

ANDROID APPLICATION FOR USDA (U.S. DEPARTMENT OF AGRICULTURE)

STRUCTURAL DESIGN SOFTWARE

by

NIKHITA ADDANKI

B.Tech, Gitam College of Engineering, 2010

A REPORT

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Computing and Information Sciences

College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2014

Approved by:

Major Professor

Dr. Mitchell L.Neilsen

Abstract

The computer industry has seen a growth in the development of mobile applications over

the last few years. Tablet/Mobile applications are preferred over their desktop versions due to

their increased accessibility and usability. Android is the most popular mobile OS in the world. It

not only provides a world-class platform for creating several apps, but also consists of an open

marketplace for distributing them to Android users everywhere. This openness has led to it being

a favorite for consumers and developers alike, thereby leading to a strong growth in app

consumption.

The main objective of the project is to design and develop an Android software

application for USDA (U.S. Department of Agriculture) structural design that can be used on

Android tablets. The different components of USDA that can be designed using this application

are SingleCell, TwinCell, Cchan, Cbasin and Drpws3e.

The USDA (U.S. Department of Agriculture) structural design application was previously

developed using FORTRAN. But FORTRAN is not supported by Android Tablets. So, F2J

Translator software was used to convert the FORTRAN source files to java source files which

are supported by Android. Also, many other formatters such as CommonIn, CommonOut, and

SwapStreams were used to translate some common blocks of FORTRAN code that cannot be

translated by F2J Translator.

The developed Android software allows users to access all different components of

USDA structural design. Users can either directly enter the data in the forms provided or upload

a file that already has data stored in it. When the application is run, the output can be accessed as

a PDF file. Users can even send the output of a particular component to their personal email

address. This output provided by the software application is helpful for design engineers to

implement new structural designs.

iii

Table of Contents

List of Figures ... v

List of Tables ... vi

Acknowledgements ... vii

Chapter 1 - Introduction .. 1

1.1 Project Description ... 1

1.2 Motivation ... 1

Chapter 2 - Requirement Analysis .. 2

2.1 Requirement Gathering ... 2

2.2 Requirement Specification .. 3

2.2.1 Software Requirements .. 3

2.2.1.1 For F2J translation (FORTRAN to Java) .. 3

2.2.1.2 For Android application .. 3

2.2.2 Hardware Requirements ... 3

Chapter 3 - System Architecture and Design .. 4

3.1 System Architecture .. 4

3.1.1 Linux Kernel .. 5

3.1.2 Native Libraries ... 5

3.1.3 Android Runtime ... 5

3.1.4 Application Framework ... 6

3.1.5 Applications ... 7

3.2 System Design .. 7

3.2.1 Use Case Diagram .. 7

Chapter 4 - Android Framework Components.. 8

4.1 AndroidManifest.xml File .. 8

4.2 Activities ... 9

4.3 Intent ... 10

Chapter 5 - Implementation .. 12

5.1 FORTRAN to Java Translation .. 12

iv

5.1.1 F2J Translator (FORTRAN to Java) .. 12

5.1.2 Other Formatters .. 12

5.1.2.1 CommonOut .. 12

5.1.2.2 CommentRemove ... 13

5.1.2.3 CommonIn .. 13

5.1.2.4 SwapStreams ... 13

5.2 F2J (FORTRAN to Java) Translation Process .. 14

5.3 Graphical User Interface ... 16

5.3.1 Main Page .. 16

5.3.2 Action Bar .. 18

5.3.3 SINGLECELL (Single Cell Rectangular Conduits) .. 19

5.3.4 TWIN CELL (Twin Cell Rectangular Conduits) ... 22

5.3.5 CCHAN (Reinforced Concrete Rectangular Channel) .. 24

5.3.6 CBASIN (SAF Stilling Basin) ... 27

5.3.7 DRPWS3E (Monolithic Straight Drop Spillways) .. 30

Chapter 6 - Testing and Logging .. 36

6.1 Logger and Debugger ... 36

6.2 Unit Testing .. 36

6.3 Integration Testing .. 39

6.4 Performance Testing ... 40

6.5 Compatibility Testing ... 41

Chapter 7 - Conclusion and Future Work ... 42

Chapter 8 - References .. 43

v

List of Figures

Figure 3.1 Android System architecture ... 4

Figure 3.2 Use Case Diagram for USDA .. 7

Figure 4.1 Android Manifest XML (part 1) .. 8

Figure 4.2 Android Manifest XML (part 2) .. 9

Figure 4.3 Intent Code to View Output as PDF .. 10

Figure 4.4 Intent Code to Email Output as PDF ... 11

Figure 5.1 Launch icon for USDA project .. 16

Figure 5.2 Landscape Orientation of Main page .. 17

Figure 5.3 Portrait Orientation of Main page.. 17

Figure 5.4 Action bar of USDA .. 18

Figure 5.5 Single cell input form (Part 1) ... 21

Figure 5.6 Single Cell Input Form (Part 2) ... 21

Figure 5.7 Twin Cell input form (Part 1) .. 23

Figure 5.8 Twin cell input form (Part 2) ... 24

Figure 5.9 CCHAN input form (Part 1) .. 26

Figure 5.10 CCHAN input form (Part 2) .. 26

Figure 5.11 CCHAN input form (Part 3) .. 27

Figure 5.12 CBASIN input form (Part 1) ... 29

Figure 5.13 CBASIN input form (Part 2) ... 29

Figure 5.14 CBASIN input form (Part 3) ... 30

Figure 5.15 DRPWS3E input form (Part 1) .. 33

Figure 5.16 DRPWS3E input form (Part 2) .. 33

Figure 5.17 DRPWS3E input form (Part 3) .. 34

Figure 5.18 DRPWS3E input form (Part 4) .. 34

Figure 5.19 DRPWS3E input form (Part 5) .. 35

Figure 5.20 DRPWS3E input form (Part 6) .. 35

Figure 6.1 Sample TraceView Time and Profile panels for Single cell 40

vi

List of Tables

Table 5.1 Design Modes in Single cell ... 19

Table 5.2 Design Modes in Twin cell ... 22

Table 6.1 Unit Test Cases for USDA Structural Design .. 36

Table 6.2 Integration Test Cases for USDA Structural Design .. 39

Table 6.3 Performance testing of USDA .. 40

vii

Acknowledgements

Firstly, I would like to thank my academic advisor, Dr. Mitchell L. Neilsen, for his

excellent guidance and immense knowledge. I would also like to extend my thanks to Dr. Daniel

Andersen and Dr. Torben Amtoft for their help and for serving on my committee.

I would like to acknowledge the academic support received from the staff and students of

Kansas State University. Last, but not the least, I would like to thank my parents and friends who

stood by me and encouraged me throughout my study period.

1

Chapter 1 - Introduction

1.1 Project Description

The basic idea of the project is to create an android application for Soil Conservation

Service at the USDA

(U.S. Department of Agriculture) (1) that annually designs a number of

cast-in-place rectangular conduits for use in principal and emergency spillways passing through

earth embankments. Thorough design of these rectangular conduit cross sections by manual

methods is a time consuming process. So, initially, computer programs that execute the complete

structural design of the rectangular conduit cross sections to design the task were written in

FORTRAN for IBM 360 equipment. This project aims at developing an Android application (2)

that can be used on tablet devices as usage of tablets has become preferable to that of desktop

computers.

The project helps in developing different structural design components such as

SINGLECELL (Single Cell Rectangular Conduits) (3) , TWINCELL (Twin Cell Rectangular

Conduits) (4) , CCHAN (Reinforced Concrete Rectangular Channel) (5) , CBASIN (SAF Stilling

Basin) (6) and DRPWS3E (Monolithic Straight Drop Spillways) (7). Since FORTRAN

programs are not supported by Android devices, a FORTRAN to Java translator has been

employed to adapt the programs for use on Android tablets. Once complete translation is

finished, Graphical User interface is developed so that users can interact with the USDA android

application.

1.2 Motivation

The programs written in FORTRAN can be used for Desktop Application. Now-a-days,

use of tablets is very prevalent. Also, it provides increased usability, speed and accessibility.

Android operating system is an open source and so it provides very good support to the

developers thus enabling them to develop a variety of applications. As use of tablets is preferred

to use of desktop computers, developing an Android application for USDA seemed more

reasonable. To develop this application, the FORTRAN files (8) that were previously written

should be converted to Java before it can be used on Android devices. It seemed more

challenging and interesting as I can gain knowledge on basics of FORTRAN along with

immense knowledge on Android application development.

2

Chapter 2 - Requirement Analysis

2.1 Requirement Gathering

Requirement gathering or elicitation plays a key role in developing a software product. The

term elicitation means collecting requirements from customers and users. For USDA (U.S

Department of Agriculture) Structural Design project, some of the requirements are collected

from Dr. Mitchell L. Neilsen, Major Professor. Also, some documents related to Structural

Design helped me in understanding the underlying design input and output requirements of the

structural components: SingleCell, TwinCell, Cchan, Cbasin and Drpws3e.

The requirements for the project are:

¶ Graphical User Interface that supports Android devices should be developed in

order to output structural design details for all the components.

¶ For all components, a provision should be made to either fill in the input data fields

manually or upload a text file that auto fills the data fields of the input forms.

¶ The output should be displayed as a PDF file.

¶ The actual output should match the expected output (Expected output can be

viewed in documents related to the components)

¶ The output PDF file could be mailed to the user.

¶ Project must run on Android tablets.

In order to implement these requirements, knowledge on Android application development

is required. Also, as project involves FORTRAN translation, minimum knowledge of

FORTRAN is beneficial.

3

2.2 Requirement Specification

2.2.1 Software Requirements

2.2.1.1 For F2J translation (FORTRAN to Java)

Operating System: Linux

Languages: FORTRAN, Java

Java Version: Java SE6

Tools: Eclipse Juno IDE, F2J Translator (FORTRAN to Java) (9)

Debugger: Eclipse Debugger

2.2.1.2 For Android application

Operating System: Windows 7

Languages: Java, XML, Android SDK

Tools: Eclipse Juno IDE

Technologies: Java, XML, Android

Debugger: Android Dalvik Debug Monitor Service, Android Samsung Tab 10.1

Framework: Android SDK version 3.0

2.2.2 Hardware Requirements

Processor: Pentium IV or higher

RAM: 512 MB

Disk Space: 250 MB or higher

Android Device: Any Android tablet with Operating system Honeycomb or higher

4

Chapter 3 - System Architecture and Design

3.1 System Architecture

Android is an operating system for devices such as smartphone and tablets. Android

applications are developed in Java language with the help of Android SDK (Software

Development Kit).

Figure 3.1 depicts the system architecture (10). It usually has a stack of layers and each

layer has several components. Every layer in the stack provides services to the layer above it.

Figure 3.1 Android System architecture

The different layers are:

¶ Applications

¶ Application Framework

¶ Libraries

¶ Android Runtime

¶ Libraries

¶ Linux Kernel

5

3.1.1 Linux Kernel

The basic or lower most layer of the architecture is Linux Kernel. The whole Android

operating system is built on this layer. It has many hardware drivers such as Display driver,

Camera driver, Flash memory driver, Binder driver, Keypad driver, Wi-Fi driver, and Audio

driver. These drivers help Linux interact with the hardware devices. This layer does not

communicate with developers or end users. Also, this layer is very helpful for power

management, memory management, security settings, networking and process management. As

Android OS has many versions, Linux Kernel, on which Android runs, has evolved versions too.

This Kernel is actually a part of Operating system that behaves as an abstraction layer between

Android hardware and other software layers of the architecture stack.

3.1.2 Native Libraries

The layer above Linux Kernel is óLibrariesô (Figure 3.1). This layer helps the Android

device handle many distinct types of data. There are different open source libraries written in C

and C++ as follows:

¶ Surface Manager ï compose windows on screen

¶ Media Framework ï provides codecs to support recording, playback of audio and

video

¶ SQLite ï database engine to store data

¶ OpenGL|ES ï 3D graphics library

¶ FreeType ï render Fonts

¶ WebKit ï web browser engine to display content of HTML

¶ SGL ï render 2D graphics

¶ SSL ï provide Internet security

¶ libc ï System C libraries

3.1.3 Android Runtime

Android Runtime is on the same layer as Native Libraries, the layer above Linux Kernel.

¶ Core Libraries ï core java libraries different from Java ME and SE libraries but

include functionalities of Java SE libraries

6

¶ Dalvik Virtual Machine (DVM) ï DVM is type of JVM machine used to run

applications on Android devices as Android supports Java programming

language. JVM runs .class files whereas DVM runs .dex files that are generated

from .class files during compilation. Multiple instances of virtual machine can be

created by DVM providing security, memory management, and isolation

simultaneously. It takes the responsibil ity of running applications on Android

devices.

3.1.4 Application Framework

Application Framework layer is above the Native libraries and Android Runtime layers.

This is the layer which directly communicates with the applications developed by Android

developers. It provides services to the applications in the form of .classes which can be used by

developers. The different blocks of Application Framework are:

¶ Activity Manager ï User interacts with the application by using the

screen/interface that is provided by Activity Manager. There are different states in

life cycle of Activity such as Start, Run, Pause, Stop, and Destroy. All these states

are managed by Activity Manager.

¶ Window Manager ï It not only organizes the processes and screens, but also

defines how screens should be layered.

¶ Content providers ï It facilitates exchange of data between applications.

¶ View system ï Views in the windows are structured and this system is important

for event handling.

¶ Package Manager ï Manages installed packages and permissions related to the

packages.

¶ Telephony Manager ï Manage voice calls in case application needs to access

voice calls.

¶ Resource Manager ï Manages resources used in application

¶ Location Manager ï Manages locations using Wi-Fi, GPS, cell tower

¶ Notification Manager ï Manages all the notifications that show up if something

unusual happens in the background.

7

3.1.5 Applications

The top layer of the stack of Android architecture is Applications. Android developers

write applications in this layer only. All the end users of the application interact mainly with this

layer of the architecture. There are some standard pre-installed applications such as Home,

Contacts, Phone and Browser.

3.2 System Design

3.2.1 Use Case Diagram

The User acts as an actor. The different actions User can do are Run SingleCell, Run

TwinCell, Run Cchan, Run Cbasin and Run Drpws3e. To run all these five components, User

should first fill the input form which again requires user to select an input file. These two actions

are considered <<include>>. User can fill the form and then save these inputs as a file which is

indicated by óSave input fileô. So, this is indicated by <<extends>>. Once the components are

run, User can view the output as PDF file and can also email the output as PDF. So, both these

actions are considered <<extends>>.

Figure 3.2 Use Case Diagram for USDA

8

Chapter 4 - Android Framework Components

4.1 AndroidManifest.xml F ile

AndroidManifest.xml is placed in the root directory of the project. This file provides

information that the application should have before it can be run on the Android system. It

declares the permissions that are required by the application to access any APIs (Application

Programming Interface) or other applications. In USDA project, for every component designed,

the input is a text file that can be selected from external memory. Also, the project needs internet

in order to send an email to the user when requested. So, to access the external or internal storage

and internet, permissions are declared with the <uses-permission> tag. It declares the

óminSdkVersionô and ótargetSdkVersionô required to run the application. It declares the activities

that are required and linked to the application.

Figure 4.1 Android Manifest XML (part 1)

9

Figure 4.2 Android Manifest XML (part 2)

4.2 Activities

Activities (<activity>é</activity>) are embedded between the <application> tags. Only

activities represented using <activity> tags can be run by the application and visually seen by the

system. The Activity has attributes such as Name, label, icon etc.

Attributes used in Manifest.xml for USDA project are:

It determines the name of the class with which the activity is implemented. As there is no

default for this attribute, the name should be specified.

 It determines the text that is displayed on the screen. So, it helps the user know his

location in the project. Label can directly be set to a raw string or can be accessed using

@string/somename where somename is placed in strings.xml referring some string value. The

USDA application developed has activities such as Singlecell, Twincell, Cchan, Cbasin,

Drpws3e, OpenFile and SaveFile.

10

4.3 Intent

Intent allows users to request an action to be performed. It allows communication

between components of the application. The components of the application can be activities,

content providers, services etc. To launch or start an activity, Intent should be used with

óstartActivityô. Intent has information such as action and data. The action is a string that

determines the action to be performed, for example, ACTION_MAIN, ACTION_VIEW,

ACTION_SEND, ACTION_EDIT etc. The data indicates the data on which the action is to be

performed, for example, Data in Uri. While creating the intent, the type of data should also be

defined.

USDA project uses Intents to view the Output generated by the structural components and

email the same output as pdf.

Figure 4.3 Intent Code to View Output as PDF

11

Figure 4.4 Intent Code to Email Output as PDF

12

Chapter 5 - Implementation

5.1 FORTRAN to Java Translation

As discussed previously, Android operating system does not support FORTRAN language

but it greatly supports Java programming language. As the basic idea of project is to create an

Android application, the FORTRAN files that provide the structural design should be translated

to Java source files to produce class files that can be used with JVM. For this purpose, F2J

translator is used.

5.1.1 F2J Translator (FORTRAN to Java)

The primary motivation behind developing F2J (FORTRAN to Java) translator (9) was to

convert numerical algebra software written in FORTRAN to Java class files. The formal

compiler, F2J translator, translates programs that are written using subset of FORTRAN77 into

programs that can be executed on JVM (Java Virtual Machines). Hence, the reference source

code in the class files is translated from FORTRAN to Java. The F2J was developed not to

translate the complete program, but to translate the FORTRAN linear algebra libraries. Some

COMMON blocks, IO operations and string operations of the FORTRAN programs cannot be

translated into Java. So, these components are removed from the files before translation. After

the FORTRAN files (with selective blocks and operations removed) are translated successfully,

the removed components are added back to the program.

5.1.2 Other Formatters

For complete translation of the FORTRAN programs, other formatters such as

CommonOut, CommonIn, SwapStreams, CommentRemove must be used. A brief description of

each of these formatters is provided below.

5.1.2.1 CommonOut

FORTRAN source files may contain many named and unnamed COMMON blocks. As

the F2J translator is not designed to translate unnamed common blocks, it may not translate the

program correctly. The CommonOut formatter helps in removing these blocks from the

FORTRAN files. It takes the FORTRAN source file as input, removes the blocks from it and

gives another FORTRAN file as output. The removed blocks are placed in a text file and the file

13

is given as another output. The text file also contains the name of the functions to which the

removed common blocks belong.

The CommonOut formatter can be used as follows:

óJava CommonOut COA.FOR COB.FOR commonout.txtô

Here COA.FOR stands for the input FORTRAN source file, COB.FOR stands for the

output FORTRAN file (after removing COMMON blocks), commonout.txt stands for the output

text file with the removed COMMON blocks and the functions to which they belong.

CommonOut is the java program that acts as formatter.

5.1.2.2 CommentRemove

The CommentRemove formatter removes all the comments from the FORTRAN source

files. It takes in FORTRAN file as input and outputs another FORTRAN file. The input

FORTRAN file should be the output FORTRAN file of CommonOut formatter.

The CommentRemove formatter can be used as follows:

óJava CommentRemove COB.FOR COC.FORô

Here COB.FOR is the input of CommentRemove formatter and output of CommonOut

formatter. COC.FOR is output of CommentRemove formatter. COC.FOR is used as an input for

F2J translator. This FORTRAN file is then converted into JAVA files.

5.1.2.3 CommonIn

This CommonIn formatter replaces common global variables within Common.java and

commonout.txt.

The CommonIn formatter can be used as follows:

óJava CommonIn COI1.java Common.java commonout.txt COI2.javaô

Here CommonIn is the name of the formatter, COI1.java is the input java file (output file

created from the F2J translator), Common.java is predefined java file which contains all global

variables, commonout.txt is output text file from CommonOut formatter, and COI2.java is the

output java file of CommonIn formatter.

5.1.2.4 SwapStreams

The SwapStreams formatter takes a java file as input and delivers another java file as

output. The input java file is the output of CommonIn formatter. This formatter replaces all

14

ñUtil.f77write(ò occurrences in the java file with ñUtilStream.f77write(out,ò.

óUtilStream.f77write(outó implies the method óf77writeô of UtilStream class writes the output to

the óoutô, object of PrintStream. Usage of PrintStream helps in writing the output to any file. This

formatter is used so that the translated output file from SwapStreams can use a method óf77writeô

of UtilStream class.

This SwapStreams formatter is used as follows:

óJava SwapStreams SSI.java SSO.javaô

SSI.java is the input file to SwapStreams (translated java file and output of CommonIn

formatter). SSO.java is the output file with translated óUtilStream.f77write(outó.

5.2 F2J (FORTRAN to Java) Translation Process

The FORTRAN to Java translation is done using F2J (FORTRAN to Java) translator and

the other formatters (CommonOut, CommentRemove, CommonIn and SwapStreams). The

process of translation is same for all the projects: SINGLECELL, TWINCELL, CCHAN,

CBASIN and DRPWS3E. The stepwise procedure is described below:

1. CommonOut formatter is used on FORTRAN files of all the projects. The FORTRAN

file is given as input to produce another FORTRAN file and a text file as output. The

output FORTRAN file does not contain any common blocks as they will be removed.

The output text file contains all the removed common blocks.

Usage: Java CommonOut FILEI.FOR FILE CO.FOR commonout.txt

FILEI.FOR ï The input FORTRAN files can be SINGCELL.FOR, TWINCELL.FOR,

CCHAN.FOR, CBASIN.FOR, or DRPWS3E.FOR.

FILECO.FOR ï The output FORTRAN files can be SINGCELLCO.FOR,

TWINCELLCO.FOR, CCHANCO.FOR, CBASINCO.FOR, or DRPWS3ECO.FOR.

commonout.txt ï Individual commonout.txt file for every project.

2. CommentRemove formatter is used to remove any comments that are in the FORTRAN

files. It takes FORTRAN file as input and produces a FORTRAN file (with comments

removed) as output.

Usage: Java CommentRemove FILECO.FOR FILEO.FOR

15

FILECO.FOR ï The input FORTRAN files can be SINGCELLCO.FOR,

TWINCELLCO.FOR, CCHANCO.FOR, CBASINCO.FOR, or DRPWS3ECO.FOR.

(Output files of CommonOut formatter)

FILEO.FOR ï The output file of CommentRemove formatter (SINGCELLO.FOR,

TWINCELLO.FOR, CCHANO.FOR, CBASINO.FOR, or DRPWS3EO.FOR)

3. F2J translator is used to translate the FORTRAN files (Output of CommentRemove

formatter) to java files.

Usage: f2java FILEO.FO R

FILEO.FOR - SINGCELLO.FOR, TWINCELLO.FOR, CCHANO.FOR,

CBASINO.FOR, or DRPWS3EO.FOR

After running the above command, it shows some warnings of parse errors. Parse errors

can be due to Comments, Strings and DO loops. Once these errors are rectified, run the

above step again to obtain an output.

4. CommonIn formatter should be used in order to reintroduce the commons that were

placed in Common.java and commonout.txt back to java files.

Usage: Java CommonIn CII.java Common.java commonout.txt CIO.java

CII.java ï input java file (w/o commons)

Commonout.txt ï output text file from CommonOut formatter

CIO.java ï output java file (with commons reintroduced)

5. SwapStreams formatter is used to replace f77Write statements to allow the output to be

written to file instead of writing it to stdout.

Usage: Java SwapStreams CIO.java CIS.java

CIO.java ï The input file to SwapStreams formatter (output java files of CommonIn

formatter)

6. The f77 read statements should be replaced with proper java statements and so, that file is

considered as input.

7. The project must be recompiled to create .class files

8. Run javab *.class on all the class files created in Step 7.

9. Complete translation of FORTRAN to Java is done.

16

5.3 Graphical User Interface

Graphical User Interface (GUI) is an interface that is important in software engineering.

It helps users communicate with the devices easily. GUI also helps in enhancing the efficiency

and usability of the developed project.

5.3.1 Main Page

Figure 5.1 Launch icon for USDA project

The launch icon has the logo of USDA and the name of the project óU.S. Department of

Agriculture (USDA) Structural Designô. Main page is the first page that is displayed when the

project is launched. The title bar of the main page also displays logo of USDA and the name of

the project óU.S. Department of Agriculture (USDA) Structural Designô. The page displays all

the Structural Design Components developed in the project along with the logo of USDA. All

circular buttons on the page relate to the components (SingleCell, TwinCell, Cchan, Cbasin and

Drpws3e) developed. The button SINGLECELL, TWINCELL, CCHAN, CBASIN, and

DRPWS3E navigates to the input forms of óSINGLE CELL RECTANGULAR CONDUITSô

(SINGLECELL), óTWIN CELL RECTANGULAR CONDUITSô (TWINCELL),

óREINFORCED CONCRETE RECTANGULAR CHANNEL (CCHAN)ô, óSAF STILLING

BASIN (CBASIN)ô, and óMONOLITHIC STRAIGHT DROP SPILLWAYS (DRPWS3E)ô

respectively. This page is designed both in landscape and portrait orientations. The layout is

designed and saved as main.xml in óLayoutô folder of the project. Android considers same layout

as default in both the orientations and picks the xml from óLayoutô folder. For the layout to be

designed differently for landscape, xml is saved with the same name i.e. main.xml but in folder

named óLayout-landô. So, for landscape mode, main.xml is picked from óLayout-landô.

17

Figure 5.2 Landscape Orientation of Main page

Figure 5.3 Portrait Orientation of Main page

18

5.3.2 Action Bar

The Action bar, one of the important design elements, provides an identity for the app

built. It helps us know userôs location in USDA application and in navigating to other sections of

the project. The Action bar can have Menu and Submenu items. For every component developed

(SINGLECELL, TWINCELL, CCHAN, CBASIN and DRPWS3E), the Action bar remains the

same.

Figure 5.4 Action bar of USDA

For this project, the Menu and Submenu items are as follows:

¶ FILE ï The user need not enter the values of all the fields manually. Instead, the user

can select an input file of text format. The format of the input file can be seen in the

HELP section.

o OPEN ï Once the user clicks on óOPENô submenu item, it navigates to the

screen where the user is provided an option to select a file to be uploaded.

Once the file is selected, the application fills all the fields with the data in the

file appropriately. If the format of inputs in the file does not match the fields,

the application shows an error and stops. The layout of the OPEN screen is

written in open_file.xml and is placed in layout folder. The activity that is

triggered on clicking OPEN is OpenFile.java.

o SAVE AS ï You can manually type in and save an input text file or you can

fill in the fields of the form and then click on ósave asô to save the data in a

text format. Once clicked on óSave Asô, it navigates to a screen where user can

save the file with any name. This file can be used again when the user clicks

on óOPENô to fill in the fields with data. The layout of the SAVE AS screen is

written in save_file.xml and is placed in layout folder. The activity that is

triggered on clicking SAVE AS is SaveFile.java.

¶ HOME ï This menu item helps the user to navigate to the main page of the USDA

project. From this page, the user can again navigate to any section of the project.

19

¶ HELP ï This menu item helps user get some information about the component the

user currently is in. For instance, the user is in the component óSINGLE CELL

RECTANGULAR CONDUITS (SINGLECELL) as in the Figure 5.4, HELP

navigates to the document related to SINGLECELL. If the user is in the component

óMONOLITHIC STRAIGHT DROP SPILLWAYS (DRPWS3E)ô, HELP navigates to

the document related to DRPWS3E and so on.

5.3.3 SINGLECELL (Single Cell Rectangular Conduits)

The Singlecell.java program that is translated from SINGLECELL FORTRAN program

using F2J translator and other formatters is used to execute the structural design of

SINGLECELL. This program takes input clear width and height of conduit, load combinations

and design mode. The program then determines thickness of slabs and sidewalls. The fields in

the SINGLECELL input form are:

¶ Structure Identification Information

o Line 1 ï Optional Comment Line 1. Input type is Text.

o Line 2 ï Optional Comment Line 2. Input type is Text.

¶ Mode

o Foundation Type ï Input type is Radio button. Default value is óRock

Foundationô.

Á Rock Foundation

Á Earth Foundation

o Internal Water Load ï Input type is Radio button. Default value is óYesô.

Á Yes

Á No

Table 5.1 Design Modes in Single cell

¶ Dimensions ï Input type is óNumerical Decimalsô and units is in ft. (feet).Both the

fields are required.

20

o Clear Height ï height of the rectangular conduit.

o Clear Width ï width of the rectangular conduit.

¶ Load Combinations ï Input type is óNumerical Decimalsô. All are required fields.

Units in psf. (Pound per square foot). There are two combinations:

o Combination 1

Á Max Vertical Unit Load (PV1)

Á Min Horizontal Unit Load (PH1)

o Combination 2

Á Min Vertical Unit Load (PV2)

Á Max Horizontal Unit Load (PH1)

¶ Email (Copy of Output to be sent) ï Optional field to enter an email id. The output on

running the SINGLECELL is generated as a PDF and is sent to the email id provided.

¶ RESET ï Input type is button. As the name says, when RESET is clicked, all the

fields will be cleared and a new form is displayed.

¶ RUN SINGLECELL ï Input type is button. Once the button is clicked, it validates the

form if all the required fields are filled. If any field is left empty, it pops up an error

dialog box asking to fill up all the fields in order to run the project. Once the form is

validated, the output is generated as a PDF file.

21

Figure 5.5 Single cell input form (Part 1)

Figure 5.6 Single Cell Input Form (Part 2)

22

5.3.4 TWIN CELL (Twin Cell Rectangular Conduits)

The Twincell.java program that is translated from TWINCELL FORTRAN program

using F2J translator and other formatters is used to execute the structural design of TWINCELL.

This program takes input clear width and height of conduit, load combinations and design mode.

The program then determines thickness of slabs and sidewalls and center wall. The fields in the

TWINCELL input form are:

¶ Structure Identification Information

o Line 1 ï Optional Comment Line 1. Input type is Text.

o Line 2 ï Optional Comment Line 2. Input type is Text.

¶ Mode

o Foundation Type ï Input type is Radio button. Default value is óRock

Foundationô.

Á Rock Foundation

Á Earth Foundation

o Internal Water Load ï Input type is Radio button. Default value is óYesô.

Á Yes

Á No

Table 5.2 Design Modes in Twin cell

¶ Dimensions ï Input type is óNumerical Decimalsô. Both the fields are required.

o Clear Height ï height of the rectangular conduit

o Clear Width ï width of the rectangular conduit

¶ Load Combinations ï Input type is óNumerical Decimalsô. All are required fields.

Units in psf. (Pound per square foot). There are two combinations

o Combination 1

Á Max Vertical Unit Load (PV1)

Á Min Horizontal Unit Load (PH1)

23

o Combination 2

Á Min Vertical Unit Load (PV2)

Á Max Horizontal Unit Load (PH1)

¶ Email (Copy of Output to be sent) ï Optional field to enter an email id. The output on

running the TWINCELL is generated as a PDF and the same is sent to the email id

provided.

¶ RESET ï Input type is button. As the name says, when RESET is clicked, all the

fields will be cleared and a new form is displayed.

¶ RUN TWINCELL ï Input type is button. Once the button is clicked, it validates the

form if all the required fields are filled. If any of the field is empty, it pops up an error

message asking to fill all the fields to run the project. Once the form is validated, the

output is generated as a PDF.

Figure 5.7 Twin Cell input form (Part 1)

24

Figure 5.8 Twin cell input form (Part 2)

5.3.5 CCHAN (Reinforced Concrete Rectangular Channel)

The Cchan.java program that is translated from CCHAN FORTRAN program using F2J

translator and other formatters is used to execute the structural design of CCHAN. There are four

types of structural channels: T1F, T3F, T3FV and T1S. This program can be executed in two

modes such as preliminary design in selecting type of structural channel and detail design of

specified channel. This program takes input Primary data, secondary data and then determines

concrete thickness and distances, evaluates required steel areas and spacing. The fields of

CCHAN input form are:

¶ Structured Identification Information

o Line 1 ï Optional Comment Line 1. Input type is text.

o Line 2 ï Optional Comment Line 2. Input type is text.

¶ Primary Data

o B (ft.), HT (ft.), HB (ft.) ï Input type is óNumerical Decimalsô. All fields are

required and have units in feet.

25

o Design ï Input type is óRadio buttonô. Only one design mode can be selected

at once. There are five design modes such as 0, 1, 2, 3, and 4. If óDesignô =

ó0ô, then four preliminary designs (T1F, T3F, T3FV and T1S) are performed.

If Design is 1, T1F is performed. If Design is 2, T3F is performed. If Design is

3, T3FV is performed. If Design is 4, T1S is performed.

o Default 1, Default 2, Default 3 ï Input type is ócheckboxô. The user can select

one or more Default types at once.

¶ Secondary Data

o Default 1 ï Input type is óNumerical Decimalsô. All are required fields. These

fields are displayed when Default 1 of primary data is checked.

Á HW1 (ft.), HW2(ft.) , HWP, GMOIST (pcf.), GSAT (pcf.), KO1,

KO2, FLOATR

o Default 2 ï Input type is óNumerical Decimalsô. All are required fields. These

fields are displayed when Default 2 of primary data is checked.

Á MAXFTG (ft.), JOINTS, MFOUND (pcf.)

o Default 3 ï Input type is óNumerical Decimalsô. All are required fields. These

fields are displayed when Default 3 of primary data is checked.

Á CFSC, CFSS, KPASS

¶ Email (Copy of Output to be sent) ï Optional field to enter an email id. The output on

running the CCHAN is generated as a PDF and the same is sent to the email id

provided.

¶ RESET ï Input type is button. As the name says, when RESET is clicked, all the

fields will be replaced by blanks and a new form is displayed.

¶ RUN CCHAN ï Input type is button. Once the button is clicked, it validates the form

if all the required fields are filled. If any of the fields is empty, it pops up an error

message asking to fill all the fields to run the project. Once the form is validated, the

output is generated as a PDF.

26

Figure 5.9 CCHAN input form (Part 1)

Figure 5.10 CCHAN input form (Part 2)

27

Figure 5.11 CCHAN input form (Part 3)

5.3.6 CBASIN (SAF Stilling Basin)

The Cbasin.java program that is translated from CBASIN FORTRAN program using F2J

translator and other formatters is used to execute the structural design of CBASIN. There are

four types of SAF stilling basins such as Type (A), Type (B), Type (C), Wingwalls. The program

determines detail design of any stilling basin selected. The fields of CBASIN input form are:

¶ Structured Identification Information

o Line 1 ï Optional Comment Line 1. Input type is text.

o Line 2 ï Optional Comment Line 2. Input type is text.

¶ Primary Data

o W (ft.), J (ft.), LB (ft.), N (ft.), D1 (ft.), V1 (fps) ï Input type is óNumerical

Decimalsô. All fields are required. (ft. : feet, fps : foot-pound-second)

o Design ï Input type is óRadio buttonô. Only one design mode can be selected

at once. There are four design modes such as 0, 1, 2, and 3. If óDesignô = ó0ô,

then three preliminary designs (Type (A), Type (B), Type (C)) are performed.

28

If Design is 1, Type (A) is performed. If Design is 2, Type (B) is performed. If

Design is 3, Type (C) is performed.

o Default 1, Default 2, Default 3 ï Input type is ócheckboxô. The user can select

one or more default types at once.

¶ Secondary Data

o Default 1 ï Input type is óNumerical Decimalsô. All are required fields. These

fields are displayed when Default 1 of primary data is checked.

Á HB (ft.), HTW2 (ft.) , HUP2 (ft.), HTW1 (ft.), HUP1 (ft.)

o Default 2 ï Input type is óNumerical Decimalsô. All are required fields. These

fields are displayed when Default 2 of primary data is checked.

Á MAXFTG (ft.), FLOATR, SLIDER, ZS, BAT (ft.)

o Default 3 ï Input type is óNumerical Decimalsô. All are required fields. These

fields are displayed when Default 3 of primary data is checked.

Á GM (pcf), GS (pcf), KO, CFSC, HTW (ft.), TTW (in.)

¶ Email (Copy of Output to be sent) ï Optional field to enter an email id. The output on

running the CBASIN is generated as a PDF and the same is sent to the email id

provided.

¶ RESET ï Input type is button. As the name says, when RESET is clicked, all the

fields will be replaced by blanks and a new form is displayed.

¶ RUN CBASIN ï Input type is button. Once the button is clicked, it validates the form

if all the required fields are filled. If any of the fields is empty, it pops up an error

message asking to fill all the fields to run the project. Once the form is validated, the

output is generated as a PDF.

29

Figure 5.12 CBASIN input form (Part 1)

Figure 5.13 CBASIN input form (Part 2)

30

Figure 5.14 CBASIN input form (Part 3)

5.3.7 DRPWS3E (Monolithic Straight Drop Spillways)

The Drpws3e.java program that is translated from DRPWS3E FORTRAN program using

F2J translator and other formatters is used to execute the structural design of DRPWS3E. The

input fields of DRPWS3E are:

¶ Structure Identification Information

o Line 1 ï Optional Comment Line 1. Input type is text.

o Line 2 ï Optional Comment Line 2. Input type is text.

¶ Primary Data

o H, F, S, J, L, LB ï Input type is óNumerical Decimalsô. All are required fields.

o Design ï Input type is óRadio buttonô. Only one can be selected at once. There

are 8 design modes in Drpws3e such as 0, 1, 2, 3, 100, 101, 102, and 103.

Preliminary design modes ï 0, 1, 2 and 3. Detail design modes ï 100, 101,

102, and 103.

31

o Defaults ï Input type is checkbox. Checkbox values - Default 1, Default 2,

Default 3, Default 4, Default 5, Default 6, and Default 7. One or more options

can be checked.

¶ Secondary Data - Input type is óNumerical Decimalsô. All are required fields.

o Default 1 ï These fields are displayed when Default 1 of primary data is

checked.

Á CREEPR, FLOATR, SLIDER, BAT, SWLDRN.

o Default 2 ï These fields are displayed when Default 2 of primary data is

checked.

Á HB, ZPS, HTOE, TTOE, CFSS, CFSC

o Default 3 ï These fields are displayed when Default 3 of primary data is

checked.

Á KOH, GMH, GSH

o Default 4 ï These fields are displayed when Default 4 of primary data is

checked.

Á KOF, GMF, GSF, KPF

o Default 5 ï These fields are displayed when Default 5 of primary data is

checked.

Á KOW, GMW, GSW, KPW

o Default 6 ï These fields are displayed when Default 6 of primary data is

checked.

Á DW2, HEAD2, TAIL2, HEAD1

o Default 7 ï These fields are displayed when Default 7 of primary data is

checked.

Á DWM2, DWM3, DWM4, DWM5, HEADM2, HEADM3, HEADM4,

HEADM5, TAILM2, TAILM3, TAILM4, TAILM5

¶ User Interactive Switches

o R-C Design Method

Á Working Stress Design

Á Strength Design

o Material Properties

32

Á Soil Conservation Default Values

Á Corps of Engineers Default Values

Á User Supplied Values

o Other Options

Á Flotation Criteria

¶ Soil Conservation Service

¶ Corps of Engineers

Á Moment/Thrust/Shear Report

¶ Yes

¶ No

Á Full or Summary Report

¶ Full

¶ Summary

¶ Email (Copy of Output to be sent) ï Optional field to enter an email id. The output on

running the DRPWS3E is generated as a PDF and the same is sent to the email id

provided.

¶ RESET ï Input type is button. As the name says, when RESET is clicked, all the

fields will be cleared and a new form is displayed.

¶ RUN DRPWS3E ï Input type is button. Once the button is clicked, it validates the

form if all the required fields are filled. If any of the fields is empty, it pops up an

error message asking to fill all the fields to run the project. Once the form is

validated, the output is generated as a PDF.

33

Figure 5.15 DRPWS3E input form (Part 1)

Figure 5.16 DRPWS3E input form (Part 2)

