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Abstract

This dissertation presents deep integrative methods from both visual and textual per-

spectives to address the challenges of extracting information from documents, particularly

scientific literature. The number of publications in the academic literature has soared. Pub-

lished literature includes large amounts of valuable information that can help scientists and

researchers develop new directions in their fields of interest. Moreover, this information can

be used in many applications, among them scholar search engines, relevant paper recom-

mendations, and citation analysis. However, the increased production of scientific literature

makes the process of literature review laborious and time-consuming, especially when large

amounts of data are stored in heterogeneous unstructured formats, both numerical and

image-based text, both of which are challenging to read and analyze. Thus, the ability to

automatically extract information from the scientific literature is necessary.

In this dissertation, we present integrative information extraction from scientific liter-

ature using deep learning approaches. We first investigated a vision-based approach for

understanding layout and extracting metadata from scanned scientific literature images. We

tried convolutional neural network and transformer-based approaches to document layout.

Furthermore, for vision-based metadata information extraction, we proposed a trainable re-

current convolutional neural network that integrated scientific document layout detection

and character recognition to extract metadata information from the scientific literature. In

doing so, we addressed the problem of existing methods that cannot combine the techniques

of layout extraction and text recognition efficiently because different publishers use different

formats to present information. This framework requires no additional text features added

into the network during the training process and will generate text content and appropriate

labels of major sections of scientific documents.



We then extracted key-information from unstructured texts in the scientific literature

using technologies based on Natural Language Processing (NLP). Key-information could

include the named entity and the relationship between pairs of entities in the scientific lit-

erature. This information can help provide researchers with key insights into the scientific

literature. We proposed the attention-based deep learning method to extract key-information

with limited annotated data sets. This method enhances contextualized word representations

using pre-trained language models like a Bidirectional Encoder Representations from Trans-

formers (BERT) that, unlike conventional machine learning approaches, does not require

hand-crafted features or training with massive data. The dissertation concludes by iden-

tifying additional challenges and future work in extracting information from the scientific

literature.
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Chapter 1

Introduction

Scientific literature is a pathway for researchers to exchange ideas and communicate the

results of scientific research.The research community has expanded dramatically, and the

growth rate of published scientific reports across scientific fields has simultaneously increased.

The scientific literature has become overloaded2. According to a report from US National

Science Foundation, peer-reviewed science and engineering journal articles and conference

papers increased about 4% annually over the last 10 years, from 1.8 million to 2.6 million

publications from 2008 to 20183. The actual number would be much larger if it included

the non-peer-reviewed open-access archive services like arXiv and medRxiv. The numbers of

published scientific articles is huge and the content rich. However, researchers must spend too

much time not just finding the relevant research repositories, but reading published articles

to gain insight from previous research and developing new ideas or methodologies for their

own research. The whole process is immensely laborious, and searching such an enormous

repository of information is far beyond any human ability. Just as an example, researchers

in materials science must begin designing a new experiment by first extracting the results of

past research. Just manually tracking all the latest scientific literature in countless journals

or conferences is a time-consuming process. Even though some scientific publishers, such

as IEEE, Elsevier, and Springer, provide abstracted information from published scientific

articles for researchers to use, too much literature has not been included. Therefore, an
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intelligent method of automatically identifying and extracting information from the scientific

literature is necessary.

Information from scientific literature can be considered metadata. Metadata refers to

data about data. It describes basic information about data and categorizes the data, which

then can be easily retrieved. According to NISO4, scientific documents have two types

of metadata: descriptive information and structural information. Descriptive information

refers to textual information that presents the content of scientific articles. It describes the

purposes of the scientific article, the problem addressed in the article, the methodology,

and the results. The structural information describes the layout of the article like the

title, affiliation information, and keywords. The normal extracted structural information

of scientific documents is in semi-structured format. The format helps readers determine

how the paper is structured; it is the primary information source for downstream tasks like

relevant article recommendation and citation analysis. Extracting information from scientific

literature must consider both types of metadata. Traditional information extraction (IE) is a

fundamental task of Natural Language Processing (NLP); IE automatically extracts machine-

readable structured information from unstructured or semi-structured text data sources. IE

techniques have been actively developed since 1980 and applied to many shared tasks through

a series of conferences like the Message Understanding Conferences (MUC)5, Conference

on Computational Natural Language Learning (CoNLL), Automatic Content Extraction

(ACE), and Text Analysis Conference (TAC). A set of sub-tasks can be completed with IE

techniques, such as named entity extraction, co-reference resolution, relation extraction, and

event extraction, but IE tasks focus primarily on descriptive (i.e., textual) information, not

on structural information of scientific documents. Extracting structural information requires

additional tasks.

1.1 Motivation

Based on the challenges discussed in the previous section, we considered how we could

automatically extract potential information from such huge scientific document resources.
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Extracted information is not just text but also the structural information of scientific docu-

ments. Therefore, we wanted to extract information from two type of data sources: text and

document image. Solving these two challenges was motivated as explained in the following.

Unlike the simplest text information, structural information provides the layout of a

scientific document in two parts: visual information and semantic information6. Visual

information describes the document structure and identifies the boundaries of similar regions.

Semantic information labels the detected regions of a document: the title, figures, and tables,

for instance. This structural information can be broadly used to automatically build up large

corpora for training machine learning models and extracting key insights from scientific

literature. The existing tools, such as Optical Character Recognition (OCR)7;8, extract

text from scanned document images, but they cannot capture the structural information.

Moreover, a lack of semantic information will lead to messy results. For example, all text

will be generated together with no boundary information showing distinct zones. Such a

mass of information requires extra work for cleaning. Meanwhile, the vast body of scientific

literature is released by various publishers who have diverse preferences in formatting and

layout for their articles. Therefore, finding a robust method to extract structural information

from scientific documents remains elusive.

The other motivation comes from extracting information from unstructured scientific

text, also known as key-information extraction. This kind of extraction aims to extract

valuable information from scientific articles like chemical entities, methodologies for experi-

ments, and materials properties. This valuable information can help researchers gain insight

from large literature pools, speed up the discovery of new material, and construct a domain-

specific knowledge graph. However, different fields of science include specific terminologies

and heterogeneous datasets like experiment descriptions and materials from across scientific

fields9, heterogeneous concepts from clinical electronic medical records (EMRs) data10;11,

and other such information, which significantly differs from the general information for lay

audiences. Meanwhile, even though machine learning methods, especially deep learning, can

be efficiently applied to large data sources, the models still require expensive labeled data

to train. The existing labeled datasets from the scientific domain are usually insufficient.
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Hence, finding more effective methods of extracting key-information from scientific text is

necessary.

1.2 Problem Statement

This dissertation addresses research problems of a deep integrative method that responds

to issues with extracting information from scientific literature. We, therefore, considered

two data sources from which information should be extracted to make searching the liter-

ature easier for scientists: scientific document images and document text. The strategies

introduced are as follows:

• Developing a machine learning-based pipeline of recipe information extraction from

the scientific literature;

• Using computer vision from deep learning to automatically detect document structures;

• Considering metadata information extraction as an object detection task and devel-

oping an end-to-end trainable framework for extracting visual and semantic metadata

information from scientific documents;

• Using transfer learning by fine-tuning a pre-trained language model for entity extrac-

tion in the scientific domain.

1.3 Contributions

Most of the research for this dissertation has been published in conference proceedings, with

the rest submitted and under review. The research contributions can be summarised as

follows:

• We developed a pipeline for extracting procedural information from scientific doc-

uments with machine learning and data science technology. The pipeline was imple-

mented as an open-source tool derived from document acquisition and filtering, payload
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extraction, recipe step extraction, recipe assembly, and presentation in an information

retrieval interface with question answering (QA) functionality.

• Further, we developed a novel approach for adapting convolutional neural networks for

object recognition and classification for detecting the layout of scientific articles.

• We created a transformer-based framework, the first to introduce a fully transformer-

based detector for uncovering document layout.

• We developed a novel, vision-based, deep learning approach for extracting metadata as

both a central component of and an ancillary aid to extracting structured information

from scientific literature with a variety of formats.

• We applied the attention-based deep learning approach to the task of Named Entity

Recognition (NER) from synthesis procedural text of scientific literature in the mate-

rials science domain.

1.4 Dissertation Outline

The dissertation has the following sections:

• Chapter 2 - Background

This chapter introduces background information with a literature review of articles

covering information extraction from scientific literature, both metadata extraction

and key-information extraction.

• Chapter 3 - Pipelines for Procedural Information Extraction from Scientific Litera-

ture

This chapter describes a machine learning and data science pipeline for extracting

structured information from documents, implemented as a suite of open-source tools

and extensions to existing tools. It centers around a methodology for extracting pro-

cedural information in the form of recipes: stepwise procedures for creating an artifact

(in this case synthesizing a nanomaterial) from published scientific literature.
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This chapter is based on the published work12.

• Chapter 4 - Document Layout Understanding

This chapter presents two vision-based approaches for the task of detecting document

layout: Recurrent Convolutional Neural Network (RCNN) and transformer-based ap-

proach.

This chapter 4.1 is based on the published work13 and chapter 4.2 is based on the

manuscript under review by ICIP 2022.

• Chapter 5 - Automatic Metadata Information Extraction from Scientific Literature

using Deep Neural Networks

This chapter introduces an end-to-end trainable neural network for segmenting and

labeling the main regions of scientific documents while simultaneously recognizing text

from the detected regions. The proposed framework combines object detection tech-

niques based on RCNN for scientific document layout detection with Convolutional

Recurrent Neural Network (CRNN) for text recognition.

This chapter is based on the published work14.

• Chapter 6 - Named Entity Recognition from Synthesis Procedural Text in Materials

Science Using an Attention-Based Approach

This chapter proposes the attention-based deep learning approach to the task of Named

Entity Recognition (NER) from synthesis procedural text of scientific literature in

materials science.

This chapter is based on published work15.

• Chapter 7 - Conclusions and Future Research

This chapter summarizes achievements and offers suggestions for future research.
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Chapter 2

Background

This chapter provides background and reviews relevant research on information extraction

from scientific literature with three primary aspects: document layout analysis 2.1, meta-

data information extraction from scientific literature 2.2, and information extraction from

scientific text 2.3.

2.1 Document Layout Analysis

Document layout analysis is the task of automatically understanding, recognizing, and an-

alyzing the regional information (e.g., text, figures, tables) and positional relationships be-

tween different layout components in the document. This is also called document layout

understanding and includes analysis of the physical layouts (e.g., columns, paragraphs, text

zones, tables, figures), analysis of logical layouts (e.g., titles, authors, abstracts, sections),

or both. This is the key step for document understanding; to completely understand a doc-

ument requires both reading the text and seeing the relationships of the parts in the layout

as a human does. The document layout analysis task can be used to extract pre-defined

semantic units from a document. In other words, given a document D comprising various

regions (r 0, r 1, ..., rn), define the semantic categories C = {c0, c1, ..., cm}. The goal of a

document layout detector is to find a function F : (C,D) → S, where S is the prediction set:
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S = {(r0, c0), ..., (rn, cm)}. Figure 2.1 provides an example of the scientific document layout

analysis process. The given document is segmented by pre-defined layout categories through

the document layout detector.

Figure 2.1: Scientific document layout analysis process.

For different types of document layout analyses, two common approaches have been

proposed and researched by researchers: rule-based and machine learning-based.

Rule-based methods

The rule-based methods of document layout analysis fall into three main categories:

top-down, bottom-up, and hybrid16. The top-down (model-driven) strategy is based on a

document layout whose structure is known in advance. It begins with large components

in document pages. Each page of the document is recursively processed and segmented

from larger components into smaller sub-components. For instance, a document page with

two columns is split into two blocks of text, each block is then split into several sectional

blocks, each sectional block is split into text lines, and so on. The analysis process stops

when there are no more regions to split, or certain conditions are met. The Bottom-up

(data-driven) strategy, on the other hand, is based on a document layout whose structure
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is unknown in advance. It begins with pixels or small connected-components of document

elements. For example, characters can be be grouped into words, lines, or text zones. Then,

these components are grouped and merged to create a larger homogeneous region to form

document structures. The analysis process repeats until pre-defined conditions are met. The

hybrid strategy integrates the top-down and bottom-up strategies. In general, the top-down

approach is faster and more efficient for specific document layouts, while the bottom-up

approach requires more time to analyze although it performs better for complex document

layouts. The hybrid approach addresses the deficiencies of top-down or bottom-up algorithms

to generate better outputs. The following section provides the common analytic algorithms

for both top-down and bottom-up strategies.

The three main categories of top-down strategies are texture-based analysis, run length

smearing algorithm (RLSA), and projection profile analysis.

• Texture-based analysis is widely used in document layout analysis with both top-down

and bottom-up strategies depending on the method of implementation to segment doc-

ument images based on extracted texture features into regions of interest and, using

statistical methods, to classify those regions from a given set of pre-defined classes. Jain

et al.17 introduced a texture feature-based algorithm using two-dimensional Gabor fil-

ters for segmenting text and non-text regions of document images without knowing the

document structure. The proposed method also works for skewed images and handwrit-

ten text. Subsequently, Jain and Zhong18 presented a language-free page segmentation

algorithm based on texture-based analysis that can recognize and categorize a grey-

scale document image into three main texture regions: halftone, background, and text

and line-drawing. Lee and Ryu19 proposed a texture-based, parameter-free method

for segmenting a document image beginning with maximal homogeneous regions in a

document image and identifying them as different zones (texts, images, tables, and

rule lines). This method used a pyramidal quadtree structure for multi-scale analysis

with a top-down approach to reduce the computation of time complexity.

• Run length smearing algorithm (RLSA) segments blocks and discriminates text regions
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from binary document images. In the binary sequence image, the pixel value 0 rep-

resents white, and 1 represents black. The 0 in binary sequence changes to 1 if the

number of adjacent 0s is less than or equal to a pre-defined threshold T . This analysis

process starts from horizontal (row) and vertical (column) directions to generate two

bitmaps. Then, these two bitmaps are combined with AND operation in the final

step. The RLSA was first introduced by Wahl et al.20 to segment and classify text and

image regions from digitized and printed documents. Later, Wong et al.21 used RLSA

in a document analysis system. Shi and Govindaraju22 presented an adapted RLSA

for text line detection of handwritten documents. However, RLSA is very sensitive to

irregular text like handwritten and skewed text23.

• Projection profile analysis, or X-Y cut, is broadly used in document layout analysis

as a top-down method. The basic concept of the X-Y cut algorithm is to decompose

recursively a document image into rectangular blocks. The process starts from the

whole document, both horizontally and vertically, to find a potential zone that is

close to the content and to segment it as a block. This analysis process is repeated

until no more zones can be found. Ha et al.24 implemented the recursive X-Y cut

algorithm with bounding boxes of connected components of black pixels for document

page segmentation. This implementation speeds up the recursive process after the

connected components are obtained. Furthermore, many modified X-Y cut algorithms

have been introduced for document layout analysis25–27. Usually, projection profile

analysis is suitable for structured document layout, such as Manhattan layout, but it

cannot segment complex document layouts that include overlapped rectangular blocks.

The three main categories of bottom-up strategy are connected component analysis,

Voronoi-based analysis, and Delaunay triangulation analysis.

• Connected component analysis starts at the pixel level and scans the document image

row by row. The analysis process merges black pixels if neighboring pixels are also

black; otherwise, the model assigns a new label for the white pixel. The process
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repeats for the entire image, classifying regions into different layouts. O’Gorman28

proposed Docstrum, a bottom-up based method that uses k-nearest-neighbor clustering

of connected components for page layout analysis. Bukhari et al.29 used the multi-layer

perceptron (MLP) classifier to classify each connected component area as either text

or non-text. In other research, Rabaev et al.30 presented a method to detect text lines

from gray scale images by analyzing the connected components generated by a sliding

threshold.

• Voronoi-based analysis uses a Voronoi diagram to detect irregular layouts (e.g., a poly-

gon) of documents by defining boundary points around the irregular regions. Kise et

al.31 used an approximated area Voronoi diagram to obtain the candidate boundary

of the area to solve the problem of text skew. In this method, the Voronoi diagram is

generated by connected components; the method is effective for areas with any angle

of inclination. Lu et al.32 implemented an algorithm that can quickly generate Voronoi

diagram areas of connected components to shorten the time-consuming process of con-

structing a Voronoi diagram. The Voronoi-based analysis methods must calculate the

space between characters and lines during document segmentation. The process is

inefficient for manuscripts with wide-character spacing.

• Delaunay triangulation analysis uses Delaunay triangulation to segment document

layouts. In mathematics, Delaunay triangulation is a dual Voronoi diagram. Xiao and

Yan33 applied Delaunay triangulation to extract triangular features from 2D space of

document images, thereby distinguishing the text area. Further, Xiao and Yan34 used

a Delaunay triangulation-based method to detect the title and author regions from

document images.

The hybrid method integrates the top-down and bottom-up strategies. For example,

Kruatrachue et al.35 described a hybrid approach for document segmentation that used an

edge following algorithm using a small window of 16 by 32 pixels to scan a page of document

before using an X-Y cut algorithm to reduce errors if the space was smaller than the window.
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Lin et al.36 presented a hybrid method using K-Means to cluster the GLCM (Grey Level

Co-occurrence Matrix) features for document image segmentation.

Rule-based methods were important to document layout analysis before machine learning

algorithms became popular. However, rule-based methods require knowledge of document

structure and good feature selection, and they are sensitive to noise from the input document

format. Such traditional knowledge-based systems are limited in generality of purpose and

robustness across different cases if the rules are too domain-specific or quantitatively brittle

and arbitrary.

Machine learning-based method

Machine learning methodologies have also been used for document layout analysis, and

they gradually became the principal methods for document understanding. The methodolo-

gies are generally divided into non-deep learning and deep learning6.

Non-deep learning is usually built on a conventional machine learning model that is

itself either pixel-based or feature-based. For example, Marinai et al. used a pixel-based

Artificial Neural Network (ANN) for document layout analysis37, and Wei et al. introduced

feature-based Support Vector machines (SVM)38. Usually, feature-based methods are better

than pixel-based methods because they may raise missing contextual information issues39.

Feature-based methods require feature extraction to empower training and build robust

models. Features can be either handcrafted or generated automatically, as in texture features

extraction40 methods and geometric features extraction29 methods for text-line extraction

tasks.

Deep learning The main purpose of visual analysis is to detect the structure of the

document and determine the boundaries of similar regions.

Deep learning methods like convolutional neural networks (convnets) have become the

preeminent architecture for many pattern recognition and computer vision tasks since con-

vnets were first used successfully to recognize handwritten characters. They were eventually

adapted for object detection and recognition (particularly the PASCAL VOC and ISLVRC

ImageNet challenges). Three key strengths of convnets include differentiable representation,

scalable GPU computing, and large data set availability (a resource that is notably lack-
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ing at present in scientific literature layout detection). Models trained using deep learning

methods can address more complex document layout for both physical layout and logical

layout analysis41–43. For example, Grüning et al.44 presented ARU-Net deep neural network

as an extension of the U-net45 to fix the pooling issue of previous deep learning methods

for text-line detection in historical documents, and Yang et al.46 addressed an end-to-end

multimodal method to extract semantic structures from document images with text features

using a fully convolutional network. Deep neural networks need large data sets to learn cru-

cial parameters for segmentation or classification tasks. Those parameters can be initialized

with random weights or using transfer learning with pre-trained networks. Moreover, deep

learning methods require long training, but they are more robust than traditional strategies

for complex document layouts.

2.2 Metadata Extraction from Scientific Literature

Metadata is data that describes data. It eases data management and data tracking processes

by capturing basic data information. Metadata is generated when data is created or updated.

For instance, digital video includes metadata like authors, location at which the video was

recorded, and video format. The metadata of a book, for another example, may include

author information, publication date, and ISBN number. Such metadata information is

increasingly critical in digital information to improve data visibility in search engines as well

as for cataloging and organizing items in digital libraries.

In scientific literature, metadata is a crucial feature because it describes basic infor-

mation such as titles, keywords, authors, affiliation, journal name, body text, and ref-

erences that define attribute information of articles. Extracting metadata from scientific

literature is very important because it enables machines to process the data and provide

necessary information for downstream information extraction tasks: scientific article rec-

ommendation and citation analysis. Figure 2.2 shows an example of extracting metadata

from scientific literature. Specifically, given a document D comprising various regions (r 0,

r 1, ..., rn), sequences (w 0, w 1, ..., w t), and semantic categories C = {c0, c1, ..., cm}, the
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metadata detector searches for a function F : (C,D) → S, where S is the prediction set:

S = {((w0
0, ...,w

0
t ), r0, c0), ..., (w

n
0 , ...,w

n
t ), rn, cm)}.

Figure 2.2: Example of metadata information extraction from scientific literature.

Several existing, but different, approaches can automatically extract metadata informa-

tion from published scientific literature. These methods usually encompass both extracting

metadata information from original source data, such as Microsoft Word documents or Latex

source codes and either rules-based or machine learning-based extraction.

Extracting metadata information from original source data avoids the greater challenges

created by the highly variable formats of publications. The original source data of scientific

literature includes homogeneous document regions and the content of each region. Extraction

simply focuses on target inquiries without undertaking extra document pre-processing tasks

like layout analysis or content recognition. For instance, Scharpf et al.47, 48 introduced an

annotation recommender system to identify mathematical formulas in documents in either

Wikitext or LaTeX format in science, technology, engineering, and mathematics (also known

as STEM). Swain et al.49 developed a toolkit for extracting automated chemical information

like chemical entities and measurements from multiple source data formats, usually HTML

or XML in the chemical domain. These applications allow the corpus of scientific literature
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to be annotated automatically, which can benefit downstream tasks in Natural Language

Processing (NLP). However, these approaches require access to the source data, which might

not be feasible for all published literature. Moreover, these approaches are limited to certain

types of data sources.

The Rule-based method relies on hand-crafted templates and strategies specifying

how to extract desired information from a document. It is usually based on text structure

and document layout. For example, Flynn et al.50 presented a template-based system to

extract metadata from a large and diverse document collection. The system used a pre-

defined template to process the converted XML file of a PDF input document to produce

validated metadata through the system pipeline. Constantin et al.51 developed PDFX, a

rule-based system that extracts logical structure from scholarly literature published in PDF.

This system can generate an XML file that presents an article’s layout structure with such

layout items as title, author, abstract, and references. To extract metadata from scientific

literature, Giuffrida et al.52 proposed a knowledge-based method. Huynh et al.53 introduced

a GATA framework, based on a predefined rule for automated metadata extraction from

scientific papers. These rule-based methods are usually used for document layout analysis

and require third-party tools like optical character recognition (OCR) to handle the post-

processing task for text recognition. The rule-based metadata extractor system shows good

performance due to a good, manually designed template, but it is sensitive to text format

and diverse document layout.

The Machine learning-based method has demonstrated its usefulness for extracting

metadata from scientific literature. This approach can be divided into supervised machine

learning approaches that generally use a feature-based classification model with a labeled

data set. Huy Hoang Nhat Do et al.54 offered the Enlil system that integrated the condi-

tional random field (CRF) to identify authors and affiliations and the support vector ma-

chine (SVM) to detect relationships between authors and their corresponding institutions.

The Enlil system then extracts affiliation information from scholarly documents. Lopez55

presented GROBID (GeneRation Of BIbliographic Data), which uses a machine learning

technique to extract metadata information from raw scientific documents (like PDF) for an-
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alyzing scientific text. Unsupervised machine learning approaches generally use clustering

algorithms with a non-annotation data set. Tsai et al.56 used an unsupervised bootstrapping

algorithm to identify, categorize, and cluster scientific concepts from the literature. More-

over, deep learning approaches have been heavily researched because they can extract meta-

data from scientific literature from the growing numbers of publications in diverse domains.

Tkaczyk et al.57 introduced the CERMINE open-source system that combines supervised

and unsupervised machine learning technologies to extract structured metadata from digital

scientific articles. Deep learning relies on a massive data set to train or fine-tune parame-

ters using pre-trained models to learn good feature representations for extracting metadata.

Yang et al. considered scientific literature layout detection as an object detection problem;

they used a pre-trained object detection network to fine tune detection13. Prasad et al.

proposed Neural ParsCit58, a way of extracting layout and bibliographic metadata from a

research document with a long short-term memory (LSTM) network. Saha et al. presented

graphical object detection from document images with Mask R-CNN59.

2.3 Extracting Key-Information from Scientific Liter-

ature Text

Extracting key information finds structured and meaningful information in semi-structured

or unstructured data. This is an essential step for tasks like document understanding or

constructing knowledge graphs. In contrast to extracting metadata, information extraction

emphasizes textual information in context and using logical reasoning to make inferences

based on this extracted information. The purpose of information extraction from the scien-

tific literature is to automatically turn the unstructured text of published scientific articles

into structured information. Normally, the process can be categorized into entity extraction

and relation extraction.
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2.3.1 Entity Extraction

A representative task in entity extraction is named entity recognition (NER), a fundamental

information extraction task that seeks to locate and classify pre-defined entities from un-

structured text. Entities are typically noun phrases comprising one or a few tokens from

unstructured text. The types of entities vary depending on the domain. For instance, named

entities such as person, location, or organization are common to all general fields, but specific

chemical terminologies and biological protein names are typically included only in science.

Given a sentence S = {w1, w2, ..., wN} where w represents the words in the sentence,

NER can formalize the words to a list of tuples {Es, Ee, t}, each of which is a named entity

mentioned in sentence S. In addition, Es ∈ [1,N] and Ee ∈ [1,N] are the start and end indices

of a named entity, and t is the entity type of a pre-defined category set. NER approaches are

usually classified as rule-based, unsupervised learning, feature-based supervised learning, or

deep learning60.

Rule-based methods

Rule-based NER systems use hand-crafted rules, lexicons61, orthographic, and feature-

engineering. They rely on lexicon resources and domain specific knowledge, as Quimbaya et

al. proposed in a dictionary-based approach for NER for electronic health records62. The

rule-based approaches work well when the lexicon is exhaustive but fail when definitions are

not in the lexicon63. The approach, unfortunately, is not robust and cannot be used in other

domains because of incomplete dictionaries and domain-specific rules.

Supervised learning

Supervised learning is also called feature-based supervised learning. The algorithm is

designed for a model to learn to recognize similar patterns in unseen data using training

examples from features of an annotated data set. Supervised learning for NER tasks can

be divided into multi-class classification and sequence labeling. The common feature-based

supervised machine learning algorithms applied to NER tasks are hidden Markov models

(HMM)64, maximum entropy models65, support vector machines (SVM)66, decision trees67,

and conditional random field (CRF)68. For example, Bikel et al. used HMM in an NER

17



system to identify and classify names and dates69. Li et al. implemented an SVM-based

learning system for NER task70. Liu et al. proposed a CRF-based system in NER for drug

name recognition71.

Unsupervised learning

The key to unsupervised learning is hidden patterns from an unlabelled data set discov-

ered through clustering. The clustering-based NER systems recognize named entities from

the clustered groups based on context similarity. This approach leverages the recognition

algorithms that can learn lexical patterns on large corpora that has no human annotation.

Collins et al. used named entity classification with large unlabeled examples and offered two

unsupervised algorithms to prove their ideas72. Zhang and Elhadad proposed an unsuper-

vised approach with shallow syntactic knowledge and inverse document frequency (IDF) to

extract named entities from biomedical text73.

Deep learning

A deep learning-based NER model has several benefits compared to conventional ma-

chine learning methodologies. First, learning complex and intricate features from input data

through non-linear activation functions is meaningful. Second, this model can automatically

extract features from input data instead of using feature engineering, which requires domain

expertise. Third, a deep learning network can be trained as an end-to-end paradigm that

avoids the error cascade of a pipeline model74.

The architecture of a deep learning-based NER model has three layers. The first is an

embedding layer that accepts the input sequence. The embedding layer may be based on

either word or character level75, 76 or on incorporating additional features like part-of-speech

(POS) and gazetteer77. The second layer is the context encoder layer, which usually uses

neural networks like CNN78, RNN79, or language model80 to capture context dependencies

from the output of the first layer. The final layer is a tag decoder that takes context-

dependent representations as input and produces a sequence of tags for the input sequence.

This layer usually uses Softmax81, CRF68, or RNN82 as the decoder.
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2.3.2 Relation Extraction

Relation extraction automatically identifies the semantic relationship among entities from

text. It can be broadly used for NLP applications like information retrieval and question

answering. Most relation extraction systems focus on extracting binary relations, such as

is-a, part-of, and employment, possibly in the form of subject, relation, and object or what

is referred to as relational triples. The subject and object represent two entities, and relation

expresses the relationship between these entities.

The earliest algorithm for relation extraction was handwritten patterns, based on the

lexico-syntactic pattern developed by Hearst83. The hand-built patterns can be highly precise

but low-recall, involving much work to create patterns. Another method uses supervised

machine learning for relation extraction, finding pairs of named entities from sentences,

then applying the supervised classifiers (e.g., random forest, logistic regression, SVM, RNN,

or Transformer) to classify the relationship for each pair84 , 85 , 86. Distant supervision

learning combines the advantages of bootstrapping with supervised learning for extracting

relationships. This method acquires many seed examples from large unlabeled data sets,

then applies a supervised classifier to these examples87. Joint information extraction

focuses on extracting named entities and relations at the same time. This method uses

a single model system that can effectively integrate entity and relationship information,

extracting them simultaneously. For example, Li et al. presented a single framework based

on shared parameters for entities and relation extraction88, with a single model based on

global features for entity, relation, and event extraction.
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Chapter 3

Pipelines for Procedural Information

Extraction from Scientific Literature

3.1 Introduction

In this chapter, we present a machine learning-driven document analysis pipeline for scientific

literature that is designed to address challenges to automation of payload extraction and

identification of recipe steps using natural language processing (NLP). This paper focuses

on payload filtering and extraction in Portable Document Format (PDF) files, the most

common format for sharing and dissemination of scientific knowledge. The overall goal of

this work is to extract recipes, which are defined as procedural specifications in the form

of sequences of steps centered around participating tagged entities and ultimately roles and

operations, from scientific publications. In this paper we focus on the extraction task itself

and consider each purpose and application as a use-case of document analysis.

Our pipeline is designed on principles of holistic document analysis - specifically, to use

machine learning in multiple stages with shared objectives for document analysis. Each stage

passes successively refined natural language and metadata features on to the next. Our study

focuses on materials process engineering, with an emphasis on detecting and categorizing

techniques for the synthesis of nanomaterials, an emerging research and development area.
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As with our prior work on this application domain, our overall goal is to extract recipes

from the scientific literature, using information extraction techniques that are based on

machine learning, applied to both labeled and marked-up corpora. However, there is no

existing system to date that solves holistic information extraction tasks of the desired form,

such as automatic compilation of full recipes, single recipe steps, or even chemical unit

operations, from published scientific papers. There is a wide technical gap between the intake

of published literature from source collections and the output of actionable information such

as the recipe-containing sentences of an article known to be relevant. Some existing tools,

such as PDFBox89, can convert PDF documents to text files, but cannot extract useful

information from those text files. Conversely, other tools can help extract domain-related

information from text files, but cannot filter the documents for relevance to a query, or

segment and order the appropriate text payload within a PDF file. Our system narrows this

gap by interfacing such tools using format and metadata standards that are shared from

stage to stage of a pipeline, and providing a unified supporting framework for the algorithms

and representations of all stages that is driven throughout by machine learning. The system

diagram for this pipeline and framework is depicted in Figure 3.1. The central tasks of this

paper are the extraction, classification (and automatic annotation), and federated web-based

delivery of: plain text payloads, associated figures, recipe-related sentences, and finally recipe

steps.

We begin by reviewing related work in Section 3.2 and in Section 3.3, introduces the entire

extractor pipeline and the methodological details for each stage. We then fully describe

an experiment design and present experimental results in Section 3.4, and finally derive

conclusions and priorities for future work in Section 3.5.

3.2 Related Work

Recent work on empirical methods for NLP and supervised machine learning using extracted

information has been applied to the domain of nanomaterials IE. For example, Kim et al.

introduced synthesis parameters of oxide materials extraction which is based on machine
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Figure 3.1: Extractor pipeline.

learning and NLP from relevant journal articles90. They used an existing application pro-

gramming interface (API) of CrossRef91 to retrieve relative articles and converted these

to plain text from downloaded files with HTML and PDF formats. The ‘bag of words’

method has been used for relevant section classification with binary logistic regression in

paragraphs. These paragraphs are collected based on manual annotation from 100 different

journal articles. The final text is extracted from candidate sections in a scientific article,

using a combination of pre-trained Word2Vec92 and neural network93 models to proceed text

extraction. This Word2Vec is used to learn accurate vector representations for specifying

domain-related words of oxide materials. This is a first step towards using machine learn-

ing for information extraction from large and comprehensive corpora in the nanomaterials

domain, and yields some methods that are potentially transferable to other domains of sci-

entific literature. Another significant research project94 also addresses text extraction with

machine learning techniques from scientific literature in the materials synthesis domain.

3.3 Information Extraction System

In this section, we describe the details of each stage of the extractor pipeline (Figure 3.1).

Our system covers from scientific literature source collection to recipe steps displayed on web

page, including the following steps:

• Synthesis literature materials are crawled from online resources. The type of this
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literature is free texts in basic publication formats (PDF or HTML);

• Documents (PDF) conversion to plain text and extracting relevant figures and other

images from published literatures, then filter the domain-related literature;

• Step extraction/sentence classification from experiment section of literatures;

• Recipe assembly from relevant sentences;

• Front end as user interface to display the contents of whole literature which includes

title, authors, abstract, body of literature, sections, references and recipe results.

Crawler/Ranker/Filter

We use a crawler which automates the process by utilizing a set of seeds (e.g. URLs) to

find sufficient links to look through in order to construct the corpus of our domain.

To complete the task of finding and downloading PDFs from the web, we created a Java

based web crawler. To start, the crawler takes a newline delimited text file containing seeds

(URLs) as the base index to start the crawl from. It then builds a B-Tree from the URLs

given and the URLs crawled with a depth determined by the given depth in the configuration

file. From the nodes on the B-Tree, the crawler determines which nodes are downloadable

PDFs and the proceeds to download them into the output directory. This process runs

until each node on the B-Tree has been covered. We also developed a backward citation

component to help focus the crawler. After the first initial crawl and after the annotations

of the gathered PDFs, the PDFs that were matched positive for relevancy are sent back to

the crawler. The crawler then handles the metadata from the PDFs and uses the citations

in each paper to query for new, more relevant, seeds. We used relevant seeds which are

provided by expert and crawled 30K scientific literature from public resources as our corpus.

Payload Extraction

The payload extraction system used in this work is based on similar ones developed for

speeding up the annotation process to identify relevant papers from a corpus of scientific

documents using classification95. This tool shows the first few pages of any paper, lists the

keywords which are domain-related, and highlights them on the paper simultaneously. That
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is so users can quickly go through the paper indicated by the highlighted keywords to decide

if the paper is related to target domain.

The text extraction and section classification steps are crucial for recipe extraction in the

pipeline. Classifying the different sections of a synthesis literature allows for the region of in-

terest in recipe-step search to be narrowed down. However, with the large crawled document

corpora comes a disparity of document formatting and challenges for section classification.

To address these format disparity challenges, MATESC, a tool for metadata-aware extrac-

tion developed by De La Torre et al.96 is adapted and improved. This tool uses metadata

features and heuristics, such as font size, font type and character spatial location to group

words, lines and paragraphs to classify them with their corresponding section header.

Figure 3.2 shows the work flow of MATESC (Metadata-Analytic Text Extractor and Sec-

tion Classifier for Scientific Publications), an open-source tool developed by De La Torre et

al. MATESC takes PDF documents as input and uses PyMuPDF97 to extract text and the

metadata of each character. The extracted text is filtered by removing irrelevant text usually

found in the margins of each document page, using their spatial location. Then, words are

merged into their corresponding line, while considering font and spatial location to differenti-

ate between section titles and section content. Afterwards, those lines are then grouped into

paragraphs and those paragraphs are sequentially ordered based on a calculated bounding

box of a paragraph. Table 3.1 shows the accuracy of MATESC evaluated on random articles

versus articles relevant to the nanomaterials synthesis domain. For detailed results regarding

section classification accuracy which we use as a baseline, we refer the interested reader to

De La Torre et al.96.

Name Accuracy Precision Recall F1-score
Random Domain 0.85 0.63 0.63 0.57
Relevant Domain 0.88 0.78 0.74 0.72

Table 3.1: Accuracy for the MATESC extractor on random vs synthesis of nanomaterial
relevant papers.

To improve MATESC ’s text grouping and section classification, we used the scikit-
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Figure 3.2: MATESC’s input processing and section classification pipeline.

learn implementation of the Density-Based Spatial Clustering of Applications with Noise

(DBSCAN) algorithm to classify spans of text into their corresponding groups based on

the euclidean distance between each span’s metadata features. The features included x,y

coordinates, font type, and font size of each text span. The current limitations of the

algorithm include excessive splitting and (less frequently) merging due to the unordered
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clustering nature of the algorithm. Some text groups-spans and lines-are over-split (under-

merged) based on the difference distance threshold. Future work involves further research

in DBSCAN’s parameter estimation, including fine-tuning of radius and minimum point

thresholds.

Figure 3.3: Payload extraction ground truth (markup annotation).

As our ground truth for testing MATESC and other clustering algorithm output, we

developed an open-source dataset using labelImg98 to obtain the regions of interest for head-

ers, heading, and paragraphs. The data set allows us to use PyMuPDF to extract the text

spans within each region of interest and create the ground truth paragraphs and sections.

Figure 3.3 shows an example of a annotated page used as Payload Extraction ground truth.
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Currently, this data set allows us to test grouping, clustering and sequential reading order

of these groups.

Paragraph and Section Clustering

Due to PDF document format disparity among different journals and publications, the pro-

cedure to form paragraphs and sections from characters is laborious. Heuristics that consider

the metadata features provided by it PyMuPDF and others calculated from it, such as spac-

ing between lines and column recognition, has been integrated into MATESC. Nevertheless,

learning to cluster paragraphs and sections is an interesting problem that the group has

started to work on. Grouping lines into paragraphs and paragraphs into sections is key to

finding the synthesis within the literature. In the future, we plan to test clustering algo-

rithms, such as the DBSCAN algorithm to group lines into their corresponding paragraphs

based on the distance measurement of each line’s metadata features. Some of these features

include the bounding box around the text, the font type and size and the page number

the line belongs to. Furthermore, we would like to use pyfaster-rcnn99 to obtain region

proposals for our sections, we hope to see an increase in the accuracy of section classification

and extraction.

Step Extraction

We use a binary Näıve Bayes (NB) classifier to perform sentence classification on the

experiment section, which was an output of the payload extraction stage. We hand-labeled

2600+ relevant or irrelevant sentences from 98 relative literature as our training data set,

(s1, cx) . . . (sm, cx) where s represents a sentence, and c represents its label, where the value

of c is 1 (relevant) or 2 (irrelevant). We then train the NB classifier to obtain a learned

function γ: s →c that predicts the class attribute of input sentence s through the classifier.

cNB =c∈C P (ci)
∏
s∈S

P (s|c) (3.1)

Here S ≡ {s1, s2, . . . , sn} represents the sentences from experimental section, and C ≡
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{c1, c2} represents the binary classes. We also tried to train our model with different feature

categories of transforming training data set to different vectors:

1. Count vectors as training features, converting a collection of sentences to a matrix of

term frequency;

2. TF-IDF vectors as training features, converting a collection of sentences to a matrix

of TF-IDF feature scores;

3. N-gram as training features, converting a collection of sentences to a matrix of TD-IDF

scores of N-grams;

The model has been implemented in scikit-learn100, and results are shown in table 3.2.

The class 0 represents irrelevant sentences, and class 1 represents relevant sentences.

Name Accuracy Class Precision Recall F1-score
Count 0.79 0 0.83 0.78 0.80

1 0.76 0.81 0.78
TF-IDF 0.78 0 0.81 0.82 0.82

1 0.77 0.76 0.76
N-gram 0.76 0 0.78 0.83 0.80

1 0.76 0.69 0.72

Table 3.2: Accuracy of NB classifier with different categories.

Recipe Extraction

A recipe in our research is defined as a set of specific actions that are applied to a set

of recognized base materials in experiments within the application domain of nanomaterials

synthesis. After conducting informal elicitation sessions with subject matter experts con-

cerning the format and content of recipes, we developed a written rubric; we then analyzed

27 relevant papers manually to extract recipes as our ground truth. ChemicalTagger101, an

open-source tool for semantic text-mining in the chemistry domain that is based on OS-

CAR102 (a system for automated annotation of scientific articles in the field of chemistry

or a subarea), is used in our research to extract recipes from relevant sentences generated
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from the stage of step extraction in our pipeline. ChemicalTagger generates XML files from

raw text. The XML files include different tags and some of which contain the verbs labeled

as action phrases (e.g. dry, wait) by ChemicalTagger. We then parse the XML and extract

recipes from the sentences containing action phrases.

It is worth noting that we did not use ChemicalTagger directly but rather as a source of

functional features on which our new system is based. The reason is that ChemicalTagger

defines some verbs as action phrases which are not applicable in the nanomaterials domain.

For instance, “prepare” is recognized as a verb and extracted by ChemicalTagger; however,

it is in the stage of preparation rather than the real outcomes of recipe steps in our domain.

Because of that, we have compared the results extracted by ChemicalTagger with our ground

truth and modified the action phrases in ChemicalTagger to be consistent with our domain

knowledge (e.g. adding injection as action phrase).

Front End Intelligent UI for IR & QA

The front end interface has been developed to demonstrate our system’s information

retrieval capabilities. This interface presents the user with the option of querying a set of

papers to view by selecting their material and morphology or the option of searching all

papers by user provided search terms. Our front end shows the system’s functionality after

the payload extraction step has occurred. The resulting papers were initially the output

of the crawler stage which were then modified for retrieval in the payload extraction stage.

After a search is made, the user can view relevant paper titles with their corresponding

images. If a paper is selected for viewing, a user is shown a paper’s extracted contents and

its DOI. A paper’s extracted abstract, experimental section, and references are displayed.

The capability of searching by user provided terms is implemented using the Apache Solr103

search engine.

3.4 Recipe Evaluation

As described above, each desired recipe step output is a demarcated passage or set of pas-

sages within a sentence which includes an action followed by some specific materials and/or
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metrics in our domain. A complete recipe thus consists of multiple recipe stems that are

combined by sequential grouping (begin/end), with the eventual goal of developing a formal

specification language that includes parallel execution (cobegin/coend) and iteration. This

would facilitate the development of a materials synthesis planning language beginning with

a data definition language (DDL) and leading to a formal ontology for specific recipe-based

tasks such as question answering (QA) about ingredients, unit operations, and embedded

numerical quantities, such as concentrations and temperatures. For the recipe evaluation

we need to measure the difference between the recipe output from our system and recipe

ground truth, which is annotated manually. Identifying whether the recipes are the same as

the recipe ground truth is a complex task that is challenging to specify formally and difficult

to automate, because the recipe output also depends on each stage of the extractor pipeline

(Figure 3.1). For example, at the Payload stage, we might lose some information, such

as Unicode characters: °, ≥, or there is some extra space generated between the material

names in our domain, when converting PDF document to text file. Additionally, at the Step

Extraction stage, we trained machine learning model for filtering the irrelevant sentences,

but the accuracy of the model would also affect the final recipe outputs. For the Recipe

Extraction stage, ChemicalTagger, an open-source tool, was used to extract sentences that

include action phrases. Whether these action phrases can fit in our domain or not would

determine the accuracy of the result of recipe extraction.

By examining the holistic output at the sentence level, we calculate precision, recall.

and F1 scores to evaluate the recipe output generated from our system. In our system,

precision (Tr/Tr +Er) indicates the rate of recipes extracted by our system that correspond

to the ground truth recipes, from a known reference set determined by annotation; recall

(Tr/Tr +Mr) measures the rate of known reference recipes that are successfully captured by

our system; F1 score is the harmonic mean of precision and recall.

• Tr (true positives) represents output recipes r from a system that are the same as

ground truth recipes;

• Er (false positives) represents extra recipes r that are captured by our system but
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are not relevant recipes, compared with ground truth;

• Mr (false negatives) represents r that are part of the ground truth recipe but missed

by our system;

The measurement of above parameters is based on cosine similarity, which will eventually

calculate the precision, recall, and F1 score. Moreover, the recipes captured by the system are

from the same document where the ground truth is located. Therefore, there is no meaning

ambiguity between the two recipes in comparison and semantic analysis is not necessary.

Specifically, cosine similarity is used to evaluate how similar two documents are from

each other. These two documents in the form of vectors represent the recipe output from

our system and the recipe ground truth, respectively.

Scoresimilarity =

∑n
i=1Oi ×Gi√∑n

i=1(Oi)2 ×
√∑n

i=1(Gi)2
(3.2)

In Equation 3.2, O and G represent the two documents in terms of vectors, where O

denotes recipe output and G denotes ground truth. We evaluate recipe accuracy for two

perspectives: (a) measure the similarity of the two documents; (b) measure the accuracy of

recipes by looping each sentence in the recipe output to compare with the recipe sentences

in ground truth. Results generated from a and b will be compared and sometimes lead

us to explore further. For example, a high score in terms of similarity between the two

documents but a low score for accuracy of recipes is a red flag to us and further investigation

is warranted. Regarding the accuracy in (b), we consider two situations in which a recipe is

accurately extracted: if the similarity is equal or greater than 70%, the parameter Tr would

be set up to 1, meaning the truth recipe has been outputted by our system; if the similarity

is greater than 50% but less than 70%, we assign the value of 0.5 to parameter Tr. This is

because some of the recipes captured by our system actually are partial ground truth recipe.

A very strict restriction will filter out them.

Table 3.3 shows the average similarity between two documents, percentage of precision,
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DocSimilarity Precision Recall F1
87.95% 74.76% 71.33% 70.27%

Table 3.3: System evaluation results.

recall and F1 score compared the system recipe output with the recipe ground truth of 27

papers which are annotated manually. The evaluation of these 27 papers has been done on

a separate test set other than on the training dataset.

3.5 Conclusions and Continuing Work

The procedural extraction tasks and pipeline described in this paper also represent a test

bed for the document analysis tasks of learning to rank and filter in a focused crawler, text

extraction from typeset documents, snippet and passage extraction, and especially unstruc-

tured to structured information extraction. Each stage of the holistic system affects the

final recipe output, demonstrating a challenging problem of credit assignment that may be

amenable to representations for sequential decision making. In preliminary experiments on

the entire pipeline, we noticed that raising the accuracy of payload extraction, training our

models with more data sets, and extracting action phrases that better fit in our domain

propagate gains downstream to improve recipe extraction accuracy.

Promising findings using corpora crawled using seeds described in95 suggests that next

steps in current and future work ought to involve expansion of the test bed to other nano-

materials domains and examine transfer learning between domains (one type of material

to another), and between tasks (e.g., recipe knowledge base population to recipe QA or

textual entailment). The existing system incorporates information extraction in the form

of full-document payloads and sentential or sub-sentential units of recipe-bearing text, and

also filters collections for relevance to a specified material of interest and incorporates a

presentation module for the display of extracted figures and other embedded content.
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Chapter 4

Document Layout Understanding

This chapter includes two sub-chapters regarding the task of document layout understanding.

4.1 Vision-Based layout Detection from Scientific Lit-

erature using Recurrent Convolutional Neural Net-

works

4.1.1 Introduction

The number of academic literature publications has been growing rapidly. These published

literature documents include a great amount of free text containing potentially valuable in-

formation which can help scientists and researchers to develop new ideas in their fields of

interest, to extract peers’ key insights12, or explore new research areas from various fields

each having their own serials (journals) and conference proceedings94. Unfortunately, the

increasing rate of production of scientific literature in many domains has outpaced the rate

at which individual researchers and smaller laboratories can process new documents and as-

similate knowledge. Millions of academic products (conference papers, journal papers, book

chapters, etc.) are published each year and disseminated as digital documents consisting

of generally unstructured text. Scientific Literature Layout Detection (SLLD) can increase
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the effectiveness of automated information extraction tools by inferring the layout of scien-

tific literature accurately based on geometric and logistic layout analysis, this facilitating

the automatic extraction of metadata such as section delimiters, formatting information for

equations and formulas, procedural data, special environments, captions for tables and fig-

ures, bibliographies, etc. It presents a possible solution for automatic construction of large

corpus, and also provides assistance for some scientific literature-related downstream tasks

of natural language processing (NLP).

Figure 4.1: Examples of inconsistent layouts in scientific literature. The layouts of keyword
vary by different articles.

Portable Document Format (PDF) is a form of digital document which has been most

commonly used in scientific publications. Extracting good quality metadata from PDF
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publications remains difficult and challenging, since publishers have very diverse preferences

of formatting and layouts in their articles. Thus, a single type of information can be organized

in various different formatting styles and fonts for different scientific publications (Figure 4.1).

Existing tools such as optical character recognition (OCR) perform the extraction of raw text

from scanned PDF documents automatically, but they are not used for metadata information

extraction, and the lack of layout analysis will lead to messy results, such as the extraction

of headers and footers together. Furthermore, raw text information extraction from whole

documents tends to necessitate secondary data cleaning, which is extremely time-consuming.

For instance, procedural information extraction in the nanomaterial synthesis domain may

only require textual information from the experimental methods section rather than an entire

scientific article12. In addition, the bottleneck of some existing works of document layout

analysis is related to a lack of comprehensive extraction for different blocks, such as the title,

authors, figures, etc., from scientific literature, including figure and table detection from

digital documents59, full-text extraction from scientific publications104, or domain-specific

figure analysis in scientific articles105. Therefore, a robust method for comprehensive and

efficient information extraction is still needed for common section types that are typical for

many scientific disciplines.

In this paper, we present an end-to-end learning framework that is based on Faster

R-CNN99, adapting the two-stage object detection framework from computer vision for sci-

entific literature documents layout detection. This novel approach detects the main regions

of scientific articles, and outputs the blocks and their corresponding labels, including title,

authors, abstract, body of text, etc.(Figure 4.2). We also create a synthesis data set by

merging and rendering key pages from two scientific document corpora. This allows training

and evaluation of models that are challenging to evaluate given the insufficiency of existing

data set for SLLD tasks. We begin by reviewing related work in Section II and introducing

the methodology in detail in Section III. We then fully describe an experiment design in

Section IV, present evaluation part in Section V, and finally draw conclusions and priorities

for future work in Section VI.
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Figure 4.2: Ground truth: major regions have been annotated.

4.1.2 Methodology

Object detection using deep learning networks has grown popular and for the past decade

convnets have held first position and attained state-of-the-art results on standard data sets

for object detection (e.g. MS COCO106). The task of SLLD is similar to that of object

detection, both of which can locate objects with bounding boxes, and classify these objects

in images with labels. However, digital images in scientific publications are not like the

normal images that include distinct objects like a car, a bird, or a flower. Most of the

scientific document pages only have a few images or tables, and the rest of the parts are

the body text of sections, titles, author lists and affiliations, etc., and the types of font tend

to be different from each other. To address this problem, we try to use different neural

networks for feature extraction from input images, and to combine them with appropriate

anchor ratios for SLLD tasks. Section IV shows significantly improved results generated by

our approach. Moreover, our end-to-end learning framework is more robust compared with

others (e.g., complex document layout analysis57), and it can be applied to any language
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Figure 4.3: Scientific literature layout detection framework.

without additional features (e.g. text embedding46) but document page image for input.

Our approach uses Faster R-CNN107 (Figure 4.3) as our baseline, a classic two stage

object detection framework that is built on Fast R-CNN108. The main improvement of

Faster R-CNN is to replace a selective search algorithm with a region proposal network,

which is based on anchor boxes, to generate proposals for a detection network. Therefore,

there are two neural networks that are involved in the training process: one neural network

is used for proposal region generation which might include target object, and the other is

used for selected regions classification and object detection. Faster R-CNN as our baseline

framework uses ResNet-50109 with Feature Pyramid Networks (FPN)110 as backbone neural

networks for feature extraction and potential region selection. These selected regions are

then fed to the second neural network for object classification and bounding box regression.

The two strategies are applied based on baseline of Faster R-CNN: backbone network

replacement, and appropriate anchor ratio selection for the SLLD task. The experiments

demonstrate that the results are indeed improved using our strategies.

Backbone replacement with VoVNet-v2111 At present, deep learning-based object

detection models rely on Convolutional Neural Network (CNN) as feature extractors, such

as ResNet for Faster R-CNN and DarkNet for YOLOV3112. Although deep neural networks

have performed well on feature extraction, it also incurs the problems of high computational

cost and slow training speed. VoVNet13 network is proposed to resolve the efficiency problem,

and it has been known to have better performance than other deep neural networks based on
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many experimental results. VoVNet is built on One-Shot Aggregation (OSA) modules which

aggregate concatenation feature only once in the last feature map rather than aggregate

previous feature at every subsequent layers, for instance, by DenseNet113. VoVNet has

several architectures based on different numbers of CNN and OSA on different layers, such

as VoVNe-39 and VoVNet-57. VoVNet-v2 further improves performance and efficiency of

VoVnet by adding (1) residual connection which enables us to train deeper networks, such as

VoVNetV2-99; (2) Squeeze-and-Excitation (eSE) attention module on the last feature layer

to improve the performance. We use VoVNetV2-39 as a backbone for feature extraction

within Faster R-CNN framework.

Figure 4.4: Aspect ratio analysis for anchor box.

Anchors Aspect Ratio Selection Anchor boxes use a similar mechanism as sliding-

window to capture the most likely regions which contain objects with different scales and

aspect ratios on RPN stage. Different objects have different aspect ratios (width/height)

to be detected in images, such as the aspect ratio of a car, which is around 1:2, or that

a utility pole, which might be 1:10 or lower. To accurately identify the proper schemes of

different anchor sizes of pre-detected objects will improve the prediction results. In SLLD

tasks, for instances, the aspect ratio box of text body is different from the aspect ratio box

of author. We analyze the distribution of bounding box sizes based on the ground truth

object bounding box coordinator of our synthesis data set with K-means cluster anchor box

selection114, and got the aspect ratios for different blocks ranging from 0.1 to 4.0 (Figure

4.4) by choosing 50 clusters. The details of Anchor parameters configuration are presented

in Implemented Details.
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4.1.3 Experiment

Synthesis Data Set

There are few available data set for SLLD task. Soto et al. introduced a good but small

data set that is annotated manually for SLLD115. This data set incldues 822 images from

100 PDF scientific literature, and 9 labeled region classes to cover major region layout of

scientific literature. However, it has an instance imbalance issue such that there are 1275

instances of body, which are way more than the 100 instances of title. This is because a

paper normally has only one title, a few authors, but the number of body of text are at least

as many as the number of pages, and sometime even twice or three times more than the

number of pages depending on the layout of the document. Moreover, this data set missed

the label of Keywords which usually indicates the most refined and significant information

from the scientific literature. In order to solve the above issue, we create a synthesis data

set, which is not only an extension of the data set from Soto et al.115 but also integrates two

other data sets as follows:

• ICDAR-2013116: This data set includes 150 tables from 67 PDF documents, 40 PDFs

among which are collected from US Goverment and the rest are from EU. The purpose

of constructing such a data set is to increase the diversity of tables in use. All of the

PDF documents are converted to images.

• GROTOAP117: This data set has 113 annotated PDF documents from scientific liter-

ature. It achieves 100% accuracy since it is annotated manually. We only chose the

first page of each PDF scientific document, and converted them into images for our

synthesis data set in order to increase the minority instances and solve the instance

imbalance issue.

After combining these three data sets, we extracted 1550 image pages from 363 PDF

documents. All of images have been converted to a fixed size of 612 × 729 at 200 dpi. We

use 10 labels to classify the major regions from the scientific literature with the synthesis

data set:
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• Title : the title and subtitles.

• Authors: the author names.

• Address : the affiliation information of authors, including authors’ address, email, etc.

• Abstract : an abstract section.

• Keyword : the selected keywords.

• Body : the main block of articles.

• Figure : all figures but excluding logos or icons from publishers.

• Table : the tabular contents.

• Caption : the captions for both figures and tables

• Reference : the bibliography information, excluding post-references notes.

Figure 4.5: Instances comparison between two data sets by labels.

We added one more label keyword, merged table caption and figure caption as caption

from115 data set, and keep the rest as the same. Figure 4.5 shows instances comparison

between Soto et al. [28] data set and our Synthesis data set.

Implementation Details
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The models are trained with pre-trained weights on MS COCO data set (∼37 epochs)106.

Two stage object detection frameworks Faster R-CNN and Mask R-CNN are implemented

using Detectron2118. All models are trained and tested on a single NVIDIA Tesla P100 GPU

with a batch size of 8 for 150 epochs. SGD (Stochastic Gradient Descent) is used as the

optimization algorithm. The initial learning rate is 0.002, and decays by 0.1 after 100 epochs.

We used different neural networks as a backbone for feature extraction from input images:

ResNet-50+FPN, VoVNetV2-39. There are 5 anchor scales in powers of 2 from 32 to 512,

8 anchor aspect ratios from 0.2 to 2.8 based on K-means selection results for VoVNet-v2

backbone model, and the reset of models are trained by standard aspect ratios [0.5, 1.0, 2.0].

We also trained a single-stage object detection framework YOLOv3112 with our synthesis

data set for comparison. This model uses DarkNet53 base network that were pre-trained on

MS COCO data set.

4.1.4 Evaluation

We constructed object detection frameworks with different configurations, and train them

with two different data set to compare them with our design SLLD model. All of these models

start by being trained using pre-trained models on MS COCO106 data set. For obtaining a

thorough performance evaluation, we use MS COCO106 evaluation metrics to measure SLLD

results rather than other simple evaluation methods, such as precision and recall, because it

can help to evaluate various sizes of objects from detection results. For SLLD tasks, it can

help to evaluate different region sizes of scientific literature based on the detection results.

MS COCO106 evaluation metrics with different IoU thresholds

• mean Average Precision (mAP): mean average precision at IoU = 0.5:0.05:0.95

• Average Precision 50 (AP50): APIoU=0.50

• Average Precision 75 (AP75): APIoU=0.75

• Average Precision for small object (APs): area (pixel-wise) < 322
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• Average Precision for medium object (APm): 322 < area (pixel-wise) < 322

• Average Precision for large object (APl): area (pixel-wise) < 962

• Average Recall (AR)

Data Set

• data set1 (D1): original data set115 - 600 image for training, 222 images for testing.

• data set2 (D2): synthesis data set - 1225 images for training, 325 images for testing.

Table 4.1: Overall comparison among SLLD results (%) with different methodologies and
data set at IoU = 0.5:0.05:0.95. D1 represents data set1 and D2 represents data set2.

Detector Backbone Data Set mAP AP50 AP75 APs APm APl AR
Soto et al.(30 epochs) [28] ResNet101 D1 - 70.30 - - - - -
Faster R-CNN (baseline) ResNet50 FPN D1 69.76 87.46 76.49 - 51.65 77.41 62.70

Faster R-CNN ResNet50 FPN D2 77.48 92.39 84.42 35.00 63.32 77.65 69.50
Mask R-CNN ResNet50 FPN D1 70.68 87.60 82.90 - 52.05 75.05 65.50
Mask R-CNN ResNet50 FPN D2 77.66 91.79 85.80 40.00 64.378 75.604 69.50

YOLOV3 (49 epochs) [28] - D1 - 68.90 - - - - -
YOLOV3 DarkNet53 D2 45.90 66.50 57.10 - - - 46.33

Faster R-CNN VoVNetV2-39 D1 67.12 89.01 72.84 - 47.66 73.56 60.50
Faster R-CNN (ours) VoVNetV2-39 D2 76.39 95.02 86.46 75.00 62.25 74.22 68.80

Figure 4.6: Detection results comparison between two data sets by labels at 0.5 IoU.

Our algorithm of SLLD tasks has significantly improved results compared with others

(Table 4.1), especially for the object detection in small area, such as the area displaying
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keyword and the area presenting authors in scientific literature. We believe that this result

is benefited by our appropriate anchor analysis. We redesign aspect ratio of anchor box

rather than using simple numbers [0.5, 1.0, 2.0] for the most commonly used detection tasks

to cover more labeled regions in scientific literature documents. Likewise, the result indicates

that our framework also obtains improvements in each labeled region of SLLD tasks. (Figure

4.6).

Figure 4.7: Detection results with corresponding labels.

Our framework performs well on major region detection from scientific literature (Figure

4.7). However, it still fails to detect non-rectangle region in the images of scientific documents

(left figure in Figure 4.8). We attribute this to the restriction of annotation methods. For

data set annotation, we used rectangles instead of bounding polygons, which could be a

viable and more flexible representation for non-rectangular regions. Moreover, duplicated

bounding boxes are found to detect a single region area in the images of scientific documents

(right figure in Figure 4.8). We think this issue will be improved by training by deeper

network, such as VoVNetV2-99., and with more epochs.
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Figure 4.8: Examples of failure: left figure represents failure of locating polygon regions, and
right figure represents overlap of bounding boxes for single region.

4.1.5 Conclusion

For SLLD tasks, we introduce a novel end-to-end learning and vision-based framework. The

major regions in scientific literature documents will be detected through the model which

is trained by our framework. This model not only detects text regions but also figures and

tables. Our approach is easy to adapt and implement for a broad range of scientific literature

formats and domains, since it does not require extraction of additional features (e.g. text

information of document). Fine-tuning pre-trained model which is generated from irrelevant

tasks is feasible through our experiment. Specifically, we used a pre-trained model with MS

COCO106 which does not have any classes in the data set that are related to our SLLD

work. Compared with other approaches of document layout analysis that are only working

on some parts of the documents, our approach is built on the entire document rather than

some regional information, and therefore it offers a possible way to construct large corpus

for downstream NLP.

Regarding the continuing work, more instances of minority classes should be added into
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training data set, such as title, authors, keyword, to improve minority object detection

results. Although we apply transfer learning to our models, the training process is still not

as efficient as what we expected. We are going to replace complex network with lite neural

network, such as MobileNetV2.

4.2 Transformer-based Approach for Document Lay-

out Understanding

4.2.1 Introduction

Rapidly growing digital documents have become a key part of information transformation.

However, due to the various layouts and the complex structures of documents, automatically

structured analysis of documents is crucial to speed up the transformation process (Figure

4.9). Document Layout Understanding (DLU) is a central step in automatic analysis, recog-

nition of document structure, and information extraction out of document images. It leads

to an important research direction for both Computer Vision (CV) and Natural Language

Processing (NLP), and is a fundamental task of Document AI, which aims to automatically

read, understand, and analyze documents.119.

DLU plays an essential role in object detection tasks for document images to detect

and recognize the fundamental components such as title, text body, figures, and tables in

the document as objects. Some well-known deep learning-based object detection methods

have been applied to DLU tasks, such as using a CNN-based neural network at pixel-level

for document segmentation46;120 and Faster R-CNN based architecture for document layout

detection13. Meanwhile, recent work introduces and integrates text, visual features, spatial

features as the multi-modal model for DLU tasks121;122. These additional information could

help models obtain SOTA performance on relevant datasets. In this paper, we only use

visual features for DLU tasks.

The attention-based transformer architecture has been widely employed in Natural Lan-
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Figure 4.9: Examples of complexity layouts of document image.

guage Processing domain, and has been approved for its performance. It is also becoming

increasingly attractive in recent object detection fields. Carion et al.123 develop DETR

which is the first transformer-based end-to-end object detection framework. In contrast

to conventional one-stage and two-stage detection networks, it utilizes prediction methods

which directly conduct bounding box predictions with Hungarian bipartite matching, instead

of using the anchor and non-maximum suppression (NMS) mechanism. However, the slow

convergence and inaccuracy of small object performance of DETR make it inefficient. Zhu

et al.124 propose Deformable DETR based on DETR architecture which solves DETR’s issue

of slow convergence and high complexity, and they have introduced the idea of deformable

convolution125 to the attention module.

46



Given the impressive performance of the transformer in the CV field, it will be inter-

esting to see if we can also take advantage of it in the DLU area. Therefore, we propose

a fully transformer-based framework for document layout understanding, namely TRDLU.

The TRDLU is an end-to-end DLU detector with vision transformer - Swin Transformer126

as the backbone for feature extraction from the input image, and connect with transformer

encoder-decoder for document layout detection and recognition. This study integrates the

most recent work in the transformer of the object detection area and outperforms the pre-

vious transformer-based as well as CNN-based object detection frameworks123;124 for DLU

task.

The main contributions of our paper are presented as follows:

• This study is the first one to introduce a fully transformer-based detector pipeline for

the task of DLU method, namely TRDLU.

• the proposed detector pipeline outperforms the previous transformer-based detector

on DLU tasks, and is even better than the multi-modal feature-based detectors;

• the experiment results show that TRDLU outperforms the previous state of the art in

DLU benchmark datasets

4.2.2 Methodology

The overall TRDLU contains three main components: a transformer backbone, transformer

encoder-decoder, and set prediction.The transformer backbone is used for visual feature

extraction from the input images. The transformer encoder takes the feature in, and outputs

the potential object features. The transformer decoder uses encoder outputs and object

queries to generate final predictions for feed forward network (FFN). The final output will

be generated by the set prediction process. The details of the detector pipeline are shown in

Figure 4.10.

Transformer Backbone We use Swin Transformer126 which is one of the state of the

art architecture in the vision in transformer family as backbone for visual feature extraction
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Figure 4.10: The architecture of TRDLU.

from input images. Considering the input image is H × W × 3, Swin Transformer first

splits the image into 4 non-overlapping patches as tokens with the patch splitting module.

Then it sets the patch feature as a concatenation of the pixel values, and feeds it into the

first stage of the two-stage module through a linear embedding layer, followed by two Swin

Transformer blocks. Starting from the second stage, the patch features will be concatenated

into 4C-dimensional by the first patch merging layer and converted into 2C-dimensional

features with a linear layer. Finally, the feature transformation will be achieved by applying

Swin Transformer blocks. The steps in stage 2 will be repeated in the rest of the stages.

We use Swin tiny version (Swin-T) which has 4 stages as backbone, and the layer number

of each stage is 2, 2, 6, and 2, respectively. The final feature output is f ∈ R
H

32
×
W

32
×8C

,

where C represents the channel dimension. In addition, the position information is added

into the feature map, flattened to spatial feature map f ∈ RN×D, and sent to the multi-layer

transformer encoder, similar to the Deformable DETR125.

Transformer Detector The novelty of this study is to combine merits of the most

recent transformer-based works in CV, including the top-k object query127, bounding box

refinement and two-stage strategy125, and auxiliary losses in encoder layer128 to improve

the performance in terms of accuracy and efficiency. This combination is integrated into

the implementation of the transformer-based encoder-decoder detector which follows the
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structure in Deformable DETR.

Transformer encoder-decoder We construct the basic architecture of the transformer

encoder-decoder following the structure in Deformable DETR125.

Transformer encoder employs a multi-scale deformable attention module. The output of

the previous layer is considered as the input of the current layer, which will be combined with

the positional embedding as object queries. The deformable-attention reduces computational

complexity by considering only the relevant keys for each query instead of every pair of queries

and keys. Because of the decrease in computational complexity, we add auxiliary detection

heads into the encoder layer, which will not increase the cost pressure, but improve the

model performance.

Transformer decoder employs self-attention and multi-scale deformable attention modules

which contain object queries as query elements. The reference point is predicted for each

query and used for the multi-scale deformation attention model to extract image features.

To optimize the model result, the detection head is applied to bounding box prediction to

predict the deviations from the box center where the reference point was placed initially.

Hence, this process facilitates the speed of model convergence.

Top-k object query The Top-k object query mechanisms is introduced by Efficient

DETR127, where the encoder outputs can be used as decoder inputs and each of them is

associated with an auxiliary detection head which computes a class score as a measurement

of each output’s objectness. The top-k encode outputs are then selected as the decoder

queries based on the class score. We employ the top-k decoder query selection because it

is identified to generate better results compared with the methods used in DETR123 and

Deformable DETR125.

Bounding box refinement The implementation of bounding box refinement (BBR)

follows the structure that is used in Deformable DETR125. The key idea of BBR is to

refine the predicted bounding boxes by the current decoder layer based on the previous layer

predictions. The predicted bounding box is represented by bdp{,y,w,h} ∈ R, where d is the

decoder layer and p is the coordinator of prediction bounding box. The BBR process is

repeatable from the first decoder layer to the last decoder layer. The final refinement result
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is returned by the last decoder layer. This iterative bounding box refinement mechanism

can effectively improve detection performance.

Two-stage We apply the two-stage method which is introduced from two-stage De-

formable DETR to our transformer detector. The object queries of the decoder layer in

one-stage method are generated by predefined embeddings directly. Unlikely, the two-stage

method first selects the top-k proposal boxes in the first stage based on their class scores,

and feeds the selected boxes into the decoder and set positional embeddings of object queries

as positional embeddings of region proposal coordinates during the bounding box refinement

process. These object queries are more relevant to the current image. Following the two-stage

Deformable DETR, we use multi-scale feature maps to generate anchors for each position

and set the base anchor scale to be equal to 0.05. Then C (C is number of classes) category

scores and 4 offsets per anchor are predicted by the detection head.

Loss Function For the bounding box loss function, we use Distance Intersection over

Union129 with l1 loss:

Lbox(bσ(i), b̂i) = λdiouLdiou(bσ(i), b̂i) + λL1||(bσ(i) − b̂i)||1 (4.1)

where λdiou, λL1 are hyper-parameters, Ldiou is the distance IoU loss. The Hungarian loss

function is used to calculate the classification loss and bounding box regression loss between

prediction and ground truth:

LHungarian(ȳ, ŷ) =
N∑
i=1

[
Li,σ̂(i)

class + 1{ȳi ̸=∅}Li,σ̂(i)
box

]
(4.2)

4.2.3 Experiment

We evaluate TRDLU on three different benchmark datasets. Two of them are document

layout related datasets, and one is a table detection dataset. For fair comparisons, we use

MS-COCO evaluation metric which is the same evaluation metric used by each benchmark.

50



Benchmark Datasets

Scientific Literature Regions (SLR) is a synthesis dataset of DLU. It contains

1660 document images which are captured from three existing datasets: Article Regions115,

ICDAR-2013116, and GROTOAP117. This dataset includes 11 classes corresponding to the

main regions of documents, including Title, Author, Address, Abstract, Keyword, Body,

Figure, Table, Caption, Reference, and Text.

PubLayNet130 is a large dataset for document layout analysis. The document layout

is labeled by bounding boxes and polygonal segmentations. This dataset contains 360K

document images and 5-region annotation classes: Title, List, Text, Figure, and Table. The

ground truth of the test set is not released because the authors want to keep it for the

competition. Therefore, we evaluate our model on the validation dataset.

TNCR131 is a table detection dataset. It contains 9428 labels with 6612 document

table images. This dataset includes 5 different classes to present the various table formats

of scanned document images: No lines, Partial Lined, Merged Cells, Partial Lined Merged

Cells, and Full lined.

Table 4.2: Detection results comparison on Scientific Literature Regions (SLR) and TNRC
datasets.

Detector Dataset mAP AP50 AP75 APs APm APl AR
Faster R-CNN13 SLR 76.24 93.52 85.77 62.78 63.67 76.33 81.31

Cascade Mask R-CNN132 SLR 79.92 94.36 88.30 70.75 69.84 81.26 88.60
Deformable detr SLR 80.61 95.50 88.50 58.70 66.90 83.30 87.70
TRDLU (ours) SLR 82.70 96.40 90.70 75.40 73.30 83.60 89.20

Deformable detr131 TNRC 86.70 93.80 87.40 - - - 89.60
TRDLU(ours) TNRC 90.60 93.90 92.50 - - - 98.10

Implementation Details We use pre-trained Swin-Tiny Transformer126 backbone net-

work. The transformer includes 6 encoder and 6 decoder layers associated with the auxiliary

detection head for each layer. The models are trained on Nvidia A40 GPU machine. We set

batch size to 2 to train the models for 50 epochs on Scientific Literature Regions and for 30

epochs on TNCR datasets, respectively. The initial learning rate is set to 0.0002 and decays

by 1/10 after the 40th and 25th epochs. For PubLayNet dataset, the model is trained by
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Table 4.3: Detection result comparison on PubLayNet dataset.

Method Text Title List Table Figure mAP
VSR121 96.70 93.10 94.70 97.40 96.40 95.70

DocSgeTr133 89.90 73.60 89.50 97.50 96.60 89.40
TRDLU (ours) 95.82 92.13 97.55 97.62 96.62 95.95

batch size 4 for 10 epochs with an initial learning rate of 0.0002 and decays by 1/10 after

the 8th epoch. The rest hyperparameters are the same as those in Deformable DETR.

Performance comparison We compare TRDLU on three DLU task-related benchmark

datasets with the same tasks using state-of-the-art detection approaches. For SLR and

TNCR datasets (Table 4.2), TRDLU outperforms all other methods and improves the mAP

(mean average precision) up to 2.9 percent on SLR and 3.0 percent on TNCR. It also increases

the AR (average recall) by 1.5 percent and 8.5 percent on SLR and TNCR, respectively.

Table 4.3 shows the comparison results on PubLayNet. The TRDLU outperforms most

other methods, and it is even better than the results using the VSR121, a multi-modal

framework.

Attention result analysis Figure 4.11 shows the attention map visualization results.

The encoder could recognize the potential objects. It participates in the instance separation

process, and gives the approximate object location. The decoder cloud gives the precise

bounding boxes for different objects after model training. The attention visualization results

can help us gain intuitions regarding how attention mechanisms work.

4.2.4 Conclusion

In this chapter, we present an end-to-end transformer-based framework for document layout

understanding, namely TRDLU. It integrates the merits of the most recent research works in

this field. It is the first study of a fully transformer-based framework, and outperforms the

experiential results generated by other research on both CNN-based and transformer-based

frameworks.
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Figure 4.11: Attention map visualization of TRDLU. The middle image is the input image.
The two upper figures represent the decoder attention map, the lower two figures represent
the encoder attention map.
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Chapter 5

Automatic Metadata Information

Extraction from Scientific Literature

using Deep Neural Networks

5.1 Introduction

This chapter addresses the task of simultaneous layout and free text recognition using a hy-

brid deep learning architecture that combines mask and cascade variants of Recurrent Con-

volutional Neural Networks (RCNN) and Convolutional Recurrent Neural Network (CRNN).

We are motivated by the fact that the research community has expanded dramatically and

the number of published scientific reports across scientific fields grows enormously each year.

Research shows that the volume of daily publication doubles every 15 days134. Scientific

literature thus includes much valuable information for researchers to help them extract key

insights94 and potential methods12 in their respective research area. The time required to

select and systematically read this increasing body of scientific literature presents a ma-

jor challenge to researchers. Natural Language Processing (NLP) technology provides an

efficient way for scientists and researchers to gain key insights from published articles, par-

ticularly by helping to find relevant papers related to their research area135. These efficient
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methods must, however, be trained using large corpora. Reconstructing this large corpus

automatically is an ideal task for scientific literature-related NLP.

The digital documents have been most used in scientific publications, such as Portable

Document Format (PDF) documents which are not machine-readable. The information of

text, image, or table from these digital documents must be extracted for further processing.

Some existing tools can help extract text information from digital scientific literature. For

instance, PyMuPDF97 or Tesseract Optical Character Recognition (OCR) engine136 can help

extract plain text from PDF documents. These tools, however, do not provide a comprehen-

sive solution that combines layout segmentation and text recognition to produce structured

metadata for the scientific literature such as a paper’s title, authors, abstract or bibliographic

references. CERMINE57, an open-source system for extracting structured metadata infor-

mation from scientific articles, can generate an XML file that includes labels for each region

of an article as well as content text, but it is not flexible enough to adapt to various formats

of scientific literature, e.g., it cannot process three-column PDF scientific documents. Thus,

a robust comprehensive framework is urgently needed.

Figure 5.1: Example of metadata information extraction from a scanned scientific literature
with end-to-end framework.

To address the limitations mentioned above, we present an end-to-end learning frame-

work for neural networks, as designed for the task of comprehensive metadata information

extraction from scientific literature. In this work, our novel contribution integrates an ob-
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ject detection model based on Cascade R-CNN132 and Mask R-CNN137 that can be used

to detect main region layout in scientific literature and text recognition model based on

CRNN138. The output gives the labels of corresponding regions, such as title, author, and

abstract, and the content text of each main region (Figure 5.1). We also extract images and

tables without processing the content into text. We train the framework separately, and the

experiment results demonstrate that the applied transfer learning with fine-tuning in a pre-

trained model works well even for tasks that lack large, annotated corpus. Meanwhile, we

create a new annotated data set for scientific literature layout detection tasks. The data set

will be available at: https://github.com/huichentt/scientific_literature_regions.

5.2 Methodology

We treat metadata information extraction from scientific literature as detection and recog-

nition tasks, which our system performs in two independent stages whose results are then

integrated within our end-to-end framework. In the first stage, the detection model identi-

fies the potential key regions of the scientific literature in the rectangular boxes as well as

the corresponding text blocks. In the second stage, the recognition model recognizes and

transcribes the words from the regions that have been detected. This two-stage process has

two main advantages: the flexibility of training process and the independent recognition of

different languages. We describe our approach in depth in the following section.

Scientific Literature Layout and Text Detection

In scientific literature, metadata elements or attributes such as title, author, abstract,

etc., are considered major regions which can be delimited using different bounding boxes

within a scanned document image. We consider the problem of scientific literature layout

detection as one of object detection due to the similar characteristics between the underlying

formal tasks. Besides the layout of major regions in scientific literature, lines of text also

need to be detected in the text recognition stage. Unlike the scene text detection task, text

in scientific literature does not involve complex backgrounds or irregular fonts. Therefore,

we perform the text line detection using the same object detection model. Our experiment
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shows the feasibility of this approach.

Figure 5.2: Architecture of Cascade Mask R-CNN. The segmentation branch is added to
each cascade stage.“C” is classification,“S” is segmentation branch, and “B” is bounding
box.

Our novel neural architecture combines Cascade R-CNN and Mask R-CNN within our

scientific literature layout and text detection framework. Cascade R-CNN is an extension

of the Faster R-CNN107 which is a classic two-stage object detection network. The first

stage of Faster R-CNN uses region proposal network that takes the feature map as input

and generates the hypotheses of object proposals. These hypotheses would be processed by

a region-of-interesting network to generate the detection head in the second stage. Each

hypothesis is generated based on a final classification score and a bounding box. Unlike

Faster R-CNN with single R-CNN network, Cascade R-CNN extends the Faster R-CNN to

multi-stage with cascaded regressor. The different stages have different heads
{

H1 , H2 , ...,

HN

}
(where N represents the number of heads) and each of the heads is assigned to a specific

IoU (Intersection over Union) threshold which defines the quality of a detector to produce

the bounding boxes that are loosely aligned with (small threshold) or tightly aligned with

(large threshold) their ground truth. The multiple specialized regressors
{
f T , f T−1 , ..., f 1

}
(where T represents the total number of cascade stages) are optimized for the distributions

that are resampled for the different heads. This resampling procedure of cascaded regression

provides good positive samples for the next stage. Those features of Cascade R-CNN show

better performance than Faster R-CNN. On the other hand, Mask R-CNN is another state-

of-the-art object detection network and is modified based on Faster R-CNN. Compared with

Faster R-CNN, the Mask R-CNN introduces ROIAlign to replace the ROI Pooling layer of

Faster R-CNN to resolve the pixel-to-pixel misalignment issue between network inputs and
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outputs. Moreover, Mask R-CNN adds a segmentation branch for instance segmentation.

The final loss function is composed of three parts: classification, bounding box regression,

and mask loss.

To integrate Cascade R-CNN and Mask R-CNN, we use ResNet-50109 with a Feature

Pyramid Network (FPN)139 as the backbone network for feature extraction from input im-

ages. The RPN network generates the proposal regions which are then fed into ROI pooling

layer. The network head takes ROI pooling as input and generates three predictions: clas-

sification (C), mask (S), and bounding box regression (B). The output of one stage is used

as input for the next stage (Figure 5.2). Therefore, the current bounding box distribution is

generated by the previous regressor to optimize the current regressor. The final loss function

combines classification and location (bounding box regression) loss functions at different

stages (1).

L =
2∑

i=0

(Lcls Si + Lloc Si ) + L
cls FPN

+ L
loc FPN

+ L
mask

(5.1)

In the equation above, cross-entropy loss is used as the classification loss function, and

smooth L1 is used as the bounding box regression loss function. The total loss function is

calculated at three cascade stages (denoted by i ranging from 0 to 2), FPN network, and

mask branch. We choose GIoU (Generalized Intersection over Union) (2)140 instead of IoU as

increasing thresholds over stages. The GIoU handles the case of non-overlapping bounding

boxes that is inapplicable for IoU.

GIoU = IoU− |Cab − U|
|Cab|

(5.2)

In the equation above, C represents the smallest enclosing convex object of a and b where

a and b are two arbitrary convex shapes. U represents the area of C that does not belong

to either a or b. The bounding box regressor trained for a certain GIoU threshold tends to
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produce bounding boxes of higher GIoU threshold. The segmentation branch has been added

to the last cascade stage. Furthermore, the anchor box aspect ratio is another important

thing to be considered in object detection tasks since different objects have different aspect

ratios. For instance, the aspect ratio box of reference is different from the aspect ratio box of

text block in scientific literature layout detection tasks. Our experiment results demonstrate

that selecting appropriate aspect ratio brings a higher accuracy level.

Text Recognition

Figure 5.3: Architecture of text recognition model.

We propose a text recognition model based on an CRNN architecture which outputs a

sequence of characters (Figure 5.3). The model uses Convolutional Neural Network (CNN)

to extract visual features from input images. We use ResNet18 as backbone for visual feature

extraction. Then the feature vector will be used to predict the character label distribution

of each frame through the sequence modeling stage - a multi-layer Bidirectional Long-Short

Term Memory (BiLSTM) network141 which is used for sequence feature extraction. The

BiLSTM layer will generate a number of layer-specific hidden state sequences, h1 , h2 , ...,

hN , where N is the number of layers in the BiLSTM. The encoder layer is followed by a

softmax to produce a posterior probability matrix y = (y1 , y2 , ..., yT ) where T is the length

of the sequence. The last transcription layer is implemented by Connectionist Temporal

Classification (CTC) loss142. CTC allows us to find the optimal label with the highest

conditional probability by using dynamic programming to compute all potential alignment

paths for predicting the probability distribution of all characters of the alphabet at each

position in the image.
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L = log
∑

c∈A(s)

T∏
t=1

p(ct|hNt ) (5.3)

In the above loss function, hNt represents the probability of having N th hidden layer at

time stamp t. The ct ∈ C is a label set, consisting of all the possible output labels and

a “blank” symbol. A(s) includes all possible paths of sequence s, where s = s1, s2, ...,

sL. The alignments between those predictions could include duplicate or blank characters.

For instance, the word “STUDY” could be processed into “S-T-UU–DD-Y” such that there

are duplicate and blank characters. Assuming that the optimal labeling is from the most

probable path, we can find the most probable path based on the most likely character at each

position of the sequence. The duplicate characters will be removed then if there is no blank

character between them. The loss function is used to jointly learn all the model parameters.

5.3 Experiment

In this section we describe the data set that we use to train the models, together with

implementation details for training process.

Data Set

We use two data sets to train the framework independently.

Scientific Literature Layout and Text detection

Due to the limited availability of training corpora, we developed a new corpus by an-

notating the composite corpus (synthesis data set) from Yang et al.13. This experimental

test bed combines three existing data sets: region-labeled articles115, ICDAR-2013116, and

GROTOAP117; however, it does not include text block-related annotation. Therefore, we

labeled text blocks using 110 images from 20 scientific literature in PDF format. The final

data set has 1660 images from 383 scanned scientific articles in PDF format, and it includes

11 labels corresponding to main regions.
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• Title : the title of scientific literature.

• Authors: the authors’ names.

• Address : the affiliation information of authors, including authors’ addresses, email,

etc.

• Abstract : an abstract section.

• Keyword : the selected keywords.

• Body : the main block of articles.

• Figure : all figures but excluding logos or icons from publishers.

• Table : the tabular contents.

• Caption : the captions for both figures and tables.

• Reference : the bibliography information, excluding post-references notes.

• Text : text block.

Text Recognition

We use a combined corpus of data sets to train the network for text recognition. Three

different data sets are integrated into the composite data set. The first one is English2k which

is the sub-data set of SCUT FORU DB143. It has 1715 natural images for text detection and

recognition from the Flickr website. We crop 7136 images of characters from this data set

since we only focus on text recognition tasks. The second and third data sets are generated

by Text Recognition Data Generator, which is an open-source tool to generate synthetic

data for text recognition. We use three categories to produce the composite data randomly

for generating:

• 2000 images of letters and numbers, containing 3, 4, 5, 6, 7 characters, respectively.

• 2000 images of letters only, containing 3 to 7 characters, respectively.
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• 5000 images of letters, numbers and symbols, containing 5 characters.

The final combined corpus for text recognition consists of 30136 images. We split them

into 24000 images for training and the rest are used for testing.

Implementation Details

All models are trained and tested on a single NVIDIA 2080 Ti GPU. The framework

of scientific literature layout detection and text detection is implemented on Pytorch using

Detectron2118 and fine-tuned with pre-trained weight on MS COCO data set106 ( 37 epochs).

It has been trained with a batch size of 4 for 50 epochs. The SGD (Stochastic Gradient

Descent) is used as an optimization algorithm. We use 0.002 as the initial learning rate

which decays by 0.1 after every 20 epochs. The Cascade Mask R-CNN model is trained with

GIoU threshold values of 0.5, 0.6, and 0.7, with 5 anchor scales from 32 to 512, and with 4

anchor aspect ratios: [0.1, 0.5, 1.0, 2.0]. The rest of models are trained by standard aspect

ratios with [0.5, 1.0, 2.0]. We also use YOLOv3112 which is trained based on DarkNet53

network that was pre-trained on MS COCO data set.

Compared to the detection model which processes the images with sizes close to 612 ×

729 pixels, the text recognition model processes much smaller input images at 32 x 280 pixels.

Thus, we use ResNet18 as CNN layer to extract the feature from images. Our experiment

indicates that using ResNet18 increases the accuracy by 7% compared with VGG1695. To

consider the robustness of the recognition model, we add some scientific literature-related

symbols, such as ±, ◦C, ̸=, to the dictionary to train the model. The text recognition model

has been trained from scratch with 50 epochs.

5.4 Evaluation

We evaluate our end-to-end framework from two different perspectives. First, we use the

same data set to train and test other different configuration models to compare with our

Cascade Mask R-CNN model for scientific literature layout and text detection. The detection

results may affect the performance of the final framework, because the text recognition model
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relies on the layout and text detection results. Second, we manually determine ground truth

from 10 scientific articles for metadata extraction evaluation. It includes the main regions

of scientific literature that are consistent with our training data set. Given the various

layouts from different publishers, this ground truth is collected from different publishers for

robustness testing.

Scientific Literature Layout and Text Detection Evaluation

We use MS COCO evaluation metrics for layout and text detection testing. COCO

provides 12 indicators to evaluate the performance of object detector. We use 7 of these for

our detector evaluation. The Faster R-CNN with ResNet50 FPN is baseline, and we compare

it with different other object detection models using different backbones. Our Cascade Mask

R-CNN model achieves better performance than others for scientific literature layout and

text detection tasks (Table 5.1).

Table 5.1: Overall comparison of bounding box results for scientific literature layout and
text detection.

Model Backbone mAP AP50 AP75 APs APm APl AR
Faster R-CNN (baseline) ResNet50 FPN 75.79 92.51 84.24 59.18 63.82 76.71 78.95

Faster R-CNN GIoU ResNet50 FPN 76.24 93.52 85.77 62.78 63.67 76.33 81.31
Faster R-CNN VoVNetV2-39 76.52 93.23 86.50 72.32 61.63 74.66 77.28

YOLOV3 DarkNet53 55.36 73.65 64.10 - - - 53.26
Mask R-CNN ResNet50 FPN 77.25 92.22 85.60 64.38 65.23 77.65 83.96

Cascade Mask R-CNN (ours) ResNet50 FPN 79.92 94.36 88.30 70.75 69.84 81.26 88.60

Likewise, for each label, our Cascade Mask R-CNN model also outperforms the baseline

Faster R-CNN (Figure 5.4). More examples of layout and text detection are shown in Figure

5.5.

Metadata information extraction evaluation

We use precision, recall and F1 to evaluate the performance of metadata information

extraction.

Precision =
NC

NT

, Recall =
NC

NG

(5.4)
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Figure 5.4: Detection results comparison with baseline by labels at 0.5 IoU.

where NC is the number of words extracted correctly by our framework, NT is the total

number of words extracted, and NG is the number of words in ground truth. To be clear,

the extracted word is considered correct if all characters match the word of ground truth.

In addition, we consider the subscript or superscript character as a regular part of the word

and ignore the different font styles. Moreover, the metadata information does not include

any text from images or tables. We conduct these three tests for each label and compare

them with CERMINE (Table 5.2).

Table 5.2: The evaluation results comparison between our approach and CERMINE.

Label Name Precision(%) Recall (%) F1 (%) Precision(%) Recall (%) F1 (%)
Our approach CERMINE

Title 90.92 88.73 89.81 91.67 89.27 90.45
Authors 82.57 80.36 81.45 74.75 67.37 70.87
Address 87.22 79.69 83.29 87.16 79.29 83.04
Abstract 81.26 78.59 79.90 75.18 75.17 75.17
Keyword 92.93 91.56 92.24 77.84 64.84 70.75

Body 75.23 77.49 76.34 83.56 79.79 81.63
Caption 79.16 77.86 78.50 22.50 22.50 22.50

Reference 62.73 58.52 60.55 59.77 62.55 61.13

The metadata information extraction results from text recognition model heavily depend

on the training data set. Our ground truth in this evaluation is collected from scientific pa-

pers, particularly related to biology and materials science. Some domain-specific characters

such as unit symbols in chemistry actions need to be considered to add for further improve-
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Figure 5.5: Layout and text detection results with corresponding labels.

ment. Moreover, evaluation results are also affected by resolution of input images. Cropping

clear images from layout and text detection stage is a necessary preprocessing step.

5.5 Conclusion

In this chapter, we have introduced an end-to-end framework for metadata information ex-

traction from scientific literature. The framework integrates two models: scientific literature

layout and text detection based on Cascade Mask R-CNN, and text recognition based on
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CRNN. Such integration enables us to both input scanned scientific article images and out-

put the text with corresponding labels at once. This framework has flexibility for training

to adopt diverse layouts of scientific literature from different publishers. Meanwhile, it can

recognize different languages independently. In addition, we create a novel data set for scien-

tific literature layout and text detection tasks. Our proposed Cascade Mask R-CNN model

provides a benchmark with this data set.

In future work, we will examine the application of this end-to-end framework to the de-

velopment of a large corpus for a range of domain-specific NLP tasks that currently lack such

corpora, such as information extraction for knowledge base population, question answering,

and dynamic search and indexing in the materials science domain. As we have seen from this

work, there is a potential trade-off between the model performance and its accuracy that

requires further attention, such as balancing between reducing the number of parameters of

the model and maintaining/improving the accuracy.
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Chapter 6

Named Entity Recognition from

Synthesis Procedural Text in

Materials ScienceDomain with

Attention-Based Approach

6.1 Introduction

The number of published materials science articles has grown rapidly over the past few

decades. Much potentially useful information in these published articles could help the

materials design group explore and study new material synthesis. Conventionally, new ma-

terials are discovered mainly through published experiments in literature, which, however,

are usually stored as unstructured text format. This requires great effort to sort and orga-

nize. Furthermore, researchers and scientists in materials science cannot access much more

than a fraction of such information because their research time is limited. The inevitable

result is, therefore, the need to enhance their ability to identify new technologies and find

the appropriate literature144.

Natural Language Processing (NLP) with machine learning technology can accelerate
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the rate of materials science discoveries. Many materials science areas, thermoelectrics, pho-

tovoltaics, batteries, and pharmaceuticals, could use these techniques145. The fundamental

task, then, of NER in NLP is to recognize named entities in the text of published exper-

imental research and group them into pre-defined categories through classification146. In

this paper, we focus on NER in the synthesis of procedural text in materials science. The

synthesis procedures are defined as the order of the steps based on ”participating tagged

entities and ultimately roles and operations” that should be in methods sections of materials

science research literature12. Those tagged entities could be material names, operations,

and devices, among others. They are essential to extracting procedural information from

materials science literature. Figure 6.1 shows an example of named entities from synthesis

procedure text in a materials science article.

Figure 6.1: Example of named entities from synthesizing procedural text in materials sci-
ence literature1. The highlighted words and phrases indicate entities involved in synthesis
procedures.

In materials science, the particular challenge is insufficient annotated corpora; domain

experts find labeling very expensive and time-consuming. To address the challenge in mate-

rials science, we used word embedding92 with a BiLSTM (bidirectional LSTM) and a CRF

(Conditional Random Fields) layer147 as our base line model. We used BERT81 pre-trained

language model to compare contextual embedding to word embedding and then fit the out-

put form BERT into a BiLSTM CRF model to learn the appropriate context information

that would predict named entities. Our experiment results were based on three corpora of

materials science and show the BERT-BiLSTM-CRF model improves significantly on other
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models.

6.2 Related Work

Named entity extraction from published experimental research is an emerging field, attract-

ing attention from many researchers. The most recently used approaches can be summarized

into two types:

The first approach is entity extraction from materials science literature. This

approach uses NER for extracting summary-level information from materials science docu-

ments. These named entities are broadly pre-defined in materials science as material name,

sample descriptors, and material properties, among others144. The common extraction

method collects relevant literature, uses unsupervised learning methods like K-means and

Word2Vec92, extracts word representation features from large unlabeled corpora, and then

fits these word representation vectors along with small annotated corpora to machine learn-

ing models like CRF, decision tree with a linear classifier, and hierarchical neural networks

for named entity extraction90;94;148. The extraction results can be stored in a database as

structured data for queries.

The second approach is named entity extraction from synthesis procedural

text of materials science literature. This approach uses NER to synthesize procedural

text (or experimental methods) in the methodology sections of materials science publications.

Compared with summary-level NER in materials science, this approach centered on details

of entities involved in the experiment itself, including material names and operations in

the experiment steps. Some previous research focused on this approach. Mysore et al.149

extracted procedural information with action graphs, and Huo et al.135 used semi-supervised

learning methods with latent Dirichlet allocation (LDA), and random forests to classify

inorganic materials from methodology information. We chose to use NER to synthesize

procedural text as our main methodology.
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6.3 Methodology

We treated NER as a sequence labeling problem. BERT-BiLSTM-CRF, the attention-based,

deep learning, end-to-end model, was used to solve this problem. Figure 6.2 shows the struc-

ture of BERT-BiLSTM-CRF model. The pre-trained BERT model81, as the embedding

layer, received the raw input sentences. Then the BERT model output the contextual em-

bedding vectors for each word as input to the BiLSTM layer for syntactic and semantic

feature representation learning. The final CRF layer output possible tag sequences based on

their conditional probability.

BERT Pre-trained language model

BERT81 is a pre-trained language model based on a deep transformer encoder150. It

introduced a masked language model (MLM) and next sentence prediction (NSP) to optimize

the training process. These mechanisms allowed BERT to use an attention-based, multi-

layer, bidirectional transformer mechanism and a normal nonlinear layer to learn contextual

information from large unlabeled corpora. Moreover, the pre-trained BERT language model

can be easily fine-tuned for a particular downstream task. It is precise because BERT can use

contextual information learnability and transferability instead of context-independent word

embedding like Word2Vec92. This meant we could use BERT as the embedding layer. After

fine-tuning, BERT performed well, even though it was pre-trained with corpora irrelevant

to materials science; our NER task demonstrated this ability in our experimental results.

Bidirectional LSTM layer

The bidirectional LSTM is an extension of LSTM that applies a forward and backward

LSTM network to sequence processing and links the network to the output layer147. The

BiLSTM structure enables the output layer to gather contextual information simultaneously

from past (backward) and future (forward). In addition, the BiLSTM has LSTM charac-

teristics that avoid gradient vanishing and exploding that occur in RNN. Both forward and

backward LSTM networks use the same equations in LSTM.

The BiLSTM takes the embedding result from BERT as an input vector for extracting

sentence features. The output of the hidden state of BiLSTM will concatenate the forward
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Figure 6.2: The architecture of the BERT-BiLSTM-CRF model.

LSTM Hf and backward LSTM Hb networks as final output [Hl, Hr].

CRF layer

CRF is discriminative probabilistic method subject to a certain correlation constraint

among tags. Using CRF as the last layer can help models learn the joint relationship between

tags, as well as learn the constraints that ensure the sequences are valid. For instance, in

BOI tagging format, the label of the first word in a sentence should start with the tag of ”B”

or ”O”, but not ”I”. These constraints are learned automatically using the training dataset
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created by the CRF layer during the training process.

Label prediction of the CRF layer combines the output P from the BiLSTM layer, which

represents the score of the ith word in the sentence where yi is the tag of the ith word, and

the transition matrix T represents the transition probability from tag yi to tag yi+1. We

used the following equation to calculate the score of the labels sequence:

Score(X, Y ) =
n∑

i=1

P i, yi +
n∑

i=0

T yi, yi+1
(6.1)

Our goal is to minimize the loss function by maximizing the total score of the probability

of sequence s(X, yi). The log loss function is given as follows:

L = Score(X, Y ) − log
∑
yi∈Y

es
(X, yi)

(6.2)

6.4 Experiment and Results

In this section, we describe the experiment and the results from three corpora.

Corpora

We used three corpora grouped into two categories to evaluate the model.

• Corpus 1 is a materials synthesis procedural (MSP) annotated corpus that was pub-

lished in 20191. This corpus is annotated by domain-experts from 230 experiment

paragraphs describing synthesis procedures in materials science domain.

– MSP : Contains the operations and their arguments in synthesis experiments,

such as material name, operation descriptor, synthesis apparatus, which have 21

different named entities.

• Corpus 2 is an annotated corpus in solid oxide fuel cells (SOFC) that is a sub-area of

materials science published in 2020151. This corpus is annotated using four annotation
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schemes based on 45 open-access scholarly articles by domain-experts. We use two of

the four corpora, both related to the NRE task; the other two corpora are not related

to the NRE task:

– SOFC : Major entity mention types in experiment-describing sentences that in-

clude three different named entities.

– SOFC Slot : Experiment slot types in experiment-describing sentences that in-

clude 16 different named entities.

All of the corpora are annotated using the BOI format, where B is the word beginning

entity, I is words inside the entity, and O is outside of the entity. The BOI labels should be

predicted by the NER model; they were then transformed to pre-defined named entities.

Implementation details

We chose two different embedding layers for comparison. The Word2Vec was used as

the word embedding layer for the BiLSTM-CRF model. For the BERT-CRF and BERT-

BiLSTM-CRF models, we considered BERT as the embedding layer. We used a BERT-

based-cased language model, which was pre-trained on cased English text. We chose SciB-

ERT, a BERT model trained on scientific text152, for comparison. Both pre-trained models

have 12 attention heads, 12 layers and 768 hidden dimensions. We set maximum sequence

length at 512, batch size at 16, initial learning rate at 0.05, warm up proportion rate at 0.1,

and the dropout rate at 0.2. We used 10 epochs in the BERT-related fine-tuning models:

BERT, SciBERT, BERT-CRF, and SciBERT-CRF. We used 100 epochs for training in the

BiLSTM related models. In addition, the BERT language models were tuned as BERT

embedding during the training process for BiLSTM-related models.

Evaluation methods

We used micro precision, recall, and F1 to evaluate the models because the corpora have

a potential class imbalance issue. For example, the sample tagged as Material, Operation,

Number, and Amount-Unit dominate the MSP corpus and reflect most synthesis procedures,

but some named entities are not as important. However, macro precision, recall, and F1
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treat all classes equally, which could have affected the accuracy of extraction results. The

corresponding equations are presented below:

micro− Precision =
N∑
i=1

setpre ∩ settrue
setpre ∩ settrue + setpre \ settrue

(6.3)

micro−Recall =
N∑
i=1

setpre ∩ settrue
setpre ∩ settrue + settrue \ setpre

(6.4)

microF1 =
2 ∗ Precision ∗Recall

Precision + Recall
(6.5)

In these equations, the setpre represents the prediction set, and the settrue represents the

true labels set.

Results and analysis

We ran three different corpora using the same models. We used word embedding with

BiLSTM-CRF as the baseline model and connected BERT embedding layer with CRF or

BiLSTM-CRF. The results showed that the BERT-BiLSTM-CRF model achieved the best

performance in most cases. Table 6.1 shows the results of our evaluation.

From the results, the pre-trained BERT language model used as embedding layer instead

of Word2Vec showed significant improvement over the baseline model. That means the

contextual feature of sentence was very helpful in the NER task in synthesis procedural text

of materials science literature. In addition, the pre-trained BERT model worked better in

the scientific text than in general English text. The results also showed that a fine-tuned,

pre-trained language model with small corpora in a domain specific NER task got decent

results in general. In addition, the corpus of SOFC had the best performance because it

had only three different named entities with more balanced numbers.
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Corpora Model Precision Recall F1
BiLSTM-CRF (Word2Vec) 78.51 74.84 76.63
BERT 78.94 80.76 79.84
BERT-CRF 79.75 80.60 80.60

MSP BERT-BiLSTM-CRF 85.25 83.53 84.38
SciBERT 79.25 82.84 81.01
SciBERT-CRF 80.48 82.96 81.70
SciBERT-BiLSTM-CRF 86.38 85.15 85.62
BiLSTM-CRF (Word2Vec) 75.33 74.35 74.84
BERT 93.01 88.46 90.67
BERT-CRF 93.32 88.54 91.10

SOFC BERT-BiLSTM-CRF 93.38 90.09 91.43
SciBERT 93.98 88.77 91.30
SciBERT-CRF 94.11 89.28 91.62
SciBERT-BiLSTM-CRF 93.14 91.17 91.57
BiLSTM-CRF (Word2Vec) 63.24 56.29 59.56
BERT 78.41 71.85 74.99
BERT-CRF 80.00 72.49 76.06

SOFC Slot BERT-BiLSTM-CRF 89.31 82.08 86.16
SciBERT 77.35 71.80 74.47
SciBERT-CRF 78.45 70.46 74.24
SciBERT-BiLSTM-CRF 90.31 84.25 87.17

Table 6.1: Evaluation results for three different corpora.

To the best of our knowledge, the MSP 1 corpus has not been evaluated in any other

publication. We compared our results with the evaluations in Friedrich et al.151 based on

SOFC and SOFC Slot corpora. Table 6.2 provides a comparison of evaluation results.

Corpora Model macro F1
SciBERT151 81.50

SOFC SciBERT-BiLSTM-CRF (ours) 85.61
BiLSTM SciBERT151 62.60

SOFC Slot SciBERT-BiLSTM-CRF (ours) 64.59

Table 6.2: Comparison of evaluation results with SOFC corpus.

Table 6.2 shows that our SciBERT-BiLSTM-CRF model outperforms both SOFC and

SOFC Slot corpora. Please note we chose the macro F1 in our evaluations to remain

consistent with Friedrich et al.’s151 evaluation methodology.
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6.5 Conclusion

In this chapter, we introduce a promising attention-based deep learning approach, BERT-

BiLSTM-CRF, for the NER task for synthesis procedural text of materials science. We

evaluated our approach using three synthesis procedural text relevant corpora. The results

showed that our BERT-BiLSTM-CRF model improved significantly over the baseline model.

We have presented several models that got better results with the pre-trained language model

BERT as the embedding layer compared than with word embedding models like Word2Vec.

We also compared our model (using the SOFC corpora) to Friedrich et al.’s151 model (using

the SOFCSlot corpora). Our model was the better one based on the comparison results.

Our work contributes to the community of materials science by demonstrating success in

applying an attention-based, deep learning approach to NER of synthesis procedural text.

Moreover, our work provides a competitive benchmark with these three corpora.

A few challenges in using NER in materials science will be further investigated in future

work. For example, material name acronyms or abbreviations are a source of ambiguity;

named entity detection of mention boundaries is also worth attention. The other concern is

the entity label imbalance. For instance, there are 4843 named entities of materials in the

MSP corpus, but only 122 named entities of Condition-Type. Future work should improve

the application of our model in materials science domain.
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Chapter 7

Conclusions and Future Directions

In this chapter, we summarize the main contributions of this dissertation, the application

that we have developed based on our research, and the direction of future research.

7.1 Summary of Contributions

This dissertation presented an investigation of the integrative method for extracting infor-

mation from scientific literature using deep learning techniques. The integrative method

contains a series of strategies for extracting information from two primary data sources

(document image and text). The principal purpose is to effectively extract information from

expanding and diverse scientific literature and to provide feasible methods and comprehen-

sive frameworks to do so. In this dissertation, we focused on the three fundamental research

problems below:

• Explore vision-based deep learning methods of detecting and segmenting the physical

structure of scientific documents;

• Automatically extract metadata from scientific documents based on visual features;

• Extract key structured information (e.g., entity information) from scientific text using

a deep neural network.
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We summarize our contributions to solving each of these problems as follows.

Chapter 3 presents a pipeline for procedural information extraction from published sci-

entific literature (domain: synthesis of nanomaterials). This system meets computational

information and knowledge management (CIKM) requirements of metadata-driven payload

extraction, named entity extraction, and relationship extraction from text. Functional con-

tributions described in this paper include semi-supervised machine learning methods for PDF

filtering and payload extraction tasks, followed by structured extraction and data transforma-

tion tasks beginning with section extraction, recipe steps as information tuples, and finally,

assembled recipes. Measurable objective criteria for extraction quality include precision and

recall of recipe steps, ordering constraints, and QA accuracy, precision, and recall. Results,

key novel contributions, and significant open problems derived from this work center around

the attribution of these holistic quality measures to specific machine learning and inference

stages of the pipeline, each with performance measures. The desired recipes contain identi-

fied preconditions, material inputs, and operations, constituting the overall output generated

by our computational information and knowledge management (CIKM) system. Within the

overall pipeline, we have applied machine learning approaches to step classification and, in

continuing research, are applying these approaches to the subtasks of feature extraction,

document filtering and classification, text payload extraction, recipe step identification, and

multi-step assembly.

Chapter 4 introduces two deep learning-based methods for understanding scientific doc-

ument layout.

One is a novel approach to developing an end-to-end learning framework to segment

and classify major regions of a scientific document. We consider scientific document layout

analysis as an object detection task over digital images, without any additional text features

that must be added into the network during the training process. Our technical objective is

to implement transfer learning via fine-tuning pre-trained networks and thereby demonstrate

that this deep learning architecture is suitable for tasks that lack very large document corpora

for training ab initio. As part of the experimental test bed for empirical evaluation of

this approach, we created a merged multi-corpus data set for scientific publication layout
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detection tasks. Our results show good improvement with fine-tuning of a pre-trained base

network using this merged data set compared to the baseline CNN architecture.

The second method is an end-to-end transformer-based framework named TRDLU for

the task of document layout understanding (DLU). We consider DLU a detection task and

introduce TRDLU, which integrates a transformer-based vision backbone and transformer

encoder-decoder as a detection pipeline. This is the first study using a fully transformer-

based framework for DLU tasks. TRDLU may only be a visual, feature-based framework,

but its performance is even better than multi-modal, feature-based models. We evaluated

TRDLU on three different DLU benchmark datasets, each with strong baselines. TRDLU

outperformed the current state-of-the-art methods on all of them.

Chapter 5 proposed a trainable end-to-end neural framework to extract metadata from

scientific documents. The framework integrated RCNN for understanding document lay-

out and CRNN for content recognition. The evaluation showed that the proposed model

outperformed state-of-the-field baselines.

Chapter 6 focused on extracting named entities from synthesis procedural text from

the materials science domain with the attention-based pre-trained language model. Unlike

conventional machine learning approaches that need hand-crafted features or training with

massive data, our attention-based, deep learning method enhanced contextualized word rep-

resentations using a language model pre-trained with BERT and then associating with a

BiLSTM and CRF layer, called BERTBiLSTM-CRF. Our method showed the feasibility of

using limited annotated corpuses with a pre-trained language model for entity extraction

from synthesis procedures in the materials science domain.

7.2 Application

Machine Learning-based procedural information extraction and knowledge management sys-

tem (PIEKM) is a prototype based on nanomaterial scientific literature. The goal of PIEKM

is to extract procedural information and demonstrate information retrieval capabilities. We

developed this machine learning-based system to extract procedural information (in this
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case, synthesizing a nanomaterial), figures, and tables from materials science articles; this

system can not only retrieve information but has statistics visualization functionality. The

application is based on our research as discussed in Chapter 3 and Chapter 6. Three crucial

contributions of PIEKM are summarized as follows:

• This system helps researchers obtain procedural information related to material science

efficiently and effectively from a multitude of publications.

• The system uses transfer learning approaches, such as chemical entity extraction, which

can solve issues due to the small training dataset.

• The flexible application in this system can be deployed easily in other materials science

domains.

The proposed system consists of three modules: (A) information processing, (B) user in-

terface, and (C) query processing and information storage. Figure 7.1 shows the architecture

of the PIEKM system. The details of each module follow.

(A) Information Processing Module: This module processes information from digital

scientific literature. We focused on PDFs of digital scientific literature in PIEKM system.

The input corpus of digital scientific literature was segmented into both text and non-text

(figures, tables) parts. Then the procedural information and name entities are extracted.

The extracted figures and tables are stored in corresponding folders. The rest of the extracted

text information is stored as semi-structured format into a database for quick query response.

(B) User Interface Module: This module is in charge of responding to user queries

and showing the results for each query, providing a preview of figures and tables from ar-

ticles available in the system and presenting details from each article, including procedural

information and chemical entities.

(C) Query Processing and Information Storage Module: This module is respon-

sible for processing queries and information storage. Users submit queries, and the answers

are acquired from an information storage database and returned to the user interface module

for display. The module supports different material compositions and morphology searches.
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Figure 7.1: Architecture of the PIEKM system.

The PIEKM system was written in Python and deployed by Flask1 framework. We used

MongoDB2 to store the queries for information data and the responses. Plotly3 and Dash4

were used for interactive visualizations.

Figure 7.2 shows the home page of PIEKM system. It provides a visual overview of

the association between the number of articles within the database covering nanomaterial

composition and the corresponding morphology. The user can click the material name to

see the numbers of relevant articles across different morphologies. The relevant literature is

searchable by material or morphology name, and the search result page will show a preview

figure browser that provides all options for material or morphology names for selection; all

figures in relevant articles are shown (Figure 7.3a). In addition, the chemical entities, recipe,

and the full content of extracted literature can be displayed after clicking the title at the top

1https://flask.palletsprojects.com/
2https://www.mongodb.com/
3https://plotly.com/javascript/
4https://plotly.com/dash/
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Figure 7.2: Home page of the PIEKM system.

(a) Search result page showing extracted papers and a
preview figure browser.

(b) Chemical entities, recipe, and full content
of extracted literature.

Figure 7.3: Search results visualization.

of each figure on the browser ((Figure 7.3b).

Overall, This PIEKM system provides an efficient way for researchers to gain insight

from large number of articles from well-established publications and offers a feasible way to

manage knowledge and publications in not only the nanomaterials domain but also other

areas in material science.
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7.3 Future Directions

In this section, we discuss future research directions.

Complex and Diverse Document Layout Detection

Scientific documents usually have Manhattan-based layout with either single-column or

multi-column styles. Using a vision-based, deep learning approach is promising for detecting

the layout of this kind of document, as illustrated in Chapter 4. However, other documents,

handwriting manuscripts (both old and recent), magazines, newspapers, and business doc-

uments, may have non-Manhattan layouts (e.g., arbitrary complex layout or overlapping

horizontal layout153). These kinds of layouts usually require detecting arbitrary boundaries

then segmenting them into non-rectangular shapes. Finding an efficient way to detect these

complex layouts requires further investigation.

Information Extraction in the Sciences

Research into information extraction using deep learning has been studied for a decade;

plenty of research shows that deep learning outperforms traditional extraction methods,

especially with huge corpora. However, applying this approach to scientific literature area is

still in its infancy. We showed that extracting domain-specific entities from procedural texts

with a pre-trained language model is possible in Chapter 6, but many challenges remain.

• Data Acquisition. Unlike news or social media, data is heterogeneous and diverse in

scientific fields (e.g., molecular structure or reaction equations) coming from indepen-

dent scientists and laboratory sources9. In other words, meaningful information comes

not only from the text of scientific articles, but also the figures and tables from the

scientific literature that cover experimental parameters as well as results. Successfully

acquiring such data sources requires deeper exploration.

• Low-resource. The deep learning model achieves better performance using large cor-

pora for training. Compared to ImageNet154, which has millions of annotated instances,

domain-specific, especially science-specific, corpora may include as few as several thou-

sand155 labeled tokens. Given such challenges, the research must consider and inte-
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grate other strategies into the study, for instance, data augmentation, to generate more

training data and use weak supervision learning to automatically label more data from

unlabeled text.

• Domain Knowledge Injection. The science domain differs from the general domain,

which focuses on categories like identifying the name of a person, location, or or-

ganization. Scientific articles include domain-related terminologies: drug names in

bio-medicine, chemical entities in materials science, properties of the material, and

acronyms or abbreviations of terminologies. Thus, we must consider adding relevant

external knowledge into the model to make better predictions. For example, link-

ing predicted chemical entities with an existing knowledge database like PubChem156

would provide more accurate chemical names.

• Document-level Information Extraction. The sequential model presented in Chapter

6 is based on sentence-level extraction. However, the information on the experiment

recipe can be found throughout the document and even in supplementary material, so

a sentence-level model may miss contextual information. Usually, adding constraints

during the inference process as post-processing generates more accurate results, but

such additions are not automatic and require more human intervention. Thus, we

need a model that can capture long-range dependencies and automatically extract

information from scientific documents.

Multi-modal Information Extraction

The methods found in this dissertation use document layout analysis, metadata extrac-

tion, and key-information extraction based on scientific document images and text, but each

method is independent of the others. Automatically processing and understanding the scien-

tific document requires attention to all content simultaneously, including body text, figures,

and tables, as a human reader does, to better understand the document. Current methods

can be extended to multi-modal approaches that combine visual and text feature representa-

tion within a single model and generate a better model for downstream tasks like questions

answering task and domain knowledge graph construction.
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Integration Intelligence System

The pipeline test bed that we suggested in Chapter 3 integrates different stages as a sys-

tem for extracting recipes from scientific publications. However, some stages of the pipeline

need pre-processing or post-processing steps. We developed such steps based on the nano-

material domain, which means it has not been evaluated in other scientific domains. The

robust approaches mentioned in chapters 4 to 6 could be integrated into the pipeline and

applied to other domains for interdisciplinary intelligence systems. For example, the current

scholarly literature search engines, such as Google Scholar, and Semantic Scholar, provide a

good service for relevant scientific literature recommendations, but the connections among

different disciplines are insufficient. We still have a lot of room to improve interdisciplinary

searches.
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