
  

 

 

 

CLASSICAL OPTIMAL CONTROL IN CONTINUOUS TIME 

WITH APPLICATIONS IN ECONOMICS 

 

by 

 

 

LINGFEI NI 

 

 

 

B.A., California State University, Chico, 2012 

B.S., California State University, Chico, 2012 

 

A REPORT 

 

 

submitted in partial fulfillment of the requirements for the degree 

 

 

 

MASTER OF ARTS 

 

 

 

Department of Economics 

College of Arts and Sciences 

 

 

 

KANSAS STATE UNIVERSITY 

Manhattan, Kansas 

 

 

2014 

 

Approved by: 

 

Major Professor 

Steven P. Cassou 

  



  

 

Copyright 

LINGFEI NI 

2014 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

Abstract 

This report shows the mathematics behind the solution to continuous time optimization 

problems. It shows how to specify the Hamiltonian function, how to use the Hamiltonian to 

obtain the optimal conditions for a typical economic optimal control problem and applies these 

techniques to several optimal control problems commonly encountered in macroeconomics. An 

appendix shows how to set up the optimal conditions for the case in which the state and co-state 

variables are both vectors. A second appendix shows how to approach the control situation for a 

system of optimal control problems where the co-state variable for the first sub-optimal control 

problem is the state variable for the second sub-optimal control problem. 
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Chapter 1 - Introduction 

 According to mathematics historian Cantor (1907), the earliest solved optimizing 

problem is in Euclid’s “Elements” which considers, “of all the rectangles contained by the 

segments of a given straight line, the greatest is the square which is described on half the line” 

around 300 B.C. quoted from Byrne’s classic study on Euclid (1847). It essentially gives the 

following solution: 
𝑎

2
∈ argmax

𝑥∈ℝ
{𝑥(𝑎 − 𝑥)}. After infinitesimal calculus (or later just calculus) 

was discovered by Newton and Leibniz in the 1670s, Johann Bernoulli from the well-known 

Bernoulli family of Basel, Switzerland, posed the famous brachistochrone problem to challenge 

his peers.  The problem is to determine the path from point A to B in a vertical plane that 

minimizes the traveling time under the influence of gravity in between. The proofs were quickly 

submitted by Galilei (but not solved), Leibniz, de’l’Hôpital, Newton, Johann Bernoulli himself 

and his brother Jakob Bernoulli. Among them, Newton’s submission was anonymous, however, 

according to it was immediately recognized by Johann, “ex ungue leonem” (“one knows the lion 

by his claw”) as translated by Bell (1937). Some of these proofs gave birth to a branch of 

calculus known as calculus of variations, which is the first sub-field in mathematics that focuses 

on dynamic optimization1. Decades later, Johann Bernoulli's star pupil, Leonhard Euler revisited 

it as a general problem, 𝐽 ≡ ∫ 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡)𝑑𝑡
𝑡𝑠
𝑡0

.  His work discovered the now called Euler 

equation as a necessary condition to constrained solutions of dynamic optimization problems. 

                                                 

1 It is useful to point out the difference between calculus of variations and optimal control theory.  Both seek to find 

the maximum of an objective functional, but they differ in their approach in finding the maximum. For OCT, its 

maximum condition is Pontryagin’s maximum principle - a global condition, while for calculus of variations, the 

maximum condition is to set the derivative of Hamiltonian function with respect to the control variable equal to zero. 

This difference is due to the different control set characteristics between the two methods. For calculus of variation, 

the control set is an open set which does not allow corner solutions for u*(t), as for OCT, the control set is a close set 

which allows corner solutions for u*(t). This means, when there is a corner solution, the global maximality condition 

(Pontryagin’s maximum principle) has to be applied, instead of a local one (set the derivative of Hamiltonian 

function with respect to the control variable equals to zero). Also, in an optimal control program, the objective 

function contains a control (choice) variable, whereas in calculus of variation the control variable is replaced by the 

derivative of the state variable with respect to time.       
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Scholars in different fields have been using calculus of variations since then, including in the 

first long lasting example in economics in December 1928. This long lasting example was 

posited by the great logician, philosopher and economist Frank P. Ramsey in his third 

mathematic economics paper, “A Mathematical Theory of Saving,” where he applied calculus of 

variations to determine how much a country needs to save instead of consume in order to 

maximize its future utility according to Samuelson (1970).  

The idea of optimal control theory (OCT) was first initiated during the cold war era. Both 

the U.S. and U.S.S.R. realized the importance of this type of mathematics for national defense 

after World War II. According to Pesch and Plail (2009), both countries started research on OCT 

for issues such as the minimum time interception problems for fighters. Not surprisingly, the two 

most important innovators in this field, Lev Semyonovich Pontryagin and Richard Bellmen, 

came from these two rival countries. 

 Richard E. Bellman worked at RAND on multi-stage decision problems in the early 

1950s. His contributions to OCT are the discoveries of the principle of optimality, the Bellmen 

equation and the Hamilton-Jacobi-Bellmen (HJB) equation. The principle of optimality states 

that an optimal decision strategy in a multi-stage decision making process is made regardless of 

the status of the previous decisions.  The rest of the decisions going forward have to be optimal 

choices. The Bellmen equation is a value function solution to a HJB equation, which describes 

the decision maker’s optimal payoff. And the HJB equation is a generalized partial differential 

equation (PDE) of the Hamilton-Jacobi equation from classical mechanics, which Bellmen 

replaced the velocity of the state variable with a control function. These findings were crucial in 

the development of modern OCT, and serves as the foundation of dynamic programming.  

 Lev S. Pontryagin, a leading topologist in the U.S.S.R., changed his research interest to 

OCT at the beginning of the 1950s while he was working on an automatic control problem 

posted by the military. He noticed the potential of A. A. Fel’dbaum’s work on the famous bang-

bang solution and A. J. Lerner’s higher order generalization of the solution. According to Pesch 

and Plail (2009), Pontryagin’s first achievement is the discovery of the co-vector function which 

helps to solve a “Bushaw-Fel’dbaum type problem.” As a result, the admissible control set was 

first introduced. In 1956 a milestone in OCT known as Pontryagin’s maximum principle was 

presented in his work, "Towards a Theory of Optimal Process".  The English version can be 

found in the book of his collective works published in 1987. We will briefly apply it later, 
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however, we will not focus on it because it is not easily tractable. This approach has also lost 

popularity in today’s economic education, and it has been replaced by another local optimal 

condition from calculus of variations instead.     

If Pontryagin's paper, "Towards a Theory of Optimal Process," is marked as the 

beginning of optimal control theory, it has been 58 years until this day. However, its applications 

in economics is still quite limited. Mostly it can be found in growth theory and sometimes in 

game theory and mechanism design. Mathematical economics textbooks by and large jump 

directly into how to use the Hamiltonian function instead of first thoroughly introducing where it 

comes from. This report offers a more detailed view on two classic types of single paired state 

and co-state variable OCPs in order to satisfy explore this issue with two economic applications 

to illustrate the usages.   

 The next chapter discusses the general method for solving a simple OCP, where there is 

only one state and one co-state variable. The third chapter investigates the autonomous infinite 

horizon case, which is the most commonly seen type of OCP in macroeconomics. Appendix A 

reviews the general solution for a finite-horizon OCP with state and co-state variable vectors and 

a further expansion can be found in Appendix B. This report considers contributions by the great 

mathematicians during the last century for almost all variations on OCPs. However, one 

interesting case is missing. In the Appendix B of this paper, I propose a new kind of OCP, and 

offer a new mathematical method for solving it. The new OCP is what I would call a system of 

OCPs, where the co-state variable from the first sub-OCP is the state variable for the second sub-

OCP, and so on. The method is what I call the Nambu Hamiltonian method and is named after 

the founder of Nambu mechanics. However, its application in economics still needs to be 

discovered. 
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Chapter 2 - Finite-Horizon OCP with a Single Pair of State and Co-

state Variables 

 There are three perspectives on how to interpret an optimal control problem. The first 

believes that a policy maker controls the control variable, within its control region, to affect the 

state variable through an ordinary differential equation (ODE) called the law of motion. This 

process eventually achieves the targeted value of the objective functional structured by the 

terminal value of the state variable. However, in reality, the targeted value is not always 

achievable. This brings up the second interpretation. The policy maker shifts their attention to the 

progress for optimizing an objective functional, while the objective functional is integrated as an 

overall payoff over a particular time period. In another words, the policy maker focuses on the 

input trajectory instead. The third one is a combination of the previous two views, where the 

objective functional has an integrated part and a terminal value part. The following finite-horizon 

OCP with one state and one control variables is one of the simplest OCPs in theory. The 

following content demonstrates the process of how a Hamiltonian function is set up; what a 

Hamiltonian function is; and how to obtain a set of optimal conditions for the second 

perspective. Considering the following OCP given by Sydsæter, StrØm, and Berck (2005): 

Case 1 

𝐽(𝑢(𝑡)) ≡ ∫ 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡)𝑑𝑡
𝑡𝑠

𝑡0

 → 𝑚𝑎𝑥
𝑢(𝑡)∈{𝑈}

 

s.t.: 𝑥̇(𝑡) = 𝑔(𝑥(𝑡), 𝑢(𝑡), 𝑡) 

𝑥(𝑡0) = 𝑥
0 

𝑥(𝑡𝑠) free 

𝑢(𝑡) ∈ {𝑈} 

where, 𝐽(𝑢(𝑡)) ≡ ∫ 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡)𝑑𝑡
𝑡𝑠
𝑡0

 is the objective functional in its integrated form over 

time period [𝑡0, 𝑡𝑠] , 𝑥(𝑡)  is a state variable from a state variable set  {𝑋} ⊆ ℝ , {𝑈}  is an 

admissible control set (control region), admissible control function 𝑢(𝑡) ∈ {𝑈} ⊆ ℝ. Time set 

{𝑇} = {𝑡 | 𝑡 ∈ [𝑡0, 𝑡𝑠]}. 𝑥(𝑡0) = 𝑥
0; 𝑔(∙) is 𝐶∞ with respect to x and t. This is the simplest OCP, 

which asks us to find the optimal control path 𝑢∗(𝑡) to maximize the objective functional 𝑓(∙). 
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Meanwhile, it generates the optimal time path 𝑥∗(𝑡) to form an optimal pair (𝑢∗, 𝑥∗) we are 

looking for.  

 Let's start by assume 𝑉(𝑥(𝑡), 𝑡) ∈ arg sup
𝑢[𝑡,𝑡+𝑑𝑡]

{𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡) +
𝜕𝑉(𝑥,𝑡)

𝜕𝑥
𝑔(𝑥(𝑡), 𝑢(𝑡), 𝑡)} 

2 is unique on {[𝑡0, 𝑡𝑠]} × {𝑋}. The following is the reason why we can make such an assumption. 

Proof 1. 

∵ For 𝑉(𝜒(𝑡), 𝜏) ∈ arg sup
𝑢[𝑡,𝑡+𝑑𝑡]

{𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡) +
𝜕𝑉(𝑥, 𝑡)

𝜕𝑥
𝑔(𝑥(𝑡), 𝑢(𝑡), 𝑡)} 

   when 𝑡0 = 0,  

   ∃′ initial data (𝜒(𝑡), 𝜏) ∈ {𝑋} × {(𝑡0, 𝑡𝑠]}; and  V(χ(t), τ) ∈ {X} × {[t0, ts]} 

   Also, 𝑉(𝑥(𝑡), 𝑡) is continuous on {𝑋} × {(𝑡0, 𝑡𝑠]} 

∴ ∀ 𝑉(𝑥(𝑡), 𝑡) ∈ arg sup
𝑢[𝑡,𝑡+𝑑𝑡]

{𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡) +
𝜕𝑉(𝑥,𝑡)

𝜕𝑥
𝑔(𝑥(𝑡), 𝑢(𝑡), 𝑡)} is unique on {[𝑡0, 𝑡𝑠]} ×

{𝑋}.   

∎ 

Hence, we can assume there exists a unique optimal value function for a Hamilton-Jacobi-

Bellman (HJB) PDE of this dynamical system. What should be pointed out is that, this solution 

assumes the unique existence of a particular value function (optimal function, the fastest value 

dropping function) that we choose from the other also unique functions which solve the problem. 

Again, there can be more than one solutions to a HJB equation, and all of them shell be unique in 

this case. This is important to the potential possibility of solving the problem in Appendix B. 

 Let value function 𝑉: {[𝑡0, 𝑡𝑠]} × {𝑋} → ℝ  be a 𝐶∞  function which satisfies a HJB 

equation. According to the principle of optimality, from t to t + dt, we have "Bellman equation": 

𝑉(𝑥(𝑡), 𝑡) = sup
𝑢[𝑡,𝑡+𝑑𝑡]

{𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡)𝑑𝑡 + 𝑉(𝑥(𝑡 + 𝑑𝑡), 𝑡 + 𝑑𝑡)} 

This value function represents the optimal payoff of the system over [𝑡, 𝑡𝑠] period, when started 

at t with state variable level 𝑥(𝑡) = 𝑥. Now loosely followed Dr. Ian Mitchell's class notes on 

Dynamic Programming and Approximate Dynamic Programming, and apply Taylor expansion 

on (𝑥(𝑡 + 𝑑𝑡), 𝑡 + 𝑑𝑡) : 

                                                 

2 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡) is the instantaneous payoff at t; 𝑔(𝑥(𝑡), 𝑢(𝑡), 𝑡) is the system velocity at t; 
𝜕𝑉(𝑥,𝑡)

𝜕𝑥
 is the co-state 

variable, it represents the per-unit value of the system velocity at t.   
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𝑉(𝑥(𝑡 + 𝑑𝑡), 𝑡 + 𝑑𝑡) = 𝑉(𝑥(𝑡), 𝑡) +
𝜕𝑉

𝜕𝑡
𝑑𝑡 +

𝜕𝑉

𝜕𝑥
𝑑𝑥 + 𝑂(𝑥, 𝑡)  

                                   = 𝑉(𝑥(𝑡), 𝑡) +
𝜕𝑉(𝑥,𝑡)

𝜕𝑡
𝑑𝑡 +

𝜕𝑉(𝑥,𝑡)

𝜕𝑥
𝑥̇(𝑡)𝑑𝑡 + 𝑂(𝑥, 𝑡) 

                                   ≈ 𝑉(𝑥(𝑡), 𝑡) +
𝜕𝑉(𝑥,𝑡)

𝜕𝑡
𝑑𝑡 +

𝜕𝑉(𝑥,𝑡)

𝜕𝑥
𝑥̇(𝑡)𝑑𝑡 

where, 𝑂(𝑥, 𝑡) ≔ {Derivatives of 2nd order and above}. Combine the above two value 

functions: 

𝑉(𝑥(𝑡), 𝑡) = sup
𝑢[𝑡,𝑡+𝑑𝑡]

{𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡)𝑑𝑡 + 𝑉(𝑥(𝑡), 𝑡) +
𝜕𝑉(𝑥,𝑡)

𝜕𝑡
𝑑𝑡 +

𝜕𝑉(𝑥,𝑡)

𝜕𝑥
𝑥̇(𝑡)𝑑𝑡}  

Cancel 𝑉(x(𝑡), 𝑡) from both sides: 

0 = sup
𝑢[𝑡,𝑡+𝑑𝑡]

{𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡)𝑑𝑡 +
𝜕𝑉(𝑥,𝑡)

𝜕𝑡
𝑑𝑡 +

𝜕𝑉(𝑥,𝑡)

𝜕𝑥
𝑥̇(𝑡)𝑑𝑡}  

Divide dt on both sides, and we can get the HJB equation (01): 

0 = sup
𝑢[𝑡,𝑡+𝑑𝑡]

{𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡) +
𝜕𝑉(𝑥,𝑡)

𝜕𝑡
+
𝜕𝑉(𝑥,𝑡)

𝜕𝑥
𝑥̇(𝑡)}  

0 = sup
𝑢[𝑡,𝑡+𝑑𝑡]

{𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡) +
𝜕𝑉(𝑥, 𝑡)

𝜕𝑡
+
𝜕𝑉(𝑥, 𝑡)

𝜕𝑥
𝑔(𝑥(𝑡), 𝑢(𝑡), 𝑡)} 

−
𝜕𝑉(𝑥,𝑡)

𝜕𝑡
= sup

𝑢[𝑡,𝑡+𝑑𝑡]
{𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡) +

𝜕𝑉(𝑥,𝑡)

𝜕𝑥
𝑔(𝑥(𝑡), 𝑢(𝑡), 𝑡)}     (01)  

where, ( ∀ (𝑥, 𝑡) ∈ {𝑋} × {[𝑡0, 𝑡𝑠]}). The reason for the last step to take out 
𝜕𝑉(𝑥,𝑡)

𝜕𝑡
 is that the 

supremum is only on 𝑢(𝑡) at t, and 𝑉(𝑥, 𝑡) is not a functional of 𝑢(𝑡). 

From Eq. 01, we define the Hamiltonian function, 𝐻: {[𝑡0, 𝑡𝑠]} × {𝑋} × {𝑈} × ℝ → ℝ such that: 

(𝑡, 𝑥, 𝑢, 𝑧) ⟼ 𝐻(𝑡, 𝑥, 𝑢, 𝑧) = 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡) + 𝑧(𝑡)𝑔(𝑥(𝑡), 𝑢(𝑡), 𝑡)     (02) 

where, the co-state variable (also known as adjoint variable) 𝑧(𝑡) ≔
𝜕𝑉(𝑥,𝑡)

𝜕𝑥
    (03) 

Hence, we have: 
𝜕𝑉(𝑥,𝑡)

𝜕𝑡
= inf

𝑢[𝑡,𝑡+𝑑𝑡]
𝐻(𝑡, 𝑥, 𝑢, 𝑧). 

 As we can tell from Eq. (01), Hamiltonian function indicates that there is a negative co-

relationship between the changing of the value function with respect to time and the (value of) 

instantaneous payoff plus the value of the system velocity at time t.  

Hence, we can obtain Hamiltonian equations of motion which consist two first order PDEs for 

this dynamic system (with a 2-dimensional xz phase plane): 
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{
 
 

 
 𝜕𝐻(𝑧(𝑡), 𝑥∗(𝑡), 𝑢∗(𝑡), 𝑡)

𝜕𝑧
=  𝑔(𝑥(𝑡), 𝑢(𝑡), 𝑡) = 𝑥̇(𝑡)     (04)

𝑧̇(𝑡) ≔
𝜕

𝜕𝑡
(
𝜕𝑉(𝑥, 𝑡)

𝜕𝑥
) =

𝜕

𝜕𝑥
(
𝜕𝑉(𝑥, 𝑡)

𝜕𝑡
) = −

𝜕𝐻(𝑧(𝑡), 𝑥∗(𝑡), 𝑢∗(𝑡), 𝑡)

𝜕𝑥
     (05)

 

Eq. (04) is the state function, and Eq. (05) is the co-state function or so called Euler equation.  

According to Takeyama (2009) with Pontryagin’s Maximum Principle (PMP), we can draw the 

following conclusions: 

For, 𝑢(𝑡)  ∈  {𝑈}, 

 {
𝐻(𝑧(𝑡), 𝑥∗(𝑡), 𝑢∗(𝑡), 𝑡) ≥ 𝐻(𝑧(𝑡), 𝑥∗(𝑡), 𝑢(𝑡), 𝑡) 𝑓𝑜𝑟 𝑎 𝑚𝑎𝑥𝑖𝑚𝑢𝑚     (06)

𝐻(𝑧(𝑡), 𝑥∗(𝑡), 𝑢∗(𝑡), 𝑡) ≤ 𝐻(𝑧(𝑡), 𝑥∗(𝑡), 𝑢(𝑡), 𝑡) 𝑓𝑜𝑟 𝑎 𝑚𝑖𝑛𝑖𝑚𝑢𝑚     (07)
 

 Since this is a free end problem, hence, a transversality condition is needed. If we lack 

both a boundary condition and a transversality condition to leave either the initial point or the 

end point free, then, the original Euler equation as a second order nonlinear differential equation 

is unsolvable3. Setting Lagrangian for the objective functional following Woodward (2013): 

ℒ = ∫ 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡)𝑑𝑡
𝑡𝑠

𝑡0

+ 𝑧(𝑡)[𝑔(𝑥(𝑡), 𝑢(𝑡), 𝑡) − 𝑥̇(𝑡)] 

Since, the constraint has to hold at all time, hence: 

 ℒ = ∫ {𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡) + 𝑧(𝑡)[𝑔(𝑥(𝑡), 𝑢(𝑡), 𝑡) − 𝑥̇(𝑡)]}
𝑡𝑠
𝑡0

𝑑𝑡 

∵ Assume 𝑡 ∈ {[𝑡0, 𝑡𝑠]} is at the optimum.  

∴  
𝜕ℒ

𝜕𝑧
= 0 

∴  ℒ∗ = ∫ 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡)𝑑𝑡
𝑡𝑠

𝑡0

= 𝐽∗ 

∴ We can write: ℒ∗ = 𝐽∗ = ∫ [𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡) + 𝑧(𝑡)𝑔(𝑥(𝑡), 𝑢(𝑡), 𝑡) − 𝑧(𝑡)𝑥̇(𝑡)]
𝑡𝑠
𝑡0

𝑑𝑡 

= ∫ [𝐻(𝑡, 𝑥, 𝑢, 𝑧) − 𝑧(𝑡)𝑥̇(𝑡)]
𝑡𝑠

𝑡0

𝑑𝑡 

= ∫ 𝐻(𝑡, 𝑥, 𝑢, 𝑧)
𝑡𝑠

𝑡0

𝑑𝑡 − ∫ 𝑧(𝑡)𝑥̇(𝑡)
𝑡𝑠

𝑡0

𝑑𝑡 

= ∫ 𝐻(𝑡, 𝑥, 𝑢, 𝑧)
𝑡𝑠

𝑡0

𝑑𝑡 − [𝑧(𝑡)𝑥(𝑡)]𝑡0
𝑡𝑠 +∫ 𝑥(𝑡)𝑧̇(𝑡)𝑑𝑡

𝑡𝑠

𝑡0

 

                                                 

3 Even though, in macroeconomics we usually get a first order PDE instead. 
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= ∫ [𝐻(𝑡, 𝑥, 𝑢, 𝑧) + 𝑥(𝑡)𝑧̇(𝑡)]𝑑𝑡
𝑡𝑠

𝑡0

− [𝑧(𝑡𝑠)𝑥(𝑡𝑠) − 𝑧(𝑡0)𝑥(𝑡0)] 

= ∫ [𝐻(𝑡, 𝑥, 𝑢, 𝑧) + 𝑥(𝑡)𝑧̇(𝑡)]𝑑𝑡
𝑡𝑠

𝑡0

+ 𝑧(𝑡0)𝑥(𝑡0) − 𝑧(𝑡𝑠)𝑥(𝑡𝑠) 

Since, the differentiable functional J is assumed at its optimal, hence, the first order necessary 

condition for the functional  
𝜕𝐽∗

𝜕𝑥(𝑡𝑠)
≡ 0. So, 

𝜕𝐽∗

𝜕𝑥(𝑡𝑠)
= −𝑧(𝑡𝑠) = 0. Along with Eq. (04) (05) (06) 

and the boundary condition, we can structure the following necessary conditions to solve for the 

optimal pair of the optimal control problem: 

For a maximum 𝐽, the following conditions have to be satisfied: 

{
 
 
 

 
 
 

𝑧(𝑡𝑠) = 0

𝑥(𝑡0) = 𝑥
0

𝑥̇(𝑡) =
𝜕𝐻(𝑧(𝑡), 𝑥∗(𝑡), 𝑢∗(𝑡), 𝑡)

𝜕𝑧

𝑧̇(𝑡) = −
𝜕𝐻(𝑧(𝑡), 𝑥∗(𝑡), 𝑢∗(𝑡), 𝑡)

𝜕𝑥
 

𝐻(𝑧(𝑡), 𝑥∗(𝑡), 𝑢∗(𝑡), 𝑡) ≥ 𝐻(𝑧(𝑡), 𝑥∗(𝑡), 𝑢(𝑡), 𝑡)

 

Instead of applying PMP, if H is differentiable with respect to u, more likely we will have the 

following simpler case, where, 
𝜕𝐻∗

𝜕𝑢∗
= 0. 

{
 
 
 
 

 
 
 
 

𝑧(𝑡𝑠) = 0

𝑥(𝑡0) = 𝑥
0

𝑥̇(𝑡) =
𝜕𝐻(𝑧(𝑡), 𝑥∗(𝑡), 𝑢∗(𝑡), 𝑡)

𝜕𝑧

𝑧̇(𝑡) = −
𝜕𝐻(𝑧(𝑡), 𝑥∗(𝑡), 𝑢∗(𝑡), 𝑡)

𝜕𝑥
 

𝜕𝐻∗

𝜕𝑢∗
= 0

 

This change of optimal value condition makes the optimal solution changes from a global 

optimal of H (when chooses𝑢∗(𝑡)) to a local optimal. However, in this way, the "mathematical 

beauty" and the easiness to solve are fully presented. Also, if the boundary condition: 𝑥(𝑡𝑠) =

𝑥𝑡𝑠 is added, the boundary equations becomes a set of Dirichlet boundary conditions, and the 

problem becomes a fixed end point problem, which does not need the transversality condition 

any more. 
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Chapter 3 - Infinite-Horizon Autonomous OCP with a Single Pair 

of State and Co-state Variables 

 In order to show the variety of different kinds of OCPs, the OCP in this section is almost 

the “opposite” of the previous case. It is an autonomous OCP (time is not a variable for function 

f, even though it appears in the discount term) with infinite horizon (time goes to infinity), which 

leads to a Current-Value Hamiltonian function.  

Given the following autonomous infinite-Horizon OCP mentioned by Cui in his book (2008): 

Case 2  

𝐽(𝑢(𝑡)) ≡ ∫ 𝑒−𝜌𝑡𝑓(𝑥(𝑡), 𝑢(𝑡))𝑑𝑡
∞

𝑡0

 → 𝑚𝑎𝑥
𝑢(𝑡)∈{𝑈}

 

s.t.: 𝑥̇(𝑡) = 𝑔(𝑥(𝑡), 𝑢(𝑡))      

       𝑥(𝑡0) = 𝑥
0 

       𝑢(𝑡) ∈ {𝑈} 

where, 𝑥(𝑡) is a state variable from a state variable set {𝑋} ⊆ ℝ; {𝑈} is a admissible control set; 

admissible control function 𝑢(𝑡) ∈ {𝑈} ⊆ ℝ . {𝑇} ≔ {𝑡 | 𝑡 ∈ [𝑡0, ∞)} . 𝑥(𝑡0) = 𝑥
0 ; 𝑔(∙)  is 𝐶∞ 

with respect to x and t. 𝑒−𝜌𝑡 is the discount factor, where, 𝜌 ∈ (0,1) is the discount rate. 

 This case can be solved by applying the method from Case 1, however, if we assume its 

Hamiltonian is 𝐶∞ with respect to x and u, then the discount factor may complicate the issue. 

Hence, usually when dealing with an OCP with discount factor, we can choose to set up a 

Current-Value Hamiltonian instead. By applying the same method in case 1, and taking the 

autonomous situation into consideration. We obtain the following Hamiltonian functions 

𝐻: {𝑋} × {𝑈} × ℝ → ℝ such that: 

(𝑥, 𝑢, 𝑧) ⟼ 𝐻(𝑥, 𝑢, 𝑧) = 𝑒−𝜌𝑡𝑓(𝑥(𝑡), 𝑢(𝑡)) + 𝑧(𝑡)𝑔(𝑥(𝑡), 𝑢(𝑡)) 

where, the co-state variable 𝑧(𝑡) ≔
𝜕𝑉(𝑥)

𝜕𝑥
 

The Current-Value Hamiltonian function is defined as: 

𝐻̃(𝑥, 𝑢, 𝜇) ≔ 𝑒𝜌𝑡𝐻 = 𝑓(𝑥(𝑡), 𝑢(𝑡)) + 𝜇(𝑡)𝑔(𝑥(𝑡), 𝑢(𝑡)) 

where, 𝜇(𝑡) = 𝑒𝜌𝑡𝑧(𝑡) . As we can tell "Current-Value Hamiltonian" by its name means no 

future discount factor is needed.  
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∵ 𝜇(𝑡) = 𝑒𝜌𝑡𝑧(𝑡) 

∴ 𝜇̇(𝑡) = 𝑒𝜌𝑡𝑧̇(𝑡) + 𝜌𝑒𝜌𝑡𝑧(𝑡) 

∵ From case 1: 𝑧̇(𝑡) = −
𝜕𝐻

𝜕𝑥
= −𝑒−𝜌𝑡

𝜕𝐻̃

𝜕𝑥
 

∴ 𝜇̇(𝑡) = −𝑒𝜌𝑡𝑒−𝜌𝑡
𝜕𝐻̃

𝜕𝑥
+ 𝜌𝑒𝜌𝑡𝑧(𝑡) 

            = −
𝜕𝐻̃

𝜕𝑥
+ 𝜌𝜇 

Hence, Hamiltonian equations of motion for this case: 

{
 
 

 
 𝑥̇(𝑡) = 𝑔(𝑥(𝑡), 𝑢(𝑡)) =

𝜕𝐻̃(𝜇(𝑡), 𝑥∗(𝑡), 𝑢∗(𝑡))

𝜕𝜇

𝜇̇(𝑡) = 𝜌𝜇 −
𝜕𝐻̃(𝜇(𝑡), 𝑥∗(𝑡), 𝑢∗(𝑡))

𝜕𝑥
 

 

 Because this is an infinite horizon model, a transversality condition is needed to fill in as 

a terminal condition: 

lim
𝑡→∞

𝑥∗ (𝑡) = 𝑥̅ 

As time goes to infinity, we assume there exists a stable state for 𝑥∗ which stays at 𝑥̅. So 𝑥̅ 

equivalent to the terminal value in the finite-horizon case.   

Therefore, we have the following optimal conditions: 

{
 
 
 
 

 
 
 
 

𝑥(𝑡0) = 𝑥
0

lim
𝑡→∞

𝑥∗ (𝑡) = 𝑥̅

𝑥̇(𝑡) =
𝜕𝐻̃(𝜇(𝑡), 𝑥∗(𝑡), 𝑢∗(𝑡))

𝜕𝜇

𝜇̇(𝑡) = 𝜌𝜇 −
𝜕𝐻̃(𝜇(𝑡), 𝑥∗(𝑡), 𝑢∗(𝑡))

𝜕𝑥
 

𝜕𝐻̃(𝜇(𝑡), 𝑥∗(𝑡), 𝑢∗(𝑡))

𝜕𝑢∗
= 0
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Chapter 4 - Economic Applications of Autonomous OCPs with a 

Single Pair of State and Co-state Variables 

 Bellman in his book Dynamic Programing first applied OCT to economic problems. 

Therefore, it is not an exaggeration to say that the building of OCT considered usage in 

economics from the beginning. The fifth chapter of Bellman’s book (1957) discusses the 

problem of stocking a supply of an item for an uncertain future, where there are costs associated 

with the future undersupply and oversupply. And later, many problems in economic growth 

which were originally solved by calculus of variations were converted into OCPs. Most time in 

macroeconomic OCPs appears in autonomous situations.  We focus our examples in this area. 

The first case is a consumer endowment problem, and the second one is a popular demonstration 

of OCP in growth theory. 

Consumer Endowment Problem 

Here we focus on solving a common consumer endowment problem. This is a problem 

with an explicit objective functional, in which we can actually solve for its optimal path. 

Considering the following case modified from Turkington’s textbook homework question 

(2008). 

A consumer receives his income through his wealth, 𝑌 = 𝑟𝑊, where 𝑌 is income, 𝑟 is the 

interest rate and 𝑊 is wealth.  The income is used in consumption or investment and investment 

increases his wealth according to 𝑊̇ = 𝑌 − 𝐶 = 𝑟𝑊 − 𝐶 where 𝑊̇ is the rate of change in wealth 

and 𝐶 is consumption. The initial endowment at time 𝑡0 is given by 𝑊(𝑡0) = 𝑊0. The consumer 

will live until t = 𝑡𝑠 and will use up all their wealth and no debts are allowed at time 𝑡𝑠.  The 

consumer gains utility only through consumption and has utility function given by  𝑈(𝐶(𝑡)) =

log 𝐶(𝑡)  for 𝐶(𝑡) > 0 . The consumer wishes to maximize life-time utility given by 

∫ 𝑒−𝜌𝑡𝑈(𝐶(𝑡))𝑑𝑡
𝑡𝑠
𝑡0

, where 𝜌  is the consumer's time preference. The objective is to find the 

consumer's optimal consumption path. 

First, we determine the objective functional, and constraints from the given scenario to 

set up the OCP: 
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𝑈(𝐶(𝑡)) = ∫ 𝑒−𝜌𝑡𝑈(𝐶(𝑡))𝑑𝑡
𝑡𝑠

𝑡0

= ∫ 𝑒−𝜌𝑡 log 𝐶(𝑡) 𝑑𝑡
𝑡𝑠

𝑡0

→ 𝑚𝑎𝑥
𝐶(𝑡)∈{𝐶}

 

s.t.: 𝑊̇(𝑡) = 𝑟𝑊(𝑡) − 𝐶(𝑡)      

       𝑊(𝑡0) = 𝑊0 

       𝑊(𝑡𝑠) = 0 

       𝐶(𝑡) ∈ {𝐶} 

where, 𝑊(𝑡) is the state variable, 𝐶(𝑡) is the control variable.  

Assume, ∃′ 𝑉(𝑊(𝑡), 𝑡) ∈ arg max
𝐶[𝑡,𝑡+𝑑𝑡]

{𝑒−𝜌𝑡𝑈(𝐶(𝑡)) +
𝜕𝑉(𝑊(𝑡),𝑡)

𝜕𝑊
[𝑟𝑊(𝑡) − 𝐶(𝑡)]}  on 

{[𝑡0, 𝑡𝑠]} × {𝑊}. And 𝑉(∙)is a 𝐶∞ function which satisfies a HJB equation. Hence, we can yield 

a "Bellman equation" for the problem: 

𝑉(𝑊(𝑡), 𝑡) = max
𝐶[𝑡,𝑡+𝑑𝑡]

{𝑒−𝜌𝑡𝑈(𝐶(𝑡))𝑑𝑡 + 𝑉(𝑊(𝑡 + 𝑑𝑡), 𝑡 + 𝑑𝑡)} 

Then, apply Taylor expansion on 𝑉(𝑊(𝑡 + 𝑑𝑡), 𝑡 + 𝑑𝑡): 

𝑉(𝑊(𝑡 + 𝑑𝑡), 𝑡 + 𝑑𝑡) = 𝑉(𝑊(𝑡), 𝑡) +
𝜕𝑉(𝑊,𝑡)

𝜕𝑡
𝑑𝑡 +

𝜕𝑉(𝑊,𝑡)

𝜕𝑊
𝑑𝑊 + 𝑂(𝑑𝑡)  

                                    ≈ 𝑉(𝑊(𝑡), 𝑡) +
𝜕𝑉(𝑊,𝑡)

𝜕𝑡
𝑑𝑡 +

𝜕𝑉(𝑊,𝑡)

𝜕𝑊
𝑊̇(𝑡)𝑑𝑡 

Combine the above two value functions: 

𝑉(𝑊(𝑡), 𝑡) = max
𝐶[𝑡,𝑡+𝑑𝑡]

{𝑒−𝜌𝑡𝑈(𝐶(𝑡))𝑑𝑡 + 𝑉(𝑊(𝑡), 𝑡) +
𝜕𝑉(𝑊,𝑡)

𝜕𝑡
𝑑𝑡 +

𝜕𝑉(𝑊,𝑡)

𝜕𝑊
𝑊̇(𝑡)𝑑𝑡}  

After cancelling 𝑉(x(𝑡), 𝑡) from both sides, dividing by dt on both sides, plug in the law of 

motion to get the following HJB equation: 

−
𝜕𝑉(𝑊,𝑡)

𝜕𝑡
= max

𝐶[𝑡,𝑡+𝑑𝑡]
{𝑒−𝜌𝑡𝑈(𝐶(𝑡)) +

𝜕𝑉(𝑊,𝑡)

𝜕𝑊
[𝑟𝑊(𝑡) − 𝐶(𝑡)]}  

where, ( ∀ (𝑊, 𝑡) ∈ {𝑊} × {[𝑡0, 𝑡𝑠]}) 

From the above, we define the Hamiltonian function, 𝐻: {𝑊} × {𝐶} × ℝ → ℝ such that: 

(𝑊, 𝐶, 𝑧) ⟼ 𝐻(𝑊, 𝐶, 𝑧) = 𝑒−𝜌𝑡𝑈(𝐶(𝑡)) + 𝑧(𝑡)[𝑟𝑊(𝑡) − 𝐶(𝑡)]     (08) 

where, the co-state variable 𝑧(𝑡) ≔
𝜕𝑉(𝑊,𝑡)

𝜕𝑊
. 

The next step is to set the optimal conditions, which includes the initial and terminal conditions, 

the maximality condition and a set of Hamiltonian equations of motion: 
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{
 
 
 
 

 
 
 
 

𝑊(𝑡0) = 𝑊0     (09)

𝑊(𝑡𝑠) = 0     (10)

𝑧̇(𝑡) = −
𝜕𝐻

𝜕𝑊
= −𝑟𝑧(𝑡)     (11)

𝑊̇(𝑡) =
𝜕𝐻

𝜕𝑧
 = 𝑟𝑊(𝑡) − 𝐶(𝑡)     (12)

𝜕𝐻∗

𝜕𝐶∗
= 0 = 𝐶(𝑡)−1𝑒−𝜌𝑡 − 𝑧(𝑡)     (13)

 

From Eq. (13), we have 

𝐶(𝑡) = 𝑒−𝜌𝑡𝑧(𝑡)−1     (14) 

Plug Eq. (14) into Eq. (12): 

𝑊̇(𝑡)  = 𝑟𝑊(𝑡) − 𝑒−𝜌𝑡𝑧(𝑡)−1     (15) 

This equation along with the solution of z(t) can help to solve the optimal path for W(t) if we 

choose to. The key to the solution is to find the optimal path for z(t), hence, solving equation 

(11): 

𝑧̇(𝑡) = −𝑟𝑧(𝑡) 

𝑒𝑟𝑡[𝑧̇(𝑡) + 𝑟𝑧(𝑡)] = 0 

𝑒𝑟𝑡
𝑑𝑧(𝑡)

𝑑𝑡
+
𝑑𝑒𝑟𝑡

𝑑𝑡
𝑧(𝑡) = 0 

𝑑[𝑒𝑟𝑡𝑧(𝑡)]

𝑑𝑡
= 0 

∫
𝑑[𝑒𝑟𝑡𝑧(𝑡)]

𝑑𝑡
𝑑𝑡 = ∫0𝑑𝑡 

𝑒𝑟𝑡𝑧(𝑡) = 𝑐1 

𝑧(𝑡) = 𝑒−𝑟𝑡𝑐1 

Plugging this result into Eq. (14), 

𝐶(𝑡) = 𝑒−𝜌𝑡𝑧(𝑡)−1 =
𝑒(𝑟−𝜌)𝑡

𝑐1
 

When, 𝑡 = 0, 𝑐1 = 𝐶(0)
−1 

Hence, the general solution for the optimal consumption path for the consumer is: 

𝐶(𝑡)∗ = 𝑒(𝑟−𝜌)𝑡𝐶(0) 

Given the optimal trajectory of  𝐶(𝑡)∗, we shall be able to describe the initial consumption by the 

initial wealth endowment. Therefore, the lifetime discounted consumption is determined by the 

initial wealth endowment: 
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  𝑊0 = ∫ 𝑒−𝜌𝑡𝐶(𝑡)∗𝑑𝑡
𝑡𝑠
𝑡0

 

= ∫ 𝑒−𝜌𝑡𝑒(𝑟−𝜌)𝑡𝐶(0)𝑑𝑡
𝑡𝑠

𝑡0

 

= ∫ 𝑒𝑟−2𝜌𝑡𝐶(0)𝑑𝑡
𝑡𝑠

𝑡0

 

= ∫ 𝑒𝑟−2𝜌𝑡𝑑𝑡
𝑡𝑠

𝑡0

𝐶(0) 

𝐶(0) =
𝑊0

∫ 𝑒𝑟−2𝜌𝑡𝑑𝑡
𝑡𝑠
𝑡0

 

Therefore, we obtain the following optimal path with the initial wealth endowment: 

𝐶(𝑡)∗ = 𝑒(𝑟−𝜌)𝑡
𝑊0

∫ 𝑒𝑟−2𝜌𝑡𝑑𝑡
𝑡𝑠
𝑡0

 

 

Neoclassical Growth 

 Considering a neoclassical growth model for a simple closed economy. Its production 

function is the following: 

𝑌 = 𝐹(𝐿(𝑡), 𝐾(𝑡)) 

where, Y is the real output, L and K are labor and capital input respectively. 𝐹:ℝ+
2 → ℝ+ is an at 

least 𝐶2 homogeneous function. Assume “Inada condition” holds: 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

𝐹(0,0) = 0

𝐿(0) = 𝐿0

𝐾(0) = 𝐾0

𝐹(∙) is 𝐶∞

𝐹𝐿 ∈ (0,∞)

𝐹𝐾 ∈ (0,∞)

𝐹𝐿𝐿 ∈ (−∞, 0)

𝐹𝐾𝐾 ∈ (−∞, 0)

lim
𝐿→0

𝐹′(𝐿) → ∞

lim
𝐿→∞

𝐹′(𝐿) → 0

lim
𝐾→0

𝐹′(𝐾) → ∞

lim
𝐾→∞

𝐹′(𝐾) → 0

 

Rewrite this strictly concave production function into its per effective labor form: 
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𝑦 = 𝜙(𝑘)     (16) 

where, per effective labor output 𝑦 = 𝑌/𝐿; and per effective labor capital input 𝑘 = 𝐾/𝐿. 

Naturally, we have the following strict concavity properties for per effective labor output 

function: 

{
𝜙′(𝑘) ∈ (0,∞)

𝜙′′(𝑘) ∈ (−∞, 0)
 

 Assume the aggregate income Y (which equals to the aggregate output in this simple 

closed economy) is distributed between consumption and investment only, hence, we get the 

following: 

𝑌 − 𝐶 − 𝐼 = 0 

𝑌 − 𝐶 − 𝛿𝐾 = 𝐼 − 𝛿𝐾 

The changing to capital stock over time can be defined as the difference between inventory and 

the depreciated capital: 

𝑑𝐾

𝑑𝑡
= 𝐼 − 𝛿𝐾 

where, depreciation rate 𝛿 ∈ [0,1]. Also, given this is a closed economy, we have: 

𝑑𝐾

𝑑𝑡
= 𝑌 − 𝐶 − 𝛿𝐾 

in per effective labor form: 

1

𝐿

𝑑𝐾

𝑑𝑡
= 𝑦 − 𝑐 − 𝛿𝑘     (17)  

Assume, the population and the labor force are identical. Define, the population growth rate n as: 

𝑛 =
𝑑𝐿

𝑑𝑡
/𝐿 

∵ 𝐾 = 𝑘𝐿 

∴  
𝑑𝐾

𝑑𝑡
=
𝑑(𝑘𝐿)

𝑑𝑡
= 𝑘

𝑑𝐿

𝑑𝑡
+ 𝐿

𝑑𝑘

𝑑𝑡
= 𝑘𝑛𝐿 + 𝐿

𝑑𝑘

𝑑𝑡
     (18) 

Plug Eq. (16) (18) into (17) we have the complete law of motion for capital accumulation: 

1

𝐿
(𝑘𝑛𝐿 + 𝐿

𝑑𝑘

𝑑𝑡
) = 𝜙(𝑘) − 𝑐 − 𝛿𝑘      

𝑑𝑘

𝑑𝑡
= 𝜙(𝑘) − 𝑐 − (𝛿 + 𝑛)𝑘 

Given a per capita social welfare function 𝑈(𝑐) with the following “Inada conditions”: 
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{
  
 

  
 

𝑈(0) = 0
𝑈(𝑐)is 𝐶∞

𝑈′(𝑐) ∈ (0,∞)

𝑈′′(𝑐) ∈ (−∞, 0)

lim
𝑐→0

𝑈′(𝑐) → ∞

lim
𝑐→∞

𝑈′(𝑐) → 0

 

Hence, the per capita social welfare function is concave.  

According to Chiang and Wainwright (2005), if denotes ρ as the social discount rate and 

normalizes the initial population 𝐿0  to one. We obtain the following objective functional to 

present value of a future utility flow for the society: 

𝑈(𝑐(𝑡)) = ∫ 𝑒−𝜌𝑡𝑈(𝑐(𝑡))𝐿0𝑒
𝑛𝑡𝑑𝑡

∞

𝑡0

= ∫ 𝑒(𝑛−𝜌)𝑡𝑈(𝑐(𝑡))𝑑𝑡
∞

𝑡0

= ∫ 𝑒−𝑟𝑡𝑈(𝑐(𝑡))𝑑𝑡
∞

𝑡0

 

where, 𝑟 = 𝜌 − 𝑛. 

Hence, from the setting above, like case 2, the optimal growth problem is: 

𝑈(𝑐(𝑡)) = ∫ 𝑒−𝑟𝑡𝑈(𝑐(𝑡))𝑑𝑡
∞

𝑡0

→ 𝑚𝑎𝑥
𝑐(𝑡)∈{∁}

 

s.t.: 
𝑑𝑘

𝑑𝑡
= 𝜙(𝑘) − 𝑐 − (𝛿 + 𝑛)𝑘 

      𝑘(0) = 𝑘0 

      𝑐(𝑡) ∈ [0, 𝜙(𝑘)] 

where, k is the state variable, and c is the control variable from admissible control set {∁}. 

We obtain the following Hamiltonian function 𝐻: ℝ+
3 → ℝ such that: 

(𝑘, 𝑐, 𝑧) ⟼ 𝐻(𝑘, 𝑐, 𝑧) = 𝑒− 𝑟𝑡𝑈(𝑐(𝑡)) + 𝑧(𝑡)[𝜙(𝑘) − 𝑐 − (𝛿 + 𝑛)𝑘] 

where, 𝑧(𝑡) is the co-state variable. 

The Current-Value Hamiltonian function is defined as: 

𝐻̃(𝑘, 𝑐, 𝜇) ≔ 𝑒𝑟𝑡𝐻 = 𝑈(𝑐(𝑡)) + 𝜇(𝑡)[𝜙(𝑘) − 𝑐 − (𝛿 + 𝑛)𝑘] 

where, 𝜇(𝑡) = 𝑒𝑟𝑡𝑧(𝑡). 

∵ 𝜇(𝑡) = 𝑒𝑟𝑡𝑧(𝑡) 

∴ 𝜇̇(𝑡) = 𝑒𝑟𝑡𝑧̇(𝑡) + 𝑟𝑒𝑟𝑡𝑧(𝑡) 

∵ From case 1: 𝑧̇(𝑡) = −
𝜕𝐻

𝜕𝑘
= −𝑒−𝑟𝑡

𝜕𝐻̃

𝜕𝑘
 

∴ 𝜇̇(𝑡) = −𝑒𝑟𝑡𝑒−𝑟𝑡
𝜕𝐻̃

𝜕𝑘
+ 𝑟𝑒𝑟𝑡𝑧(𝑡) 
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            = −
𝜕𝐻̃

𝜕𝑘
+ 𝑟𝜇 

Hence, Hamiltonian equations of motion for this case: 

{
 
 

 
 𝑘̇(𝑡) = 𝜙(𝑘) − 𝑐 − (𝛿 + 𝑛)𝑘 =

𝜕𝐻̃(𝜇(𝑡), 𝑘∗(𝑡), 𝑐∗(𝑡))

𝜕𝜇

𝜇̇(𝑡) = 𝑟𝜇 −
𝜕𝐻̃(𝜇(𝑡), 𝑘∗(𝑡), 𝑐∗(𝑡))

𝜕𝑘
= 𝑟𝜇 − 𝜇

𝜕𝜙

𝜕𝑘
+ 𝜇(𝛿 + 𝑛) = 𝜇 [(𝑟 + 𝛿 + 𝑛) −

𝜕𝜙

𝜕𝑘
]

 

For its transversality condition: 

lim
𝑡→∞

𝑘∗ (𝑡) = 𝑘̅ 

when time goes to infinity we assume exist a stable status that the optimal per effective labor 

capital input 𝑘∗ stays at a constant level 𝑘̅. This equivalents to the terminal value in the finite-

horizon case.   

Therefore, we have the following optimal conditions: 

{
 
 
 
 

 
 
 
 

𝑘(𝑡0) = 𝑘
0

lim
𝑡→∞

𝑘∗ (𝑡) = 𝑘̅     (19)

𝑘̇(𝑡) = 𝜙(𝑘) − 𝑐 − (𝛿 + 𝑛)𝑘 =
𝜕𝐻̃(𝜇(𝑡), 𝑘∗(𝑡), 𝑐∗(𝑡))

𝜕𝜇
     (20)

𝜇̇(𝑡) = 𝑟𝜇 −
𝜕𝐻̃(𝜇(𝑡), 𝑘∗(𝑡), 𝑐∗(𝑡))

𝜕𝑘
 = 𝜇 [(𝑟 + 𝛿 + 𝑛) −

𝜕𝜙

𝜕𝑘
]     (21)

𝜕𝐻̃(𝜇(𝑡), 𝑘∗(𝑡), 𝑐∗(𝑡))

𝜕𝑐∗
= 0 =

𝑑𝑈

𝑑𝑐
− 𝜇     (22)

 

Up until this point, the optimal conditions have been set up for the illustration purpose for 

the previous chapter. In order to gaining more insights of this model, we need to structure a two 

dimensional phase plane for it. First, we need to determine which two variables we would like to 

choose to build it. We have three options here, state variable k, co-state variable µ and control 

variable c. Traditionally, for a growth model we chose k and c. However, for the discussions in 

Appendix B, although there is no phase diagram is drawn (impossible to draw an n×N 

dimensional phase hyper-space anyway) please notice that the discussion was on the state and 

co-state variables space instead. In order to eliminate µ, we replace it through the maximality 

condition from Eq. (22):  

𝑑𝑈

𝑑𝑐(𝑡)
= 𝜇(𝑡)    (23) 

Differentiate it with respect to t, yields: 
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𝜇̇ =
𝑑2𝑈

𝑑𝑐2
𝑐̇     (24) 

Plug Eq. (23) and (24) into Eq. (21): 

𝑑2𝑈

𝑑𝑐2
𝑐̇ =

𝑑𝑈

𝑑𝑐
[(𝑟 + 𝛿 + 𝑛) −

𝜕𝜙

𝜕𝑘
] 

   𝑐̇(𝑡) =
𝑑𝑈

𝑑𝑐
𝑑2𝑈

𝑑𝑐2

[(𝑟 + 𝛿 + 𝑛) −
𝜕𝜙

𝜕𝑘
]     (25) 

where, 1/ (
𝑑𝑈

𝑑𝑐
𝑑2𝑈

𝑑𝑐2

) is the marginal utility elasticity. If we divided the equation by c: 

𝑐̇(𝑡)

𝑐
= −

𝑑𝑈
𝑑𝑐
𝑑2𝑈
𝑑𝑐2

𝑐
[(
𝜕𝜙

𝜕𝑘
− 𝛿 − 𝑛) − 𝑟] 

This indicates that the consumption growth rate has a positive co-relationship with the difference 

between the net marginal output and the time preference rate. Hence, if we look at this equation: 

𝑐̇(𝑡)𝑐 = −

𝑑𝑈
𝑑𝑐
𝑐

𝑑2𝑈
𝑑𝑐2

[(
𝜕𝜙

𝜕𝑘
− 𝛿 − 𝑛) − 𝑟] 

For the same time preference, the higher net marginal output the more worthy to wait for the 

higher future consumption. Hence, consumption growth rate 
𝑐̇(𝑡)

𝑐
∈ (0,∞). 

To continue the construction of the phase diagram. Gather Eq. (25) along with Eq. (20) the 

Keynes-Ramsey rule, we have a system of autonomous differential equations: 

{
 
 

 
 𝑘̇(𝑡) = 𝜙(𝑘) − 𝑐 − (𝛿 + 𝑛)𝑘     (20)

𝑐̇(𝑡) =

𝑑𝑈
𝑑𝑐
𝑑2𝑈
𝑑𝑐2

[(𝑟 + 𝛿 + 𝑛) −
𝜕𝜙

𝜕𝑘
]     (25)

 

Since we have chosen the axis as k and c. The next step is to write out the isoclines (zero 

derivative curve).  

When 𝑘̇(𝑡) = 0 and 𝑐̇(𝑡) = 0 (Per capita social welfare function U(c) follows: U′(c) ∈

(0,∞)): 

{

𝑐 = 𝜙(𝑘) − (𝛿 + 𝑛)𝑘     (26)
𝜕𝜙

𝜕𝑘
= 𝑟 + 𝛿 + 𝑛     (27)

 



19 

 

Since we assumed concavity properties for per effective labor output function, hence, the 𝑘̇(𝑡) =

0 curve (Eq. (26)) is strictly concave. For the same reason, since the slope on the per effective 

labor output curve (𝜙(𝑘)) is unique for each value of k, hence, there is only one unique k can 

satisfy Eq. (27). And it is clear that 
𝜕𝜙

𝜕𝑘
 is not a function of c, hence, Eq. (27) is represented as a 

vertical line in the kc phase plane (let k be the horizontal axis). In terms of the relative position 

between 𝑘̇(𝑡) = 0 and 𝑐̇(𝑡) = 0 curves, if we take the derivative of c with respect to k for Eq. 

(26), and from its first order condition, we have the golden rule: 

𝜙,(𝑘𝐺𝑅) = 𝛿 + 𝑛     (19) 

Compare it with Eq. (27): 

𝜙,(𝑘𝐺𝑅) < 𝜙,(𝑘) 

Since we have the following assumptions: 

{
 
 

 
 

𝜙(0,0) = 0

𝜙′(𝑘) ∈ (0,∞)

𝜙′′(𝑘) ∈ (−∞, 0)

lim
𝑘→0

𝜙′(𝑘) → ∞

lim
𝑘→∞

𝜙′(𝑘) → 0

 

Hence, 𝑘𝐺𝑅 > 𝑘. i.e. 𝑐̇(𝑡) = 0 curve is to the left of the golden rule capital level. 

 Since the isoclines intersect and divide the plane into four quadrants. The next step is to 

determine the general motion laws of the trajectories in these quadrants. Mathematically, the two 

sides of an isocline have the opposite directions. In another words, in our case, in terms of 

isocline 𝑘̇(𝑡) = 0, on one side of it, 𝑘̇(𝑡) is positive; on the other side it is negative.  

When k̇(t) = 0, from Eq. (26) 𝑐 = 𝜙(𝑘) − (𝛿 + 𝑛)𝑘. Let c** denote an arbitrary capital level 

given a specific k. And 𝑐∗ be the corresponding consumption level for the given k from the 

k̇(t) = 0 curve.  

When 𝑐∗∗ < 𝑐∗, then, for the next period: 𝑘∗∗ > 𝑘∗ 

∴  𝜙(𝑘∗∗) > 𝜙(𝑘∗) = 𝑐∗ + (𝛿 + 𝑛)𝑘∗ 

From Eq. (20), 𝑘̇(𝑡) = 𝜙(𝑘∗∗) − 𝜙(𝑘∗) = 𝜙(𝑘∗∗) − 𝑐∗ − (𝛿 + 𝑛)𝑘∗ > 0 

Hence, below the  k̇(t) = 0 curve: k̇(t) > 0. 

When 𝑐∗∗ < 𝑐∗ , 𝑘̇(𝑡) = 𝜙(𝑘∗∗) − 𝑐∗ − (𝛿 + 𝑛)𝑘∗ < 0 . Therefore, above the k̇(t) = 0  curve: 

𝑘(t) < 0. In another words, if consumption level is less than the capital growth over a unit 
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period, then, capital level will increase. In this case the direction in the area below the 𝑘̇(𝑡) = 0 

curve points to the right, and therefore, to the left for the area above the curve.  

Applying Romer’s (2001) approach on how to determine the motion directions on both 

sides of the linear isoclines : 

When ċ(t) = 0, from Eq. (27):  

Let k** denote an arbitrary capital level.  

When 𝑘∗∗ < 𝑘∗, then,  
𝜕𝜙

𝜕𝑘∗∗
>

𝜕𝜙

𝜕𝑘∗
= 𝑟 + 𝛿 + 𝑛, therefore, from Eq. (25), to the left of ċ(t) = 0 

curve: ċ(t) > 0. 

When 𝑘∗∗ > 𝑘∗, then,  
𝜕𝜙

𝜕𝑘∗∗
<

𝜕𝜙

𝜕𝑘∗
= 𝑟 + 𝛿 + 𝑛, therefore, from Eq. (25) to the right of ċ(t) = 0 

curve: ċ(t) < 0. 

Summarizing all the results we can obtain the following phase diagram4.  

Figure 1. 

                                                 

4 The more rigorous approach is throw the sign of the characteristic roots of the differential equations. Since Eq. 

(20) and (25) are non-linear, we have to linearize them first to look for their characteristic roots. Assume, the 

equilibrium point is (𝑘∗, 𝑐∗). Apply Taylor expansion around equilibrium’s neighborhood on Eq. (20) and (25), then 

write both expansions into the matrix form, reorganized them to get: 

[𝑘̇
𝑐̇
] = [

𝜙′(𝑘∗) − 𝛿 − 𝑛 −1

−
𝑈𝑐∗

𝑈𝑐∗
2 𝜙

′′(𝑘∗) [(𝑟 + 𝛿 + 𝑛) − 𝜙′(𝑘∗)] − {𝑈𝑐∗(𝑈𝑐∗
2)
−2
𝑈𝑐∗

3[(𝑟 + 𝛿 + 𝑛) − 𝜙′(𝑘∗)]}
] [
𝑘
𝑐
] + 

[

[𝜙(𝑘∗) − 𝑐∗ − (𝛿 + 𝑛)𝑘∗] − [𝜙′(𝑘∗) − 𝛿 − 𝑛]𝑘∗ + 𝑐∗

𝑈𝑐∗

𝑈𝑐∗
2
[(𝑟 + 𝛿 + 𝑛) − 𝜙′(𝑘∗)] + [

𝑈𝑐

𝑈𝑐
2 𝜙

′′(𝑘∗)] 𝑘∗ + {[(𝑟 + 𝛿 + 𝑛) − 𝜙′(𝑘∗)] − {𝑈𝑐(𝑈𝑐
2)
−2
𝑈𝑐

3[(𝑟 + 𝛿 + 𝑛) − 𝜙′(𝑘∗)]}} 𝑐∗
] 

. Then find the trace and the determent of the parameter matrix. Plug them into the following to get the characteristic 

roots: 

{
𝑅𝑘 =

𝑡𝑟 (𝑀)+√[𝑡𝑟 (𝑀)]2−4det  (𝑀)

2

𝑅𝑐 =
𝑡𝑟 (𝑀)−√[𝑡𝑟 (𝑀)]2−4det  (𝑀)

2

. These shell yield real number solutions with opposite signs under certain 

conditions. 
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In our case, like most endogenous growth models, the intersection is a mathematically 

unstable saddle point equilibrium, but in economics we consider it to be a stable equilibrium as 

long as the policy is on the stable branch before it reaches the equilibrium. It is obviously that 

both from the transversality condition and the law of motions of the quadrants we just obtained, 

only one saddle path is remained and the rest trajectories are ruled out. Since the function 𝜙(𝑘) 

is not explicitly given, hence, we do not know what the exact separatrices (optimal path in this 

case) are. 

After we draw the phase diagram, there is an interesting discussion can be made on the 

different dynamic behavior of the different initial consumption level. We can tell from figure 2, 

for instance, there are totally five different types of trajectories for an initial k(0) left to the 

𝑐̇(𝑡) = 0 curve (𝑘(0) ≠ 0). Denote, the corresponding consumption level for the k(0) on the left 

optimal branch as copt; and the one for k(0) on the 𝑘̇(𝑡) = 0 curve as 𝑐𝑘̇.  

If we assume the corresponding consumption level for the k(0) is 𝑐(0) ∈ (0, 𝑐𝑜𝑝𝑡), then, 

its trajectory will first rise until it reaches the 𝑐̇(𝑡) = 0 curve, then c starts to drop to zero. The 

economic meaning behind this is that when the initial consumption level below the optimal 

consumption level for a given capital endowment, the economy will first start to grow its 

consumption level backed up by its capital accumulation, and the consumption will grow for a 

while, but not strong enough, due to the low consumption level it started with. The economy will 

not be able to reach the equilibrium when its capital level hits k*, and right after the economy 

missed this opportunity, with a low consumption level, the economy starts to sink. Agents truly 

starts to save rather than consume, and eventually, to an extreme, no one consumes, and that is 

when the economy dies with all the capital accumulated in its “life time”.  

If we assume the corresponding consumption level for the k(0) is copt, then, its trajectory 

will lead it to the equilibrium. This means that if an economy is already on the optimal economic 



22 

 

growth path, given the law of motion on the capital accumulation, for each stage there will be a 

unique level of capital be reached by a unique level of consumption from the “last period”, and a 

unique future consumption will be determined as well. Until the economy reaches the 

equilibrium level of capital and consumption level. 

The third case is when the initial corresponding consumption level for the k(0) is 𝑐(0) ∈

(𝑐𝑜𝑝𝑡 , 𝑐𝑘̇), then, its trajectory will first rise rapidly until it reaches the 𝑘̇(𝑡) = 0 curve, then k 

starts to drop to zero while the c increases. This means the economy consumes too much today 

than saving for the future consumption. And due to the failure on accumulating capital, it fails to 

reach the equilibrium (although it is already predetermined since the initial value for k and c are 

not on the saddle path), and starts to consuming on its previously little accumulated capital and 

then initial (endowed) capital and eventually “dies” with nothing left to consume. This scenario 

explains many warfare in the naïve era. In the ancient world, given a relatively much lower 

overall connection (such as international laws, economic treaties and mutual respects among 

different cultures and regions, etc.) among civilizations. If a feudal country’s moral is governed 

by hedonism, with a low productivity capacity, the most efficient way to maintain or increase the 

utility for the ruling class is to pillage the other civilizations. Because if the civilization keep 

partying but choose not to pillage, it will eventually consume up all of its capitals, given the 

unpredictable nature of technological innovation, low population growth rate (due to high infant 

mortality rate and short life expectancy in the ancient world in general) and relatively much 

lower inter-civilization trading volume in the ancient time (due to the low transportation 

technology and the limited understanding on trading advantages) (i.e. with a low ancient 

productivity level most production outputs have to fulfill the domestic demands first). At this 

stage, sadly, due to the low capital remains there is not too much left to either fight with or fight 

for. Interestingly enough though, the relatively less capital remained can be a huge fortune for 

the non-ruling classes. Here is when we see another kind of war, revolts.      

If we assume the corresponding consumption level for the k(0) is 𝑐(0) = 𝑐𝑘̇, then, once 

time starts to lapse, similar to the second stage of the last case, the economy feeds its 

consumption with the initial capital imminently. 

The last case is that the corresponding consumption level for the k(0) is 𝑐(0) ∈ (𝑐𝑘̇, ∞), 

where  𝑐̇(𝑡) > 0 and 𝑘̇(𝑡) < 0. Thus, while c start to increase, k starts to decrease. 
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Chapter 5 - Concluding Remarks 

 The paper has been describes how the Hamiltonian function is derived for an OCP, how 

the commonly used OCPs are set up, and what their applications are in economics. We learned 

that for a given OCP, theoretically, we need to assume a value function as a unique solution to a 

HJB equation first. Using a Taylor expansion of the continuous time version of the Bellman 

equation one can find the value function for the "next time period". After combining this with 

"today's value function" we can get the actual HJB equation, which can be redefined as a 

Hamiltonian function. During this process, the co-state variable is also created. Given the state 

and co-state variables we can structure a set of Hamiltonian equations of motion, which is part of 

optimality conditions. The rest conditions, in most cases the initial condition of the state variable, 

are given. We can choose the easier-to-solve local maximality condition (
∂H∗

∂control variable∗
= 0) or 

the global maximality condition (PMP). In terms of the terminal condition, for finite horizon 

OCP, there are three cases. The first one is the one we mentioned in Case 1: a free end terminal 

condition, where a transversality condition is needed. The second one is when 𝑥(𝑡𝑠) = 𝑥
1, which 

appears in the first example. And there is no conditions on 𝑧(𝑡𝑠).  The last case which we did not 

discuss in the paper, but worth mentioning is when 𝑥(𝑡𝑠) ≥ 𝑥1 , it needs 𝑧(𝑡𝑠) ≥ 0 (𝑧(𝑡𝑠) =

0, 𝑖𝑓 𝑥(𝑡𝑠)
∗ > 𝑥1) (Sydsæter, StrØm, and Berck 113). For the infinite horizon OCP, in most 

cases in economics, we set lim
𝑡→∞

𝑥(𝑡)∗ = 𝑥̅. 

 We also need to be aware of that the optimal control theory used in economics is not as 

strict as the one in mathematics. First, the admissible control set is not restricted. In mathematics, 

the admissible control set {𝑈} is restricted for OCT, i.e. it’s a closed set. By assume {𝑈} is an 

open set in economics leads to the second problem. Second, as I mentioned in the first foot note, 

there is a difference for the maximality condition between calculus of variations 

(
∂H∗

∂control variable∗
= 0 ) and OCT (PMP). While applying OCT in economics, we often use 

∂H∗

∂control variable∗
= 0 instead. As a matter of fact, it is correct to do so, only if the optimal control 

𝑢∗ is an internal solution inside of its admissible control set {𝑈} (and the Humiliation function is 

continuously differentiable with respect to the control variable). However, if 𝑢∗  is a corner 
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solution, which the strict OCT allows (since its {𝑈}  is a closed set). Then the maxmality 

condition has to be PMP.  
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Appendix A - Finite-Horizon OCP with State and Co-state Variable 

Vectors 

 In order to discuss Appendix B, a rough idea on the following theoretical OCP is worth 

mentioning, in which case all decision maker's choice variables are collected in a vector valued 

control, say 𝑢𝑘(𝑡). And the same for the state variable as well.      

 Given the following Finite-Horizon OCP with one state and one control variables by 

Sydsæter, StrØm, and Berck (2005): 

Case 3 

𝐽(𝑢𝑘(𝑡)) ≡ ∫ 𝑓(𝑥𝑖(𝑡), 𝑢𝑘(𝑡), 𝑡)𝑑𝑡 
𝑡𝑠

𝑡0

  → 𝑚𝑎𝑥
𝑢(𝑡)∈{𝑈}

 

s.t.: 𝑥̇𝑖(𝑡) = 𝑔𝑖(𝑥𝑖(𝑡), 𝑢𝑘(𝑡), 𝑡)      (𝑖 = 1, 2, … , 𝑛;  𝑘 = 1, 2, … ,𝑚) 

       𝑥𝑖(𝑡0) = 𝑥𝑖
0 

       𝑥𝑖(𝑡𝑠) free 

       𝑢(𝑡) ∈ {𝑈} 

where, 𝑥𝑖(𝑡) is a set of the state variables (i.e.: 𝑥𝑖(𝑡) ≔ {𝑋} ≔ {𝑥 | 𝑥 = 𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑛(𝑡)} ⊆

ℝ𝑛); 𝑢𝑘(𝑡) is the admissible control set (i.e.: 𝑢𝑘(𝑡) ≔ {𝑈} ≔ {𝑢 | 𝑢 = 𝑢1(𝑡), 𝑢2(𝑡), … , 𝑢𝑚(𝑡)} 

⊆ ℝ𝑚)5; 𝑢(𝑡) ∈ {𝑈} = ℝ𝑚 is a admissible control function. {𝑇} ≔ {𝑡 | 𝑡 ∈ [𝑡0, 𝑡𝑠]}. 𝑥𝑖(𝑡0) = 𝑥𝑖
0, 

i.e.: ∀ 𝑥𝑖(𝑡) ∈ {𝑋} × {𝑇}, ∃ (𝑥0, 𝑡0). ∀ 𝑔𝑖(∙) are 𝐶∞ with respect to 𝑥𝑖 and t.  

 Similar to case 1, we can define Hamiltonian function 𝐻: {[𝑡0, 𝑡𝑠]} × {𝑋} × {𝑈} × ℝ
𝑛 →

ℝ as: 𝐻(𝑡, 𝑥𝑖 , 𝑢𝑘, 𝑧𝑖) ≔ 𝑓(𝑥𝑖(𝑡), 𝑢𝑘(𝑡), 𝑡) + 〈𝑧𝑖 , 𝑔𝑖(𝑥𝑖(𝑡), 𝑢𝑘(𝑡), 𝑡)〉 

We now have a multiple state variable case, so 𝑧𝑖𝑔𝑖(𝑥𝑖(𝑡), 𝑢𝑘(𝑡), 𝑡) is written in inner product 

form. The optimal conditions for this case are: 

                                                 

5 Note that the amount of control variables do not necessary have to equal to the amount of state variables. If reality 

requires, in most cases, a control variable can be divided into many sub-controls, even they are divided evenly.  
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{
 
 
 

 
 
 

𝑧𝑖(𝑡𝑠) = 0

𝑥𝑖(𝑡0) = 𝑥𝑖
0

𝑥̇𝑖(𝑡) =
𝜕𝐻(𝑧𝑖(𝑡), 𝑥𝑖

∗(𝑡), 𝑢𝑘
∗(𝑡), 𝑡)

𝜕𝑧𝑖

𝑧̇𝑖(𝑡) = −
𝜕𝐻(𝑧𝑖(𝑡), 𝑥𝑖

∗(𝑡), 𝑢𝑘
∗(𝑡), 𝑡)

𝜕𝑥𝑖
 

𝐻(𝑧𝑖(𝑡), 𝑥𝑖
∗(𝑡), 𝑢𝑘

∗(𝑡), 𝑡) ≥ 𝐻(𝑧𝑖(𝑡), 𝑥𝑖
∗(𝑡), 𝑢𝑘(𝑡), 𝑡)

     (𝑖 = 1,2, … , 𝑛′; 𝑘 = 1,2, … ,𝑚) 

In this case, the Hamiltonian system is structured within a 2n-phase hyperspace. 
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Appendix B - A System of OCPs with N Canonical Variables - A 

Proposal 

 Almost all different variations on the optimal control problem has been considered. 

However, one interesting case is missing. In this appendix, I propose a new kind of optimal 

control problem (OCP), and offer a new-to-mathecon method to solve it. The new OCP is what I 

would call it a system of OCP, where, the co-state variable from the first sub-OCP is the state 

variable for the second sub-OCP, and so on. And the method is Nambu Hamiltonian. 

 Prior to further discussion, several concepts need to be clarified first. We starting by 

redefine the following state and co-state variable sets from Case 3 into a canonical variable set: 

Form Case 3, we obtained 

{𝑥𝑖(𝑡)} ≔ {State Variable}     (𝑖 = 1,2, … , 𝑛) 

{𝑧𝑖(𝑡)} ≔ {Co − state Variable}     (𝑖 = 1,2, … , 𝑛) 

A canonical variable in our case is defined as: 𝜉𝑖𝑗(𝑡) ∈ {𝜉(𝑡)} ≔ {𝑥𝑖1(𝑡)} ∪

{𝑧𝑖2(𝑡)}⋃ 𝐶𝑖𝑎
𝑁
𝑎=3  (𝑖 = 1,2, … , 𝑛;  𝑗 = 1,2, … ,𝑁)  

where, 𝐶𝑖𝑎 is the ath column vector of the rest of the canonical variables, where 𝑎 ∈ [3, 𝑁]. In 

another words, the entire canonical variable set is a 𝑛 × 𝑁 matrix (i.e.: N canonical variable sets, 

which each one contains n variables.) For the first and second column they are the state column 

vector and the co-state column vector in Case 3 respectively. But for the canonical variables in 

 j > 2 column vectors (i. e.  Cia), we do not have a terminology in mathematic economics for 

them yet.  

 From the definitions above, the canonical variables from Case 1 which constructed a two 

dimensional phase plane (or a three dimensional general phase space) are now denoted as: 

𝜉11(𝑡) ≔ 𝑥(𝑡); 𝜉12(𝑡) ≔ 𝑧(𝑡).  

 Given Hamiltonian equations (canonical equations) of motion (04) and (05), assume,  

∃ 𝐹(𝜉11(𝑡), 𝜉12(𝑡), 𝑡), then, we can obtain the following: 

𝐹̇ ≡
𝑑𝐹

𝑑𝑡
=

𝜕𝐹

𝜕𝜉11

𝜕𝜉11

𝜕𝑡
+

𝜕𝐹

𝜕𝜉12

𝜕𝜉12

𝜕𝑡
+
𝜕𝐹

𝜕𝑡
  

   =
𝜕𝐹

𝜕𝜉11
𝜉̇11(𝑡) +

𝜕𝐹

𝜕𝜉12
𝜉̇12(𝑡) +

𝜕𝐹

𝜕𝑡
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   =
𝜕𝐹

𝜕𝜉11

𝜕𝐻1

𝜕𝜉12
−

𝜕𝐹

𝜕𝜉12

𝜕𝐻1

𝜕𝜉11
+
𝜕𝐹

𝜕𝑡
 

   =
𝜕(𝐹,𝐻1)

𝜕(𝜉11,𝜉12)
+
𝜕𝐹

𝜕𝑡
      (28) 

where, the Jacobian determinant of F and 𝐻1 with respect to 𝜉11 and 𝜉12 is:  

𝜕(𝐹,𝐻1)

𝜕(𝜉1,𝜉2)
= |

𝜕𝐹

𝜕𝜉11

𝜕𝐻1

𝜕𝜉11
𝜕𝐹

𝜕𝜉12

𝜕𝐻1

𝜕𝜉12

|      (29) 

And notice that the canonical equations of motion are essentially the same as Eq. (04) and (05), 

since we are discussing the two canonical variable case from Case 1: 

{
 

 𝜉11̇ (𝑡) =
𝜕𝐻1
𝜕𝜉12

𝜉12̇ (𝑡) = −
𝜕𝐻1
𝜕𝜉11

     (30) 

 If we have more than two canonical variables (other than state and co-state variables, for 

example N canonical variables), we shall have the following case:  

∃ 𝜉𝑖𝑗(𝑡)     𝑖 = 1,2, … , 𝑛;  𝑗 = 1,2, … , 𝑁     (31) 

According to Nambu mechanics (1973) and given Eq. (29), the Hamiltonian equations of 

motions in a 𝑛 × 𝑁 dimensional phase hyperspace are: 

{
 
 
 

 
 
 𝜉̇𝑖1(𝑡) =

𝜕(𝐻1, 𝐻2, … , 𝐻𝑁−1)

𝜕(𝜉𝑖2, 𝜉𝑖3, … , 𝜉𝑖𝑁)
=
𝜕(𝜉𝑖1, 𝐻1, 𝐻2, … , 𝐻𝑁−1)

𝜕(𝜉𝑖1, 𝜉𝑖2, … , 𝜉𝑖𝑁)

𝜉̇𝑖2(𝑡) =
𝜕(𝐻1, 𝐻2, … , 𝐻𝑁−1)

𝜕(𝜉𝑖1, 𝜉𝑖3, 𝜉4𝑖 , … , 𝜉𝑖𝑁)
=
𝜕(𝜉𝑖2, 𝐻1, 𝐻2, … , 𝐻𝑁−1)

𝜕(𝜉𝑖1, 𝜉𝑖2, … , 𝜉𝑖𝑁)
 

⋮

𝜉̇𝑖𝑁(𝑡) =
𝜕(𝐻1, 𝐻2, … , 𝐻𝑁−1)

𝜕(𝜉𝑖1, 𝜉𝑖2, … , 𝜉𝑖𝑁−1)
=
𝜕(𝜉𝑖𝑁, 𝐻1, 𝐻2, … , 𝐻𝑁−1)

𝜕(𝜉𝑖1, 𝜉𝑖2, … , 𝜉𝑖𝑁)

     (32) 

where, there are N-1 amount of Hamiltonian functions. The reason it can be done this way is that 

(32) just like the two canonical variable case, it also fits Liouville theorem. According to 

Nambu6 (1973), Liouville theorem is actually the only rule a Nambu Hamiltonian need to obey 

in a phase space. And it does, here is the proof. Since Liouville theorem states that despite the 

                                                 

6 Yoichiro Nambu in his paper Generalized Hamiltonian Dynamics states that the only guiding principle of the 

existence of Generalized Hamiltonian is if it following Liouville theorem. 
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shape change of a region in a phase space over time, its  "volume7" maintains the same, hence, 

what we need to do is to prove the volume of this Nambu Hamiltonian over time is zero 

(𝑖. 𝑒.: 
𝜕𝑣

𝜕𝑡
≡ 0). 

Proof 2 

Given an infinitesimal volume moving for an infinitesimal time. Assume, ∃ point 𝜉𝑖𝑗 in a 𝑛 × 𝑁 

dimensional phase hyperspace. 

Its volume is defined as: 

𝑣 ≔∏ ∏ 𝑑𝜉𝑖𝑗
𝑁

𝑗=1

𝑛

𝑖=1
 

At time dt, we can define the canonical variables with new status form Eq. system (32): 

{
 
 

 
 𝜉𝑖1 ≡ 𝜉𝑖1 + 𝜉̇𝑖1𝑑𝑡 = 𝜉𝑖1 +

𝜕(𝜉𝑖1, 𝐻1, 𝐻2, … , 𝐻𝑁−1)

𝜕(𝜉𝑖1, 𝜉𝑖2, … , 𝜉𝑖𝑁)
𝑑𝑡

⋮

𝜉𝑖𝑁 ≡ 𝜉𝑖𝑁 + 𝜉̇𝑖𝑁𝑑𝑡 = 𝜉𝑖𝑁 +
𝜕(𝜉𝑖𝑁, 𝐻1, 𝐻2, … , 𝐻𝑁−1)

𝜕(𝜉𝑖1, 𝜉𝑖2, … , 𝜉𝑖𝑁)
𝑑𝑡

 

Hence, the new volume is: 

𝑣̃ =∏ ∏ 𝑑𝜉𝑖𝑗
𝑁

𝑗=1

𝑛

𝑖=1
=∏ ∏ 𝜉𝑖𝑗 + 𝜉̇𝑖𝑗𝑑𝑡

𝑁

𝑗=1

𝑛

𝑖=1
 

∵ 𝐻1(𝜉𝑖𝑗 , 𝑡), 𝐻2(𝜉𝑖𝑗 , 𝑡),…, 𝐻𝑁−1(𝜉𝑖𝑗 , 𝑡) are Hamiltonian functions, ∀ 𝑗 = 1,2, … , 𝑁. 

∴  ∀ 𝐻(∙), ∃ Hamiltonian velocity fields, according to da Silva (2001). 

∵ According to Deriglazov (2010) Hamiltonian velocity field is divergenceless. i.e.: 

𝜉̇𝑖𝑗 =
𝜕(𝜉𝑖𝑗 , 𝐻1, 𝐻2, … , 𝐻𝑁−1)

𝜕(𝜉𝑖1, 𝜉𝑖2, … , 𝜉𝑖𝑁)
= 0     ∀ 𝑗 = 1,2, … ,𝑁 

∴ 𝜉𝑖𝑗 ≡ 𝜉𝑖𝑗      ∀ 𝑗 = 1,2,… ,𝑁 

∴ 𝑣 ≡ 𝑣̃ 

∴
𝜕𝑣

𝜕𝑡
≡ 0 

∎ 

                                                 

7 "Volumes" actually is phase space density, it can be defined as 𝜌(𝜉1, 𝜉2, … , 𝜉𝑁 , 𝑡), it tells us the probability of 

finding a Hamiltonian system near the neighborhood of (𝜉1, 𝜉2, … , 𝜉𝑁) at time t. 
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 Since, the Nambu Hamiltonian satisfied the Liouville theorem, therefore, Eq. system (32) 

exists. At this point, stage has been set. The core interest of this appendix is to solve the 

following N canonical variables OCP system: 

Case 4 

𝐽(𝑢𝑘1(𝑡)) ≡ ∫ 𝑓1(𝜉𝑖1(𝑡), 𝑢𝑘1(𝑡), 𝑡)𝑑𝑡 
𝑡𝑠

𝑡0

  → 𝑚𝑎𝑥
𝑢(𝑡)∈{𝑈}

 

s.t.: 𝜉̇𝑖1(𝑡) = 𝑔𝑖1(𝜉𝑖1(𝑡), 𝑢𝑘1(𝑡), 𝑡)      (𝑖 = 1, 2, … , 𝑛;  𝑘 = 1, 2, … ,𝑚) 

𝜉𝑖1(𝑡0) = 𝜉𝑖1
0  

𝜉𝑖1(𝑡𝑠) = 0 

𝑢𝑘1(𝑡) ∈ {𝑈𝑘1} 

𝐽(𝑢𝑘2(𝑡)) ≡ ∫ 𝑓2(𝜉𝑖2(𝑡), 𝑢𝑘2(𝑡), 𝑡)𝑑𝑡 
𝑡𝑠

𝑡0

  → 𝑚𝑎𝑥
𝑢(𝑡)∈{𝑈}

 

s.t.: 𝜉̇𝑖2(𝑡) = 𝑔𝑖2(𝜉𝑖2(𝑡), 𝑢𝑘2(𝑡), 𝑡)      (𝑖 = 1, 2, … , 𝑛;  𝑘 = 1, 2, … ,𝑚) 

𝜉𝑖2(𝑡0) = 𝜉𝑖2
0  

𝜉𝑖2(𝑡𝑠) = 0 

𝑢𝑘2(𝑡) ∈ {𝑈𝑘2} 

                                                        ⋮ 

𝐽(𝑢𝑘𝑁−1(𝑡)) ≡ ∫ 𝑓𝑁−1(𝜉𝑖𝑁−1(𝑡), 𝑢𝑘𝑁−1(𝑡), 𝑡)𝑑𝑡 
𝑡𝑠

𝑡0

  → 𝑚𝑎𝑥
𝑢(𝑡)∈{𝑈}

 

s.t.: 𝜉̇𝑖𝑁−1(𝑡) = 𝑔𝑖𝑁−1(𝜉𝑖𝑁(𝑡), 𝑢𝑘𝑁−1(𝑡), 𝑡)      (𝑖 = 1, 2, … , 𝑛;  𝑘 = 1, 2, … , 𝑚) 

𝜉𝑖𝑁−1(𝑡0) = 𝜉𝑖𝑁−1
0  

𝜉𝑖𝑁−1(𝑡𝑠) = 0 

𝑢𝑘𝑁−1(𝑡) ∈ {𝑈𝑘𝑁−1} 

where, 𝜉𝑖𝑗(𝑡) is a canonical variable from a canonical variable matrix 𝛯𝑖,𝑗 (i.e.: 𝜉𝑖𝑗(𝑡) ∈ 𝛯𝑖,𝑗 ≔

[
𝜉11 ⋯ 𝜉1𝑁
⋮ ⋱ ⋮
𝜉𝑛1 ⋯ 𝜉𝑛𝑁

]). This also infers that in the first sub-OCP the "co-state variable" of state 

variable 𝜉𝑖1 is 𝜉𝑖2, and in the second sub-OCP the "co-state variable" of state variable 𝜉𝑖2 is 𝜉𝑖3. 

All the way to the N-1th sub-OCP's "co-state variable" of its state variable 𝜉𝑖𝑁−1 is 𝜉𝑖𝑁 . 𝑢𝑘𝑗(𝑡) is 

a control variable from a control variable matrix 𝑈𝑘,𝑗  (i.e.: 𝑢𝑘𝑗(𝑡) ∈ 𝑈𝑘,𝑗 ≔
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[

𝑢11 ⋯ 𝑢1𝑁−1
⋮ ⋱ ⋮
𝑢𝑚1 ⋯ 𝑢𝑚𝑁−1

] ); {𝑇} ≔ {𝑡 | 𝑡 ∈ [𝑡0, 𝑡𝑠]} ; 𝜉𝑖𝑗(𝑡0) = 𝜉𝑖𝑗
0 , i.e.: ∀ ξij(t) ∈ Ξ × T  , ∃ (𝜉0, 𝑡0) . 

∀ 𝑔𝑖𝑗(∙) are 𝐶∞ with respect to 𝜉𝑖𝑗 and t. 

For this OCP system, its Nambu Hamiltonians are: 

{

𝐻1(𝑡, 𝜉𝑖1, 𝑢𝑘1, 𝜉𝑖2) ≔ 𝑓1(𝜉𝑖1, 𝑢𝑘1, 𝑡) + 〈𝜉𝑖2, 𝑔𝑖1(𝜉𝑖1, 𝑢𝑘1, 𝑡)〉

𝐻2(𝑡, 𝜉𝑖2, 𝑢𝑘2, 𝜉𝑖3) ≔ 𝑓2(𝜉𝑖2, 𝑢𝑘2, 𝑡) + 〈𝜉𝑖3, 𝑔𝑖2(𝜉𝑖2, 𝑢𝑘2, 𝑡)〉
⋮

𝐻𝑁−1(𝑡, 𝜉𝑖𝑁−1, 𝑢𝑘𝑁−1, 𝜉𝑖𝑁) ≔ 𝑓𝑁−1(𝜉𝑖𝑁−1, 𝑢𝑘𝑁−1, 𝑡) + 〈𝜉𝑖𝑁, 𝑔𝑖𝑁−1(𝜉𝑖𝑁−1, 𝑢𝑘𝑁−1, 𝑡)〉

 

And similar to Case 3, the necessary condition for the Nambu Hamiltonian functions is the 

following: 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

𝜉𝑖𝑗(𝑡0) = 𝜉𝑖𝑗
0

𝜉𝑖𝑗(𝑡𝑠) = 0

𝜉̇𝑖1(𝑡) =
𝜕(𝐻1, 𝐻2, … , 𝐻𝑁−1)

𝜕(𝜉𝑖2, 𝜉𝑖3, … , 𝜉𝑖𝑁)
=
𝜕(𝜉𝑖1, 𝐻1, 𝐻2, … , 𝐻𝑁−1)

𝜕(𝜉𝑖1, 𝜉𝑖2, … , 𝜉𝑖𝑁)

𝜉̇𝑖2(𝑡) =
𝜕(𝐻1, 𝐻2, … , 𝐻𝑁−1)

𝜕(𝜉𝑖1, 𝜉𝑖3, 𝜉4𝑖 , … , 𝜉𝑖𝑁)
=
𝜕(𝜉𝑖2, 𝐻1, 𝐻2, … , 𝐻𝑁−1)

𝜕(𝜉𝑖1, 𝜉𝑖2, … , 𝜉𝑖𝑁)
 

⋮

𝜉̇𝑖𝑁(𝑡) =
𝜕(𝐻1, 𝐻2, … , 𝐻𝑁−1)

𝜕(𝜉𝑖1, 𝜉𝑖2, … , 𝜉𝑖𝑁−1)
=
𝜕(𝜉𝑖𝑁, 𝐻1, 𝐻2, … , 𝐻𝑁−1)

𝜕(𝜉𝑖1, 𝜉𝑖2, … , 𝜉𝑖𝑁)

𝐻1(𝜉𝑖2(𝑡), 𝜉𝑖1
∗ (𝑡), 𝑢𝑘1

∗ (𝑡), 𝑡) ≥ 𝐻1(𝜉𝑖2(𝑡), 𝜉𝑖1
∗ (𝑡), 𝑢𝑘1(𝑡), 𝑡)

𝐻2(𝜉𝑖3(𝑡), 𝜉𝑖2
∗ (𝑡), 𝑢𝑘2

∗ (𝑡), 𝑡) ≥ 𝐻2(𝜉𝑖3(𝑡), 𝜉𝑖2
∗ (𝑡), 𝑢𝑘2(𝑡), 𝑡)

⋮
𝐻𝑁−1(𝜉𝑖𝑁(𝑡), 𝜉𝑖𝑁−1

∗ (𝑡), 𝑢𝑘𝑁−1
∗ (𝑡), 𝑡) ≥ 𝐻𝑁−1(𝜉𝑖𝑁(𝑡), 𝜉𝑖𝑁−1

∗ (𝑡), 𝑢𝑘𝑁−1(𝑡), 𝑡)

(∀,
𝑖 = 1, 2, … , 𝑛 
𝑗 = 1, 2, … , 𝑁
𝑘 = 1, 2, … , 𝑚

) 

or, if for all Hamiltonian functions are differentiable with respect to their control variables. We 

have the following: 
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{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

𝜉𝑖𝑗(𝑡0) = 𝜉𝑖𝑗
0

𝜉𝑖𝑗(𝑡𝑠) = 0

𝜉̇𝑖1(𝑡) =
𝜕(𝐻1, 𝐻2, … , 𝐻𝑁−1)

𝜕(𝜉𝑖2, 𝜉𝑖3, … , 𝜉𝑖𝑁)
=
𝜕(𝜉𝑖1, 𝐻1, 𝐻2, … , 𝐻𝑁−1)

𝜕(𝜉𝑖1, 𝜉𝑖2, … , 𝜉𝑖𝑁)

𝜉̇𝑖2(𝑡) =
𝜕(𝐻1, 𝐻2, … , 𝐻𝑁−1)

𝜕(𝜉𝑖1, 𝜉𝑖3, 𝜉4𝑖 , … , 𝜉𝑖𝑁)
=
𝜕(𝜉𝑖2, 𝐻1, 𝐻2, … , 𝐻𝑁−1)

𝜕(𝜉𝑖1, 𝜉𝑖2, … , 𝜉𝑖𝑁)
 

⋮

𝜉̇𝑖𝑁(𝑡) =
𝜕(𝐻1, 𝐻2, … , 𝐻𝑁−1)

𝜕(𝜉𝑖1, 𝜉𝑖2, … , 𝜉𝑖𝑁−1)
=
𝜕(𝜉𝑖𝑁, 𝐻1, 𝐻2, … , 𝐻𝑁−1)

𝜕(𝜉𝑖1, 𝜉𝑖2, … , 𝜉𝑖𝑁)
𝜕𝐻1

∗

𝜕𝑢𝑘1
∗ = 0

𝜕𝐻2
∗

𝜕𝑢𝑘2
∗ = 0

⋮
𝜕𝐻𝑁−1

∗

𝜕𝑢𝑘𝑁−1
∗ = 0

(∀,
𝑖 = 1, 2, … , 𝑛 
𝑗 = 1, 2, … , 𝑁
𝑘 = 1, 2, … , 𝑚

) 

The reason we have the two sets of necessary conditions above is that the legitimacy of 

Case 3 has already been established for decades, and Case 4 is just a logical expansion of Case 3. 

This means that for each one of the Nambu Hamiltonian functions, PMP has to be satisfied 

respectively. And along with the law of motions we have established and proved, we obtained 

the first set of necessary condition. Similarly for the second set of conditions as well.     

One may doubt that Case 4 can be solved by solving each of the sub-OCP with traditional 

method like in Case 3. The problem is that unless those independent OCPs are carefully defined, 

the relationship between the state variable column vector in a sub-OCP (which is the co-state 

variable column vector in the previous sub-OCP) and the new co-state variable column vector in 

the same sub-OCP is ignored. For instance, the relationship between vector 𝜉𝑖2 and 𝜉𝑖3. 

Even though this method is proved to be mathematically correct, its application in 

economics is yet to be discovered. This is due to the structure of the OCP, where the co-state 

variables of the first sub-OCP are 
𝜕𝑉1

𝜕𝜉𝑖1
 (𝑖 = 1,2, … , 𝑛), but the co-state variables of the second 

sub-OCP are 
𝜕𝑉2

𝜕𝜉𝑖2
=

𝜕𝑉2

𝜕(
𝜕𝑉1
𝜕𝜉𝑖1

)
, and even worse, for the third co-state variables 

𝜕𝑉3

𝜕𝜉𝑖3
=

𝜕𝑉3

𝜕(
𝜕𝑉2

𝜕(
𝜕𝑉1
𝜕𝜉𝑖1

)
)

 

expend all the way until the N-1th co-state variables 
𝜕𝑉𝑁−1

𝜕𝜉𝑖𝑁−1
=

𝜕𝑉𝑁−1

𝜕(
𝜕𝑉𝑁−2

𝜕(
𝜕𝑉𝑁−3
𝜕(⋱)

)
)

, which is not infinitely 
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worse but “finitely worse”. I believe such free boundary problem is indeed quite interesting but 

tough to solve. Hence, finding an economic example to fit the structure can be rare. However, it 

is still possible if only for a two sub-OCP. And in my wildest dream, if an economy by chance is 

able to be described by a finite amount of OCPs and fits the requirements, then, this method can 

be a powerful tool to set up the optimal conditions for them. 

 

 

 

 

 

 

 

 


