n \cdot \left\{1 - \frac{Y_n(p, t+1) + Y_n(p, t)}{2}\right\}\right) \cdot \beta_{n+1}
\]

\[
(1-\alpha_n)\gamma_n \left(1 - \frac{Y_n(p, t+1) + Y_n(p, t)}{2}\right) \cdot \left\{1 - \frac{Y_n(p, t+1) + Y_n(p, t)}{2}\right\} \cdot \alpha_{n+1} + (1-\beta_n)\gamma_n \left(1 - \frac{Y_n(p, t+1) + Y_n(p, t)}{2}\right) \cdot \beta_{n+1}
\]

\[
\left\{1 - \beta_n \cdot \left\{1 - \frac{Y_n(p, t+1) + Y_n(p, t)}{2}\right\}\right\} \cdot \{\gamma_n \cdot \left\{1 - \frac{Y_n(p, t+1) + Y_n(p, t)}{2}\right\}\} \cdot \beta_{n+1}
\]

\[
\left\{1 - \gamma_n \cdot \left\{1 - \frac{Y_n(p, t+1) + Y_n(p, t)}{2}\right\}\right\} \cdot \{\gamma_n \cdot \left\{1 - \frac{Y_n(p, t+1) + Y_n(p, t)}{2}\right\}\} \cdot \beta_{n+1}
\]

\[
\left\{1 - \gamma_n \cdot \left\{1 - \frac{Y_n(p, t+1) + Y_n(p, t)}{2}\right\}\right\} \cdot \gamma_n \cdot \{\gamma_n \cdot \left\{1 - \frac{Y_n(p, t+1) + Y_n(p, t)}{2}\right\}\} \cdot \beta_{n+1}
\]

\[
\left\{1 - \gamma_n \cdot \left\{1 - \frac{Y_n(p, t+1) + Y_n(p, t)}{2}\right\}\right\} \cdot \gamma_n \cdot \{\gamma_n \cdot \left\{1 - \frac{Y_n(p, t+1) + Y_n(p, t)}{2}\right\}\} \cdot \beta_{n+1}
\]
\[
\begin{align*}
+ \left[1 + \gamma_n \ln \left\{ \beta_n \cdot \left[1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right] \right\} \right] \\
\cdot \gamma_{n+1} + \frac{\left(1 - \alpha_n \right) \gamma_n \beta_n \cdot \left[1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right]^{\gamma_n-2}}{\left\{ 1 + \gamma_n \cdot \left[1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right] \right\}^{2}} \\
\cdot \left(\gamma_n - \left(\gamma_n-1 \right) \right) \cdot \left(\gamma_n+1 \right) \cdot \frac{1}{2} \cdot Y_{n+1}(p,t) \\
+ \frac{\gamma_n}{4} \cdot \left(1 - \alpha_n \right) \cdot \gamma_n \beta_n \cdot \left[1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right]^{\gamma_n-1} \\
\left\{ 1 + \gamma_n \cdot \left[1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right] \right\}^{2} \\
\left[Y_n(p+1,t+1) - Y_n(p,t+1) + Y_n(p+1,t) - Y_n(p,t) \right] \cdot \left[Y_{n+1}(p+1,t) - Y_{n+1}(p,t) \right] \\
+ \frac{r}{4} \cdot \left(\alpha_n + \frac{1 - \alpha_n}{1 + \gamma_n \cdot \left[1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right]} \right) \\
\left[Y_{n+1}(p+1,t) = 2Y_{n+1}(p,t) + Y_{n+1}(p-1,t) \right] (18)
\end{align*}
\]
Equation (18) also consists of a system of M simultaneous equations. In matrix form the simultaneous equations are written as,

$$[A]_{MxM} \cdot [Y]_{Mx1} = [K']_{Mx1}$$ (19)

The elements in the p^{th} row of $[A]$ and $[Y]$ are identical to those in equation [12]. However the elements in the p^{th} row of $[K']$ are different.

$$K'[p] = Y_{n+1}(p,t) + J \cdot [Y_n(p+1,t+1) - 2Y_n(p,t+1) + Y_n(p-1,t+1) + Y_n(p+1,t)]$$

$$-2Y_n(p,t) + Y_n(p-1,t)] \cdot \left\{ 1 - \frac{1}{1 + \beta_n \cdot \left\{ 1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right\} \gamma_n} \right\} \alpha_{n+1}$$

$$= \frac{(1-\alpha_n)\gamma_n}{\beta_n} \cdot \left\{ 1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right\} \gamma_n \cdot \left\{ 1 + \beta_n \cdot \left\{ 1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right\} \gamma_n \right\}^2 \cdot \gamma_{n+1}$$

$$= \frac{(1-\alpha_n)\beta_n \cdot \left\{ 1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right\} \gamma_n}{\beta_n \left\{ 1 + \beta_n \cdot \left\{ 1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right\} \gamma_n \right\}^2} \cdot \gamma_{n+1}$$
\[
+ \frac{1}{2} \cdot \gamma_n \cdot \left(\frac{1}{1 + \beta_n \cdot \left(1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right) \gamma_n} \right) \cdot \frac{1}{\gamma_n - 1} \cdot \frac{1}{\gamma_n - 1} + \frac{r}{4} \cdot \left[Y_n(p+1,t+1) - Y_n(p,t+1) + Y_n(p+1,t) - Y_n(p,t) \right]^2.
\]

\[
\left(\frac{\gamma_n \cdot \left(1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right) \gamma_n}{1 + \beta_n \cdot \left(1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right) \gamma_n} \right) \cdot \frac{1}{\gamma_n - 1} \cdot \frac{1}{\gamma_n - 1} + \frac{r}{4} \cdot \left[Y_n(p+1,t+1) - Y_n(p,t+1) + Y_n(p+1,t) - Y_n(p,t) \right]^2.
\]

\[
\frac{(1-\alpha_n)^2 \gamma_n \cdot \left(1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right) \gamma_n}{1 + \beta_n \cdot \left(1 - \frac{Y_n(p,t+1) + Y_n(p,t)}{2} \right) \gamma_n} \cdot \frac{1}{\gamma_n - 1} \cdot \frac{1}{\gamma_n - 1} + \frac{r}{4} \cdot \left[Y_n(p+1,t+1) - Y_n(p,t+1) + Y_n(p+1,t) - Y_n(p,t) \right]^2.
\]

\[
\left(\frac{1}{\gamma_n - 1} \cdot \frac{1}{\gamma_n - 1} \right) \cdot \frac{1}{\gamma_n - 1} \cdot \frac{1}{\gamma_n - 1} + \frac{r}{4} \cdot \left[Y_n(p+1,t+1) - Y_n(p,t+1) + Y_n(p+1,t) - Y_n(p,t) \right]^2.
\]
There are three sets of homogeneous solutions. The initial values for obtaining these are given below,
The general solution of the system of equations is obtained by the principle of superposition.

\[
\begin{bmatrix}
 Y_{h1,n+1(1,0)} & Y_{h2,n+1(1,0)} & Y_{h3,n+1(1,0)} \\
 Y_{h1,n+1(2,0)} & Y_{h2,n+1(2,0)} & Y_{h3,n+1(2,0)} \\
 Y_{h1,n+1(3,0)} & Y_{h2,n+1(3,0)} & Y_{h3,n+1(3,0)} \\
 \vdots & \vdots & \vdots \\
 Y_{h1,n+1(p,0)} & Y_{h2,n+1(p,0)} & Y_{h3,n+1(p,0)} \\
 \vdots & \vdots & \vdots \\
 Y_{h1,n+1(M-1,0)} & Y_{h2,n+1(M-1,0)} & Y_{h3,n+1(M-1,0)} \\
 Y_{h1,n+1(M,0)} & Y_{h2,n+1(M,0)} & Y_{h3,n+1(M,0)} \\
 \alpha_{h1,n+1(0)} & \alpha_{h2,n+1(0)} & \alpha_{h3,n+1(0)} \\
 \beta_{h1,n+1(0)} & \beta_{h2,n+1(0)} & \beta_{h3,n+1(0)} \\
 \gamma_{h1,n+1(0)} & \gamma_{h2,n+1(0)} & \gamma_{h3,n+1(0)}
\end{bmatrix}
=
\begin{bmatrix}
 0 \\
 0 \\
 0 \\
 \vdots \\
 0 \\
 \vdots \\
 0 \\
 0 \\
 0 \\
 1 \\
 0 \\
 0 \\
 0 \\
\end{bmatrix}
\]

(21)

\[
Y_{n+1}(j,t) = Y_{p,n+1}(j,t) + \sum_{k=1}^{3} a_{k,n+1} \cdot Y_{hk,n+1}(j,t), \quad j = 1, M
\]

(22a)

\[
\alpha_{n+1}(j,t) = \alpha_{p,n+1}(t) + \sum_{k=1}^{3} a_{k,n+1} \cdot \alpha_{hk,n+1}(t)
\]

(22b)
\[\varepsilon_{n+1}(j,t) = \varepsilon_{p,n+1}(t) + \sum_{k=1}^{3} a_{k,n+1} \cdot \varepsilon_{hk,n+1}(t) \]

(22c)

\[\gamma_{n+1}(j,t) = \gamma_{p,n+1}(t) + \sum_{k=1}^{3} a_{k,n+1} \cdot \gamma_{hk,n+1}(t) \]

(22d)

The subscripts \(p, h_1, h_2 \) and \(h_3 \) denote the particular and three sets of homogeneous solutions. The initial values for obtaining these four sets have been selected to satisfy the initial boundary condition and also to set the integration constants equal to the parameters.

It may be seen from equations (22b), (22c) and (22d) that,

\[a_{n+1}(0) = a_{1,n+1} \]

(23a)

\[\varepsilon_{n+1}(0) = a_{2,n+1} \]

(23b)

and

\[\gamma_{n+1}(0) = a_{3,n+1} \]

(23c)

Since the parameters are assumed constant functions, therefore,

\[a_{n+1}(t) = a_{1,n+1} \]

(24a)

\[\varepsilon_{n+1}(t) = a_{2,n+1} \]

(24b)

\[\gamma_{n+1}(t) = a_{3,n+1} \]

(24c)
CHAPTER IV

NUMERICAL ANALYSIS

The linear differential equation is solved in two steps, assuming that a solution exists for the problem. First one set of particular and three sets of homogeneous solutions are obtained numerically. Initial values for obtaining each of these sets have been stated in the preceding chapter. The tridiagonal band matrix is inverted at every time increment by using the Thomas' algorithm. This algorithm expedites the numerical work involved at each time-step.

The next step involves the determination of the three integration constants. The least squares method is used. The error between the experimental data and the model prediction is minimized.

\[
Q_{n+1} = \sum_{s=1}^{m_1} \sum_{j=1}^{M} [Y_{n+1}(j,t_s) - Y_{\text{data}}(j,t_s)]^2
\]

(1)

\[
Q_{n+1} = \sum_{s=1}^{m_1} \sum_{j=1}^{M} [Y_{p,n+1}(j,t_s) + a_{1,n+1} \cdot Y_{h1,n+1}(j,t_s) + a_{2,n+1} \cdot Y_{h2,n+1}(j,t_s) + a_{3,n+1} \cdot Y_{h3,n+1}(j,t_s) - Y_{\text{data}}(j,t_s)]^2
\]

(2)

Since all the particular and homogeneous solutions are known, equation (2) is written as,
\[Q_{n+1} = \sum_{s=1}^{m_1} \sum_{j=1}^{M} [q_{1,n+1}(j,t_s) + a_{1,n+1} \cdot q_{2,n+1}(j,t_s) + a_{2,n+1} \cdot q_{3,n+1}(j,t_s) + a_{3,n+1} \cdot q_{4,n+1}(j,t_s)]^2 \] (3)

Minimizing equation (3) wrt \(a_{1,n+1}, a_{2,n+1} \) and \(a_{3,n+1} \) the following three equations are obtained,

\[\sum_{s=1}^{m_1} \sum_{j=1}^{M} q_{2,n+1}(j,t_s) \cdot [q_{1,n+1}(j,t_s) + a_{1,n+1} \cdot q_{2,n+1}(j,t_s) + a_{2,n+1} \cdot q_{3,n+1}(j,t_s) + a_{3,n+1} \cdot q_{4,n+1}(j,t_s)] = 0 \] (4a)

\[\sum_{s=1}^{m_1} \sum_{j=1}^{M} q_{3,n+1}(j,t_s) \cdot [q_{1,n+1}(j,t_s) + a_{1,n+1} \cdot q_{2,n+1}(j,t_s) + a_{2,n+1} \cdot q_{3,n+1}(j,t_s) + a_{3,n+1} \cdot q_{4,n+1}(j,t_s)] = 0 \] (4b)

\[\sum_{s=1}^{m_1} \sum_{j=1}^{M} q_{4,n+1}(j,t_s) \cdot [q_{1,n+1}(j,t_s) + a_{1,n+1} \cdot q_{2,n+1}(j,t_s) + a_{2,n+1} \cdot q_{3,n+1}(j,t_s) + a_{3,n+1} \cdot q_{4,n+1}(j,t_s)] = 0 \] (4c)
The three simultaneous algebraic equations (4) are solved to obtain integration constants. They are equal to the unknown parameters. The parameters are used recursively to obtain improved results.

The flow chart figure (4) that was used in the numerical solution appears in the Appendix.
CHAPTER V

CONCLUSION

In the solution of the problem convergence was not obtained. The following factors may be attributed to this behavior.

Actual experience has shown that the generalized Newton-Raphson method is very sensitive to the error of the unknown or guessed initial condition, and is unstable. The guessed values of the unknown parameters as well as the functional equation of humidity for the first iteration have to be very close to the correct values for the problem to converge.

The lack of convergence encountered in solving the problem may also have been due to insufficient spacial nodes. Numerical analysis with upto thirty-four nodal points in the spacial coordinate and one hundred in the time coordinate was carried through.

The Newton-Raphson method can converge quadratically only if the method should at all converge [11].
REFERENCES

1. Pihlajavaara, S. E.

2. Bazant, Z. P. and Najjar, L. J.

3. Abrams, M. S., and Orals, D. L.

4. Crank, J.

6. Carlsaw, H. S. and Jaeger, J. C.

7. Abrams, M. S. and Monfore, G. E.
Application of a small probe-type relative humidity page to research on fire resistance of concrete Bulletin 186, PCA.
8. Gear, C. W.
Numerical initial-value problems in ordinary differential equations.

9. Hindmarsh, A. C.
Numerical solutions of ordinary differential equations: Lecture notes
Report No VCID-16558, Lawrence Livermore Laboratory, Livermore, California, June 1974.

10. Von Rosenberg, D. U.

11. Lee, E. S.

13. Forsythe, G. E. and Wasow, W. R.,
Finite difference methods for partial differential equations.

14. Crank, J., and Nicolson, P.,
15. Mitchell, A. R.,

19. Rosenbrock, H. H. and Storey, C.

20. Bellman, R. E., Kagiwada, H. H. and Sridhar R.

21. Seinfeld, J. H.
22. Crandall, S. H.

23. Ames, W. F.
APPENDIX A
FIGURE 1. CONCENTRATION PROFILES WITH AXIAL DIFFUSION, SHOWING THE NATURE OF CONVERGENCE OF THE METHOD.
FIGURE 2. FLOW CHART FOR SOLVING THE NONLINEAR ORDINARY DIFFERENTIAL EQUATION.
Figure 3: Plot of the rate of drying against the average moisture content.
FIGURE 4. FLOW CHART FOR SOLVING THE NONLINEAR PARABOLIC DIFFERENTIAL EQUATION.
APPENDIX B
THIS PROGRAM ESTIMATES PARAMETERS IN A NONLINEAR ORDINARY DIFFERENTIAL EQUATION. THE GENERALISED NEWTON-RAPHSON METHOD IS USED TO LINEARISE THE EQUATION. USE OF THE RUNGE-KUTTA GILL METHOD IS MADE FOR NUMERICAL INTEGRATION.

DIMENSION: X0(101), Y0(101), R0(11), P0(11), X1(101), Y1(101), R1(11), P1(11),
 X2(101), Y2(101), X3(101), Y3(101), YH1(101), YH2(101), YH3(11)
 K(10), W(4), F(28), Dm(4), A(3)
 COMMON/XG,YG,RO,PO

COMMON/UNIT/INT,ICHECK

1 FORMAT (F5.2,2X,F5.1,2X,I4,2X,I2,2X,F10.6,2X,F8.5)
2 FORMAT(F8.5)
3 FORMAT('/
4 FORMAT(X,'RO',5X,'F3.1,/,5X,'PO',5X,'F3.1,/,T12,'N',T23,'R',T32,
**'GENERAL SOLUTIONS AT CORRESPONDING DATA POINTS',/)
5 FORMAT(1H1)
6 FORMAT(2F10.6)
63 FORMAT('Q',6X,I3,5X,2F9.5,5X,10F5.2)
WRITE(6,5) READ(5,1) DT,TF,N,NDATA,XE,EPS
M=M+1
DO 10 J=1,NDATA
READ(5,2) BS[I]
10 CONTINUE
Kx=1
97 CONTINUE
READ(5,13) RINT,PINT
EA=1
94 CONTINUE
READ(5,12) A2,A3
WRITE(6,4) RINT,PINT
DO 12 I=1,M
X0(I)=0.03129
Y0(I)=0.5
12 CONTINUE
R0(I)=RINT
P0(I)=PINT
NN=1
90 CONTINUE
X1(1)=XE
Y1(1)=D.
R1(1)=0.
P1(1)=0.
IDUPKY=1
ICHECK=1
20 CONTINUE
W1(1)=X1(1)
W2(1)=Y1(1)
W3(1)=R1(1)
W4(1)=P1(1)

INTEGRATE THE DIFFERENTIAL EQUATION FROM TIME=0 TO TIME=TFINAL
DO 600 INT=1,1
CALL RKG(INT,DT,N,M,W,F,LX,MX,JK)
X1(INT)=W(1)
Y1(INT)=W(2)
R1(I)=W(3)
P1(I)=W(4)

CONTINUE
IF(IDUMMY.EQ.1) GO TO 100
IF(IDUMMY.EQ.2) GO TO 200
IF(IDUMMY.EQ.3) GO TO 300
IF(IDUMMY.EQ.4) GO TO 400

CONTINUE
DO 31 I=1,M1
XP(I)=X1(I)
YP(I)=Y1(I)
31 CONTINUE

SET THE INITIAL VALUES OF HOMOGENEOUS SOLUTION (1)

X1(1)=0.
Y1(1)=1.
R1(1)=0.
P1(1)=0.
IDUMMY=2
ICHECK=2
GO TO 20

CONTINUE

HOMOGENEOUS SOLUTION (1)

DO 32 I=1,M1
XM1(I)=X1(I)
YM1(I)=Y1(I)
32 CONTINUE

SET INITIAL VALUES OF HOMOGENEOUS SOLUTION (2)

X1(1)=0.
Y1(1)=0.
R1(1)=1.
P1(1)=0.
IDUMMY=3
ICHECK=2
GO TO 20

CONTINUE

HOMOGENEOUS SOLUTION (2)

DO 33 I=1,M1
XM2(I)=X1(I)
YM2(I)=Y1(I)
33 CONTINUE

SET INITIAL VALUES OF HOMOGENEOUS SOLUTION (3)

X1(1)=0.
Y1(1)=0.
R1(1)=0.
P1(1)=1.
IDUMMY=4
ICHECK=2
GO TO 20

CONTINUE

HOMOGENEOUS SOLUTION 13)

DD 34 I=1,M1
 XM3(I)=X1(I)
 YM3(I)=Y1(I)

CONTINUE

CALL THE SUBROUTINE TO EVALUATE THE INTEGRATION CONSTANTS

CALL FUNC(XP,YP,XM1,XM2,XM3,YM1,YM2,YM3,BS,A)

FORM THE GENERAL SOLUTION

IF(A2 .LE. 0.) A(2)=1.
IF(A2 .GE. 10.) A(2)=10.
IF(A3 .LE. 0.) A(3)=1.
IF(A3 .GE. 10.) A(3)=10.

CONTINUE

CALL THE SUBROUTINE TO EVALUATE THE INTEGRATION CONSTANTS

CALL FUNC(XP,YP,XM1,XM2,XM3,YM1,YM2,YM3,BS,A)

FORM THE GENERAL SOLUTION

IF(A2 .LE. 0.) A(2)=1.
IF(A2 .GE. 10.) A(2)=10.
IF(A3 .LE. 0.) A(3)=1.
IF(A3 .GE. 10.) A(3)=10.

CONTINUE

WRITE(6,43) NN, A(2), A(3), X1(1), X1(2), X1(3), X1(4), X1(5),

 X1(6), X1(7), X1(8), X1(9), X1(10)

IF(NN.EQ.1) GO TO 61

CONTINUE

WRITE(6,31) NN, NN-15

CONTINUE

GO TO 20

CONTINUE

GO TO 68

CONTINUE

GO TO 61

CONTINUE

GO TO 68

CONTINUE

STOP

END
FOURTH ORDER RUNGE-KUTTA GILL METHOD

SUBROUTINE RK4(INT, CT, N, Y, F, L, M, J)
DIMENSION OY(J), Y(J), F(281)

T = (1AT-1)*DT
IF(INT.GT.1) GO TO 450

410 L = 3
R = 0

450 CONTINUE
GO TO (100, 110, 300), L

100 GO TO 110
101 J = 1
L = 2
GO TO 106

106 K = 1, N
F(K) = Y(K)
GO TO 111

110 GO TO 140
K = K + 1
F(K) = F(K) + 0.5 * F(K)
GO TO 114

111 F(K) = OY(K) + DT
Y(K) = F(K) + 0.5 * F(K)
GO TO 140

112 F(K) = OY(K) + DT
GO TO 124

113 F(K) = OY(K) + DT
GO TO 134

114 Y(K) = F(K) + (F(K) + 2 * (F(K) + F(K)) + OY(K) + DT)/6.
GO TO 140

124 Y(K) = Y(K) + F(K)
GO TO 140

134 Y(K) = F(K) + F(K)
GO TO 140

140 CONTINUE
GO TO (170, 180, 170, 180), J

170 T = T + 0.5 * DT
180 J = J + 1
IF(J = 4) GO TO 404, 404, 299

299 H = 1
GO TO 406

300 IG = 1
GO TO 405

404 IG = 2
405 L = 1
406 CONTINUE
IF(W = 1) GO TO 475, 410, 475

475 GO TO (500, 600, 600), L
500 CALL DFY(Y, OY)
GO TO 450
630 RETURN
END
SUBROUTINE DFY(I,F)
DIMENSION Z(4),F(4),XO(I),Z1(I),R0(I),P0(I)
COMMON/ICCNTR/METHOD
CC_MCMN/FCMCMX/XO,YO,R0,P0
F(1)=Z(2)
F(3)=0.
F(4)=0.
IF(METHOD.EQ.1) GO TO 10
IF(METHOD.EQ.2) GO TO 20

PARTICULAR SOLUTION
10 F(2)=P0(1)*Z(2)+2.*PO(1)*R0(I)*Z(I)+P0(I)*XO(I)**2*Z(3)+
 *(YO(1)+RO(1)*XO(1)**2)*Z(4)-(3.*PO(1)*KC(I)*XC(I)**2+PO(I)*YO(I))
 GC TO 30

HOMOGENEOUS SOLUTION
20 F(2)=PO(1)*Z(2)+2.*PO(1)*R0(I)*Z(I)+PO(I)*XO(I)**2*Z(3)+
 *(YO(1)+RO(1)*XO(1)**2)*Z(4)
30 CONTINUE
RETURN
END
SOLVE THE EQUATIONS TO OBTAIN THE INTEGRATION CONSTANTS

SUBROUTINE FUKCIXP, YP, XH1, XH2, XH3, YH1, YH2, YH3, BS, AA
DIMENSION XP(101), XM1(101), XM2(101), XM3(101), ES(10), A(2, 2), AA(3),
* B(2), YH1(101), YH2(101), YH3(101), YP(101), C1(10), G2(10), Q3(10)
SUM1=0.
SUM2=0.
SUM3=0.
SUM4=0.
SUM5=0.
SUM6=0.

DO 100 I=1, 10
AK=XH1(I*10+1)/YH1(I*101)
Q1(I)=XP(I*10+1)-AX*YP(I*101)
C2(I)=XM2(I*10+1)-AX*YH2(I*101)
Q3(I)=XM3(I*10+1)-AX*YH3(I*101)

100 CONTINUE
DO 105 I=1, 10
SUM1=SUM1+C2(I)*Q2(I)
SUM2=SUM2+C3(I)*Q2(I)
SUM3=SUM3-C2(I)*Q1(I)-BS(I)
SUM4=SUM4+C3(I)*Q2(I)
SUM5=SUM5+C3(I)*Q3(I)
SUM6=SUM6-C3(I)*Q1(I)-BS(I)

105 CONTINUE
A(1, 1)=SUM1
A(1, 2)=SUM2
B(1)=SUM3
A(2, 1)=SUM4
A(2, 2)=SUM5
B(2)=SUM6

SOLVE THE TWO SIMULTANEOUS EQUATIONS

AA(2)=A(2, 2)*B(1)-A(1, 2)*E(2)/(A(1, 1)*A(2, 2)-A(1, 2)*A(2, 1))
AA(3)=A(3, 2)-A(1, 1)*A(2, 1)/A(1, 2)
AA(1)=-(YP(I*101)*AA(2)+YH2(I*101)+A(3)*YH3(I*101))/YH1(I*101)
RETURN
END
<table>
<thead>
<tr>
<th>N</th>
<th>R</th>
<th>P</th>
<th>GENERAL SOLUTIONS AT CORRESPONDING DATA POINTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.00000</td>
<td>10.00000</td>
<td>0.73 0.69 0.64 0.61 0.60 0.61 0.64 0.70 0.76 0.40</td>
</tr>
<tr>
<td>2</td>
<td>1.73550</td>
<td>8.83985</td>
<td>0.74 0.67 0.60 0.55 0.51 0.47 0.44 0.41 0.40 0.40</td>
</tr>
<tr>
<td>3</td>
<td>1.47826</td>
<td>7.60150</td>
<td>0.74 0.67 0.60 0.55 0.51 0.47 0.44 0.41 0.39 0.39</td>
</tr>
<tr>
<td>4</td>
<td>1.97978</td>
<td>5.88960</td>
<td>0.74 0.67 0.60 0.55 0.51 0.47 0.44 0.41 0.40 0.39</td>
</tr>
<tr>
<td>5</td>
<td>2.00302</td>
<td>5.90891</td>
<td>0.74 0.67 0.60 0.55 0.51 0.47 0.44 0.41 0.40 0.39</td>
</tr>
<tr>
<td>6</td>
<td>1.99816</td>
<td>6.02124</td>
<td>0.74 0.67 0.60 0.55 0.51 0.47 0.44 0.41 0.40 0.39</td>
</tr>
<tr>
<td>7</td>
<td>1.99789</td>
<td>6.02708</td>
<td>0.74 0.67 0.60 0.55 0.51 0.47 0.44 0.41 0.40 0.39</td>
</tr>
<tr>
<td>8</td>
<td>1.99647</td>
<td>6.04628</td>
<td>0.74 0.67 0.60 0.55 0.51 0.47 0.44 0.41 0.40 0.39</td>
</tr>
<tr>
<td>9</td>
<td>1.99629</td>
<td>6.04449</td>
<td>0.74 0.67 0.60 0.55 0.51 0.47 0.44 0.41 0.40 0.40</td>
</tr>
<tr>
<td>10</td>
<td>1.99642</td>
<td>6.01924</td>
<td>0.74 0.67 0.60 0.55 0.51 0.47 0.44 0.41 0.40 0.40</td>
</tr>
<tr>
<td>11</td>
<td>1.99549</td>
<td>6.05949</td>
<td>0.74 0.67 0.60 0.55 0.51 0.47 0.44 0.41 0.40 0.40</td>
</tr>
<tr>
<td>12</td>
<td>1.99937</td>
<td>6.00918</td>
<td>0.74 0.67 0.60 0.55 0.51 0.47 0.44 0.41 0.40 0.40</td>
</tr>
<tr>
<td>13</td>
<td>1.99558</td>
<td>6.05777</td>
<td>0.74 0.67 0.60 0.55 0.51 0.47 0.44 0.41 0.40 0.40</td>
</tr>
<tr>
<td>14</td>
<td>1.99649</td>
<td>6.04573</td>
<td>0.74 0.67 0.60 0.55 0.51 0.47 0.44 0.41 0.40 0.40</td>
</tr>
<tr>
<td>15</td>
<td>1.99431</td>
<td>6.07467</td>
<td>0.74 0.67 0.60 0.55 0.51 0.47 0.44 0.41 0.40 0.40</td>
</tr>
</tbody>
</table>
THE PARAMETERS IN THE NONLINEAR DIFFUSION EQUATION FOR DRYING OF CONCRETE ARE DETERMINED BY THE GENERALISED NEWTON-RAPHSON METHOD (OR THE QUASILINEARIZATION METHOD). THE CRANK-NICOLSON TECHNIQUE HAS BEEN USED FOR NUMERICAL INTEGRATION. USE OF THE THOMAS ALGORITHM HAS ALSO BEEN MADE.

REAL L
DIMENSION Y0(101,10),Y1(101,10),YH1(101,10),YH2(101,10),YH3(101,10)
*1,YPM(101,10),A10(1),A20(1),A30(1),A11(1),A21(1),A31(1),
*AI(3),IK(10),L(10),D(10),U(10),B(10),BS(9),QP(9),Q1(9),Q2(9),Q3(9)
COMMON/FORMER/Y0,A10,A20,A30,M0,M2,M3,M
COMMON/ICNTR/INT,ICHECK
1 FORMAT(4F10.5,6I5)
2 FORMAT(10X,9F10.4)
4 FORMAT(10X,3F9.4)
6 FORMAT(5I5)
7 FCMAT(F10.5)
9 FORMAT(3I5)
13 FCMAT(3F10.6)
63 FORMAT(5X,14,6X,3F12.4)
READ(5,1) DX,TF,EPS,XE,M,M1,M0,M2,M3,NDATA
READ(5,6) 1X,1Y,1Z,1X1,1Y1
READ(5,6) IA,IB,IC,ID,IE
DC 11 1=1,NDATA
READ(5,7) BS(1)
11 CONTINUE
READ(5,9) INN,IX2,1Y2
READ(5,13) DT1,DT2,DT3
READ(5,13) DT10,DT20,DT30
READ(5,13) A1INT,A2INT,A3INT
WRITE(6,4) A1INT,A2INT,A3INT
WRITE(6,2) (BS(1),1=1,NDATA)
T=0.
DO 12 1=1,M
S=T+1.
DO 120 J=1,M2
Y0(1,J)=(1./S)**0.02942*(ALOG(S)**2.26)*(DX*(J-1))**0.12882-
0.03179(1.-DX*(J-1))**2)
Y0(1,M3)=Y0(1,M0)
120 CONTINUE
IF(1.GE.1.AND.1.LE.1X1) DT=DT10
IF(1.GE.1X2.AND.1.LE.1Y1) DT=DT20
IF(1.GE.1Y2.AND.1.LE.1M1) DT=DT30
T=T+DT
12 CONTINUE
WRITE(6,2) Y0(1,1A),Y0(1,1B),Y0(1,1C),Y0(1,1D),Y0(1,1A),Y0(1,
*1F),Y0(1,1G),Y0(1,1D),Y0(1,1A)
A10(1)=A11NT
A20(1)=A21NT
A30(1)=A31NT
NN=1
90 CONTINUE
C
SET INITIAL VALUES OF PARTICULAR SOLUTION
DO 121 I=2,M3
 Y1(I,1)=X1
121 CONTINUE
 Y1(1,1)=0.
 A1(I,1)=0.
 A2(I,1)=0.
 A3(I,1)=0.
 IDUMMY=1
 ICHECK=1
20 CONTINUE
 DC 122 I=1,M3
 W(I)=Y1(I,1)
122 CONTINUE

INTEGRATE THE DIFFERENTIAL EQUATION FROM TIME=0 TO TIME=TFINAL BY
THE CRANK NICOLSON METHOD, TAKING FINITE DIFFERENCES FOR BOTH
SPACE AND TIME DERIVATIVES

DO 600 INT=1,M1
 IF(INT.GE.I AND INT.LE.IX) DT=DT1
 IF(INT.GE.IX1 AND INT.LE.IY) DT=DT2
 IF(INT.GE.IY1 AND INT.LE.M1) DT=DT3
 R=DT/DX**2
 CALL MATRIX(R,K,L,C,U,B,A11,A21,A31)
DO 123 J=1,M3
 Y1(INT,J)=W(J)
123 CONTINUE
600 CONTINUE
 IF(IDUMMY.EQ.1) GO TO 100
 IF(IDUMMY.EQ.2) GO TO 200
 IF(IDUMMY.EQ.3) GO TO 300
 IF(IDUMMY.EQ.4) GO TO 400

PAKTERICAL SOLUTION

100 CONTINUE
 DC 31 I=1,M1
 DC 124 J=1,M3
 YP(I,J)=Y1(I,J)
124 CONTINUE
31 CONTINUE
 QP(1)=YP(IX,IA)
 QP(2)=YP(IX,IB)
 QP(3)=YP(IY,IC)
 QP(4)=YP(IY,ID)
 QP(5)=YP(IY,IA)
 QP(6)=YP(IY,IB)
 QP(7)=YP(IY,IC)
 QP(8)=YP(IY,ID)
 QP(9)=YP(IZ,IA)
 WRITE(6,2) (QP(I),I=1,NDATA)

SET INITIAL VALUES OF HOMOGENEOUS SOLUTION (1)

DO 125 I=1,M3
 Y1(I,1)=0.
125 CONTINUE
A11(1) = 1.
A21(1) = 0.
A31(1) = 0.
IDUMMY = 2
ICHECK = 2
GO TO 20

HOMOGENEOUS SOLUTION (1)

290 CONTINUE
DC 32 I=1,M1
DO 126 J=1,M3
YH1(I,J) = Y1(I,J)
126 CONTINUE
32 CONTINUE
Q1(1) = YH1(I,IA)
Q1(2) = YH1(I,IB)
Q1(3) = YH1(I,IC)
Q1(4) = YH1(I,ID)
Q1(5) = YH1(I,IA)
Q1(6) = YH1(I,IB)
Q1(7) = YH1(I,IC)
Q1(8) = YH1(I,ID)
Q1(9) = YH1(I,IA)
WRITE(6,2) (Q1(I), I=1,NDATA)

SET INITIAL VALUES OF HOMOGENEOUS SOLUTION (2)

DO 127 J=1,M3
Y1(I,J) = 0.
127 CONTINUE
A11(1) = 0.
A21(1) = 1.
A31(1) = 0
IDUMMY = 3
ICHECK = 2
GO TO 20

HOMOGENEOUS SOLUTION (2)

300 CONTINUE
DC 33 I=1,M1
DO 128 J=1,M3
YH2(I,J) = Y1(I,J)
128 CONTINUE
33 CONTINUE
Q2(1) = YH2(I,IA)
Q2(2) = YH2(I,IB)
Q2(3) = YH2(I,IC)
Q2(4) = YH2(I,ID)
Q2(5) = YH2(I,IA)
Q2(6) = YH2(I,IB)
Q2(7) = YH2(I,IC)
Q2(8) = YH2(I,ID)
Q2(9) = YH2(I,IA)
WRITE(6,2) (Q2(I), I=1,NDATA)

INITIAL VALUES OF HOMOGENEOUS SOLUTION (3)
C

DC 129 J=1,M3
Y1(I,J)=0
129 CONTINUE
A11(I)=0.
A21(I)=0.
A31(I)=1.
IDUMMY=4
ICHCK=2
GO TO 20
C
C HOMOGENEOUS SOLUTION (3)
C
400 CONTINUE
DO 34 I=1,M1
DO 130 J=1,M3
Y3(I,J)=Y1(I,J)
130 CONTINUE
34 CONTINUE
35 CONTINUE
35(1)=YH3(IX,1A)
35(2)=YH3(IX,1B)
35(3)=YH3(IX,1C)
35(4)=YH3(IX,1D)
35(5)=YH3(IY,1A)
35(6)=YH3(IY,1B)
35(7)=YH3(IY,1C)
35(8)=YH3(IY,1D)
35(9)=YH3(I2,1A)
WRITE(6,2) (35(I),I=1,NDATA)
C
C CALL SUBROUTINE TO FIND INTEGRATION CONSTANTS
C
CALL FUNC(CP,C1,C2,Q3,BS,A)
WRITE(6,63) NN,A(1),A(2),A(3)
C
C GENERAL SOLUTIONS FOR Y1(TIME,SPACE)
C
DO 60 I=1,M1
DO 131 J=1,M2
Y1(I,J)=YF(I,J)+A(1)*Y1(I,J)+A(2)*Y2(I,J)+A(3)*Y3(I,J)
131 CONTINUE
60 CONTINUE
WRITE(6,2) Y1(IX,1A),Y1(IX,1B),Y1(IX,1C),Y1(IX,1D),Y1(IY,1A),Y1(IY,1B),Y1(IY,1C)
DA1= A(1)-A10(1)
DA2= A(2)-A20(1)
DA3= A(3)-A30(1)
* GO TO 66
DO 73 I=1,M1
DO 132 J=1,M3
Y0(I,J)=Y1(I,J)
132 CONTINUE
73 CONTINUE
A10(1)=A(1)
A20(1)=A(2)
A30(1)=A(3)
NN=NN+1
IF(NA=INN) 90,90,68
68 CONTINUE
STOP
END
SUBROUTINE MATRIX(K,Z,L,C,U,D,A1N,A2N,A3N)
REAL L
DIMENSION I(10),Y0(I+1,I),A1N(I),A2N(1),A3N(1),L(I+1),U(I+1),D(I+1),
= R(I+1),A1(I),A2(I),A3(I)
COMMON/X,ICFLY,R,Y0,AT,AS,M0,M2,M3,M
COMMON/KCNTR/1,METHDO
Z(I)=0,
Z(M)=Z(M)
DC I IJ, J=2,M2
L(IJ)=R*F+K(I/I)+A2(I)+A3(I)+Y0(I,J),U0(I+1,I))
D(IJ)=R*U1+K(I/I)+A2(I),A3(I)+Y0(I,J)+Y0(I+1,I)
= CY1(A1(I),A2(I),A3(I),U0(I,J),U0(I+1,I))/4.*F(Y0(I+1,J)-Y0(I+1,J)
=*Y0(I,J)-Y0(I,J-1)-CY1(A1(I),A2(I),A3(I),U0(I,J),U0(I+1,J))/2.*F
= (Y0(I+1,J+1)-Y0(I+1,J)+Y0(I+1,J)-Y0(I+1,J))/2.*F
U(IJ)=R*(U(I/I)+A2(I)+A3(I),U0(I,J))
= CY1(A1(I),A2(I),A3(I),U0(I,J),U0(I+1,J))/2.*F(Y0(I+1,J+1)-Y0(I+1,J)
=*Y0(I,J+1)-Y0(I,J+1))/2.*F
111 CONTINUE
L(2)=D
L(M2)=U(M2)+L(M2)
U(M)=D
IF(MFEHOD.EQ.1) GO TO 10
IF(METHOO.EQ.2) GO TO 20
PARTIAL SOLUTIONS
10 CONTINUE
DC I IJ, J=2,M2
B(IJ)=2(IJ)+R/2.*F(Y0(I+1,J)+2.*Y0(I+1,J)+Y0(I+1,J-1)+Y0(I,J)
= 2.*Y0(I,J)+Y0(I,J-1))/2.*F(U(I/I)+A2(I)+A3(I),U0(I,J))
= (U(I/I)+A2(I)+A3(I),U0(I,J))/2.*F(U(I/I)+A2(I)+A3(I),U0(I,J))
= CY1(A1(I),A2(I),A3(I),U0(I,J),U0(I+1,J))/2.*F(U(I/I)+A2(I)+A3(I),U0(I,J))
= Y0(I,J)-Y0(I,J-1)-CY1(A1(I),A2(I),A3(I),U0(I,J),U0(I+1,J))/2.*F
= (U(I/I)+A2(I)-A3(I)+U0(I,J))/2.*F(U(I/I)+A2(I)+A3(I),U0(I,J))
= CY2(A1(I),A2(I)+A3(I),U0(I,J))/2.*F(U(I/I)+A2(I)+A3(I),U0(I,J))
= Y0(I,J)+Y0(I,J)+Y0(I,J))/2.*F(U(I/I)+A2(I)+A3(I),U0(I,J))
= R/2.*(U(I/I)-Y0(I+1,J)-Y0(I,J))/2.*F(U(I/I)+A2(I)+A3(I),U0(I,J))
= Y0(I,J)+Y0(I+1,J)+CY2(A1(I),A2(I)+A3(I),U0(I,J))/2.*F(U(I/I)+A2(I)+A3(I),U0(I,J))
= R/2.*(U(I/I)-Y0(I+1,J)-Y0(I,J))/2.*F(U(I/I)+A2(I)+A3(I),U0(I,J))
101 CONTINUE
GO TO 30
HOMOGENEOUS SOLUTIONS
20 CONTINUE
DC I IJ, J=2,M2
B(IJ)=2(IJ)+R/2.*F(Y0(I+1,J)+2.*Y0(I+1,J)+Y0(I+1,J-1)+Y0(I,J)
= 2.*Y0(I,J)+Y0(I,J-1))/2.*F(U(I/I)+A2(I)+A3(I),U0(I,J))
= (U(I/I)+A2(I)+A3(I),U0(I,J))/2.*F(U(I/I)+A2(I)+A3(I),U0(I,J))
= CY1(A1(I),A2(I)+A3(I),U0(I,J))/2.*F(U(I/I)+A2(I)+A3(I),U0(I,J))
= CY2(A1(I),A2(I)+A3(I),U0(I,J))/2.*F(U(I/I)+A2(I)+A3(I),U0(I,J))
= Y0(I,J)+Y0(I+1,J))/2.*F(U(I/I)+A2(I)+A3(I),U0(I,J))
FUNCTION CY3(A1,A2,A3,Y1,Y2)
CY3 = (1.-A1)*A2**A3*1.-(0.5*(Y1+Y2))*(A3-1.)*(A3-2.)/2.*
* (1.5*(Y1+Y2))**2-(A3-1.)*(A3-2.)/(A3-3.)*6.+(C.5*(Y1+Y2))**3)* (1.1+3.)/(3.)* (0.5*(Y1+Y2))**4/4.- (J.5*(Y1+Y2))**5/5.- (J.5*(Y1+Y2))**6/6.)* A2**A3*
* (1.-A3*(0.5*(Y1+Y2))**2-A3*(A3-1.)/2.*0.5*(Y1+Y2))**2-A3*(A3-1.)*(A3-2.)/6.*0.5*(Y1+Y2))**3)***3
RETURN
END

FUNCTION CY2(A1,A2,A3,Y1,Y2)
CY2 = (1.-A1)*A2**A3*(1.-0.5*(Y1+Y2))*(A3-1.)*(A3-2.)/2.*
* (1.5*(Y1+Y2))**2-(A3-1.)*(A3-2.)/(A3-3.)*6.+(C.5*(Y1+Y2))**3)* (1.1+3.)/(3.)* (0.5*(Y1+Y2))**4/4.- (J.5*(Y1+Y2))**5/5.- (J.5*(Y1+Y2))**6/6.)* A2**A3*
* (1.-A3*(0.5*(Y1+Y2))**2-A3*(A3-1.)/2.*0.5*(Y1+Y2))**2-A3*(A3-1.)*(A3-2.)/6.*0.5*(Y1+Y2))**3)***3
RETURN
END

FUNCTION CY1(A1,A2,A3,Y1,Y2)
CY1 = (A3-1.)*A2**A3**2*(A3-1.)*2.
* (1.-(A3-1.)*C.5*(Y1+Y2))**2-(A3-1.)*(A3-2.)/2.*0.5*(Y1+Y2))**2-
* (A3-1.)*(A3-2.)/(A3-3.)*6.+(0.5*(Y1+Y2))**3)*(1.-A2**A3*
* (1.-A3*(0.5*(Y1+Y2))**2-A3*(A3-1.)/2.*0.5*(Y1+Y2))**2-A3*(A3-1.)*(A3-2.)/6.*0.5*(Y1+Y2))**3)
RETURN
END
FUNCTION C(Al, A2, A3, Y1, Y2)
C = A1 + (1 - A1) /
* (1 + A2 * A3 * (1 - A3) * (0.5 * (Y1 + Y2))) + A3 * (A3 - 1) / 2. * (0.5 * (Y1 + Y2))**2 -
* A3 * (A3 - 1) * (A3 - 2) / 6. * (0.5 * (Y1 + Y2))**3)
RETURN
END

FUNCTION CY(Al, A2, A3, Y1, Y2)
CY = A3 * (1 - A1) * A2 * A3 *
* (1 - (A3 - 1) * (0.5 * (Y1 + Y2))) + (A3 - 1) / 2. * (0.5 * (Y1 + Y2))**2 -
* (A3 - 1) * (A3 - 2) / 6. * (0.5 * (Y1 + Y2))**3) /
* (1 + A2 * A3 * (1 - A3) * (0.5 * (Y1 + Y2))) + A3 * (A3 - 1) / 2. * (0.5 * (Y1 + Y2))**2 -
* A3 * (A3 - 1) * (A3 - 2) / 6. * (0.5 * (Y1 + Y2))**3) ** 2
RETURN
END

FUNCTION CYU(Al, A2, A3, Y1, Y2)
CYU = A2 * A3 * (1 - A1) * A2 * A3 *
* (1 - (A3 - 1) * (0.5 * (Y1 + Y2))) + (A3 - 1) / 2. * (0.5 * (Y1 + Y2))**2 -
* (A3 - 1) * (A3 - 2) / 6. * (0.5 * (Y1 + Y2))**3) /
* (1 + A2 * A3 * (1 - A3) * (0.5 * (Y1 + Y2))) + A3 * (A3 - 1) / 2. * (0.5 * (Y1 + Y2))**2 -
* A3 * (A3 - 1) * (A3 - 2) / 6. * (0.5 * (Y1 + Y2))**3) ** 2
RETURN
END

FUNCTION C1(Al, A2, A3, Y1, Y2)
C1 = 1 - A1 /
* (1 + A2 * A3 * (1 - A3) * (0.5 * (Y1 + Y2))) + A3 * (A3 - 1) / 2. * (0.5 * (Y1 + Y2))**2 -
* A3 * (A3 - 1) * (A3 - 2) / 6. * (0.5 * (Y1 + Y2))**3)
RETURN
END

FUNCTION C2(Al, A2, A3, Y1, Y2)
C2 = (1 - A1) * A2 * A2 * A3 *
* (1 + A3 * (0.5 * (Y1 + Y2))) + A3 * (A3 - 1) / 2. * (0.5 * (Y1 + Y2))**2 - A3 * (A3 - 1) *
* (A3 - 2) / 6. * (0.5 * (Y1 + Y2))**3) /
* (1 + A2 * A3 * (1 - A3) * (0.5 * (Y1 + Y2))) + A3 * (A3 - 1) / 2. * (0.5 * (Y1 + Y2))**2 -
* A3 * (A3 - 1) * (A3 - 2) / 6. * (0.5 * (Y1 + Y2))**3) ** 2
RETURN
END

FUNCTION C3(Al, A2, A3, Y1, Y2)
C3 = (1 - A1) * (A4 * (A2 - (0.5 * (Y1 + Y2))) - (C.5 * (Y1 + Y2))**2) / 2. -
* (C.5 * (Y1 + Y2))**3) / 3. - (C.5 * (Y1 + Y2))**4) / 4. - (0.5 * (Y1 + Y2))**5) / 5. -
* (0.5 * (Y1 + Y2))**6) / 6.) * A2 ** A3 *
* (1 - A3 * (0.5 * (Y1 + Y2))) + A3 * (A3 - 1) / 2. * (0.5 * (Y1 + Y2))**2 - A3 * (A3 - 1) *
* (A3 - 2) / 6. * (0.5 * (Y1 + Y2))**3) /
* (1 + A2 * A3 * (1 - A3) * (0.5 * (Y1 + Y2))) + A3 * (A3 - 1) / 2. * (0.5 * (Y1 + Y2))**2 -
* A3 * (A3 - 1) * (A3 - 2) / 6. * (0.5 * (Y1 + Y2))**3) ** 2
RETURN
END

FUNCTION CY(Al, A2, A3, Y1, Y2)
CY = A2 * A3 * (1 - A1) * A2 * A3 *
* (1 - (A3 - 1) * (0.5 * (Y1 + Y2))) + (A3 - 1) / 2. * (0.5 * (Y1 + Y2))**2 -
* (A3 - 1) * (A3 - 2) / 6. * (0.5 * (Y1 + Y2))**3) /
* (1 + A2 * A3 * (1 - A3) * (0.5 * (Y1 + Y2))) + A3 * (A3 - 1) / 2. * (0.5 * (Y1 + Y2))**2 -
* A3 * (A3 - 1) * (A3 - 2) / 6. * (0.5 * (Y1 + Y2))**3) ** 2
RETURN
END
USE THE THOMAS ALGORITHM FOR THE TRIDIAGONAL BAND MATRIX

SUBROUTINE TRIDAG(IF,L,A,B,C,D,V)
 DIMENSION A(1),B(1),C(1),D(1),V(1),BETA(101),GAMMA(101)

 COMPUTE INTERMEDIATE ARRAYS BETA,GAMMA

 BETA(IF)=B(IF)
 GAMMA(IF)=D(IF)/BETA(IF)
 IFP1=IF+1
 DO 1 I=IFP1,L
 BETA(I)=R(I)-A(I)*C(I-1)/BETA(I-1)
 1 GAMMA(I)=(D(I)-A(I)*GAMMA(I-1)) /BETA(I)

 COMPUTE FINAL SOLUTION VECTOR V

 V(L)=GAMMA(L)
 LAST=L-IF
 DO 2 K=1,LAST
 I=LAST-K
 2 V(I)=GAMMA(I)-C(I)*V(I+1)/BETA(I)
 RETURN
END
SOLVE THE EQUATIONS TO OBTAIN THE INTEGRATION CONSTANTS

```fortran
SUBROUTINE FUNC(QP, C1, C2, Q3, BS, AA)
DIMENSION CP(9), Q1(9), C2(9), Q3(9), BS(9), A(3, 3), B(3), AA(3)
SUM1 = 0.
SUM2 = 0.
SUM3 = 0.
SUM4 = 0.
SUM5 = 0.
SUM6 = 0.
SUM7 = 0.
SUM8 = 0.

DO ICO = 1, 9
  SUM1 = SUM1 + C1(ICO) * Q1(ICO)
  SUM2 = SUM2 + C1(ICO) * Q2(ICO)
  SUM3 = SUM3 + C1(ICO) * Q3(ICO)
  SUM4 = SUM4 + C2(ICO) * C2(ICO)
  SUM5 = SUM5 + C2(ICO) * Q3(ICO)
  SUM6 = SUM6 + C3(ICO) * Q1(ICO)
  SUM7 = SUM7 - C1(ICO) * (QP(ICO) - BS(ICO))
  SUM8 = SUM8 - C2(ICO) * (QP(ICO) - BS(ICO))
  SUM9 = SUM9 - C3(ICO) * (QP(ICO) - BS(ICO))
END DO

CONTINUE
A(1, 1) = SUM1
A(1, 2) = SUM2
A(1, 3) = SUM3
A(2, 1) = SUM4
A(2, 2) = SUM5
A(2, 3) = SUM6
A(3, 1) = SUM7
A(3, 2) = SUM8
A(3, 3) = SUM9

B(1) = SUM7
B(2) = SUM8
B(3) = SUM9

SOLVE THE THREE SIMULTANEOUS EQUATIONS

AA(3) = ((3(1) * A(2, 1) - B(2) * A(1, 1)) * (A(2, 2) * A(3, 1) - A(3, 2) * A(2, 1)) -
  (A(2, 2) * A(3, 1) - B(3) * A(2, 1)) * (A(1, 2) * A(2, 1) - A(2, 2) * A(1, 1))) /
  ((A(2, 2) * A(3, 1) - B(3) * A(2, 1)) - AA(3) * A(2, 1))
AA(2) = (B(2) * A(3, 1) - B(3) * A(2, 1) - AA(3) * A(2, 2) * A(3, 1) - A(3, 3) * A(2, 1))
  * (A(2, 2) * A(3, 1) - B(3) * A(2, 1)) - AA(3) * A(2, 1)) / A(1, 1)
AA(1) = (B(1) - AA(3) * A(1, 1) - AA(2) * A(1, 2)) / A(1, 1)
RETURN
END
```
ACKNOWLEDGEMENT

The author wishes to express his sincere gratitude and appreciation to his Major Professor Dr. Chi Lung Huang and to Dr. E. Stanley Lee for their continual guidance, suggestions and comments throughout the preparation of this work.

His thanks are also due to Dr. F. C. Appl and to Dr. E. Stanley Lee for serving on the committee. Dr. K. K. Hu and Mr. Siang Hwang Hwei are thanked for their valuable suggestions. The financial support received from the department of mechanical engineering throughout the preparation of the work is gratefully acknowledged.

Last but not the least the author expresses his gratitude to his dear parents and family members for their constant encouragement and inspiration. The support he received from his uncle Mr. H. R. Rao is also gratefully acknowledged.
VITA

VINOD VASUDEV KALLIANPUR

Candidate for the degree of Master of Science

Major Field: Mechanical Engineering.

Biographical:

Personal Data: Born in Bombay, India,

May 12th 1953, the son of Vasudev S and Mukta V. Kallianpur.

Education:

Education: Attended high school in Bombay, India; graduated from Saint Michael's High School in 1969; received the Bachelor of Engineering degree from the University of Bombay, with a major in Mechanical Engineering, in March 1976; completed the requirements for the Master of Science degree in May, 1978.

Professional Experience: Worked as Project Engineer in Wellman (India) Inc., Bombay during April 1976; as Design Engineer in Godrej and Boyce Pvt Ltd, Bombay, from May 1976 to July 1976; worked as a graduate research assistant in the department of Mechanical Engineering at Kansas State University from September 1976 to May 1978.
APPLICATION OF THE QUASILINEARIZATION TECHNIQUE
FOR PARAMETER ESTIMATION IN NONLINEAR
DIFFERENTIAL EQUATIONS

by
VINOD VASUDEV KALLIANPUR

B.E. (ME), University of Bombay (India), 1976

AN ABSTRACT OF A MASTER'S THESIS
submitted in partial fulfillment of the
requirements for the degree
MASTER OF SCIENCE
Department of Mechanical Engineering
KANSAS STATE UNIVERSITY
Manhattan, Kansas
1978
ABSTRACT

Application of the quasilinearization technique for parameter estimation in nonlinear differential equations is investigated.

Parameter estimation of the nonlinear differential equation for a homogeneous tubular flow chemical reactor with axial mixing is presented in Part I. It is assumed that the physical process can be represented by a nonlinear ordinary differential equation of known form but containing unknown parameters. Linearization of the problem is carried through by the quasilinearization technique. The fourth order Runge Kutta Gill method is used for numerical integration.

An algorithm is devised based on the least squares method. It minimizes the error between the experimental data and the model predictions. Numerical data from Lee [11] has been treated as the experimental data.

Extension of the application of the quasilinearization technique to nonlinear parabolic differential equations is investigated in Part II. The mathematical model of moisture diffusion in concrete medium is presented. The Crank Nicolson method is used for numerical integration. Experimental data of Abrams and Orals [3] is used.

The method converges quadratically in the solution of the problem in Part I. Convergence was not attained in the solution of the problem in Part II.