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Abstract

We generalize the definition of the framed Kontsevich integral initially presented in

[LM1]. We study the behavior of the renormalized framed Kontsevich integral Ẑf under

band sum moves and show that it can be further renormalized into some invariant Z̃f that

is well-behaved under moves for which link components of interest are locally put on top

of each other. Originally, Le, Murakami and Ohtsuki ([LM5], [LM6]) showed that another

choice of normalization is better suited for moves for which link components involved in

the band sum move are put side by side. We show the choice of renormalization leads

to essentially the same invariant and that the use of one renormalization or the other is

just a matter of preference depending on whether one decides to have a horizontal or a

vertical band sum. Much of the work on Z̃f relies on using the tangle chord diagrams

version of Ẑf ([ChDu]). This leads us to introducing a matrix representation of tangle chord

diagrams, where each chord is represented by a matrix, and tangle chord diagrams of degree

m are represented by stacks of m matrices, one for each chord making up the diagram. We

show matrix congruences for some appropriately chosen matrices implement on the modified

Kontsevich integral Z̃f the band sum move on links. We show how Z̃f in matrix notation

behaves under the Reidemeister moves and under orientation changes. We show that for a

link L in plat position, Zf (L) in book notation is enough to recover its expression in terms

of chord diagrams. We elucidate the relation between Žf and Z̃f and show the quotienting

procedure to produce 3-manifold invariants from those as introduced in [LM5] is blind to

the choice of normalization, and thus any choice of normalization leads to a 3-manifold

invariant.
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Abstract

We generalize the definition of the framed Kontsevich integral initially presented in [LM1].

We study the behavior of the renormalized framed Kontsevich integral Ẑf under band sum

moves and show that it can be further renormalized into some invariant Z̃f that is well-

behaved under moves for which link components of interest are locally put on top of each

other. Originally, Le, Murakami and Ohtsuki ([LM5], [LM6]) showed that another choice

of normalization is better suited for moves for which link components involved in the band

sum move are put side by side. We show the choice of renormalization leads to essentially

the same invariant and that the use of one renormalization or the other is just a matter of

preference depending on whether one decides to have a horizontal or a vertical band sum.

Much of the work on Z̃f relies on using the tangle chord diagrams version of Ẑf ([ChDu]).

This leads us to introducing a matrix representation of tangle chord diagrams, where each

chord is represented by a matrix, and tangle chord diagrams of degree m are represented

by stacks of m matrices, one for each chord making up the diagram. We show matrix

congruences for some appropriately chosen matrices implement on the modified Kontsevich

integral Z̃f the band sum move on links. We show how Z̃f in matrix notation behaves

under the Reidemeister moves and under orientation changes. We show that for a link L in

plat position, Zf (L) in book notation is enough to recover its expression in terms of chord

diagrams. We elucidate the relation between Žf and Z̃f and show the quotienting procedure

to produce 3-manifold invariants from those as introduced in [LM5] is blind to the choice of

normalization, and thus any choice of normalization leads to a 3-manifold invariant.
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Chapter 1

Introduction

This thesis has for aim to study 3-manifold invariants built from the framed Kontsevich inte-

gral Zf ([LM1]). The unframed Kontsevich integral Z, first introduced in [K], is a functional

on knots that becomes an isotopy invariant of knots once it is corrected in an appropriate

manner. The normalized framed Kontsevich integral defined by Le, Murakami and Ohtsuki

which they denote Ẑf [LM1] is also an isotopy invariant and will be the starting point of our

study. In [LM5], a 3-manifold invariant Ω is constructed by further renormalizing Ẑf into

some other invariant Žf . One property that Ω must satisfy for it to be a true 3-manifold

invariant is that it be invariant under band sum moves. Band sum moves between link

components correspond to handle sliding on their respective 2 handles if a framed link is

regarded as attaching data for 2-handles [GS]. Band sum moves on tangle chord diagrams

([ChDu]) however (tangles with chords ending on them) are not well-defined. One has to

specify a window in which link components involved in the band sum are locally frozen. In

[LM5], the invariance of Ω under band sum moves between link components locally put side

by side relies on Žf behaving a certain way under such moves. In this paper, we start with

Ẑf and consider what normalization makes it well-behaved under band sum moves where

link components of interest are locally on top of each other. We then show the equivalence

between the normalization we get and that obtained in [LM5]. That two renormalizations

come into play is not surprising since as Kontsevich initially pointed out ([K]) the Kontse-

vich integral depends very much on the choice of a time axis, and thus fixing two windows
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where link components are rotated will lead to different results locally.

One fundamental remark is the following: from [LM1] we only use the normalization

of the Kontsevich integral at local extrema which we generalize by using an arbitrary pa-

rameter M . Apart from enabling one to identify whether a given tangle T has a local

extremum by looking at the coefficients of Zf (T ), this will allows us to locate those once

Zf (T ) is expressed in a “book notation” that we introduce in the present work. In [LM1]

Le and Murakami defined a truncated invariant Z obtained from a limiting procedure on

the original Kontsevich integral Z (same notation) on braids that enables one to compute

the values of that invariant on q-tangles (or non-associative tangles). In this paper we work

with geometric tangles only, that is tangles whose strands are separated from one another

by a measurable distance. By the universality of Ẑf , the renormalized Kontsevich integral,

the construction performed in [LM1] and the one done in the present work yield the same

results. Whenever we present a result for geometric tangles initially proved by Le, Murakami

and Ohtsuki for their invariant Zf (or Ẑf , or even Žf ) using q-tangles, then we will mention

the corresponding reference.

We then study the quotienting map ([LM5]) necessary for producing 3-manifold invari-

ants from the Kontsevich integral and show that any normalization survives the quotienting

process, and thus any choice of normalization yields a 3-manifold invariant. In particular

this lifts the redundancy of having two normalizations Žf and Z̃f describing the same things.

We formalize all these statements. We briefly recall the definition of knots and links,

handle decompositions, the 4 dimensional 2-handlebodies determined by links, and that the

diffeomorphism types of boundaries of such spaces are invariant under two operations, one

of which is handle slide. Finally we will define the Kontsevich integral, its correction, and

show what its expression is in the framed case. We show how it behaves under band sum
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moves.

1.1 Links and handlebodies

We define a framed e-component link L in S3 [RK1] to be a smooth embedding γ :∐
1≤i≤e S

1 → S3, for e finite, along with integers n1, ..., ne, one for each embedding γi := γ|S1

of the i-th S1 in
∐

1≤i≤e S
1. Those integers define the framing for each embedded circle, and

are defined as follows. We first consider the case of knots. A knot is obtained for e = 1.

A knot K in S3 bounds an embedded compact surface called a Seifert surface [S]. The

zero framing of the normal bundle of K is obtained from the outward normal vector to the

orientable Seifert surface F of K. A non-zero framing given by some positive integer n is

obtained by twisting the zero framing n times in a clockwise direction. This corresponds

to associating the integer n to the embedding γ defining the knot K. Doing this for all

embeddings of circles γi, 1 ≤ i ≤ e for the link L one obtains the integer numbers n1, · · · , ne

respectively. Links will be oriented unless specified otherwise.

Now a link L in S3 determines a 4-manifold ML obtained by adding 2-handles to the

4-ball D4 along the circles in S3 defining L, with the gluing performed using the framing

along the circles. Before constructing ML, one therefore needs to introduce the concept of

handles and that of handle decompositions. We will mainly follow [GS].

Definition 1.1.1. Let X be an n-dimensional manifold. For 0 ≤ k ≤ n, Dk×Dn−k is called

an n-dimensional k-handle once it is attached to the boundary ∂X of X along ∂Dk ×Dn−k

via an embedding ϕ : ∂Dk ×Dn−k → ∂X, called the attaching map.

If h is the handle thus specified, one writes X ∪ϕ h to denote the resulting n-dimensional

manifold ([GS]). One can smooth corners during the attaching map in such a manner that

one views X ∪ϕ h as a smooth n-dimensional manifold. In terms of ML resulting from the

3



gluing of a 2-handle along L using the framing on each circle, note that we have a defor-

mation of X ∪ϕ h onto X ∪ϕ|∂Dk×0 D
k × 0. By the tubular neighborhood theorem, one

can reconstruct X ∪ϕ h from the restriction of the attaching map ϕ to Dk × 0 along with

a normal framing of ϕ|Dk×0(∂Dk). In particular, to construct X ∪ϕ h, it suffices to have

ϕc : ∂Dk = Sk−1 → ∂X with a local trivialization of the normal bundle, ϕc = ϕ|Dk×0 where

the subscript c stands for core, Dk× 0 is called the core of the k-handle, and one also needs

a normal framing f of ϕc(S
k−1). This is giving a knot in ∂X along with a framing of that

knot. One can generalize this to links, and apply it to the case n = 4, k = 2, X = D4.

The resulting space ML is called a handle body since it is obtained from D4 by attaching

handles to it.

We have the following theorem:

Theorem 1.1.2 ([RK1]). ∂ML = ∂ML′ (orientation preserving diffeomorphism) if and only

if one can pass from L to L′ following a sequence of two operations, one being the blow up

or down of a circle of framing ±1, the other being the band sum move between two link

components.

These two moves are commonly referred to as Kirby I and Kirby II moves respectively.

Kirby II corresponds in ML to doing a handle slide of one 4-dimensional 2-handle over

another. There are 3-dimensional (resp. 4-dimensional) formalisms called 3-d Kirby Cal-

culus (resp. 4-d Kirby calculus) [RK1] [RK2] [GS] meant to facilitate computations on

handlebodies in 3 and 4 dimensions respectively. In both formalisms there are band sum

moves between link components representing handle slides on handles, whence our interest

in studying the behavior of the Kontsevich integral under such moves.

In what follows, we consider the second operation, the band sum move. It is defined as

follows [RK1]: consider two link components Ki and Kj of L. Pick one knot, say Kj, push

it off itself using its framing φj and in such a manner that it misses L. In this manner one
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obtains K̃j, in addition to having Kj. Then one connect sums Ki with K̃j with the use of

a band connecting Ki to K̃j, and the connected sum is denoted:

Ki #
b
K̃j := K ′i (1.1)

where the b underneath the pound sign indicates that one has performed a band sum ([RK1]).

One insists that the band b misses the rest of L. Formally what that means is that if γi and γj

are two embeddings defining the two knotsKi andKj in S3 respectively, then if b : I×I → S3

is an embedding such that b(I × I) ∩ γi = b({0} × I) and b(I × I) ∩ γj = b({1} × I), then

one formally writes:

γi #
b
γj = γi ∪ γj − b(∂I × I) ∪ b(I × ∂I) (1.2)

Observe [RK2] that the band is allowed to have any number of half twists in it, either left

or right twists, and since the circles are oriented this will lead to a notion of subtracting

or adding a circle to another, respectively. In the terminology of handle bodies, for an

n-dimensional k-handle, ∂Dk × 0 is called the attaching region. In our situation one has

n = 4, k = 2, and the 2-handle has S1 × 0 as the attaching sphere, which is nothing but a

knot component of the link under consideration. The band sum of one knot over another

corresponds to a certain move between 2-handles called a handle slide. Following [GS], for

0 ≤ k ≤ n, given two n-dimensional k-handles h1 and h2 attached to some n-dimensional

manifold X along its boundary ∂X as done above, one can isotope the attaching sphere

Sk−1 × 0 of h1 in ∂(X ∪ h2) and slide it along a disk Dk × {pt} ⊂ h2 until it comes back

down to ∂X. Observe that ∂(Dk×{pt}) = Sk−1×{pt} is the attaching sphere of h2 pushed

away from itself using the framing on that link component.

1.2 Isotopy invariants and Vassiliev invariants

One can define an equivalence relation on the category of knots called ambient isotopy [GS],

denoted by ∼. An isotopy between embeddings γ1, γ2 : X → Y is a homotopy γ : X×I → Y
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through embeddings. An ambient isotopy between two knots γ0 : S1 → S3 and γ1 : S1 → S3

is an isotopy γ : S1× I → S3 through diffeomorphisms Γ : S3× I → S3 such that Γ0 = idS3

and γt = Γt ◦ γ0 for each t. The above definition for isotopy carries over to the case of links.

In a first time, one is interested in isotopy classes of knots since original definitions for

the concepts that we introduce presently where made in the case of knots. To distinguish

one class from another, one needs a function on knots that takes different values on different

classes, but which must of course be constant on equivalence classes, and such an object is

rightfully called an isotopy invariant or invariant for short. Typically an invariant is valued

in some abelian group G, and if we denote by ZKnots the abelian group generated by ori-

ented knots, we write Γ : ZKnots/∼ → G for an invariant Γ, it is a G-valued functional

on the set of equivalence classes of knots. One can generalize this definition to the case of

links: if ZLinks/∼ is the set of equivalence classes of oriented links, G is an abelian group,

then a link invariant Γ will be a map Γ : ZLinks/∼ → G.

Of those invariants, Vassiliev invariants [V] are of particular interest. Such invariants

are functionals on ZKnots/ ∼ that are extended to be defined on singular knots whose

singularities are transversal self-intersections. One first defines a positive crossing in the

image of a knot to be:

�
�
��

@@

@@I

where the arrows indicate the orientation on the portion of the knot that is being displayed.

A negative crossing is represented as:

@
@
@I

��

���
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One represents a transversal self-intersection as follows:

�
�
��

@
@
@I s

At this point one can extend invariants of knots to also be defined on singular knots, with

the use of the relation:

V
�
�
��

@
@
@I s = V

�
�
��

@@

@@I − V
@
@
@I

��

���

(1.3)

where V is any knot invariant. By iterating this procedure, one can extend a knot invariant

to be defined on knots with multiple double-crossings. If a knot invariant V has its extension

vanishing on knots that have more than m self-intersections, one says that V is a Vassiliev

invariant of type m:

V (
�
�
��

@
@
@I s

�
�
��

@
@
@I s r r r

�
�
��

@
@
@I s ) = 0

where the argument of V above has more than m self-intersections. Due to the local nature

of the extension of knot invariants to the case of singular knots, we can generalize the defi-

nition of Vassiliev invariant to the case of links. A Vassiliev invariant of links will be said to

be of type m if it evaluates to zero on any singular link with more than m double-crossings

(not necessarily same component intersections).

Among the Vassiliev invariants of type m, one is of particular interest: the degree m

part of the Kontsevich integral first introduced in [K]. One should note that the Kontsevich
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integral as it was initially defined is not strictly speaking a knot invariant, but once it is

corrected as done below, then it becomes an honest knot invariant, and its final corrected

form is a universal Vassiliev invariant in the sense that every finite type Vassiliev invariant

factors through it [DBN2]. Before introducing this integral, one defines the algebra A [K]

in which it takes its values.

1.3 The algebra A of chord diagrams

For a singular oriented knot whose only singularities are transversal self-intersections, the

preimage of each singular crossing under the embedding map defining the knot yields two

distinct points on S1. Each singular point in the image therefore yields a pair of points on

S1 that are conventionally connected by a chord for book keeping purposes. A knot with m

singular points will yield m distinct chords on S1. One refers to such a circle with m chords

on it as a chord diagram of degree m, the degree being the number of chords. The support of

the graph is an oriented S1, and it is regarded up to orientation preserving diffeomorphisms

of the circle. More generally, for a singular oriented link all of whose singularities are double-

crossings, the preimage of each singular crossing under the embedding map defining the link

yields a pair of distinct points on possibly different circles depending on whether the double

crossing was on a same component or between different components of the link. One also

connects points forming a pair by a chord. An e-component link with m singular points will

yield m chords on
∐e S1. One still calls such a graph a chord diagram. The support now

is
∐e S1 regarded up to orientation preserving diffeomorphism of each S1. One denotes by

D(qeS1) the C-vector space spanned by chord diagrams with support on qeS1. One writes

D for D(S1). There is a grading on D(qeS1) given by the number of chords featured in

a diagram. If D(m)(qeS1) denotes the subspace of chord diagrams of degree m, then one

writes:

D(qeS1) = ⊕m≥0D(m)(qeS1) (1.4)

8



One quotients this space by the 4-T relation which locally looks like:

6 6 6
+
6 6 6

=
6 6 6

+
6 6 6

where solid lines are intervals on qeS1 on which a chord foot rests, and arrows indicate the

orientation of each strand. One further quotients this space by the framing independence

relation: if a chord diagram has a chord forming an arc on S1 with no other chord ending in

between its feet, then the chord diagram is set to zero. The resulting quotient space is the

C-vector space generated by chord diagrams mod the 4-T relation and framing independence

and is denoted by A(qeS1). One writes A for A(S1) ([BN]). The grading of D(qeS1) is

preserved by the quotient, inducing a grading on A(qeS1):

A(qeS1) = ⊕m≥0A(m)(qeS1) (1.5)

where A(m)(qeS1) is obtained from D(m)(qeS1) by modding out by the 4-T and the framing

independence relations. The connected sum of circles can be extended to chorded circles,

thereby defining a product on A that one denotes by · ([BN]), making it into an algebra that

is associative and commutative [BN]. More generally A(qeS1) is a module over ⊗eA. The

Kontsevich integral will be valued in the graded completionA(qeS1) of the algebraA(qeS1).

1.4 The original definition of the Kontsevich integral

As far as knots are concerned, we will work with Morse knots and geometric tangles, not

q-tangles ([LM1], [LM2], [LM5], [LM6]), and for that purpose one considers the following

decomposition of R3 as the product of the complex plane and the real line: R3 = R2 ×R '

C×R, with local coordinates z in the complex plane and t on the real line for time. A Morse

9



knot K is such that t ◦K is a Morse function on S1. If one denotes by Z the Kontsevich

integral functional on knots, if K is a Morse knot, one defines ( [K], [BN], [CL2]):

Z(K) :=
∑
m≥0

1

(2πi)m

∫
tmin<t1<...<tm<tmax

∑
P applicable

(−1)ε(P )DP

∏
1≤i≤m

dlog Mz(ti)[Pi] (1.6)

where tmin and tmax are the min and max values of t on K respectively, P is an m-vector

each entry of which corresponds to a pair of points on the image of the knot K. We write

P = (P1, ..., Pm), where the i-th entry Pi corresponds to a pair of points on the knot, and

if we further situate these paired points at some height ti, we can denote these two points

by zi and z′i, so that we can write Mz(ti)[Pi] := zi − z′i. One refers to such P ’s as pairings.

We denote by KP the knot K with m pairs of points placed on it following the prescription

given by P , and then connecting points at a same height by a chord. A pairing is said to be

applicable if each entry corresponds to a pair of two distinct points on the knot, at the same

height [BN]. For a pairing P = (P1, · · · , Pm) giving the position of m pairs of points on K,

one denotes by ε(P ) the number of those points ending on portions of K that are locally

oriented down. For example if P = (z(t), z′(t)) and K is locally oriented down at z(t),

then z(t) will contribute 1 to ε(P ). We also define the length of P = (P1, · · · , Pm) to be

|P | = m. If we denote by ιK the embedding defining the knot then DP is defined to be the

chord diagram one obtains by taking the inverse image of KP under ιK : DP = ι−1
K KP . This

generalizes immediately to the case of Morse links, and in this case the geometric coefficient

will not be an element of A but will be an element of A(
∐

e S
1) if the argument of Z is an

e-component link.

Now if one wants to make this integral into a true knot invariant, then one corrects it as

follows. Consider the embedding in S3 of the trivial knot as:

U =

�����& % (1.7)
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Consider the following correction [K]:

Ẑ := Z(
� �� �� �
 	)−m.Z (1.8)

where the dot is the product on chord diagrams extended by linearity, and m is a function

that captures the number of maximal points of any knot K that is used as an argument of Z.

Defining ν := Z(U)−1, this reads Ẑ = νm ·Z. Equivalently, we can define Ẑ as being Z with

the provision that ν multiplies each maximal point of a given knot K in the expression for

Z(K). As pointed out in [W], there are two possible corrections to the Kontsevich integral:

the one we just presented, and the other one obtained by using 1−m as an exponent of the

Kontsevich integral of the hump instead of just −m. In this manner the corrected version

is multiplicative under connected sum, while using the above correction it behaves better

under cabling operations. We will argue later that a modified version of Ẑ using 1 −m as

an exponent of ν is a most convenient renormalization choice for band sum moves purposes

and the construction of topological invariants of 3-manifolds. In the case of links, there will

be one such correction for each component of the link, with a power mi on the correction

term for the i-th component, where mi is the number of maximal points of the i-th link

component. Equivalently, Ẑ(L) is the same as Z(L) save that every i-th link component in

the expression for Z(L) is multiplied by νmi , 1 ≤ i ≤ e.

Observe that it is not enough to have the Kontsevich integral being valued in D/fr.ind..

Indeed, by [DBN3], [ChDu], a Vassiliev invariant V satisfies the 4 terms relation:

V (
6

�
�
�

���

-uu )− V (
6

�
�
�
��

-uu ) + V (
6

�
�
�
��

-u u )− V (
6

�
�
�
��

-uu ) = 0
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Using (1.3) twice on each term, we can express this relation as a linear combination:

∑
1≤i≤3
εi=±

±V (

6

�
�

�
��

�
��

-���ε1 ���ε2
���ε3

) = 0 (1.9)

with εi = 1 (resp. −1), 1 ≤ i ≤ 3 for a positive crossing (resp. a negative cross-

ing). In this relation all terms cancel except a collection of differences, each difference

being an expression of the change of V under the third Reidemeister move. Ẑ being a

Vassiliev invariant, it also satisfies the 4 terms relation. Now, for a chord diagram D,

contracting all chords of D one gets a knot KD to use the notations of [BN]. Then

Ẑ(KD) = D + higher order terms [BN], [DBN2], [ChDu] using the fact that Ẑ is a Vas-

siliev invariant. This enables us to rewrite the 4 terms relation for Ẑ as a relation involving

only chord diagrams. This relation is exactly the 4-T relation. In other terms, the 4-T

relation must be imposed for Ẑ to be invariant under the third Reidemeister move.

1.5 The Kontsevich Integral of tangles

One considers the generalization of the Kontsevich integral from knots to tangles as dis-

cussed in [BN], [LM1], [ChDu].

For this purpose, one considers a slightly more general algebra of chord diagrams as

defined in [LM5]: For X a compact oriented 1-dimensional manifold with labeled compo-

nents, a chord diagram with support on X is the manifold X together with a collection of

chords with feet on X. One represents such chord diagrams by drawing the support X as

solid lines, the graph consisting of dashed chords. One introduces an equivalence relation
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on the set of all chord diagrams: two chord diagrams D and D′ with support on X are

equivalent if there is a homeomorphism f : D → D′ such that the restriction f |X of f to

X is a homeomorphism of X that preserves components and orientation. One denotes by

A(X) the complex vector space spanned by chord diagrams with support on X modulo the

4-T and framing independence relations. A(X) is still graded by the number of chords as:

A(X) = ⊕m≥0A(m)(X) (1.10)

where A(m)(X) is the complex vector space spanned by chord diagrams of degree m. Write

A(X) for the graded completion of A(X). We define a product on A(X) case by case. For

example, if X = qe>1S1, there is no well defined product defined on A(X). If X = IN , the

concatenation induces a well defined product on A(IN). The product of two chord diagrams

D1 and D2 in this case is defined by putting D1 on top of D2 and is denoted by D1 ×D2.

More generally, for Di ∈ A(Xi), i = 1, 2, D1×D2 is well-defined if X1 and X2 can be glued

strand-wise. One chord diagram of degree 1 we will use repeatedly is the following:

Ωij =
q q q q q q

1 i j N

6 6 6 6

(1.11)

For T a tangle, one defines Z(T ) ∈ A(T ) by:

Z(T ) :=
∑
m≥0

1

(2πi)m

∫
tmin<t1<...<tm<tmax

∑
P applicable

(−1)ε(P )TP
∏

1≤i≤m

dlog Mz(ti)[Pi] (1.12)

exactly as Z(K) was defined in (1.6) with the difference that TP is the tangle T with m

chords placed on it following the prescription given by P . Following [ChDu], one refers to

TP as a tangle chord diagram ([ChDu]). One defines the Kontsevich integral of a tangle T to

be trivial if Z(T ) = T . When working with links, we will sometimes omit the orientation on

link components for convenience unless it is necessary to specify them. We will sometimes

need the map S ([LM5]) on chord diagrams: suppose C is a component of X. If we reverse

the orientation of C, one gets another oriented manifold from X that we will denote by X ′

13



([LM5]). This induces a linear map:

S(C) : A(X)→ A(X ′) (1.13)

defined by associating to any chord diagram D in A(X) the element S(C)(D) obtained from

D by reversing the orientation of C and multiplying the resulting chord diagram by (−1)m

where m is the number of vertices of D ending on the component C. Suppose Z(T ) is known

for some oriented tangle T , and T ′ is an oriented tangle with the same skeleton as T ’s, but

with possible reversed orientations on some of its components. Then one can find Z(T ′) by

symply applying SC(Z(T )) iteratively as many times as there are components C of T ′ that

have an orientation different from that of T .

1.6 Integral of framed oriented links

In the framed case, in which the framing independence relation is no longer imposed, upon

computing the Kontsevich integral Z(T ) of a tangle T with local extrema, one runs into

computational problems. For instance, the Kontsevich integral of the following tangle:

q q q q q q
1 k-1

k k+1
k+2 N

(1.14)

has possible integrands dlog(zk − zk+1) in degree 1 corresponding to the chord diagram:

k k+1

(1.15)
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where zk and zk+1 are local coordinates on the strands indexed by k and k + 1 respec-

tively, and such integrands are made to vanish by virtue of the framing independence in the

unframed case: ��
= 0 (1.16)

However, in the framed setting, without this relation, one has to somehow avoid the diver-

gence as zk − zk+1 → 0. Le and Murakami ([LM1]) solved this problem as follows. If ω is

the chord diagram defined by:

ω =

then Le and Murakami define ε±ω/(2πi) for some ε ∈ R as a formal power series expansion

of exp(± ω
2πi

log ε) where they formally write:

qqqωn =

}
n

Then they consider the following type of tangle T ([LM1]):

T

?

6
� -

ε

?

6

?
6

Tε

T − Tε
'$
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where T = (T −Tε)×Tε, and the diagram above defines the two tangles T −Tε and Tε. We

could equally have had this tangle upside down in the event that we had a minimum. One

has the following result of Le and Murakami:

Proposition 1.6.1 ([LM1]). Let T be a tangle as above. Then:

Zf (T ) = lim
ε→0

ε ω/(2πi)Z(Tε) (1.17)

is well-defined, while if this tangle is turned upside down so that it is a local minimum, then:

Zf (T ) = lim
ε→0

Z(Tε)ε
−ω/(2πi) (1.18)

is well-defined as well.

Observe that it is no longer true that Zf is an element of the completion of A(X) =

D(X)/(4-T, fr. ind.) since one no longer imposes the framing independence relation. Rather

Zf becomes an element of the completion Â(X) := Â(X) of the algebra Â(X) = D(X)/4-T

where we have adopted the original notation Â from [K]. In Chapter 2 we will fully develop

the formalism of the framed Kontsevich integral.

Let L be an e-components framed oriented link in the blackboard framing represented

by a link diagram D. Recall that we consider Morse knots and links; one considers R3 as

C× R and one can arrange that our knots live in C× I. If t is the variable in I, then one

says that a knot K is a Morse knot if t(K) is a Morse function ([K]). Let mi be the number

of maximal points of the i-th component of D with respect to t. Then following [LM5], one

defines:

Ẑf (L) = Zf (D) · (νm1 ⊗ · · · ⊗ νme) ∈ Â(
e∐
S1) (1.19)

where ν = Zf (U)−1 and:

U =

�����& % (1.20)
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Further, since we regard Â(qeS1) as a ⊗eA-module, each νmi acts only on the i-th compo-

nent, and it does so by connected sum [LM2]. Strictly speaking, we should write:

νm1 ⊗ · · · ⊗ νme� = (νm1 �)⊗ · · · ⊗ (νme�) (1.21)

It is more economical to define Ẑf as being Zf with the provision that in the expression

for Zf (L), ν multiplies each local max of each link component. Though as defined Ẑf is

already an isotopy invariant, we will use a certain renormalization of Ẑf that is exception-

ally well-behaved under band sum moves; we will define the modified Z̃f to be Ẑf with the

provision that in the expression for Ẑf (L), each link component is multiplied by ν−1. If one

uses ν instead as a renormalizing factor, one would get Žf as introduced in [LM3], [LM4],

[LM5], [LM6]. It is important to note that Žf and Z̃f are essentially the same invariant.

What distinguishes them is their behavior under band sum moves.

The doubling map ∆ on strands defined by:

∆ :
6 7→ 66

(1.22)

induces a map ([LM4]) ∆ : A(I) → A(I2) on chord diagrams that is defined as follows on

one chord:

∆ :
6 7→ 66

+
66

(1.23)

and for chord diagrams of degree greater than 1, we impose that the following square be
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commutative and use induction:

(
6 , 6

)
-

∆×∆ (
∆ 6 ,∆ 6

)
�

�
�	
×A

A
AU

×

6 -
∆

∆ 6 (1.24)

In [LM6], the behavior of Žf under band sum moves for which link components of interest

are locally side by side is given by:

Theorem 1.6.2. ([LM6]) Let L be a framed oriented link. Suppose K1 and K2 are two link

components of L, and K1 is band summed over K2, which one pictorially represents as:

�

�
?

K1

�




�

	
6

K2

7→
band
sum �

�

K ′1
∐
K2

-�




�

	6
(1.25)

where K ′1 is the result of doing a band sum move of K1 over K2, and one denotes by

L′ the link obtained from L after such an operation. In the above picture, we have only

symbolically displayed K1 and K2, and not other components that may be linked to either

or both components. If one writes:

Žf (L) =
∑
chord

diagrams X

cXX (1.26)
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then Le and Murakami find:

Žf (L
′) =

∑
chord

diagrams X

cXX
′ (1.27)

where X and its corresponding chord diagram X ′ after the band sum move are given below:

�

�
?

�




�

	
p p p p p p p p p pp p p p p p p p p p
p p p p p p p p p pqqq6

X

7→
band
sum �

�

X ′

-�




�

	6
p p p p p p p p p pp p p p p p p p p p
p p p p p p p p p pqqq∆

(1.28)

To be specific, the map ∆ doubles strands, and the chords on those strands as well.

Since one operates a band sum move here, the ∆ enclosed in the box means by abuse of no-

tation ([LM2], [LM5], [LM6]) that the doubling of strands coming with the band sum move

proper has been performed and the only thing left to be done is to double chords accordingly.

For band sum moves for which link components of interest are locally on top of each

other, we have the following theorem which is proved later in Chapter 4:

Theorem 1.6.3. Let L be a framed oriented link. Suppose K1 and K2 are two link com-

ponents of L, and K1 is band summed over K2, which we pictorially represent as:

� 
� �

6

� 
pppppppp

-
K1

K2

7−→
band
sum � 
� �

6

� �

pppppppp

6

K ′1 qK2

where K ′1 is the result of doing a band sum move of K1 over K2, and one denotes by
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L′ the link obtained from L after such an operation. In the above picture, we have only

symbolically displayed K1 and K2, and not other components that may be linked to either

or both components. If:

Z̃f (L) =
∑
chord

diagrams X

cXX (1.29)

for coefficients cX , then we can write:

Z̃f (L
′) =

∑
chord

diagrams X

cXX
′ (1.30)

where X and its corresponding chord diagram X ′ after the band sum move are given below:

� 
� �

6
qqq

� 
pppppppp

-

X 7−→
band
sum ∆� 
� �

� �
qqq

pppppppp
X ′
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Chapter 2

The Framed Kontsevich integral

2.1 First definition and Preliminary lemmas

We now consider the problem of having to integrate over tangles that have local extrema

in the framed case, in which one no longer imposes the framing independence relation. In

that case one normalizes the integral at local extrema as was done in [LM1]. First define

the following tangles and chord diagrams:

Ta =

� -

a

��
ω =

��qqq q q q q q q
� -
µ

(2.1)

T µa =

6
?

� ��- �µ

� -

a

(2.2)

It is convenient to define a formal tangle chord diagram consisting of a single chord stretch-

ing between two strands of opposite orientations, and to call such a graph Ω. This enables

one to write T µa above with m chords on it as T µa × Ωm or Ωm × T µa . We would also have

ω above written simply as Tµ × Ω. Define S : A → Â to be the standard inclusion algebra
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map that maps elements of A to the subspace of Â in which all basis chord diagrams with

an isolated chord have coefficient zero as in [BNGRT], [ChDu].

Definition 2.1.1 ([LM1]). We define Zf of the above tangle Ta as:

Zf (Ta) = lim
µ→ 0

��
�-

1
× µΩ/2πi × T 1

µ × SZ(T µa ) (2.3)

which Le and Murakami write in a symbolic, compact form as:

Zf (Ta) := lim
µ→0

µω/(2πi) × SZ(T µa ) (2.4)

where in [LM1], ωm is defined by:

ωm =

��
ppp
-�
µ

}
m (2.5)

=
��
-�
1

×
6?
��� �� -
1

- �
µ

×
(

-�
µ

)m
(2.6)

=
��
-�
1

× T 1
µ × Ωm (2.7)

For a local minimum, if we take our tangle T a to be a single local minimum, then one

uses the normalization Zf (T
a) = limµ→ 0 SZ(T aµ ) × T µ1 × µ−Ω/2πi × ���-1 also written

Zf (T
a) = limµ→0 SZ(T aµ ) × µ−ω/(2πi). In that expression ω and T aµ are our old ω and

T µa respectively, flipped upside down.

Lemma 2.1.2. For a, b > 0, we have:

Z(
�-
a

�-b

) =
(
b/a
)±Ω/2πi

×
�-
a

�-b

with a plus sign for strands with same orientations, and a minus sign for opposite orienta-

tions.
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Proof. The proof is a simple computation:

Z(T ba) =
∑
n≥0

1

(2πi)n

∫
0<t1<···<tn<1

(±1)nΩn × T ba × dlog Mz(t1) · · · dlog Mz(tn) (2.8)

=
∑
n≥0

1

(2πi)n
(±1)nΩn × T ba × In (2.9)

with:

In =

∫
0<t1<···<tn<1

dlog Mz(t1) · · · dlog Mz(tn) (2.10)

=

∫
0<t2<···<tn<1

dlog Mz(t2) · · · dlog Mz(tn) · log
Mz(t2)

a
(2.11)

=

∫
0<t3<···<tn<1

dlog Mz(t3) · · · dlog Mz(tn)

∫
t2<t3

dlog Mz(t2) log
Mz(t2)

a
(2.12)

=

∫
0<t3<···<tn<1

dlog Mz(t3) · · · dlog Mz(tn)

∫
t2<t3

dlog
Mz(t2)

a
log
Mz(t2)

a
(2.13)

=

∫
0<t3<···<tn<1

dlog Mz(t3) · · · dlog Mz(tn) · 1

2
log2 Mz(t3)

a
(2.14)

=

∫
0<t4<···<tn<1

dlog Mz(t4) · · · dlog Mz(tn)

∫
t3<t4

dlog Mz(t3) · 1

2
log2 Mz(t3)

a
(2.15)

=

∫
0<t4<···<tn<1

dlog Mz(t4) · · · dlog Mz(tn) · 1

3
· 1

2
log3 Mz(t4)

a
(2.16)

= · · · = 1

n!
logn

Mz(tn = 1)

a
=

1

n!
logn

b

a
(2.17)

so that:

Z(T ba) =
∑
n≥0

1

(2πi)n
(±1)nΩn × T ba × In (2.18)

=
∑
n≥0

1

(2πi)n
(±1)nΩn × T ba ×

1

n!
logn

b

a
(2.19)

=
∑
n≥0

1

n!

(
(± Ω

2πi
) log

b

a

)n
× T ba (2.20)

=
∑
n≥0

1

n!

(
log(b/a)±

Ω
2πi

)n
× T ba (2.21)

= e
log

(
(b/a)±Ω/2πi

)
× T ba = (b/a)±Ω/2πi × T ba (2.22)
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Corollary 2.1.3. For ε > 0:

Z
( � ���
�-

- �ε

1

)
= ε±Ω/2πi ×
� ���
�-

- �ε

1
(2.23)

with a plus sign for same orientations, a minus sign for opposite orientations.

Corollary 2.1.4.

Z( � ���-- �ε
1

) = ε∓Ω/2πi × � ���-- �ε
1

(2.24)

with a plus sign for same orientations and a minus sign for opposite orientations.

Lemma 2.1.5.

Zf (Ta) =
��
�-

1
× SZ(T 1

a ) =:
��
�-

1
× SZ(T 1-resolved

a ) (2.25)

where T 1-resolved
a is identical with the tangle Ta except that it is seen as being analytically

probed by isolated chords near the local maximum that deform it into a spout of opening

width 1, whence the name 1-resolved.
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Proof. Using Definition 2.1.1 for the same tangle Ta:

Zf (Ta) = lim
µ→0

��
�-

1
× µΩ/2πi × T 1

µ × SZ(T µa ) (2.26)

= lim
µ→0

��
�-

1
×
(∑
m≥0

1

m!

1

(2πi)m
Ωm logm µ

)
× T 1

µ × SZ(T µa ) (2.27)

= lim
µ→0

��
�-

1
×
∑
m≥0

( 1

m!

1

(2πi)m
Ωm logm µ× T 1

µ

)
× SZ(T µa ) (2.28)

= lim
µ→0

��
�-

1
×
∑
m≥0

1

m!

1

(2πi)m
T 1
µ × Ωm logm µ× SZ(T µa ) (2.29)

= lim
µ→0

��
�-

1
× SZ( 6?
��� �� -
1

- �
µ

)× SZ(T µa ) (2.30)

= lim
µ→0

��
�-

1
× SZ( � ��� ��� �- �

� -1

a
� -
µ ) (2.31)

=
��
�-

1
× SZ( �-

a

�-1

) (2.32)

=
��
�-

1
× SZ(T 1

a ) (2.33)

where in (2.30) we used Lemma 2.1.4, and in going from (2.31) to (2.32) we have used the

invariance of the Kontsevich integral under horizontal deformations [BN], [ChDu].

Lemma 2.1.6.

Zf (T
a) = SZ(T a1 )× ���-1 = SZ(T a1-resolved)× ���-1 (2.34)

Proof. Same as for the preceding lemma.

Remark 2.1.7. From Lemmas 2.1.5 and 2.1.6 we might want to generalize the definition

of Zf near local extrema to:

Zf [M](Ta) =
��

× SZ( �-
a

�-M

) =:
��

× SZ(T M-resolved

a ) (2.35)
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and:

Zf [M](T a) = SZ( �-
M

�-a

)× ��=: SZ(T a M-resolved) (2.36)

thereby defining a family of framed Kontsevich integrals Zf [M] parametrized by M > 0.

Without loss of generality, we can focus on a local maximum. An equivalent definition to

(2.35) would be:

Zf [M](Ta) =
��

× lim
(µ/M)→0

(
µ/M

)Ω/2πi

× TMµ × SZ(T µa ) (2.37)

=
��

× lim
ξ→0

ξΩ/2πi × TMMξ × SZ(TMξ
a ) (2.38)

Definition 2.1.1 being a special case thereof for which M = 1. To see that (2.37) is well-

defined, it suffices to write:��
× lim

(µ/M)→0

(
µ/M

)Ω/2πi

× TMµ × SZ(T µa )

=
��

× lim
(µ/M)→0

(
M/µ

)−Ω/2πi

× TMµ × SZ(T µa )

=
��

× lim
(µ/M)→0

SZ(TMµ )× SZ(T µa )

where in the last step we have used Lemma 2.1.2 with a = µ, b = M and mixed orientations

on the strands since we work at a local maximum. We have a concatenation of tangles

TMµ × T µa = TMa leading to the equality SZ(TMµ )× SZ(T µa ) = SZ(TMa ). Using it in the last

equality above, we get: ��
× lim

(µ/M)→0

(
µ/M

)Ω/2πi

× TMµ × SZ(T µa )

=
��

× lim
(µ/M)→0

SZ(TMa ) (2.39)

=
��

× SZ( �-
a

�-M

) (2.40)

This leads to generalizing the definition of the normalization for the value of Zf of local

extrema.
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Definition 2.1.8. For M > 0:

Zf [M](Ta) =
��

× SZ( �-
a

�-M

) (2.41)

and:

Zf [M](T a) = SZ( �-
M

�-a

)× �� (2.42)

Remark 2.1.9. By invariance of Z under horizontal deformations:

Z( �-
a

�-b

) = Z(

� ������ �
-�
a

-�b

) = Z( ��� �
-�b

)× Z(

� ���
-�
a

) (2.43)

Since Z is defined for Morse knots, there is no ambiguity as to what:

��� � and

� ���

mean; it is really

lim
ε→ 0

� �� �
- � ε and lim

ε→ 0

� ���- � ε

respectively. The first equality in (2.43) is justified as Z(T ba) is well-defined. To make sense

of the second equality, one would have to make sense of the values of Z on those pinched

tangles. The problem is the same as the one encountered for local extrema. If we formally

define:

= lim
ε→ 0

- � ε

and = lim
ε→ 0

- � ε

then we can define:
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Definition 2.1.10.

Zf [M](

� ���
-�
a

) = × SZ( �-
a

�-M

)

and:

Zf [M]( ��� �
-�a

) = SZ( �-
M

�-a

)×

Remark 2.1.11. Long after this work was finished, it was pointed to the author ([DM])

that a similar construction has already been performed ([ZD]). In the present work we

just generalize the work of Le, Murakami et al ([LM1]) concerning the normalization of the

Kontsevich integral at local extrema. In [ZD], the problem of divergences at local extrema

is circumvented by invoking a QFT technique without naming it, but which from the looks

of it should be multiplicative renormalization. A scale µ is fixed (the equivalent of M for

us). Without loss of generality one works with a local maximum, which is opened to some

width µ, the opening bottleneck having a length ε, as in:

-�
µ

6
?ε

Then:

Zf (Ta) := lim
ε→ 0

Z(

-�
µ

6?ε

-�
a

) (2.44)

While performing such a computation, only chords both of whose feet are on the bottleneck

are allowed. This is imposed while in our picture this follows precisely because we have a

bottleneck such that long chords vanish on it. Further it is understood that the bottleneck
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has a width ε. Thus in the limit the bottleneck is cut off. What we do however is retain the

top of the tangle with a bottleneck and formally close it off.

One last remark is in order here. Though the following Lemma is true in the unframed

case, it fails in the unframed case as the note that follows points out.

Lemma 2.1.12. ([ChDu]) For a tangle T , Z(T ) is invariant under a dilation of T by a

factor of Λ with respect to the time axis.

Proof. We have:

Z(T ) =
∑
m≥0

1

(2πi)m

∫
0<t1<···<tm<1

∑
|P |=m

(−1)ε(P )TP ·
∏

1≤i≤m

dlog Mz(ti)[Pi]

=
∑
m≥0

1

(2πi)m

∑
|P |=m

(−1)ε(P )TP

∫
0<t1<···<tm<1

∏
1≤i≤m

dlog Mz(ti)[Pi]

If we squeeze the tangle T uniformally with respect to the time axis by a factor of Λ then

each coordinate z along T is being mapped to z/Λ. Thus dlog Mz 7→ dlog(Mz/Λ) = dlog Mz

making the above multivariate integral invariant, as well as Z(T ) which is a sum of such

integrals.

Note 2.1.13. Zf [M] is not invariant under resizing by a factor of Λ the way Z was. For

example:

Zf [M](

��
� -
A

) =
��

× SZ( �-

A

�-M

) (2.45)

is non trivial if A 6= M , while if we resize the tangle on the left hand side of the above

equation by a factor of Λ = M/A, then we have:

Zf [M](

��
� -
M

) =
��

× SZ(
�-

M ) (2.46)

which is trivial.
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2.2 Properties of the framed Kontsevich integral

It is well-known that Z is invariant under horizontal deformations ([BN]), which was further

generalized for the parameter-free, framed Kontsevich integral Zf ([LM1]). We show this

persists in the presence of a parameter:

Lemma 2.2.1. For M > 0, Zf [M] is invariant under horizontal deformations.

Proof. Zf [M] is defined locally. In particular, away from local extrema Zf [M] = Z, which is

invariant under horizontal deformations.

The following is the framed generalization of a well-known result in the unframed case

([BN]), also proved in the framed case for Le and Murakami’s parameter-free Zf ([LM1]).

Proposition 2.2.2. For M > 0, Zf [M] is multiplicative.

Proof. Multiplicativity means that if T = T1 × · · · × Tn where local extrema and pinched

extremities are located at times other than those at which a concatenation is performed,

then Zf [M](T ) = ×1≤i≤nZf [M](Ti). By definition of Zf , away from those extrema Zf = SZ,

which is multiplicative.

The following Theorem was initially presented in [LM1] for the parameter-free Zf defined

on q-tangles, which we generalize as follows:

Theorem 2.2.3. pZf [M] = Z for all M > 0, where p : Â→A.

Proof. Fix M > 0. By definition of Zf (L) for L a framed oriented link with possible

pinched extremities, for a given tangle chord diagram and its corresponding coefficient, the

contribution of long chords to that coefficient is computed from L punctured (c.f. (2.37)

and (2.38)) and is thus independent of M . It reproduces the value one would obtain from

Z(L) in the unframed case. Isolated chords near an extremum are projected out by p. The

result follows.
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The following two Theorems were originally presented in [LM1] for the parameter-free

Ẑf .

Theorem 2.2.4. For M > 0, Ẑf [M] is multiplicative.

Proof. This follows from Zf [M] being multiplicative (Proposition 2.2.2) and the definition

of Ẑf [M].

Theorem 2.2.5. For M > 0, Ẑf [M] is an isotopy invariant.

Proof. Ẑf [M] is invariant under all the Reidemeister moves since Z is, except the straight-

ening of humps (henceforth referred to as the cancellation of critical points move) discussed

in (2.51) and the following move:

�
��
�

-�

�
�
�
�

(2.47)

We have to show Zf [M] is invariant under this move, and by definition of Ẑf [M] it will follow

that so is this latter. By definition of Zf [M]:

Zf [M](

�
��
�

) =
��

× SZ(

�
��
�M-resolved

)× �� (2.48)

As far as non isolated chords are concerned, this amounts to computing:

SZ(

�
��
�

) (2.49)

which is invariant under the unframed counterpart to the move depicted in (2.47) and is
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therefore invariant under that move as well. For isolated chords and mixed chords made up

of isolated and long chords, we use:

lim
ε,µ→0

��
× SZ(

� ������ �- �ε

�-
M

�
��
�HH
HH

� ������ - �µ

�-M

)× �� (2.50)

Under the move (2.47) the strands are rotated 180◦ with respect to the time axis, and

complex coordinates are switched accordingly to leave the computation of the above limit

invariant by virtue of the fact that dlog(z − z′) = dlog(z′ − z).

We now consider the cancellation of critical points move. Since Zf [M] is invariant under

all moves except this particular move, we can drag a hump along a component until it

reaches a local max. Then squeezing this local max into a needle along with the hump on
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it, we essentially have to consider the following:

Zf [M](
T−

����
��

) = Zf [M](
T−

� �- � M

� 
����
��

) (2.51)

= Zf [M]( � 
����
��

)×
(��#��)× Zf [M]( T−

� �
) (2.52)

= Zf [M](U)#Zf [M](

��
)× Zf [M](T−) (2.53)

= Zf [M](U) · Zf [M]( T−

'$
) (2.54)

= ν−1Zf [M]( T−

'$
) (2.55)

Thus multiplying by ν2 on both sides, we have the invariance of Ẑf under the cancellation

of critical points move.

Proposition 2.2.6. For L a link, Zf [M](L) is independent of M > 0 and we denote it by

Zf (L).

Proof. A change in scale in R3 by a factor of λ 6= 0 induces a dilation map dλ on tangles,
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which in turn induces a map d∗λ on Zf [M]. We write:

d∗λZf [M](Ta) = Zf [M](dλTa) = Zf [M](Tλa) (2.56)

=
��
-�

M

× SZ(TMλa ) (2.57)

=
��
-�

M

× SZ(dλT
M/λ
a ) (2.58)

=
��� ���
-�
M/λ

× SZ(TM/λ
a ) (2.59)

=
��

× SZ(TM/λ
a ) (2.60)

= Zf [M/λ](Ta) (2.61)

where in the next to last step we have used the invariance of the original Kontsevich integral

under dilations. It is not difficult to see that for a tangle T with only one local maximum,

the above computation generalizes to:

d∗λZf [M](T ) = Zf [M](dλT ) (2.62)

=
��

× SZ((dλT )M-resolved) (2.63)

=
��

× SZ(dλ(T
M/λ-resolved)) (2.64)

=
��

× SZ(TM/λ-resolved) (2.65)

= Zf [M/λ](T ) (2.66)

Likewise, one would show that for a tangle T with a unique local minimum, one has

d∗λZf [M](T ) = Zf [M/λ](T ). The same computations essentially carry over to the case of

tangles with pinched extremities. On associators and crossings, for any M > 0, Zf [M] = Z.

Thus on elementary tangles, as well as for tangles with pinched extremities, for M > 0 we

have:

d∗λZf [M] = Zf [M/λ] (2.67)
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Let K be a knot that we decompose as a concatenation of l elementary tangles as

K = ×1≤i≤lTi. Then:

d∗λZf [M](K) = Zf [M](dλK) (2.68)

= Zf [M](dλ(×iTi)) (2.69)

= Zf [M](×i(dλTi)) (2.70)

= ×1≤i≤lZf [M](dλTi) (2.71)

= ×iZf [M/λ](Ti) (2.72)

= Zf [M/λ](×iTi) (2.73)

= Zf [M/λ](K) (2.74)

Thus d∗λZf [M] = Zf [M/λ] on knots as well, and this generalizes easily to the case of links.

Now observe that by isotopy invariance of Ẑf [M] we have:

Ẑf [M](dλK) = Ẑf [M](K) (2.75)

from which it follows that:

Zf [M](dλK) = Zf [M](K) (2.76)

and coupled with (2.74), we get Zf [M](K) = Zf [M/λ](K) for all M > 0, λ > 0, thus

Zf [M](K) is independent of M , and we denote it by Zf (K). Likewise, for a link L, one

would show following the same line of reasoning that Zf [M](L) is independent of M , and

we denote it by Zf (L).

Corollary 2.2.7. For L a link, Ẑf [M](L) is independent of M > 0 and we denote it by

Ẑf (L), as it coincides with Le and Murakami’s Ẑf (L).

Proof. This follows readily from the definition of Ẑf [M] and the previous Proposition.
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Chapter 3

Fundamental results

In this section we essentially discuss two very important results. The first, implicit in much

of the work that has been done on the Kontsevich integral, is the long chords Lemma.

A proof in the unframed case can be found in [ChDu]. We show it is also true in the

framed case, and not only for knots but for links as well. The second result is the state-

ment ∆Ẑf = Ẑf (∆) ([LM2]) which will require a few lemmas before we proceed to proving it.

3.1 The long chords lemma

To discuss the long chord lemma, we will follow the notations of [ChDu]. Suppose L is a

link, with a distinguished tangle T as in:

tmax

tmin

T ′

q q q
T

q q q

located between times tmin and tmax. The idea is that if one shrinks the tangle T , in the

limit when it is shrunk to zero size the chords between it and the rest of the link L in the
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expression for Zf (L) go away. The exact statement is that if one denotes by Zf,T (L) that

part of Zf (L) where in the horizontal strip between the times tmin and tmax one only has

chords both feet of which are either on T or not at all, then Zf (L) = Zf,T (L).

3.1.1 The Kontsevich integral of n unlinked circles

The case of n unlinked circles is a simple instance where computations can be done by hand.

In this case, the long chords Lemma is true because all tangle chord diagrams have zero

coefficients. The case of n unlinked circles corresponds to the simple case where both T

and T ′ are trivial. By invariance of Z under horizontal deformations, we essentially have to

show that n unlinked circles as in:

-

6

r r r
a a +(n-1)δ-a-a -(n-1)δ

(3.1)

have trivial Kontsevich integral. We first show the result in the unframed case and then

prove it in the framed case.

Lemma 3.1.1.1. The Kontsevich integral of n unlinked circles as above is trivial.

Proof. We first consider the types of chords we can have and their corresponding log differ-

entials. It is convenient to present the n strands as circles equally spaced by a distance δ as
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in:

r r r
-

6

z

t

a a+δ a+(n-1)δ-a-a-δ-a-(n-1)δ
(3.2)

with a similar setting for bottom strands, which number n as well. For chords with support

on those strands, we have long chords stretching from a q-th strand on one side to a p-th

strand on the other side of the knot, 0 ≤ p, q ≤ n− 1, short chords stretching between the

q-th and p-th strands, 0 ≤ q, p ≤ n − 1, both on a same side of the knot, and self chords.

We first consider a long chord stretching from the q-th strand on the left to the p-th one on

the right as in:

a + pδ a +qδ-a -pδ-a -qδ
(3.3)

Such a chord diagram we denote by C
(n)+
(q,p) , where the plus sign indicates that we consider

the upper portion of n unlinked circles, and (q, p) indicates that we consider one chord only

stretching from the q-th strand on the left to the p-th strand on the right. At height t, the

separation from one chord foot to the other is Mz(t) =
√

(a+ pδ)2 − t2 +
√

(a+ qδ)2 − t2

from which we get:

dlog Mz(t) = − tdt√
(a+ qδ)2 − t2 ·

√
(a+ pδ)2 − t2

(3.4)
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For a chord stretching from the p-th strand to the q-th strand on the right, that is for C
(n)+
(p,q) :

a + pδ a +qδ-a -pδ-a -qδ
(3.5)

we get the same log differential. We also have short chords between strands on the left

as in the following tangle chord diagram that we denote by C
(n)+
(qp,−):

a + pδ a +qδ-a -pδ-a -qδ
(3.6)

with chords of length
√

(a+ qδ)2 − t2 −
√

(a+ pδ)2 − t2, leading to a log differential:

dlog Mz(t) =
tdt√

(a+ qδ)2 − t2 ·
√

(a+ pδ)2 − t2
(3.7)

and short chords on strands on the right side of the knot as in the chord diagram C
(n)+
(−,pq):

a + pδ a +qδ-a -pδ-a -qδ
(3.8)
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with the same log differential. We also have to consider self-chords that do not cancel

if they are not isolated, such as in the chord diagram C
(n)+
(q,q) :

a + pδ a +qδ-a -pδ-a -qδ
(3.9)

These chords have length 2
√

(a+ qδ)2 − t2 and thus yield a log differential:

dlog Mz(t) = − tdt

(a+ qδ)2 − t2
(3.10)

We obtain similar chord lengths and corresponding log differentials for chords stretching

between strands at the bottom of the knot. What we have at this point is that the log

differentials for each chord are odd functions times the differential dt.

We see that we essentially have three possibilities for chords: long chords, short chords,

and non-isolated self-chords. For long chords and short chords we assume that q > p for

computational purposes. Chord diagrams are graded by their number of chords, which are

numbered from the bottom up. The k-th chord at time tk is stretching between the qk-th

strand and the pk-th one. The Kontsevich integral of n unlinked trivial knots is a sum over

m ≥ 0 of terms proportional to integrals of the form:∫
−a−pmδ<tm<a+pmδm

−a−pm−1δ<tm−1<min(a+pm−1δ,tm)
···

−a−p1δ<t1<min(a+p1δ,t2)

∏
1≤i≤m

dlog Mz(ti) (3.11)

times some tangle chord diagrams. For convenience, we write this integral as:∫
−a−pmδ<tm<a+pmδm

dlog Mz(tm)Ψ(tm) (3.12)
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where Ψ(tm) comes from the integration of m−1 log differentials. As we have shown above,

the log differential is odd, the region of integration is symmetric with respect to zero, so if

we can show that Ψ(tm) is an even function of tm then we would have this m-th term in the

Kontsevich integral to be vanishing, and this for all such terms and for all m ≥ 0, so this

would show the result. Thus it suffices to show that Ψ is an even function. We have:

Ψ(t2) =

∫
−a−p1δ<t1<min(a+p1δ,t2)

dlog Mz(t1) (3.13)

If t2 > a + p1δ, then Ψ(t2) =
∫ a+p1δ

−a−p1δ
dlog Mz(t1) = 0 = Ψ(−t2). If t2 < a + p1δ then

Ψ(t2) = log Mz(t2)− log Mz(−a− p1δ) while:

Ψ(−t2) =

∫
−a−p1δ<t1<−t2

dlog Mz(t1) (3.14)

= log Mz(−t2)− log Mz(−a− p1δ) (3.15)

= log Mz(t2)− log Mz(−a− p1δ) = Ψ(t2) (3.16)

Thus Ψ(t2) is an even function of t2. Suppose Ψ(tm−1) is an even function of tm−1. Then

we have:

Ψ(tm) =

∫
−a−pm−1δ<tm−1<min(a+pm−1δ,tm)

dlog Mz(tm−1)Ψ(tm−1) (3.17)

an integral of an odd integrand, which we denote by Γ. Let A = a+ pm−1δ. If tm > A then

Ψ(tm) =
∫ A
−A Γ(t)dt = 0 = Ψ(−tm). If tm < A then Ψ(−tm) =

∫ −tm
−A Γ(t)dt =

∫ tm
A

Γ(u)du,

while:

Ψ(tm) =

∫
−A<t<tm

Γ(t)dt (3.18)

=

∫ −tm
A

Γ(u)du (3.19)

=

∫ tm

A

Γ(u)du+

∫ −tm
tm

Γ(u)du (3.20)

=

∫ tm

A

Γ(u)du = Ψ(−tm) (3.21)

and Ψ(tm) is therefore an even function. This being true for any m ≥ 0 it is true for all

m ≥ 0, so Ψ is an even function and we have shown the result. This proof is using basic
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properties of the Kontsevich integral. We can give a second proof that uses some invariance

properties of the Kontsevich integral per se. It suffices to invoke the invariance of Z under

moves other than the cancellation of critical points move as well as its multiplicative property

to write:

Z(S1 + · · ·+ S1︸ ︷︷ ︸
n

) = nZ(S1) (3.22)

= nZ(
��

)× Z(��) (3.23)

= n
��

× ��= nS1 (3.24)

Lemma 3.1.1.2. The framed Kontsevich integral of n unlinked circles is trivial.

Proof. As for the preceding lemma, we will give two proofs. The first one uses the definition

of the framed Kontsevich integral, the second is much shorter and just uses some invariance

properties of the framed Kontsevich integral. For the first proof, we consider a segmentation

of n circles at each local extremum and use the multiplicativity of the framed Kontsevich
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integral.

Zf (nS
1) = Zf (

hl"!
# ppp

) (3.25)

= Zf [M]( )× Zf [M]( �
�

A
A

)×

· · · × Zf [M](
p p p ��� p p p )× · · ·

× Zf [M]( A
A

�
�

)× Zf [M]( ) (3.26)

=
��n

× lim
ε1,··· ,ε2n→0

SZ(

� ������ - �ε1

�-M

)× SZ(

� ������ - �ε2

�-M

� �
)×

· · · × SZ(

q q q
� ������ �- �εn+1

�-
M

� ������ - �εn

�-M

q q q
)× · · ·

SZ( � ������ �- �ε2n−1

�-
M

� �
)× SZ( � ������ �- �ε2n

�-
M

)× ��n (3.27)

= SZ(nS1) + mixed chords (3.28)

The first term is equal to nSZ(S1) = nS1 by the preceding lemma, and mixed chords here

means that this is the part of Zf (nS
1) with at least one integrated chord that would have

been isolated in the unframed case. One new problem arises however from the fact that
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those chords can now escape through a spout. Supposing we consider such a chord at a

local maximum with other long chords below that will prevent the isolated chord to go all

the way down through the spout at the local minimum, in this instance we can no longer

invoke a symmetry argument. A paradigm example is the following:

SZ(

q q q qqq

� ������ �- �εk

�-
M

� ������ - �εj

�-M

q q q
) (3.29)

whose coefficient modulo sign and a power of 1/2πi is:∫
−a−pm+1δ<tm+1<a+pm+1δ+A

−a−pm+1δ<tm<min(a+pm+1δ,tm+1)
···

−a−pm+1δ<t1<min(a+pm+1δ,t2)

∏
1≤i≤m+1

dlog Mz(ti) (3.30)

where Mz(tm+1) corresponds to the top chord which is escaping through the puncture, until

it reaches the top of the open tangle at the top in a time A. All the other chords stop at

a+ pm+1δ. Using the notations of the previous proof, we consider:∫
−a−pm+1δ<tm+1<a+pm+1δ+A

−a−pm+1δ<tm<min(a+pm+1δ,tm+1)

dlog Mz′(tm+1)dlog Mz(tm)Ψ(tm) (3.31)

with Mz′(tm+1) the length of the isolated chord. We write this integral as:∫ a+pm+1δ

−a−pm+1δ

dlog Mz′(tm+1)

∫ tm+1

−a−pm+1δ

dlog Mz(tm)Ψ(tm)

+

∫ a+pm+1δ+A

a+pm+1δ

dlog Mz′(tm+1)

∫ a+pm+1δ

−a−pm+1δ

dlog Mz(tm)Ψ(tm) (3.32)

The second integral vanishes because the region of integration in tm is symmetric, dlog M

z(tm) is odd, and Ψ(tm) is an even function from the preceding proof. The first integral can
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be rewritten as: ∫ a+pm+1δ

−a−pm+1δ

dlog Mz′(tm+1)Ψ(tm+1) (3.33)

with Ψ(tm+1) even and dlog Mz(tm+1) odd since the domain of integration is the circle. The

region of integration being symmetric, the integral vanishes. For the more general case of

having more than one isolated chord on top, say n of them, we would get 2 +n− 1 integrals

of either of the forms discussed above, which have been showed to vanish, therefore giving

a vanishing contribution to such more complicated mixed tangle chord diagrams. Thus any

mixed tangle chord diagram with what would have been isolated chords in the unframed

case on top has a vanishing coefficient. We would similarly show that the same result holds

for isolated chords at the bottom. Thus all tangle chord diagrams with mixed chords vanish.

We are left with Zf (nS
1) = nS1. The second proof uses the invariance of Zf under moves

other than the cancellation of critical points move. Using this property, we can write the

framed Kontsevich integral of n unlinked circles as the framed Kontsevich integral of n

parallel circles of same radius a > M separated by a distance Λ � a. For Λ very large,

chords stretching from one circle to another yield a negligible contribution to the Kontsevich

integral. Equivalently, one could have put all n circles on top of each other and we would

not have had chords between them in the expression for Zf (nS
1), thereby yielding the same

result. We are left with:

Zf (nS
1) = Zf [M](nS1) =

��n
×

(
nSZ(

�-M

�-

M

)

)
× ��n (3.34)

=
��n

× n
�-M

�-

M

× ��n = nS1 (3.35)

3.1.2 Zf(L): General case

We now tackle the general case: T is non trivial.
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Theorem 3.1.2.1 ([ChDu], [CL]). For a knot K and a distinguished tangle T : Z(K) =

ZT (K)

Proposition 3.1.2.2. For L a link and T a distinguished tangle, then Zf (L) = Zf,T (L).

Proof. The preceding Theorem is valid for links as well. Indeed, the proof consists in

squeezing the tangle T in a window of width ε and to let ε→ 0. In the limit of very small

values of ε, chords between T and the rest of L have a negligible contribution to Zf (L).

More generally, tangle chord diagrams with at least one such long chord have a negligible

contribution. In the framed case, for L with 2n local extrema, it suffices to write:

Zf (L) = Zf [M](L) =
��n

× SZ(L M-resolved)× ��n (3.36)

If we consider L M-resolved, then the part of L that constitutes T is also M -resolved. Thus by

Theorem 3.1.2.1, we have:

Zf (L) =
��n

× SZTM-resolved(L M-resolved)× ��n (3.37)

which is equal to Zf,T (L) by definition of this latter.

3.2 The statement ∆Ẑf = Ẑf∆

3.2.1 The doubling operator ∆

Before setting to prove the relation Ẑf∆ = ∆Ẑf ([LM2], [LM3], [LM4], [LM5], [LM6]), we

remind the reader what ∆ means. We first recall the well-known result Z(∆T ) = ∆Z(T )

if T is a tangle without local extrema [LM2]. We illustrate this equality with the simple

tangle T :

�
�
��

A
A
AA

-�

b

-�a

(3.38)

We now double the right strand of T to get another tangle ∆T whose Kontsevich integral
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we would like to compute. Consider:

∆T = �
�
��

A
A
AA

A
A
AA

- �

δ
(3.39)

We will display only the degree 1 terms of Z(∆T ):

Z(∆T ) = · · · ± 1

2πi
log

a

b �
�
��

A
A
AA

A
A
AA

± 1

2πi
log

a+ δ

b+ δ �
�
��

A
A
AA

A
A
AA

+ · · ·

while:

∆Z(T ) = · · ·+ ∆

(
± 1

2πi
log

a

b �
�
��

A
A
AA

)
+ · · · (3.40)

= · · · ± 1

2πi
log

a

b
· ∆

�
�
��

A
A
AA

+ · · · (3.41)

= · · · ± 1

2πi
log

a

b �
�
��

A
A
AA

A
A
AA

± 1

2πi
log

a

b �
�
��

A
A
AA

A
A
AA

+ · · · (3.42)

which shows that Z(∆T ) = ∆Z(T ) is true only in the limit δ → 0. Thus in general writing

∆T means the replica of the tangle T is geometrically infinitesimally close to T itself and

thus can be considered to be analytically coincident with the domain of T . We adopt the

notation ∆(δ) to denote the map on tangles that creates a replica of a tangle a distance δ

off of it. Some ambiguity arises concerning the position of the replica, whether it should be

to the right or to the left of an original tangle without local extrema, and what convention

is to be used when there are local extrema. Typically it will be clear from the context what

∆(δ) does. Irrespective of the particular ∆(δ), one has:

Z(∆T ) = Z(lim
δ→0

∆(δ)T ) (3.43)

which is independent of the distance between the original tangle and its copy. We will call

∆T a doubled tangle and ∆(δ)T a δ-doubled tangle for δ 6= 0.
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Lemma 3.2.1.1. ([LM2]) Z(∆T ) = ∆Z(T ) if T has no local extrema, nor does it have

pinched extremities.

Proof. It suffices to write:

Z(∆T ) = Z(lim
δ→0

∆(δ)T ) = ∆Z(T ) (3.44)

Warning 3.2.1.2. The statement Z(∆T ) 6= ∆Z(T ) if T has a local extremum is properly

written Z(∆(δ)T ) 6= ∆Z(T ) if δ 6= 0. Pinched extremities have not been considered in the

literature so far, and a same remark would hold in that case. In words, the vanishing of

the coefficient of chords with feet on parallel δ-doubled strands is no longer true in case

we double a local extremum or a pinched extremity. Without loss of generality, consider

a tangle consisting of a single local maximum, its feet being separated by a distance 2a.

By invariance of Z under horizontal deformations including tweaking local extrema into

needles, it suffices to consider Z of a semi-circle of radius a. At the first order already, the

coefficient of:

a a +δ-a-a -δ
(3.45)

is:

1

(2πi)
log

√
(a+ δ)2 − a2 −

√
a2 − a2

δ

=
1

(4πi)
log

2a+ δ

δ
(3.46)
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The chord diagram with a same short chord on the right hand side has the same coefficient.

For a δ-doubled local max, we also have long chords of the form:

a a +δ-a-a -δ
(3.47)

with the following coefficient in the Kontsevich integral, using the same orientations as

above for consistency:

− 1

(2πi)
log

√
(a+ δ)2 − a2 +

√
a2 − a2

2a+ δ

= − 1

(2πi)
log

√
δ
√

2a+ δ

2a+ δ

= − 1

(4πi)
log

δ

2a+ δ

=
1

(4πi)
log

2a+ δ

δ
(3.48)

The chord diagram with a long chord:

a a +δ-a-a -δ
(3.49)

has the same coefficient. What we have so far is that long chords and short chords have
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the same coefficient, and thus the first order term of the Kontsevich integral of a δ-doubled

local max is equal to (1/(πi)) log(2a+ δ)/δ, which is non zero. What we have shown is that

the Kontsevich integral of a δ-doubled local max is non trivial, and likewise the Kontse-

vich integral of a δ-doubled local min is non trivial either. This means in particular that

∆Z(T ) = Z(∆(δ)T ) is not true of tangles T with local extrema since the statement is not

even true in first order.

3.2.2 The relation between ∆Ẑf and Ẑf∆

By definition of ∆, we can now make sense of Zf (∆K). The following Lemma is a statement

about Zf [M](∆(δ)T ). The Proposition that follows proves that Zf (∆K) = ∆Zf (K).

Lemma 3.2.2.1. ([LM2]) If T has a local extremum, M > 0, δ > 0, then Zf [M](∆(δ)T ) 6=

∆Zf [M](T ).

Proof. It suffices to consider the tangle:

Ta =

��
� -
a

(3.50)

a semi-circle of radius a. We have:

Zf [M](∆(δ)Ta) =
��2

× SZ((∆(δ)Ta)
M-resolved) (3.51)

= SZ(∆(δ)Ta) + other terms (3.52)

where “other terms” are tangle chord diagrams with at least one chord that would have

been isolated on ∆(δ)Ta in the unframed case. Thus in degree 1, the only tangle chord

diagram with a chord between Ta and its replica is coming from SZ(∆(δ)Ta) where we have

4 occurrences of such a term:

��'$
,

��'$
,

��'$
and

��'$
(3.53)
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with overall coefficient
1

πi
log((2a+ δ)/δ) (3.54)

On the other hand:

∆Zf [M](Ta) = ∆
(��

× SZ(T M-resolved

a )
)

(3.55)

= ∆
(��

× SZ( �-
a

�-M

)
)

(3.56)

= ∆
��

×∆SZ( �-
a

�-M

) (3.57)

= ∆
��

× SZ(∆ �-
a

�-M

) (3.58)

= ∆
��

×
(
α lim
ε→0

- � ε

+ α + · · ·
)

(3.59)

with α = limε→0−1/2πi log((M + ε)/(a + ε)) = −1/2πi logM/a (note that this is one

operation we wouldn’t have been able to do at local extrema), yielding an overall coefficient

of −1/πi log(M/a) for the degree one tangle chord diagram with one chord between Ta and

its replica. This is finite, whereas (3.54) is large for small values of δ. Not only are the

coefficients of Zf (∆(δ)Ta) and ∆Zf (Ta) different, they have unlike behaviors as δ becomes

very small.

In the preceding Lemma we studied the limiting behavior of Zf [M](∆(δ)T ) as δ → 0

and saw that it was different from ∆Zf [M](T ). However this does not say anything about

Zf [M](∆T ) as it equals Zf [M](limδ→0 ∆(δ)T ).

Note that the result that follows was initially proved in [LM2] for the parameter-free Ẑf

and what we call the δ-doubling map in this work.
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Proposition 3.2.2.2. ∆Zf (K) = Zf (∆K).

Proof. On knots, Zf = Zf [M] for all M > 0. Fix M > 0. By multiplicativity of Zf [M], it

suffices to consider the doubling operation on one local extremum and one pinched extremity.

Without loss of generality we can consider a local maximum. The proof for a roof-shaped

extremity is exactly the same. We have:

Zf [M](

��
� -
a

) =
��

× SZ( �-
a

�-M

) (3.60)

Thus if we double the local max, we get:

Zf [M](∆

��
� -
a

) = lim
δ→0

��
�-
M + 2δ
×

(��
× SZ(

(
lim
δ→0

��'$
- �δ

)M-resolved

)

)
(3.61)

=
��2

× SZ(∆ �-
a

�-M

) (3.62)

= ∆
��

×∆SZ( �-
a

�-M

) (3.63)

= ∆Zf (

��
� -
a

) (3.64)

Corollary 3.2.2.3. If L is an e-components framed oriented link, Ki a component of L,

1 ≤ i ≤ e, ∆i the doubling map on Ki, then

∆iZf (L) = Zf (∆iL) (3.65)

Proof. There are three types of chords to consider: chords none of whose feet are on Ki, for

which the contribution to Zf (L) make (3.65) true, chords that have only one foot on Ki,

with a corresponding contribution to Zf (L) that make (3.65) hold by definition of ∆i, and

chords both of whose feet are on Ki, for which we invoke Proposition 3.2.2.2 above.
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Corollary 3.2.2.4.

∆ν−1 = ν−1 ⊗ ν−1 (3.66)

Proof. It follows from the previous proposition applied to K = U and the fact that ν =

Zf (U)−1 that:

ν−1 ⊗ ν−1 = Zf (∆U) = ∆Zf (U) = ∆ν−1 (3.67)

Proposition 3.2.2.5. For K and K ′ two knots, α =
∑

P cPKP and β =
∑

Q dQK
′
Q in Â(K)

and Â(K ′) respectively, we have:

∆α ·∆β = ∆(α · β) (3.68)

where the product ∆α ·∆β is defined by:

∆
α− ∪� ·∆ β − ∩

� �
=

∆(β − ∩)

����•
∆(α− ∪)

���
=

∆(β − ∩)

∆(α− ∪)

(3.69)

Proof. On the one hand:

∆α ·∆β =
∑

cPdQ∆KP ·∆K ′Q (3.70)

On the other hand:

∆(α · β) =
∑

cPdQ∆(KP ·K ′Q) (3.71)

We show ∆KP · ∆K ′Q = ∆(KP · K ′Q) from which the result will follow. If we isolate the

local minimum of K that will be used in the product, removing this local minimum the
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remaining tangle is denoted by K+. Likewise if we isolate the local maximum of K ′ that

will be used in the product, removing this local maximum the remaining tangle is denoted

by K ′−. Then we consider:

∆
K+

P� ·∆ K′−
Q

� �
=

∆K′−
Q

����•
∆K+

P���
=

∆K′−
Q

∆K+
P

(3.72)

= ∆(KP ·KQ) (3.73)

Lemma 3.2.2.6.
(

∆ν−1
)−1

= ∆ν

Proof. It follows from the previous Proposition that:

∆ν−1 ·∆ν = ∆(ν−1 · ν) = ∆1 = 1 (3.74)

Corollary 3.2.2.7. ([LM4]) ∆ν = ν ⊗ ν.

Proof. From the previous Lemma ∆ν = (∆ν−1)−1. By Corollary 3.2.2.4 this equals (ν−1 ⊗

ν−1)−1, which equals ν ⊗ ν.

Corollary 3.2.2.8. ∆(νp) = νp ⊗ νp for all p ∈ Z.

Proof. Fix p ∈ Z. By Proposition 3.2.2.5, we have ∆(νp) = (∆ν)p. By Lemmas 3.2.2.4 and

3.2.2.7, we have that this equals (ν ⊗ ν)p, which is further equal to νp ⊗ νp.

Theorem 3.2.2.9. ([LM2]) For an e-component link L, ∆i the doubling map on the i-th

component, 1 ≤ i ≤ e we have Ẑf (∆iL) = ∆iẐf (L).
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Proof. By definition, one has:

Ẑf (L) = νm1 ⊗ · · · ⊗ νme · Zf (L) (3.75)

Thus if one doubles the i-th component, 1 ≤ i ≤ e:

∆iẐf (L) = ∆i(ν
m1 ⊗ · · · ⊗ νme · Zf (L)) (3.76)

= νm1 ⊗ · · · ⊗∆i(ν
mi)⊗ · · · ⊗ νme ·∆iZf (L) (3.77)

= νm1 ⊗ · · · ⊗ (∆iν)mi ⊗ · · · ⊗ νme ·∆iZf (L) (3.78)

= νm1 ⊗ · · · ⊗ 1⊗ · · · ⊗ νme ·
(

(∆iν)mi ·∆iZf (L)
)

(3.79)

= νm1 ⊗ · · · ⊗ 1⊗ · · · ⊗ νme ·
(

(ν ⊗ ν)mi ·∆iZf (L)
)

(3.80)

= νm1 ⊗ · · · ⊗ (ν ⊗ ν)mi ⊗ · · · ⊗ νme ·∆iZf (L) (3.81)

= νm1 ⊗ · · · ⊗ (νmi ⊗ νmi)⊗ · · · ⊗ νme ·∆iZf (L) (3.82)

= νm1 ⊗ · · · ⊗ (νmi ⊗ νmi)⊗ · · · ⊗ νme · Zf (∆iL) (3.83)

= Ẑf (∆iL) (3.84)

where in (3.78) we have used Lemma 3.2.2.7, and in (3.82) we used ∆Zf = Zf∆ (Proposition

3.2.2.2). This being true for any 1 ≤ i ≤ e, the result follows: Ẑf (∆) ≡ ∆Ẑf .
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Chapter 4

Behavior of the Kontsevich integral
under band sum moves

In [LM3], [LM5], [LM6], Le, Murakami and Ohtsuki considered the band sum move of one

link component over another by locally considering the two link components of interest to

be side by side. The band sum thus looks horizontal as in:

7→ � ��  (4.1)

Kontsevich introduced a modified Kontsevich integral in his seminal paper [K] that turned

out to be multiplicative under connected sum. The band sum move being somewhat similar

in nature to a connected sum, one could investigate whether this modified integral is also

well-behaved under band sum moves for which link components of interest are locally on

top of each other. In this case the band sum looks like:

����7→ �� (4.2)

We claim that once we generalize Kontsevich’s modified integral for knots to links this is

indeed the case. A band sum move of some component Ki over some other component Kj

of a link L is effected by doubling Kj into itself and a copy that we will denote by K
(2)
j and
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then by connect summing Ki with this copy K
(2)
j .

4.1 Unlinked case

We assume both Ki and Kj have orientations such that the band sum move of Ki over

Kj results in the addition of Ki to Kj in the terminology of [RK1]. The case of reverse

orientations will be treated in Section 8. We want to compute the Kontsevich integral of:

Ki#∆Kj

{
�� ���� ��Kj

�� ��
�
�
�
�Ki#K

(2)
j

(4.3)

where Ki#∆Kj is a short-hand for (Ki#K
(2)
j )qKj. We have:

Proposition 4.1.1. If Ki and Kj are unlinked:

Ẑf (Ki#∆Kj) = ν−1 ⊗ 1 · Ẑf (Ki) ·∆Ẑf (Kj) (4.4)

Proof. We compute:

Ẑf ( �� ���� ��
�� ��
�
�
�
�) = Ẑf ( �� ��� 
��

) = Ẑf [M]( �� ��� 
��

) (4.5)

= Ẑf [M](

��
)× Ẑf [M](
�� ��� ) (4.6)

where in the second line:

Ẑf [M](

��
) := Ẑf [M](K+

i ) (4.7)

Ẑf [M](
�� ��� ) := Ẑf [M](Kj qK(2)−

j ) (4.8)
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We seek to rewrite (4.6). It suffices to consider:

Ẑf (Ki) = Ẑf [M](Ki)

= Ẑf [M](K+
i )× Ẑf [M]( � ) (4.9)

= Ẑf [M](K+
i )× Zf [M]( � ) (4.10)

as well as:

Ẑf (∆Kj) = Ẑf [M](∆Kj) = Ẑf [M](

��
)× Ẑf [M](Kj qK(2)−

j ) (4.11)

= ν ⊗ 1 · Zf [M](

��
)× Ẑf [M](Kj qK(2)−

j ) (4.12)

where the first component in the tensor product refers to K
(2)
j and the second to Kj proper.

Then:

Zf [M](

��
)× Ẑf [M](Kj qK(2)−

j ) = ν−1 ⊗ 1 · Ẑf (∆Kj) (4.13)

= ν−1 ⊗ 1 ·∆Ẑf (Kj) (4.14)
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by Theorem 3.2.2.9 which states that ∆Ẑf = Ẑf (∆). Then we can rewrite (4.6) as:

Ẑf [M](

��
)× Ẑf [M](
�� ��� )

=Ẑf [M](

��
)× Ẑf [M]( )× Ẑf [M](

�� ��� ) (4.15)

=Ẑf [M](

��
)× SZ( )× Ẑf [M](

�� ��� ) (4.16)

=Ẑf [M](

��
)×

(
SZ( �-

M

)× ��#��× SZ(

�-M

)
)

× Ẑf [M](
�� ��� ) (4.17)

=
(
Ẑf [M](K+

i )× Zf [M]( �))#
(
Zf [M](
��

)× Ẑf [M](Kj qK(2)−
j )

)
(4.18)

=
(
Ẑf [M](K+

i )× Zf [M]( �))#
(
ν−1 ⊗ 1 ·∆Ẑf (Kj)

)
(4.19)

= Ẑf (Ki) · (ν−1 ⊗ 1 ·∆Ẑf (Kj)) (4.20)

= ν−1 ⊗ 1 · Ẑf (Ki) ·∆Ẑf (Kj) (4.21)

so we have essentially proved that we have:

Ẑf (Ki#∆Kj) = ν−1 ⊗ 1 · Ẑf (Ki) ·∆Ẑf (Kj) (4.22)

Remark 4.1.2. Observe that (4.22) written in the form:

Ẑf (Ki#∆Kj) = ν−1 ⊗ 1 · Ẑf (Ki) · Ẑf (∆Kj) (4.23)

is surprisingly similar to the statement [K]:

Ẑf (Ki#Kj) = ν−1 ⊗ 1 · Ẑf (Ki) · Ẑf (Kj) (4.24)

One now defines, as Kontsevich did, a modified version of the hatted Kontsevich integral.
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Definition 4.1.3. We define Z̃f to be Ẑf with the provision that every link component in

its argument has a factor of ν−1 multiplying it. Equivalently:

Z̃f (L) = ν−1 ⊗ · · · ⊗ ν−1 · Ẑf (L) (4.25)

Proposition 4.1.4. ([K]) If Ki and Kj are unlinked:

Z̃f (Ki#∆Kj) = Z̃f (Ki) ·∆Z̃f (Kj) (4.26)

Proof. Multiplying both sides of (4.22) by ν−1 ⊗ ν−1 where the first ν−1 factor acts on

Ki#K
(2)
j , the second on Kj, we get:

ν−1 ⊗ ν−1 · Ẑf (Ki#∆Kj) = ν−1 ⊗ 1 · Ẑf (Ki) · ν−1 ⊗ ν−1 ·∆Ẑf (Kj) (4.27)

Now using:

ν−1 ⊗ ν−1 ·∆Ẑf (Kj) = ∆(ν−1) ·∆Ẑf (Kj) (4.28)

= ∆(ν−1 · Ẑf (Kj)) (4.29)

= ∆Z̃f (Kj) (4.30)

we get:

Z̃f (Ki#∆Kj) = Z̃f (Ki) ·∆Z̃f (Kj) (4.31)

On the other hand for two unlinked knots:

Proposition 4.1.5. If Ki and Kj are unlinked:

Z̃f (Ki qKj) = Z̃f (Ki) + Z̃f (Kj) (4.32)

Proof. For two unlinked knots, we have:

Ẑf (Ki qKj) = Ẑf (Ki) + Ẑf (Kj) (4.33)
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That this is true is immediate. It suffices to compute Ẑf (KiqKj) in two ways. The first is

performed by putting the two knots side by side, so that:

Ẑf (Ki qKj) = Ẑf (Ki) + Ẑf (Kj) + terms with chords between Ki and Kj (4.34)

The second way to perform this computation is by putting one knot above the other, in which

case we do not get chords between one component and the other, and by isotopy invariance

of Ẑf it follows that in the above sum the terms with chords between the two components

vanish and we are left with (4.33). From there, by modifying the hatted Kontsevich integral

for each component, we get:

ν−1 ⊗ ν−1 · Ẑf (Ki qKj)

= (ν−1·)⊗ (ν−1·)Ẑf (Ki qKj) (4.35)

= (ν−1·)⊗ (ν−1·)
(
Ẑf (Ki) + Ẑf (Kj)

)
(4.36)

= ν−1 · Ẑf (Ki) + ν−1 · Ẑf (Kj) (4.37)

or:

Z̃f (Ki qKj) = Z̃f (Ki) + Z̃f (Kj) (4.38)

Remark 4.1.6. Before the band sum move, we have:

Z̃f (Ki qKj) = Z̃f (Ki) + Z̃f (Kj) (4.39)

and after the band sum move:

Z̃f (Ki#∆Kj) = Z̃f (Ki) ·∆Z̃f (Kj) (4.40)

The essence of these two statements is that whatever chords we have on the j-th component

in the expression for Z̃f before band sum move are doubled after the move.
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4.2 Linked case

We now treat the general case wherein Ki and Kj are linked to other components of the

given link they are part of, and are linked between themselves. In this case the desired map

on Ẑf that should be induced by the band sum move on link components turns out to be

non-existent. A way around this difficulty amounts to fixing a small window in which only

strands from the link components involved in the band sum show, and are disconnected

from the rest of the link as it were, or “frozen”, and then a map on Ẑf induced by the

band sum on link components with a fixed window can be worked out ([DM]). In [O],

[LM3], [LM5], [LM6] the window is fixed so that the two link components involved in the

band sum are side by side. We chose a window in which they are locally on top of each other.

If L is the link under consideration, we can arrange that by isotopy invariance of Ẑf we

just have to compute:

Ẑf (L) = Ẑf ( T

&%& %

'$' $

� �� � ) (4.41)

where the tangle T represents the link L minus one local max from Ki and one local min

from Kj, both local extrema having been moved to a side using the isotopy invariance of

Ẑf . Using the same trick, it suffices to compute:

Ẑf (L
′) = Ẑf [M](L′) = Ẑf [M]( ∆jT

&%&%& %& %

'$' $

������ ) (4.42)
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Proposition 4.2.1. If L is an e-components framed oriented link, L′ is the link resulting

from the band sum of a link component Ki over some other link component Kj, 1 ≤ i, j ≤ e,

then:

Ẑf (L
′) =

ν
-�
M

·∆jẐf [M](L \ � �� �) (4.43)

where · is the product on Z induced by the long chords lemma ([ChDu]) and L \ � �� �is the

link L from which its portion involving Ki and Kj to the left that looks like � �� �has been

severed.

Proof.

Ẑf [M]( ∆jT

&%&%& %& %

'$' $

������ ) (4.44)

= Ẑf [M](
��'$

)× Ẑf [M](
-

-

�

�

M

M

� ����� ∆jT )× Ẑf [M]( &%&%& %& %
)

= Ẑf [M](
��'$

)×

(
Ẑf [M]( � ����� ) + Ẑf [M]( ∆jT )

)

× Ẑf [M]( &%&%& %& %
)
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where in the second step we have used the long chords lemma ([ChDu]). In the same

paper it is shown that the long chords lemma induces a product on tangle chord diagrams

written ·, that in this case would read:

Ẑf [M]( � ����� ) · Ẑf [M]( ∆jT

&%&%& %& %

'$' $

) (4.45)

Note that this product is not the product on Â induced by the connected sum of S1’s,

nor is it a concatenation per se. All that is left is to compute the first term in the product

as the second exactly equals:

Ẑf [M](∆j

(
L \ � �� �)) = ∆jẐf [M](L \ � �� �) (4.46)

Lemma 4.2.2.

Ẑf [M](
��
-�

-�

M

M

) =
ν
-�
M

(4.47)

Proof. We present two proofs. The first proof consists in computing Zf (
��

) exactly. It

suffices to write:

-�
M

����
= Zf [M](
����

) (4.48)

= Zf [M](
����

) (4.49)

= Zf [M](
��

)× Zf [M](
��

) (4.50)

=
��

× Zf [M](
��

) (4.51)
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where in the first step we used the fact that the two strands are analytically coincident and

thus are M -resolved together. Moreover, since the base is chosen to be M , Zf [M](
����

) is

trivial. In the second step we used the invariance of Zf [M] under the stretching move thus

displayed. It follows that:

Zf (
��

) =
��

(4.52)

and:

Ẑf [M](
��

) = 1⊗ ν · Zf [M](
��

) =
ν

(4.53)

Second proof:

Ẑf [M](
��
-�

-�

M

M

) = × Ẑf [M](
��

) (4.54)

= ��#��× Ẑf [M](
��

) (4.55)

=

(
Ẑf [M](��)#Zf [M](

��
)

)
× Ẑf [M](
��

) (4.56)

= Ẑf [M](��)#Zf [M](
��

)× Ẑf [M](
��

) (4.57)

= Zf [M](��)#ν−1 ⊗ 1 · Ẑf [M](

��
)× Ẑf [M](
��

) (4.58)

= Ẑf [M](��)#ν−1 ⊗ 1 · Ẑf [M](

��'$
) (4.59)

= #Ki

K
(2)
j

ν−1 ⊗ 1 · Ẑf [M]( � ����) (4.60)

where in the last relation we denoted by #Ki

K
(2)
j

a connected sum between Ki and K
(2)
j and

we used the following lemma:

Lemma 4.2.3.

Ẑf [M](��)#Ẑf [M](

��'$
) = #Ki

K
(2)
j

Ẑf [M]( � ����) (4.61)
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Proof. Consider the following tangle:

� ���� (4.62)

Then:

Ẑf [M]( � ����) = Ẑf [M]( ��)× Ẑf [M](
����

) (4.63)

so that:

#Ki

K
(2)
j

Ẑf [M]( � ����) = #Ki

K
(2)
j

(
Ẑf [M]( ��)× Ẑf [M](

����
)
)

(4.64)

If in either expression we consider only those tangle chord diagrams none of whose chords

have any foot on the straight strand, then:

#Ki

K
(2)
j

Ẑf [M]( � ����) = Ẑf [M]( ��)#Ẑf [M](
����

) (4.65)

So far we have:

Ẑf [M](
��

) = #Ki

K
(2)
j

ν−1 ⊗ 1 · Ẑf [M](������) (4.66)

We have:

Ẑf [M](
����

) = ν ⊗ ν · Zf [M](∆
��
-�

M

) (4.67)

In Zf (∆
��

) there are no non-self chords between one local max and its replica as they

would be integrated from M at the top down to the base which is of width M . Thus:

Zf [M](∆
��
-�

M

) =
����

(4.68)
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From which it follows that:

Ẑf [M](
����

) =
ν

ν

(4.69)

and:

Ẑf [M](������) = ν

ν

��
(4.70)

so that:

ν−1 ⊗ 1 · Ẑf [M](������) = ν

����
(4.71)

From which we get:

Ẑf [M](
��

) = #Ki

K
(2)
j

ν

����
=

ν
(4.72)

This completes the proof of the Lemma.

Back to the proof of the Proposition:

Ẑf [M](L′) = Ẑf [M](
��

) ·∆jẐf [M](L \ � �� �) (4.73)

=
ν
·∆jẐf [M](L \ � �� �) (4.74)

Proposition 4.2.4. For L an e-components framed oriented link, L′ the link resulting from

the band sum move of one component Ki over some other component Kj, 1 ≤ i, j ≤ e, then
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the resulting induced map on Z̃f is given by:

Z̃f (L) = Z̃f [M](L) =
ν

· Z̃f [M](L \ � �� �) (4.75)

7−→ Z̃f (L
′) = Z̃f [M](L′) =

∆ν
·∆jZ̃f [M](L \ � �� �) (4.76)

which we can symbolically write as:

Z̃f (L) =
∑

λ

� �
� �ppp
� �pp
pppppp

7−→ Z̃f (L
′) =

∑
λ

∆� �
� �
� �pp
p
pppppppp

(4.77)

Proof. The previous proposition showed that:

Ẑf (L) = Ẑf [M](L) =
ν
· Ẑf [M](L \ � �� �) (4.78)

7−→ Ẑf (L
′) = Ẑf [M](L′) =

ν
-�
M

·∆jẐf [M](L \ � �� �) (4.79)

We will use this statement and determine what normalization Z̃f leads to a statement of

the form:

Z̃f (L) =
∑

λ

� �
� �ppp
� �pp
pppppp

7−→ Z̃f (L
′) =

∑
λ

∆� �
� �
� �pp
p
pppppppp

Let Z̃f be Ẑf with the provision that every link component in the expression of Ẑf (L)
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is multiplied by νp for some p yet to be determined. Without loss of generality we can

work with a two component link. The proof for other link components in addition to those

involved in the band sum move is the same but is just a clutter of tensor products. Before

band sum move:

Z̃f [M ](L) = νp ⊗ νp · Ẑf [M](L) (4.80)

= νp ⊗ νp ·
ν
· Ẑf [M](L \ � �� �) (4.81)

=
ν1+p

νp

· Ẑf [M](L \ � �� �) (4.82)

=
ν
· Z̃f [M ](L \ � �� �) (4.83)
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After the band sum move:

Z̃f [M ](L′) = νp ⊗ νp ·
ν
·∆Ẑf [M](L \ � �� �) (4.84)

= νp ⊗ νp ·
ν
·∆
(
ν−p ⊗ ν−p · Z̃f [M ](L \ � �� �)) (4.85)

= νp ⊗ νp ·
ν
· ν−p ⊗ ν−p ⊗ ν−p ·∆Z̃f [M ](L \ � �� �) (4.86)

= νp ⊗ νp ·
ν1−p

ν−pν−p

·∆Z̃f [M ](L \ � �� �) (4.87)

= νp ⊗ νp · ν−2p ⊗ ν1−p ·
��

·∆Z̃f [M ](L \ � �� �) (4.88)

= ν−p ⊗ ν ·
��

·∆Z̃f [M ](L \ � �� �) (4.89)

= ν−p/2 · ν−p/2 ⊗ ν ·
��

·∆Z̃f [M ](L \ � �� �) (4.90)

=
ν

ν
− p

2ν
− p

2

·∆Z̃f [M ](L \ � �� �) =
ν

ν
1
2

ν
− p+1

2

ν
1
2

ν
− p+1

2

·∆Z̃f [M ](L \ � �� �) (4.91)

=

ν
− p+1

2

∆ν

ν
− p+1

2

·∆Z̃f [M ](L \ � �� �) (4.92)
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Thus if we want a statement of the form:

� �
� �ppp
� �pp
pppppp

7−→
∆� �
� �
� �pp
p
pppppppp

then using (4.83) it follows that we must have p = −1, whence the result.
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Chapter 5

The book notation

5.1 Linking matrix and degree 1 Kontsevich integral

It was originally Kontsevich’s idea ([K]) to generalize Gauss’ definition of the linking number

via an integral, to the algebraic completion of the sum of generalized such integrals valued

in tangle chord diagrams. The old observation of Yetter [Y2] that the degree 1 part of the

framed Kontsevich integral of a link with labeled components behaves like the linking matrix

under band sum move is thus not very surprising, though it has been generally overlooked

in most of the literature that tends to focus on knots rather than links. He sees that as a

motivation for introducing the book notation that we will cover in the next section. For

now we show his claim in the simple case of a two component link L = Ki ∪Kj where the

two knots Ki and Kj are trivial and unlinked for the simplicity of exposition. We take the

following basis for A(S1 q S1):

1

2

�
�
�
�
�
�
�
� (5.1)

1

2

�
�
�
�
�
�
�
� (5.2)

�
�
�
�
�
�
�
� (5.3)
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We write:

Z1(L) = ci

(
1

2

�
�
�
�
�
�
�
�
)

+ cj

(
1

2

�
�
�
�
�
�
�
�
)

+ cij

( �
�
�
�
�
�
�
�
)

(5.4)

After the band sum move of Ki over Kj, the resulting link is denoted by L′ and we have:

Z1(L′) = ci

(
1

2

�
�
�
�
�
�
�
�
)′

+ cj

(
1

2

�
�
�
�
�
�
�
�
)′

+ cij

( �
�
�
�
�
�
�
�
)′

(5.5)

= ci

(
1

2

�
�
�
�
�
�
�
�
)

+ cj

(
1

2

�
�
�
�
�
�
�
�+

1

2

�
�
�
�
�
�
�
�±
�
�
�
�
�
�
�
�
)

+ cij

(
±
�
�
�
�
�
�
�
�+
�
�
�
�
�
�
�
�
)

(5.6)

= [ci + cj ± 2cij]

(
1

2

�
�
�
�
�
�
�
�
)

+ cj

(
1

2

�
�
�
�
�
�
�
�
)

+ [±cj + cij]

( �
�
�
�
�
�
�
�
)

(5.7)

Now observe that in the basis for A(S1 q S1) we chose, the coefficients of Z1 transform like

the linking matrix entries under band sum move:

Li 7→ L′i = Li + Lj ± 2Lij (5.8)

Lj 7→ L′j = Lj (5.9)

Lij 7→ L′ij = Lij ± Lj (5.10)

The matrix congruence that implements the band sum move on both the coefficients of

Z1(L) and the linking matrix is given by:

M =

�
�
�
�

1

±1 1

0

(5.11)
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We check that if:

A =

�
�
�
�

aii

aji ajj

aij

(5.12)

stands for either of �
�
�
�

Li

Lji Lj

Lij

or

�
�
�
�

ci

cji cj

cij

(5.13)

with Lij = Lji and cij = cji, then:

MTAM =

�
�
�
�

1

0 1

±1
�
�
�
�

aii

aji ajj

aij
�
�
�
�

1

±1 1

0

=

�
�

�
�

aii + ajj ± 2aij

aji ± ajj ajj

aij ± ajj
(5.14)

In the following, we seek to generalize such a transformation.

5.2 Books of matrices

Note that in the previous section, as is customary whenever we compute the Kontsevich

integral of tangles, the diagrams are tangle chord diagrams and not chord diagrams as

elements of Â(
∐
S1) as initially defined by Kontsevich. Indeed, for a link L sliced into n

horizontal strips in each of which we have a tangle Ti, 1 ≤ i ≤ n such that L = T1×· · ·×Tn, it

is generally understood that when we compute Ẑf (L) by using the multiplicativity property

of the Kontsevich integral Ẑf :

Ẑf (L) = Ẑf (T1)× · · · × Ẑf (Tn) (5.15)

the resulting object Ẑf (L) is a sum of tangle chord diagrams with coefficients in front of

each diagram being obtained from the Kontsevich integral itself. By definition, Z̃f is also

multiplicative and Z̃f (L) is also a sum of tangle chord diagrams with complex coefficients.

The Kontsevich integral Z̃f of a link L can be written:

Z̃f (L) =
∑

chord diagr. X

cXX =
∑
m≥0

∑
|X|=m

cXX (5.16)
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where by |X| = m we mean that the tangle chord diagram X has chord degree m, and we

sum over all such tangle chord diagrams, for all m ≥ 0. In what follows, we fix m ≥ 1. We

will be working with an e-component link L =
∐

1≤l≤eKl.

5.2.1 Vertical slicing of tangles

Before slicing links, we have to fully determine where local extrema will be located on any

given link. The definitions of Ẑf and Z̃f each introduce factors of ν = Zf (U)−1 which will

yield additional local extrema on the link L upon acting on Zf (L). Since those factors of ν

are acting on local maxima, it suffices to consider products of the form:

ν · Zf [Q](

��
� -
a

)

for Q > 0. Observe that if we write:

Zf ( � �� �� ��� ) =
∑
|P |≥0

cP ·

(
� �� �� ���

)
P

(5.17)

then:

ν = Zf ( � �� �� ��� )−1 =
∑
|P |≥0

dP ·

(
� �� �� ���

)
P

(5.18)

with coefficients dP such that

ν · Zf ( � �� �� ��� ) = � �� �� ��� (5.19)
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It follows that:

ν · Zf [Q](

��
� -
a

) = ν ·
��

× SZ( �-
a

�-Q

) (5.20)

=
∑
|P |≥0

dP ·

(
� �� �� ���

)
P

#
��

×
∑
|R|≥0

eR ·

(
�-
a

�-Q )
R

=
∑

|P |,|R|≥0

dP eR ·

( )
(P,R)

(5.21)

This simple computation shows that the skeleton L will be modified in the expression for

Zf (L) by the introduction of a hook of the above form at each local max but for one local

max on each component by definition of Z̃f .

Definition 5.2.1.1. Let L̃ be the link L with all but one local max on each component

being tweaked into a left pointing hook as above.

We consider the band sum move of Ki over Kj. The result of such a band sum move is

denoted by L′. However we work with L̃ and L̃′ as the rest of the section will make clear.

We slice L̃ into N vertical strips as follows. For a local maximum on the s-th component

Ks such as:

'$
qq q q q q q q q q���s

(5.22)

76



the slicing is performed as follows:

'$
qq q q q q q q q q���s

(5.23)

We want each local max to be enclosed within two vertical slices to distinguish neighboring

local extrema of a same component. If we call the vertical slices on either side of a local

max dividing slices, it follows in practice that consecutive local extrema share a dividing

slice is sufficient as we will see later. We do this at each local max of each component Ks of

the link L̃. We slice each local min of each component in like manner, keeping in mind that

consecutive local extrema can share dividing slices. We number those vertical strips formed

from this slicing procedure starting from the left.

In the above situation, we would have the strips with the following labels:

n-1 n n+1 n+2

'$
qq q q q q q q q q���s

(5.24)

We now discuss the labeling of the chords. For each time, we have a chord. Thus it is

natural to number the chords from the bottom up. If t1 < · · · tm are the different times cor-

responding to m different chords, then those corresponding chords will be labeled 1, · · · ,m

respectively.
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5.2.2 Matrix representation of tangle chord diagrams

Consider the generic situation of one chord stretching between 2 components of L indexed

by s and t:

n

\
\
\
\
\
\

��
��
s

p

�
�
�
�
�
�
�
�

��
��
tr r r

q q q q q q q q q q q q q q q q q q q q q q q

(5.25)

where we have displayed only portions of the s and t components on which the a-th chord

is ending, 1 ≤ a ≤ m and 1 ≤ n, p ≤ N are strip indices. We will index such a chord by

(s, t) and (n, p). Chords can be moved up or down along a link and thus their feet may end

up in vertical strips with different indices. To avoid such ambiguity, we require that chords

be moved up along the link until at least one of their feet reaches a local max.

We represent each such chord by a eN × eN matrix in the basis given by the ordering

of the components, and of the strips, as (1, 2, · · · , N, 1, 2, · · · , N, · · · , N) the first N vectors

1, 2, · · · , N corresponding to the first component of L, followed by those for the second

component, and so on, until the e-th component. The st block of that matrix will carry

information about chords between the s and t components of the link. In the above situation,

the st block has all its entries zero, except the np entry which is one. Note that the matrix is

symmetric, so all blocks are empty for that particular chord, except the ts-th one, whose pn

entry is one as well. We represent such a matrix as follows where without loss of generality
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we have chosen s < t and n < p:

@
@
@
@
@
@
@
@
@
@
@@

@
@
@
@
@

@
@
@
@
@

�

�

�

�
t

s

s t

1p

n

1n

p

(5.26)

We will refer to such a matrix as a page, and we denote it by As,t,n,p with obvious notations.

We do this for all chords of a given tangle chord diagram X of degree m. The informa-

tion about its chords will therefore be given by m ordered pages from the bottom up, the

collection of which will be referred to as a book. We denote a book as follows:

AI,J,U,V := ×
1≤a≤m

Aia,ja,ua,va (5.27)

where I, J , U and V are multi-indices defined by:

I = (i1, · · · , im) (5.28)

J = (j1, · · · , jm) (5.29)

U = (u1, · · · , um) (5.30)

V = (v1, · · · , vm) (5.31)

with 1 ≤ il, jl ≤ e are component indices, 1 ≤ ul, vl ≤ N are strip indices for 1 ≤ l ≤ m. We

denote the size of such multi-indices by |I| = |J | = |U | = |V | = m. In the above example,

for the a-th chord, we have ia = s, ja = t, ua = n and va = p. In the product of pages

defining a book, pages are ordered from the bottom up. Now instead of using the notation

X for a tangle chord diagram, we use the book notation AI,J,U,V which incorporates the
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information about the chords on the tangle. We have:

Zf (L) =
∑
chord

diagr. X

aXX =
∑
m≥0

∑
|I|=|J |=m
|U |=|V |=m

aI,J,U,VAI,J,U,V (L) (5.32)

However Z̃f (L) uses powers of

ν = Zf (U)−1 = Zf ( � �� �� ��� ) (5.33)

and with the above slicing performed on L̃ we are able to use books AIJUV (L̃) = AIJUV .

We can therefore write:

Z̃f (L) =
∑
chord

diagr. X

cXX =
∑
m≥0

∑
|I|=|J |=m
|U |=|V |=m

cI,J,U,VAI,J,U,V (5.34)

where we have cI,J,U,V := cAIJUV .
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Chapter 6

Behavior of the Kontsevich integral
Z̃f under band sum moves using the
book notation

What we have in (1.30) is the following: if hij denotes the band sum move map on links

corresponding to the band sum move of the i-th component of L over its j-th component,

then we can write L′ = hij(L), so that Z̃f (L
′) = Z̃f (hijL). What we would like however is

to find a map hij induced from hij that acts on the Kontsevich integral expressed in book

notation to yield its corresponding values after band sum moves. In so doing, we use a

different notation for the Kontsevich integral in book notation as once it is written as a

linear combination of books, the resulting object is no longer a link invariant. We write bZ

for Z written in book notation. We seek a map hij that implements the band sum move

on bZ̃f . We claim that there is such a map, and that moreover for any link L, we have

hij(
bZ̃f (L)) = bZ̃f (hijL). In other terms, the following diagram is commutative:

-

?

-

?

L

bZ̃f (L) hij
bZ̃f (L) = bZ̃f (hijL)

hijL
hij

bZ̃f

hij

bZ̃f

(6.1)
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It is important to remember that using the isotopy invariance of Z̃f , we can arrange that

the band sum does not introduce new local extrema, and is far away enough from the rest

of the link L that we can use the Long Chords Lemma.

We have the following fact about books; since no two chords can be positioned at the

same height t on a tangle, pages, which represent chords, can allow for the possibility to

hold many other chords by virtue of the non-simultaneity of chords. In this manner there

is no ambiguity as to what chord in a page is represented by which entry. Further if a page

holds information about more than one chord, we can split the matrix in as many matrices

as there are chords represented in the original page. We illustrate this situation presently:

@
@
@
@
@
@
@
@
@
@
@@

�

�

�

�

1

1

1

1

l v

k u

h p

g n

g
n

h
p

k
u

l
v

(6.2)
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This represents a page carrying information about two chords, one between the g-th and

k-th components, the other between the h-th and l-th components. For the first chord, the

foot on Kg is in the n-th strip, and the foot on Kk is in the u-th strip. For the second chord,

the foot on Kh is in the p-th strip, and the foot on Kl is in the v-th strip. We have indicated

to the left and above the matrix the block indices g, h, k and l, and in small letters the

strips within the blocks where a foot is ending, and those are n, p, u and v. Such a matrix

splits as follows:

@
@
@
@
@
@

�

�

�

�
1

1

l v

k u

h p

g n

g
n
h
p
k
u
l
v

+

@
@
@
@
@
@

�

�

�

�1

1

l v

k u

h p

g n

g
n
h
p
k
u
l
v

(6.3)

Since a page holds some information about one chord only by non-simultaneity of chords, if

a page displays the information about more than one chord, we can isolate the information

about each chord as a direct sum of pages each of which carries information about a unique

chord. If we call the original matrix A and the two spin-off matrices B and C, then inserting

A in a book of m pages as follows:

A− × A× A+ (6.4)

where A− are the first m− pages of the book, and A+ are the last m+ pages, with m−+ 1 +

m+ = m, then we can write:

A− × A× A+ = A− ×B × A+ + A− × C × A+ (6.5)

representing two chord diagrams, one of which has its (m−+ 1)-st chord represented by the

page B, the other has its (m− + 1)-st chord represented by C. We have done this for a

page A containing the information about two chords. We generalize (6.4) by iterating this

process for pages that contain information about more than 2 chords and generalize (6.5)
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by iteration for books with two or more pages written as a sum of matrices. All this can be

easily summarized by saying that

⊕
m≥0

×
1≤i≤m

Symm eN×eN

forms a tensor algebra.

We now discuss the band sum move proper. By virtue of the fact that we have:

∆

6

q q q q qq q q q q = ∆

6q q q q q
× ∆

6

q q q q q (6.6)

or by abuse of notation:

∆
q q q q qq q q q q =

∆

∆ q q q q qq q q q q (6.7)

then studying the doubling of chords during the band sum move can be done one chord

after another. It suffices to work with one page at a time. During the band sum move of

the handle corresponding to the i-th component Ki over the j-th component Kj of the link

L, we encounter two different situations:

q q q

n p

lj lj

(6.8)
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where n < p. In this first case, a given chord starts and ends on the j-th component, with

matrix representation given by:

@
@
@
@
@
@
@
@
@
@
@
@@

�

�

�

�
j

i

i j

1p

1n

pn

(6.9)

where without loss of generality we have chosen i < j and the case i > j is dealt with

by a simple change of basis. Under a band sum move we obtain:

q q q
∆ ∆

n p

li lilj lj

(6.10)
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which equals:

q q q

n p

li lilj lj
+

q q q

n p

li lilj lj

+

q q q

n p

li lilj lj
+

q q q

n p

li lilj lj
(6.11)

a sum of chord diagrams that correspond, in this order, to the following sum of matri-

ces:
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@
@
@
@
@

@
@
@
@
@

@
@
@
@
@

@
@
@
@
@

�

�

�

�
j

i

i j

p

n

pn

1p

n

pn

p

n

pn

p

1n

pn

+

@
@
@
@
@

@
@
@
@
@

@
@
@
@
@

@
@
@
@
@

�

�

�

�
j

i

i j

p

n

pn

p

n

pn

1p

1n

pn

p

n

pn

+

@
@
@
@
@

@
@
@
@
@

@
@
@
@
@

@
@
@
@
@

�

�

�

�
j

i

i j

p

n

pn

p

1n

pn

p

n

pn

1p

n

pn

+

@
@
@
@
@

@
@
@
@
@

@
@
@
@
@

@
@
@
@
@

�

�

�

�
j

i

i j

1p

1n

pn

p

n

pn

p

n

pn

p

n

pn
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which combines into:

@
@
@
@
@

@
@
@
@
@

@
@
@
@
@

@
@
@
@
@

�

�

�

�
j

i

i j

1p

1n

pn

1p

1n

pn

1p

1n

pn

1p

1n

pn

(6.12)

The second situation we can have is the case where the chord starts on the j-th component

but ends on some other l-th component. Without loss of generality we can pick i < j < l.

For other arrangements of these indices we modify the basis for our matrices accordingly.

We discuss the case l = i right after since it doesn’t consist in a basis change. Pictorially

we have:

q q q

n p

lj ll

(6.13)
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with the following matrix representation:

@
@
@@

@
@
@@

�

�

�


1

1

n

p

n

p

i

j

l

i j l

(6.14)

After a band sum move we get the following chord diagram:

q q q
∆

n p

lilj ll

(6.15)

which equals:

q q q

n p

lilj ll
+

q q q

n p

lilj ll
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represented, in this order, by the sum of matrices:

@
@
@@

@
@
@@

�

�

�


1

1
i

j

l

i j l

+

@
@
@@

@
@
@@

�

�

�


1

1

i

j

l

i j l

combining into:

@
@
@@

@
@
@@

@
@
@@

@
@
@@

�

�

�


1

1

1

1

nn

n

p

n

p

i

j

l

i j l

(6.16)
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For the case l = i, we pictorially have:

q q q

n p

lj li

(6.17)

with the following matrix representation:

@
@
@
@
@

@
@
@
@
@

�

�

�

�
j

i

i j

p

1n

pn

1p

n

pn

(6.18)

After a band sum move, we get the following diagram:

q q q
∆

n p

lilj li

(6.19)

91



which equals:

q q q

n p

lilj li
+

q q q

n p

lilj li

represented in this order by the sum of matrices:

@
@
@
@
@

�

�

�

�
j

i

i j

1p

1n

pn

+

@
@
@
@
@

@
@
@
@
@

�

�

�

�
j

i

i j

p

1n

pn

1p

n

pn
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combining into:

@
@
@
@
@

@
@
@
@
@

@
@
@
@
@

�

�

�

�
j

i

i j

p

1n

pn

1p

1n

pn

1p

n

pn

(6.20)

We present now our main result:

Theorem 6.1. For an e-component link L for which the i-th component Ki is being band

summed over the j-th component Kj, the induced map on bZ̃f is denoted by hij and is

defined by:

hij
bZ̃f (L) =

∑
m≥0

∑
|I|=|J |=m
|U |=|V |=m

cIJUV ×
1≤a≤m

MT
ijAia,ja,ua,vaMij (6.21)

where Mij is an eN × eN matrix with ones on its diagonal and the ji block is the N × N

identity matrix IN . For i < j, we write such a matrix as:

1
1

q q q
1

�

�

�


j

i

i j

IN
(6.22)
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If we define:

Mm
ij := ×

1≤a≤m
Mij (6.23)

acting on books of m pages chord-wise, then we can rewrite the above formula in compact

form as:

hij
bZ̃f (L) =

∑
m≥0

∑
|I|=|J |=m
|U |=|V |=m

cIJUVM
m T
ij AIJUVM

m
ij (6.24)

We may even generalize this further by defining M �
ij to be the product of as many matrices

Mij as the book they operate on have pages, which leads to having the even simpler formula:

hij
bZ̃f (L) = M � T

(
bZ̃f (L)

)
M � (6.25)

Proof. The only cases that need to be studied are those where a chord has a foot on the

j-th component, since all other tangle chord diagrams are left invariant by hij, and of those

there are only two kinds that we presented just before the statement of the Theorem. By

elementary matrix multiplication, we have in the first case, for one page:

@
@
@
@@
@
@
@@M

T
ij Mij

�

�

�


j

i

i j

1p

1n

pn

=

@
@
@
@
@

@
@
@
@
@

@
@
@
@
@

@
@
@
@
@

�

�

�

�
j

i

i j

1p

1n

pn

1p

1n

pn

1p

1n

pn

1p

1n

pn
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which is what we expected from the above considerations. In the second case of interest,

if l 6= i:

@
@
@@

@
@
@@

M
T
ij Mij

�

�

�


1

1

n

p

n

p

i

j

l

i j l

@
@
@@

@
@
@@

@
@
@@

@
@
@@

=

�

�

�


1

1

1

1

nn

n

p

n

p

i

j

l

i j l

(6.26)
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which is what was expected as well. In case l = i:

@
@
@
@
@

@
@
@
@
@

M
T
ij Mij

�

�

�

�
j

i

i j

j

i

i j

p

1n

pn

1p

n

pn

@
@
@
@
@

@
@
@
@
@

@
@
@
@
@

=

�

�

�

�
j

i

i j

p

1n

pn

1p

1n

pn

1p

n

pn

This completes the proof.
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Chapter 7

Isotopy invariance of Z̃f in book
notation

From Theorem 2.2.5 Ẑf is an isotopy invariant. By definition, so is Z̃f . If we consider Z̃f (L)

as just a formal sum of books with complex coefficients however, we have a representation of

tangle chord diagrams by books that is no longer isotopy invariant, whence the introduction

in the previous chapter of the notation bZ. We use the fact that ambient isotopic links are in

the same class if and only if they are related by the Reidemeister moves [Rei] [Y]. Instead of

studying the behavior of bZ̃f (L) under any arbitrary isotopy, we study Reidemeister moves

of tangles. They are pictured as follows:

∆.π.1 @
@
�- �-

�
�

(7.1)

∆.π.2

��

��A
A
AA

�-

�
�
��AA

�
�
��
H

HH

AA (7.2)
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Ω.1.f
@@

@@�
�
�� �-

�
�
��@@

@@

(7.3)

which is the framed version of the original Ω.1 Reidemeister move.

Ω.2 �-

�
�
��

@
@
@@

(7.4)

Ω.3

��

�
�
�
�
�@@

@@

@
@@

�-

�
�
�
�
�

�
�

�
�
�
�
��

Q
Q
Q
Q
QQ

@
@
@

@@

@@ (7.5)

Proposition 7.1. The book representation of Z̃f (L) of any link L is invariant under the

Reidemeister moves Ω.2 and Ω.3.

Proof. In both cases we have an equivalence of two tangle diagrams which yield the same

page for any chord ending on them after possibly moving the chord up the tangle.

Those are the only moves that leave bZ̃f (L) invariant. For the other Reidemeister moves,

there are a few changes to be performed on each page.
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7.1 Behavior of bZ̃f under ∆.π.1

In a slice presentation of knots, and using the isotopy invariance of Z̃f , it suffices to consider

strands other than those involved in the move ∆.π.1 to be vertical, and the straightened

out strand involved in ∆.π.1 to be straight as well. For instance, one of the moves involved

in ∆.π.1 would look like:

q q q q q q����
� −→ q q q q q q (7.6)

In the expression for Ẑf , powers of ν cancel self-chords from the Kontsevich integral of

the hump. Chords with one foot on the hump however are not canceled, whereas in the

expression for Ẑf of the right hand side of (7.6), all of whose strands are vertical, there are

no such chords. This is in particular true of Z̃f . Moreover mixed chord diagrams involving

self chords on the hump and long chords with one foot on the hump are not canceled by

ν. They are canceled by squeezing the hump into a window of vanishing width. For each

long chord with a foot on an ascending (resp. descending) part of the hump, there is a long

chord with a foot on a descending (resp. ascending) part of the hump, each tangle chord

diagram with log differentials that differ in sign and therefore cancel each other off. This

is how we have all long chords ending on the hump go. Thus we seek a transformation on

the expression for bZ̃f of the left hand side of (7.6) that effectively gets rid of chords with

a foot on the hump.
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Proposition 7.1.1. The eN × e(N − 8) matrix diag(Mhump 7→|) with:

Mhump7→| =

�

�

�

�

In

IN−n−8

O8×(N−8)

(7.7)

implements the move (7.6). In case the hump is on the first strand from the left:

Mhump 7→| =

�

�

�

�
IN−8

O8×(N−8)

(7.8)

If we let I0 be the empty matrix then (7.7) implements the move (7.6) for all n ≥ 0.

Proof. First observe that since we have a local max on the hump, the skeleton for both Ẑf
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and Z̃f is as follows, with added vertical slices for numbering purposes:

n n+1 n+2 n+3

n+4

n+5

n+6

n+7 n+8 n+9

(7.9)

The straightened out strand on the right hand side of (7.6) is in the (n + 1)-st strip. The

matrix that takes care of relabeling all the strips under the map depicted in (7.6) and kills

all the chords on the hump is, for the block corresponding to the component on which the

hump is located:

Mhump 7→| =

�

�

�

�

In

IN−n−8

O8×(N−8)

(7.10)
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It is a N × (N − 8) matrix. In other horizontal slices, chords ending on strands other

than the one with the hump are moved up to be either in strips indexed 1 through n, or

n+ 9 through N . Therefore the above matrix also takes care of the transformation of those

chords under the move (7.6). We conclude that the eN × e(N − 8) matrix diag(Mhump7→|)

with Mhump7→| given above implements the move (7.6).

One would similarly show that the move:

q q q q q q����
�� −→ q q q q q q (7.11)

with a local slicing of the hump given by:

n

n+1

n+2

n+3

n+4 n+5

n+6

n+7 n+8 n+9

(7.12)
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is taken care of by the same eN × e(N − 8) matrix diag(Mhump7→|) defined above.

Remark 7.1.2. We could equally have taken the following slicing and skeleton:

n n+1

n+2

n+3

n+4

n+5

n+6

n+7 n+8 n+9

(7.13)

and the matrix would have been the same.
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We have shown:

Proposition 7.1.3. The map h∆.π.1, hump 7→| that acts on Z̃f (L) in book notation to effect

two of the ∆.π.1 Reidemeister moves as depicted in (7.6) and (7.11) is given on a page by:

h ∆.π.1
hump7→|

A := MT
∆.π.1

hump7→|
AM ∆.π.1

hump7→|
(7.14)

where M∆.π.1, hump7→| is the eN × e(N − 8) matrix diag(Mhump7→|) with Mhump7→| given by:

Mhump 7→| =

�

�

�

�

In

IN−n−8

O8×(N−8)

(7.15)

for n ≥ 0.
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Proposition 7.1.4. The matrix that implements the move:

q q q q q q −→ q q q q q q����
�

(7.16)

with the same slicing convention as in (7.9) is given by the N × (N + 8) matrix:

�

�

�

�

In

ON×8
IN−n

M|7→hump =

(7.17)

for n ≥ 0.

Proof. In other horizontal slices, chords ending on strands other than the one on which the

hump is located are moved up to end in strips indexed 1 through n or n + 9 through N .

Therefore the above matrix also takes care of the transformation of those chords under the

move (7.16). We conclude that the eN × e(N + 8) matrix diag(M|7→hump) with M|7→hump given

above implements the move (7.16).

Likewise, one would show that the same matrix implements the move:

q q q q q q −→ q q q q q q����
��

(7.18)

with the slicing on the hump given as in (7.12). We have shown:
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Proposition 7.1.5. The map h∆.π.1, |7→hump that acts on Z̃f (L) in book notation to effect

two of the ∆.π.1 Reidemeister moves as depicted in (7.16) and (7.18) is given on a page by:

h ∆.π.1
|7→hump

A := MT
∆.π.1
|7→hump

AM ∆.π.1
|7→hump

(7.19)

where M∆.π.1, |7→hump is the eN × e(N + 8) diag(M|7→hump) matrix with M|7→hump given by:

�

�

�

�

In

ON×8
IN−n

M|7→hump =

(7.20)

Finally we consider the map that implements the following move on strands:

q q q q q q����
� −→ q q q q q q����

��
(7.21)

With slicing conventions as in (7.9) and (7.12), the corresponding transformation matrix is

given by the N ×N matrix:

Mhump7→hump =

�

�

�

�

In

IN−n−8

O8×8
= Mhump 7→| ·M|7→hump (7.22)
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In other horizontal slices, chords ending on strands other than the one on which the hump is

located are moved up to end in strips indexed 1 through n or n+9 through N . Therefore the

above matrix also takes care of the transformation of those chords under the move (7.21).

We conclude that the eN × eN matrix diag(Mhump7→hump) with Mhump7→hump given above im-

plements the move (7.21). We have shown:

Proposition 7.1.6. The map h∆.π.1, hump7→hump that acts on Z̃f (L) in book notation to effect

the ∆.π.1 Reidemeister move as depicted in (7.21) is given on a page by:

h ∆.π.1
hump7→hump

A := MT
∆.π.1

hump7→hump

AM ∆.π.1
hump7→hump

(7.23)

where M∆.π.1, hump7→hump is the eN × eN matrix diag(Mhump7→hump) with Mhump7→hump given by:

Mhump 7→hump =

�

�

�

�

In

IN−n−8

O8×8
(7.24)
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7.2 Behavior of bZ̃f under ∆.π.2

The two tangle diagrams involved in the statement for the ∆.π.2 Reidemeister move have

the following presentation with vertical strips for book purposes:

n n+1 n+2 n+3

�
�

�
�

� �
@
@
@
@@

���t
s���

(7.25)

and:

n n+1 n+2 n+3

�
�
�
��

� �
@
@

@
@��

��
��

��

PPPPPPPP

���t

���s
(7.26)

Proposition 7.2.1. With tangle diagrams as above, the map h∆.π.2 that acts on Z̃f (L) in

book notation to effect the Reidemeister move ∆.π.2, is given on a page by:

h∆.π.2A := MT
∆.π.2AM∆.π.2 (7.27)
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where M∆.π.2 is the eN × eN identity matrix save for the tt block which is of the form:

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

n

n+1

n+2

n+3

n

n+1

n+2

n+3

�

�

�

�

In−1

IN−n−3

(7.28)

Proof. Recall that chords on a given tangle are moved until they reach a local max. Keeping

this in mind, under the move ∆.π.2, only the t-th component moves, and thus only chords

with a foot on this component need be considered. Suppose a chord is stretching between

that component and the s-th component. Moving the chord up the s-th component so that

it’s localized near its local max, the foot of that chord on the s-th component is either in

the n+ 1-st or n+ 2-nd strip, and its other foot on the t-th component is then in the n-th

or n + 3-rd strip depending on which tangle we are looking at. Under ∆.π.2, chords with

one foot in the n-th strip (resp. the n+ 3-rd strip) are moved to end up in the n+ 3-rd strip

(resp. the n-th strip). Suppose now a chord is stretching between the t-th component and

another l-th component, l 6= s. For a needle shaped local max on the s-th component, the

corresponding vertical strips indexed by n+ 1 and n+ 2 are sufficiently narrow that chords

from some l-th component, l 6= s end on the t-th component in some strip other than the

n + 1-st or n + 2-nd strips, that is in the n-th or n + 3-rd strips, which are interchanged

under ∆.π.2. We conclude that ∆.π.2 is implemented by a eN × eN matrix with a tt block

of the form above which effectively switches the n-th and n + 3-rd strips for n ≥ 1, taking

I0 to be the empty matrix in the event that n = 1 indexes the first vertical strip.
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7.3 Behavior of bZ̃f under Ω.1.f

The two equivalent tangle diagrams under this move are represented as follows along with

the strips for book representation purposes:

n

n + 1

n + 2

n + 3

n + 4

n + 5

n + 6

n + 7 n + 8 n + 9

(7.29)

and:

n + 9

n + 8

n + 7

n + 6

n + 5

n + 4

n + 3

n + 2n + 1n

(7.30)
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Proposition 7.3.1. With tangle diagrams as above, the map hΩ.1.f that acts on Z̃f (L) in

book notation to effect the Reidemeister move Ω.1.f on the l-th component of L, is given

on a page by:

hΩ.1.fA := MT
Ω.1.fAMΩ.1.f (7.31)

where MΩ.1.f is the eN × eN identity matrix save for the ll block which is of the form:

n

···
n+9

n · · · n+9

·
· ·

1

1

�

�

�

�

In−1

IN−n−9

(7.32)

with ones on the transverse diagonal.

Proof. With the vertical slicing as in (7.29) and (7.30), it is immediate that the above matrix

implements the move Ω.1.f on the l-th component. Chords with feet on other strands are

in strips indexed 1 through n or n + 10 through N and stay put under Ω.1.f , so for those

we just use an identity matrix. We conclude that the above matrix implements the move

Ω.1.f .
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7.4 Adding and deleting strips

If M+
n denotes the matrix that inserts a strip between the n-th and n+ 1-st strip, then the

transformation on pages that effects such a change is the eN × e(N + 1) matrix diag(M+
n )

with:

n+1

n+1

0

·
·
·

0

M
+

n =

�

�

�



In

IN−n

(7.33)

and if M−
n denotes the matrix that deletes the n-th strip, then the transformation on pages

that effects such a change is the e(N + 1)× eN matrix diag(M−
n ) with:

n-1

M
−
n =

�

�

�



In−1

IN−n+2

(7.34)
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Chapter 8

Behavior of Z̃f (L) in book notation
under a change of orientation

8.1 Behavior of bZ̃f under orientation change

Recall that the links we deal with are oriented. Under a change of orientation on a component

of a link L, any chord diagram with a foot on that component has its coefficient being

multiplied by −1. The map on chord diagrams in Â(
∐
S1) that effects this change is

denoted by Sr for the r-th component of the link L whose orientation is being changed, 1 ≤

r ≤ e [LM3]. We generalize this to tangle chord diagrams: Sr is the map Â(
∐

1≤l≤eKl) →

Â(
∐

1≤l 6=r≤eKl+SrKr) induced from a change of orientation SrKr on Kr. The book notation

should reflect this change. Pictorially, the following local tangle chord diagram:

6 6
q q q

n p

lr lt

(8.1)
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is represented in book notation by:

@
@
@
@
@

@
@
@
@
@

@
@
@
@
@

@
@
@
@
@

�

�

�

�
t

r

r t

p

n

pn

1p

n

pn

p

n

pn

p

1n

pn

(8.2)

where without loss of generality we have chosen r < t. The same tangle chord diagram

with the reverse orientation on the r-th component:

?
6

q q q

n p

lr lt

(8.3)
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has book representation:

@
@
@
@
@

@
@
@
@
@

@
@
@
@
@

@
@
@
@
@

�

�

�

�
t

r

r t

p

n

pn

−1p

n

pn

p

n

pn

p

−1n

pn

(8.4)

Proposition 8.1. With tangle diagrams as above, the map hS,r that acts on Z̃f (L) in book

notation to effect the orientation change Sr on the r-th component of L, is given on a page

by:

hS,rA := MT
S,rAMS,r (8.5)

where MS,r is the eN × eN identity matrix save for the rr block which is the negative of

the N ×N identity matrix, −IN :

1 q q q
1

�

�

�

�
t

r

r t

−IN

(8.6)

There are as many modified blocks such as the rr-th above as there are components whose
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orientation is changed. For a chord with feet on the r-th and t-th components both of whose

orientations are reversed, the matrix MS,r,t with two blocks rr and tt as −IN will effect the

orientation change while leaving the coefficient in front of corresponding chord diagrams

unchanged since (−1)× (−1) = 1.

Proof. Matrix multiplication.

8.2 Behavior of Z̃f(L) as Ki is being subtracted from

Kj

We now consider the effect of having a subtraction of Ki from Kj as a result of operating

a band sum move of Ki over Kj. As defined in [RK1], this corresponds to having a band

such that upon doing the band sum move the components Ki and Kj end up having oppo-

site orientations. If we locally represent the pieces of those two components with a chord

stretching between them as:

q q q q q q q q q q
6 6

ji jj

(8.7)

then this chord behaves as follows under a band sum move of Ki over Kj:

q q q q q q q q q q Sj∆
6

?

6

ji jj

=

q q q q q q q q q q
6

?

6

ji jj

+

q q q q q q q q q q q q
6

?

6

ji jj

(8.8)
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If the latter tangle chord diagram has a coefficient of cX in the expression for Z̃f , the former

has a coefficient −cX however due to the orientation change resulting in the Kontsevich

integral picking up an overall minus sign. It follows that the statement of Theorem 1.6.3 is

no longer true in this case. We can nevertheless remedy this as follows.

Proposition 8.2.1. ([LM4], [LM5]) Zf (SKiL) = SKiZf (L) for 1 ≤ i ≤ e.

Proof. This follows from the definition of Zf and the fact that Z(SKiL) = SKiZ(L).

Theorem 8.2.2. ([LM4], [LM5]) Ẑf (SKiL) = SKiẐf (L) for 1 ≤ i ≤ e.

Proof. It suffices to write:

Ẑf (SKiL) = νm1 ⊗ · · · ⊗ νmi ⊗ · · · ⊗ νme · Zf (SKiL) (8.9)

= νm1 ⊗ · · · ⊗ SKiSKiνmi ⊗ · · · ⊗ νme · SKiZf (L) (8.10)

= SKi

(
νm1 ⊗ · · · ⊗ (SKiν)mi ⊗ · · · ⊗ νme · Zf (L)

)
(8.11)

= SKiẐf (L) (8.12)

Theorem 8.2.3. Z̃f (SKiL) = SKiZ̃f (L) for 1 ≤ i ≤ e.

Proof. Same as for the previous Theorem.
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Then we consider the following diagram, where without loss of generality we have re-

versed the orientation of the i-th component:

?

-

6

-

Z̃f (SKiL) =
∑
cX ·X

Z̃f (L)

∑
cX ·X ′ = Z̃f ([SKiL]′)

Z̃f (L
′) = Z̃f (SKi [SKiL]′)

SKi SKi

band sum move

First applying the map SKi to Z̃f (L) we obtain Z̃f (SKiL) by Theorem 8.2.3. We write

this quantity as
∑
cX ·X. We can apply Theorem 1.6.3 for SKiL since then the band sum

move results in Ki being added to Kj. We obtain
∑
cX ·X ′ under the band sum move. This

equals Z̃f ([SKiL]′). By further reversing the orientation of Ki, we get, using Theorem 8.2.3

again, Z̃f (SKi [SKiL]′). Since SKi [SKiL]′ = L′, this last quantity is Z̃f (L
′). We have that

the band sum move in the event of a subtraction is given by closing the above diagram, and

this corresponds to the composition of SKi , a band sum, and SKi . Each of those maps can

be represented in book notation by three respective matrices whose action is by congruence.

This composition is then easily represented by a congruence with a matrix obtained by

multiplying those three matrices.
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Chapter 9

Recovering Zf (L) ∈ A(qS1) from bZf (L)

Proposition 9.1. For an unknown e-component link L represented as a plat, from bZf (L)

we can recover its expression in Â(qeS1), without knowing the skeleton on which tangle

chord diagrams represented by the books are based.

Proof. It suffices to know the algebraic number of crossings between strands. Indeed, chord

diagrams are blind to the winding of the skeleta of tangle chord diagrams. Now, the degree

one coefficient of the following tangle (where a crossing is either positive or negative, λ > 0,

ε = ±1, n the number of half-twists):

�
�
��

Z
Z
ZZ
qqq qqq
�
�
�

@
@
@

-�

Mz

-�λe
iεnπMz

(9.1)

in Zf,1(L) is:

± 1

2πi
log

λeiεnπ Mz
Mz

= ±
( 1

2πi
log λ

)
± εn

2
(9.2)

Thus if we have an odd number of half-twists between 2 strands, n/2 is fractional, an integer
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otherwise. It follows that from bZf,1(L) we can determine for a fixed strand the collection of

strands to its right near the top of L it has an odd number of half-twists with, or equivalently

what are those strands to its right near the top of L it passes on the right at the bottom of

L. Doing this for all strands we can determine the permutation that to any strand near the

top of L associates a strand near the bottom of the link. This is sufficient to associate to

any book the element of A(qeS1) it corresponds to.
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Chapter 10

Normalizations in LMO Invariant
Theory

Le, Murakami and Ohtsuki [LM5], [LM6] defined a quotienting map that enables one to

construct a 3-manifold invariant from a renormalized version Žf of the hatted framed Kont-

sevich integral Ẑf . In Section 4.2, we showed using only the long chords lemma [ChDu], the

multiplicativity of the framed Kontsevich integral (Proposition 2.2.2), as well as the fact

that Ẑf is an isotopy invariant (Theorem 2.2.5), that the normalization Z̃f = ν−1Ẑf leads

to a link invariant that is well-behaved under band sum moves for which in a small window

where such moves are performed, link components of interest are locally on top of each

other, and the resulting band is vertical. Independently, Le, Murakami and Ohtsuki showed

([LM3], [LM5], [LM6]) that if one uses the formalism of q-tangle diagrams [LM1] and care-

fully considers associators, one finds that another normalization Žf = νẐf is well-behaved

under band sum moves for which in a small window where such moves are performed, link

components of interest are locally put side by side, and the resulting band looks horizontal.

In what follows we discuss these normalizations and show how they relate to each other. We

then discuss the quotienting map [LM5] necessary for producing 3-manifold invariants from

the Kontsevich integral and show that any normalization survives the quotienting process,

and thus any choice of normalization yields a 3-manifold invariant.
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10.1 Relation between Z̃f and LMO’s Žf

In Chapter 4 we showed that under band sum moves,

Z̃f (L) =
∑
chord

diagrams X

cXX (10.1)

maps to:

Z̃f (L
′) =

∑
chord

diagrams X

cXX
′ (10.2)

where L is a given link, L′ is the same link except that one of its components is band

summed over another of its components by a vertical band that is a band whose midline is

parallel to the time axis, and cX are coefficients arising from computing the renormalized

framed Kontsevich integrals of the appropriate framed links. In those expressions, X and

X ′ are related as follows:

� 
� �

6
qqq

� 
pppppppp

-

X 7−→
band
sum ∆� 
� �

� �
qqq

pppppppp
X ′

We proved such a statement by stretching one strand from each of the two components

involved in the band sum to one side as in:

Ẑf (L) = Ẑf ( T

&%& %

'$' $

� �� � ) (10.3)
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and by performing a band sum:

Ẑf [M]( ∆jT

&%&%& %& %

'$' $

������ ) (10.4)

where in this particular instance, the j-th component is being band summed over. In [LM2],

[LM3], [LM5], [LM6], [O] however, computations are performed by considering strands in-

volved in the band sum side by side, resulting in a horizontal band that is a band whose

midline is transverse to the time axis:

Ẑf (

�
�
�
� ) 7→ Ẑf (

� �� �
� �� ��
�
�
� ) (10.5)

where the open strand is the portion of the link component operating the band sum and the

closed component represents the link component being band summed over. This pictorial

representation is symbolic and does not display how complex the link components are and

whether they are linked to other link components. In order to compare both computations,

we will use the equivalent normalization procedure whereby each local extremum is multi-

plied by ν1/2 instead of having only local maxima being multiplied by ν. This we do only

in this section.

We consider an e-component link L. We focus on two of its components Ki and Kj,

1 ≤ i, j ≤ e and consider the band sum of Ki over Kj. The resulting link after band sum

we call L’. Using the isotopy invariance of Ẑf we can pull up one local max from each of Ki
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and Kj so that we compute:

Ẑf (L) = Ẑf ( T

� �' $
- �M

-�
C � M

) (10.6)

where T is what remains of L, and we have displayed the local maximum from Ki as the

outer strand. Le Murakami et al ([LM3], [LM5], [LM6]) would compute Ẑf after band sum

move as:

Ẑf ( ∆T

� �� �
� �� �� �

) (10.7)

The protruding local maxima at the top are not necessary for Le and Murakami’s compu-

tation, but are convenient to emphasize the relation with the computation that we suggest

in this work:

Ẑf ( ∆T

� �� � � �
-� A� M -� B � M

) (10.8)
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An intermediate stage both computations should be equal to by isotopy invariance of Ẑf

is the following:

Ẑf ( ∆T

� �
� �
� �

) (10.9)

In the next section, we show (10.7) evaluates to (10.9). In the section that follows, we show

(10.8) evaluates to this intermediate value, and this will show that whether we compute

Ẑf (L
′) using LMO’s procedure of locally putting link components involved in the band sum

side by side or putting them on top of each other as done in the present work, one really

gets the same thing. In the last section, we take stock and draw some conclusions.

10.1.1 LMO’s computation

In [LM3], [LM5], [LM6], [O], a window is fixed inside of which one has the following tangle:

���
(10.10)

Then one has:

Ẑf (L
′) = Ẑf (
� �� �) ·∆jẐf (L \ ) (10.11)
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In [O], using q-tangles, it is shown that:

Ẑf (
� �� �) =

� �
∆ν1/2

ν
− 1

2

ν
− 1

2

∆ν1/2� 

(10.12)

Outside of the window one has ∆jẐf [M](L\ ). This comes from computing Ẑf [M](∆j

(
L\)

). We have equality of these two quantities in the case of geometric tangles only when

the duplicate K
(2)
j of Kj is analytically coincident with Kj, that is in the window one really

works with:

���
(10.13)

Then:

Ẑf (L
′) = Ẑf [M](L′) = Ẑf [M]( � �� �) ·∆jẐf [M](L \ ) (10.14)

where the value of Ẑf [M]( � �� �) is given by the following lemma:
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Lemma 10.1.1.1. For M > 0,

Ẑf [M](
��
-�
M

) =
ν

1
2

(10.15)

and:

Ẑf [M]( �
-�M

) =
ν

1
2

(10.16)

Proof. It suffices to consider the case of a local maximum, the local minimum computation

being the same. We have, by isotopy invariance of Ẑf that:

Ẑf [M](
��

) = Ẑf [M](

-�M

-�
M

) = ν1/2 ⊗ 1 · Zf [M]( ) (10.17)

where the first factor in the tensor product multiplies the local max and the identity mul-

tiplies the straight strand. We have:

Zf [M]( ) = (10.18)

from which we get:

Ẑf [M](
��
-�
M

) =
ν

1
2

(10.19)
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Using this lemma it follows:

Ẑf [M]( � �� �) = ν
1
2

ν
1
2

(10.20)

Ẑf (L
′) as computed by Le, Murakami et al and rewritten for geometric tangles as done

above does equal (10.9) as the following Proposition shows:

Proposition 10.1.1.2.

Ẑf [M]( � �� �) ·∆jẐf [M](L \ ) = Ẑf (
� �
� �
� � ) (10.21)

Proof. We slice L \ into three horizontal strips, the middle one containing the window

that was initially frozen. To the far right of that strip, strands see those in the window

as straight strands as C � M . It follows that we can replace in the above expression

Ẑf [M]( � �� �) by Ẑf [M] of the middle strip. By multiplicativity of the Kontsevich integral

this equals

Ẑf (
� �� �
� �� �� �

) (10.22)
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which by isotopy invariance of Ẑf is equal to (10.9) that we reproduce below for conve-

nience:

Ẑf (
� �
� �
� � ) (10.23)

10.1.2 Alternate computation

In the present paper we considered doing:

Ẑf (

� �� � � �
-� A� M -� B � M

) (10.24)

Slice L′ into three horizontal slices so that the window containing the tangle:

��
(10.25)

is exactly enclosed within the middle strip. Since A� M and B � M strands other than

those in the window see those from the window as being straight, and thus we can write:
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Ẑf [M](
��

) ·∆jẐf [M](L \ � �� �) (10.26)

= Ẑf [M](
����

)× Ẑf [M](
��

)× Ẑf [M]( ) (10.27)

= Ẑf [M](

� �� � � �
-� A� M -� B � M

) (10.28)

= Ẑf [M]( � �
� �
� � ) (10.29)

where in the last step we have used the isotopy invariance of Ẑf .

10.1.3 Taking stock: conclusions

In [O], [LM3], [LM5], [LM6], the behavior of Ẑf under band sum moves on link components

should be more properly called map on Ẑf induced by band sum moves on link components

with windows. The following statement holds at the level of q-tangles:

Ẑf (L) = Ẑf ( ) · Ẑf (L \ ) (10.30)

= · Ẑf (L \ ) (10.31)

7−→ Ẑf (L
′) = Ẑf (
� �� �) ·∆jẐf (L \ ) (10.32)

=

� �
∆ν1/2

ν−1

∆ν1/2� �
·∆jẐf (L \ ) =

� �ν−1

∆ν� �
·∆jẐf (L \ ) (10.33)
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In other terms:

Ẑf (L) =
∑

λ

�
�
�
qqq 7→band

sum

∑
λ

∆ν

ν−1

∆ ppp
(10.34)

where the pack of chords displayed above comes from computing Ẑf (L \ ). In other

terms those chords are very much dependent on the window we have chosen. Multiplying

both expressions by a power of ν on each link component we obtain the following statement

about Žf :

Žf (L) =
∑

λ

��
�ν qqqν

7→
band
sum

∑
λ

ν

∆ν

∆ ppp
(10.35)

That is for Žf one has the simple statement:

Žf (L) =
∑

µ

�
�
�
qqq 7→band

sum

∑
µ

∆ ppp
(10.36)

In the present paper we prefer to work with geometric tangles, for which a computation

such as the one above can make use of windows, provided we deal with analytically coincident
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tangles. In this case we obtain:

Ẑf (L) = Ẑf [M]( � �� �) · Ẑf [M](L \ � �� �) (10.37)

7−→ Ẑf [M](L′) = Ẑf [M](
��

) ·∆jẐf [M](L \ � �� �) (10.38)

which we can explicity write as:

=
ν

1
2

ν
1
2

· Ẑf [M](L \ � �� �) 7→ ν
1
2

·∆jẐf [M](L \ � �� �) (10.39)

=
∆ν

1
4

ν
− 1

4

∆ν
1
4

ν
− 1

4

·∆jẐf [M](L \ � �� �) (10.40)

In other terms:

Ẑf (L) =
∑

λ � �
� �ppppppppppppppppppppppp
ν

1
2

ppp ppp

7→ Ẑf (L
′) =

∑
λ � �� �

ν
− 1

4

ppp
� �

∆ ppppppppppppppppppppppp
ν
− 1

4

ppp

(10.41)

=
∑

λ � �� �
ν
− 1

2

ppp
� �

∆ ppppppppppppppppppppppp

ppp

(10.42)

where the pack of chords come from Ẑf [M](L \ � �� �) as well as ν1/2 and is thus dependent on

the choice of window. Multiplying this mapping by a factor of ν−1 on each link component
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we get:

Z̃f (L) =
∑

λ � �
� �
ν−1 ppppppppppppppppppppppp

ν
− 1

2

ppp ppp

7→ Z̃f (L
′) =

∑
λ � �� �

ν−1

ν
− 1

2

ppp

ν−1

∆ ppppppppppppppppppppppp

ppp

(10.43)

=
∑

λ � �� �
ν
− 1

2

ppp
� �

∆ ppppppppppppppppppppppp∆ν−1

ppp

(10.44)

that is we have a statement of the form:

Z̃f (L) =
∑

ρ

� �
� �ppp
� �pp
pppppp

7−→ Z̃f (L
′) =

∑
ρ

∆� �
� �
� �pp
p
pppppppp

(10.45)

Thus the above statement, as well as:

Žf (L) =
∑

µ

�
�
�
qqq 7→band

sum

∑
µ

∆ ppp
(10.46)

are true in their own right, but are not related by a simple renormalization as the packs

of chords displayed in each statement are very much dependent on the window selected

in Ẑf (L) and Ẑf (L
′), from which one normalization or the other led to symbolic, window

dependent statements about Žf or Z̃f . However if one keeps track of what those chords really
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represent and one concatenates elements properly, one truly gets the following commutative

diagram:

-

-

-

-

-

q

q

q

q

Q
QQk

�
��+

Q
QQs

�
��3

? ?

Ẑf ( ) ·Ẑf (L\ ) Ẑf ( � �� � ) ·∆jẐf (L\ )

Ẑf (L) Ẑf (L
′)

Ẑf ( � �� �) ·Ẑf (L\ � �� �) Ẑf (
� �) ·∆jẐf (L\ � �� �)

Žf (L) =
∑
µ

�
�
�
�ppp ∑

µ
∆ ppp

= Žf (L
′)

Z̃f (L) =
∑
ρ � �� �ppp� �
pppppppp ∑

ρ
∆� �
� �
� ppp
pppppppp

= Z̃f (L
′)

(10.47)

where horizontal maps denote a band sum move, and both diagonal and vertical maps

are renormalizations. To be specific, ascending diagonal maps are multiplications of every

link component in the expressions for Ẑf (L) or Ẑf (L
′) by ν, thus defining the corresponding

Žf values, and descending diagonal maps are multiplications by ν−1 as prescribed by the

definition of Z̃f . The vertical maps are multiplications of each link component of Žf (L) and

Žf (L
′) by ν−2 to get the corresponding Z̃f values.

10.2 3-Manifold Invariants constructed from the Kont-

sevich Integral

In [LM5] a quotienting map is defined that allows one to construct a 3-manifold invariant

from Žf . The proof of invariance of the equivalence class of such an object under Kirby move

II leaves room for other renormalizations to also be invariant by inserting a fixed power of ν
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on each link component. We first show that this is so and introduce a family of 3-manifold

invariants built from renormalizations of Ẑf . In the section that follows we generalize this

further by arguing that renormalization by elements of Â(qeS1) that verify certain more

general conditions also lead to a family of 3-manifold invariants.

10.2.1 Renormalizations of Ẑf and the 3-manifold invariants they
generate

We first review the requisite formalism and definitions as covered in [LM5]. If A(X) denotes

the algebra of chord diagrams with support on X mod the STU relation ([BN]):

6p p p p p p pppppp ppppp =
6pppppppppp pppppppppp −

6pppppppp
pp pppppppppp (10.48)

then one defines Å(X) to be obtained by including in A(X) dashed trivial circles as well,

with a graded completion denoted by Å(X)∧. For 2n points arranged in a circle one denotes

by Pn the relation equating the sum of all pairings of those 2n points by dotted arcs to zero.

Denote by L<2n the equivalence relation between elements of Å(qS1) defined as follows: for

D1, D2 ∈ Å(qS1), D1 ∼ D2 if and only if D1−D2 is a sum of chord diagrams with less than

2n chord feet on each summand. On is the equivalence relation such that a dashed circle

is equivalent to −2n. In this section we use tangle chord diagrams that explicitly display

chords ending on them. We build our reasoning on the statement (4.77):

Z̃f (L) =
∑

λ

� �
� �ppp
� �pp
pppppp

7−→ Z̃f (L
′) =

∑
λ

∆� �
� �
� �pp
p
pppppppp

(10.49)
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We could equally have started from:

Žf (L) =
∑

µ

�
�
�
qqq 7→band

sum

∑
µ

∆ ppp
(10.50)

as both renormalizations are equivalent by the following commutative diagram:

-

-

-

-

-

q

q

q

q

Q
QQk

�
��+

Q
QQs

�
��3

? ?

Ẑf ( ) ·Ẑf (L\ ) Ẑf ( � �� � ) ·∆jẐf (L\ )

Ẑf (L) Ẑf (L
′)

Ẑf ( � �� �) ·Ẑf (L\ � �� �) Ẑf (
� �) ·∆jẐf (L\ � �� �)

Žf (L) =
∑
µ

�
�
�
�ppp ∑

µ
∆ ppp

= Žf (L
′)

Z̃f (L) =
∑
ρ � �� �ppp� �
pppppppp ∑

ρ
∆� �
� �
� ppp
pppppppp

= Z̃f (L
′)

(10.51)

However chords displayed in (10.49) and (10.50) are different as this diagram shows. To

avoid confusion, we fix chords that are shown to be complementary to the choice of window

for which a convenient normalization is Z̃f . Thus we work with (10.49).

We now define a renormalization of such an invariant indexed by the number k + 1 of
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powers of ν by which it is renormalized as:

∨(k)

Zf = νk+1 ⊗ · · · ⊗ νk+1 · Z̃f (10.52)

in such a manner that Zf
∨(0) = Ẑf , Zf

∨(−1) = Z̃f , and Zf
∨(1) = Žf as defined in [LM5]. If we

multiply each link component of (10.49) by a k + 1-st power of ν, then we get:

∨(k)

Zf (L) =
∑

λ � 
� �

νk+1 p p p p p p p p p pp p p p p p p p p pqqq
νk+1

ppp ppp

7→
∨(k)

Zf (L′) =
∑

λ � � �

νk+1

ppp

νk+1

∆ p p p p p p p p p pp p p p p p p p p pqqq

ppp

(10.53)

The following result was originally given in [LM5] in the case k = 1.

Proposition 10.2.1.1. ([LM5]) For k ∈ Z, L an e-components framed oriented link and n

an integer, the class [Zf
∨(k)(L)] in Å(

∐e S1)∧/L<2n, Pn+1, On is independent of the orienta-

tion of the link L and is invariant under band sum moves.

Proof. We first show the invariance of [Zf
∨(k)(L)] under orientation change. For K a link

component, S(K) the map on links that implements the orientation reversal on K, we have:

∨(k)

Zf (S(K)L) = νk ⊗ · · · ⊗ νk · Ẑf (S(K)L) (10.54)

= νk ⊗ · · · ⊗ νk · S(K)Ẑf (L) (10.55)

= S(K)

(
νk ⊗ · · · ⊗ S(K)ν

k ⊗ · · · ⊗ νk · Ẑf (L)
)

(10.56)

= S(K)

∨(k)

Zf (L) (10.57)

Thus if we write Zf
∨(k)(L) =

∑
cD ·D where D represent tangle chord diagrams supported

on L and cD are the corresponding coefficients in the expansion of Zf
∨(k)(L), then we want
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to show [D] = [S(K)D]. This was proved in [LM5]. Thus [Zf
∨(k)(L)] = [Zf

∨(k)(S(K)L)], and

this for any link component K.

We now show the invariance under band sum moves. We have to prove that:

[
∨(k)

Zf (L)] = [
∨(k)

Zf (L′)] (10.58)

or equivalently that:

[⊗eνk+1 · Z̃f (L)] = [⊗eνk+1 · Z̃f (L′)] (10.59)

We follow exactly the same line of reasoning as in [LM5]. We write Z̃f (L) =
∑
cD ·D, so

that:

∨(k)

Zf (L) = ⊗eνk+1 ·
∑

cD ·D (10.60)

=
∑

cD ⊗e νk+1 ·D (10.61)

=
∑

cD′,DD
′ ·D (10.62)

where the chord diagrams D′ come from powers of νk+1 and the coefficients cD′,D take

account of the expansion of such powers of ν. We have Z̃f (L
′) =

∑
cD ·∆D, so that:

∨(k)

Zf (L′) = ⊗eνk+1 ·
∑

cD ·∆D (10.63)

=
∑

cD ⊗e νk+1 ·∆D (10.64)

=
∑

cD′,DD
′ ·∆D (10.65)

We want to show that [D′ · D] = [D′ · ∆D]. If there are less than 2n chord feet on K2,

then both classes vanish by L<2n. If there are exactly 2n chord feet on K2, then all terms

but one in [D′ · ∆D] have less than 2n chord feet on K2, and therefore die by L<2n. The

surviving term is exactly [D′ ·D]. If there are more than 2n chord feet on K2, we use Lemma

3.1 of [LM5] that allows us to write a chord diagram with more than 2n chord feet on K2

as a linear combination of chord diagrams with less chord feet on it. Applying this lemma

repeatedly, we can reduce the number of chord feet on K2. The proof involves only the use
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of the STU relation and Pn+1. If we denote by ·∆ the map D′ · D 7→ D′ · ∆D, then we

want to show that it commutes with the STU relation and Pn+1. That this commutes with

Pn+1 is immediate since this relation does not involve the support of chord diagrams. Thus

we turn to the commutation with the STU relation. In decreasing the degree of D′ ·D, we

can decrease the number of chords coming from D′ or the number of chords from D. We

start by considering the case where we decrease the number of chords from D. If D′ were

trivial, then we would just use the commutative diagram showing the commutativity of ∆

and STU given in [LM5]. Adding D′ decomposed as D′1 on one strand and D′2 on the second

to the previous commutative diagram and replacing ∆ by ·∆, we still have commutativity

of the resulting diagram. If we now decrease the number of chords in D′, then we wish to

apply the STU relation to chords from D′, and this commutes with applying the map ·∆ as

well. Thus [D′ ·D] = [D′ ·∆D], and this for any chord diagram D′ coming from a k + 1-st

power of ν, and for all summands D of Z̃f (L). Thus [⊗eνk+1 · Z̃f (L)] = [⊗eνk+1 · Z̃f (L′)],

or equivalently [Zf
∨(k)(L)] = [Zf

∨(k)(L′)].

In order to have an invariant under Kirby move I, one moves the above equivalence class

into another quotient space. Before doing so we make a few definitions, all of which once

again can be found in the original paper [LM5]. If X is a set with m ordered elements

labeled 0, 1, · · · ,m− 1, write A(m) = A(X). For σ ∈ Sm−2, define Tσ to be the graph:

0

σ(1) σ(2) σ(m− 2)

m− 1q q q
(10.66)

Define:

Tm =
∑

σ∈Sm−2

(−1)r(σ)

(m− 1) · (m−2)!
r(σ)!(m−2−r(σ))!

Tσ (10.67)
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where r(σ) = Card{i | σ(i) > σ(i+ 1)}. For m ≥ 2, define T nm ∈ A(m) by:

T nm =
∑

m1+m2+···+mn=m
m1≥m2≥···≥mn≥2

∐
1≤i≤n

Tmi (10.68)

where for each choice of a configuration (m1, · · · ,mn) the cyclic order of the Tmi ’s is pre-

served. If m < 2m, we set T nm = 0. Define:

ιn : A(qeS1)→ A(∅) (10.69)

by sending a solid circle with m chords ending on it to T nm with those m chords grafted onto

the m points defining the support of T nm. We now consider

[Zf
∨(k)(L)] ∈ Å(qeS1)∧/L<2n, Pn+1, On, map it into Å(∅)∧/Pn+1, On, which we further

project to Å(∅)/D>n, Pn+1, On. The resulting element we write [ιn(Zf
∨(k)(L))]. The re-

lation D>n sets to zero chord diagrams of degree greater than n. This last quotient space is

isomorphic to A(∅)/D>n by Lemma 3.4 of [LM5].

The following result was originally given in [LM5] in the case k = 1.

Proposition 10.2.1.2. [ιn(Zf
∨(k)(L))] ∈ A(φ)/D>n is independent of the orientation of L

and is invariant under band sum moves.

Proof. This follows from the previous Proposition and by following the proof of the same

statement for Žf , Lemma 3.5 of [LM5].

Recall the following definitions originally introduced in [LM5]: U+ (resp. U−) is the

trivial knot with +1 (resp. −1) framing, and one puts an algebra structure on A(φ)/D>n

whereby the disjoint union in the argument of the Kontsevich integral results in a product

of equivalence classes. One lets σ+ (resp.σ−) be the number of positive (resp. negative)

eigenvalues of the linking matrix for L. If M denotes the 3-manifold obtained from a

surgery on the link L, we would like to define a family of invariants:

Ωk,n(M) = [ιn(
∨(k)

Zf (U+))]−σ+ [ιn(
∨(k)

Zf (U−))]−σ− [ιn(
∨(k)

Zf (L))] ∈ A(∅)/D>n (10.70)
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with Ω1,n(M) = Ωn(M) in [LM5]. If α(d) denotes the degree d part of a sum of chord

diagrams α as in [LM5], then we define:

Ωk(M) = 1 +
∑
d≥1

Ωk,d(M)(d) (10.71)

with Ω1(M) = Ω(M) in [LM5]. The rest of this paper is devoted to showing that

[ιn(Zf
∨(k)(U±))] are invertible, and we will mainly follow the argument given in [LM5] to

emphasize that their proof can be easily generalized to the present case.

One first defines a linear map ([LM5]):

p : A∧(X qX)→ A∧(X)⊗A∧(X) (10.72)

that sends any chord diagram D with support on X qX with at least one chord stretching

between one X and the other copy of X to zero, D
∣∣∣
XL
⊗ D

∣∣∣
XR

otherwise, where L and R

refer to left and right copies respectively. If X = ∪1≤i≤eXi, then by successively applying

the doubling map ∆ on each of the e components of X, one defines a map ([LM5]):

∆(X1,··· ,Xe) : A∧(X)→ A∧(X qX) (10.73)

Define ([LM5]):

∆̂ := p ◦∆(X1,··· ,Xe) (10.74)

In other terms, ∆̂ doubles all components and kills those chord diagrams that have at least

one chord stretching between one copy of X and the other. We have the following fact:

∆̂(
∨(k)

Zf (L)) =
∨(k)

Zf (L)⊗
∨(k)

Zf (L) (10.75)
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Indeed:

∆̂(
∨(k)

Zf (L)) = p ◦∆(X1,··· ,Xe)(
∨(k)

Zf (L)) (10.76)

= p ◦
(

∆(X1)(ν
k+1)⊗ · · · ⊗∆(Xe)(ν

k+1) ·∆(X1,··· ,Xe)Z̃f (L)
)

(10.77)

= p ◦
(

(∆ν)k+1 ⊗ · · · ⊗ (∆ν)k+1 · Z̃f (∆L)
)

(10.78)

= p ◦
(
νk+1 ⊗ · · · ⊗ νk+1︸ ︷︷ ︸

2e

·Z̃f (∆L)
)

(10.79)

= p
∨(k)

Zf (∆L) (10.80)

=
∨(k)

Zf (L)⊗
∨(k)

Zf (L) (10.81)

The following result was originally given in [LM5] in the case k = 1.

Lemma 10.2.1.3. [ιn(Zf
∨(k)(U+))] and [ιn(Zf

∨(k)(U−))] are invertible in A(∅)/D>n.

Proof. The proof is the same as in [LM5]. Successive applications of ∆̂ lead to defining:

∆̂(1) = ∆̂ (10.82)

∆̂(2) = (∆̂⊗ 1) ◦ ∆̂ (10.83)

∆̂(3) = (∆̂⊗ 1⊗ 1) ◦ ∆̂(2) (10.84)

...

∆̂(k) = (∆̂⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
k−1

) ◦ ∆̂(k−1) (10.85)

Using the fact that ∆̂(Zf
∨(k)(L)) = Zf

∨(k)(L)⊗ Zf
∨(k)(L), we readily find:

∆̂(n−1)
∨(k)

Zf (U±) =
( ∨(k)

Zf (U±)
)⊗n

(10.86)

One defines two maps induced by ∆̂. The first is denoted ∆̂n,m ([LM5]):

∆̂n,m : Å(qeS1)∧)/L<2(n+m), Pn+m+1, On+m

→ Å(qeS1)∧/L<2n, Pn+1, On ⊗ Å(qeS1)∧/L<2m, Pm+1, Om (10.87)
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One uses in what follows the less cumbersome notation POn for Pn+1On as employed in

[LM5]. The second map is denoted ∆̂
(l)
1,··· ,1:

∆̂
(l)
1,··· ,1 : A(∅)/D>l+1 →

(
A(∅)/D>1

)⊗l+1

(10.88)

Now we invoke Lemma 4.2 of [LM5] which states that the following diagram is commutative

(shown for three integers n = n1 + n2):

Å(qeS1)/L<2n, POn −−−→
ιn

Å(∅)/POn

∆̂n1,n2

y y∆̂

Å(qeS1)/L<2n1 , POn1 ⊗ Å(qeS1)/L<2n2 , POn2

ιn1⊗ιn2−−−−→ Å(∅)/POn1 ⊗ Å(∅)/POn2

(10.89)

We apply this lemma n− 1 times. The composition of the n− 1 maps on the left is:(
∆̂1,1 ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸

n−2

)
◦ (∆̂2,1 ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸

n−3

)
◦ · · · ◦

(
∆̂n−2,1 ⊗ 1

)
◦ ∆̂n−1,1 (10.90)

We denote by
(

∆̂(n−1) Zf
∨(k)(U±)

)
1,··· ,1

the image of Zf
∨(k)(U±) under this map. The com-

mutativity of the n− 1 squares yields:

∆̂
(n−1)
1,··· ,1

(
[ιn
∨(k)

Zf (U±)]

)
=

[
ι⊗n1

(
∆̂(n−1)

∨(k)

Zf (U±)
)

1,··· ,1

]
(10.91)

Now observe that:(
∆̂(n−1)

∨(k)

Zf (U±)
)

1,··· ,1
=

(
∨(k)

Zf (U±)
∣∣∣
Å(qeS1)∧/L<2,PO2

)⊗n
(10.92)

From which it follows that:[
ι⊗n1

(
∆̂(n−1)

∨(k)

Zf (U±)
)

1,··· ,1

]
=
[
ι1
∨(k)

Zf (U±)
]⊗n

(10.93)

We wish to show that [ι1 Zf
∨(k)(U±)] is non-trivial. This will show that the constant part of

[ιn Zf
∨(k)(U±)] is non-zero, implying that it is invertible. Without loss of generality, we can

work with U−:

U− = (10.94)
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We have, using the fact that Zf (K) = Zf [M](K) for any M > 0:

Zf (U−) =
��

× SZ( �
�
�
�
��

�
��

B
B
B

BBN

A
A
-�

M

-�M

)× �� (10.95)

=
��

× e−Ω/2 × �
�
��

���

B
B
N

AA × �� (10.96)

=
��

× e−Ω/2 × �� (10.97)

= ���− 1

2
���+ · · · (10.98)

On the other hand:

ν = ���+ terms of even order (10.99)

Thus:

∨(k)

Zf (U−) = νk+1 · ν−1 · ν1 · Zf (U−) = ���− 1

2
���+ higher order terms (10.100)

In Å(qeS1)∧/L<2, P2, O1, the relation L<2 gets rid of the first term. Under the mapping ι1,

the second term maps to T 1
2 joined to an isolated chord, which is a trivial dashed circle, which

according to the relation O1 is equivalent to −2 · 1. Thus [ι1 Zf
∨(k)(U−)] = −1/2 · (−2) +

higher order terms = 1 + higher order terms, and therefore [ιn Zf
∨(k)(U−)] is invertible. One

can show that the same result holds for [ιn Zf
∨(k)(U+)].

This result shows that Ωk,n(M) is well-defined. We have the following result originally

given in [LM5] in the case k = 1.
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Theorem 10.2.1.4. For k ∈ Z, L a framed oriented link, M the 3-manifold obtained from

a surgery on S3 along L, the element Ωk,n(M) defined by:

[ιn(
∨(k)

Zf (U+))]−σ+ [ιn(
∨(k)

Zf (U−))]−σ− [ιn(
∨(k)

Zf (L))] ∈ A(φ)/D>n (10.101)

is a topological invariant of M for any integer n.

Proof. Ωk,n is well-defined by the previous Lemma. Invariance under orientation change

and band sum moves follows from Proposition 10.2.1.2. We work out the invariance under

the first Kirby move, which consists of adding to or subtracting from a link a circle with

±1 framing. If one adds a circle with framing +1, the framing of the component it is added

to increases by 1, and likewise if one adds a circle with framing −1, the framing of the

component it is added to decreases by 1. Then it suffices to write:

[ιn(
∨(k)

Zf (Lq U+))] = [ιn(
∨(k)

Zf (L))][ιn(
∨(k)

Zf (U+))] (10.102)

or equivalently:

[ιn(
∨(k)

Zf (U+))]−1[ιn(
∨(k)

Zf (Lq U+))] = [ιn(
∨(k)

Zf (L))] (10.103)

so that:

[ιn(
∨(k)

Zf (U+))]−(σ++1)[ιn(
∨(k)

Zf (U−))]−σ− [ιn(
∨(k)

Zf (Lq U+))] =

[ιn(
∨(k)

Zf (U+))]−σ+ [ιn(
∨(k)

Zf (U−))]−σ− [ιn(
∨(k)

Zf (L))] (10.104)

where on the left hand side of that equation σ+ + 1 = σ+(L q U+). We have a similar

computation for Lq U−.

This shows that the following quantity:

Ωk(M) = 1 +
∑
d≥1

Ωk,d(M)(d) (10.105)

is well-behaved and defines a family of topological invariants of 3-manifolds M , indexed by

a natural number k.
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10.2.2 General renormalizations of Ẑf and the invariants they
generate

In this section, we consider more general renormalizations of Z̃f and study the conditions

put on them to yield 3-manifold invariants. We consider an element γ ∈ Â(S1) whose

expansion we write
∑

D cD ·D for chord diagrams D with support on S1 and coefficients cD.

We consider the general renormalization:

Z̃f [γ](L) = γ ⊗ · · · ⊗ γ︸ ︷︷ ︸
e

·Z̃f (L) (10.106)

for L an e-component link. We have:

Z̃f (U±) = ν−1 · ν · Zf (U±) (10.107)

with:

Zf (U±) =
��

× e±Ω/2 × �� (10.108)

We use the notation θ to denote the unique chord diagram of degree one on the circle, and

θp the solid circle with p parallel chords on it. Then we can write:

��
× Ωp × ��= θp (10.109)

so that:

Z̃f (U±) = Zf (U±) =
∑
p≥0

(±1)p

p!

1

2p
θp (10.110)

We consider:

Z̃f [γ](U±) = γ · Z̃f (U±) = γ · Zf (U±) (10.111)

=
∑
D

cD ·D ·
∑
p≥0

(±1)p

p!

1

2p
θp (10.112)

=
∑
D,p≥0

cD
(±1)p

p!

1

2p
D · θp (10.113)

We simplify this expression by letting:

λp,ε,D = cD
εp

p!

1

2p
(10.114)
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with ε = ±1, so that:

Z̃f [γ](U±) =
∑
D,p≥0

λp,ε,DD · θp (10.115)

Recall that the chord degree is half the number of vertices, trivalent vertices included. Thus

for D a chord diagram, if |D| denotes the chord degree, we decompose that as |D|e + |D|i,

where |D|e is half the number of external (or univalent) vertices, on solid lines, and |D|i is

half the number of internal (or trivalent) vertices. We first regard Z̃f [γ](U±) as an element

of Å(S1)∧/L<2n, POn that we map by ιn into Å(∅)∧/POn. We write:

ιn

(
Z̃f [γ](U±)

)
= ιn

( ∑
D,p≥0

λp,ε,DD · θp
)

(10.116)

=
∑
D,p≥0

λp,ε,D ιn(D · θp) (10.117)

=
∑
m≥2n

∑
|D|e+p=m/2

λp,ε,D ιn(D · θp) (10.118)

One can see ιn(D · θp) in the above sum by pulling all the m chords from D · θp out of the

solid circle, and replacing this latter with T nm where its support of m points is grafted onto

the m feet of chords from D · θp. We write the resulting object D · θp(T nm). We will be

interested in the constant part of such objects. Depending on m, n, and the choice of D

and p, and using Pn+1 in conjunction with On, we can write:

ιn(D · θp) = D · θp(T nm) = αn,m,D + chord diagrams (10.119)

for some numbers αn,m,D, so that:

ιn

(
Z̃f [γ](U±)

)
=
∑
m≥2n

∑
|D|e+p=m/2

λp,ε,DD · θp(T nm) (10.120)

=
∑
m≥2n

∑
|D|e+p=m/2

λp,ε,Dαn,m,D + chord diagrams of degree ≥ 1 (10.121)

Once we have this quantity, we project it to Å(S1)/D>n, POn ' A(∅)/D>n. In this latter

space we define:

Ωγ,n(M) = [ιn(Z̃f [γ](U+))]−σ+ [ιn(Z̃f [γ](U−))]−σ− [ιn(Z̃f [γ](L))] (10.122)
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and:

Ωγ(M) = 1 +
∑
d≥1

Ωγ,d(M)(d) (10.123)

We have the following result:

Theorem 10.2.2.1. For γ =
∑

D cD · D ∈ Â(S1), L a framed oriented link, M the 3-

manifold obtained from a surgery on S3 along L, then Ωγ(M) is a topological invariant of

M provided the coefficients of γ satisfy for all integers n:

∑
m≥2n

∑
|D|e+p=m/2

λp,ε,Dαn,m,D 6= 0 (10.124)

where ε = ±1 in:

λp,ε,D = cD
εp

p!

1

2p
(10.125)

and:

D · θp(T nm) = αn,m,D + chord diagrams of degree ≥ 1 (10.126)

Proof. The proof of Proposition 10.2.1.1 still holds for Z̃f [γ](L) ∈ Å(qeS1)∧/L2n, POn and

shows that this quantity is independent of orientation change and band sum moves. In order

to have Ωγ,n(M) well-defined we need that [ιn(Z̃f [γ](U±))] be invertible. In the case where

γ = νk+1 we used the fact that ∆ν = ν ⊗ ν which we can no longer assume is true for a

general γ. Thus instead of following the same proof as for νk+1, we show directly that for

all n, the elements [ιn(Z̃f [γ](U±))] are invertible. We have computed in (10.121) that:

ιn(Z̃f [γ](U±)) =
∑
m≥2n

∑
|D|e+p=m/2

λp,ε,Dαn,m,D + chord diagrams of degree ≥ 1 (10.127)

showing that the constant part of ιn(Z̃f [γ](U±)) is:

∑
m≥2n

∑
2(|D|e+p)=m

λp,ε,Dαn,m,D (10.128)

and thus we need this to be non-zero for [ιn(Z̃f [γ](U±))] to be invertible. The proof of

invariance of Ωγ,n(M) under Kirby move I is the same as that in Theorem 10.2.1.4 and
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carries over in our case to show that Ωγ,n is invariant under such a move. This makes this

quantity a topological invariant for any integer n, and thus Ωγ(M) becomes a topological

invariant of M .
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