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Abstract 

The main objective of the study is to identify the general characteristics of groups within 

a typical Studio College Algebra class and then adapt aspects of the course to best suit their 

needs.  In a College Algebra class of 1,200 students, like those at most state funded universities, 

the greatest obstacle to providing personalized, effective education is the anonymity of the 

students.  Data mining provides a method for describing students by making sense of the large 

amounts of information they generate.   Instructors may then take advantage of this expedient 

analysis to adjust instruction to meet their students’ needs.  Using exam problem grades, 

attendance points, and homework scores from the first four weeks of a Studio College Algebra 

class, the researchers were able to identify five distinct clusters of students.  Interviews of 

prototypical students from each group revealed their motivations, level of conceptual 

understanding, and attitudes about mathematics.  The student groups where then given the 

following descriptive names: Overachievers, Underachievers, Employees, Rote Memorizers, and 

Sisyphean Strivers.  In order to improve placement of incoming students, new student services 

and student advisors across campus have been given profiles of the student clusters and 

placement suggestions.  Preliminary evidence shows that advisors have been able to effectively 

identify members of these groups during their consultations and suggest the most appropriate 

math course for those students.  In addition to placement suggestions, several targeted 

interventions are currently being developed to benefit underperforming groups of students.  Each 

student group reacts differently to various elements of the course and assistance strategies.  By 

identifying students who are likely to struggle within the first month of classes, and the recovery 

strategy that would be most effective, instructors can intercede in time to improve performance.   
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Chapter 1 - Introduction 

The main objective of the study is to identify the general characteristics of groups of 

students within a typical Studio College Algebra class and then adapt aspects of the course to 

best suit their needs.  In an ideal world, every college student would be guided through his or her 

studies with individual expert instruction from a highly qualified, empathetic educator.  

Prohibitive costs and a shortage of eligible instructors prevent this tailored attention from being 

attainable at most public universities.  In a College Algebra class of 1,200 students, like those at 

Kansas State University, the greatest obstacle to providing personalized, profound education is 

the anonymity of the students.  Because classes are so large and rigidly structured, individuals’ 

struggles in the class often cannot be addressed efficiently or effectively. 

Although College Algebra instructors may not be able to get to know each of their 1,200 

students individually, instructors may be able to learn about their students’ academic 

performance through Data Mining Analysis.  Data Mining provides methods for describing 

students by making sense of the large amounts of information students generate.   For example, 

clustering techniques can be used to look for groups of students who perform similarly on 

assignments and examinations.  Monitoring the progress of how groups of students behave is 

more feasible than trying to keep track of individual development.  Instructors may then take 

advantage of this expedient analysis to adjust instruction to meet their students’ needs.   

Using examination problem scores, attendance points, and homework scores from the 

first four weeks of a Studio College Algebra class, the researcher was able to identify five 

distinct clusters of similarly behaving students.  Data Mining techniques, however, could not 

reveal the qualitative characteristics of these groups of students.  To uncover the motivations, 

beliefs, and levels of conceptual understanding contributing to these group behaviors, the 

researcher interviewed prototypical students from each group.   Using the results from the 

quantitative data mining analysis and the qualitative interview analysis, the researcher created 

descriptive profiles of each of the student clusters.  The student groups were then given the 

following illustrative names: Overachievers, Underachievers, Employees, Rote Memorizers, and 

Sisyphean Strivers.   
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The identification of student clusters provides instructors with a reasonable method for 

assessing their students’ needs by simplifying the 1,200 individuals to five “types” of students.  

Each student group not only behaves distinctly, but the groups have different beliefs about 

mathematics, reactions to Studio College Algebra, and study habits.  Advisors can use this 

information to help students enroll in the most suitable mathematics course.  In order to improve 

placement of incoming students, new student services and student advisors across campus have 

been given profiles of the student clusters and placement suggestions.  Preliminary evidence 

shows that advisors have been able to effectively identify members of these groups during  

consultations and suggest the most appropriate mathematics course for those students.   

By identifying students who are likely to struggle within the first month of classes, and 

the corresponding recovery strategy that would be most effective, instructors can intercede in 

time to improve performance.  In addition to placement suggestions, several targeted 

interventions are currently being developed to benefit underperforming groups of students.  For 

example, the researcher has developed Problem Solving Workshops targeted to a particular 

group of students who perform poorly on examinations.  These students spend more than 

adequate time and effort studying the material in College Algebra and were able to demonstrate 

during interviews that they understood the concepts.  However, these students were unable to 

communicate their knowledge on written examinations.  The Problem Solving Workshop is 

designed to help students become familiar with examination structure and connect examination 

problems with the appropriate concepts. 

With technological advances, we can continually discover new ways to learn about 

students, provide instant feedback, adapt instruction and placement, and generally offer a high 

quality educational experience to all scholars.   

   

 Motivation 
The main objective of the researcher was to more fully understand the students enrolled 

in mathematics courses and adapt those courses to better suit the students’ educational needs.  

This practice of adjusting course content to reach all students is known in education research 

circles as Differentiated Instruction.  Typically, a college course is structured so that every 

student is taught the same way.  All students attend a lecture, lab, or question and answer 
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session, complete the same homework assignments, and take the same examinations.  Evidence 

increasingly shows that many students fail to learn in this environment, leading a large number 

of students to drop or fail classes.  At Kansas State University, where this study was conducted, 

for example, from 2003 to 2009 on average only 80% of first year students return to the 

university for a second year (OPA 3).  Equally troubling is the graduation rate.  Of the students 

who enrolled into Kansas State between 2000 and 2004, only 58.8% graduated within 6 years 

with a bachelor’s degree.  This number was substantially lower for ethnic minorities.  The 

overall graduation rate of ethnic minorities at Kansas State University over this period of time 

was 38.4%, with African Americans being lowest graduating group, at 31.2% (OPA 2).    

The factors influencing failure of college students have been widely studied, and it has 

been recognized that academics are only partly accountable for these high dropout rates.  

Educators, however, cannot discount the contributions of their teaching methods and course 

structure to the success and failure of their students.  Because mathematics is a well established 

field, with introductory courses teaching concepts that have been practiced for centuries, 

mathematics instructors especially have been slow to break from tradition and attempt to address 

their students’ problems. 

College Algebra is the second largest course on the Kansas State University campus, with 

roughly 25% of incoming freshman enrolled in the fall semester. Several studies show a strong 

link between success in mathematics courses and high probability of graduation (Parker, 28), 

(Pederson).  Improving the support structures available for students in College Algebra and 

increasing their chance of success in the class would significantly address retention problems.  

Increasing retention directly benefits students and increases revenues for the University.  For 

example, at Kansas State University, raising the freshman retention rate from 80% to 81% would 

add close to $250,000 to the annual budget (assuming students are paying full in-state tuition) 

(OPA 1).  In a depressed economy where state and federal budgets for higher education are being 

cut dramatically, this gives administration strong financial motivation to promote Differentiated 

Instruction and other innovative educational methods in their first year courses. 

Differentiated Instruction is a collection of teaching practices aimed at helping all 

students reach the goals of understanding content and effective application.  Proponents of 

Differentiated Instruction recognize that students are individuals with different educational 

backgrounds, ways of processing information, interacting with their peers, and holding diverse 
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beliefs about the college education experience.  These differences greatly affect how students 

learn and the resources and support they need to realize their full potential.  In most educational 

settings where Differentiated Instruction has been put into practice, the teacher is able to get to 

know each of his or her students through class time interaction and then adapt instruction 

accordingly.  For example, in an elementary school where each teacher spends 6-7 hours a day 

with his or her small group of students, it is possible to quickly assess each pupil’s abilities, 

personality traits, and special needs.   

The structure of most large first year courses in a university setting does not allow for this 

type of differentiation.  This is mostly due to the large class sizes and limited contact time of 

most large lecture courses.  Before parts of the course can be adapted to fit the needs of students, 

these needs must be identified.  When the average College Algebra lecturer, however, spends 

one or two hours each week with a class of 350 students, this level of personal attention is 

impossible.  Traditionally, Universities have attempted to provide a smaller-class experience by 

employing teaching assistants to guide recitation sessions for one or two hours a week.   The 

teaching assistants usually find that they are unable to get to know all but the most vocal 

students.  Also, the rigidity of this setup prevents lecturers and teaching assistants from 

instituting any meaningful changes during the semester.  The course schedule is entirely 

predetermined and carefully coordinated, so adapting to students’ academic needs proves 

problematic. 

College students are thus left to identify their own shortcomings and obstacles to 

learning, and make their own changes in order to find the best methods to overcome them.  

Universities often contain many organizations and groups dedicated to providing support for 

students working to adapt to college life.  These assets range from student health organizations, 

to tutoring groups, to social clubs.  Unfortunately, even though resources available to help 

struggling students exist, they are often not utilized by those students who really need them.  

Struggling students may be highly capable and determined to succeed, but these students are 

often unaware that they are headed for academic trouble, and unsure of how to change their path.  

Therefore, it is not enough for Universities to provide support structures for their students.  To 

truly differentiate instruction, instructors must be able to identify students’ individual traits and 

needs and then direct the students to the most appropriate resources.   
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Fortunately, new technologies can provide ways of both learning about students and 

adding adaptable elements to first year college courses.  Computer programs can make a course 

more adaptable, such as providing students with more practice problems or alerting instructors to 

changes in behavior.  “iClicker” technology can allow lecturers to ask multiple-choice questions 

during class and receive instant feedback from their students, allowing them do adapt their 

lectures to the level of student understanding.  By incorporating online components, such as 

homework and electronic gradebooks, instructors also can record an enormous amount of 

information about their students.  Every mouse click a student makes, such as activating a 

homework problem “hint” or replayed a lecture video, can be stored and later analyzed.  

Techniques for sifting through this data have been applied to the fields of business and 

engineering for several years now and are fairly well understood.  Only recently have these 

techniques been employed to analyze student-produced data with the intention of understanding 

student behavior and how to improve instruction.  

 Research Questions 
Improving instruction for College Algebra students through better understanding their 

behavior and motivation was the general goal for this research project.  However, identifying the 

learning preferences, personality traits, level of conceptual understanding, and progress of 1,200 

individuals through personal interaction during a single semester is impossible. To further 

expound on the goal of recognizing student needs and to clarify the direction of the project, the 

researcher specified the following questions: 

 

1) How can Data Mining techniques facilitate determining student needs?  Which 

Data Mining strategies would be most efficient and effective at revealing important 

knowledge about students in a timely manner? 

 

2) Data Mining analysis looks for patterns in quantitative data.  However, 

implementing Differentiated Instruction relies on understanding students’ backgrounds, 

motivations, preferences, and shortcomings.  Is it possible to uncover these qualitative 

student traits with Data Mining techniques? 
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3) Given the constraints involved with teaching mathematics in large lecture courses, 

how can instructors use the insight gained from Data Mining Analysis to effectively 

modify instruction? 

 Hypotheses 
1) Patterns and similarities in student behavior can be efficiently and accurately 

identified using standard Data Mining techniques known as clustering algorithms. 

2) College Algebra students’ attitudes and beliefs about mathematics can be revealed by 

examining their behavior in the course. 

3) This information can be used to develop effective math placement strategies, identify 

students in need of intervention, and improve freshman retention. 

 

The first hypothesis represents a shift in describing student behavior from categorization 

to clustering.  Traditionally, educational researchers have categorized students using a pre-

existing framework developed after years of qualitative research and classroom studies.  For 

example, the widely known theoretical model for student learning known as “Multiple 

Intelligences” was developed by Dr. Howard Gardner to describe a many-facetted approach to 

attaining knowledge.  According to this model, a one-dimensional measure of intelligence is 

artificially limited.  People can build many areas of intelligence, including interpersonal, 

intrapersonal, musical, kinesthetic, spatial, and the traditionally tested linguistic and logical 

intelligences (How People Learn, 101).  Many instruments have been designed to test for 

aptitudes in these different intelligences.  In general, much of educational research is built around 

developing useful and accurate educational models and then correctly placing students into the 

appropriate categories. 

Data Mining provides an alternate method for describing students by making sense of the 

large amounts of information students generate.  The set of data mining techniques known as 

“clustering” finds similarities in subjects based on patterns within the data.  Clustering 

techniques are commonly and very successfully used in the business setting.  For example, one 

of the keys to Netflix’s recent success in the DVD rental system is its highly accurate ratings 

system.  Netflix first asks their users to rate several movies they have seen.  Then, rather than 

trying to label each individual as someone who likes “romantic comedies” or “1980’s action 
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movies,” Netflix compares user preferences to the preferences of other subscribers.  Netflix  

identifies groups of people who have similar preferences, and then recommend movies based on 

what that subgroup liked.  According to Netflix, the algorithm the company employs is accurate 

to within half a star on a five-star scale at least 75% of the time.  Also, 50% of Netflix users who 

rent suggested movies rate them with the highest rating (Reinsburg, Feb 2010). In September of 

2009, Netflix awarded a prize worth $1 million to a team of data miners who were able to 

increase the accuracy of their ratings prediction algorithm by 10%.  The winning team applied a 

combination of several clustering techniques to a data set composed of over 100 million movie 

ratings to reach the goal (Lohr, 21 Sept 2009). 

In this study, the researcher aimed to demonstrate that students also may be “clustered” 

by their behavior in College Algebra.  Rather than trying to place students in an appropriate 

learning category, clustering techniques can identify groups of students who behave similarly.  

Finding patterns using computer algorithms and little expert knowledge are known as “black 

box” data mining methods.  By using these black box procedures to group students based on the 

relationships in their behavior and responses to classroom assignments and examinations, one 

can avoid the problem of determining if preconceived categories are relevant or valid.  Also, 

because students in Studio College Algebra generate large and varied amounts of data, many 

methods to test the accuracy and efficiency of predictions based on student clustering schemes 

exist. 

In order for information about student clusters to be relevant for differentiating 

instruction, the data must be gathered and processed in a timely manner.  Some initial work is 

needed to describe the characteristics of each student cluster and so useful analysis is not 

immediately available to the instructors.  Once the student clusters have reliable descriptions, 

however, the process for identifying members should be easily reproducible and adaptable from 

semester to semester.  Also, instructors are less likely to use clustering analyses if data collection 

for each semester is lengthy or prohibitive.  Therefore, the collected data should be restricted to 

information normally recorded during the course of the semester, such as attendance points, 

homework, and examination scores.   

Unfortunately, student clusters identified with data mining techniques do not come with 

the convenient descriptions that are available for “Multiple Intelligences” and other learner 

categories.  Data mining algorithms can identify groups of students who behave similarly, but the 
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algorithms have more difficulty describing what those behaviors are and motivations for those 

actions.  By confirming the second hypothesis, the researcher aims to show that student clusters 

based on behavior can be traced back to common levels of preparation, ideas about mathematics 

and education, cooperative skills, or other sources.   Uncovering these motivating factors 

requires more qualitative research methods, such as interviewing prototypical members of each 

cluster about their beliefs and reactions to Studio College Algebra. 

The third hypothesis is perhaps the most important one: demonstrating that applying this 

data analysis will have a positive impact on College Algebra students.  The researcher explicitly 

aims to use this analysis to improve placement into appropriate courses and target 

underperforming groups of students for academic intervention, thus improving retention.  Of 

course, the specific proposals for improved placement and intervention depend on the 

characteristics of the identified student groups.  No inherent theoretical framework on which to 

build these placement and intervention strategies exists since the clusters are not based on 

preconceived categories.  Therefore, attempts to differentiate instruction based on student 

clustering results must be carefully considered and monitored closely.   

 Limitations 
Several factors of this study limit the generalization of its results.  The study was 

restricted to students enrolled in the Studio College Algebra Course of Kansas State University.  

Most other universities of this size do not offer a mathematics course similar to Studio College 

Algebra.  Also, the student demographics at Kansas State are not representative of college 

students as a whole, and thus may not yield the same student clusters as other universities.  

Studio College Algebra students were chosen as subjects of the study because they are mainly 

first year students from a wide range of backgrounds and levels of preparedness.  However, these 

students do not represent a random sample of college students and tend to consist of students 

with limited mathematical background (with some important exceptions- See Chapter 4: Group 

UA).   

Kansas State University’s mathematics department also offers a course called Traditional 

College Algebra, which is a much larger course geared towards students intending to go on to the 

engineering calculus sequence.  Studio College Algebra is a relatively new course, with the first 

trial classes running during Fall 2007.  Studio College Algebra was designed for students in 
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business or social sciences who wish to take Statistics or General Calculus as part of their major.  

Studio College Algebra emphasizes practical applications and modeling with functions over 

algebraic manipulations.  During the four semesters in which the study was conducted, it was 

determined that the general academic community at the University was unaware of the 

differences between the two courses, and so the students enrolled in these courses were fairly 

heterogeneous, with students from all backgrounds and majors equally likely to be enrolled in 

each course. 

In Studio College Algebra, a high number and wide variety of assignment scores are 

recorded electronically during the first four weeks of the semester.  This allowed the researcher 

to measure many types of behaviors, including performance on timed exams, performance on 

cooperative assignments, procedural fluency and success with applications, and attendance.    

Other more advanced math courses at the university do not produce this amount of information, 

and would thus be harder to analyze with Data Mining methods.  Also, the behaviors exhibited 

by Studio College Algebra students were recorded as quantitative scores.  Analyzing courses 

outside of mathematics with data mining techniques might require ways to convert more 

subjectively recorded behaviors into quantitative data. 

The study was conducted over a period of four semesters (two years).  While quantitative 

data was recorded and analyzed each semester, interviews of group representatives were only 

conducted during Spring 2009.  This was due to budget and time constraints.  Investigation of 

group characteristics revealed that students in the Fall semesters and the Spring semesters had 

different backgrounds and academic traits.  The class sizes in the fall and spring also were very 

different.  Therefore, several steps were made by the researcher to allow for the groups to be 

comparable.  This process is described in detail in Chapter 3. 

 Summary   
Differentiating Instruction in a large introductory mathematics course presents several 

challenges.  Particularly frustrating is the anonymity of the students due to large class sizes and 

limited contact time.  Data mining can provide a method for describing students by finding 

patterns and similarities in the large amounts of information they generate.  This study aimed to 

show that analysis from Data Mining techniques such as Clustering could give educators insight 
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into their students’ needs and suggest ways to successfully adapt the course to address these 

problems. 

Because Educational Data Mining is a relatively new field, it does not have well 

established and tested research protocols.  While the researcher was guided by her research 

questions and hypotheses, each stage of the study was heavily influenced by the results and 

questions raised by the preceding steps.  The remainder of this thesis presents a narrative of the 

Data Mining techniques tested and selected by the researcher, investigation and interpretation of 

the results of using these algorithms, and actions taken in response to the analysis. 
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Chapter 2 - Literature Review 

In this chapter, we review literature related to Differentiated Instruction, the Educational 

Data Mining community, and Data Mining techniques used in this study.  Please note that all 

educational theory and mathematical statements in this section have been previously published 

by other authors. 

 Differentiated Instruction and Educational Data Mining 

 What is Differentiated Instruction? 

Before the 19th and 20th centuries, education was reserved for the elite.  Most knowledge 

was passed on through personal mentoring or tutoring, and classrooms with more than four or 

five pupils were rare.  As access to education opened up in the industrial era, teachers taught 

increasing numbers of students, and education became organized into an institution.  Now, most 

students in the United States are taught in classes separated by age with one or two teachers 

instructing an average class size of 24 (Digest of Education Statistics, 2003 stats).  Traditionally, 

these classes are very teacher oriented, with the structure of the lessons and environment of the 

classrooms designed to allow the instructor to disseminate information to their students as 

efficiently as possible (Wormeli, 8).  All students were taught the same way, and if a student 

struggled then he or she was either unintelligent or lazy.  More recently, research in cognitive 

science and educational studies has shown that students differ in readiness, interest, and learning 

styles as well as innate ability (Tomlinson, 179). Tapping into these differences and using them 

to motivate learning has been linked to higher student achievement.  Many educators have 

concluded that the traditional “one size fits all” method of teaching is inadequate for their 

students’ needs and have been turning to other teaching strategies. 

Differentiated Instruction is a collection of teaching practices designed to help all 

students meet their learning goals.  According to Rick Wormeli, a leading advocate for 

Differentiated Instruction, 
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“The two simple charges of differentiation are: 

(1) Do whatever it takes to maximize students’ learning instead of relying on a 

one-size-fits-all, whole-class method of instruction and  

(2) prepare students to handle anything in their current and future lives that is not 

differentiated, i.e., to become their own learning advocates.” (Wormeli, 9)   

This method of instruction is not the same as tiering or tracking, where students are 

segregated into groups with the same level of proficiency.  Often with tiering, students in the 

lower tiers are given less work or fewer assignments than students in the more advanced tiers.  

For example, if a quick student finishes an assignment before the rest of the class, a teacher 

might give him or her another problem set to complete.  Studies show that punishing students 

who learn faster than their peers by giving them more work leads to decreased motivation and 

poorer future performance.  Likewise, struggling students have no incentive to improve if they 

know it would only lead to more work (Wormeli, 66), (Tomlinson, 180).   

In Differentiated Instruction, the preferred method of adapting to students’ speeds is to 

“change the nature of the work, not its quantity.” (Wormeli, 10)  While every student is expected 

to reach the same intellectual goals, he or she is are provided with many different tools for 

achieving those goals.  Often, students are given the option to choose assignments that appeal to 

their personal interests.  Other times, students are given problems with varying complexity or 

different applications.  In any case, the goal of Differentiated Instruction is to recognize that 

students learn in different ways, and to facilitate their learning through the use of different 

materials, challenges, and support structures. 

 Although Differentiated Instruction can best be described as a compilation of many 

techniques and practices, there are a few crucial features to every implementation of 

Differentiated Instruction.  First, to differentiate instruction effectively, one must get to know the 

students as individuals and identify their particular needs and challenges.  Carol Ann Tomlinson 

provides a table outlining possible students’ traits and their implications for learning, which is 

provided below: 
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Table 2.1  Categories of Student Variance with Contributors and Implications for Learning  

Category of 

Student Variance 

Contributors to 

the Category 

Some Implications for Learning 

Biology Gender 

Neurological 

“wiring” for 

learning 

Abilities 

Disabilities 

Development 

High ability and disability exist in a whole range of 

endeavors. 

Students will learn in different modes. 

Students will learn on different timetables. 

Some parameters for learning are somewhat 

defined, but are malleable with appropriate context 

and support. 

Degree of 

Privilege 

Economic status 

Race 

Culture 

Support System 

Language 

Experience 

Students from low economic backgrounds, and 

representing races, cultures, and languages not in 

positions of power, face greater school challenges. 

Quality of students’ adult support system influences 

learning. 

Breadth/depth of student experience influence 

learning. 

Positioning for 

learning 

Adult models 

Trust 

Self-concept 

Motivation 

Temperament 

Interpersonal Skills 

Parents who actively commend education 

positively affect their children’s learning. 

Trust, positive self-concept, positive temperament, 

and motivation to learn positively impact student 

learning. 

Positive interpersonal skills and “emotional 

intelligence” positively impact student learning. 

Preferences Interests 

Learning 

Preferences 

Preferences for 

individuals 

Student interests will vary across topics and 

subjects. 

Students will vary in preference for how to take in 

and demonstrate knowledge. 

Students will relate to teachers differently. 

 

(Tomlinson, 17) 
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Secondly, teachers must continuously assess the success of their teaching strategies as 

well as the progress of their students.  Proponents of Differentiated Instruction stress that there 

must be ongoing assessment of the students preparedness before designing a lesson plan, 

evaluation of the lesson’s effectiveness and student growth during the implementation of the 

lesson (with time for mid-lesson adjustments), and a cumulative measure of student 

understanding at the completion of the lesson.  Not all of these assessments should be formal, 

traditional written exams or count as graded assignments.  Most importantly, these assessments 

should provide both the teachers and the students with an accurate, timely, and useful measure of 

their progress toward understanding the concepts and execution of applications. 

Finally, teachers implementing Differentiated Instruction techniques are encouraged to 

collaborate with their colleagues and provide their students opportunities to cooperate with each 

other.  By working together, students can benefit from the diversity of thought and approach 

found among their peers.  As a teacher, using Differentiated Instruction in the classroom can be a 

rewarding experience.  However, Differentiated Instruction techniques can also be much more 

challenging and time consuming than traditional teaching methods.  Many resources and support 

networks are available for educators using differentiated teaching strategies, including ways to 

partner with other teachers to provide more support opportunities for students. 

Most of the available Differentiated Instruction literature focuses on presenting teachers 

with motivation, resources, and strategies for implementing Differentiated Instruction in their 

classrooms.  However, research on the merits of using differentiated instruction techniques is 

limited.  Dr. Tomlinson and other educators recognize that the “package” of Differentiated 

Instruction “is lacking empirical validation. There is an acknowledged and decided gap in the 

literature in this area and future research is warranted.” (Hall, et.al.)  In particular, research about 

the implementation of Differentiated Instruction strategies in secondary and post-secondary 

settings is very scarce.  That said, there are many testimonials and small classroom studies 

indicating that students in Differentiated Instruction settings demonstrate achievement gains, and 

have a more positive attitude about education (Tomlinson, 184).  Also, there is much theoretical 

support for Differentiated Instruction in its ties to accounting for differences in biological 

cognitive science, multiple intelligences, and learning styles (Subban, 15). 
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 The Emerging Field of Educational Data Mining 

The Educational Data Mining (EDM) community website, 

www.educationaldatamining.org, defines educational data mining as follows: “Educational Data 

Mining is an emerging discipline, concerned with developing methods for exploring the unique 

types of data that come from educational settings, and using those methods to better understand 

students, and the settings which they learn in (Baker, 3).”  General Data Mining and data mining 

techniques are fairly well established fields with theoretical support going back to the 1950’s and 

practical applications being explored as early as the 1970’s.  However, these techniques were not 

applied to the field of education until the early to mid-1990’s, when computers became more 

common in the classroom and universities began offering online courses.     

While much of educational research is built on theory based in classroom observation and 

case studies, EDM researchers aspire to provide solid justification for these theories rooted in 

large amounts of quantitative analysis.  Proponents of EDM emphasize the need to have shared 

data and verifiable results, providing the basis for a community of researchers.  The EDM 

community began organizing in the early 2000’s and the first international Educational Data 

Mining conference was held in Quebec in June of 2008 (JEDM website).   

In October 2009, the first issue of the Journal of Educational Data Mining (JEDM) was 

published, and the writers anticipated the publication of the first Handbook of Educational Data 

Mining (Baker, 4).The first article of the first issue of JEDM, “The State of Educational Data 

Mining in 2009: A Review and Future Visions” outlines and summarizes the methods, goals, and 

trends of EDM researchers.  The authors use the following classification for Educational Data 

Mining: 

• “Prediction 

o Classification 

o Regression 

o Density estimation 

• Clustering 

• Relationship 

o Association rule 

mining 

o Correlation mining 

o Sequential pattern 

mining 

o Causal data mining 

• Distillation of data for human 

judgment 

• Discovery with models” 

 

(Baker, 6)
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The first three categories are standard Data Mining methods that are well understood and have 

been applied to many types of data sets.  A more detailed description of Clustering and 

Correlation mining will be given in the following section.  The final two categories make use of 

Data Mining to support or refine educational models and theory. By analyzing the EDM papers 

published between 1995 and 2005, it can be noted that the two most common approaches used 

were Relationship mining (with 26 out of 60 papers) and Prediction (with 17 out of 60) (Baker, 

7). 

 Educational Data Mining differs from traditional data mining mainly in its applications.  

EDM researchers use the vast amounts of information generated by student-computer 

interactions to study how students learn.  One typical application of EDM is to study and 

improve software learning systems.  Also, in recent years, researchers have been analyzing the 

interactions between students, their peers, their instructors, and the system while enrolled in 

distance courses and other computer supported collaborative learning environments.  Computer 

adaptive testing is also an active area of study, especially looking at how students can “game the 

system.”  Each of these topics accentuates students’ use of and interactions with computers and 

learning software, and using information about those interactions to improve the learning 

experience.  In recent years, there has been more active research on studying the effectiveness of 

online courses, using Baysian networks and other approaches to look at changes in behavior over 

time. 

 Other areas of research in EDM involve using recorded information to learn more about 

general student behavior, and not just their connections with technology.  In particular, 

Educational Data Miners have been verifying and improving student models.  These student 

models “represent information about a student’s characteristics or state, such as the student’s 

current knowledge, motivation, meta-cognition, and attitudes.” (Baker, 6)  Education models can 

be used to predict student behavior, identify areas of improvement, and improve curriculum to 

better serve student needs.  Educational Data Mining has also been used to study the factors of 

student failure and retention issues. 
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 Data Mining Techniques 
Data miners use a variety of techniques to look for patterns and salient information in 

very large and often complex data sets.  Often, traditional statistics and data analysis approaches 

cannot be used on these data sets because of either the sheer number of points or the high 

dimensional nature of the information.  New algorithms are needed to overcome the challenges 

of the extremely large scale and high number of independent attributes commonly found in 

modern data sets.  This section describes the unconventional Data Mining techniques used in 

combination with traditional analysis used to find behavior patterns among Studio College 

Algebra students. 

 Motivation and Pre-processing 

Data Mining techniques are usually used in the pursuit of one of two distinct goals:  

predictive modeling or deriving descriptive relationships within the data.  Predictive modeling is 

tied to supervised classification techniques, where unlabeled explanatory or independent 

variables are used to predict the presence of an attribute known as a target or dependent variable 

that is not part of the collected data set.  Usually this target is a class label that is assigned using a 

predetermined model. In contrast, cluster analysis and anomaly detection use only inherent 

relationships within the data set such as proximity or correlation (Tan, 9). 

  One can measure the proximity of two objects in several different ways, with 

appropriate choices made depending on the nature of the data set.  It is often appropriate and 

convenient to consider data objects with n attributes as points in n-dimensional Euclidean space.  

The coordinates of the data objects/points are given by the attribute values.  In this case, the 

proximity measure between two points x and y is generally the Euclidean distance between the 

two points (or 2L  norm), given by the following formula: 

Equation 2.1  Euclidean Distance between two points 

∑
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Note that other norms may be used as measures of proximity, and the 2L  norm is not appropriate 

for many data sets such as sets containing only binary attributes.  The proximity data between all 
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points in a set is often organized into a symmetric distance matrix, where both the rows and 

columns are the data points and the entries the distances between each point (Tan, 68).   

Just as it is often useful to calculate the similarity or dissimilarity between two objects, 

one can also measure the relationship between separate attributes.  The correlation between two 

attributes is a measure of the linearity of the relationship between them.  The correlation 

coefficient between two attributes is a value between -1 and 1, with a value of 1 indicating a 

perfect positive linear relationship between the two attributes, and a value of -1 indicating at 

perfect negative linear relationship.  A value close to zero indicates there is no linear relationship 

between the two attributes, although a non-linear relationship may exist.  The correlation 

coefficient of attributes v and w in an m point data set is calculated using the following equation: 

Equation 2.2  Correlation Coefficient 
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Equation 2.3 Covariance 
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Equation 2.4 Standard Deviation 
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1  is the standard deviation of v (and similarly w).   

As with distances between objects, correlation coefficients between attributes are often 

organized in a correlation matrix (Tan, 77).  Highly correlated attributes can be interpreted as 

providing redundant information about the data points.  In clustering methods, one could then 

reduce the dimensionality of the data without losing important relationships set by disregarding 

these superfluous attributes. 

 Often in order to accurately compare the similarity or dissimilarity of objects having 

more than one attribute, the data must be transformed prior to running data mining algorithms.  

One such technique for ensuring that one set of attributes with large values does not dominate the 

results of a calculation is called standardization.  During this process, a set of attribute values 

undergoes the transformation given in the following equation: 
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Equation 2.5 Standardization of a Variable 

xsxxx /)('
_
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where x  is the mean of the attribute values and xs  is their standard deviation. 

The mean (average) value for this transformed data set is now equal to 0, while the 

standard deviation is equal to 1.  In this way, attributes with vastly different scales can be 

compared with large scale data being valued as more important than data without smaller scale 

data (Tan, 65).  For example, online homework scores in Studio College Algebra are measured 

on a 10 point scale, while examination questions are worth 5 points each.  Without 

standardization, the difference between students who earned scores of 8 and 10, respectively, on 

their written homework would be calculated to be twice as much as students who earned scores 

of 4 and 5 on their exam problem.  Thus the homework problem scores would dominate the 

measure of similarity of these students, when in reality exams scores have equal importance. 

 Clustering Techniques 

Cluster analysis refers to grouping objects based solely on information from the data that 

describes the objects and their relationships.   The main goal is to sort objects into groups so that 

each object in that group is similar to other members of the group, but dissimilar from objects 

belonging to other groups.  Much of the time, the idea of a cluster is not well defined.  The 

number, size, and make-up of clusters are subject to interpretation of the data and the relative 

importance of different relationships.  In addition, depending on the situation, an object might 

naturally belong to one cluster exclusively, more than one cluster simultaneously, or have 

weighted assignments to more than one cluster.  This latter clustering assignment setup is known 

as fuzzy clustering, where each object belongs to a given cluster with a probability between 0 

and 1.  The three techniques referred to in this paper employ exclusive clustering (Tan, 490-492). 

 K-means and K-medoids 

One of the oldest and most well understood clustering algorithms is the prototype-based, 

partitional clustering technique known as K-means.  This algorithm uses the model of a cluster as 

“a set of objects in which each object is closer (more similar) to the prototype that defines the 

cluster than to the prototype of any other cluster.” (Tan, 494) K-means defines a cluster 

prototype as the centroid of a group of points in continuous n-dimensional space.  
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The algorithm for the basic K-means clustering technique is simple and has few steps.  

First, the user chooses K initial centroids, with K being a predetermined number of clusters.  

These starting centroids can be chosen arbitrary or intentionally well-separated to avoid non-

optimal clusterings.  Next, each point is assigned to its closest centroid, forming K initial 

clusters.  Then, the centroids of these initial clusters are updated.  The cycle continues by 

disbanding the former clusters and assigning each point to its closest (updated) centroid.  The 

process is repeated until the centroids do not change, or equivalently, no data points are 

reassigned to a different cluster (Tan, 497-499). 

For data in Euclidean space, we use Euclidean distance (or the 2L  norm) given by 

Equation 1 above as our proximity function.  Determining optimal clustering assignment is 

expressed by minimizing an objective function.  The most commonly used objective function for 

K-means is the sum of the squared error (SSE).  If ic  represents the centroid of the cluster Ci, 

then the SSE of the clustering can be expressed by the following equation: 

Equation 2.6  Total Sum Squared Error Formula 
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Note the SSE of a cluster is found using the formula above, but without summing over every 

cluster.  Once the proximity and objective functions are specified, the centroid of a cluster is 

defined as the point in n-dimensional space that minimizes the objective function of that cluster.  

The following proof shows that using Euclidean distance and SSE as our proximity and objective 

functions, respectively, forces the centroids of the clusters to be their geometric mean (Tan, 514). 

 Proposition 1.1 

 The centroid that minimizes the SSE of a cluster is its arithmetic mean. 

Proof: 

The Sum Squared Error of a size m cluster, C, can be written as a function of its centroid, c.  A 

local minimum of this function will occur if the functions’ first partial derivatives exist and equal 

zero.  Therefore, we can find the minimizing centroid by differentiating the SSE, setting it equal 

to zero, and solving for c.   Let cj be the jth coordinate of c.  Then, 
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Because the choice of the coordinate j was arbitrary, if the jth coordinate of the centroid c is the 

mean of the jth coordinates of all the points in the cluster C, then the centroid c must be the 

geometric mean of the points in the cluster C: 

Equation 2.7 Cluster Centroid 
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 Using K-means has many theoretical and practical advantages, as well as some strong 

disadvantages.  By not using a global approach, i.e. calculating all possible clustering scenarios 

and choosing the optimal one, K-means greatly simplifies and speeds up the calculations 

involved.  The K-means algorithm minimizes the SSE through a gradient descent technique, 

which starts with an initial solution and then computes the change that would best optimize the 

objective function.  By using Euclidean distance and SSE as the optimizing function, this process 

will eventually converge to a locally optimal solution (Tan, 498).  Unfortunately, this solution is 

not guaranteed to be globally optimal.  However, because of the efficiency of the algorithm, one 

can ameliorate this problem by running the program several times with different initial centroids 

and then choosing the clustering with the minimum total SSE (Tan, 502-503). 
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 Other problems prove more difficult to solve.  For example, because K-means is based on 

Euclidean distance, the ideal clusters are Euclidean balls of similar density.  If the data set is not 

naturally made of these ideal clusters, it will be difficult to identify them with this algorithm 

(Tan, 510).  Also, because all distances are squared in the SSE optimization function, outliers 

have an unduly heavy influence on the formation of clusters (Tan, 506).  Finally, the K-means 

algorithm is not helpful in determining the number of natural clusters a data set contains.  

Because of these fundamental flaws, a modified version of this algorithm, K-medoids was 

employed in this study. 

 The K-medoids algorithm, also known as Partitioning About Medoids (PAM), uses 

points within the data set as representative objects of clusters rather than a geometric center.  In 

this scenario, only the dissimilarities between the points are considered rather than their 

geometric position.  Thus the optimal clusters are chosen to minimize the average dissimilarity 

between the points in the cluster and their representative point, or medoid.  As in K-means, the 

dissimilarity between two data points is the Euclidean distance between them.  However, using 

the average dissimilarity rather than the Sum Squared Error as the objective function makes 

PAM significantly different.  The algorithm used in PAM is slightly more complex than that of 

K-means, but this method amends many of the practical flaws of the K-means clustering method. 

 The PAM algorithm contains two phases: BUILD and SWAP.  During the BUILD phase, 

the medoids are initially assigned to maximize the chance of rapidly obtaining an optimal 

clustering.   Using Dj and Ej to denote object j’s dissimilarity with its closest and next closest 

medoid, respectively, the BUILD algorithm can be summarized thusly: 

Step 1:   Select the first medoid to be the object for which the sum of the dissimilarities to 

all other objects is smallest. 

Step 2:   Consider two non-selected objects i and j. Calculate object j’s dissimilarity Dj 

with the most similar previously selected medoid, and dissimilarity d( i,j ) with the object 

i.  If the difference between Dj and d( i,j ) is positive, then j will contribute to the decision 

to select object i as the next medoid.  So, we need to calculate )0),,(max( ijdDC jji −= . 

Step 3:   Calculate the total gain obtained by selecting object i as the next medoid: 

∑=
j

jii CG . 

Step 4:   Choose as the next medoid the not yet selected object i which maximizes Gi 
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Continue the process until K initial medoids have been assigned (Kaufman, 102-103). 

 

During the SWAP phase of the algorithm, the clustering is improved by comparing the 

effects of “swapping” all pairs of objects (i,h) for which i is a selected medoid and h is not.  Note 

that the value of a clustering is measured by the sum of dissimilarities between each object and 

the most similar medoid.  So, we need to determine the effect on the sum of dissimilarities made 

by swapping each pair of objects (i,h) and then decide which pair, if any to swap (Kaufman, 

103). 

The calculations of the effect of a swap between medoid i and unselected point h  is calculated as 

follows: 

Step 1:  Consider a non-selected object j and calculate its contribution Cijh to the swap: 

a. If j is more dissimilar from both i and h than from another medoid, Cijh is zero. 

b. If j is not further from i than from any other medoid, i.e. d(j,i) = Dj, then two 

situations must be considered: 

i. If j is closer to h than to the second closest medoid, i.e. d(j,h) < Ej , then in this 

case Cijh =  d(j,h) – Dj. 

ii. If j is at least as distant from h as from the second closest medoid, i.e.   d(j,h) 

≥ Ej , then  Cijh = Ej – Dj. 

c. If j is more distant from medoid i than from at least one of the other medoids, but 

closer to h than to any of them, then Cijh = d(j,h) – Dj.  Note, this Dj will not be equal 

to d(j,i). 

Step 2:  Calculate the total effect of a swap by adding the contributions of Cijh: 

∑=
j

jihih CT  

 

Next, it is decided whether to carry out a swap by selecting the pair (i,h) which minimizes Tih.  If 

the minimum Tih is negative, the swap is carried out and the SWAP algorithm returns to Step 1.  

If the minimum Tih is positive or zero, then the average dissimilarity cannot be decreased by 

making a swap and so the algorithm ends (Kaufman, 103-104).    
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 Like the K-means algorithm, PAM is guaranteed to converge to a locally optimal 

solution, though not necessarily a globally optimal one.  However, by using the BUILD 

algorithm to choose the initial medoids, the probability of not finding globally optimal clusters is 

very small.  The main desirable difference between K-means and PAM is that PAM minimizes 

average dissimilarities rather than sums of squares of distances.  This greatly reduces the impact 

of outliers on the formation of the clusters, ensuring a more robust clustering.  Also, the cluster 

medoids chosen in the PAM algorithm provide representative examples, or prototypes, which are 

highly useful in many situations.  Finally, PAM is able to compute clusters using only the 

dissimilarities between data objects without regard to their “position” in n-dimensional space. 

Methods like K-means employing objective functions featuring SSE are simpler to compute and 

take less time to run, but advantages of using PAM far outweigh the computational costs. 

 Agglomerative Nesting 

Agglomerative nesting (AGNES) is another approach to clustering that differs from the 

partitioning methods described above.  The AGNES algorithm starts by considering each point 

an individual cluster, and then at each step merging the closest pair of clusters until there is one 

large cluster at the end.  Because it would not be useful to only display the final output, the entire 

process is displayed graphically as a tree-like diagram called a dendrogram (Tan, 515).  The 

sample dendrogram shown below displays the example clustering of four 2-dimensional points.  

Note the height of the connecting bar indicates the dissimilarity of the two previously linked 

clusters. 
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Figure 2.1  AGNES Dendrogram 
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The variations within the AGNES program come from the chosen definition of “closest 

clusters.”  Cluster proximity is usually defined with a specific ideal cluster in mind.  For 

example, several agglomerative nesting techniques use a proximity function focusing on a graph-

based view of clusters.  Others look at clusters as being represented by a prototype, such as a 

centroid, as in K-means or PAM (Tan, 517).  The two most widely used methods for determining 

proximity are the group average technique, sometimes called “unweighted pair-group average 

method” (UPGMA), which employs the former proximity based clustering, and Ward’s method, 

which employs the latter prototype based clustering (Kaufman, 203). 

The default version of AGNES run by the statistical program R used in this study 

determines the proximity of clusters by averaging the pairwise proximity among all the pairs of 

points in the different clusters (UPGMA).  For two clusters Ci and Cj of sizes mi and mj, 

respectively, their proximity is expressed by the following equation (Tan, 522): 

Equation 2.8 Group Average Cluster Proximity 
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Ward’s method is an alternative approach that defines proximity between two clusters as the 

increase in Sum Squared Error (SSE) that results from these clusters being merged (Tan, 517). 

Thus, Ward’s method has the same objective function as that of K-means (see Equation 2.6).   

Although Ward’s method is computationally similar to K-means, and therefore 

theoretically well known, in practice UPGMA has been shown to be more reliable and robust.  

One advantage to using UPGMA over Ward’s method is that the dissimilarity between merging 

clusters remain statistically consistent.  In other words, as the sample size increases, the 

dissimilarity calculated by Ward’s method blows up to infinity, but UPGMA remains stable.   

Also, Ward’s method only performs well if the natural clusters are of equal diameter and contain 

an equal number of objects, whereas UPGMA has been shown to be effective in a wide variety 

of sampling situations (Kaufman, 243). 

 Because AGNES employs a nearest neighbor approach, it is highly susceptible to minute 

changes in the positions of the objects, i.e. noise.  Even the methods using the most stable 

proximity measures are not nearly as robust as more globally optimizing methods such as K-

means or PAM.  AGNES tends to make good local decisions about merging clusters at each 
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stage, but once that choice to merge has been made, it cannot be undone at a later time.  Thus, 

there is no sense of optimizing a global objective function (Tan, 526).  In practice, AGNES is 

often used to determine the number of naturally occurring clusters in a data set.  Then, another, 

more robust method is used to actually enumerate these clusters. 

 

 Dimension Reduction 

The standard clustering algorithms AGNES and PAM described above work very well 

with data in low dimensional settings, but several problems arise applied to high dimensional 

data sets.  The standard geometric properties of density and proximity are intuitively simple in 

two or three dimensions, but behave strangely in higher dimensional settings.  Because AGNES 

and PAM rely on these properties as their foundation for clustering, these algorithms cannot 

generate meaningful clusters with high-dimensional data.  For example, the volume of a 

hypersphere with radius r is proportional to rd, where d is dimension.  Therefore, as d increases, 

unless the number of data points in the hypersphere also increases exponentially, its density 

tends to zero.  Also, proximity between points tends to become uniform in high-dimensional 

spaces.  With more attributes, or dimensions, contributing to the distance between two points, 

there are many more ways for points to be equally distant (Tan, 572). 

Even though density is more uniform in a high-dimensional setting, clusters become very 

unstable.  To illustrate this phenomenon, we examine unit balls in several dimensions.  In one 

dimension, a “ball” with r = 1 is a line segment of length 2.  The outer 10% of the radius 

comprises two portions of length .1 on either end of the line segment (in red).  This outer 10% 

“shell” makes up 10% of the total length of the ball. 

 
Figure 2.2  1-D Ball 

 

In 2 dimensions, a ball with radius 1 has area equal to π, while the shell made of the outer 

10% of the radius has an area equal to π- π(.9)2.  Therefore, the proportion of area that the outer 

10% of the 2-D Ball makes up is 17%. 

17.81.1)9(.1)9(. 2
2

=−=−=
−
π
ππ  
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Figure 2.3  2-D Ball 

In general, for any n-dimensional Euclidean ball of radius r, the shell made from the 

outer 10% of the radius has a volume proportional to rn.  The proportion of the n-dimensional 

volume contained in the outer 10% shell can be found using the following equation: 

Equation 2.9  Proportion of Volume in Outer 10% of n-D ball 
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=  

Thus, for large dimensional spaces, most of the volume of an n-D ball is contained in the 

outer rim.  This makes clusters based on Euclidean balls highly unstable.  As one can see in the 

figure below, when most of the data is along the outer rim of a cluster, a small change in the 

center of the cluster results in a large number of points being reassigned. 

 
Figure 2.4   Cluster instability in high dimensions 
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Because of these inherent problems trying to find clusters in high dimensional data sets, 

usually a procedure is carried out to reduce the dimension of the data set while somehow 

retaining most of the pertinent information.  Each of these methods reduces dimensionality by 

building new attributes from linear combinations of the original attributes. 

 White Box/Expert Reduction 

The simplest and most widely used method of dimension reduction involves using 

“expert” knowledge to combine relevant attributes or discard ones known to be unimportant.  For 

example, instead of considering attendance for each class as a separate attribute, one could 

combine individual attendance points to form several “Weekly Attendance” vectors or even a 

single “Average Attendance” or “Total Attendance” vector.  This method requires many choices 

to be made by someone who has prior expert knowledge about the data set.  Unfortunately, this 

allows for bias and human error to more heavily influence later cluster analysis.  Also, by using 

prior knowledge to reduce dimension, one might overlook interesting and unexpected 

relationships in the data. 

 Singular Value Decomposition 

The goal of dimension reduction is to find the projection from m-dimensional Euclidean 

space ( mℜ ) to a lower dimensional space (i.e. 1ℜ  to 5ℜ  or so) preserving as much interesting 

information as possible.  For most Data miners, “interesting patterns” come from data points that 

are varied.  For example, if every student has the same score on an assignment, that assignment 

does not tell us much about different groups of students.  Therefore, our mathematical goal for 

dimension reduction would be to find the best projection preserving greatest variance. 

Proposition 2.1:  Let A be an n×m matrix with standardized column vectors.  Let 
mx ℜ∈v  have length 1.  The projection 1ℜ→ℜm  given by xaa v

a ⋅ , where a is a row of A, that 

maximizes the variance of xa v⋅  occurs when xv  is an eigenvector of AAT corresponding to the 

largest eigenvalue 1λ . 

Proof: 

Because each column of A has been standardized, 0)( =⋅ xamean v .  Therefore, 

2

2

2)var( xaxaExa vvv ⋅=⋅=⋅ .  Then if we want to maximize the variance of xa v⋅ , we need to 

maximize the following expression: 
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))(()()()()( xxxxxx TTT vvvvvv AAAAAA ==⋅ . 

So our goal could be written as the following expression: 

Equation 2.10  Maximizing Variance 

))((max
1

xx TT

x

vv AA
=

 

 

Because xx TT vv )( AA  is a smooth function on a compact subset of mℜ , we can use Lagrange 

multipliers to find the critical points.  So, introducing λ as an (m + 1)th variable, we want to take 

the partial derivatives of the following equation. 

Equation 2.11  Lagrange Multiplier method for maximizing variance over first vector 

0)1()( =−− xxx TT vvv λAA  
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Therefore, xxT vv λ=AA , meaning xv  is an eigenvector of AAT with eigenvalue λ. 

Note that  

( ) λλλ ====⋅= xxxxxxxxx TTTT vvvvvvvvv AAAAA . 

Therefore, to maximize variance, we should choose the eigenvector corresponding to the largest 

eigenvalue, 1λ .          □ 

 

We have found the principal component that maximizes the variance of xa v⋅ , but now we 

need to find the next vector that retains the maximum amount of variance while being 

orthonormal to this principal component, 1vv . 

 Proposition 2.2:  Fix 11,λvv , where 111 λvvT vv =AA , with 11 =vv , to be the optimal variance 

preserving vector described above.  Then, the vector xv  that maximizes )var( xa v⋅ subject to the 

constraints 1=xv  and 01 =⋅ vx vv  is an eigenvector corresponding to the second largest eigenvalue, 

2λ , of AAT . 

 Proof: 

As in Proposition 2.1, we see that ))(()var( xxxa TT vvv AA=⋅ , and so we can use Lagrange 

multipliers with two constraints to find its critical points.  We need to take the partial derivatives 

of the following equation: 

Equation 2.12 Lagrange Multiplier method for maximizing variance over second vector 

0)()1()( 1 =−−− xvxxx TTT vvvvv μλAA  
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 Using the same steps found in Proposition 2.1, we can show that this equation is 

equivalent to: 
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Once again, xv  is an eigenvector with eigenvalue λ.  Then eigenvector 2vv that will maximize 

variance will be the one with the second largest eigenvalue, 2λ .      □ 
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 We can repeat the process in Proposition 2.2 of finding new unit vectors that maximize 

the variance of xa v⋅  while being orthogonal to all preceding vectors.  This set ),,( 1 mvv v
K

v  forms 

a new orthonormal basis for mℜ .  Note that if A is a matrix of full rank, then each eigenvalue iλ  

will be nonzero.  Now, define vectors n

i

i
i

vu ℜ∈=
λ

v
v A: .  Each vector iuv  has length 1, as 

iiv λ=vA .  Also, for each ,ji ≠  

01)(1
====⋅=⋅ ij

j

i
iij

ij
i

T
j

iji

i

j

j
ij vvvvvvvv

uu vvvvvv
vv

vv

λ
λλ

λλλλλλ
AAAA

.  Therefore, ),,( 1 muu v
K

v  is 

also an orthonormal set.  We can extend this set to an orthonormal basis for nℜ , ),,( 1 nuu v
K

v .   

 Definition 2.1: Let A be an n×m matrix of full rank.  Define U to be an n×n matrix with 

row vectors ),,( 1 nuu v
K

v  and V to be an m×m matrix with row vectors ),,( 1 mvv v
K

v  as given above.  

Let S be an n×m diagonal matrix with each ith diagonal entry equal to iλ .  These values are 

known as the singular values.  Then the Full Singular Value Decomposition of the matrix A is 

given by: 

Equation 2.13  Full Singular Value Decomposition (SVD) 
TUSVA =  

For ),,( 1 nee v
K

v the standard basis for nℜ  the following diagram shows the linear transformations 

represented by the matrix multiplication in the SVD: 
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Figure 2.5  SVD Transformations 

 Factor Interpretation of Singular Value Decomposition 

We can interpret the columns of V (or the rows of VT ) as new factors that are linear 

combinations of the original attributes ordered in such a way that preserves the maximum data 

variance.  Each diagonal value of S gives a measure of how much variance is captured by the 

associated vector ivv .  The rows of U multiplied by the eigenvalues iλ  give each data point’s 
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coordinates in the new basis ),,( 1 mvv v
K

v .  Note that because ),,( 1 mvv v
K

v  is an orthonormal set, the 

distances between the data points have been preserved by transformation (Skillicorn, 55).    

For dimension reduction purposes, the diagonal values of S are often plotted as in the 

following figure: 
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Figure 2.6  Singular Values 

One would assume that the smaller singular values represent vectors that capture mostly noise 

and not much of the relevant data patterns.  Then one can safely truncate the matrix VT, cutting 

off the last m-r columns and retain most of the variation.  Traditionally, the number of columns 

of VT that are retained is chosen by examining the singular value plot (given above) for an 

“elbow,” or a value where the rate of change goes from a sharp decline to a more gradual one.  In 

this case, the elbow occurs between 4vv  and 6vv .  Then it would be reasonable to truncate VT to an 

m×5 matrix. 

In practice, the decision to truncate to a specific number of dimensions is often based 

more on trial and error than any nice theoretical cutoff.  Most real data sets do not produce 

singular values with a nice elbow, as seen in the example from Fall 2010’s student scores shown 

below. 
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Figure 2.7  Singular Values from Fall 2010 Data 

 

The reduced-dimension SVD of a matrix A can be given by the following equation: 
T

rrrr VSUA = , 

where rA  is still an n×m matrix, but rU  has been truncated to be an n×r matrix, T
rV  is now an 

r×m matrix, and rS  is still diagonal with r nonzero entries.  The traditional clustering algorithms 

are then applied to the entries of rU , which are the coordinates in the reduced space given by 

),,( 1 rvvspan v
K

v . 

 While Singular Value Decomposition is an elegant and computationally manageable way 

to reduce dimension while retaining important information, there are some limitations.  Most 

importantly, SVD does not preserve sparseness.  If A is a very large matrix with mostly zero 

entries (i.e. sparse), it is still possible to perform many calculations by storing the values and 

positions of the nonzero entries of A rather than storing the whole matrix.  However, the U and V 

matrices of the SVD of a sparse matrix A will likely not be sparse matrices and thus too large to 

manage.  Therefore, this method will not be computationally feasible for many data sets, 

including document data and website analysis. 

Principal Component Analysis 

Principal Component Analysis (PCA) is an approach more commonly used by 

statisticians to identify a new set of attributes that captures the variability of the data.  As with 
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SVD analysis, PCA matrix decomposition to find new vectors that more efficiently capture the 

variation in the data.  However, unlike SVD, PCA relies on the covariance of the different 

attributes (see Equation 2.3) to determine which attributes are redundant and which ones can 

safely be combined while retaining the maximum amount of variation in the data.  The 

covariance matrix, S, of the m by n matrix D, has entries ijs   defined as follows: 

Equation 2.14  Covariance matrix 

),cov( jiijs ∗∗= dd  

Covariance matrices are examples of positive semidefinite matrices, defined to be 

matrices M such that, for any .0, ≥ℜ∈ TxMxx    Positive semidefinite matrices have some nice 

properties, including that all of the eigenvalues are non-negative, which allow for the use of 

simpler and more efficient decomposition algorithms.   This has contributed to its widespread 

use in the realm of Statistics.  However, PCA only takes into account the covariance of the 

attributes and not the mean of each variable.  Singular Value Decomposition is an equivalent 

analysis to PCA that incorporates this important information (Tan, 702).
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Chapter 3 - Finding Patterns in Student Behavior 

 After researching various clustering methods, it was decided to try a combination of 

Singular Value Decomposition (SVD), AGglomerative NESting (AGNES), and Partitioning 

About Medoids (PAM) algorithms to form student groups.  First, the 30+ dimensional data set 

was reduced to one of only four or five dimensions by truncating the orthogonalized coordinate 

matrix created by the SVD.  Then, the statistical package R’s algorithm AGNES was used to 

roughly determine the number of natural clusters in the data set.  However, the AGNES 

algorithm uses a nearest neighbor approach to pair up sets of points, making it unstable and 

unsuitable for determining the composition of the cluster sets.  Therefore, with the appropriate 

number of clusters known, the PAM program was run to demarcate the student clusters.  

Although clustering about centroids is easier to work with theoretically, using medoids has the 

advantage of being less influenced by outliers.  These methods were chosen for their simplicity 

and because the algorithms are clearly understood.  After initial testing, it was concluded that 

using more sophisticated methods such as SemiDiscrete Decomposition (SDD) or density based 

clustering algorithms was not necessary to establishing clear and useful student clusters. 

 Spring 2008:  Trial Run 
To test the effectiveness of these clustering methods and to practice using the procedures, 

a trial run was held during the summer of 2008 using data from the Spring 2008 semester.  Only 

99 students were enrolled in the Studio College Algebra class that semester, so the data sample 

size was too small to include in the study, but ideal for a trial run.  It was later determined that 

advisors had been placing struggling students into the Studio section of the course, so the data 

sample was not representative of the typical College Algebra student population.  During this 

practice trial, the researcher discovered that there was no clear place to truncate the SVD 

matrices so that most of the important information was kept, but the noise filtered out.  Thus, 

several clustering trials were performed, using 3, 4, 5, and 6 dimensions of data.  The AGNES 

graphs indicated there were likely 4 or 5 natural clusters, including a group of outliers.  Because 

the SVD, AGNES, and PAM algorithms seemed to work well together to cluster students into 
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natural groups, plans were made to use these algorithms on student data collected over the next 

four semesters. 

 

 Fall 2008  
Before forming student clusters in Fall of 2008, several decisions needed to be made 

about the various parameters and data sources.  First, the researcher needed to choose the student 

scores (data vectors) to be included in the SVD analysis.  In order to make a timely analysis 

which would benefit students as early in the semester as possible, the researcher decided to use 

only data collected from the first four weeks of the semester, which included problem scores 

from the first examination.   The Studio College Algebra course instructors collect more scores 

than a typical class, making it possible to have over 30 assignment scores from the first four 

weeks alone (See Appendix A:  Clusters, Fall 2008).  Also, the online homework system has 

been designed to collect copious amounts of data for research, so every student interacting with 

the system is recorded.  It was theorized that student persistence in completing online homework 

assignments successfully might contribute to cluster formation, so the number of attempts each 

student made until they reached a score of at least 90% were recorded.  A readiness test covering 

basic algebra skills and a pretest covering the course material also were administered at the 

beginning of the semester.  Then, for the Fall 2008 semester, the data vectors included for initial 

SVD analysis were sixteen Exam 1 problem scores, four Written Assignment scores, two Studio 

assignment scores, ten Attendance points, five Online Homework scores,  Inverse time to 90% 

(ITN) on each of the five online homework assignments, Readiness Test, and Pretest scores.   

The matrix V formed by the SVD process revealed the contributions of the original 

assignment vectors in the new orthogonalized system.  Each row of V can be read as a linear 

combination of the original assignments.  The assignments with higher coefficients contributed 

more weight to the new vectors, while those with coefficients close to zero did not.  By 

examining the coefficients in matrix V, it was determined that the ITN numbers and the 

readiness and pretest scores did not contribute greatly to the student variation (See Appendix B:  

Data Analysis, Initial Vectors, Fall 2008).  Also, it was known that in subsequent semesters, the 

pretest and readiness tests would be replaced by an online Math Placement exam to be 
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administered online during summer enrollment.  Thus, the ITN numbers and readiness and 

pretest scores were removed from the clustering data set. 

After the data was collected and organized into a 332 by 37 matrix, the column entries 

were centered and normalized by assignment using standardization formula found in Chapter 2 

(see Equation 2.5).  This was done to ensure that every assignment was counted equally in its 

contributions to the student groups.  The researcher considered weighting some scores by 

multiplying a scale factor to the more “important” assignments.  However, introducing an expert 

opinion on which assignments were more significant than others without quantitative evidence 

contradicted the goal of using data mining to cluster students.  Thus it was decided not to scale 

the assignments. 

After centering and normalizing the 332 by 37 matrix, the program Matlab was used to 

decompose the matrix A into the Singular Value matrices U, S, and V.  The matrix U contained 

the coordinate entries in the new vector system, the diagonal matrix S the dilation values ordered 

from highest to lowest, and V the linear combinations of the original vectors making up the new 

vectors (See Chapter 2 for more detail).  The dilation matrix S quantifies the amount of point 

variation each new vector captures.  Usually, one uses the values of the matrix S to determine 

where to truncate the matrix decomposition.  The first 5 diagonal values of the S matrix were 

59.07, 30.95, 26.38, 25.52, and 23.914.  The remaining values decreased slowly, so there was no 

clear “elbow” at which to make the cut.  However, considering the problems that occur with 

higher dimensional data sets, the decision was made to truncate the decomposition at the 4th 

dimension so that roughly 65% of the data points in a cluster would be contained in the interior 

of the cluster sphere (See Chapter 2 for theoretical justification).   

After truncation, the matrices U, S, and VT had dimensions 332 by 4, 4 by 4, and 37 by 4, 

respectively.  One could either form clusters based on the coordinates in U or on the stretched 

coordinates in US.  By using the coordinates in US, the cluster spheres would be compressed; 

that is, less variation in the direction of first vectors would be included in the same cluster.  If we 

assume that the first vector captures the general success of each student, then a narrower 

variation of student success levels would be included in each cluster.  Because the researcher 

wanted to capture personality traits and attitudes about mathematics in the clusters as well as 

overall success in the class, she did not want small changes in grades to affect clustering.  
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Therefore, the decision was made to group students based on their coordinates in the matrix U 

alone.   

Next, using the statistics program R, an AGNES dendrogram was produced from the 

truncated 337 by 4 dimensional matrix U to help identify the proper number of clusters.  The 

AGNES dendrogram below seems to indicate that the data set naturally contains either 3 or 4 

clusters with a set of outliers. 
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Figure 3.1 AGNES Output: Fall 2008 

Because it was unclear whether there were four or five natural clusters in the data set, the 

PAM program was run twice (with k=4, and with k=5) and the resulting clusters were compared.   

The chart below shows that Group 1 and Group 2 in both SVD4 and SVD5 contained mostly the 

same students.  Likewise, Group 4 from SVD4 and Group 5 from SVD5 contained the same 

students (in red).  The biggest difference between the two clustering setups was that Groups 3 

and 4 in SVD5 were each divided evenly between two different groups in SVD4 setup (in blue).  

So, three of the clusters look stable, but it is unclear whether to have two more distinct groups, or 

divide these students among the remaining clusters. 
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Table 3.1 Comparison Between Four Student Clusters and Five Student Clusters 

SVD 5/SVD 4 1 2 3 4 

1 (OA) 96 2 15 6 

2 (E) 2 52 10 4 

3 (UA) 1 15 21 1 

4 (SS) 32 3 23 0 

5 (RM) 8 4 9 28 

 

 

To help make this decision, we compare the graphs of the two cluster schemes.  The graph below 

shows the projection of the 4 dimensional points given by U onto the first two components: 

 

Figure 3.2  PAM Groups Fall 2008: 4 Clusters 

Key:    Circles- Group 1 

  Triangles- Group 2 

  Plus signs-  Group 3 

  X’s- Group 4 

   

 



 

41 

 

 

Figure 3.3  PAM Groups Fall 2008: 5 Clusters 

Key:    Circles- Group 1 

  Triangles- Group 2 

  Plus signs-  Group 3 

  X’s- Group 4 

  Diamonds- Group 5 

 

Note that Group 4 from SVD4 and Group 5 from SVD5 are almost identical in the 

graphs.  However, Groups 3 and 4 in SVD5 seem to be a more natural split on the left side of the 

graph than Groups 1 and 3 in SVD4.  Also, Groups 1 and 2 are both tighter in SVD5.  This 

information leads to the conclusion that the data more naturally supports five clusters.  Once 

chosen, this number of clusters remained constant for all following semesters.  (See Appendices 

Fall 2008 PAM4 and Fall 2008 PAM5 for larger graphs). 

 

 Spring 2009 
In general, class makeup from the fall and spring semesters of any given year are very 

different from one another.  Students who enroll in the fall sections of College Algebra are 
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usually entering first year students who have taken their most recent math course less than one 

year prior to enrolling.  In the spring semester, many more students are upper classmen who have 

either delayed taking their college math requirements or have dropped/failed previous attempts.  

To compare data from fall and spring semesters, the assumption was made that while 

concentrations may change, the basic characteristics of student groups would not be drastically 

different.  In order to determine the most useful groupings, two variations of the SVD/PAM 

process were run and compared. 

In the first trial, the exact same procedure used in Fall 2008 was applied to the data from 

Spring 2009.  Of the five resulting groups, two were large (77 and 60) and the remaining three 

were roughly the same size and small (24, 18, 19).  These groups represented the highest, second 

lowest, and lowest scoring students, respectively.  The two large groups represented students 

who had a B average grade on exam 1.  One of the large groups did relatively well on the other 

assignments and maintained their B grade, while the other group did not score well on class 

assignments and dropped future exam scores.  (For more data, see Appendix A:  Clusters, Spring 

2009) 

One could make the assumption that the underlying character traits of students in a given 

school year do not change.  In this case, it would be reasonable to use the same attribute vectors 

to group students in both the fall and spring semesters.  Because there are many more students in 

the fall, the researcher made the choice to use the attribute vectors from Fall 2008 in forming the 

groups from Spring 2009.  The SVD process broke down the matrix A into 3 component 

matrices U, S, and V.  Remember, U represented the coordinates in the new orthogonal space, S 

was the dilation matrix, and V represented how the new vector components were derived from 

the original ones.  Then, the matrix V from Fall 2008 should be incorporated into the matrix 

decomposition for Spring 2009.   

First, the data from Spring 2009 was organized so the assignment and attendance scores 

matched up with those from Fall 2008.  The problems from Exam 1 were very similar those from 

the previous semester, but were in a different order.  For example, problem 16 in the spring 

semester was comparable to problem 11 from the fall, so the matrix As was rearranged to have 

the problem 16 scores in the problem 11 slot.  Next, only two written homework assignments 

were collected in the first month of classes in Spring 2009, compared to four in the fall.  

Averages of the students’ first two homework scores were used to fill in the missing data from 
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assignments 3 and 4.  Finally, iClicker scores from the appropriate class sessions were used in 

lieu of attendance points (See Appendix A: Clusters, Spring 2009). 

One would wish to find the coordinates of the new students in the V vectors from Fall 

2008.  So, if  

Equation 3.1 Singular Value Decomposition 
T

ssss VSUA =  

 

Then,   1][ −= T
ssss VSAU  

    

 

Adjustments needed to be made, as T
ssVS was not a square matrix and thus not invertible.  

However, Ss was a 332*37 diagonal matrix, so truncating the last 295 rows containing only zeros 

to make Strunc did not alter the information the matrix contained.  Therefore, T
struncVS included the 

same information as T
ssVS and was an invertible square matrix.  Finally, the 198*37 matrix As 

was multiplied to this matrix to obtain a matrix U` with new student coordinates in the Fall 08 

orthogonalized vectors.  Five groups were then pulled out using PAM with the first 4 coordinates 

of each row in U`. 

The sizes of the groups using the Fall 2008 vectors were less segregated between large 

and small than those using only spring data.  The largest group (60 students) had the highest 

Exam 1 average, as well as the highest scores on all other assignments.  The remaining four 

groups ranged in size from 42 to 30.  One group of 30 clearly contained the low scoring students, 

while the other three groups had Exam 1 differences of 3 to 4 points between them. 

Several factors were considered in the decision to use the student clusters from the 

second grouping method.  First, the V vectors from Fall 2008 were formed using a much larger 

and varied sample of students, so ideally they would be more representative of the true 

population.  Also, the standard deviations of subsequent exam scores suggested that the second 

method did a slightly better job of predicting future success.   If we compare the normalized 

averages of the group scores from each category (Exam 1, Studio, Attendance, Online 

Homework, and Written Homework), we see many more similarities between the Fall 08 groups 

and Spring 09 groups formed by using the Fall 08 vectors than the alternative.   
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Figure 3.4  Average Cluster Scores for Fall 2008 

Spring 09 using Fall 08 Vectors
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Figure 3.5  Average Cluster Scores for Spring 09: Using Fall 2008 base vectors 
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Note that both of the above charts have a clear group that is performing poorly in every 

category (RM) and one that is doing very well in every category (OA).  Group E does 

moderately well in all categories except one, and Group UA are inconsistent in their 

performance. 

Spring 09
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Figure 3.6  Average Cluster Scores for Spring 2009: Using Spring 2009 Base Vectors 

 

Although the graph from Spring 2009 may look similar to that from Fall 2008, on closer 

inspection, there are some striking differences.  The group that had the lowest score on Exam 1 

in Spring 2009 also had the lowest attendance and studio scores, unlike the SS group in Fall 2008 

who had above average scores in all other categories.  Also, the group with the highest scores in 

all the assignment categories did not have a high Exam 1 score.   

 

 Fall 2009 and Spring 2010 
 In the Fall semester of 2009, data was collected from 362 Studio College Algebra 

students and analyzed using the same techniques as in the previous fall.  This time, with the 

parameters already set by previous trials, fewer steps were necessary to form student clusters.  
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The 362 by 33 matrix was processed into its Singular Value Decomposition.  Then, the U matrix 

was truncated at the fourth column, leaving a 362 by 4 matrix of coordinates in the new 

orthogonal vector system.  The points in this matrix U were then clustered using the PAM 

algorithm with K=5 medoids (See Appendix A:  Clusters, Fall 2009).  

 The Spring 2010 student clusters were formed using the same steps used in Spring 2009.  

That is, for each of the 130 students from the spring semester, his or her coordinates in the Fall 

2009 SVD vector system were found, forming the matrix U.  Then the PAM clustering program 

with k=5 was run on the 130 by 4 truncated matrix U. 

 White Box Clusters 
In order to compare the SVD clustering method to a more standard classification scheme, 

the researcher developed comparison clusters based on a “white box” grouping scheme.  First, 

the student scores were organized into 5 category vectors: Exam 1, Studio, Attendance, Written 

Homework, and Online Homework.  Then the scores were normalized and then clustered using 

the PAM program with the same number of clusters that was used in the SVD method (k=5).  

The biggest advantage of clustering students in this way was that the behavior characteristics of 

each cluster were readily determined by the coordinates of its members.  For example, White 

Box Group 4 from Spring 2009 had medoid coordinates Ex 1: -.6428, Studio: .53418, 

Attendance: .1954121, Written homework: .52231, Online homework: .6042.  Therefore, White 

Box Group 4 contained students who scored highly on their written assignments, had better than 

average attendance, but performed poorly on Exam 1.  By comparing the SVD cluster groups to 

these White Box cluster groups, the researcher could determine if the new classification method 

would prove to be more predictive of student success and better describe student attitudes and 

interests (See Appendix A:  Clusters, Fall 2008).  The results of this comparison can be found in 

the next chapter. 
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Chapter 4 - Describing Student Clusters 

The clustering algorithms and data mining analysis produced five distinct groups of 

students in Studio College Algebra.   However, these data mining procedures merely identified 

groups of students who showed similar patterns of behavior without revealing what attributes 

made each group distinctive.  Further quantitative and especially qualitative analysis was needed 

to determine the characteristics of these groups.  In order to help differentiate instruction, the 

researcher sought to provide profiles of each student cluster.  These descriptions would need to 

contain information about how to identify members of a certain cluster and what characteristics 

each members would likely possess.    

The quantitative analysis described in this chapter provided ways to depict the similar 

patterns of behavior expressed by the student clusters.  The researcher examined the composition 

of the Singular Value Decomposition (SVD) vectors and average assignment scores to develop a 

general picture of how cluster members performed in the class.  In addition, the researcher 

tracked student behavior from later in the semester and their final grades to determine the 

academic success of the various student clusters.  Comparing average scores from semester to 

semester provided a reasonable way to demonstrate that the students from each semester fell into 

similar behavior patterns and could be grouped into the same clusters. 

Quantitative analysis could illuminate which actions made members of each group 

similar to each other and distinct from members of the other groups.  However, to understand the 

attitudes, beliefs, and motivation behind these behaviors, the researcher needed to employ 

qualitative research methods.  Select representatives of each student cluster were interviewed 

about their reactions to College Algebra and mathematics, career goals, study habits, 

understanding of the concepts, and application methods.  The interview transcripts were then 

examined for patterns of opinion and belief. 

Using results from both the quantitative and the qualitative analysis, the researcher was 

able to compile profiles of each student cluster and give them illustrative names.  Although the 

full names and descriptions will be given later, for now we will label the five groups OA, E, UA, 

SS, and RM.  The remainder of this chapter narrates in more detail the quantitative and 

qualitative analysis, the group profile descriptions, and the methods employed to ensure 

reliability and validity. 
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 Quantitative Analysis 
The quantitative analysis of the clusters began with examining the vectors of the matrices 

formed by the Singular Value Decomposition (SVD) process.  Then, the average assignment 

scores from members of each were calculated and compared.  Cluster behavior was tracked 

throughout the semester to determine if clusters could be used to predict likelihood of success, 

failure, or dropping the course. 

 During the SVD process, the original vectors representing assignment and exam scores 

were transformed into new orthogonal vectors that captured the most variation of the points.  The 

columns of matrix V were new vectors and each entry showed how these vectors were related to 

the original scores.  For example, the value in position (1, 6) of matrix V shows how strongly in 

the positive or negative direction Exam 1 problem 6 influenced the new vector 1.  If a column in 

V had many values whose absolute value was large (>.2), then those assignment scores captured 

a great deal of student variation.  Therefore, the assignment had a large impact in determining the 

SVD clusters.  Note from the table below that attendance points from the end of the first month 

contributed highly to group placement, while studio assignment scores did not.  The significant 

problems from Exam 1 were the least complex examples of each type of problem:  procedures, 

graphing and slope, and applications (See Appendix B: Data Analysis, V Vectors).     

Table 4.1  Highly Contributing Assignments 

 Exam 1 

Problems 

Written 

Homework

Online 

Homework 

Studio 

Assignments

Attendance 

(Days) 

Fall 08/ 

Spring 09 

1, 2, 5, 7, 8, 9, 

10, 12, 13(11) 

1, 4 2 1 5, 6, 7, 9 

Fall 09/ 

Spring 10 

1, 2, 3, 6, 7, 9, 

11, 12, 13, 15 

1 1, 2, 4, 5  3, 4, 5, 6, 7 

 

One can use the medoids of the five groups from each semester to get a general picture of 

which assignments the typical student scored well on and which assignments he or she did not.  

First, the coordinates of the medoids in the new vectors were examined.  For example, the 

medoid of Group OA from Spring 2009 had very low negative coordinates for Vector 3 and low 

negative coordinates for the other three vectors.  Then, because Vectors 1 through 4 had negative 

contributions from Exam Problems 1 and 2, this indicates students from Group OA scored highly 
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on those problems.  From this information, broad descriptions of each group’s success up to the 

first exam can be determined.  The following group summaries were based entirely on these 

medoids.  A full description can be found in the appendix (See Appendix B:  Data Analysis, 

Medoid Coordinates). 

 The coordinates for the medoids of Group OA were such that most assignments had 

positive scores.  Although there was some variation from semester to semester, these students 

scored highly in most categories, particularly studio and attendance.  They excelled on problems 

from the first exam that were standard and had been covered in class.  They also scored highly 

on applied problems, unlike students in the other groups.  Group OA students did well on 

problems focusing on procedures that had not been worked through previously.  The exceptions 

to these good scores were nonstandard applied problems and some graphing problems. 

 Students in Group E scored highly on assignments from the first two weeks of class, but 

then their grades dropped.  On Exam 1, they did well with the procedural problems and few 

applied problems learned at the very beginning of the semester.  Their weakest areas were 

graphing and nonstandard applications.  Group UA’s medoid coordinates indicated that its 

members had sporadic attendance records and did not complete or submit many of their 

homework assignments.  These students did not perform mathematical procedures well on Exam 

1, but did score highly on graphing problems. 

 Students in Group SS had high attendance rates and did well on their written homework 

and studio assignments.  They struggled with online homework.  Their performance on Exam 1 

indicated that they had trouble with nonstandard problems and all types of applied problems.  

The medoid coordinates for Group RM were extreme, indicating that it is a group consisting of 

outliers, and thus might be less cohesive than the others.  These students had mostly low scores 

in all categories, most noticeably in studio and applied exam problems. 

 In addition to examining individual assignment scores for each cluster, the average scores 

from the first four weeks of class in several categories were computed and compared.  These 

categories consisted of Attendance, Written Homework, Online Homework, Studio, and 

Examination One.  Students in the OA group consistently scored higher than any other group in 

all categories.  Cluster E students usually had the second highest scores in all categories, except 

for attendance where they usually came in third.  Students in Group UA had fairly good Exam 1 

scores (depending on the semester, they had the highest or third highest averages).  However, 
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their performance in all other categories was second to lowest.  Behavior in the SS groups was 

slightly different in the Fall and Spring semesters.  In Fall 2008 and Fall 2009, this group had the 

lowest Exam 1 average score, but was the middle or second highest group for all other 

categories.  In the Spring, SS students scored in the middle for most categories.  Finally, students 

in the RM group had the worst scores for every category with few exceptions, where they had the 

second lowest scores. 

 Qualitative Analysis 
 Examining the quantitative data provided clues to how each student cluster behaved, but 

could not illuminate why these students exhibited these behaviors.  In order to understand the 

motivations behind these actions and determine if members of student clusters have similar 

beliefs as well as similar behaviors, the researcher posed these questions directly to students 

through interviews.  

 A preliminary round of interviews was conducted during the fall semester of 2008. These 

and all other interviews were conducted with procedures approved by the Institutional Review 

Board (IRB).  Specifically, students were offered $10 for their time, but no extra credit.  These 

interviews were designed to test the effectiveness of the first interview protocol and determine 

which questions would most successfully bring out students’ thoughts (See Appendix C: 

Interview Protocols, Fall 2008).   The interviews were conducted not knowing which group the 

interviewee belonged to in order to help the interviewer preserve impartiality.   

The first interview protocol was separated into three sections.  The first section asked 

questions about the students’ opinions, reactions to the course, and work habits.  The questions 

were kept intentionally vague and open ended to capture the widest range of student responses.  

The second part of the interview was designed to assess conceptual understanding of functions, 

their representations, and their applications.  The third section of the interview assessed problem 

solving abilities by having students retake part of a recent exam and explain their thought 

processes.   An opinion survey was added to the end of the interview.  Approximately 110 

students received invitations to be interviewed, 18 students scheduled a meeting, and 13 students 

were interviewed.   

 The first round of interviews was not very successful in determining the characteristics of 

each group because of several flaws in the scheduling process and the protocol design.  After the 
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interviews had been conducted, the researcher discovered that only three of the five groups were 

represented by the interviewed students.  Also, many of the students did not know how to 

respond to the vague questions.   There were not enough follow up questions to elicit student 

opinions.  The conceptual knowledge part of the interview was also too general.  Students were 

asked to think of ideas and definitions on the spot and often froze or simply responded, “I don’t 

know.”   

Even though the clusters’ qualitative characteristics were not fully uncovered by the first 

round of interviews, a general picture was formed by their responses.  Members of groups OA 

and UA seemed to really enjoy the course, and students in Group E were ambivalent.  These 

students seemed to prefer algebraic manipulations and procedures to the applied problems in the 

studios (See Appendix C: Interview Protocols, Fall 2008). 

 Several changes were made to the interview protocol and student recruitment for 

subsequent interview appointments.  Because so few students replied to appointment requests 

during the fall interviews, the students were recruited more aggressively in the spring.  The first 

round of students were invited to come in for interviews earlier in the semester, three days after 

taking their first exam.  Initially, the fifteen most representative students from each group were 

sent emails.  These students were chosen because they were closest to the medoids of their 

respective groups.  Every student who replied to the initial email was sent a follow up email 

suggesting an appointment date and requesting a confirmation.  Each scheduled student was also 

sent a reminder email the day before the scheduled appointment.   

In total, nine students were interviewed from March 5 to March 13.  After the second 

exams, 20 students from each group were contacted, including those students who did not 

respond in the first round.  Ten students were interviewed during this round. A colleague of the 

researcher confirmed that each cluster was represented by a least three interviewees.  The 

researcher conducted sixteen of the nineteen interviews, and another colleague conducted the 

remaining three.  This was done mainly to ensure the reliability of the interview protocols. 

 Using experience gained from the Physics Education Research Workshop held in fall of 

2008, the interview protocol was rewritten (See Appendix C:  Interview Protocols, Spring 2009).   

The first thirteen questions focused on the students’ opinions and attitude toward Studio College 

Algebra and mathematics.  Students were asked to describe their previous experiences in 

mathematics classes, how they felt about their current class and progress, and how they expected 
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to use their math skills in their future careers.  Students also were asked to describe their 

homework and study habits.  The questions for the first section were more structured than those 

of the previous interview protocol and included more follow-up inquiries.  Interviewers were 

instructed to seek clarifications and extensions of student responses.  Some of the questions from 

the survey section were incorporated into the interviews as well, allowing the students to explain 

their responses. 

The section on conceptual understanding was heavily modified.  In the initial protocol, 

students were asked to draw on memory and construct responses without cues, which led to 

blank looks and frustration.  For this next round, the interviewer provided three examples of 

representations of the same function.  The first was a t-chart with eight inputs and their output 

values.  Next, the same polynomial function was given in both standard and factored form.  

Finally, the student was presented with a graph of the function.  Initially, the student was asked 

to tell the interviewer what they knew about what was written on the sheets of paper, one at a 

time.  Then, the student was presented with all three pictures and asked to make connections 

between.  If the student had not yet made the observation that all three pictures were 

representations of the same function, the interviewer guided them to make that connection and 

then justify their conjecture.   

To demonstrate their knowledge of applications of functions, students were then given a 

graph showing a scatter plot and a linear regression model.  They were asked to interpret the 

model and extract the important information (See Appendix C: Interview Protocols, Conceptual 

Handouts).  Because they had material to work with, students were much more forthcoming and 

revealed more about their conceptual understanding of functions.  When they were later 

prompted to give more examples of functions or situations where a function might be useful, 

many students were able to provide insightful responses.  Finally, the survey portion of the 

interview was discarded, and its questions incorporated into the protocol. 

 All nineteen interviews were transcribed and coded without knowing to which group the 

students belonged.  Using Miles and Huberman’s Qualitative Data Analysis as a guide, the 

transcripts were coded in the following manner:  the interviews were read through once to 

identify general themes and common responses.  During the second reading, these responses 

were classified more concretely and organized under the categories of positive, neutral, and 

negative responses (See Appendix D:  Coding Scheme).  During the third reading, the transcripts 
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were marked with response labels, and more labels were created as necessary.  The transcripts 

were marked again during a final reading, with the two markings later compared for consistency.  

Finally, the interviewed students were identified by their group number, and the coded responses 

were organized by group.  Each group’s qualitative characteristics could be reasonably 

determined by coded responses that occurred in multiple interviews (See Appendix E:  Grouping 

Chart, SVD). 

 

 Profiles of the Groups  
Using the insight gained from the quantitative and qualitative analysis, the researcher 

compiled the following profiles of each group.  Included with each profile is a breakdown of the 

groups’ average assignment scores from each semester.  The charts are color coded to provide a 

third dimension to the chart and help compare these scores to other groups in that semester:  

   

Top Group 
2nd Highest 
Middle 
2nd Lowest 
Bottom Group 

 
Note that each student cluster is only being compared to other clusters in that semester.  Also, all 

the total number of points attainable for each exam was 80, with the Final Examination worth 

160 points. 
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 Group OA (OverAchievers):    

Average Final Grade: 3.24   Percent of Students:   33% 

 

This is a group of hard working students who have a positive attitude about mathematics 

and a good work ethic.  Their average Composite ACT score is 22.38 and their Math ACT score 

is 21.44, so they are well prepared to take the course.  These students do well on their first exam, 

but what most separates them from everyone else is that they also do very well on all their other 

assignments and attend almost every class session.  The Exam 1 problems on which these 

students excel are the standard problems that are most focused on in class, as well as the 

graphing and conceptually based problems.  These students continue to do well on the 

subsequent exams and earn an average of A or B on the final.  Very few of these students drop 

the course and the percentage of students that earn a C or better is 97.3%.  A separate set of pre 

and post exams showed that these students grew the most conceptually out of all of the groups. 

 Student interviews revealed that these students think that mathematics is used often to 

solve problems and has applications in art, to explain phenomena, and to improve society in 

general.  Most think math is useful to themselves and their future careers, but are not sure if the 

specific skills they learned in College Algebra will apply to their careers.  By far, they think the 

most useful part of Studio College Algebra is recitation.  The instructors are helpful and they 

appreciate being able to go over homework problems in class.  These students enjoy the overall 

course and its structure, even though they often struggle to understand the concepts.  During the 

interview, their comments about the course were mostly positive.  The students appreciate the 

online homework and studio assignments as well as lectures.  The technological aspects of the 

course are also appreciated, including the convenience of online homework and that the lecture 

notes are posted online.  That said, these students often have problems understanding how the 

studio part of the course corresponds to the general class goals and become frustrated with online 

homework glitches. 

These students study and work on their homework from 1-3 hours per week.   They seek 

help from a variety of sources, including friends, the instructor, the textbook, and class notes.  

They make sure to do their homework before recitation and use the online homework hints often.  
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When asked to describe different representations of a function during interviews, these students 

demonstrated solid conceptual understanding of functions, their characteristics and applications.  

Their use of mathematical vocabulary was good to fair.  They were also able to make 

connections between three different representations of the same function, either on their own or 

with prompting.  Although these students could identify an increasing trend in a linear regression 

model, most students in this group mistakenly identified this trend as representing an “average” 

of the dependent variable.   

 

Table 4.2  OverAchiever Average Scores 

OverAchievers Fall 08 Spring 09 Fall 09 Spring 10
Composite ACT 22.2 22.74 23.595506
Math ACT 21.7 21.83 23.033708
Percent of Students 35.31% 30.30% 34.25% 27.69%
Average Exam 1 Score 72.12 69.08 69.39 63.41
Studio 17.24 19.275 19.49 17.22
Attendance 9.36 8.81 7.26 7.08
WHW 51.33 30.38 20.39 18.71
OHW 47.9 44.39 47.93 45.53
Average Exam 2 Score 58.90678 67.49 58.48 58.912
Average Exam 3 Score 59.923077 60.85 65.6 61.5
Final Exam Score 104.3 112.03 115.17 114.242
Grade in Course 2.898 3.38 3.47 3.30
% C or better (of completed) 96.61% 98.33% 97.56% 96.97%
% Completed Course 99.16% 100% (tie) 99.19% 91.67%  



 

56 

 

 Group E (Employees): 

Average Final Grade:    2.62    Percent of Students: 24.7% 

 

 These students tend to treat the Studio College Algebra course like a low paying job.  

They do only what they think is expected of them, then are “paid” for their efforts with a passing 

grade.  These students enter the course reasonably well prepared with an average Composite 

ACT score of 22.6 and Math ACT score of 21.8.  Students in this group perform fairly well on 

the first exam, averaging a B grade.  They score well on standard problems that are reviewed 

many times in class, but not so well with problems that require innovative reasoning. Their exam 

performance remains steady throughout the course, staying in the B/C range.  They attend most 

classes at the beginning, but their attendance drops as the semester continues.  Students in Group 

2 complete and turn in most of their assignments, but they do not score as highly as those 

students in Group 1.  Not many of these students are likely to drop out of the course (3%), but 

only 88.2% of the total group earn a C or better.  A separate set of pre and post exams showed 

that these students demonstrated moderate conceptual growth. 

 When interviewed about the Studio College Algebra course and mathematics in general, 

these students said that mathematics is very important for solving problems and explaining how 

things work.  However, they do not believe that everyone needs to learn mathematical skills, 

including themselves.  Their confidence in their own mathematical abilities is low, they dislike 

math in general, and so they are trying to just “get through the class.”  Although they do not 

enjoy mathematics, these student have generally positive or ambivalent opinions about the 

Studio College Algebra course.  They particularly enjoy using Excel in the studio sessions and 

the integration of other types of technology in the course, such as iClickers.  These students think 

recitations and lectures are the most helpful parts of the course because the instructors are 

knowledgeable and supportive.  Their least favorite part of the course is the Online Homework. 

 Students in this group spend an average of 1 to 2 hours a week studying or doing 

homework.  If they have questions, they are likely to ask a friend or go to the instructor.  These 

students take notes during lecture and refer to them often later.  These students try to get their 

homework done before recitation so they can ask questions.  During interviews, when these 

students were asked to perform tasks to demonstrate their knowledge, they were very dependent 
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on prompting.  The students were able to make connections between different representations of 

functions, but only after the interviewer gave hints.  Their range in vocabulary use was wide, as 

was their ability to name specific functions.  The students often performed memorized 

procedures without any justification.  They could not describe any situations in which functions 

would be used.  However, the students could interpret a linear regression model fairly well. 

 

Table 4.3  Employee Average Scores 

Employees Fall 08 Spring 09 Fall 09 Spring 10
Composite ACT 23.3 21.65 21.0581395
Math ACT 22.3 20.61 19.9069767
Percent of Students 20.18% 15.15% 30.30% 35.38%
Average Exam 1 Score 70.86 66.03 58.6 62.2
Studio 13.6 17.633 16.17 16.02
Attendance 8.6 7.29 6.99 6.4
WHW 25.9 29.6 16.97 17.17
OHW 45.3 47.21 43.27 44.36
Average Exam 2 Score 57.9 50.1 45.62 50.93
Average Exam 3 Score 60.8 50.28 56.34 54.71
Final Exam Score 104.2 101.9 98.24 94.7
Grade in Course 2.53 2.87 2.55 2.74418605
% C or better (of completed) 86.15% 93.33% 87.16% 90.70%
% Completed Course 95.59% 100% (tie) 99.09% 93.48%  
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 Group UA (UnderAchievers): 

Average Final Grade:    2.13 Percent of Students: 13.7% 

 

Students in this group are well prepared and intelligent, but are bored and frustrated with 

the material presented in College Algebra.  They tend to drop the course or underperform.  Their 

average Composite ACT score is 23.29 and their Math ACT score is 22.34, which is the highest 

of all the groups.   However, their first exam scores are in the middle of the groups, a high C.  

They do well with applied problems and questions focusing on graphing, but they are sloppy 

with procedures and nonstandard algorithms.  Their scores drop for subsequent examinations, 

ending with a low C for the Final Exam.  These students have decent attendance scores and fairly 

high online homework scores, but do not perform as well on the other assignments, especially 

the written homework.  Their attendance drops after the first few weeks.  Almost 13% of these 

students drop the course, and only 73% earn a C or better.  Also, only half of the students in this 

group took the pre and post exams that measure conceptual growth, and those that did showed 

very little increase in conceptual knowledge. 

 During interviews, students in this group thought mathematics was useful for a variety of 

reasons, especially to solve problems.  However, they believed that math was only useful to 

some people, and although many expressed confidence in their mathematical abilities, they did 

not enjoy math.  They thought math was not personally useful and that they would not be using 

math in the future careers.  These students thought the class was easy and the emphasis on 

review boring.  However, they still expressed frustration with different aspects of the course, 

including their own performance.  Studio and recitation were their favorite parts of the course 

and they enjoyed using Excel and other forms of technology.  The recitation and lecture 

instructors were helpful.  Their least favorite parts of the course were lecture and homework.  

Most students thought there should be less homework assigned, and disliked having to do so 

many applied problems.  They also thought the examinations were too tough, mostly because 

they had to justify their answers.   

These students sought help from written sources, like the textbook, notes, and online 

homework hints as well as from friends.   They did not seek help from the instructor or tutors.  

Some students confessed to not studying much.  They worked on homework anywhere from 1 to 
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5 hours a week.  When asked to demonstrate their knowledge during the interviews, these 

students were very good at describing functions and making connections between different 

representations.  However, they did not always use proper mathematical vocabulary, and were 

not able to come up with examples of functions or uses for functions.  Their interpretations of a 

linear regression model were insightful and accurate. 

 

Table 4.4  UnderAchiever Average Scores 

UnderAchievers Fall 08 Spring 09 Fall 09 Spring 10
Composite ACT 24 22.41 22.033333
Math ACT 23.83 20.55 20.933333
Percent of Students 12.70% 18.18% 12.15% 19.23%
Average Exam 1 Score 72.6 58.78 53.01 57.32
Studio 12 16.6 14.99 9.98
Attendance 7.2 8.24 6.79 5.13
WHW 34.57 18.93 10.26 11.08
OHW 42.07 35.17 19.97 38.22
Average Exam 2 Score 60.71 51.03 38.8 43.1
Average Exam 3 Score 59.08 44.31 50.4 50.21
Final Exam Score 106.86 86.22 84.91 85.47
Grade in Course 2.64 2.06 1.86 1.83
% C or better (of completed) 75.68% 80.00% 65.71% 73.91%
% Completed Course 86.05% 97.22% 79.55% 92.00%  
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 Group SS (Sisyphean Strivers): 

Average Final Grade:    1.53 Percent of Students: 17.6% 

 

Students in this group have a good attitude toward mathematics, try hard to succeed in the 

course, but still perform poorly. These students are generally not well prepared for the course, 

with an average Composite ACT score of 20.92 and Math ACT score of 19.27.  These students 

attend class regularly and turn in all of their homework assignments.  Despite this, their first 

examination scores are among the lowest of the five groups (C/D), and they maintain this low 

average throughout the semester.  They are particularly weak with applied problems, although 

their mastery of procedures and algorithms are good.  These students are less likely to drop the 

class than their test scores predict, with a rate of 7.5%.  They continue to struggle heavily and 

55% of them end up earning a C or better in the course.  The pre and post exams that measure 

conceptual growth showed that these students did demonstrate moderate conceptual gains. 

When interviewed these students revealed that they like math in general.  They think 

mathematics has a variety of practical applications, and is especially useful in explaining how 

things work, in creating art, and solving problems.  The students think they will be able to use 

the skills they learned in Studio College Algebra in their careers, but their confidence in their 

own abilities are low, and they expect to struggle to understand new ideas and solve problems.  

Although the class is review for most of them, they have to work hard to understand the 

concepts, fulfill deadlines, and submit their homework to the appropriate place.  They enjoy most 

aspects of the course, especially recitation.  These students also think the online homework is a 

very helpful practice, because they can redo the problems as often as they like.  Because the 

problems change with every other attempt, the students get even more opportunities to practice 

the underlying procedures.  The students tend to have trouble understanding the website, and feel 

that posting the lecture notes online discourages them from coming to class.  By far, their least 

favorite part of the course is lecture, partly because of the intimidating class size.  Although they 

enjoy working with a partner in Studio, they do not understand how that part of the class fits in 

with the rest of the curriculum. 

Students spend an average of 3 to 4 hours a week on homework and studying.  They 

usually get help from their friends when they have problems understanding the material, and are 
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not likely to ask instructors.  These students spend a lot of time and effort completing their 

homework, shooting for scores of 100% and using several sources of information to help.  

During the interviews, students in this group demonstrated fairly solid conceptual understanding 

of the material, much more than their exam performances would indicate.  They were especially 

adept at interpreting the applied linear regression model.  They also seemed to pull out more 

information from graphs and pictures than from the formulas and charts.  

 

 

Table 4.5  Sisyphean Striver Average Scores 

Sisyphean Strivers Fall 08 Spring 09 Fall 09 Spring 10
Composite ACT 20.37 21.68 19.857143
Math ACT 18.64 20.16 18.238095
Percent of Students 17.20% 21.21% 16.02% 14.62%
Average Exam 1 Score 51.06 61.69 43.6 53.9
Studio 12.5 15.3 16.09 12.95
Attendance 8.6 7.95 7.26 6.3
WHW 37.13 22.5 17.57 14.63
OHW 42.07 42.52 44 40
Average Exam 2 Score 53.39 52.7 35.93 44.56
Average Exam 3 Score 40.38 48.5 51 47
Final Exam Score 68.4 90.8 80.56 98.93
Grade in Course 1.388 2.21 2.18 1.94
% C or better (of completed) 48.15% 78.57% 40.00% 72.22%
% Completed Course 93.10% 100% (tie) 86.21% 94.74%  
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 Group RM (Rote Memorizers): 

    Average Final Grade:  1.24   Percent of Students: 10.6% 

 

 These students do not like math, do not enjoy Studio College Algebra.  Most members of 

this group will drop or fail the course.  Their Composite and Math ACT are on the low of the 

scale, being 21 and 20.6 respectively.  These students are likely to attend class the first day, and 

to turn in their first assignments.  Then they stop coming to class and do not turn in further 

homework or studio assignments.  Their Exam 1 average is around 50%, and those students that 

do not drop the course fail the subsequent exams as well.  Although they perform poorly on most 

of the exam problems, these students struggle the most with graphing and interpreting graphs.  

This group has a drop-out rate of 13% and only 51% of those students who do complete the 

course earn a C or better.  Those that took the pre and post tests measuring conceptual growth 

demonstrated that they learned very little. 

These students had overwhelmingly negative views about mathematics, and their 

opinions got worse after taking Studio College Algebra.  Their group was the only one whose 

negative comments during interviews outnumbered their positive or neutral comments.  Students 

in this group believe that mathematical ability is inherited or intrinsic, not learned, and that only 

some people (not them) need to know mathematics.  They have very little confidence in their 

abilities and doubt they will ever have to use skills they learn in Studio College Algebra in their 

careers.  In particular, students expressed a dislike of graphs and fractions.  This group thinks 

that recitation is the most helpful part of the course, because they get help with their homework.  

They all expressed frustration understanding the concepts and they struggle with completing 

their assignments.  Some students enjoyed working with a partner in Studio and thought the 

online homework was convenient.  Most did not like lecture due to its size.  Online homework 

was not popular either, mostly because of the different due dates and the fact that the problems 

change after every second attempt. 

These students all had tutors, who helped them complete their homework and study for 

exams.  If they needed help understanding a problem, they went to their friends or tutor, but not 

the instructor or text.   One student admitted to not doing her homework until after most of the 

problems had been done in recitation.  These students’ level of conceptual knowledge was very 
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low.  Students did not volunteer much information, although they were able to make some 

connections between different functions after prompting.  They attempted to commit actions like 

distributing without any reason why they should do so.  Their use of vocabulary was fair to poor. 

These students were not able to interpret a situation involving linear regression. 

 

Table 4.6  Rote Memorizer Average Scores 

Rote Memorizers Fall 08 Spring 09 Fall 09 Spring 10
Composite ACT 22.12 19.22 22.631579
Math ACT 21.61 17.28 21.526316
Percent of Students 14.50% 15.10% 7.18% 3.07%
Average Exam 1 Score 62.6 40.3 50.26 23.5
Studio 10.27 10.833 1.92 1
Attendance 7.08 6.89 2.76 3.56
WHW 30.13 17.12 7.4 10.6
OHW 24.41 31.907 25.27 25
Average Exam 2 Score 57.91 33.83 42.19 10
Average Exam 3 Score 46.07 29.85 49.69 6
Final Exam Score 92.1 62.11 86.42 12
Grade in Course 1.51 1.14 1.05 0
% C or better (of completed) 58.14% 57.14% 39.13% 0.00%
% Completed Course 87.76% 93.33% 88.46% 75.00%  
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 Identifying Clusters from Following Semesters 
 

 Preliminary interviews from Fall 2008 and interviews from Spring 2009 suggested that 

the qualitative traits from the groups extend from semester to semester.  Because interviewing 

students every semester would be time consuming and costly, a method was needed to match 

new groups to previously identified groups using only quantitative data. This could be done by 

looking at group size, performance on Exam 1, and an analysis of the SVD vectors and the 

position of the group medoids.   

 Group OA was the most straightforward group to identify.  Because this group had the 

largest size for the first two semesters, it would likely continue to be a large group.  Also, this 

group should have the highest or second highest Exam 1 score.  All of the other homework, 

studio, and attendance scores should be the highest as well.  The medoid of the group should be 

in a position so that the SVD vectors indicated positive scores on most of the assignments. 

 Because the size of Group E varied from Fall 2008 to Spring 2009, this was not a good 

indicator for subsequent semesters.  The Exam 1 score should be the second or third highest, and 

all of the other assignment and attendance averages should be in that higher middle range as 

well.  The best way to identify Group E was through SVD vector analysis; this group did well on 

the standard exam problems (both conceptual and procedural), but did not do well on problems 

whose solutions had not been worked out in class beforehand. 

 The size of Group UA should be relatively small, somewhere between 10 and 20 percent.  

The Exam 1 score and ACT data should be middle to high, but their other attendance and 

homework scores should be low.  The SVD analysis should show that this group does well with 

conceptual and applied problems, but has trouble accurately carrying out procedures.    

 Groups SS and RM both had low Exam 1 scores, but they were distinguishable by other 

factors.  Group SS was usually slightly larger than Group RM.  More importantly, Group SS had 

decent scores on other assignments and was likely to have earned the second or third highest 

attendance average, while Group RM should have the lowest.  In addition, analysis of the SVD 

coordinates should show that Group RM does poorly with graphing problems. 
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 “White Box” Clustering 
Clustering techniques such as AGNES, PAM, and SVD analysis are referred to as “black 

box” techniques, where a program looks for patterns in a data set without preconceived targets or 

external direction.  “White Box” data mining techniques refer to programs that look for patterns 

that fit a theoretical framework or use expert guidance to modify results.  Often, data miners use 

white box clustering methods to form an alternate grouping scheme.  This is done in an attempt 

to measure the validity and utility of the black box groups, as standard statistical measures do not 

apply to most data mining scenarios.     

 Traditionally, a teacher defines a student’s progress based on how well they performed in 

different categories of assignments.  For example, a teacher might say someone is a “good 

student” if they perform well on the examinations, turn in all of their homework assignments, 

and regularly attend class.  A “struggling student” might have similar attendance and homework 

points, but do poorly on the exam.  The White Box grouping scheme described in Chapter 3 

mimics this natural teacher-based grouping.  Rather than relying on algorithms to identify the 

linear combinations of scores that best capture student variation, the White Box approach 

grouped students based on their scores in predetermined categories:  Exam 1 total, Studio total, 

Attendance total, Written homework total, and Online homework total (See Chapter 3 for more 

detail on the process of forming the White Box groups).  The aim of grouping students using the 

SVD method was to develop a way to determine personality traits and work habits of different 

types of students, and then predict their success in learning the material and passing the course.  

By comparing the SVD groups to the White Box groups, the researcher could evaluate the 

relative advantage of using the SVD method in achieving these research objectives.   

 First, the personality traits and work habits of students in the SVD groups were compared 

to those of the students reorganized into White Box groups.  Using the same interviews 

previously described in this chapter, the response codes for each student were reassigned to the 

White Box group to which the student belonged (See Appendix E: Grouping Chart, White Box).  

Five of the interviewees belonged to White Box Group 1, six to White Box Group 2, two to 

White Box Groups 3 and 5, and four to White Box Group 4.  The code charts reveal that the 

White Box groups were much less cohesive than the SVD groups, as derived from the repetition 

of student responses.  A coded response was considered “repeated” if 50% or more of the 

students in a given group made the statement during their interview.  In total, 35.8% of the coded 
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responses in the SVD grouping scheme were repeated, while only 23.1% of those in the White 

Box grouping system were repeated.  When all students were put into one large group, only 

14.14% of comments were repeated by more than half of the students.  Looking more carefully at 

the grouping charts, one sees that many of the responses in the White Box groups contradict each 

other.  For example, in White Box Group 1, Studio, Recitation, Lecture, and Online Homework 

all appear simultaneously as the most helpful part of the course and as the least helpful part of 

the course.  Similarly, one of the students in White Box Group 3 reported spending more than 5 

hours a week studying and completing homework assignments, while the other admitted to never 

studying and spending less than 1 hour a week on homework.  While there were a few 

inconsistencies in the SVD Grouping chart, they occurred much less often and were not as 

blatant.  This indicates that the SVD grouping system is much more effective at pulling out 

students with similar opinions and study habits.  However, the difference might be exaggerated 

by the choice of student interview subjects.  Students were invited to participate in interviews 

based on their proximity to the medoids of the SVD groups, not the White Box groups.   

 Another indicator of a relevant and successful grouping is the ability to make predictions 

about future student behavior.  Because only scores from the first 4-5 weeks of the semester were 

used in both grouping processes, we can compare the relative behavior of the two grouping 

schemes measured by examinations and final grades to assess which groups were more cohesive 

throughout the semester.  In general, the White Box grouping scheme was able to identify the 

highest and lowest performing students better than the SVD scheme.  For example, in Fall 2008, 

the highest scoring White Box group of 60 students earned an average final grade of 3.133 with 

standard deviation .76, while the OA group of 119 had an average final grade of 2.89 with 

standard deviation .78.  Also, in the same semester, the lowest scoring White Box group 

contained 15 out of 19 dropouts, with the remaining 61 students earning an average final grade 

of 1.06.  These low performing students were divided fairly evenly between the SS and RM 

groups in the SVD scheme, with those groups of students earning final grades of 1.39 and 1.51, 

respectively.  In the semesters following Fall 2008, the highest and lowest groups for both 

grouping schemes had mostly the same students and earned similar average scores on their final 

exams and in the course.  However, the White Box groups had slightly lower standard deviations 

for their overall course grades, while SVD groups had lower standard deviations for their Final 

Examination Scores. 
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 The two grouping schemes differ the most when comparing the middle two or three 

groups.  In general, the White Box scheme had one high performing group, one or two very low 

performing groups, and two or three groups in the middle that acted similarly in all categories.  

The following charts show the average final grades for each of the groups in the two grouping 

schemes.  Notice the averages for the White Box grouping scheme do not fit a linear model as 

well as those for the SVD grouping scheme.  The White Box chart for Fall 2008 (Series 1) shows 

three middle groups with roughly the same final grade, while Fall 2009 (Series 3) has one high 

group, two middle, and two low. 
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Figure 4.1  White Box Group Average Final Grades 
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Figure 4.2  SVD Group Average Final Grades 

When linear regression models were applied to each of the semesters’ groups’ grades, the 

R-squared values for the White Box Scheme’s models were substantially lower than those for the 

SVD Scheme’s models in the Fall semesters, and roughly equal in Spring 2009. 

Table 4.7  R-Squared Values for Linear Regression Fit of Average Final Grades 

R-Squared Values White Box SVD 
Fall 2008 0.7791 0.8925
Spring 2009 0.9921 0.9666
Fall 2009 0.9346 0.9652

 

This indicates that the SVD grouping scheme distinguishes the middle groups from each other 

better than the White Box grouping scheme in their grades as well as their attitudes. 

 

 Reliability and Validity of Student Attitude and Behavior Groups 
 

 When using Data Mining methods, there is no standard method for assessing the validity 

and reliability of clusters using traditional statistics.  However, measures to support good data 

collection and analysis practices were included in the research protocol.    Each semester, the 

same simple, robust method was used to identify student clusters.  Although a program like 
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AGNES is useful to estimate the number of natural clusters in a data set, it is highly susceptible 

to being altered by random noise.  This occurs because it is based on grouping “nearest 

neighbor” points together, so a tiny shift may result in drastically different clusters.  Once the 

number of clusters is known, the program PAM is a much more reliable grouping algorithm.  In 

this program, medoids rather than centroids were used as the ideal “middle” of the clusters.  This 

reduces the influence of outliers, as described in Chapter 3.   

To strengthen the reliability of the interviews, a protocol was created using guidelines 

from the PER Workshop and Miles and Huberman’s Qualitative Data Analysis.  Each interview 

was conducted by following the protocol while being recorded for transcription.  Also, each 

interview was coded twice independently by the researcher, with the coding compared for 

reliability.  Finally, several interview transcripts were coded independently by another graduate 

student and compared to the original coding.  The second set of codes was a subset of the 

original set, indicating the two coders did not have drastically different interpretations of the text.  

However, because the additional coder was not as familiar with the coding scheme as the 

researcher, her marks were not as detailed or numerous.   

 Data was collected over four semesters from students in the same large lecture class to 

help ensure consistency over time.  In total, scores were collected from 1027 students.  The 

students from the fall and spring semesters of the same academic year were compared using 

coordinate vectors from the much larger and more diverse fall class.  Because students from the 

academic year had the same coordinate vectors, one could test the reliability of the clusters by 

comparing medoid coordinates.  In each case, at least 2 of the 4 medoid coordinates matched up 

by being either both positive, both negative, or both between -.01 and .01 (close to zero).  

Comparing average college aptitude test scores, exam scores, final grades, and dropout rates of 

clusters within a semester show that their rankings stay relatively constant from semester to 

semester (See Appendix B: Data Analysis, Medoid Coordinates).   

 The main goal of the study was to determine if student attitudes about mathematics and 

studio college algebra can be derived from data analysis of their academic behavior.  One could 

then use this data to enhance learning and predict future behavior.  The validity of the academic 

scores collected from each student was secured by gathering data from the field.  In compliance 

with IRB, the data pulled together from each student was only what would normally be recorded 
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during the course of establishing a final grade.  Thus, the students were unaware of their 

involvement in an educational study. 

Confirming the validity of the student attitude clusters was more complicated.  The 

cluster descriptions were created using two independent methods- student interviews and 

analysis of student scores.  The interviews were conducted and coded without knowing to which 

group the students belonged.  The representative student interviewees were not connected to the 

interviewer in any way, and were assured that their responses would remain anonymous.  After 

evaluating a trial set of interviews, the researcher was able to identify and edit leading, vague, or 

otherwise unsuitable questions.  Due to time and budget constraints, interviews were only 

recorded and analyzed for one semester leading to concerns that other semesters’ groups could 

have differing or disparate opinions.  Quantitative data was used to fill in these gaps. 
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Chapter 5 - Conclusions 

By applying several standard Data Mining techniques to student-generated scores in 

Studio College Algebra, five distinct groups of similarly performing students were identified.  

Quantitative and qualitative interview analysis determined that these students not only exhibited 

analogous behaviors, but also that they had related beliefs, work habits, levels of conceptual 

understanding and likelihood of success.  The make-up of student clusters remained relatively 

stable from semester to semester.  To help identify and characterize members of each student 

cluster, the researcher assigned descriptive names and general profiles to each group. 

 Hypotheses 
Upon revisiting the original research goals, the researcher found the results of the student 

clustering mostly affirmed the hypotheses, which are restated below: 

 

1) Patterns and similarities in student behavior can be efficiently and accurately identified 

using standard Data Mining techniques known as clustering algorithms. 

2) College Algebra students’ attitudes and beliefs about mathematics can be revealed by 

examining their behavior in the course. 

3) This information can be used to develop effective mathematics placement strategies, 

identify students in need of intervention, and improve freshman retention. 

 

The application of basic Data Mining techniques was successful in identifying patterns in 

student behavior.  Distinct clusters of students exhibited similar behavior in the class, and these 

clusters were reasonably stable from semester to semester.  Initially, the selection and 

applications of the clustering techniques involved many decisions on the part of the researcher.  

This involved some trial and error, and required at least two semesters of active experimentation.  

However, once these choices were made and the procedure for identifying the student clusters 

was established, the algorithms could be run quickly and efficiently.   By using information 

recorded as graded assignments from the first four weeks of class, an instructor can have the 

results of the clustering analysis by the fifth week of the semester. 
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Interviews with members of each student cluster confirmed that the distinct groups were 

composed of students with similar beliefs about mathematics, ways of solving problems, and 

attitudes about Studio College Algebra.  In summary, members of the OverAchiever group had 

positive views of mathematics and their own abilities to succeed.  They enjoyed Studio College 

Algebra and had a strong conceptual understanding of functions and their applications.  Students 

from the Employee group viewed Studio College Algebra as a hurdle to overcome before they 

could graduate from Kansas State University.  They did not particularly enjoy or dislike the 

Studio course, but cannot stand math in general. These students relied heavily on other people 

for help because they have a low opinion of their own abilities to understand math concepts.  

UnderAchievers were well prepared for the course, and confident in their own aptitude for 

learning mathematics.  However, they found the course frustrating and boring, and were the most 

likely group to drop out of the class.  Members of the Sisyphean Striver group struggled heavily 

to succeed in Studio College Algebra.  Although these students liked math, enjoyed many 

aspects of the course, and demonstrated solid conceptual understanding during interviews, they 

did not perform well on exams.  In contrast, students from the Rote Memorizer group had 

uniformly negative opinions about math, their academic abilities, and Studio College Algebra.  

They tended to put forth minimal effort and relied on tutors and friends to help them with their 

homework.  Consequently, the Rote Memorizer group was the lowest performing cluster. 

In addition to uncovering beliefs and personality traits, clustering students better enables 

instructors to predict the probability of success of students in their courses.  For example, 97.6% 

of the members of the OverAchiever group completed the course, and 98.3% of those students 

passed with a C or better.  Even though members of the Employee group had at an average final 

grade that was .6 points below that of the OverAchiever group, 93.8% of those that finished the 

course earned a C or better.  Members of the UnderAcheiver cluster had the second highest 

probability of dropping the course, with only 78.8% of its members finishing.  However, of those 

group members finishing, 82% of them were able to earn at least a C.  Rote Memorizers and 

Sisyphean Strivers had very similar low passing rates for those students who completed the 

course, with 58.9% and 57.7%, respectively.  Members of the Rote Memorizer group, however, 

were much more likely to drop the course, with only 69% finishing the semester, while 

Sisyphean Strivers had a completion rate of 85.4%.   
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Attempting to confirm the final hypothesis by applying insight gained from cluster 

analysis is an ongoing process.  The next section of this chapter describes and evaluates the 

researcher’s application this cluster analysis to differentiating instruction. 

 Differentiating Instruction 
After identifying and uncovering the characteristics of student clusters, the researcher 

attempted several strategies to differentiate instruction in Studio College Algebra.  First, the 

researcher sought to improve placement by working with advisors to enroll students belonging to 

different clusters in the appropriate mathematics course.  Currently, advisors suggest enrollment 

in a math course based on the incoming student’s ACT scores and high school courses.  

Clustering information provides additional valuable input for choosing not only the level of 

mathematics, but also the type of course best suited for each student.  Next, the researcher 

targeted the Sisyphean Striver group for a mid-semester intervention in testing strategies.  

Because members of this group were hardworking but inefficient studiers, the researcher felt 

these students would benefit most from expert guidance.  Reactions from students, reports from 

advisors, and collaboration with colleagues have influenced other ongoing attempts to 

differentiate instruction, which will be described in more detail in this section. 

 Placement 

Kansas State University has begun to differentiate instruction of College Algebra by 

offering two different versions of the course.  The Traditional College Algebra course covers the 

fundamental properties of functions and has been taught the same way for the last 25 years.  The 

traditional course is structured so that students meet with an instructor twice a week in a large 

lecture setting, and then once a week with a teaching assistant for recitation.  The content of the 

course features basic functions, their properties, and rules for correctly manipulating those 

functions.  Students are required to submit a weekly written homework assignment covering 

short applied problems and a weekly online homework assignment assessing procedural fluency.   

Studio College Algebra is a new version of the course that was first offered in the Fall 

2007 semester.  In this course, one hour of lecture a week is replaced by a studio session in the 

computer lab.  The following chart summarizes the weekly course schedule: 
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Table 5.1  Studio College Algebra Course Schedule 

Class Lecture Studio Recitation 

Day of the Week Wednesday Thursday/Friday Monday/Tuesday 

Class Size 300-400 45-55 22-27 

Description 

The course 

coordinator lectures 

for 50 minutes, 

stopping 2 or 3 times 

to assess 

understanding with 

iClicker questions. 

Students work in pairs 

through a guided 

computer lab assignment 

involving scenarios 

using real data. 

Students review 

questions about 

the homework 

with a recitation 

instructor. 

Motivation 

The students are 

introduced to a new 

concept. 

The students wrestle 

with applying the 

concept to a real-life 

situation.  They learn 

about the advantages and 

disadvantages of 

applying this concept. 

After having time 

to work with the 

concept in several 

ways, the student 

can ask for help 

with points of 

confusion. 

 

Studio College Algebra is designed to prepare students for careers in business, 

agriculture, the social sciences, and fields where they will be interpreting data sets.  Therefore, 

the lessons and assignments emphasize modeling with functions and other common applications, 

especially in the lab portion of the class.   Less time is spent studying the specific properties of 

these functions beyond demonstrating how different properties affect ways in which the function 

can be applied to describing data sets.  Even though more students are likely to pass Studio 

College Algebra than Traditional College Algebra, preliminary studies have shown these 

students are just as likely to earn a C or better in General Calculus as students who pass 

Traditional College Algebra (Bennett, et. al., 7). 

Students in different clusters showed widely diverse reactions to Studio College Algebra 

and had varying degrees of success passing the course.  For example, members of the 

OverAchiever and Sisyphean Striver groups very much enjoyed Studio College Algebra and the 
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lab portions of the class.  Although they often did not see the connection between the labs and 

the rest of the course, the students enjoyed relating the concepts about functions to applications 

relevant to their lives.  However, OverAchievers were very successful in the course and were 

able to earn high grades, while Sisyphean Strivers struggled heavily and often failed despite their 

hard work.  Members of the Employee cluster were ambivalent about Studio College Algebra.  

While they did not dislike the course, they did not find the content or applications particularly 

stimulating.  Most students earned B’s or C’s and few dropped out or failed.  Rote Memorizers 

actively disliked the applied aspects of the course.  They were confused by seeing mathematics 

applied to scenarios that did not lead to one correct “solution,” and were much more comfortable 

manipulating equations.  Members of this group were the most likely to drop out of the course, 

and only 58% of those who did finish the term earned a C or better.  Interestingly, members of 

the UnderAchiever group tended to enjoy the lab assignments where they saw new material and 

more complex scenarios.  In general, though, these students found the class boring, and many 

dropped the class.  Students in the UnderAchiever group were challenged by the open-ended 

assignments, but were frustrated on examinations when they had to justify solutions that seemed 

obviously true.  The average final grade for members of this group was a 2.1, which did not 

reflect their level of conceptual understanding. 

This information about students can be used to more effectively place them into the 

proper math course.  In the Spring 2010 semester, the researcher met with the Arts and Sciences 

Advising Team to describe the student cluster research and its applications to placement.  Each 

member of the committee received the profiles of student clusters that were discussed in Chapter 

Four.  Included at the bottom of each profile were the following placement suggestions: 

 

OverAchiever Placement Suggestion:  Although these students are likely to do well in 

whatever course they are placed in, they really seem to enjoy Studio College Algebra. 

 

Employee Placement Suggestion:  These students enjoy Studio College Algebra and will 

benefit from learning ways that mathematics is useful through working with programs like Excel.  

However, they would likely perform just as well in Traditional College Algebra. 
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UnderAchiever Placement Suggestion:   These students should be given more challenging 

material to keep them interested and motivated.  Most of them have already mastered the 

material presented in College Algebra, and so are ready to take Trigonometry or some other 

higher-level course. 

  

Sisyphean Striver Placement Suggestion:  These students enjoy taking Studio College Algebra 

and seem to benefit from the class structure and increased time with instructors.  They should be 

given extra opportunities, however, to improve their problem solving skills and mathematical 

independence by participating in Problem Solving Workshops run by the Mathematics 

department. 

 

Rote Memorizer Placement Suggestion:  These students do not like Studio College Algebra 

and do not benefit from the extra contact with instructors.  They should be placed in Traditional 

College Algebra where there is less focus on applied problems and using technology.  They 

might also benefit from working with qualified tutors to improve their performance on 

homework assignments and attendance. 

 

 Interestingly, the advisors immediately recognized the student profiles as typifying many 

of the advisees they had worked with over the years.  The members of the advising committee 

agreed to distribute the profiles and placement suggestions to other faculty members who work 

with the Dean’s office to advise incoming students.  Preliminary reports show that using these 

profiles reduced the numbers of Rote Memorizers and UnderAchievers placed into Studio 

College Algebra.  Cluster analysis of students in Studio College Algebra during the Fall 2010 

semester shows that Rote Memorizers consist of only 6.7% of the students.  During the four 

semesters before these profiles were distributed, 10.6% of the students fell into the Rote 

Memorizer group.  Similarly, in the Fall 2010 semester, only 6.4% of the Studio College Algebra 

students belonging to the UnderAchiever group.  This was down from 13.7% for the other four 

semesters (See Appendix A: Fall 2010).  It remains to be seen how augmented advising will 

affect overall student performance in College Algebra (both Traditional and Studio).  In addition, 

follow-up interviews with advisors should be conducted to determine how they implemented the 

student profiles and placement suggestions and whether this information was useful. 
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 Intervention for Sisyphean Strivers 

Sisyphean Strivers spend a lot of time and effort trying to understand the concepts in 

Studio College Algebra.  They attend almost all of their classes, complete every assignment, and 

report that they spend at least three to four hours a week studying.  When members of this group 

were interviewed, they showed solid conceptual understanding of functions and their 

applications.  Unfortunately, these students were unable to demonstrate this knowledge during 

written examinations.  Because of their determination and work ethic, the researcher felt students 

in this cluster would be ideal participants in an academic intervention. 

In the Fall 2009 and Spring 2010 semesters, the researcher designed and conducted 

weekly workshops to help students in the Sisyphean Striver group learn to improve their 

performance on written examinations.  The workshops were scheduled for Tuesday evenings 

during the time set aside for examinations so that no student would have academic conflicts.  

While students in the SS group were the intended beneficiaries of the intervention, everyone in 

Studio College Algebra was invited to participate.  The main goals of these Problem Solving 

Workshops were to reduce testing anxiety by introducing students to the structure of exam 

questions and to improve the effectiveness of their study habits.  At the beginning of each 

session, students were given handouts with problems linking concepts from that week to 

previous exam questions.  Students then worked in groups with minimal guidance from the 

instructor to solve the problems on the handout.  This collaborative learning was meant to foster 

confidence among the students so that they did not need to rely on an expert to tell them how to 

solve each problem.  Each exam question was preceded by one or two leading questions 

highlighting the main ideas and techniques used to solve the problem.  The following example is 

an excerpt from a Problem Solving Workshop covering power functions.  Note: the starred 

problems have appeared on a previous semester’s exam. 

 

1) Let   7.17.5)( xxf = be a power function. 

a. What is the coefficient? 

b. What is the power? 

c. What is the output of the function if the input is x = 0?  When the input is x = 2? 

d. Is the function increasing or decreasing?  How do you know? 
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***2) Suppose the number of on-duty injuries associated with a certain occupation 

could be modeled by the function   346.8.124)( −= xxI , where x represents the numbers of years 

after 1990. 

a. Find I(7) and label your answer. 

b. Between the years 1995 and 2000, are the number of injuries increasing or 

decreasing? How do you know? 

 

Despite the researcher’s best efforts to design a workshop that would increase the  

confidence of students and help them learn to demonstrate their knowledge on examinations, 

results of implementing this intervention were inconclusive.  On average, only one or two 

students attended each workshop, and so they were unable to work in groups as the researcher 

intended.  Several students expressed a desire to attend the workshops, but were unable to come 

due to work and personal commitments.  However, it should be noted that every student who 

attended more than two workshops earned at least a C in the course.  These preliminary findings 

indicate that if scheduling and attendance issues could be resolved, the workshops might be an 

effective resource for Sisyphean Strivers. 

Attempt at Automated Placement 

As a result of the low attendance at the Problem Solving Workshops, the researcher 

began exploring methods of identifying members of clusters earlier in the semester.  Even 

though the clustering analysis could be implemented by the fifth week of the semester, it seemed 

that this was still too late to affect student behavior.  Implementing an intervention at Week Five 

had little impact on already established student study habits.  Therefore, in order to introduce 

students to effective support structures and accurately place them into the appropriate 

mathematics course, members of student clusters must be identified before the beginning of the 

semester. 

Because no student behavior data can be collected before the course begins, clustering 

techniques are not appropriate for identifying cluster members in this situation.  One can instead 

try procedures for classifying students into the established behavioral groups using “white box” 

methods.   The OverAchiever, Employee, UnderAchiever, Sisyphean Striver, and Rote 

Memorizer groups provide a framework for employing the traditional mathematics education 



 

79 

 

research method of using an expert-designed instrument to classify students into groups.  Using 

distinctive responses from the interviews, the researcher built the following list of statements: 

 

• I want to learn more about using computer spreadsheets like Excel. 

• Being good at mathematics is something that a person is born with, like being left-

handed. 

• It is very important to me that I attend a small class where the instructor can keep track of 

my progress. 

• If I don't know how to do a problem, looking back at my notes or the textbook is helpful. 

• I usually only understand a new concept after working with a friend or a tutor. 

• I anticipate using math in my future career. 

• I'm pretty confident in my mathematical skills. 

• If I miss class, I can learn the material on my own or with a tutor. 

• Math classes can be fun. 

 

These statements were added to the end of the Summer 2010 mathematics placement 

examination.  Every incoming student was asked to rate whether he or she agreed with each 

statement using a five-point scale.  These statements were designed to distinguish members of 

one group from another by examining their responses, and determine the probability that a given 

student belongs to a particular cluster. 

Several classical and modern methods for constructing a classification scheme based on 

student responses to these statements exist.  The researcher decided to explore the use of 

Classification and Regression Trees (CART), and random forests possibly simpler and 

streamlined classification systems to the traditional method of using statistical linear classifiers.  

Briefly, CART analysis determines the most efficient way to divide students into two relatively 

homogenous subgroups based on a response to one of the questions.  The CART program then 

repeats the process until all students have been divided into groups containing only members of a 

single behavior cluster (Breiman, 21).  Like the AGNES and PAM algorithms, implementing the 

CART program involves assigning several parameters and choosing between many techniques 

that affect the final output.  Unfortunately, after running several configurations of the algorithm 
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on the student data from the Fall 2010 semester, the researcher was unable to find a decision tree 

that would correctly classify more than 50% of the students. 

This result suggests that either that the instrument of classification is faulty, or that students 

do not have formed opinions about mathematics and Studio College Algebra until they have 

attended several weeks of class.  While this classification attempt did not successfully identify 

members of student clusters before the start of the semester, it did lead to several possible 

avenues of further study. 

 Raising Online Homework Standards 

Members of the Employee group are distinguished from the other students by the attitude 

that Studio College Algebra is like a low paying job.  These students do what they feel is 

required of them and then are “paid” with a passing grade.  One can conjecture that members of 

this group would respond well to raising minimum standards.  A fellow researcher at Kansas 

State University, Bill Weber, tested this conjecture by raising the minimum accepted score for 

the online homework assignments.  Starting in the Fall 2009 semester, students’ online 

homework scores were only recorded if they earned at least 50% of the available points on a 

given assignment.  Any score below 50% counted as a score of zero.   

Interestingly, members of the OverAchiever and Sisyphean Striver groups responded 

most positively to this change in expectations.  After the raised standards were enacted, 

significantly fewer members of these groups scored less than 50% on Online Homework 

Assignments.  This change had the opposite effect for members of the targeted Employee group, 

however.  From this data, one could surmise that these students only complete the tasks they feel 

are reasonable, and would rather not attempt an assignment than not be rewarded for minimal 

effort (Weber, 39). 

 Extensions and Future Research 
The difficulty in classifying students before the start of the semester suggests that before 

attending college, their opinions about mathematics and university mathematics courses are 

naïve or unformed.  However, the cohesion of the behavior clusters identified after the fourth 

week of classes, and the low attendance at Problem Solving Workshops indicate that students’ 

attitudes and behaviors are well established by the end of the first month of the semester.  
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Interesting extensions of student clustering research would be investigating what events occur to 

give rise to these habits and opinions and how these attitudes and behaviors change over time. 

Together with a colleague at Kansas State, the researcher has been looking at the stability 

of these clusters throughout the semester.  Drew Cousino, a graduate student in the mathematics 

department at Kansas State University, is developing a system of tracking student behavior 

through Bayesian analysis.  With this algorithm, one can track shifts in behavior over time by 

determining the probability that a given student is acting like a member of an established 

behavior cluster after each assignment.  The following figure is an example of a chart tracking a 

single member of the OverAchiever group during the course of the Fall 2009 semester.  The bars 

are color coded so that each color represents the probability that the student belongs to a 

behavior cluster based on their accumulated actions up to that point. 

Table 5.2 Color Key for Bayesian Behavior Graphs 
OverAchiever
Employee
UnderAchiever
Sisyphean Striver
Rote Memorizer  

 
Figure 5.1 Behavior patterns of a student in Group OA 
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Each bar along the x-axis represents a homework assignment score or examination 

problem score, presented in the order in which they were graded.  The green bars represent the 

likelihood that this student is a member of the OA group, that is, that they are behaving the way 

other members of the OA group are behaving.  One can see in this chart that this student 

established his or her behavior pattern by the end of the first examination, and acted consistently 

like an OverAchiever for the rest of the semester. 

This next chart shows the actions of a student who was originally clustered into the 

UnderAcheiver group, but then changed his or her behavior after the first examination.  For most 

of the remainder of the semester, this student behaved like an OverAchiever. 

 
Figure 5.2  Behavior patterns of a student in Group UA 

This preliminary analysis indicates that student behavior groups might not be stable 

throughout the semester.  If one tracks each student’s behavior with the Bayesian analysis 

described above, one could form final clusters of students based on their likelihood of belonging 

to a behavior group by the end of the semester.  The chart below compares the composition of 

the student behavior clusters identified by the first four weeks of student scores with the 

composition of groups formed by Bayesian analysis using scores from the entire semester.  Note 
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that only those students who completed the final examination and the course are represented in 

the table. 

 

Table 5.3 Stability of Behavior Groups (Fall 2009) 

OA E UA SS RM
OA 73 11 4 11 0
E 21 38 6 13 1
UA 4 0 10 2 0
SS 5 0 0 30 1
RM 2 0 0 0 4

Behavior 
Clusters 
Identified 
after first 4 
weeks

Baysian Groups After Final Exam

 
  

According to this analysis, the Employee cluster was the least stable, with only 62.5% of 

identified members of this group behaving as Employees by the end of the semester.  

Fortunately, 51% of the students who changed behavior patterns ended the semester performing 

like OverAchievers.  In general, 13.8% of students altered their behavior to be most like 

members of the OverAchiever group.  Sadly, the most stable group was the Sisyphean Striver 

cluster, indicating that most members of this group were not able to learn how to demonstrate 

their conceptual knowledge on examinations and move to another group. 

 This preliminary analysis presents many interesting avenues of future inquiry.  For 

example, what events cause students to change their behavior patterns?  Many members of the 

Employee group become engaged in the material part way through the semester and begin 

participating in class more, earning higher scores on examinations, and generally behaving more 

like a member of the OverAchiever group.  Did a change in attitude cause this shift in activity, or 

was there an external motivating factor?  Individual Bayesian display graphs can identify 

students who experienced a change in behavior but are unable to explain the cause.  Qualitative 

analysis of student interviews could help researchers gain insight into the influences behind 

changing student behavior.  Eventually, instructors may be able use this information to inspire 

positive changes in the efforts of their own students. 

 Other future areas of research involve extending cluster analysis to students beyond those 

enrolled in Studio College Algebra.  For example, do students exhibit these patterns of behavior 

only in mathematics courses, or do students act the same way in all of their courses?  This topic 

can be explored in two different ways:  by tracking the same students in different classes, or by 
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performing cluster analysis on student populations in different courses.  In the first case, one 

could reveal the stability of groups across disciplines.  Does a student belonging to the 

OverAchiever group excel in Studio College Algebra because he or she enjoys mathematics or 

because he or she is always a good student?  By performing cluster analysis on students in other 

classes, one could ascertain if other academic disciplines are characterized by the same behavior 

patterns. 

 Most students in Studio College Algebra are in their first year of studies.  By examining 

student performance in more advanced courses, one could study how behavior patterns change as 

a result of years spent in college.  Different techniques would be required to study students in 

higher level classes, as the smaller class size prevent researchers from being able to collect 

sufficient quantitative data.  Likewise, studying student behavior in a smaller institution, like a 

four-year liberal arts college, would require new research methods.  However, this diverges from 

the goal of providing timely information about students in a large lecture class in order to 

effectively differentiate instruction.   By applying cluster analysis to adapting instruction of large 

first-year courses, instructors can offer the same advantages of a small class: personalized, 

effective education. 
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Appendix A - Clusters 

This appendix organizes the cluster information from four semesters: Fall 2008, Spring 

2009, Fall 2009, and Spring 2010.  For each semester, average scores on assignments are given 

for both SVD and White Box grouping schemes.  Also, PAM and AGNES outputs are displayed. 

 Fall 2008   

SVD Groups 

Table A.1  Fall 2008 SVD Group Averages 

Fall SVD 37 1.000 2.000 3.000 4.000 5.000
Name OA E UA SS RM
Size 119 68 43 58 49
Ave Composite ACT 22.202 23.038 24.032 20.378 22.128
Ave Math ACT 21.657 22.302 23.839 18.649 21.605
Average Exam 1 Score 72.126 70.868 72.605 51.069 62.592
StDev Exam 1 Score 4.106 5.096 5.948 11.365 11.874
# who took Exam 2 119 65 36 55 44
Average Exam 2 Score 58.907 57.953 60.714 53.392 57.909
StDev Exam 2 Score 15.683 19.326 14.191 18.188 15.275
# who took Exam 3 117 63 34 52 38
Average Exam 3 Score 59.923 60.810 59.088 40.385 46.079
StDev Exam 3 Score 12.027 13.407 15.094 13.727 18.535
# who took Final Exam 118 63 35 48 35
Average Final Exam Score 104.314 104.222 106.857 68.438 92.057
StDev Final Exam Score 19.252 22.050 24.060 21.754 22.393
Average Grade in Course 2.898 2.538 2.649 1.389 1.512
StDev Grade in Course 0.789 1.091 1.296 0.920 1.009
% C or better (of completed) 96.610% 86.154% 75.676% 48.148% 58.140%
% completed course 99.160% 95.588% 86.047% 93.103% 87.755%  
 

 

Table A.2  Fall 2008 Component Averages for SVD Groups 

Comp Aves for SVD Grps Exam 1 Studio AttendanceWHW OHW
1 (OA) 72.126 17.244 9.370 51.336 47.903
2 (E) 70.868 13.610 8.603 25.897 45.306
3 (UA) 72.605 12.000 7.256 34.570 48.316
4 (SS) 51.069 12.509 8.655 37.138 42.074
5 (RM) 62.592 10.276 7.082 30.133 24.410  
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Figure A.1  Fall 2008 AGNES Dendrogram 
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Figure A.2  Fall 2008 PAM plot 
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White Box Groups 

Table A.3  Fall 2008 White Box Group Averages 

White Box 1 2 3 4 5
Size 60 64 42 94 76
Ave Composite ACT 22.694 22.846 23.091 21.608 21.923
Ave Math ACT 21.980 22.269 22.667 20.797 21.039
Ave Exam 1 Score 73.067 70.219 69.857 67.968 56.368
StDev Exam 1 Score 4.079 5.079 6.831 7.699 14.629
# who took Exam 2 59 62 41 91 63
Average Exam 2 Score 60.966 56.067 61.366 57.596 54.810
StDev Exam 2 Score 14.061 22.376 14.818 16.081 16.336
# who took Exam 3 58 61 41 90 54
Average Exam 3 Score 63.000 59.541 55.780 54.067 41.907
StDev Exam 3 Score 11.541 11.879 13.462 13.821 16.904
# who took Final Exam 60 62 41 90 46
Average Final Exam Score 108.58 104.73 98.68 93.69 79.04
StDev Final Exam Score 19.42 25.61 21.67 21.74 27.77
Average Grade in Course 3.13 2.59 2.55 2.43 1.07
StDev Final Grade 0.77 1.15 1.11 0.81 0.89
% C or better (of completed) 98.33% 84.38% 80.95% 90.00% 36.07%
% completed course 100.00% 100.00% 100.00% 95.74% 80.26%  
Table A.4  Fall 2008 Component Averages for White Box Groups 

Comp Aves for White Box 
Grps Exam 1 Studio Attendance WHW OHW

1 73.067 20.450 9.750 54.492 48.502
2 70.219 17.289 8.891 24.828 47.141
3 69.857 6.440 8.619 36.214 48.367
4 67.968 15.777 8.766 50.154 45.949
5 56.368 8.178 6.724 24.237 28.553  

Comparison 

Table A.5  Fall 2008 SVD and White Box Group Comparison 

SVD       /WB groups 1 2 3 4 5
1 (OA) 56 5 8 50 0
2 (E) 1 39 15 2 11
3 (UA) 0 11 14 7 6
4 (SS) 2 8 5 21 22
5 (RM) 1 1 0 11 36
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 Spring 2009 

SVD Groups 

Table A.6  Spring 2009 SVD Group Averages 

Fall SVD 37 1 2 3 4 5
Name OA E RM UA SS
Size 60 30 30 36 42
Ave Composite ACT 22.739 21.652 19.222 22.409 21.680
Ave Math ACT 21.826 20.609 17.278 20.545 20.160
Average Exam 1 Score 69.083 66.033 40.300 58.778 61.690
StDev Exam 1 Score 7.827 8.802 16.028 8.445 9.285
# who took Exam 2 59 30 30 34 42
Average Exam 2 Score 67.491 50.100 33.833 51.030 52.725
StDev Exam 2 Score 9.527 20.174 19.797 13.487 16.966
# who took Exam 3 58 29 22 32 40
Average Exam 3 Score 60.845 50.276 29.857 44.313 48.500
StDev Exam 3 Score 16.237 18.723 17.517 16.847 18.210
# who took Final Exam 59 27 26 31 36
Average Final Exam Score 112.034 101.900 62.111 86.219 90.778
StDev Final Exam Score 26.046 25.475 29.543 30.242 27.187
Average Grade in Course 3.383 2.867 1.138 2.057 2.214
StDev Grade in Course 0.804 0.973 1.090 0.846 1.122
% C or better (of complete 98.33% 93.33% 57.14% 80.00% 78.57%
% completed course 100.00% 100.00% 93.33% 97.22% 100.00%  
Table A.7  Spring 2009 Component Averages for SVD Groups 

Comp Aves for SVD Grps Exam 1 Studio Attendance WHW OHW
1 (OA) 69.083 19.275 8.806 30.383 44.392
2 (E) 66.033 17.633 7.289 29.600 47.217
3 (RM) 40.300 10.833 6.889 17.017 31.907
4 (UA) 58.778 16.597 8.241 18.931 35.158
5 (SS) 61.690 15.298 7.952 22.500 42.524  
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Figure A.3  Spring 2009 AGNES Dendrogram 
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Figure A.4  Spring 2009 PAM plot
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White Box Groups 

Table A.8  Spring 2009 White Box Group Averages 

White Box 1 2 3 4 5
Size 33 67 29 50 19
Ave Composite ACT 23.100 23.612 22.267 20.568 19.818
Ave Math ACT 22.350 22.878 20.067 18.946 18.000
Ave Exam 1 Score 67.970 71.030 53.966 52.560 44.579
StDev Exam 1 Score 6.473 5.158 15.776 8.744 16.331
# who took Exam 2 33 66 26 48 17
Average Exam 2 Score 58.879 65.258 44.423 44.667 35.824
StDev Exam 2 Score 15.159 12.495 19.441 17.669 18.925
# who took Exam 3 31 65 24 46 14
Average Exam 3 Score 54.000 60.662 38.917 41.391 36.929
StDev Exam 3 Score 18.719 15.658 19.576 17.042 18.524
# who took Final Exam 25 59 24 44 17
Average Final Exam Score 102.120 101.051 91.680 92.159 90.706
StDev Final Exam Score 24.764 29.318 27.856 26.316 29.529
Average Grade in Course 2.727 3.418 1.500 2.160 1.118
StDev Final Grade 1.039 0.678 1.171 0.934 1.166
% C or better (of completed) 93.94% 100.00% 57.14% 78.00% 41.18%
% completed course 100.00% 100.00% 96.55% 100.00% 89.47%  
Table A.9  Spring 2009 Component Averages for White Box Groups 

Comp Aves for WB Grps Exam 1 Studio Attendance WHW OHW
1 67.970 15.167 8.566 16.091 39.236
2 71.030 19.724 8.607 31.612 47.527
3 53.966 9.052 5.552 17.086 37.800
4 52.560 19.280 8.433 29.540 44.838
5 44.579 10.632 7.491 11.921 14.300  

Comparison 

Table A.10  Spring 2009 SVD and White Box Group Comparison 

SVD       /WB groups 1 2 3 4 5
1 (OA) 1 42 3 9 1
2 (E) 2 16 4 8 0
3 (RM) 1 0 9 9 11
4 (UA) 12 2 5 10 7
5 (SS) 13 7 8 14 0  
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 Fall 2009 

SVD Groups 

Table A.11  Fall 2009 SVD Group Averages 

Fall SVD 33 1 2 3 4 5
Name SS OA E UA RM
Size 58 124 110 44 26
Ave Composite ACT 19.857 23.596 21.058 22.033 22.632
Ave Math ACT 18.238 23.034 19.907 20.933 21.526
Average Exam 1 Score 43.603 69.395 58.609 53.068 50.269
StDev Exam 1 Score 10.261 5.132 7.212 14.378 19.046
# who took Exam 2 50 121 109 38 17
Average Exam 2 Score 35.939 58.483 45.623 38.806 42.188
StDev Exam 2 Score 14.152 12.146 13.452 18.258 19.292
# who took Exam 3 47 119 103 30 16
Average Exam 3 Score 51.000 65.605 56.350 50.400 49.688
StDev Exam 3 Score 16.881 12.319 15.060 19.725 21.010
# who took Final Exam 48 121 105 33 12
Average Final Exam Score 80.563 115.174 98.248 84.909 86.417
StDev Final Exam Score 26.985 18.564 22.980 35.488 41.890
Average Grade in Course 2.176 3.472 2.556 1.857 1.045
StDev Grade in Course 1.126 0.793 1.008 1.353 1.430
% C or better (of completed) 40.00% 97.56% 87.16% 65.71% 39.13%
% completed course 86.21% 99.19% 99.09% 79.55% 88.46%
 

Table A.12  Fall 2009 Component Averages for SVD Groups 
Comp Aves for SVD Grps Exam 1 Studio Attendance WHW OHW
1 (SS) 43.603 16.095 7.004 17.578 43.997
2 (OA) 69.395 19.492 7.256 20.391 47.935
3 (E) 58.609 16.168 6.991 16.968 43.268
4 (UA) 53.068 14.989 6.790 10.261 19.973
5 (RM) 50.269 1.923 2.760 7.404 25.273  



 

96 

 

1
10

3
10

6
15

7
14

8
15

1
10

5
18

6
20

4
26

8 38 32
3

21
2

36
0

11
2

16
3

27
49 18

0
33

2
32

89 33
4 94 20
3

57
68 83

16
8

13
5

31
0 19

8 1
31 16

1 2
32

2 7
11

7
11

3
32

5 20
8

29 91
75 34
3

12
8

20
2

29
4

19
1

26
9

30
8 52

18
7

21
8

21
3

30
5 21
9 33

1
62 78 16
9

27
8

34
0 34
9 95 11

97 98 18
8

25
4

29
1 6

1
21

7
24

8 30 71
85 14
2

27
9

14
7

26
3

31
9

11
4

17
6 12

0
15

6
32

0 24
1 1

84
45 15

3 1
83 1

5 25 31 44
25

7
32

2
36

43 12
3

4
17

2 22
5

13
7

27
3

30
2

12
1

18
9

27
6 8

26
4 14 39 31
5 31

7 35
2

34 33
5

28
0

35
5

46
12

6
14

6 24
4

14
9

19
0

24 81 28
8

30
9

56 64
17

9
13

8
19

7
32

8 5
0

11
0

29
8

13
4

32
1

23
7

33
7

33
0

11
1

27
2 21

5
18 31

6
21

6
35

0
22

0
24

6
13

3
30

7
31

1
25

6
28

5
10

2
30

3 34
4

11
8

18
1

33
9 3

58
20

5
33

3 2
58

3
22

1 16
2

19
2 96

6
17 84 22 23
0

20
6

34
5

23
4

26
2

27
4

32
7 15

9
30

1
28

3
29

6
35

1
5

17
3 9

0
29

5
54 28
6

14
3

31
8 12

2
21

4
19 33
8 92 31
2

29
9 27

0 30
4

20
1

22
9

55 32
9 34
2

32
4 20

7
67 19

5 9
25

2
22

7
28

12
4

21
0 24

2 42
28

2
33

6 28
9

65 26
7

14
0

74 26
5 22

6
22

2
15

8
35

7 28
7 82

14
4

35
3

19
4

29
3

36
1 27
7

16
6

25
5

13 30
6

17
7

23
5 2

1
87 19

6
11

6
53 24

9 23
9

16
0

19
9 2

6
13

6
48

10
9

23
1 2

00 11
5

22
3

25
3

29
7

35
6

60 88
14

5
23

8
24

3 12
63

17
0

27
5

35
9 1

54 24
0

35 72
18

5
29

2
69 30

0 79 15
5 73 10

7
23

3
31

3
34

7
77

80 16
7 93 20

9
10

8
25

1
47

66 14
1

35
4

19
3

10 21
1 12
7

36
2

13
0

17
1 16

4 1
78

37 32
6

11
9

26
0

17
4

41 29
0

10
1

25
9

22
4

23
6

34
8

15
2

16
15

0
28

1
28

4
22

8
20

86 17
5

31
4

23 33
76 24
7

40 13
9

58 24
5 51 16
5

59 25
0

12
9

99
10

4
18

2
70

10
0

34
1

12
5

26
1

13
2

34
6

26
6

27
1

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Dendrogram of  agnes(x = utrunc2)

Agglomerative Coefficient =  0.9
utrunc2

H
ei

gh
t

 
Figure A.5  Fall 2009 AGNES Dendrogram 
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Figure A.6  Fall 2009 PAM plot 
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White Box Groups 

Table A.13  Fall 2009 White Box Group Averages 

White Box 1 2 3 4 5
Size 41 125 75 98 25
Ave Composite ACT 19.962 23.315 21.459 21.284 22.375
Ave Math ACT 19.115 22.652 20.525 19.838 20.750
Ave Exam 1 Score 41.512 69.136 60.947 53.622 45.783
StDev Exam 1 Score 12.842 4.954 9.412 8.969 17.901
# who took Exam 2 35 123 71 95 14
Average Exam 2 Score 31.129 59.273 42.721 43.348 41.538
StDev Exam 2 Score 16.128 10.840 15.717 12.963 20.472
# who took Exam 3 28 120 67 88 12
Average Exam 3 Score 38.929 67.050 54.955 55.591 50.417
StDev Exam 3 Score 19.187 10.093 15.350 15.044 21.786
# who took Final Exam 28 125 66 91 9
Average Final Exam Score 65.750 116.208 97.258 93.582 72.889
StDev Final Exam Score 34.459 17.339 25.193 21.842 44.823
Average Grade in Course 1.063 3.600 2.449 2.489 0.789
StDev Final Grade 0.914 0.622 1.022 0.981 1.273
% C or better (of completed) 48.39% 99.19% 86.96% 85.11% 33.33%
% completed course 78.05% 99.20% 92.00% 95.92% 91.30%  

 

Table A.14  Fall 2009 Component Averages for White Box Groups 
Comp Aves for WB Grps Exam 1 Studio Attendance WHW OHW

1 41.512 11.268 6.427 5.988 21.820
2 69.136 20.580 7.380 20.984 48.467
3 60.947 10.733 6.760 16.500 44.652
4 53.622 20.082 7.102 18.755 40.405
5 45.783 1.348 2.457 4.978 23.022  

Comparison 

Table A.15  Fall 2009 SVD and White Box Group Comparison 

SVD       /WB groups 1 2 3 4 5
1 (SS) 9 2 12 34 1
2 (OA) 0 101 19 4 0
3 (E) 7 21 35 46 1
4 (UA) 25 1 4 14 0
5 (RA) 0 0 5 0 21



 

99 

 

 

 Spring 2010 

SVD Groups 

Table A.16  Spring 2010 SVD Group Averages 

Fall SVD 33 1 2 3 4 5
Name UA SS E OA RM
Size 25 19 46 36 4
Ave Composite ACT
Ave Math ACT
Average Exam 1 Score 57.320 53.895 62.196 63.417 23.500
StDev Exam 1 Score 11.357 7.944 14.886 8.534 7.188
# who took Exam 2 21 18 45 34 3
Average Exam 2 Score 43.095 44.556 50.933 58.912 10.000
StDev Exam 2 Score 18.014 16.561 19.565 13.574 11.136
# who took Exam 3 19 16 45 33 2
Average Exam 3 Score 50.211 47.000 54.711 61.500 6.000
StDev Exam 3 Score 20.735 17.974 19.346 13.523 8.485
#  who took Final Exam 18 15 44 33 1
Average Final Exam Score 85.471 98.933 94.705 114.242 12.000
StDev Final Exam Score 31.209 25.789 34.520 16.967 0.000
Average Grade in Course 1.82609 1.94444 2.74419 3.30303 0
StDev Grade in Course 1.15413 1.25895 1.19708 0.88335 0
% C or better (of completed) 73.91% 72.22% 90.70% 96.97% 0.00%
% completed course 92.00% 94.74% 93.48% 91.67% 75.00%  
Table A.17  Spring 2010 Component Averages for SVD Groups 
Comp Aves for SVD Grps Exam 1 Studio Attendanc WHW OHW
1 (UA) 57.320 9.980 5.130 11.080 38.224
2 (SS) 53.895 12.947 6.303 14.632 40.000
3 (E) 62.196 16.054 6.402 17.174 44.357
4 (OA) 63.417 17.222 7.076 18.708 45.525
5 (RM) 23.500 1.000 3.563 10.625 25.000
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Figure A.7  Spring 2010 AGNES Dendrogram 
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Figure A.8  Spring 2010 PAM plot 
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White Box Groups 

Table A.18  Spring 2010 White Box Group Averages 

White Box 1 2 3 4 5
Size 49 33 19 15 14
Ave Composite ACT
Ave Math ACT
Ave Exam 1 Score 63.0204 54.697 75.789474 49.0667 44.7143
StDev Exam 1 Score 8.21454 11.4414 4.1039134 11.4796 15.2236
# who took Exam 2 49 32 19 13 8
Average Exam 2 Score 52.9592 44.375 69.105263 36.6154 28.5
StDev Exam 2 Score 14.0163 18.1601 10.671326 15.3977 25.202
# who took Exam 3 49 31 19 11 5
Average Exam 3 Score 55.449 51.7097 69.710526 43.9091 16.4
StDev Exam 3 Score 16.3275 16.6277 7.3848866 18.9866 30.4105
# who took Final Exam 48 29 19 10 4
Average Final Exam Score 103.604 89.4828 120.63158 89.1 33.75
StDev Final Exam Score 24.5355 28.1179 20.393928 24.3285 59.7683
Average Grade in Course 2.95745 2.23333 3.8421053 1.46154 0.54545
StDev Final Grade 0.90787 1.0063 0.5014599 1.19829 0.9342
% C or better (of completed) 97.87% 86.67% 100.00% 53.85% 27.27%
% completed course 95.92% 90.91% 100.00% 86.67% 78.57%  
Table A.19  Spring 2010 Component Averages for White Box Groups 

Comp Aves for WB Grps Exam 1 Studio Attendance WHW OHW
1 63.020 16.908 6.724 20.112 47.631
2 54.697 14.167 6.970 12.576 37.691
3 75.789 22.947 7.421 21.763 49.442
4 49.067 7.800 4.367 14.633 42.687
5 44.714 0.643 3.250 1.964 24.107  

Comparison 

Table A.20  Spring 2010 SVD and White Box Group Comparison 

SVD       /WB groups 1 2 3 4 5
1 (UA) 5 7 1 5 7
2 (SS) 6 7 0 5 1
3 (E) 18 10 12 3 3
4 (OA) 20 9 6 1 0
5 (RM) 0 0 0 1 3  
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 Fall 2010 

SVD Groups 

Table A.21  Fall 2010 SVD Group Averages 

Fall SVD 33 1 2 3 4 5
Name SS OA UA E RM
Size 71 128 20 70 21
Ave Composite ACT
Ave Math ACT
Average Exam 1 Score 54.972 70.211 57.950 62.100 33.762
StDev Exam 1 Score 7.323 5.944 11.830 7.900 10.723  
 

 

Table A.22  Fall 2010 Component Averages for SVD Groups 
Comp Aves for SVD Grps Exam 1 Studio Attendance WHW OHW
1 (SS) 54.972 17.725 8.331 19.401 44.345
2 (OA) 70.211 19.547 8.292 19.102 46.077
3 (UA) 57.950 14.200 6.421 12.425 17.380
4 (E) 62.100 11.879 6.469 16.050 43.220
5 (RM) 33.762 11.024 6.179 8.595 24.062
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Appendix B - Data Analysis 

Table B.1   Fall 2008 Trial V Vectors 
Exam 1 Problems:

1 2 3 4 5 6 7 8
-0.0931446 0.127756 -0.020122 0.052501 -0.133728 0.245594 -0.049521 0.0413895

-0.11629143 0.100817 0.007135 0.025736 0.04744 0.30072 -0.026535 0.0675214
-0.14308697 0.036509 -0.013401 0.15722 0.230119 -0.316634 -0.100284 -0.2073237
-0.13019854 0.11002 -0.135904 0.0704 0.033367 -0.289797 0.082335 -0.1169879

Exam 1 Continued
9 10 11 12 13 14 15 16

-0.01758345 0.368744 -0.179355 0.416099 -0.092017 0.099959 -0.144149 0.1367354
-0.13672515 -0.110484 -0.331851 0.26355 -0.245418 -0.05666 0.063836 0.0152399
0.012445704 -0.046978 0.066491 0.249777 0.232997 0.14527 0.066135 0.1177162

0.2401694 0.011147 0.082893 0.103245 -0.032718 -0.142218 -0.035884 0.3441482

Written 
Homework Studio KEY: <-.2 -0.2>X>-0.1
WHW 1 WHW 2 WHW 3 WHW 4 ST 1 ST 2 >.2 .1>X>.1

-0.0439013 0.126087 -0.357214 -0.172823 0.199724 -0.140027
0.32254425 -0.307113 0.251018 0.128136 0.0562 -0.08696 Highly Contributing Score
0.12510554 -0.057934 0.192713 -0.006145 0.05963 -0.037659

-0.07009467 0.136586 -0.111621 0.33098 0.068059 -0.272512

Fall 08 only 
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Attendance
AT 1 AT 2 AT 3 AT 4 AT 5 AT 6 AT 7 AT 8 AT 9 AT 10
0.010071257 0.232614 0.223082 -0.154723 0.010122 0.071965 -0.142165 0.0409439 -0.026913 0.01205
0.081088185 0.018217 -0.122219 0.158103 -0.213525 -0.127573 0.092238 -0.1065933 -0.206603 0.311498

0.0878264 0.12008 0.175248 0.092538 -0.123753 0.198048 0.184454 -0.1520981 0.219605 0.070715
0.25342298 -0.134426 -0.021702 -0.083265 -0.13618 -0.372816 0.084811 0.0366409 0.00717 -0.078917

Online
Homework
OHW 1 OHW 2 OHW 3 OHW 4 OHW 5

-0.05318851 0.210139 -0.001149 0.032149 -0.162785
-0.08395434 -0.123083 -0.077738 0.00621 0.031139
0.23785467 -0.051289 0.027279 0.334388 -0.236332

-0.28473928 -0.050264 0.023822 0.050055 0.161805

Inverse time
to 90%

Readiness
Test Pretest

ITN 1 ITN 2 ITN 3 ITN 4 ITN 5
-0.00063635 -0.13176 0.050981 0.051764 0.010169 -0.035919 -0.02554
0.05225074 -0.01841 -0.10032 -0.00792 0.004224 0.0126463 -0.00034

-0.17892418 -0.09287 0.132473 0.022128 -0.09181 0.0102129 -0.04398
0.091818053 -0.05418 -0.05577 0.037516 0.089552 -0.047696 -0.00659  
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 V Vectors 

Fall 2008/Spring 2009 

Table B.2  Fall 2008 V Vectors 

Fall 08 EX 1.1 EX 1.2 EX 1.3 EX 1.4 EX 1.5 EX 1.6 EX 1.7 EX 1.8 EX 1.9 EX 1.10 EX 1.11 EX 1.12
Spring 09 EX 1.1 EX 1.2 EX 1.3 EX 1.4 EX 1.5 EX 1.6 EX 1.7 EX 1.8 EX 1.9 EX 1.10 EX 1.16 EX 1.12

0.0984 -1.333 0.0893 -0.171 0.1848 -0.0632 0.1941 -0.0367 0.1018 -0.241 0.369 -0.1926
-0.1279 -0.1014 -0.0501 -0.2011 0.2288 -0.15 0.1626 0.1298 -0.1288 -0.2108 0.0735 -0.4634
-0.1677 -0.0527 -0.1709 0.1403 -0.3261 0.0002 -0.1004 -0.1274 -0.2995 -0.0545 0.1889 0.1853
-0.1507 -0.1369 0.0634 0.1377 -0.2367 0.0802 -0.2559 -0.1891 0.0008 0.1006 -0.0035 -0.0978

Fall 08 EX 1.13 EX 1.14 EX 1.15 EX 1.16 HW 1 HW 2 HW 3 HW 4 ST 1 ST 2
Spring 09 EX 1.11 EX 1.14 EX 1.13 EX 1.15 0.4147 -0.0022 0.0787 0.2216 -0.3227 0.0238

-0.1497 0.1966 -0.0192 -0.0252 -0.3952 -0.0836 -0.1319 0.1273 0.0671 0.0456
-0.1052 -0.1341 0.0326 0.0034 -0.2373 -0.0328 -0.0332 0.205 -0.1141 0.0302
-0.2323 -0.0399 -0.0898 0.0295 -0.0416 -0.153 0.2671 0.1538 0.0949 -0.3302
-0.1561 0.1855 0.4113 0.116

Fall 08 AT 1 AT 2 AT 3 AT 4 AT 5 AT 6 AT 7 AT 8 AT 9 AT 10
Spring 09 AT 1 IC1 AT 2 AT 3 IC 2 AT 4 AT 5 IC 3 AT 6 IC 4

-0.1446 0.0707 0.103 -0.0843 -0.1346 -0.0242 0.0659 -0.0792 -0.1383 0.0723
0.0191 -0.2677 -0.0754 -0.0875 0.2447 0.3165 -0.1917 0.0105 -0.0454 -0.0223
0.0565 -0.1814 -0.2129 -0.0083 -0.171 -0.189 -0.2169 0.1926 -0.1164 0.2738

-0.1611 -0.0937 -0.0194 0.2535 0.2036 0.1795 0.1836 -0.009 -0.1641 -0.1375

OHW 1 OHW 2 OHW 3 OHW 4 OHW 5 KEY: <-.2 -0.2>X>-0.1
0.0812 -0.0119 0.0191 -0.1582 -0.015 >.2 .1>X>.1

-0.0424 -0.0972 0.0273 0.0184 -0.0226
0.1727 0.2571 0.0429 -0.1614 -0.0548 Highly Contributing Score
0.0031 -0.1213 0.0496 0.0377 0.0367

Fall 08 only 
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Fall 2009/Spring 2010 

Table B.3  Fall 2009 V Vectors 

Fall 09 EX 1.1 EX 1.2 EX 1.3 EX 1.4 EX 1.5 EX 1.6 EX 1.7 EX 1.8 EX 1.9 EX 1.10 EX 1.11 EX 1.12
Spring 10 EX 1.1 EX 1.2 EX 1.3 EX 1.4 EX 1.5 EX 1.6 EX 1.7 EX 1.8 EX 1.9 EX 1.10 EX 1.12 EX 1.13

0.1587 0.0711 0.1476 0.0288 -0.1809 0.3623 -0.0526 -0.037 -0.0304 0.1072 0.1386 0.5537
-0.3486 0.4657 -0.0972 -0.0859 -0.0038 0.2071 -0.2108 0.1036 0.2153 -0.0728 0.2653 -0.3747
0.0375 -0.1263 0.2146 0.3258 0.1944 -0.2584 -0.4704 -0.0648 0.1247 0.1429 0.1018 -0.0761
0.2118 -0.0361 0.0041 0.0718 -0.0631 -0.0506 0.2022 -0.1245 -0.0857 -0.0795 -0.0036 -0.1449

Fall 09 EX 1.13 EX 1.14 EX 1.15 EX 1.16 HW 1 HW 2 ST 1 ST 2
Spring 10 EX 1.11 EX 1.14 EX 1.15 EX 1.16 0.2254 -0.1471 -0.098 0.0799

0.3138 -0.0624 -0.1196 -0.042 0.2157 -0.0879 0.0417 -0.1218
-0.0113 -0.0347 0.0661 -0.0076 0.2045 -0.0403 0.0265 0.0786
0.1743 -0.0469 -0.021 0.1651 0.2201 -0.07 -0.3866 0.1027

-0.1835 -0.2845 0.5621 0.0773

AT 1 AT 2 AT 3 AT 4 AT 5 AT 6 IC 1 IC2
0.0694 0.0664 -0.1454 0.2074 -0.1057 0.1384 -0.1566 0.0904

0.123 -0.007 -0.1412 0.0075 -0.1864 0.1203 0.1126 0.0761
0.3389 0.0844 0.1263 -0.069 0.1004 -0.08 -0.1232 0.1063
0.0682 0.0428 0.001 -0.1511 0.0658 -0.1038 -0.064 -0.0458

OHW 1 OHW 2 OHW 3 OHW 4 OHW 5 KEY: <-.2 -0.2>X>-0.1
0.1509 -0.0977 0.1036 -0.1119 0.2046 >.2 .1>X>.1
0.0615 -0.2243 0.0541 -0.1253 0.0515 Highly Contributing Score
0.1369 -0.121 0.1086 0.1547 -0.288
0.2585 -0.1073 0.0523 -0.2184 0.1477
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Types of Exam Problems 

 

Table B.4  Exam Problem Descriptions 

Exam 1
Standard 
procedural 
problems

Nonstandard 
procedural 
problems

Graphing/ 
Slope 
problems

Standard 
Applied 
problems

Nonstandard 
Applied 
problems

Fall 2008 1, 3, 8, 9, 10 2, 4 5, 6, 7, 15 12, 13, 14, 16 11

Spring 2009 1, 3, 8, 9, 10 2, 4 5, 6, 7, 13 11, 12, 14, 15 16

Fall 2009 1, 3, 8, 9, 10 2, 4 5, 6, 7 11, 12, 13, 16 14, 15

Spring 2010 1, 3, 8, 9, 10 2, 4 5, 6, 7 11, 12, 13, 16 14, 15  
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 Medoid Coordinates 
Key: 
Key: 
Very High High Low Very Low
***Note:  Coordinates are considered "matched" if
Both are positive
Both are negative
Both are between -.01 and .01  

Table B.5  OverAchiever Medoid Coordinates 
Fall 2008 Medoid Coordinates Matched: Fall 2009 Medoid Coordinates Matched: 
V1 V2 V3 V4 2/4 V1 V2 V3 V4 3/4

-0.0434 0.0278 0.0191 -0.0233 0.0434 0.0161 -0.0111 -0.027

Spring 2009 Medoid Coordinates Spring 2010 Medoid Coordinates
V1 V2 V3 V4 V1 V2 V3 V4

-0.004 -0.0158 -0.0376 -0.0104 0.0183 0.0013 0.0408 -0.0118  
Table B.6  Employee Medoid Coordinates 
Fall 2008 Medoid Coordinates Matched: Fall 2009 Medoid Coordinates Matched: 
V1 V2 V3 V4 2/4 V1 V2 V3 V4 3/4

-0.0278 -0.0447 -0.0606 -0.0345 0.0204 -0.0185 0.006 0.035

Spring 2009 Medoid Coordinates Spring 2010 Medoid Coordinates
V1 V2 V3 V4 V1 V2 V3 V4

0.0109 -0.0462 0.002 -0.0364 0.01 -0.0164 0.0013 -0.0083  
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Table B.7  UnderAchiever Medoid Coordinates 
Fall 2008 Medoid Coordinates Matched: Fall 2009 Medoid Coordinates Matched: 
V1 V2 V3 V4 3/4 V1 V2 V3 V4 3/4

-0.028 0.0001 0.0143 0.0461 -0.0436 0.0065 -0.1082 0.0144

Spring 2009 Medoid Coordinates Spring 2010 Medoid Coordinates
V1 V2 V3 V4 V1 V2 V3 V4

0.0178 0.0276 0.0692 0.0041 0.0141 -0.0009 -0.0486 0.0016  
Table B.8  Sisyphean Striver Medoid Coordinates 
Fall 2008 Medoid Coordinates Matched: Fall 2009 Medoid Coordinates Matched: 
V1 V2 V3 V4 3/4 V1 V2 V3 V4 3/4

0.0254 0.0691 -0.0345 0.0052 -0.01 0.0643 0.0366 -0.0137

Spring 2009 Medoid Coordinates Spring 2010 Medoid Coordinates
V1 V2 V3 V4 V1 V2 V3 V4

-0.0089 0.0405 -0.0134 0.0104 -0.0018 0.0314 0.0112 0.0301  
Table B.9  Rote Memorizer Medoid Coordinates 
Fall 2008 Medoid Coordinates Matched: Fall 2009 Medoid Coordinates Matched: 
V1 V2 V3 V4 2/4 V1 V2 V3 V4 2/4

0.0168 -0.0506 0.0662 -0.0058 -0.0945 0.1061 0.0503 -0.0141

Spring 2009 Medoid Coordinates Spring 2010 Medoid Coordinates
V1 V2 V3 V4 V1 V2 V3 V4

-0.0007 -0.0091 0.0124 0.0229 -0.0645 0.0576 -0.136 0.0397  
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 Medoid Position 
 

By examining the medoid coordinates in the new vector system and the contributions of the original vectors to each new 

vector, we can pull out assignments for which members of each group typically performed well or poorly.  You may wish to refer to 

the types of exam problems for each semester, found in the V Vectors section of this appendix. 
Key: 
Very High High Low Very Low  

Table B.10  OverAchiever Significant Assignments 
Fall 2008 Assignment Scores

1.2 1.3 1.5 1.7 1.8 1.9 1.12 1.14 1.15 1.16
HW 1 HW 3 ST 1 ST 2 AT 1 AT 2 AT 3 AT 5 AT 6 AT 9 AT 10 OHW 4

Spring 2009 Assignment Scores
1.1 1.2 1.3 1.4 1.5 1.9 1.10 1.11 1.12 1.13 1.16

HW 1 HW 2 ST 1 IC 1 AT 2 AT 3 IC 3 AT 6 OHW 1 OHW 2 OHW 4 OHW 5

Fall 2009 Assignment Scores
1.2 1.5 1.6 1.7 1.8 1.10 1.11 1.12 1.13 1.15

HW 1 ST 1 AT 3 AT 4 AT 5 AT 6 IC 2 OHW 5

Spring 2010 Assignment Scores
1.1 1.3 1.4 1.5 1.7 1.9 1.10 1.11 1.12 1.15 1.16

HW 1 HW 2 ST 1 AT 1 AT 2 AT 4 AT 6 IC1 OHW 1 OHW 2 OHW 3 OHW 4 OHW 5  
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Table B.11  Employee Significant Assignments 
Fall 2008 Assignment Scores

1.1 1.2 1.3 1.5 1.8 1.9 1.10 1.13 1.15 1.16
HW 1 HW 2 HW 4 ST 1 AT 2 AT 3 AT 4 AT 6 AT 7 AT 8 AT 9 AT 10 OHW 2 OHW 3

Spring 2009 Assignment Scores
1.1 1.2 1.7 1.8 1.12 1.13 1.14 1.16

HW 1 HW 2 ST 1 IC 1 AT 3 IC 2 AT 4 AT 6 OHW 1 OHW 2 OHW 4 OHW 5

Fall 2009 Assignment Scores
1.1 1.2 1.3 1.4 1.5 1.7 1.8 1.9 1.12 1.13 1.14

HW 1 HW 2 ST 1 ST 2 AT 2 AT 4 IC 1 OHW 1 OHW 2 OHW 4 OHW 5

Spring 2010 Assignment Scores
1.1 1.3 1.4 1.8 1.9 1.12 1.13 1.15

HW 2 ST 1 ST 2 AT 2 IC 1 OHW 2  
Table B.12  UnderAchiever Significant Assignments 
Fall 2008 Assignment Scores

1.1 1.2 1.4 1.5 1.7 1.8 1.10 1.13 1.15
HW 1 HW 2 HW 3 ST 1 ST 2 AT 2 AT 3 AT 4 AT 5 AT 9 OHW 2

Spring 2009 Assignment Scores
1.1 1.2 1.3 1.9 1.10 1.11 1.16

HW 1 HW 2 ST 1 ST 2 IC 1 AT 2 IC 2 IC 3 AT 6 OHW 1 OHW 2 OHW 4

Fall 2009 Assignment Scores
1.3 1.4 1.5 1.6 1.7 1.10 1.11 1.13

HW 1 AT 1 AT 3 At 3 OHW 1 OHW 2 IC 1 IC 2

Spring 2010 Assignment Scores
1.2 1.3 1.4 1.5 1.6 1.7 1.13

HW 1 AT 1 AT 3 AT 4 AT 5 OHW 4 OHW 5  
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Table B.13  Sisyphean Striver Significant Assignments 
Fall 2008 Assignment Scores

1.2 1.4 1.5 1.7 1.8 1.10 1.12 1.14
HW 1 HW 4 ST 1 AT 2 AT 3 AT 5 AT 6 AT 10 OHW 1 OHW 2

Spring 2009 Assignment Scores
1.2 1.4 1.5 1.7 1.8 1.12 1.13

ST 1 AT 3 AT 4 AT 5 AT 6 AT 10 OHW 2 OHW 4

Fall 2009 Assignment Scores
1.1 1.2 1.3 1.4 1.6 1.7 1.8 1.9 1.11 1.12

HW 1 AT 1 AT 3 AT 6 IC 1 IC 2 OHW 1 OHW 2 OHW 3 OHW 5

Spring 2010 Assignment Scores
1.2 1.5 1.7 1.9 1.12 1.13 1.14 1.15

HW 1 ST 1 OHW 1 OHW 2 OHW 3 OHW 4  
Table B.14  Rote Memorizer Significant Assignments 
Fall 2008 Assignment Scores

1.3 1.4 1.5 1.7 1.8 1.9 1.12 1.13
HW 1 HW 3 HW 4 ST 1 AT 2 AT 3 AT 5 AT 6 AT 7 AT 9 AT 10 OHW 1 OHW 2 OHW 4

Spring 2009 Assignment Scores
1.1 1.2 1.3 1.4 1.5 1.7 1.8 1.11 1.13

HW 1 HW 2 ST 2 AT 1 IC 1 AT 2 AT 6 OHW 1 OHW 2

Fall 2009 Assignment Scores
1.1 1.2 1.5 1.7 1.9 1.11 1.12 1.13

ST 1 ST 2 AT 1 AT 4 IC 1 OHW 1 OHW 2 OHW 5

Spring 2010 Assignment Scores
1.1 1.2 1.3 1.4 1.6 1.10 1.11 1.12 1.13 1.15

ST 1 ST 2 AT 1 AT 4 IC 1 OHW1 OHW 4 OHW 5
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Appendix C - Interview Protocols 

 Fall 2008 
1. Prepare for the interview at least 5 minutes before the scheduled time. Unlock the 

conference room (Reta has the key) and leave the door open. Set out the IC Recorder, two 

copies of the Informed Consent form and a pad of paper for students to write or draw on 

as needed when they answer the questions. Have a calculator and a copy of the student’s 

recent Studio College Algebra Exam available. 

2. When the student arrives, introduce yourself and welcome the student by name. Close the 

door to the conference room. Ask for permission to record the interview. If permission is 

granted, start the recorder. 

3. Explain the purpose of the interview:  

We are interviewing students in Studio College Algebra to better describe the 

characteristics of students enrolled in the class. This is prompted by a desire to understand how 

different students react to certain aspects of the course, how they set about learning the material, 

and their level of conceptual understanding.  The general goal is to use this information to 

improve teaching and assessment. This interview should take approximately 20-45 minutes. 

Your participation is completely voluntary and your grade will not be affected by your answers 

in this interview. You will receive $10 for your time for participating in this interview and you 

may also benefit by improvements in instruction in mathematics and by having a chance to go 

over the most recent exam an instructor. In the event we include any of your comments in a 

discussion or publication about our findings, your privacy will be maintained by the use of a 

pseudonym. We have two copies of an Informed Consent Form for you to sign, one for our 

records and one for you to keep. 

4. Have them read and sign the form. If they decline to sign the form, thank them for their 

time and terminate the interview. Otherwise sign and date the form as witness and then 

proceed to the questions below. 

 

5. Background/Attitude Questions. Stay aware of the time and try not to let this section 

exceed 20 minutes so you have time for the rest of the material. In the (unusual) event 

that a student wants to spend more than 20 minutes on this, explain politely that you need 
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to get to some additional questions and promise them they will have a chance to make 

more comments at the end. 

A. Describe your feelings towards mathematics at the beginning of the semester as you 

entered into this course. 

B. What is your view about mathematics? Learning mathematics? 

C. How do you usually study for math assessments?  Did you study differently for 

assessments in this course? Explain. 

D. If you get stuck on a problem or have trouble understanding a concept, what do you do?  

Ask them to explain why they choose to seek help or not. 

E. How did you prepare for the most recent exam?  If necessary, ask for elaboration: 

memorizing formulas, going through previous exams, redoing online homework, etc. 

F. How much time outside of class do you normally spend each week on College Algebra- 

related work? Ask them to specify which activities make up this time. 

G. How did you study for the online assessments in this course? 

H. Did you utilize the written help tutorials in the online homework assignments? 

a. Do you feel the written tutorials were beneficial? Why and/or how were they 

beneficial? 

b. What changes would you suggest to be made to the written tutorials to make them 

more beneficial? 

c. In the future, would you be more or less likely to view written tutorials for 

assistance on assessments or other course work? 

I. Did you utilize the video help tutorials in the online homework assignments? 

a. Do you feel the video tutorials were beneficial? Why and/or how were they 

beneficial? 

b. What changes would you suggest to be made to the video tutorials to make them 

more beneficial? 

c. In the future, would you be more or less likely to view video tutorials for 

assistance on assessments or other course work? 

J. What did/didn't you like about the extra credit assignment? 

a. What suggestions would you make in order to improve the assignment? 

b. How did you decide which problems to complete? 
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K. What are your future career goals? 

a. Do the online assessments cover information that you feel is important to know 

for your future? Explain why/why not. 

L. What aspect of the algebra class (lecture, recitation, written homework, online 

homework, studio) have you found most helpful? Ask them to explain why this has been 

helpful. 

M. What aspect of class (lecture, recitation, written homework, online homework, studio) 

have you found least helpful? Ask them to explain what the problems with this aspect of 

the class are. 

N. I will now hand over short survey for you to complete about your confidence levels and 

learning environment preferences.  Please read the directions and feel free to ask 

questions.  Answer any questions the student has about the survey.  After they finish, ask 

if they have any comments they want to make about their answers. 

 

6. Concept Questions. This section should take 5 – 10 minutes. 

Now I want to ask you a few questions about some basic mathematical concepts.  

A. What is a function? 

B. What are the different ways you know to represent a function? (Ask for up to 3 

representations, or until the student runs out of ideas)? 

C. Can you explain how [definition 1] and [definition 2] are related? Ask this question for a 

particular pair of definitions.   

D. Can you give me a few examples of how functions are useful?  If the student gets stuck, 

ask them to name a few specific functions and describe their important characteristics. 

 

7. Problem Solving.  This section should take 15 minutes or less. 

I will now hand you a copy of your previous exam.  The exam was designed to 

encourage students to use several different methods of problem solving. So that I can get 

a better understanding of your thought process, please explain how you approached and 

worked through each circled problem. Feel free to make notes on the paper, and please 

talk through your approach out loud for the recorder.  
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A.  After the student has explained how they attempted each of the three circled problems, 

remind them that they can ask other questions they have about the exam. 

8. Other comments. 

Are there any comments or questions you would like to make about learning algebra? Ask 

follow-up questions or provide answers (if you know the answers) as appropriate.  

 

9. Thank the student for participating. Let them know they are always welcome to email any 

additional comments or suggestions for the course to rbm001@math.ksu.edu. 

10. Stop the recorder.  

11. Fill out the receipt. Remember to put the wrap around cover behind the receipt. You need 

to get the student’s address and social security number. Since we are paying the student, 

we are legally obligated to get their social security number. Be sure they sign the receipt. 

Once the receipt is signed, given them a $10 bill and thank them again. Place one copy of 

the receipt in the envelope with the money and leave the other receipt in the receipt book. 

12. Listen to the interview on the recorder and write up your notes. Turn the consent form, 

your notes, and whatever the students wrote on their pad in to Rachel Manspeaker. 

Transfer the recording to the computer system and erase the IC Recorder.  
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 Spring 2009 
 

1. Prepare for the interview at least 5 minutes before the scheduled time. Unlock the 

conference room (Reta has the key) and leave the door open. Set out the IC Recorder, two 

copies of the Informed Consent form and a pad of paper for students to write or draw on 

as needed when they answer the questions. Have a calculator and a copy of the student’s 

recent Studio College Algebra Exam available. 

2. When the student arrives, introduce yourself and welcome the student by name. Close the 

door to the conference room. Ask for permission to record the interview. If permission is 

granted, start the recorder. 

3. Explain the purpose of the interview:  

We are interviewing students in Studio College Algebra to better describe the 

characteristics of students enrolled in the class. This is prompted by a desire to understand how 

different students react to certain aspects of the course, how they set about learning the material, 

and their level of conceptual understanding.  The general goal is to use this information to 

improve teaching and assessment. This interview should take approximately 20-45 minutes. 

Your participation is completely voluntary and your grade will not be affected by your answers 

in this interview. You will receive $10 for your time for participating in this interview and you 

may also benefit by improvements in instruction in mathematics and by having a chance to go 

over the most recent exam an instructor. In the event we include any of your comments in a 

discussion or publication about our findings, your privacy will be maintained by the use of a 

pseudonym. We have two copies of an Informed Consent Form for you to sign, one for our 

records and one for you to keep. 

4. Have them read and sign the form. If they decline to sign the form, thank them for their 

time and terminate the interview. Otherwise sign and date the form as witness and then 

proceed to the questions below. 

5. Background/Attitude Questions. Stay aware of the time and try not to let this section 

exceed 20 minutes so you have time for the rest of the material. In the (unusual) event 

that a student wants to spend more than 20 minutes on this, explain politely that you need 
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to get to some additional questions and promise them they will have a chance to make 

more comments at the end. 

A. What do you think mathematics is all about?  Is it important?  Why do we spend so much 

time learning about math? 

B. Describe your feelings towards mathematics at the beginning of the semester as you 

entered into this course.  Have they changed at all over the last few months?  (Follow up 

questions: How?, Why/ Why not?, etc.) 

C. Describe your experience with Studio College Algebra so far this semester.   

a. Have you enjoyed the class? 

b. Are you doing well? 

c. Is it what you expected? 

D. How much time outside of class do you normally spend each week on College Algebra- 

related work? Ask them to specify which activities make up this time. 

E. If you get stuck on a problem or have trouble understanding a concept, what do you do?  

Ask them to explain why they choose to seek help or not. 

F. How do you usually study for math assessments? 

Did you study differently for assessments in this course? Explain. 

G. How did you prepare for the most recent exam?  If necessary, ask for elaboration: 

memorizing formulas, going through previous exams, redoing online homework, etc. 

H. How did you study for the online assessments in this course? 

I. The homework assignment covering section 2.5 was different from the rest.  You got to 

chose which type of problem you wanted to do- either an Agriculture, Business, Education, or 

Social Science problem. 

a. Which problem did you chose?  How did you decide? 

b. What suggestions would you make in order to improve the assignment? 

J. What are your future career goals? 

a. Which assessments cover information that you feel is important to know for your 

future? Explain why/why not. 

K. What aspect of the algebra class (lecture, recitation, written homework, online 

homework, studio) have you found most helpful? Ask them to explain why this has been helpful. 
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L. What aspect of class (lecture, recitation, written homework, online homework, studio) 

have you found least helpful? Ask them to explain what the problems with this aspect of the class 

are. 

M. What suggestions do you have for improving the course? 

 

6. Concept Questions. This section should take 5 – 10 minutes. 

Now I want to ask you a few questions about some basic mathematical concepts.  

Give the students handouts showing different representations of a function. 

A. Please describe what you see on these papers. 

i. What do you know about these figures?   

ii. Do you see any connections between them? 

B. These are all different representations of a specific function.  What else do you know 

about functions? 

i. Can you give more examples of types of functions? 

ii. What are some of the important characteristics of these functions? 

C. Here is an example of one way functions are useful.  Hand the student an example of a 

linear regression model. 

i. Can you describe to me what information this is telling us? 

ii. Is this helpful?  How?  What does this tell us that we didn’t know before? 

iii. Do you know any other uses for functions? 

 

7. Problem Solving.  This section should take 15 minutes or less. 

  I will now hand you a copy of your previous exam.  The exam was designed to 

encourage students to use several different methods of problem solving. So that I can get a better 

understanding of your thought process, please explain how you approached and worked through 

each circled problem. Feel free to make notes on the paper, and please talk through your 

approach out loud for the recorder.  

A.  After the student has explained how they attempted each of the three circled problems, 

remind them that they can ask other questions they have about the exam. 



 

121 

 

This concludes our interview.  (Thank the student for participating)  Before you leave, I’d like to 

know if there were any questions I should have asked you, but I missed. Ask follow-up questions 

or provide answers (if you know the answers) as appropriate. 

9. Thank the student, again, for participating. Let them know they are always welcome to 

email any additional comments or suggestions for the course to rbm001@math.ksu.edu. 

10. Stop the recorder.  

11. Fill out the receipt. Remember to put the wrap around cover behind the receipt. You need 

to get the student’s address and social security number. Since we are paying the student, 

we are legally obligated to get their social security number. Be sure they sign the receipt. 

Once the receipt is signed, given them a $10 bill and thank them again. Place one copy of 

the receipt in the envelope with the money and leave the other receipt in the receipt book. 

12. Listen to the interview on the recorder and write up your notes. Turn the consent form, 

your notes, and whatever the students wrote on their pad in to Rachel Manspeaker. 

Transfer the recording to the computer system and erase the IC Recorder.  

  

Notes on Interview: 

 

Student: __________________________________________      

 

Date/Time:  __________________________________________     

 

Interviewer: __________________________________________ 

 

Definitions Provided: 

Problems Provided: 

Problems Attempted: 

Comments on the interview: 
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 Conceptual Handouts 

Functions 

 
Figure C.1 Function:  Ordered Pairs 
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Figure C.2  Function: Algebraic Representation 



 

124 

 

 

Figure C.3  Graphical Representation 
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Application: Tornado Sightings 

Tornado Sightings per Year

y = 14.395x - 27627
R2 = 0.5965
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Figure C.4  Application of Functions: Linear Regression Model 
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Appendix D - Coding Scheme 

Table D.1  Coding Scheme 

Research 
Questions Positive comments:  Purple Neutral Comments-  

Black Negative comments:  Red

PREV:    student has had positive 
previous experiences in math classes

CHANGE:  because of SCA, the 
student has improved their opinion of 
math
MATH:  student enjoys mathematics in 
general
CONF:  the student is confident in 
their mathematical ability

USE.SELF:    mathematics is useful in 
their personal life

CHANGE:   because of SCA, 
the student's opinion of math 
has deteriorated

USE.SOC:    the use of mathematics 
benefits society in general

MATH:   the student dislikes 
math in general

USE.JOB:    the student anticipates 
using mathematics in their future 
career

NUMB:  math is about 
numbers

CONF:  the student expresses 
lack of confidence in their 
mathematical ability

SCA.USE.JOB:  skills learned in SCA 
will be helpful in a future career

FRAC:  student expresses 
dislike of fractions

SCA.USE.SELF: skills learned in SCA 
will be useful in their personal life

GRAPH:  student expresses 
dislike of graphs

STU.USE.JOB:  skills learned in the 
studio portion of SCA will be helpful in 
a future career

INTRIN:  talent for mathematics 
is an intrinsic ability

CRIT:  learning and doing 
mathematics enhances one's critical 
thinking 
EXPLAIN:  math is used to explain 
natural phenomena
SOLVE:   math is useful for solving 
problems

ART:    math has intristic/artistic merit   

USE.JOB:    the student thinks 
they will not need to use math 
in their future career

WORK:  student treats 
math classes like a low 
paying job:  "show up 
and do what they say"

USE.SOME:  math is 
only useful to some 
people in certain 
situations

SCA.USE.JOB:  the student 
doubts they will ever use skills 

IDK.#:  the number of times the 
student says "I don't know," "I 
don't remember," or some other 
expression of not 
understanding during the entire 
interview

1)     How does 
the student feel 
about 
mathematics 
and their ability 
to do and 
understand 
math?
A (affect)

PREV:    the student is 
ambivalent about their 
previous experiences in 
math classes

CHANGE.NONE:  SCA 
has not affected the 
student's opinion of 
mathematics  

PREV:   the student had 
negative previous experiences 
in math classes 

USE.SELF:    mathematics (or 
things learned in SCA) will not 
be used it the student's life

SCA.USE.SELF:  student 
doubts they will ever use skills 
learned in SCA in their 
personal life
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Research 
Questions Positive comments:  Purple Neutral Comments-  

Black Negative comments:  Red

underlined:  most helpful underlined:  least helpful
SCA:  students likes the course in 
general

SCA:  the student does not like the 
course in general

SCA.CONN:  skills learned in SCA 
are being used in other courses

REVIEW:   the class is mostly review, 
which bores the student

HARD:  the course is too hard

STRUG:  student expresses general 
frustration or struggling

EASY:  the course is too easy
SCHED:  the SCA schedule is 
confusing

SCHED:  student enjoys the variety 
of teaching techniques and 
classroom styles

REPEAT:  the student 
has taken CA at a 
previous time

HW.T:  the number of different times 
to turn in assignments is confusing

LEC:  lecture is helpful
LEC.NOTES: posting lecture notes 
online is helpful
LEC.ICLICK:   the student likes 
using the iclickers   

HW.LESS:  there is too much 
homework

LEC.INS:  the lecture instructor is 
helpful

HW.MORE:  there should be more 
homework

OHW:  online homework is helpful EXAM:  the exams are too difficult

EXAM.JUST:  the student does not 
like needing to justify their answers on 
exams
LEC:    lecture is not helpful
LEC.SIZE:  the lecture is too large 
(and intimidating)

LEC.NOTES:  class notes available 
online discourages class attendance

LEC.ICLICK:   the student does not 
like using iclickers in lecture  
LEC.INS:  the lecture instructor is not 
helpful

REC:    recitation is helpful REC:    recitation is not helpful
REC.INS:  the recitation instructor is 
not helpful

REC.HW:  only covering homework 
problems is boring and not helpful

BOOK:  the textbook is not helpful

STU:    studio is not helpful

REC.INS:  the student thinks his or 
her instructor is helpful in recitation

STU.CONN:   the student does not 
see any connection between studio 
and the rest of the course

OHW.CONVEN:  student finds 
turning homework in online 
convenient

REC.HW:   the student appreciates 
going over homework problems in 
recitation

REC.SIZE:  the student likes the 
small size of recitation classes

DEADLINE:  the student admits to 
having problems meeting deadlines

OHW.CHANGE:  the student 
appreciates how changing problems 
on the online homework builds 
understanding

OHW.REDO:  the student 
appreciates being able to redo the 
online homework multiple times

LEC.ICLICK:  the 
student mentions using 
iclickers, but is 
ambivalent  

REVIEW:  the class is 
mostly review, but the 
student is ambivalent

2)     What is 
the student's 
reaction to the 
course?
R (reaction)

REVIEW:   the class is mostly 
review, to the relief of the student

SCA:  the student is 
ambivalent about the 
course in general

EASY:  the class is easier than 
expected, to the relief of the student

INT.ALG:  the student 
has taken intermediate 
algebra
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STU.APP:   the student appreciates 
applying math techniques to real life 
situations in studio

STU.PARTNER:  the student does not 
like being paired with a partner in 
studio

STU:    studio is helpful

STU.CONN:  skills learned in studio 
are being used in other courses

OHW:  online homework is not helpful

OHW.CHANGE:  the student does not 
like the changing problems in the 
online homework

STU.EXCRED:  student likes having 
the oppurtunity to earn extra credit 
through studio

OHW.COMP:  the student has 
formatting or technical problems with 
the online homework
WEBSITE:  the website is not well 
organized or helpful
WHW.WP:  the student does not like 
word problems

STU.EXCRED:  too much extra credit 
is available through studio 
assignments

2)     What is 
the student's 
reaction to 
the course?
R (reaction)

STU.PARTNER:  the student likes 
being paired with a partner in studio
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Research 
Questions

Positive comments:  
Purple Neutral Comments-  Black Negative comments:  Red

LEC.NOTES:  the student takes notes 
during lecture

TUT:  student meets regularly with a tutor

HW.#:  the number of hours students 
spends doing their homework
HW.NOTES:  student uses class notes to 
complete homework
HW.FRIEND:  student does their 
homework with a friend
HW.TUT: student does their homework 
with a tutor

OHW.#:    the number of hours student 
spends doing their online homework

OHW.NOTES:    student uses class notes 
to do online homework
OHW.TUT:  the student goes through their 
online homework with a tutor
OHW.WRITE:  student writes online 
homework solutions on paper first

OHW.VID:  student uses videos from the 
internet to help with online homework

OHW.BOOK:  student uses the textbook 
to help with online homework
OHW.FRIEND:  student does their online 
homework with a friend

WHW.#:    the number of hours student 
spends doing their written homework

HELP.FRIEND:   student gets help from 
friends outside of class
HELP.INS:   student gets help from class 
instructors
HELP.VID:   student gets help from 
reviewing lecture videos

HELP.BOOK:  student looks up 
information in textbook when confused

STDY.#:  the number of hours a student 
studies before each exam
STDY.NOTES:  student studies for exams 
with the help of class notes    
STDY.BOOK:    student studies for exams 
with the help of the textbook
STDY.HW:   student studies for exams 
with the help of old HW problems
STDY.FRIEND:  student studies for exams 
with friends
STDY.TUT:  student studies for exams 
with a tutor

HW.BEFORE:  student 
attempts their 
homework assignment 
before recitation

OHW.HINTS:   student 
uses online hints to 
help with online 
homework

OHW.NONE:    the student 
admits to not completing 
online homework on a 
regular basis

3)    What does 
the student do 
in order to 
succeed?
E  (effort)

OHW.VIDEO:  student 
uses video help to do 
online homework

HELP.NONE:     the student 
admits to not seeking help 
when they have a problem

HW.NONE:    the student 
admits to not completing 
homework assignments on 
a regular basis

OHW.100%:  the 
student always aims for 
a score of 100% on 
their online homework

HW.REC:   the student 
does not attempt any 
homework problems until 
after recitation

STDY.OLDEX:     
student studies uses 
old exams found online

STDY.NONE:    the student 
admits to not studying for 
exams

REDO:  student was not 
aware they had the option 
to redo online homework

LEC.VIDEO:  student was 
not aware that videos of the 
lectures were available 
online

STU.NONE:  student does 
not regularly attend studio
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Research 
Questions Positive comments:  Purple Neutral Comments-  Black Negative comments:  Red

VOCAB.# :  the student correctly uses 
10 or more mathematical terms     

CHART.DRAW:  student sketches a 
rough graph from the points on the chart

CHART.ZEROS:  student identifies the 
zeros on the chart

CHART.PATTERN:   
student looks for a pattern 
in the outputs.

CHART.Y-INT:  student identifies the y-
intercept on the chart

EQ.DIS:   attempted to 
distribute without 
justification

EQ.DEG:  student identifies the degree 
of the polynomial from the equation

FUNC.#:  student was able 
to name 1 to 2 other types 
of functions     

EQ.ZEROS:  student identifies the zeros 
on the factored equation

FUNC.USE.#:   student 
gives 1 other use for a 
function

EQ.Y-INT:  student identifies the 
function's y intercept on the distributed 
equation

EQ.LC:  student identifies the function's 
leading coefficient from the equation

EQ.DIS:   student makes a 
mistake distributing

EQ.DIS:  student attempts to distribute 
the factors of the polynomial to justify 
the two forms being equal

EQ.DRAW:  student sketches a rough 
graph using the equations
GRAPH.Y-INT:  the student identifies the 
y intercept on the graph

GRAPH.ZEROS:  the student identifies 
the function's zeros on the graph

GRAPH.TP:  student identifies the 
turning points of the graph

GRAPH.LC:  student identifies the sign 
of the leading coefficient from the graph

" " --> " "  :     the student makes and 
verifies connections between two 
different representations

TORN.FIT.AVE:  student 
describes the line of best fit 
as the "average" of the 
points  

FUNC.USE.#:   student is 
unable to give other uses 
for functions

FUNC.ALL3:  the student made 
connections between representations 
without prompting
FUNC.EQ:  the student made 
connections between the two equations 
without prompting

FUNC.#:     student was able to name 3 
or more other types of functions

TORN.FIT.TREND:   
student identifies the line of 
best fit as showing a 
general trend, but 
expresses this idea 
vaguely/poorly

TORN.FIT.PRESENT:  the 
student incorrectly noted 
the line of best fit as being 
able to predict current 
values   

FUNC.EQ:  the student 
made connections between 
the two equations after 
prompting

FUNC.ALL3:  even after 
prompting, the student 
does not make a 
connection between the 
different representations

TORN.INC:  student claims 
the number of tornado 
sightings increase every 
year

FUNC.#:   student was not 
able to name any other 
type of functions

VOCAB.INCORR.#:  the 
number of mathematical 
terms the student uses 
incorrectly" " --> " " :  student makes 

connections between two 
different representations but 
does not support

-->  :     the student makes 
an incorrect connection 
between different 
representations

FUNC.ALL3:  the student 
made connections between 
representations after 
prompting

4)     What is 
the student's 
conceptual 
understanding 
of "function"?
C (concept)

VOCAB.#:  the student 
correctly uses 5 to 10 or 
more mathematical terms     

IDK.#:  the number of 
times the student says "I 
don't know," "I don't 
remember," "I have no 
idea," or some other 
expression of not 
understanding during the 
content portion of the 
interview

VOCAB.#:  the student 
correctly uses less than 5 
mathematical terms
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FUNC.DESC:     the student was able 
give descriptions of the other functions

R.SQ:  the student did not 
know the meaning of the R-
squared term

FUNC.USE.#:   student gives 2 or more 
other uses for functions
TORN.INC:  the student remarks that in 
general, the number of tornado sightings 
have increased
TORN.FIT.TREND: the student 
accurately described the line of best fit 
as showing a general trend

TORN.JUST:  student describes 
possible reasons behind the increasing 
trend of tornado sightings

TORN.FIT.FUTURE:  the student 
accurately described the line of best fit 
as being able to predict future values    

R.SQ:  the student correctly identified 
the meaning of the R-squared value
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Appendix E - Grouping Chart 

 SVD Groups 
Table E.1  OverAchiever Interview Comments 

Research 
Questions

2A.USE.SELF 2A.CHANGE. NONE A.CHANGE
4A.SOLVE 2A.NUMB A.CONF
4A.USE.SOC A.USE.SOME A.MATH
A.ART A.PREV
A.CONF A.SCA.USE. JOB
A.EXPLAIN A.SCA.USE. SELF
A.MATH A.STRUG
A.PREV A.USE.JOB
A.SCA.USE. JOB
A.SCA.USE. SELF
A.USE.JOB

≥ 50% repeat 0.272727273 0.666666667 0
2R.LEC 2R.HW.T
2R.LEC. NOTES 2R.OHW. COMP
2R.REVIEW 2R.STU
3R.REC 2R.STU
3R.REC.HW 3R.STRUG
3R.SCA 4R.STU.CONN
3R.STU R.EXAM
4R.OHW R.HW.LESS
4R.REC R.LEC
4R.REC.INS R.LEC.SIZE
R.EASY R.OHW
R.LEC R.OHW. CHANGE
R.LEC.ICLICK R.SCA
R.OHW. CONVIEN
R.OHW.REDO
R.REC.SIZE
R.STU.APP
R.STU.EXCEL
R.STU. EXCRED
R.WHW
R.WHW

≥ 50% repeat 0.476190476 0.461538462

Group OA:  4 interviewees

1)     How does 
the student feel 
about 
mathematics 
and their ability 
to do and 
understand 
math?

2)     What is 
the student's 
reaction to the 
course?
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Research 
Questions

2E.OHW. HINTS 2.E.HELP. FRIEND E.OHW.REDO
3E.HW. BEFORE 2E.HELP. BOOK E.STDY.NONE
3E.STDY. OLDEX 2E.HELP.INS
E.OHW.100% 2E.HW.1-2

2E.HW.3
3E.OHW. WRITE
E.HELP. NOTES
E.HW.NOTES
E.OHW.BOOK
E.OHW. NOTES
E.STDY.2
E.STDY.HW
E.STDY. NOTES

≥ 50% repeat 0.75 0.461538462 0
2C.CHART-> EQ 2C.CHART. PATTERN 2C.EQ.DIS
2C.CHART-> GRAPH 2C.FUNC.ALL3 2C.R-SQ
2C.FUNC. ALL3 2C.FUNC. USE.1 C.TORN.FIT. PRESENT
2C.FUNC.EQ 2C.TORN.INC C.VOCAB. INCORR.2
3C.TORN.FIT. TREND 3C.FUNC.2
4C.EQ.DIS 3C.VOCAB.6-8
4C.FUNC. DESC 4C.TORN. FIT.AVE

C.FUNC.3

C.EQ.ZEROS
C.EQ->GRAPH
C.FUNC.USE.3
C.GRAPH.TP
C.GRAPH. ZEROS
C.TORN. FIT.FUT
C.TORN.INC
C.VOCAB.10

50% repeat 0.411764706 0.875 0.5

C.CHART-> EQ->GRAPH

4)     What is 
the student's 
conceptual 
understanding 
of "function"?

3)    What does 
the student do 
in order to 
succeed?

Group OA:  4 interviewees

 



 

134 

 

Table E.2   Employee Interview Comments 

Research 
Questions

2A.CHANGE 2A.CHANGE. NONE 2A.MATH
2A.CRIT 3A.USE. SOME 3A.CONF
2A.SCA.USE. JOB A.NUMB 4A.WORK
3A.SOLVE A.PREV
4A.EXPLAIN A.SCA.USE. JOB
A.ART A.USE.SELF
A.CONF
A.SCA.USE. SELF
A.STU.USE. JOB

≥ 50% repeat 0.555555556 0.666666667 0.5
2R.LEC R.REPEAT 2R.OHW
2R.REC R.EASY
2R.REC.HW R.HARD
2R.REC.INS R.HW.MORE
2R.SCA R.OHW
3R.STU R.OHW. COMP
4R.STU. EXCEL R.REC.HW
R.LEC R.STRUG
R.LEC.ICLICK R.STU
R.LEC.NOTES R.STU. EXCRED
R.REVIEW
R.SCHED
R.STU
R.STU.APP

≥ 50% repeat 0.5 0 0.1
2E.HW. BEFORE 2E.OHW. NOTES E.STDY.NONE
2E.OHW. HINTS 2E.OHW. WRITE
3E.STDY. OLDEX 2E.STDY. NOTES
E.OHW.100% 3E.HELP. FRIEND

3E.HELP.INS
3E.HW.1-2
E.HELP.TUT
E.HW.5
E.LEC.NOTES
E.OHW.1
E.STDY.TUT
E.TUT
E.WHW.1

≥ 50% repeat 0.75 0.461538462 0

3)    What does 
the student do 
in order to 
succeed?

Group E:  4 interviewees

1)     How does 
the student feel 
about 
mathematics 
and their ability 
to do and 
understand 
math?

2)     What is 
the student's 
reaction to the 
course?
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Research 
Questions

2C.EQ.ZEROS 2C.CHART. PATTERN 2C.FUNC. USE.0
2C.GRAPH.TP 2C.TORN. FIT.TREND C.FUNC.0
2C.TORN.FIT. TREND 2C.TORN.INC C.VOCAB.2
3C.FUNC.3-4 3C.EQ.DIS
C.EQ.DEG 4C.FUNC.ALL3
C.EQ.DIS C.CHART. DRAW
C.EQ--> GRAPH C.FUNC.EQ
C.FUNC.DESC C.TORN.FIT. AVE
C.FUNC.EQ
C.FUNC.USE.2
C.GRAPH. DEG
C.GRAPH.LC
C.GRAPH. Y-INT
C.GRAPH. ZEROS
C.R-SQ
C.TORN.FIT. FUTURE
C.TORN.JUST
C.VOCAB.15

50% repeat 0.222222222 0.625 0.333333333

4)     What is 
the student's 
conceptual 
understanding 
of "function"?

Group E:  4 interviewees
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Table E.3   UnderAchiever Interview Comments 

2A.CONF 2A.NUMB 2A.CONF
2A.STU.USE. JOB 4A.USE.SOME 2A.SCA.USE. JOB
4A.SOLVE A.CHANGE. NONE 2A.USE.SELF
A.CRIT 2A.WORK
A.EXPLAIN 3A.MATH
A.SCA A.CHANGE
A.SCA.USE. JOB A.PREV
A.STU.APP A.REVIEW
A.STU.USE. JOB

≥ 50% repeat 0.1 0.333333333 0.125
2R.EASY 2R.INT.ALG 2R.EXAM
2R.LEC R.SCA 2R.WHW.WP
2R.REC.INS 3R.HW.LESS
2R.STU 3R.LEC
3R.REC 4R.STRUG
3R.REVIEW R.EXAM.JUST
3R.STU R.HW.MORE
3R.STU.EXCEL R.LEC.INS
R.LEC.ICLICK R.OHW
R.LEC.INS R.OHW.COMP
R.LEC.NOTES R.REC
R.OHW R.REC.HW
R.OHW.REDO R.SCHED
R.REC.HW R.STU
R.REC.SIZE R.STU.CONN
R.SCA R.WHW
R.STU.CONN

≥ 50% repeat 0.235294118 0 0.1875
3E.STDY. OLDEX 2E.HELP. BOOK E.STDY.NONE
4E.OHW. HINTS 2E.HW.1
E.HW. BEFORE 2E.HW.2

2E.HW.3-5
2E.OHW. WRITE
2E.STDY.HW
2E.STDY. NOTES
5E.HELP. FRIEND
E.HELP. NOTES
E.HW.FRIEND
E.OHW.BOOK
E.OHW. NOTES

≥ 50% repeat 0.666666667 0.083333333 0
Research 
Questions

1)     How does 
the student feel 
about 
mathematics 
and their ability 
to do and 
understand 
math?

2)     What is 
the student's 
reaction to the 
course?

3)    What does 
the student do 
in order to 
succeed?

Group UA: 5 interviewees
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2C.CHART. DRAW 2C.TORN.FIT. AVE 2C.FUNC.0
2C.CHART. ZEROS 2C.TORN.INC 2C.FUNC. USE.0
2C.CHART-> GRAPH 3C.FUNC. USE.1
2C.EQ.DEG 4C.FUNC.ALL3
2C.EQ.DIS C.CHART. DRAW 3C.VOCAB.1-3
2C.EQ.TP C.CHART. PATTERN C.EQ.DIS
2C.EQ-> GRAPH C.CHART-> GRAPH C.FUNC.ALL3
2C.FUNC.3-5 C.EQ.DIS C.R-SQ
2C.GRAPH. DEG C.TORN.FIT. TREND
2C.GRAPH. Y-INT
2C.GRAPH. ZEROS
2C.R-SQ
3C.FUNC.EQ
3C.TORN.FIT. FUTURE
C.CHART. Y-INT

C.EQ.DRAW
C.EQ.LC
C.EQ.ZEROS
C.GRAPH.LC
C.GRAPH.TP
C.TORN.FIT. TREND
C.TORN.INC
C.VOCAB.11

≥50% repeat 0.083333333 0.222222222 0.142857143

2C.TORN.FIT. PRESENT

4)     What is 
the student's 
conceptual 
understanding 
of "function"?

C.CHART->   EQ-
>GRAPH

 
 

Table E.4  Sisyphean Striver Interview Comments 

Research 
Questions

2A.EXPLAIN 3A.CHANGE. NONE A.STRUG
2A.SCA.USE. JOB A.NUMB A.CONF
2A.USE.SOC A.USE.SOME A.SCA.USE. JOB
3A.SOLVE
3A.MATH
A.ART
A.CONF
A.USE.JOB
A.USE.SELF

≥ 50% repeat 0.555555556 0.333333333 0

1)     How does 
the student feel 
about 
mathematics 
and their ability 
to do and 
understand 
math?

Group  SS:  3 interviewees
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Research 
Questions

2R.REC R.REPEAT 2R.DEADLINE
2R.STU. PARTNER 2R.HW.T
3R.EASY 2R.LEC
3R.REVIEW 2R.LEC. NOTES
R.LEC 2R.STU
R.LEC.ICLICK 2R.WEBSITE
R.OHW 3R.STRUG
R.OHW 3R.STU.CONN
R.OHW. CHANGE R.BOOK
R.OHW.HINTS R.EXAM.JUST
R.OHW.REDO R.LEC.ICLICK
R.REC.INS R.LEC.SIZE
R.SCA.CONN R.OHW.COMP
R.SCHED R.REC.HW
R.STU R.SCHED
R.STU. EXCRED R.STU
R.WHW R.STU. PARTNER

≥ 50% repeat 0.235294118 0 0.470588235
3E.STDY. OLDEX 2E.HELP. FRIEND E.LEC.VIDEO
E.OHW.100% 2E.HW.3-4

2E.STDY. NOTES
E.HELP.VID
E.HW.NOTES
E.LEC.NOTES
E.OHW.BOOK
E.OHW. NOTES
E.OHW.VID
E.OHW.WRITE
E.STDY.3

≥ 50% repeat 0.5 0.272727273 0
2C.EQ.DIS 2C.FUNC.ALL3 C.R-SQ
2C.GRAPH. Y-INT 2C.FUNC. USE.1 C.VOCAB. INCORR.2
2C.GRAPH. ZEROS 2C.TORN.FIT. AVE C.FUNC.0
2C.TORN.FIT. FUTURE 2C.VOCAB.5-6
2C.TORN.FIT. TREND C.CHART. DRAW
2C.TORN.INC C.CHART. PATTERN
2C.TORN.JUST C.EQ.DIS
3C.FUNC.EQ C.FUNC.2
C.CHART. ZEROS C.FUNC.EQ
C.CHART-> GRAPH C.TORN.INC
C.EQ.DEG
C.EQ-GRAPH
C.FUNC.5
C.FUNC.ALL3
C.GRAPH. DEG
C.GRAPH.TP
C.R-SQ
C.VOCAB.11

50% repeat 0.444444444 0.4 0

2)     What is 
the student's 
reaction to the 
course?

4)     What is 
the student's 
conceptual 
understanding 
of "function"?

3)    What does 
the student do 
in order to 
succeed?

Group  SS:  3 interviewees
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Table E.5  Rote Memorizer Interview Comments 

Questions
A.PREV 3A.USE.SOME 2A.CHANGE
A.USE.SELF A.CHANGE.NONE 2A.SCA.USE.JOB
A.USE.SOC 2A.SCA.USE.SELF

3A.GRAPHS
3A.INTRIN
3A.MATH
4A.CONF
A.FRAC

≥ 50% repeat 0 0.5 0.875
2R.EASY 2R.INT.ALG 2R.LEC.SIZE
2R.REC 2R.OHW.CHANGE
2R.STU 3R.STRUG
2R.STU.PARTNER R.HW.T
3R.REC.HW R.LEC
R.LEC R.OHW
R.LEC.INS R.OHW.COMP
R.OHW R.REC
R.OHW.CONVEN R.REC.INS
R.REC.SIZE R.STU
R.STU R.STU
R.STU.APP R.STU.CONN

≥ 50% repeat 0.416666667 1 0.230769231
2E.OHW.HINTS 2E.HELP.TUT E.HW.REC
4E.STDY.OLDEX 2E.OHW.FRIEND

2E.STDY.TUT
3E.HW.1-2
3E.TUT
E.HELP.FRIEND
E.HW.>5
E.HW.TUT
E.OHW.BOOK
E.OHW.WRITE
E.STDY.1
E.STDY.FRIEND
E.STDY.HW

≥ 50% repeat 1 0.384615385 0
2C.FUNC.DESC 2C.EQ.DIS 2C.R-SQ
2C.TORN.INC 2C.FUNC.ALL3 2C.VOCAB.INCORR.2-4
C.CHART->GRAPH 2C.FUNC.USE.1 C.FUNC.ALL3
C.TORN.FIT.FUT 2C.TORN.INC C.VOCAB.1

2C.VOCAB.7-8
C.CHART.DRAW
C.EQ->GRAPH
C.FUNC.2
C.FUNC.EQ
C.GRAPH->EQ
C.TORN.FIT.TREND

≥50% repeat 0.5 0.45454 0.5

2)     What is 
the student's 
reaction to the 
course?

3)    What does 
the student do 
in order to 
succeed?

4)     What is 
the student's 
conceptual 
understanding 
of "function"?

1)     How does 
the student feel 
about 
mathematics 
and their ability 
to do and 
understand 
math?

Group RM: 3 interviewees
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 White Box Groups 
Table E.6  White Box Group 1 Interview Comments 

Research 
Questions

2A.ART 2A.NUMB 2A.SCA.USE.JOB
2A.CRIT 3A.NO.CHANGE A.CONF
2A.EXPLAIN 3A.USE.SOME A.MATH
2A.MATH A.PREV
2A.SCA.USE.JOB A.STRUG
2A.USE.SOC A.USE.SELF
3A.CONF A.WORK
3A.SOLVE
3A.STU.USE.JOB
A.CHANGE
A.USE.JOB
A.USE.SELF
A.USE.SOLVE

≥ 50% repeat 0.230769231 0.666666667 0
2R.LEC R.INT.ALG 2R.STU
2R.LEC.ICLICK 2R.STU
2R.REC 2R.STU.CONN
2R.SCHED 3R.REC.HW
2R.STU 3R.STRUG
2R.STU.EXCEL R.BOOK
3R.EASY R.DEADLINE
3R.REC.INS R.EXAM.JUST
4R.REVIEW R.HW.MORE
R.LEC R.HW.T
R.LEC.NOTES R.LEC
R.OHW R.LEC.NOTES
R.OHW R.LEC.SIZE
R.OHW.CHANGE R.OHW
R.OHW.HINTS R.OHW.COMP
R.OHW.REDO R.REC
R.REC R.STU.CONN
R.SCA R.STU.PARTNER
R.STU R.WHW.WP
R.STU.EXCRED
R.WHW

≥ 50% repeat 0.142857143 0 0.105263158

1)     How does 
the student feel 
about 
mathematics 
and their ability 
to do and 
understand 
math?

2)     What is 
the student's 
reaction to the 
course?

Group 1 -  IIIII
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Research 
Questions

2E.OHW.HINTS 2E.HW.1 E.STDY.NONE
2E.STDY.OLDEX 2E.OHW.1
E.HW.BEFORE 2E.OHW.NOTES
E.OHW.100% 2E.OHW.WRITE

2E.WHW.1-2
4E.STDY.NOTES
5E.HELP.FRIEND
E.HELP.INS
E.HELP.NOTES
E.HW.5
E.HW.FRIEND
E.HW.NOTES
E.LEC.NOTES
E.STDY.3
E.STDY.HW

≥ 50% repeat 0 0.133333333 0
2C.CHART.ZEROS 2C.CHART.DRAW C.FUNC.USE.0
2C.EQ.ZEROS 2C.CHART.PATTERN C.R-SQ
2C.GRAPH.DEG 2C.FUNC.USE.1 C.VOCAB.3
2C.GRAPH.TP 2C.TORN.FIT.AVE
2C.GRAPH.ZEROS 2C.TORN.INC
2C.VOCAB.11 5C.FUNC.ALL3
3C.CHART->GRAPH C.EQ.DIS
3C.EQ.DEG C.FUNC.2
3C.EQ.DIS C.FUNC.EQ
3C.EQ->GRAPH C.TORN.FIT.TREND
3C.FUNC.3-5 C.VOCAB.5
3C.FUNC.EQ
3C.R-SQ
3C.TORN.JUST
4C.GRAPH.Y-INT
4C.TORN.FIT.FUTURE
4C.TORN.FIT.TREND
C.CHART.DRAW
C.EQ.LC
C.EQ.TP
C.FUNC.EQ
C.GRAPH.LC
C.TORN.INC

≥ 50% repeat 0.47826087 0.090909091 0

Group 1 -  IIIII

4)     What is 
the student's 
conceptual 
understanding 
of "function"?

3)    What does 
the student do 
in order to 
succeed?
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Table E.7  White Box Group 2 Inteview Comments 

Research 
Questions

2A.SCA.USE.JOB 3A.NUMB 2A.CONF
2A.SCA.USE.SELF 3A.USE.SOME 2A.WORK
2A.USE.SELF 4A.CHANGE.NONE A.CHANGE
3A.EXPLAIN A.MATH
4A.SOLVE A.PREV
4A.USE.SOC A.SCA.USE.JOB
A.ART A.SCA.USE.SELF
A.CONF A.STRUG
A.CRIT A.USE.JOB
A.MATH
A.PREV
A.USE.JOB

≥ 50% repeat 0.25 1 0
2R.LEC 2R.STU
2R.LEC 3R.STRUG
2R.STU.APP 3R.STU
3R.OHW 3R.STU.CONN
3R.REC R.EASY
3R.REVIEW R.EXAM
3R.STU R.HW.LESS
3R.STU.EXCEL R.HW.T
4R.REC R.LEC
4R.REC.HW R.LEC.SIZE
4R.REC.INS R.OHW
4R.SCA R.OHW.CHANGE
R.EASY R.OHW.COMP
R.LEC.ICLICK R.SCA
R.LEC.NOTES R.STU.EXCRED
R.OHW.CHANGE
R.OHW.CONVEN
R.OHW.REDO
R.REC.SIZE
R.STU.EXCRED
R.WHW
R.WHW

≥ 50% repeat 0.409090909 0.2

1)     How does 
the student feel 
about 
mathematics 
and their ability 
to do and 
understand 
math?

2)     What is 
the student's 
reaction to the 
course?

Group 2- IIIIII
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Research 
Questions

2E.OHW.100% 2E.HELP.BOOK E.OHW.REDO
2E.OHW.HINTS 2E.HW.3 E.STDY.NONE
5E.HW.BEFORE 3E.HELP.FRIEND
5E.STDY.OLDEX 3E.HELP.INS

3E.OHW.NOTES
3E.OHW.WRITE
3E.STDY.NOTES
4E.HW.1-2
E.HELP.NOTES
E.HW.NOTES
E.LEC.NOTES
E.OHW.BOOK
E.STDY.2
E.STDY.HW

≥ 50% repeat 0.5 0.428571429 0
2C.CHART->EQ 2C.CHART.PATTERN 2C.EQ.DIS
2C.CHART->GRAPH 2C.EQ.DIS 2C.R-SQ
2C.EQ.ZEROS 2C.FUNC.USE.1 C.FUNC.0
2C.FUNC.ALL3 2C.TORN.FIT.AVE C.FUNC.USE.0
2C.FUNC.EQ 3C.FUNC.2 C.TORN.FIT.PRESENT
2C.FUNC.USE.2-3 3C.TORN.INC C.VOCAB.2
2C.GRAPH.TP 3C.VOCAB.6-8 C.VOCAB.INCORR.2
2C.GRAPH.ZEROS 5C.FUNC.ALL3
2C.VOCAB.10-15 C.FUNC.EQ
3C.EQ.DIS C.TORN.FIT.TREND
3C.TORN.FIT.TREND
4C.FUNC.DESC
C.CHART->EQ->GRAPH
C.EQ->GRAPH
C.FUNC.4
C.GRAPH.DEG
C.TORN.FIT.TREND
C.TORN.INC
C.TORN.JUST

≥ 50% repeat 0.157894737 0.4 0

Group 2- IIIIII

3)    What does 
the student do 
in order to 
succeed?

4)     What is 
the student's 
conceptual 
understanding 
of "function"?
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Table E.8  White Box Group 3 Inteview Comments 

Research 
Questions

A.EXPLAIN A.CHANGE.NONE 2A.CONF
A.SCA.USE.JOB A.USE.SOME A.CHANGE

A.MATH
A.SCA.USE.JOB

≥ 50% repeat 0 0 0.25
2R.OHW R.SCA 2R.LEC
2R.REC R.HW.LESS
2R.REC.HW R.LEC.INS
R.REC.SIZE R.LEC.SIZE
R.STU R.OHW.CHANGE

R.WHW.WP
≥ 50% repeat 0.6 0 0.166666667

E.OHW.HINTS 2E.OHW.WRITE E.STDY.NONE
E.STDY.OLDEX E.HELP.FRIEND

E.HELP.TUT
E.HW.>5
E.HW.1
E.STDY.TUT
E.TUT

≥ 50% repeat 0 0.142857143 0
2C.TORN.FIT.FUTURE 2C.FUNC.USE.1 C.FUNC.0
C.FUNC.DESC C.EQ.DIS C.FUNC.ALL3
C.TORN.INC C.FUNC.2 C.R-SQ

C.FUNC.ALL3 C.TORN.FIT.PRESENT
C.FUNC.EQ C.VOCAB.1
C.GRAPH->EQ
C.TORN.FIT.AVE
C.TORN.INC
C.VOCAB.7

≥ 50% repeat 0.333333333 0.111111111 0

Group 3-II
1)     How does 
the student feel 
about 
mathematics 
and their ability 
to do and 
understand 
math?

2)     What is 
the student's 
reaction to the 
course?

3)    What does 
the student do 
in order to 
succeed?

4)     What is 
the student's 
conceptual 
understanding 
of "function"?
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Table E.9  White Box Group 4 Interview Comments 

Research 
Questions

2A.EXPLAIN 2A.NUMB 2A.CONF
2A.STU.USE.JOB A.CHANGE.NONE 2A.SCA.USE.JOB
4A.SOLVE A.USE.SOLVE A.MATH
A.CHANGE A.USE.SOME A.REVIEW
A.CONF A.USE.SELF
A.SCA A.WORK
A.SCA.USE.SELF
A.STU.APP

≥ 50% repeat 0.375 0.25 0.333333333
2R.REC.INS 2R.REPEAT 2R.LEC
2R.REC R.INT.ALG 2R.OHW
2R.STU 2R.OHW.COMP
2R.STU.CONN 2R.SCHED
3R.STU 4R.STRUG
R.EASY R.EXAM
R.LEC.ICLICK R.EXAM.JUST
R.LEC.NOTES R.HARD
R.OHW.REDO R.HW.LESS
R.REC.HW R.HW.MORE
R.REC.INS R.HW.T
R.REC.SIZE R.LEC.ICLICK
R.SCA R.OHW
R.SCA.CONN R.WEBSITE
R.STU.EXCEL R.WHW
R.STU.PARTNER R.WHW.WP

≥ 50% repeat 0.3125 0.5 0.3125
3E.OHW.HINTS 2E.HELP.BOOK R.LEC.VIDEO
4E.STDY.OLDEX 2E.HW.3-4

2E.OHW.BOOK
2E.OHW.WRITE
E.HELP.FRIEND
E.HELP.INS
E.HELP.TUT
E.HELP.VID
E.HW.1
E.HW.5
E.OHW.1
E.OHW.VID
E.STDY.HW
E.STDY.TUT
E.TUT
E.WHW.1

≥ 50% repeat 1 0.25 0

Group 4- IIII
1)     How does 
the student feel 
about 
mathematics 
and their ability 
to do and 
understand 
math?

2)     What is 
the student's 
reaction to the 
course?

3)    What does 
the student do 
in order to 
succeed?
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Research 
Questions

2C.EQ.DIS 2C.CHART.PATTERN 2C.FUNC.0
2C.FUNC.3-5 2C.EQ.DIS 2C.FUNC.USE.0
2C.FUNC.EQ 2C.FUNC.USE.1 C.EQ.DIS
C.CHART.DRAW 2C.TORN.FIT.AVE C.TORN.FIT.PRESENT
C.CHART.Y-INT 3C.FUNC.ALL3 C.VOCAB.2
C.CHART.ZEROS C.CHART.DRAW C.VOCAB.INCORR.2
C.CHART->EQ->GRAPH C.CHART->GRAPH
C.EQ.DEG C.TORN.FIT.TREND
C.EQ.DRAW C.TORN.INC
C.EQ.TP C.VOCAB.6
C.EQ->GRAPH
C.FUNC.ALL3
C.GRAPH.DEG
C.GRAPH.TP
C.GRAPH.Y-INT
C.GRAPH.ZEROS
C.R-SQ
C.TORN.FIT.FUTURE
C.TORN.INC

≥ 50% repeat 0.157894737 0.5 0.333333333

Group 4- IIII

4)     What is 
the student's 
conceptual 
understanding 
of "function"?
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Table E.10  White Box Group 5 Interview Comments 

Research 
Questions

A.PREV 2A.USE.SOME 2A.CONF
A.USE.SELF 2A.SCA.USE.SELF
A.USE.SOC A.CHANGE

A.FRAC
A.GRAPHS
A.INTRIN
A.MATH
A.SCA.USE.SOC

≥ 50% repeat 0 1 0.25
R.EASY 2R.INT.ALG R.HW.T
R.LEC R.OHW
R.LEC.INS R.OHW.CHANGE
R.OHW.CONVEN R.OHW.COMP
R.REC R.REC
R.REC.HW R.REC.INS
R.STU R.STRUG
R.STU R.STU
R.STU.APP R.STU
R.STU.PARTNER R.STU.CONN

≥ 50% repeat 0 1 0
2E.STDY.OLDEX 2E.OHW.FRIEND E.HW.REC
E.OHW.HINTS 2E.TUT

E.HELP.FRIEND
E.HELP.TUT
E.HW.2
E.HW.TUT
E.OHW.1
E.OHW.BOOK
E.STDY.1
E.STDY.FRIEND
E.STDY.HW
E.STDY.TUT
E.WHW.1

≥ 50% repeat 0.5 0.153846154 0
C.CHART->GRAPH C.CHART.DRAW C.FUNC.ALL3
C.TORN.INC C.ED.DIS C.R-SQ

C.EQ->GRAPH C.VOCAB.INCORR.2
C.FUNC.ALL3 C.VOCAB.INCORR.4
C.FUNC.INC
C.FUNC.USE.1
C.TORN.FIT.TREND
C.TORN.INC
C.VOCAB.8

≥ 50% repeat 0 0 0

Group 5- II

2)     What is 
the student's 
reaction to the 
course?

3)    What does 
the student do 
in order to 
succeed?

4)     What is 
the student's 
conceptual 
understanding 
of "function"?

1)     How does 
the student feel 
about 
mathematics 
and their ability 
to do and 
understand 
math?
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