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Abstract

Heartbeat intervals (HBIs) vary over time, and that variance can be quantified as heart

rate variability (HRV). HRV has several health-related applications including long-term

health monitoring and sleep quality assessment.

The focus of this research is obtaining HRV from ballistocardiograms (BCGs), force sig-

nals caused by micro-movements of the human body in response to blood ejections. This

method of HRV estimation is attractive because it does not require direct attachment of any

sensor to the body. However, the HBIs and corresponding HRV measured with BCGs are

different than those obtained via electrocardiograms (ECGs), signals obtained by attaching

electrodes to the body to detect electrical heart activity. Because ECG-based HRV is typi-

cally considered ground truth, differences in BCG-based versus ECG-based parameters are

referred to as HBI and HRV errors.

This research investigates the effects of HBI error on HRV feature quality. While a few

studies have used BCG-based HBIs to estimate HRV features for sleep staging, the effects

of HBI error on the quality of the resulting HRV features seem to have been overlooked. As

a result, an acceptable HBI error range has not been defined. One contribution of this work

is the development of such an acceptable error range.

This dissertation work (i) develops a hardware and software system necessary to record

BCGs and to perform BCG peak detection to obtain HBIs with the least possible error,

(ii) determines an allowable range for HBI error by studying the effects of this error on

HRV quality in the context of HRV-based sleep staging, and (iii) compares the determined

acceptable HBI error range to the HBI error of our final system. The inherent error in

BCG-based HBI determination due to physiological and platform effects is also taken into

account in this comparison.



A minimum HBI error of 20 ms was obtained from the system developed in (i), and the

allowable error range was determined to be 30 ms based on the investigations conducted in

(ii). The combined physiological and platform effects led to an error of 8.8 ms on average.

Based on the comparisons conducted in (iii), the developed system is suitable for long-term

sleep quality assessment. In addition, the effects of the HBI errors introduced by this system

on the resulting HRV features are negligible in the sleep staging context.
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Chapter 1

Introduction

Heart rate variability (HRV) is the measurement of variations in the heartbeat intervals

(HBIs). HRV features have applications in the field of sleep staging [1–5] and other sleep

quality assessments [6, 7]. In addition, HRV is useful for long-term heart health monitor-

ing and other clinical research [8, 9]. In [8], HRV is used to investigate relations between

cardiac autonomic modulations and breast cancer, and [9] investigates HRV as a measure of

subjective well-being. This latter study aims to enable assessment of psychological processes

through physiology.

To extract HRV features, it is necessary to obtain HBIs. In a clinical setting, HBIs

are obtained by detecting the heartbeats from electrocardiograms (ECGs) [10–12] or photo-

plethysmograms (PPGs) [11]. In ECG, HBIs are estimated from the time between consecu-

tive R-peaks of the ECG signal, and is also termed R-to-R interval (RRI). With PPG, HBIs

are estimated from the time between consecutive peaks of the pulse signal, and is therefore

sometimes called the pulse-to-pulse interval (PPI) [13] (the resulting HRV measurement may

be called pulse rate variability (PRV)). HRV obtained from ECG is considered ground truth

(GT) whenever the performance of an alternative method for HRV estimation is evaluated

[2, 14–21].
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1.1 Motivation

Due to the growing need for long-term health monitoring, which includes sleep quality assess-

ment, nighttime data recording is necessary. Essential types of nighttime data include HRV,

breathing and restlessness information. HRV and breathing information may be obtained

from an ECG or PPG. However, ECG requires worn electrodes and PPG requires a worn

optical sensor (e.g. a finger clip). As a result, both approaches are not ideal for long-term

health monitoring applications because these attached devices are either uncomfortable or

can become detached easily. In addition, certain populations, such as those with autism,

may find wearable devices completely intolerable.

One of several unobtrusive alternatives to ECG or PPG is the ballistocardiogram (BCG).

BCG is a signal resulting from micro-movements of the human body caused by blood ejections

from the heart. Heartbeat detection or heart rate estimation using BCG has seen recent

research interest [22] among other non-contact heartbeat detection methods. Because it is

non-contact, BCG is suitable for long-term health monitoring. However, the sensors must be

mounted to a platform. In addition, the platform to be considered should involve substantial

day-to-day interaction with the population of interest. Therefore, we chose a bed-mounted

system, as most people get 6-10 hours of sleep and it potentially allows us to monitor sleep

quality as well as cardiac health.

The prominent peaks of the BCG are called the J peaks and represent the blood ejection

at the aortic artery. It is possible to estimate HRV features from the HBI obtained using

J-to-J peak intervals (JJIs) of the BCG 1.

An example of obtaining RRI and JJI estimates from simultaneous ECG and BCG record-

ings from a bed system is illustrated in Fig. 1.1. Clearly, the HRV features obtained from

the JJIs are not the same as the features obtained from the RRIs. The discrepancies between

ECG and BCG-based HRV features stem from three main sources: (i) the underlying dif-

1A note on terminology: different references in this study have used heartbeat intervals (HBIs) or beat-
to-beat intervals (BBIs) to refer to J-to-J interval (JJIs). This dissertation reserves the term HBI to refer to
heartbeat interval regardless of the ECG or BCG being its source signal. RRI and JJI is used in this work
to explicitly refer to ECG-based and BCG-based HBIs, respectively. Furthermore, HBI error refers to the
RRI-JJI difference, since ECG is typically considered GT for these comparisons.

2



ferences in the cardiac physiology captured by an ECG and a BCG, (ii) the errors involved

in the process of BCG detection and peak identification or in other words, the errors due

to the technology involved in JJI estimation, and (iii) platform or bed effects related to the

coupling between heart forces and the sensors. These sources of error are discussed in 1.1.1,

1.1.2 and 1.1.3, respectively.
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Figure 1.1: RRI and JJI estimates from simultaneous ECG and BCG recordings.

While the discrepancies in JJI and RRI-based HRV features due to physiology are in-

evitable, the technology-based error sources are technology-dependent and should be mini-

mized. In addition, we wish to know if the differences between HBI collected with ECG and

BCG have any significant impacts on the quality of the resulting HRV estimate.

To that end, this dissertation focuses on assessment of quality of the JJI-based HRV

features. To conduct this assessment, this dissertation relies on a bed system built collab-

oratively by several lab members, including the author. The bed is primarily intended for
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sleep, health, and activity monitoring of severely disabled autistic children [23–27]. This

bed is equipped with two types of force sensors to record BCG, namely, electromechanical

films (EMFi) and load cells. These two forms of force sensors were chosen because they are

commercially available in compact form. Due to the compact form of the EMFi and load

cells, these sensors can beintegrated into the bed mattress or frame. This, in turn, makes

bed relocation and bedroom remodeling relatively hassle-free, which is a significant benefit

for long-term health monitoring and sleep study applications.

When assessing the impact of sensors on the BCG quality, this dissertation focuses on the

signals obtained from the load cells. This is because the load cells provide us with the bed

user’s weight information which can then be used to track their center of pressure (COP).

The advantage of being able to track the COP is a benefit of these sensors, because COP

provides information about restlessness during sleep [28]. The assessment of restlessness

during sleep is an essential part of sleep quality assessment.

1.1.1 The physiological source of the HBI error

ECG and BCG represent two different types of cardiac activity. The former is related to the

electrical cardiac activity and the latter is related to the mechanical cardiac activity. In that

context, the R peaks represent ventricular contraction events and J peaks represent blood

ejection events at the aortic artery. Therefore, there is always an inherent delay between the

R peak of an ECG and the J peak of a BCG. This delay is called the R-to-J interval (RJI)

and is indicated in Fig. 1.2 with RJI1, RJI2, and RJI3. In addition, the blood ejection event

at the aortic artery doesn’t happen at a constant time offset from the ventricular contraction

event. Therefore, RJIs vary over time, i.e., RJI1, RJI2 and RJI3 in Fig. 1.2 are not equal.

This variability in RJI is one factor in the RRI-JJI difference or HBI error.

1.1.2 The technological sources of the HBI error

This source of error is mainly related to hardware involved in BCG detection and the signal

processing employed in J peak identification. One point of concern is the temporal accuracy
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Figure 1.2: RJIs compared from simultaneous ECG and BCG recordings.

of the detected J peaks. Missed and false J peaks also contribute to HRV error. This is

because HRV feature extraction involves heavily overlapped HBI windows, where effects of

individual missed or false J peak gets distributed over multiple windows leading to additional

error in the HRV. Fig. 1.3 shows the perturbations in the detected J peaks and Fig. 1.4

shows the missed J peaks in BCG26 (upper signal) compared to a cleaner J peak detection

example in BCG19 (lower signal). The RRI and JJI are compared in the plot of Fig. 1.5.

The spike in the JJI curve of the Fig. 1.5 is due to a missed J peak.

1.1.3 The HBI error related to heart force to sensor coupling ef-

fects due to the platform

There is a variable delay between the time the body exerts the force due to the cardiac

activity to the bed and the time the sensor detects the force. However, for a particular
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person who uses a particular platform, the variability of this delay is limited to the postures

the person takes in the course of a data recording session. Since this work focuses in long-term

and longitudinal data recording, it is safe to neglect the RJI variability due to body-to-force

sensor coupling. Therefore, this variability is not addressed in this work.
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Figure 1.3: An example of perturbations in J peak detection due to peak detection algo-
rithms.

Fig. 1.6 shows the overall system overview and summarizes different sources of error, e.g.,

data acquisition configurations, sensors, i.e. load cells in this case, and BCG peak detection

algorithms.
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Figure 1.4: Peak detection examples of clean (BCG 19 and its peaks) and erroneous (BCG
26 and its peaks) due to technology.

1.2 Literature review

1.2.1 Non-contact heartbeat detection methods

Different non-contact sensing alternatives to ECG are proposed in the literature. Examples

include bed-mounted capacitive ECG (cECG) [29–34], mattress-based photoplethysmogram

(PPG) [35] and PPG imaging [36–41]. cECG is similar to ECG, with the exception that it

uses capacitive coupling with the skin instead of conventional ECG electrodes that are in

direct contact with the skin. Mattress-based PPG and PPG imaging work on the principles

of PPG, i.e., tracking the changes in the skin’s optical characteristics due to changes in

the blood volume with each heartbeat. Mattress-based PPG is obtained by placing a PPG
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Figure 1.5: RRIs and JJIs from detected J peaks compared for simultaneous ECG and BCG
recordings.

sensor on the mattress beneath its white sheet instead of placing it on a fingertip [35]. PPG

imaging, on the other hand, replaces the optical sensors of the PPG with a camera that

takes images of the skin. Thus, it provides a means to track the chromatic changes in skin

due to blood volume changes with each heartbeat.

These sensing modalities, however, come with drawbacks. For example, cECG is consid-

ered as a wearable sensing technique rather than a non-contact technique [42]. On the other

hand, PPG imaging proposed in [36–41] is not yet bed based as its latest account in [41] is

still recorded in a sitting position.

Radar based methods [43–56] are also proposed as a non-contact means for vital sign

detection. In this approach, the distance variations due to body movements are measured.

Such movements are caused by physiological activities e.g. respiration and heartbeats. How-
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Figure 1.6: Overall system overview with main sources of HBI error (3D representation of
bed courtesy of Charles Carlson).

ever, this method also works best when participants are in a seated position as concluded in

[52]. Of the references mentioned, only three studies [51–53] have performed measurements

from participants in a supine position. It is worth mentioning that physiological signal in-

ferred from this technique is also called BCG in [54]. The reason for this goes back to the

definition of BCG which is body micro movements due to cardiovascular activities.

Another non-contact method for heart beat detection is optical Doppler-based or laser-

based techniques [57–62]. These studies also involve experiments with sitting participants

except in [62] where the experiment is done with one subject in supine position in a lab

setting. The flexibility and feasibility to adapt the laser-based techniques in a home setting

is not yet addressed.

A limiting factor for remote sensing techniques such as radar Doppler, camera and laser

(optical Doppler) is the problem of small range of coverage [63]. That is, if we want to use

such systems for sleep studies, the bed occupant needs to remain at the exact same location

throughout the sleep period. If the participant changes position or location, the monitoring

process will be discontinued unless a tracking paradigm is also included. However, such a

tracking scheme adds to the complexity and cost of the system, which is already high [64].
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1.2.2 BCG: An alternative non-contact method

As other non-contact approaches mentioned above introduce some form of limitations, BCG

is a promising signal that lacks the mentioned drawbacks. BCG in the form of body motion

can be detected with force sensors that can be easily embedded in the patient home envi-

ronment, including beds [19, 65–72] and chairs [73–75]. The capability of embedding force

sensors in the bed makes it possible to overcome the limitations of other non-contact health

monitoring systems as mentioned in 1.2.1. This, in turn, enables nighttime physiological

data collection for long-term health monitoring and sleep quality assessment.

1.2.3 Sensing modalities for BCG detection

A variety of approaches are proposed in the literature to detect BCG. Most of the approaches

are based on force sensing techniques. These approaches rely on the mechanical coupling of

the body and the mattress or the platform. Due to this coupling, the body movements due

to heartbeats can be measured as subtle motions of the mattress and the bed. Examples of

optimal measurements include methods based on deformation of optical fibers in a mattress

[76, 77] and infrared (IR) light scattering inside the mattress foam itself or in mattress

cavities[65–67]. Other examples include strain gauges, conductive fibers, ultrasound sensors

and pneumatic sensors. Strain gauges were employed to detect deformations of slats in a

bed frame [19]. Conductive fibers were woven into a mattress [69] to measure changes in

their conductance due small motions of the mattress caused by heartbeats. An ultrasound

sensor was used to measure the deformation of a plate mounted underneath a mattress [70].

Pneumatic sensors in the form of air mattress [78] and air cushion [79], force coupling pads

pneumatically coupled to a pressure sensor [80], air tubes [81] and water tubes [82, 83] are

other alternatives proposed for BCG detection.

Commercially available force sensors for BCG detection include electromechanical films

(EMFi) [17, 84, 85], Polyvinylidene Fluoride (PVDF) films [7, 86–89] and load cells [15,

20, 90–94]. To the best of our knowledge, [15, 20, 90–94] are the only references that have

employed load cells for BCG detection. Of those, only [15, 90–92] have employed load cells to
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detect BCG from a bed. The rest, i.e. [20, 93, 94], have used load cells to detect BCG from

a weighing scale. Other groups have embedded load cells in the bed to detect respiration

only as in [28] or to track the COP as in [7, 28, 88, 95]. Load cell-based COP tracking has

been applied in quantifying the level of restlessness or restfulness of the sleep throughout

the night [7, 28, 88, 95] which is an important metric in sleep quality assessment.

1.2.4 BCG-based HRV estimation for sleep staging

Sleep staging as a means of sleep quality assessment [96] is an important aspect of long-

term health monitoring. In sleep medicine, sleep stages are labeled as rapid eye movement

(REM) and non-rapid eye movement (N-REM) where the N-REM is further divided and

labeled as S1, S2, S3 and S4 or as N1, N2 and N3. The former labeling is according to the

Rechtschaffen Kales (R & K) rules [97] and the latter labeling is based on the American

Academy of Sleep Medicine (AASM) guidelines revised in 2012 [98]. N3 is also called Slow

Wave Sleep (SWS) which is equivalent to combined S3 and S4. Sleep staging in a clinical

setting is performed using polysomnograms (PSGs) which is the gold standard for sleep

staging. However, PSG requires many attached electrodes, and is thus not ideal for long

term sleep staging. Therefore, alternatives are sought.

An alternative to PSG-based sleep staging is HRV-based sleep staging. Sleep stages are

strongly correlated with the autonomic nervous system (ANS) activities [99, 100]. Further-

more, ANS activities influence heart rate [101] through the sympathetic and parasympathetic

branches. Therefore, correlates of sleep stages can be inferred from HRV features. However,

sleep staging with HRV typically lacks the resolution of PSG. Therefore, researchers using

these techniques mostly classifysleep into REM and N-REM stages [84, 102] or SWS and

non-SWS [91, 103]. To our findings, [104] is the only reference that has used HRV features

to classify sleep into more stages, specifically Wake, N1, N2, “combined N1 and N2”, SWS

and REM. However, the reported accuracy is below 60%.

While most studies have used ECG-based HRV features for sleep staging, BCG-based

HRV features have also shown promise. A classification accuracy of up to 80% is reported in
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[84] based on HRV features obtained from BCG. The mentioned study analyzed data from 18

volunteers and classified sleep stages in in REM, N-REM and Wake [84]. This is comparable

to the study conducted in [105] where ECG-based HRV features were used to classify REM

and N-REM sleep stages on 25 participants, achieving 87% accuracy. The motion information

included in [84] is believed to be a contributing factor in Wake stage classification [84]. In

addition, results reported in [103] and [91] are comparable. The mentioned studies classify

sleep in SWS and Non-SWS stages using HRV features obtained from ECG [103] and BCG

[91]. Table 1.1 summarizes the studies that reported the highest sleep staging performance.

Table 1.1: Classification performance metrics based on HRV from ECG and BCG signals.

Signal Stages Accuracy Sensitivity N Cohen’s Study
Used Classified (%) (%) Kappa Referenced
ECG SWS vs Non-SWS 90 69 45 0.56 [103]
ECG SWS vs Non-SWS 81 N/A 10 N/A [105]

BCG, Actigraphy SWS vs Non-SWS 93 81 4 0.62 [91]
ECG REM vs N-REM 87 87 25 0.61 [102]
ECG REM vs N-REM 80 N/A 23 N/A [105]

BCG, movement REM vs N-REM 80 N/A 18 0.43 [84]

Higher accuracy, up to 89%, is also reported from other studies as quoted in [103]. How-

ever, those studies included other signals beside ECG. For example, [106, 107] has included

data from respiratory impedance plethysmography (RIP) from a chest belt sensor.

Based on the performance metrics of Table 1.1 and the advantages listed for BCG, BCG-

based HRV is a good candidate for sleep staging. While comparable to current ECG-based

performance, BCG-based sleep staging can be further improved.

1.3 Contributions

The main contributions of this research are (i) designing the hardware configuration for a

BCG data acquisition system, (ii) selecting an appropriate load cell that can detect the

BCG with desirable quality, (iii) comparing existing BCG peak detection algorithms, and

(iv) assessing the quality of the HRV obtained from the detected peaks of the BCG. A
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brief summary of the mentioned contributions is provided in the following subsections, with

references to each published work. The details for each of the main contributions listed above

constitute the subsequent chapters of the dissertation.

1.3.1 The effects of data acquisition configurations on BCG qual-

ity

This part, detailed in Chapter 2, elaborates on inevitable impacts due to different data

acquisition configurations. Three configurations are examined at the hardware level and

their impacts on the test sine waves are quantified. Using the results of this work, one

configuration was selected to evaluate and compare the effects of load cells on the quality of

BCG which is covered in Chapter 3. Likewise, based on the conclusions of this work, another

configuration was selected to record BCG for comparison of the BCG peak detection methods

discussed in detail in Chapter 4.

1.3.2 The effects of load cell selection on BCG quality

This work is detailed in Chapter 3 and speaks to the impacts of different load cells on BCG

quality. Among BCG sensing modalities discussed in 1.2.3, load cells are in the focus of this

chapter. While some load cells do not respond at all to the frequency range of the BCG,

others impact the quality of the detected signal. Therefore, four button-type load cells were

selected for study in this work. The selection was based on either the readily availability of

the load cell in the lab or their cost-effectiveness. Test forces in the forms of low-amplitude

vibration, impulsive force and sine wave force were applied to the load cells. Subsequently,

the impacts of the load cells on the detected signal due to the applied test forces were

quantified. Using the results of this comparative study, the load cell with the least impact

on the BCG was selected. The load cell selected based on the results of this investigation

was used in the study discussed in Chapter 4 for BCG detection. Furthermore, the results

of Chapters 2 and 3 complement the studies conducted by our group in [26, 108, 109].
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1.3.3 Performance comparison of BCG peak detection methods

Since errors in the J peak detection is the main factor in HBI error, it is necessary to find

a method that detects the J peaks with the least error possible. Therefore, this research, as

presented in Chapter 4, compares performance of five signal processing and peak detection

methods proposed in the literature. In addition, a cross-correlation approach is also included

as a baseline for performance. The initial findings of this work are published in [110] and

final results are published in [111]. Based on the results of this work, the best performing

method was selected for BCG peak detection. The detected BCG peaks were then used to

complement the study conducted in Chapter 5.

1.3.4 BCG-based HRV features quality assessment

In this study the clinical validity of HRV based on BCG peaks is examined. In particular,

impacts of the HBI error on the quality of HRV features are quantitatively evaluated. The

study begins with the error due to BCG peak detection by simulating it in the R-Peaks of

ECG data available from the National Sleep Research Resource (NSRR) database. Since

the ECG data are simultaneously collected with sleep scores in that database, it is possible

to examine the effects of simulated error on the accuracy of sleep staging based on HRV

features obtained from error-contaminated R-peaks. Then the error resulting in poor sleep

staging accuracy is compared with the error due to the best BCG peak detection method

identified in Chapter 4. The results of this study will help identify an allowable range of

error in BCG peak detection algorithms. More details on this work is provided in Chapter

5.
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Chapter 2

BCG detection hardware

2.1 Introduction

High-level system specifications for BCG detection hardware is available in the literature,

e.g., corner frequencies for the signal conditioning circuits [112], and sampling rate and

resolution for the data acquisition units [91]. However, two problems exist: (i) the provided

information varies from research group to research group, with no unified set of values, and

(ii) details on the configuration of different pieces of hardware cannot be inferred from the

body of literature.

This chapter first introduces hardware involved in acquiring center of pressure (COP) and

ballistocardiograms (BCGs), from a circuit and system point of view. An initial introduction

to load cells as force sensors, together with two other types of film-based force sensors is

provided in this chapter. A more detailed study of load cells is presented in Chapter 3.

After introducing the hardware, the chapter investigates three proposed data acquisition

configurations. The effects of these configurations on signal quality are quantified through

initial sine wave force tests that (i) validate circuits’ outputs and (ii) facilitate an objective

comparison of the three configurations in terms of the signal to noise ratio (SNR) of the

acquired signal. Pros and cons of each configuration are discussed.

The following sections introduce the force sensors typically used for BCG detection, the
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signal conditioning and data acquisition configurations, and the testing process for those

configurations. Ultimately, the system to be used for completing the subsequent chapters

will be identified.

2.2 Platform description

Since this study is geared toward nighttime data collection in the home environment, the bed

design described in [23–27] is considered here and in subsequent chapters. Fig. 2.1 shows

a 3D representation of the platform, i.e., the bed, and how the load cells are positioned

beneath its posts.

Figure 2.1: 3D representation of the bed (courtesy of Charles Carlson) and the position of
load cells indicated by small cylinders beneath its posts.
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2.3 Sensors

2.3.1 Load cells

A load cell is a transducer that converts applied force into an electrical output. Each button-

type load cell utilized for this effort consists of a stainless steel housing that surrounds a

collection of strain gauges arranged in a Wheatstone bridge configuration. When a com-

pressive force is applied to the load cell, it produces a differential output voltage that is

commensurate with the applied force. The sensitivity of the output voltage depends on the

power source connected to the load cell; the output is rated in mV/V (mV of output signal

per volt of excitation voltage at full rated compression). For example, for a 200-kg-rated

load cell with a sensitivity of 1 mV/V powered with a 5 V source, a full 200 kg compressive

load will generate an output of 5 mV.

2.3.2 Electromechanical films (EMFi’s)

Electromechanical films (EMFis) are very thin (with a thickness of as low as 37 µm) polypropy-

lene sheets. They are highly sensitive to forces applied in a normal direction with respect to

their surface. Very subtle variations in the applied forces cause a variable voltage propor-

tional to the applied force that can be measured across its output terminals [113]. Due to

this high sensitivity, these sensors are used in vital sign monitoring studies as they can detect

the micro-movements of the body caused by cardiovascular activities such as heartbeats and

respiration. Such movements represent forces on the order of Newtons [114] and can still

be detected by these sensors. These sensors are typically placed under the mattress in the

mentioned applications.

2.3.3 Polyvinylidenefluoride (PVDF)

PVDF is made of piezoelectric material which is metallized to provide electrodes. A signal

is detected on the mentioned electrodes when the film is compressed by any external force

[113]. A version used in [113] came with a thickness of 110 µm metallized with silver ink.
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Typically, these films are placed under the torso to capture both the BCG and respiration

[88]. Since the material in both EMFi and PVDF is of a capacitive nature, only the variations

in the applied force can be measured in the form of a variable voltage across their output

terminals [113]. Therefore, they cannot be standalone sensors for a bed system where COP

is also a signal of interest as discussed in 1.1 and 1.2.3. While both load cells and EMFi’s

were used in conducting the bed-based studies as in our previous works [25, 26, 108], this

dissertation focuses on the load cell signals.

2.4 The signal conditioning circuit

Like many cardiopulmonary signals, a BCG is a low-frequency signal with a small pulsatile

amplitude that rides on top of a much larger baseline (in this case, force from the combined

weight of the bed and the subject). The BCG has cardiac frequency components in the range

of approximately 0.5 to 20 Hz, whereas its respiration components primarily reside in the

frequency range of approximately 0.05 to 0.7 Hz. In theory, one should be able to separate

the constant voltage offset, or “DC” baseline, from the cardiac and respiration components

using a highpass filter with a very low cutoff frequency. Considering these requirements, a

signal conditioning circuit was designed. The block diagram in Fig. 2.2 describes the various

steps involved in the signal conditioning circuit. Brief descriptions for each block in the block

diagram of Fig. 2.2 are provided in 2.4.1 to 2.4.4.

2.4.1 Instrumentation amplifier (Inst Amp)

The instrumentation amplifier is a type of amplifier that amplifies the difference between

the signals on its input terminals (Pins 2 and 3 of U5 in the circuit of Fig. 2.3). In our case,

the input differential signal comes from the output terminals of the load cells. This signal

is named “LC Signal” in the block diagram of Fig. 2.2. The gain of the instrumentation

amplifier can be adjusted by connecting a gain resistor between a pair of its external pins

(Pins 1 and 8 of U5 in the circuit of Fig. 2.3). The gain resistor is labeled as “ROPEN” in
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the circuit of Fig. 2.3. It is worth mentioning that the useful gain for the instrumentation

amplifier is limited by the aforementioned DC voltage offset from the weight of the bed and

user. As a result, the adjustable gain of the instrumentation amp is useful primarily to

address weight differences between populations or different bed setups.

2.4.2 Lowpass filter (LPF)

The LPF block is implemented with a unity gain, two-pole Sallen-Key lowpass filter with

a corner frequency of 35 Hz. This LPF helps mitigate the effects of power line and other

ambient high-frequency noise on the pre-amplified signal from the instrumentation amplifier’s

output. The output of this block contains both the weight on the load cell and the BCG

riding on it. The weight information is labeled “Weight” in Fig. 2.2. The BCG, however,

is too small to be directly detected due to the limited gain provided by the instrumentation

amplifier as discussed in 2.4.1. Therefore, it needs further amplification after the removal of

the DC offset.

2.4.3 Highpass filter (HPF)

The HPF is a single-pole passive filter with a corner frequency of 0.05 Hz. The HPF is

necessary to block the high offset due to the weight signal that limits the amplification

capability of the instrumentation amplifier as discussed in 2.4.1. Blocking the offset due to

the weight signal will allow further amplification of the filtered signal for a detectable BCG.

The low corner frequency of 0.05 Hz helps preserve respiration information at the same time

which is necessary in sleep staging.

2.4.4 The amplifier (Amp)

The final amplifier (Amp) introduces a gain of 33 and applies a second stage of amplification

to the BCG. This step is necessary because the signal on the output of the HPF is not large

enough for direct quantization.

19



The circuit in Fig. 2.3 provides a low-level detail of the signal conditioning circuit de-

scribed by the block diagram of Fig. 2.2. In the circuit, decoupling capacitors were used but

such peripheral details are included in Appendix C.

The signal labeled as “ANP1” in the circuit of Fig. 2.3 is the lowpass-filtered signal

carrying the weight information obtained by the load cell.The BCG is present in ANP1 as

well, though it is smaller than the weight signal. The signal labeled “ANP2” is the highpass-

filtered and amplified version of ANP1, which includes a detectable BCG.

Fig. 2.4 shows the printed circuit board (PCB) implementation of the circuit in Fig.

2.3. The particular PCB implementation shown in Fig. 2.4 is used in data acquisition

Figure 2.2: Block diagram of the signal conditioning circuit. The Amp has a gain of 33

Figure 2.3: Circuit diagram realizing the signal conditioning.
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configuration II as will be described in 2.5.2.

2.5 Data acquisition configurations

Signal quality is of a high concern in any application, and especially in this application

with low-amplitude and low-frequency signals. As a rule of thumb, signal conditioning and

conversion to digital signals should be performed near the sensor. However, since the load

cells are located apart from each other at four corners of the bed, it is necessary to figure out

an optimal location for the signal amplifier and analog to digital converter (ADC). Therefore,

the following design alternatives were considered:

1. Apply signal conditioning and digitization as close to each load cell as possible and

then transmit the digital signal to a central location for acquisition.

2. Apply signal conditioning as close to each load cell as possible and then transmit the

amplified signal to a central location for digitization and acquisition.

3. Avoid any signal conditioning to the sensor signal as it may introduce electronics-

induced noise to the signal. Instead, digitize the sensor output immediately with a

Figure 2.4: PCB implementation of the signal conditioning circuit.
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higher-resolution ADC and transmit the digital signal to a central location for acqui-

sition.

For that purpose, the signal conditioning and data acquisition combinations in the form of

the following configurations were examined:

2.5.1 Configuration I: daisy-chain

This configuration, illustrated in Fig. 2.5, implements the first scenario. That is, signal

conditioning and digitization are done as close to each load cell as possible. Then the digital

signal is transmitted to a central location for acquisition through a serial peripheral interface

(SPI) protocol. This approach is implemented with ADCs in a daisy chain configuration,

to avoid requiring separate SPI connections between each ADC and the central acquisition

unit, e.g., the microcontroller. Interconnection of ADCs in daisy chain mode is illustrated

in Fig. 2.9 and discussed further in 2.5.1. In the block diagram of Fig. 2.5, the data

acquisition (DAQn) unit, with n = 1, 2, 3 and 4, is composed of two parts: (i) signal

conditioning described in 2.4, and (ii) the blocks ADC1 and ADC2. The ADC1 and ADC2

blocks convert the weight and BCG signals to digital, respectively. The circuits in Fig. 2.3

and Fig. 2.6 are implemented on the same printed circuit board (PCB) shown in Fig. 2.7.

This PCB constitutes a DAQ unit.

The circuit diagram in Fig. 2.6 provides details for the ADC1 and ADC2 connections.

The ADC chips designated as U8 an U9 are the ADC1 and ADC2 in the block diagram

of Fig. 2.5, respectively. Note that AINP1 and ANPI2 are the signals showing the analog

outputs from the circuit of Fig. 2.3 that become inputs to the ADCs in the circuit of Fig.

2.6.

Low-voltage differential signaling (LVDS) drivers and receivers were installed between

each ADC board to address ringing effects observed on the SPI signal. Prior to LVDS

implementation, the ringing behavior (particularly of the clock) caused substantial bit errors

during transmission. The circuit of Fig. 2.6 shows how DIN-DOUT pins of the ADCs (U8

and U9) are connected to the blocks labeled “IN” and “OUT” through LVDS drivers.
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The “IN” and “OUT” blocks in the circuit of Fig. 2.6 represent RJ-45 connectors used for

interconnection between communicating boards. RJ-45 connectors were used in the interface

because they can be connected with easily-available Ethernet cables. The Ethernet cables,

in turn, provide twisted pairs of wires and thus fulfill the differential requirement of LVDS

communication.

Fig. 2.8 shows all the DAQs and the interconnections between them. It also shows how

the signal from each load cell reaches each of those DAQs. The microcontroller (µC) block

in Fig. 2.8 represents the microcontroller board that communicates with the first DAQ unit

over SPI. The DAQ board interfaced with the microcontroller board uses the OUT block in

the figure whereas its IN block is used to communicate with a previous DAQ board. The

acquired data by the microcontroller is then transferred to a host PC (the PC block in this

diagram) using the Universal Asynchronous Receiver/Transmitter (UART) interface of the

MATLAB application residing on the PC.A detailed bill of materials for both circuits of Fig.

2.3 and Fig. 2.6 is provided in Table C.2 in Appendix C.

Figure 2.5: Board-level daisy chain block diagram of a single DAQ unit.
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Figure 2.6: Circuit diagram for the ADC part of the Configuration I.

ADCs in daisy-chain connection

In this configuration, DAQ units are cascaded through digital input (DIN) and digital output

(DOUT) interfaces of the ADCs. An ADC-level block diagram of this configuration is shown

in Fig. 2.9. The conversion results from all the ADCs travel bit-by-bit through the entire

chain until they reach to the first ADC which is interfaced with the microcontroller, the

“Digital Host” block, in the diagram. The microcontroller receives the digital signal using

the same SPI protocol used by the ADCs.

LVDS effects

We also tested this configuration with the distance between communicating devices reduced

to the shortest possible distance, in order to see if LVDS was necessary in such a scenario.
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Figure 2.7: PCB implementation of the circuit diagrams of Fig. 2.3 and Fig. 2.6 representing
a single board of the four boards used in Configuration I.

2.5.2 Configuration II: NI-DAQ

This configuration, illustrated in Fig. 2.10, implements the second scenario. That is, signal

conditioning is done near each load cell, whereas the digitization is done at a central point (a

Figure 2.8: Board level daisy chain block diagram of a single data acquisition (DAQ) unit.
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Figure 2.9: ADC level daisy chain block diagram.

C series National Instruments 9220 analog module, called the NI-DAQ from here on). This

point is intended to be equidistant to each signal conditioning circuit. In this scenario, the

amplified analog signal has to travel a significant distance before it is converted to a digital

signal in the data acquisition unit. The NI-DAQ is then responsible to convert the received

signal to digital and send it out over Ethernet or WiFi-based packets to the host PC. The

host PC then collects the received data through a virtual instrument interface provided by

LabVIEW.

The block named Signal Conditioning Board in the diagram of Fig. 2.10 is identical to the

signal conditioning part of Configuration I and is realized with the same circuit of Fig. 2.3.

The contrast is however in the way the amplified signals ANP1 and ANP2 of the circuit of the

Fig. 2.3 are connected to the ADC. In Configuration II, the mentioned signals are connected

through twisted pairs of wires to the NI-based ADC module whereas in Configuration I they

were connected to the daisy chain ADC through the traces of the PCB where both the signal

conditioning and the ADC were implemented. Here, the signal conditioning board is on a

separate PCB (Fig. 2.4) and the NI-based ADC module is separate.

The 3xSig. Cond. Brd block represents three other copies of the Signal Conditioning

Board in the diagram of Fig. 2.10. Two ADC channels of the NI-DAQ are connected to

each Signal Conditioning Board. Thus, a total of eight ADC channels are occupied by these

boards.
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2.5.3 Configuration III: 24-bit ADC

This configuration implements the third scenario, i.e., avoiding any signal conditioning to

the sensor signal. Instead, the sensor output is digitized immediately with a higher resolu-

tion ADC and transmitted in that digital form to a central location for acquisition. This

configuration offers the possibility of avoiding the noise due to the amplification in the signal

conditioning modules, as well as reducing component count and thus cost and complexity.

In this test, a high resolution, 24-bit ADC was utilized since those small BCG peaks on the

output of the load cells cannot be captured with a 16-bit ADC without prior amplification.

We were also interested to test if the existence of a signal conditioning circuit with a

24-bit ADC would improve the overall performance. Thus two scenarios are presented in

Table 2.1: (i) Conf-III: 24-bit ADC with signal conditioning, (ii) Conf-III: 24-bit ADC

without signal conditioning. The signal conditioning board of configuration II was used to

test the scenario (i). Fig. 2.11 illustrates this configuration. The dotted lines of the Signal

Conditioning block signify that the configuration was tested with and without the block.

Figure 2.10: Block diagram of the signal conditioning and data acquisition in configuration
II.
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2.6 Sine wave force tests

In order to quantify the effects of different configurations discussed above, a sine wave force

with a known frequency of 5 Hz was applied to a test platform under which a single load cell

was positioned. The force was provided by a speaker that was fed from an audio amplifier.

The signal to the audio amplifier was provided from a signal generator. More details on this

setup are provided in Chapter 3 where effects of the load cells on the BCG are evaluated.

All tests were performed with the FX1901 from TE Connectivity.

2.6.1 Performance metric

Signal to noise ratio (SNR) was used as the performance metric, or the quantitative measure

of the impact of the three DAQ configurations. The final resulting signal stored in the PC was

compared with a “carrier” signal when calculating the SNR. The carrier signal in this case is

a built-in utility of the MATLAB function “snr” when used with the syntax snr(X), X being

the signal of interest. This function computes the SNR of the signal X over a periodogram

Figure 2.11: Block diagram for signal conditioning and data acquisition configuration III.
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of the same length as the length of X vector using a Kaiser window, while excluding the

power of the first six harmonics including the fundamental. The SNR measured has units of

dBc, indicating that the comparison is done in reference to a carrier. Since the test signal is

a sine wave, we believe this is a valid metric.

2.7 Results

The comparison results, given as SNR in dBc, are presented in Table 2.1. In the table, Conf-I

through Conf-III refers to the three configurations elaborated in 2.5.1 to 2.5.3, respectively.

The term “Factory” indicates the original wire length of the load cell as delivered from

the company. PCB refers to the short traces of the PCB. N-A, i.e., Not Available, means

that the distance was not present which was the case with Configuration III when no signal

conditioning was in place between the load cell and the ADC. The term “No LVDS” in the

table refers to a test scenario where LVDS was not used in the configuration I, as pointed

out in 2.5.1.

The term “LL” stands for Long Length and refers to the addition of an extra wire of length

8 feet to emulate the unavoidable distance introduced by the long edge of the bed. Also,

LL can be used to estimate the effects of long wires between the bed and the PC recording

the data. “ML” stands for Minimal Length and refers to the shortest interconnecting wires

between load cells and boards or between two boards if needed. In the former case, it is the

length of the load cell wires after cutting. The length of ML was approximately 2 inches.

2.8 Discussion

Based on the numbers in Table 2.1, Configuration I with an SNR of 26.74 dBc is the best-

performing configuration. Other advantages that this configuration offers are simultaneous

conversion of the signal from all sensors, conversion to digital signal near the sensor thus

facilitating less noisy signal acquisition, scalability to add new sensors, and low cost compared

to Configuration II. The disadvantages are increased complexity due to LVDS circuitry and
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Table 2.1: SNR comparison of different configurations and different distances between the
sensors (LC), signal conditioning circuits (Cond.) and the ADCs. ML = 2”, LL = 8’

DAQ Configuration
Wire Length Wire Length SNR
LC to Cond. Cond. to ADC (dB)

Conf-I
ML PCB 25.07
Factory PCB 26.74
Factory + LL PCB 20.61

Conf-I: No LVDS
Factory ML 15.60
Factory LL + ML 7.80

Conf-II
Factory ML 20.50
Factory LL + ML 21.60

Conf-III
ML LL 26.14
LL + ML PCB 23.56
ML PCB 25.30

Conf-III: No
Conditioning

ML N-A 13.90
LL + ML N-A 12.47

less convenient interfacing with the host PC. The second preferred configuration would be

Configuration III with 26.14 dBc SNR. The advantages of this configuration are higher

resolution (up to 24 bits), centralized digitization while allowing signal conditioning near the

load cell, reduced complexity and the lowest cost. The only disadvantage of this configuration

at this point is the interfacing challenge with the host PC, same as in the case of Configuration

I. Configuration II with a maximum SNR of 21.60 dBc presents the third performance. The

advantage of this configuration is the readily available interface with Ethernet or WiFi offered

by the NI module. The disadvantage of this configuration, besides the SNR, is the high cost

of the C series NI 9220 analog module.

The challenge of interfacing with the host PC is not yet addressed for Configurations I and

III. As a result, use of these configurations depends on the availability of a running host PC

in the vicinity of the bed to establish a serial interface between the microcontroller involved

and the MATLAB that runs on the host PC. While an alternative of a Raspberry Pi unit

is under investigation, we conclude that the mentioned configurations are not yet ready for

a long-term remote-running scenario intended for long-term health monitoring. Given the

mentioned limitation for Configurations I and III, this dissertation has nearly exclusively

used Configuration II. The only exception is that the sine wave force tests for load cell
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comparison performed in Chapter 3 are done using Configuration I. The reason was that the

tests were short experiments; the end-interfacing with MATLAB was established and the

configuration provides a high SNR.

The multi-channel ADCs in Configurations II and III implement a multiplexer to read

from all the channels. This multiplexing scheme introduces a delay in sampling from all the

sensors and a simultaneous read is not possible, in contrast with Configuration I. However,

in low frequency applications such as ours and with sampling rates of 250Hz and above, the

delay between sampling instances can likely be ignored.

The experiment does show several clear results. As expected, long distances between

the sensor and the signal conditioning circuit results in adverse outcomes. Further, LVDS

is necessary for the daisy-chain configuration. This confirms the necessity of these drivers

in long distance SPI communications as well as in short distance communication. Finally,

both Configurations II and III present better results with longer wires between the signal

conditioning board and the ADC. The reason for the phenomenon is not clear, and may

actually represent electro-magnetic coupling between our signal source and the long wires

rather than a true improvement in signal quality.

2.9 Conclusion and future work

The hardware for BCG and COP detection and recording was introduced. Three different

signal conditioning and data acquisition configurations were presented and their effects on

the acquired signal were quantified. While a configuration with the least adverse effects on

the signal was identified, its practical use in a home setting is not yet possible. Therefore,

interfacing solutions with the host PC needs to be sought as a future effort in the form of

either TCP/IP protocols or a web-based cloud protocol.
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Chapter 3

Effects of sensor selection on signal

quality

3.1 Introduction

Multiple studies have used bed-based BCGs acquired with different types of pressure or

force sensors. E.g., Mendez et al. [115] and Jung et al. [88] used electromechanical films

(EMFi’s) and polyvinylidene fluoride (PVDF) films, respectively, to acquire nighttime BCGs.

Load cells have also played a role in BCG acquisition [91, 116]. However, the literature in

BCG detection has contained limited information regarding solutions to hardware challenges

encountered in sensor selection. Hardware design information in such publications often

remain limited to system block diagrams and high-level circuit descriptions [116]. Low-level

challenges encountered when building these BCG acquisition systems are not often addressed.

These details and lessons learned play an important role in BCG signal optimization and

the efficient use of design time, especially for researchers that are new to this field and rely

on published literature for guidance. This chapter addresses the effects of load cell selection

and its associated impacts on the BCG quality.

Challenges include poor signal quality and intermittent signal behavior between load cells

under identical conditions. Load cells with nearly identical specifications can still produce
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BCGs of very different quality. Strain gauges are notoriously noisy, and manufacturing

techniques vary, so one can save time and effort by performing comparative analyses on

what appear to be similar load cell designs prior to adopting a given model for larger scale

deployment. Load cells with higher capacities are essentially manufactured for heavier duty

applications, and such applications are more tolerant to small errors in specifications. On the

contrary, in applications such as ballistocardiography, the summative weight of the subject

and the bed drives the overall weight specification for the load cell, forcing the relatively

small BCG itself to coincide with the noisiest operational range of the load cell. Load cell

specifications, though, are not reported to that level of relative precision. Empirical testing

is needed.

This chapter provides an objective rationale for selecting a load cell in use for this dis-

sertation by comparing performance of four load cells readily available in the lab or in the

retail market. Therefore, this chapter considers four brands of load cells under similar test-

ing circumstances, addressing their responses to different low-magnitude known test forces.

These test forces are: (i) small vibrations due to an eccentric rotating mass (ERM), (ii)

impulsive force, and (iii) sinusoidal force. The latter two force tests are applied using a

speaker. Quantitative performance comparisons are presented for the load cells in question.

In addition, graphical performance comparisons are presented.

3.2 Methods

3.2.1 Informal Background

Based on a prior student’s work, we initially planned on using the LCM 302 load cell.

Unfortunately for us, we performed only limited initial testing (observing the differential

voltage on the output terminals of the load cell in response to a constant applied weight,

and recording a few responses to impulsive inputs). The responses to these initial tests led

us to believe that the LCM 302 was suitable for our application. However, our circuit (using

said load cell) kept failing to detect BCG.
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Different signal conditioning circuit iterations were tested to rule out flaws in the circuit

design. Around this time, we also began the sine wave tests as discussed in Chapter 2. Later,

a different load cell was procured and tested.

A slight improvement in the obtained signal from the new load cell encouraged further

investigation in this direction. Therefore, two more load cells were considered for a compar-

ative study among a total of four similar button-type load cells. This step assisted us in

selecting a load cell with good signal quality. The following tests were conducted to quantify

the effects of each load cell on the detected signals. In all subsequent tests, the differences in

the sensitivity of the load cells were addressed by adjusting the gain of the instrumentation

amplifier to which each load cell was connected.

3.2.2 Sensitivity tests

Based on the initial responses of the load cells to the BCG and inability of one particular

load cell (LCM 302) to detect it, we decided to verify the sensitivity of the load cells to the

applied forces quantitatively. Therefore, we evaluated the responses of the load cells to an

applied static weight under a constant DC voltage.

The sensitivity of each load cell was re-evaluated by applying a constant force of 104.5

N (23 lbs) while recording the difference in the voltage on their output terminals due to

the applied force. The voltage measurements were carried out using an Agilent 34401A

multimeter. The sensitivity was then calculated using Eq. 3.1. The calculated values are

summarized in Table 3.4 where they are compared with the nominal sensitivities as listed in

their data sheets.

Output V oltage Sensitivity =
δv

f ∗ Vt
∗ fMAX (mv/V ) (3.1)

Where δv is defined in Eq. 3.2, f if the applied constant force, Vt is the excitation voltage

applied on the input terminals of each load cell, and fMAX is the maximum capacity of each
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load cell.

δv = voL − voNL
(3.2)

voL is the voltage measured at the differential output terminals of each load cell under

constant load. voNL
is the voltage measured at the differential output terminals of each load

cell at no load.

During this experiment an allowable gain was also determined for the instrumentation am-

plifier. The gain was set such that it would provide maximum amplification to the applied

signal without letting the output of the instrumentation amplifier rail to the supply voltage.

In addition, values for the gain resistor of the instrumentation amplifier were estimated to

address various body weight ranges expected to occupy the bed.

3.2.3 Load cells’ response to small vibrations

An eccentric rotating mass (ERM) was used to apply mechanical vibrations at ten different

frequencies: 52, 83, 111, 139, 151, 185, 205, 227, 238 and 263 Hz. The ERM was mounted

on the bed and thus its vibrations were coupled to the load cells. The ERMs used in this

test come with the following drawbacks:

1. The frequency of vibration and amplitude of vibration are controlled by the same

voltage input. Although we used normalization to offset this issue, some issues may

remain.

2. They do not allow testing of the load cells in the primary frequency range of BCG

since they do not rotate at very low frequency ranges of below 0.5 Hz.

3. The speed varies by a few Hz around the set point, which makes it difficult to distinguish

between the effects of the load cell and the ERM.
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3.2.4 Variable force source description

Due to the limitations introduced by the ERMs in the small vibration tests described in

3.2.3, it was necessary to seek an alternative testing approach. For that purpose, a variable

force controlling and recording system was built. This system controls the characteristics of

the exerted force on the bed and records its response from the load cells.

This system consists of a signal generator, an audio amplifier and a speaker. The signal

coming from the signal generator is amplified by the audio amplifier and is supplied to the

speaker. The speaker transduces the received signal into a force which is transmitted to the

bed through a coupling between the speaker and the bed. Subsequently, the transmitted

force is detected by the load cells. At this point, a differential voltage can be measured at

the output terminals of the load cells that corresponds to the applied varying force. The

measured differential voltage is eventually stored in a PC for further analysis using the DAQ

configuration I as described in 2.5.1. This process is illustrated in the block diagram of Fig.

3.1.

The PC in the figure runs a MATLAB session that accomplishes two tasks. The first task

is to provide instructions to the signal generator to supply desired signals. The instructions

included the commands to turn on or off the output of the signal generator as well. The

second task is to record the data received from the microcontroller over the UART interface

Figure 3.1: The block diagram of force source controlling and recording system (Audio
amplifier courtesy of Garrett Peterson).
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of the same MATLAB session.

The picture in Fig. 3.2 provides a snapshot of the setup. A structure that supports

an audio speaker as a controllable varying-force source is also shown in the picture. The

structure allows the speaker to be mounted on the bed and maintain a proper coupling with

it. The force source, i.e. the speaker, was positioned in the middle (center) of the bed in

order to keep the distance between the force source and the load cells equal. This system

facilitates variable force tests where the variable force is of two natures: (i) impulsive force,

and (ii) sinusoidal force as elaborated in 3.2.6 and 3.2.7 respectively.

Figure 3.2: Snapshot of force source support setup

3.2.5 Weight arrangements

Since the BCG may be coming from participants with different weights, a combination of

different weights on the bed was examined. In addition, the COP of a sleeping person may

change during the course of a data recording session. In order to account for a possible

subset of points from the trajectory of the COP, the weights were spread over the bed with

different arrangements. Fig. 3.3 shows the spread of the weights as scheduled according to

Tables 3.1 and 3.2. The weight arrangements described in Table 3.1 was used for impulsive

force test experiments. Likewise, the weight arrangements described in Table 3.2 was used
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Figure 3.3: Bed and the weights spread over it (3D representation of bed courtesy of Charles
Carlson).

for sine wave force test experiments.

Table 3.1: Weight schedule for impulsive force test

Weight Weight Weight Weight
Configuration # W1 (lb) W2 (lb) W3 (lb)
1 80 70 80
2 80 45 80
3 80 70 55
4 80 45 45
5 80 70 35
6 80 45 35
7 80 45 60
8 80 60 45
9 80 35 70
10 80 35 45
11 80 35 25
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3.2.6 Impulsive force test

The goal in this test is to observe the overall load cell responses to a wide range of frequencies.

In order to create such an impulsive force, the signal generator was first set in the DC output

mode while its output was kept turned off. A voltage level of 5V was set for the output. Then,

once everything was ready and recording was ongoing, a pair of subsequent commands to

turn on and immediately turn off the output of the signal generator was sent by MATLAB

to the signal generator. This way, it was possible to emulate an impulse-like signal with

relatively small width and an amplitude of 5V. Based on our observations from the time-

domain impulsive force responses of the load cells, the average width was 170 ms. In theory,

the frequency content of an impulse signal is infinite, allowing measurement of the response

of the load cells to an infinite range of frequencies. However, an impulse force with zero

width that results in infinite frequency bandwidth is not practically possible. As a result,

this test is limited to frequency ranges with a maximum bandwidth (maxBW ). In addition,

the sampling frequency (sf) is another limit to the range of frequency for which a response

can be measured. With maxBW defined in Eq. 3.3, the maximum frequency range over

which the load cell responses can be measured is defined in Eq. 3.4.

maxBW =
1

Width of the impulse force
(3.3)

Table 3.2: Weight schedule for sine wave force test

Weight Weight Weight Weight
Configuration # W1 (lb) W2 (lb) W3 (lb)
1 35 45 35
2 105 45 80
3 80 45 80
4 25 45 25
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Maximum Frequency Range = min (maxBW,
sf

2
) (3.4)

Using Eq. 3.3, the average observed width of 170 ms translates to approximately 58 Hz.

Since the sampling frequency was set to 250 Hz during these tests, then according to Eq.

3.4, the maximum frequency range will be 58 Hz. This range is just above the bandwidth

of interest for BCG (0.05 to 35 Hz) [] so an overall response of the load cells to the BCG

bandwidth can be observed.

Conducting this test produced time-domain responses for each weight schedule scenario

as listed in Table 3.1 and representative plots are shown in Fig. 3.4 and Fig. 3.5. In addition,

frequency-domain responses were produced for the mentioned weight schedules. The average

of the frequency responses over the number of weight schedules is shown in Fig. 3.6.

3.2.7 Sinusoidal force test

In addition to the impulsive force test, we also tested load cell responses to some individual

known frequencies. In this test, the weight combinations were reduced to only four experi-

ments and the schedule was also changed as most of the weights had to be returned to their

lender. The schedule for this weight arrangement is provided in Table 3.2.

Sine wave-forces with different frequencies were applied to the bed to address the band-

width of the BCG. Table 3.3 provides the frequencies and related resolutions for which sine

waves were generated. In order to capture the behavior of the conditioning circuit, we in-

creased the resolution of test frequencies near the corner frequencies of our hardware filters

(0.05 to 35 Hz). Sample outputs due to 1 and 15 Hz sine waves for weight arrangement # 3

are depicted in Fig. 3.7 and Fig. 3.8 respectively in the results section.

In order to provide an overview of the load cell responses, SNR of the processed load

cell output was calculated for each frequency in the same manner described in 2.6.1. A

plot depicting the SNR of processed load cell outputs averaged over the different weight
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Table 3.3: Test frequencies and their related resolution.

Frequency Frequency 1 Frequency 2 Resolution
Range # (Hz) (Hz) (Hz)

1 0.1 2 0.05
2 2 5 0.1
3 5 23 1
4 23 26 0.1
5 26 45 1

arrangements of Table 3.2 is provided in Fig. 3.11 for the four load cells.

3.3 Results

3.3.1 Sensitivity test results

Table 3.4 compares the measured sensitivities and sensitivities published in their related

data sheets. A column for their prices is also provided.

The outcomes of this test and the small vibrations tests with ERMs were presented in a

poster in 2016 annual international conference of IEEE Engineering in Medicine and Biology

Society (EMBC).

3.3.2 Impulsive force test results

The plots in Fig. 3.4 and Fig. 3.5 present impulsive force response under two different weight

configurations. Fig. 3.4 shows impulsive force response when weight arrangement #1 was

on the bed whereas Fig. 3.5 shows the response produced when weight arrangement #4 was

Table 3.4: Sensitivity of load cells and other related information.

Load Cell Distributor Price Measured Published Max Load
Sensitivity Sensitivity

TAS606 Karlsson $57 2mV/V 2mV/V 1.96 KN
LCM302 Omega $315 <1mV/V 2mV/V 2.00 KN
FC2311 TE Connectivity $131 20mV/V 20mV/V 1.11 KN (250 lb)
FX1901 TE Connectivity $31 20mV/V 20mV/V 0.89 KN (200 lb)
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on the bed.

Fig. 3.6 shows the frequency responses of the load cells to an impulsive force. Each load

cell response is averaged over all weight arrangements described in Table 3.1.

3.3.3 Sinusoidal force test results

Sample time-domain load cell responses to sine waves of 1 Hz and 15Hz is shown in Fig. 3.7

and Fig. 3.8 respectively. The responses are produced under the weight arrangement #3 of

Table 3.2. Please note the difference in LCM302 load cell response in both scenarios.

Fig. 3.9 and Fig. 3.10 show the corresponding frequency responses of the load cells to 1 Hz

and 15 Hz sine waves, respectively, under the same weight arrangement. Again, please note

the differences in magnitude of the responses in both cases, in particular for the LCM302.

Fig. 3.11 shows the SNR of the sine wave outputs of the load cells at the tested frequencies

14 14.5 15 15.5 16 16.5 17

-1

0

1

2

3

4

5

6

Figure 3.4: Load cell response to impulsive force under the weight arrangement # 1 of Table
3.1
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in Table 3.3. The SNR values are averaged over the four weight arrangements described in

Table 3.2.

3.4 Discussions

3.4.1 Impulse response

Fig. 3.4 and Fig. 3.5 show that impulse responses were changing with the different weight

arrangements. This is likely reflecting the fact that resonance of the bed-mass system changes

as we change the weights. Therefore, the varying weights of different users could be expected

to have effects on the obtained signal. Also, the varying amplitudes of the impulse responses

in Fig. 3.4 and Fig. 3.5 can be related to varying COP due to changes in weight combinations.

Also, from the averaged frequency response of the impulsive force test as in Fig. 3.6, it can
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Figure 3.5: Load cell response to impulsive force under the weight arrangement # 4 of Table
3.1
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be seen that LCM 302 presents a noisier signal in general.

3.4.2 Sine wave response

From the sine wave responses, one important conclusion is that the LCM302 load cell per-

forms well only at around 15Hz, whereas its performance degrades severely at frequencies

above or below 15 Hz. This behaviour is evident in both time domain and frequency domain

responses. Therefore, the LCM302 is not a suitable candidate for BCG applications.

Comparing the curves in Fig. 3.11, it is easy to rank the FX1901 as the best performing

load cell followed by the FC2311. In our estimation, TAS606 could be considered for BCG

applications, but performs below the others. Although the FX1901 and FC2311 have sim-

ilar SNRs in the frequency range of 0.1 to 16 Hz, the FX1901 has better performance for

frequencies above 16 Hz. In addition, the FX1901 is the lowest priced load cell we tested.
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Figure 3.6: Frequency response to impulsive force averaged over all weight arrangements of
Table 3.1
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Therefore, the candidate load cell for our subsequent studies is FX1901.

3.4.3 Limitations

The bed utilized for this work [23–27] does not allow multiple load cells to be placed simulta-

neously under the same corner of the bed. In addition, setting the force source in the middle

of the bed does not guarantee equal distribution of the force over all the four load cells. On

the other hand, using a single corner of the bed while switching the load cells would result in

different force-to-platform coupling effects every time a new load cell is placed for test. Thus,

a trade-off was made. We had to decide between two settings: (i) keep the force-to-platform

coupling constant, and (ii) minimize the distance between the force source and the load cell

under test. In the case of (i), the four load cells are positioned beneath the posts of the bed

at its four corners and the force source is in the middle of the bed (here we also tentatively
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Figure 3.7: Load cell responses to a 1 Hz sine wave force under weight arrangement # 3
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assume that the force is distributed equally on four load cells which might not be the case).

In the case of (ii), the tests are performed on each load cell one at a time. However, this

results in introducing variable force-to-platform effects. We picked (i).

Another limitation is the estimation of the range of frequencies provided by the impulsive

force. Since we are measuring the width of the pulse on the output of the load cell, it is

not a representative of the actual applied impulsive force. On the other hand, the sine-wave

force test resulted in poor results when below 1 Hz. This was due to the audio amplifier and

speaker effects on the amplitude of the test signal with those frequencies.
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Figure 3.8: Load cell responses to a 15 Hz sine wave force under weight arrangement # 3

46



3.5 Conclusion

Bed-based load cells can provide effective means to acquire nighttime BCGs. Load cell

selection and testing are important when designing such circuitry. Even though load cell

specifications may appear nearly identical between manufacturers, it is crucial to test the

performance of these sensors and choose the one that provides optimal signal quality. Most

load cells are not designed for the purpose of acquiring such small signals relative to such

large signal baselines, and may have undesirable noise or frequency characteristics. While the

load cells used are not perfectly identical in sensitivity and range, the observed differences

in their detected signal are much larger than would be expected from their specifications.
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Figure 3.9: Load cell frequency responses to a 1 Hz sine wave force under weight arrangement
# 3

47



10 12 14 16 18 20

0

0.2

0.4

0.6

0.8

1

1.2
10

-5

Figure 3.10: Load cell frequency responses to a 15 Hz sine wave force under weight arrange-
ment # 3
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Figure 3.11: SNR of load cell responses to the sine wave forces with frequencies listed in
Table 3.3 averaged over the four weight arrangements in Table 3.2
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Chapter 4

Existing methods for BCG-based

heart rate estimation and their

performance

Primary results of this chapter was published in [110] and its final results are published in

[111]. Please cite these publications rather than this dissertation.

4.1 Introduction

The BCG obtained by the system described in chapters 2 and 3 can now be used to estimate

HBI from its J peaks. However, J peak detection from a BCG is not a trivial task. Several

studies have proposed methods to detect J peaks [15, 16, 18, 21, 68, 77, 80, 82, 84, 117–125].

While most of these studies have reported reasonable J peak detection, it is hard to compare

those results and select a method.

A few studies have performed small-scale comparisons of peak detection methods. For

example, [15] quotes the performance of seven existing methods and [63] compares methods

intended for camera-based sensors. Several groups have compared their proposed approach

with previous methods from their own or affiliated labs [17, 68, 82, 126]. The “multi-method”
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algorithm [77], which runs four peak-detection algorithms on a ballistocardiogram (BCG)

segment and fuses results from the three best-performing methods, could be considered a

comparison. However, it focuses on the overall performance of three fused methods as a single

method. Finally, [127] compares the performance of the “Maximal Overlap Discrete Wavelet

Transform (MODWT)” [68] with performances of three other signal processing techniques

using the mean absolute error (MAE) between the resulting ECG-based and BCG-based

pulse rates.

Based on this early review, a broad quantitative performance comparison of signal pro-

cessing methods proposed by different research groups is lacking. Further, a consensus does

not exist in this research community regarding which peak detection method best serves as

a gold standard for performance comparisons. Such comparisons would be well served by (1)

a common data set with which multiple methods could be tested and (2) access to original

source code that would allow for accurate code replication. This paper proposes a framework

where the performance of different BCG peak detection methods and their associated signal

processing techniques can be objectively evaluated in terms of peak detection efficiency and

sensitivity.

This work compares five BCG peak detection methods, where three are recreated from the

literature [15, 17, 123] and two are adapted from original code [68, 82]. This original source

codes were modified to address differences in sensing methods and sampling frequencies. The

authors recently conducted a pilot study involving five participants in [110] to compare three

peak detection methods [15, 17, 82]. The present study extends that work to include the

performance of two additional methods [68, 123], where data from total of 30 participants

supplement the original data in [110]. For clarity in this paper, each of these five methods is

referred to by the last name of the corresponding first author: Lee [15], Lydon [82], Brüser

[17], Alvarado [123] and Sadek [68]. A simple technique based on cross correlation (XCOR)

is also included as a baseline for comparison.

This work contributes

• a comparison of five peak-detection techniques applied to load-cell data,
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• two proposed peak-detection methods for use in HRV applications,

• performance benchmarks for researchers who seek to improve peak-detection performance

and/or develop new BCG peak-detection approaches, and

• a portfolio of replicated algorithms for the peak detection methods presented here.

An overview of the signal processing and peak detection approaches utilized here is provided

in Section I of the Appendix A. The reader is encouraged to refer to the original work for

further details. When possible, the authors have preserved the terms originally employed in

each study.

The rest of this paper is organized as follows. The Methods section describes the partic-

ipant demographics, data collection approach, and performance metrics. That section also

details the algorithm comparisons, including parameter optimization steps. The Results sec-

tion reports the outcomes of these comparisons, and the Discussion section comments on

these results, the limitations of these analyses, and future work.

4.2 Methods

4.2.1 Data recording

Thirty healthy volunteers participated in this study: fourteen male (ages 30.9 ± 6.3 years)

and sixteen female (ages 46.0 ± 18.5 years). Participants provided informed consent, and the

recording process was performed in accordance with Kansas State University Institutional

Review Board protocol No. 9386. Each participant laid on their back on a full-size bed

with a stiff mattress. BCGs were recorded using four Measurement Specialties FX1902 load

cells positioned beneath the corner bedposts. The signal conditioning circuitry employed

bandpass filters with corner frequencies of 0.05 and 35 Hz - these circuits are further described

in [25]. ECGs were simultaneously recorded using a GE Datex-Ohmeda CardiocapTM/5

patient monitor. The conditioned BCGs and ECGs were digitized at 250 Hz using a National

Instruments (NI) 9220 16-bit multichannel data acquisition system, and these data were

transferred to a local PC with an NI 9184 Ethernet chassis controlled by a LabVIEW virtual
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instrument. Data were visually inspected, and segments corrupted by motion artifacts were

removed prior to heartbeat interval identification. From that point, all available data were

included in the study.

4.2.2 Signal source selection

For each subject, a signal quality index (SQI) [128] was calculated for each of the four BCG

segments acquired from the load cells, and then the BCG segment with the highest SQI was

selected. That segment was then preprocessed as specified in each peak-detection method’s

original paper. SQI calculation details are provided in Section IV of the Appendix A.

4.2.3 Ground truth peak labeling

The most prominent BCG peaks, termed “J peaks,” identify heartbeat times. Simultaneously-

recorded ECG R peaks were used as visual aids to identify BCG J peaks (except for two

participants whose data were acquired before an ECG was included and for one case where

an ECG recording was not possible). Due to variability in R-to-I intervals [129], and con-

sequently R-to-J intervals, automated ECG-based J-peak annotation was avoided. Instead,

given labeling conventions as in [130, 131], and with R peaks as visual references, two sets

of 100 consecutive J peaks from two separate two-minute-long BCG sections were visually

identified and annotated for use as ground truth (GT) peaks. The first set was used to

optimize each peak-detection method, and the second set was used to evaluate the method’s

performance. For the three BCG recordings where simultaneous ECG data were unavailable,

only BCG sections with visually indisputable J peaks as depicted in Fig. 4.1 were included

in the study.

4.2.4 Performance metrics

A detection percentage (Det.) parameter is used as a sensitivity parameter to quantify the

ability of an algorithm to correctly identify J peaks (i.e., a true positive rate). A false
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alarm rate (FAR) parameter represents the counter metric, or specificity. Any temporal

shift introduced by a signal processing step was corrected so that the detected peaks in the

BCG segment would align in time with their corresponding GT peaks. A detection, or true

positive (TP), is defined as a detected peak that is within d = 0.06 sec of the GT peak

[110]. While S̆prager and Zazula [77] suggest 0.075 sec instead, this stricter criteria improves

specificity and exceeds the IEC standard for ECG QRS detection, which is also used in [77].

If multiple peaks are detected within a target window, the positive peak closest to the GT

peak is considered a TP, and the rest are counted as false positives (FPs). Likewise, peaks

detected outside of the specified window are considered FPs. Unsuccessful detection within

the target window near the GT peak is counted as a missed event or false negative (FN).

The FAR is then defined as the number of all FP events between the first and last GT

peaks divided by the time between the first and last GT peaks in seconds and is reported

as counts/sec. The third metric considered in this study is the efficiency, r, as proposed in

[77], which is defined in Eq. 4.1 as

r = 3
√
rs · rp · rv (4.1)
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Figure 4.1: BCG excerpt with annotated J peaks for the 1st (bottom) and 3rd (top) partici-
pants for whom a simultaneous ECG was unavailable.
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where rs and rp represent sensitivity and precision, respectively, and rv is the variability

score. These parameters are defined in [77] as

rs =
TP

TP + FN
(4.2)

rp =
TP

TP + FP
(4.3)

and

rv = P
(∣∣tdi − (tri + τ̄

)∣∣ < d
)

(4.4)

where P is the probability, tdi and tri are the ith time indices of the detected and GT peaks,

respectively, and τ is the average time between detected and GT peaks if R peaks are used

as GT peaks [77]. Since visually annotated J peaks are used as GT peaks, τ is dropped and

Eq. 4.4 becomes

rv = P
(∣∣tdi − tri∣∣ < d

)
(4.5)

Looking at Eqs. 4.2 and 4.5, however, one can see that Eq. 4.5 is numerically equivalent to

Eq. 4.2, i.e., rv = rs, and therefore a modified definition for rv is considered in this work

to avoid duplication in Eq. 4.1. The modified definition proposed here is the ratio of the

number of detections within d/2 to the number of detections within d :
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rvmod
=
P
(∣∣tdi − tri∣∣ < d/2

)
rv

=
P
(∣∣tdi − tri∣∣ < d/2

)
rs

(4.6)

which leads to

rmod = 3
√
rs · rp · rvmod

(4.7)

and the efficiency for each method is computed using Eq. 4.7 instead of Eq. 4.1.

The fourth proposed metric is the MAE between the GT peak times and the detected

peak times (MAEp). This metric provides insight into J peak temporal jitter. The last

performance measure is the Absolute Error (AbsErr) between each HBI based on GT peaks

(HBIGT ) and each HBI based on detected J peaks (HBIdet). It is calculated using Eq. 4.8.

Here, n is the total number of HBIs based on detected peaks from all participant BCGs.

AbsErrn =
∣∣HBIGTn −HBIdetn

∣∣ (4.8)

4.2.5 Parameter selection and optimization

Authors of some papers that present peak-detection methods either do not report one or more

parameters, or the reported parameters lead to non-optimal performance when utilized with

these BCG datasets. Reporting poor performance for a method would be arguably unfair

if a simple parameter change would have made it competitive. Therefore, when replicating

or adapting each method, the authors had to first optimize the method’s performance by

varying parameter values. To that end, a range of parameter values were iterated to obtain

a set of Det. and FAR pairs for each method when applied to the first segment of a BCG

with its associated GT peaks. The obtained Det. and FAR pairs were used to create receiver

operating characteristic (ROC) curves. Parameter values were selected to maximize the area
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under the curve (AUC) for each of the ROC curves (see Fig. 4.2). The plots include only

the ROC curves for those methods that were able to produce smooth curves for detection

rates above 65%. The factors limiting the depiction of ROC curves to detection rates above

65%, and only for certain methods, are discussed in 4.4.1 and 4.4.4, respectively.

Since the Lee and Lydon methods were originally tested on BCGs sampled at 1000 and

100 Hz, respectively, an up-sampled and down-sampled BCG were utilized in this work in

addition to direct application on our 250 Hz data. These two scenarios are labeled “Lee-US”

(up-sampled BCG) and “Lydon-DS” (down-sampled BCG). This step was taken to rule out

the effects of a sampling frequency mismatch. The same approach was applied with the

Alvarado and Sadek methods, but it led to incomparable performances, so the results were

not reported. For the Sadek method, a “minimum peak prominence” (MPP) parameter was

evaluated in addition to the original “minimum peak distance” (MPD) parameter utilized

with the MATLAB “findpeaks()” function. This scenario was labeled “Sadek-MPP” and

was included in the results as a comparable method to the other methods that used MPP.

The optimization process is illustrated by the flowchart in Fig. 4.3. BCG1m is the first

two-minute-long BCG segment from the mth participant, including its associated GT peaks

(GT peaks1m); the result from that segment is detected heartbeats (HBd). The parameter(s)

noted in the flow chart are summarized in Table 4.1.
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Figure 4.2: Mean ROC curves for the Lee, Lee-US, Lydon, Lydon-DS, Brüser, Sadek-MPP
and XCOR methods. The -DS & -US methods are down- or up-sampled to match the original
publication.
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The rationale for picking these parameters and the other details of the optimizations are

provided in Section II of the Appendix A. Also, a summary of the wavelet basis functions

and the number of participants for whom these functions resulted in an optimal performance

(with the Alvarado and Sadek methods) are provided in Tables I and II, respectively, in

section III of the Appendix A.

4.2.6 Testing phase

After the parameters were optimized, performance metrics were computed when using the

second BCG segment, BCG2m, and its associated GT peaks, GT peaks2m. These data

were not used during the optimization process, so the peak-detection performance relative

to these data should be a fair estimate of each method’s ability. Fig. 4.4 illustrates this

process further.

4.3 Results

The performance metrics described in Section 4.2.4 are summarized in Table 4.2. The

columns report averages taken across the number of participants: aggregate results for Det. in

Table 4.1: List of parameters to be optimized for each method.

Method Parameters Used

Lee, Lydon, XCOR Moving-average (MA) Lengths

Lee, Lydon, XCOR, Sadek “Minimum peak prominence” (MPP)

Brüser sliding window overlap percentage, thQ

Alvarado wavelet basis function,

wavelet decomposition level

Sadek wavelet decomposition level,

“minimum peak distance” (MPD),

“Analysis Window” size
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percent, FAR in counts per second, MAEp in seconds, and rmod in percent. Each row ad-

dresses a method noted in this paper.

The modified Bland-Altman plots in Figs. 4.5 and 4.6 display the AbsErr of each method

on the dependent axis. The independent axis represents the HBI based on GT peaks as per

recommendations in [132]. Each plot is based on aggregated HBI data for all 30 participants.

BCG1m & GT peaks1m

Method Performance
Measurement

Update
Parameter(s) Optimal?

Initial
Parameter
Value(s)

Record Optimal
Parameter(s)

Det. & FAR

No

Yes

HBd�
train

Fig. 3. Illustrates performance optimization process. With the path labeled
as HBd indicating the heartbeats detected.
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Fig. 4. Illustrates performance evaluation based on the obtained parameters.

III. RESULTS

The performance metrics elaborated in II-C are summarized
in Table II. The columns report the averages taken across the
number of participants to report aggregate results for Det. in
percent, FAR in counts per second, MAEp in seconds and rmod

in percent. The rows correspond to each method studied in this
paper.

TABLE II. PERFORMANCE EVALUATION OF THE METHODS.

Methods Det. (%) FAR (cnt/sec) MAEp(sec) rmod (%)
Lee 82.8621 0.1047 0.0203 54.7228
Lee-US 82.5172 0.1028 0.0232 57.3578
Lydon 86.3448 0.0810 0.0175 66.0629
Lydon-DS 81.5172 0.0946 0.0184 60.8376
Brüser 88.9310 0.0766 0.0088 49.9188
Alvarado 79.3793 0.1714 0.0312 33.0721
Sadek 94.1724 0.0552 0.0175 44.9751
Sadek-MPP 70.2414 0.1920 0.0175 42.6856
XCOR 89.1724 0.1787 0.0103 52.3684

The Modified Bland-Altman plots in Figs. 5 and 6 show the
AbsErr of each method on y-axis. The x-axis is simply the
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Fig. 5. Modified Bland-Altman plots for Lee, Lee-US, Lydon, Lydon-DS,
and Brüser methods from top to bottom respectively.

HBI based on GT peaks as per recommendations in [39]. The
plots are based on aggregated HBI of all 30 participants.

IV. DISCUSSION

A. Lee Method

The advantages of this method are its relatively low FAR
and low sensitivity to sampling rate as can be seen from Table
II that the performance metrics are not much different for

Figure 4.3: Performance optimization process. The path labeled “HBd−train” indicates the
detected heartbeats used to train the parameters to optimize the performance of a method.
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Table 4.2: Performance metrics for the various peak-detection methods. Det.: detection rate
in %, FAR: False Alarm Rate in alarms per second (cnt/sec), MAEp: Mean Absolute Error
between GT peak times and detected J peak times in seconds, and rmod: Efficiency in %.

Methods Det. (%) FAR (cnt/sec) MAEp(sec) rmod (%)

Lee 82.8621 0.1047 0.0203 54.7228

Lee-US 82.5172 0.1028 0.0232 57.3578

Lydon 86.3448 0.0810 0.0175 66.0629

Lydon-DS 81.5172 0.0946 0.0184 60.8376

Brüser 88.9310 0.0766 0.0088 49.9188

Alvarado 79.3793 0.1714 0.0312 33.0721

Sadek 94.1724 0.0552 0.0175 44.9751

Sadek-MPP 70.2414 0.1920 0.0175 42.6856

XCOR 89.1724 0.1787 0.0103 52.3684
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III. RESULTS

The performance metrics elaborated in II-C are summarized
in Table II. The columns report the averages taken across the
number of participants to report aggregate results for Det. in
percent, FAR in counts per second, MAEp in seconds and rmod

in percent. The rows correspond to each method studied in this
paper.

TABLE II. PERFORMANCE EVALUATION OF THE METHODS.

Methods Det. (%) FAR (cnt/sec) MAEp(sec) rmod (%)
Lee 82.8621 0.1047 0.0203 54.7228
Lee-US 82.5172 0.1028 0.0232 57.3578
Lydon 86.3448 0.0810 0.0175 66.0629
Lydon-DS 81.5172 0.0946 0.0184 60.8376
Brüser 88.9310 0.0766 0.0088 49.9188
Alvarado 79.3793 0.1714 0.0312 33.0721
Sadek 94.1724 0.0552 0.0175 44.9751
Sadek-MPP 70.2414 0.1920 0.0175 42.6856
XCOR 89.1724 0.1787 0.0103 52.3684

The Modified Bland-Altman plots in Figs. 5 and 6 show the
AbsErr of each method on y-axis. The x-axis is simply the
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Fig. 5. Modified Bland-Altman plots for Lee, Lee-US, Lydon, Lydon-DS,
and Brüser methods from top to bottom respectively.

HBI based on GT peaks as per recommendations in [39]. The
plots are based on aggregated HBI of all 30 participants.

IV. DISCUSSION

A. Lee Method

The advantages of this method are its relatively low FAR
and low sensitivity to sampling rate as can be seen from Table
II that the performance metrics are not much different for

Figure 4.4: Performance evaluation based on the obtained parameters. The path labeled
“HBd−test” indicates the detected heartbeats used to test the performance of a method
in conjunction with the parameters obtained in the optimization process, e.g., Recorded
Optimal Parameters.
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4.4 Discussion

4.4.1 Lee method

The advantages of this method are its relatively low FAR and its low sensitivity to the

sampling rate, as noted in Table 4.2 (the performance metrics are not much different for
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Figure 4.5: Modified Bland-Altman plots for the Lee, Lee-US, Lydon, Lydon-DS, and Brüser
methods from top to bottom, respectively.
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the Lee and Lee-US methods). This method also has the second highest efficiency (rmod)

for both sampling rates. The method’s disadvantages are its relatively low detection power

-0.1

-0.05

0

0.05

0.1

(a) Alvarado

-0.1

-0.05

0

0.05

0.1

(b) Sadek

-0.1

-0.05

0

0.05

0.1

(c) Sadek-MPP

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

-0.1

-0.05

0

0.05

0.1

(d) XCOR

Figure 4.6: Modified Bland-Altman plots for the Alvarado, Sadek, Sadek-MPP, and XCOR
methods from top to bottom, respectively.
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and its second-highest MAEp. The Lee and Lee-US methods produce the most dispersed

Bland-Altman plots (see the top two panels of Fig. 4.5). Lee’s method as replicated in this

work is also sensitive to parameter variations, and this sensitivity increases in the case of an

up-sampled BCG.

Since the next peak detection “analysis window” is based on the last peak detected in

the previous window, it is not possible to create smooth ROC curves for larger ranges of

the MPP values. Consequently, a complete ROC curve could not be produced during the

optimization step. An example ROC curve for a wider range of MPP values is depicted in

Fig. 4.7, where MPP was varied from 5e-4 to 10e-4 for participant 23. To address this issue,

smaller ranges of parameter values were used to produce smooth ROC curve segments with

detection rates exceeding 80% and FAR values below 0.2 cnt/sec. Exceptions were made for

two participants because the parameter ranges needed to be as small as 2.2e-3 to 2.9e-3 in

one case (participant number 6) and 3.2e-5 to 5e-5 in another case (participant number 3).

Consequently, the Det. dropped to well below 80% and the effects were more pronounced in

the Lee-US ROC curves, as can be seen in the second panel of Fig. 4.2. Similarly, for the

Lee-US method applied to one participant’s data, the FAR had to exceed 0.2 counts/sec to

make a non-zero detection.

The method is prone to false positives introduced by end effects from filtering during

each window. This problem can be alleviated by either performing preprocessing prior to

windowing or by introducing an MA filter on the output. The latter was chosen but led to

two MA length parameters that required optimization. Contrary to the initial study [110],

performance was substantially improved by setting this second parameter in a subject-specific

manner.

4.4.2 Lydon method

The advantages of this method are that it offers the highest rmod, the third lowest FAR

and MAEp, and the easiest implementation after the XCOR method. The original code is

also accessible. This method produced smooth ROC curves during the optimization process
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and was much less sensitive to variations in MPP values compared to the Lee method.

The disadvantages of this method are its relatively low detection rate and the fact that it

produces the second most dispersed Bland-Altman plots (3rd and 4th panels of Fig. 4.5).

In addition, the existence of two lengths for the MA filters, which need to be adjusted for

different participants, adds to its complexity for real-time peak detection. Comparing the

two sampling rate scenarios for this method, an improved performance arises in the Lydon

method when compared to the Lydon-DS approach. This can be due to distortion/loss

of information from down-sampling the BCG or the notion that this method may perform

better with BCGs recorded at higher sampling rates.

4.4.3 Brüser method

The advantages of this method are that it has the lowest MAEp, the second lowest FAR, and

the third highest detection rate, plus it produces the second least dispersed Bland-Altman
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Figure 4.7: Top: ROC curve; Middle and bottom: Det. and FAR, respectively, vs minimum
peak prominence (MPP) for a range of 5e-4 to 10e-4 for participant 23.
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plot (see the 5th panel in Fig. 4.5). This method is also less sensitive to parameter variations

and produces good combinations of Det. and FAR for a larger range of parameter values.

The ROC curves stay mostly near detection rates higher than 85%, with corresponding FARs

as low as 0.07 counts/sec.

Interestingly, the version of Brüser’s Method replicated for this work seems to produce

better Bland-Altman plots when its detected peaks (“anchor points” in the original work)

are used instead of the directly estimated HBIs, although this method primarily focuses on

direct HBI estimation. Fig. 4.8 displays the modified Bland-Altman plot obtained from

the aggregate HBI estimates. The Bland-Altman plot in this figure is more dispersed when

compared to the Bland-Altman plot for the Brüser method in Fig. 4.5. Also note that the

“mean±1.96std” lines have moved outside of the limits (-0.1 to 0.1 on the dependent axis)

used for Bland-Altman plots in this paper.

Since this study primarily focuses on peak-detection performance, including the Bland-

Altman plots due to HBIs obtained from detected peaks should still be sensible. With a

single subject-specific parameter to control, this method could be attractive for longitudinal

peak detection applications.

A disadvantage of this method is that it has the third lowest rmod after the Alvarado

and Sadek methods based on the numbers in Table 4.2. The statistical approach taken in

this method to determine HBI estimates makes this method more interesting for long-term

longitudinal studies, since more personalized estimators can be trained and better decisions

can be made when picking suitable HBIs. On the other hand, this same approach makes this

method less attractive for short-term HRV estimation applications, since prior data must be

accumulated to enhance the estimators used when picking good HBI estimates.

4.4.4 Alvarado method

The advantage of this method is that it offers subject-independent amplitude and interval

thresholds, owing to the adaptive nature of its peak detection algorithm, as opposed to the

“findpeaks()” algorithm used in the other methods (except for Brüser’s method). Out of the
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six wavelet basis functions evaluated when optimizing this method, “bior2.2” resulted in the

best performance for 13 BCGs. This suggests that it may be possible to deduce an optimal

wavelet for a group of people with certain characteristics. This method also produces the

least dispersed Bland-Altman plot: the 1st panel in Fig. 4.6. The disadvantages of this

method are that it produces the lowest rmod, the lowest Det. after Sadek-MPP, the third

highest FAR after XCOR and Sadek-MPP, and the highest MAEp. Alvarado’s method is

also highly sensitive to wavelet decomposition scale selection in a non-linear fashion. For

example, when changing from scale 68 to either 67 or 69 for a particular participant, the

FAR will jump from zero to 0.66 or 0.63 counts/sec, respectively. Due to this non-linear

sensitivity, a smooth ROC curve was not possible.

For the BCG data employed here, the originally-proposed 5th decomposition level per-

formed poorly, yielding an average detection rate of 27% and 0.89 counts/sec FAR. Different

wavelet decomposition scales were therefore investigated. The best-performing scales were

often much higher (between 19 and 76).

4.4.5 Sadek method

For Sadek’s method, the Sadek and Sadek-MPP implementations will be discussed separately.

The advantages of the Sadek algorithm are that it offers the highest detection rate, the lowest

FAR, and the third lowest MAEp, plus it produces the third least dispersed Bland-Altman
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Figure 4.8: Modified Bland-Altman plot for the Brüser method when HBIs estimated by
this method are used.
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plot (panel two in Fig. 4.6). This method is also attractive because the code is publicly

accessible. One disadvantage is that this method produces the third lowest rmod. It also needs

prior HBI data from a participant for proper “minimum peak distance” (MPD) selection,

making short-term HRV studies impossible. In addition, this method lacks a means to find an

optimal MPD value in the long run. Brüser’s method, for instance, handles this automatically

using statistical estimators. Because this parameter is fixed, the Sadek method may not be

suitable for long-term or longitudinal studies due to changes in the underlying heart rate.

The advantage of the Sadek-MPP method is that it can be used for long-term longitudinal

HRV studies, because once an optimal MPP is obtained, the MPP will not change unless the

participant changes. The method’s less dispersed Bland-Altman plot can be an advantage

but is misleading due to the low number of detections obtained with this method; Bland-

Altman plots do not account for misses. Other disadvantages of this method are that it

offers the highest FAR, the lowest Det., the second-lowest rmod, and a relatively high MAEp.

The wavelet proposed in the original work, “sym8”, appears to result in better perfor-

mance for both the Sadek and Sadek-MPP methods when applied to these participant data.

The wavelet decomposition scales do not vary significantly, and a wavelet decomposition

scale of 6 seems to produce optimal results for 17 participants. This implies the possibility

to identify a subject-independent scale for a group of individuals who share similar physio-

logical and body composition traits. Note, though, that transitioning from the optimal scale

to the neighboring scale impacts the performance severely. For example, a transition from

scale 5 to scale 6 for participant 8 causes the detection rate to drop from 100 % to 32% and

the FAR to increase from 0 to 0.64 counts/sec.

In this method, similar results are obtained whether or not windowing is applied. How-

ever, if windowing is applied, a 10-second window length as proposed in the original work is

not always optimal. While the authors applied the windowing step when using an MPD to

be consistent with the original work, this step was skipped when using an MPP. This can

be justified because when windowing is applied after wavelet decomposition, end effects will

not exist for each window and therefore will not affect the performance of the method. Also,

the MATLAB “findpeaks()” function applies windowing anyway, which partly explains why
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windowing does not affect performance in the first place.

Down-sampling these BCG data to the originally proposed sampling rate (50 Hz) severely

impacts the performance of this method. For example, the average Det. drops to 13% and

the average FAR jumps to 0.8855 counts/sec when tested with an MPD. Based on this ob-

servation, the Sadek-MPP method was not tested with a down-sampled BCG. Consequently,

results for down-sampled data were not considered in the evaluation process.

4.4.6 Cross-correlation method

The advantages of this method are that it offers the second highest detection rate, the second

lowest MAEp, a relatively high rmod, and minimal design complexity. The performance of this

method is much less sensitive to parameter variations when compared to methods that use

MPPs. As a result, it provides a larger range of parameter variations toward smoother ROC

curves. As mentioned in the Methods section, the lengths of the MA filters were subject-

independent except for the case of one participant whose data were later removed from the

study since they caused this method to produce zero Det./FAR pairs. The disadvantages

of this method are that its FAR is the second highest, and it produces a relatively more

dispersed Bland-Altman plot see panel four in Fig. 4.6. The fact that it failed to find a

non-zero Det./FAR pair for the BCG of a particular participant is another negative point,

although those BCG data caused the Lee and Lydon methods to perform poorly as well.

4.4.7 Limitations

While considerable effort has been expended to accurately replicate each method, the pos-

sibility of error remains. Original code was not available from most of the affiliated authors

(except for the authors of [82] and [68]), and some details necessary to replicate the methods

were missing from each paper. Therefore, it is sensible to note that the results presented in

this study relate to the performance of the authors’ replications of each method. The pa-

rameter optimization process was included to mitigate the effects caused by inconsistencies

in method implementations relative to the algorithms created for the original papers.
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An occasional small modification was necessary to avoid unfairly penalizing a given

method. For example, a simple MA filter was added to the Lee and Lydon methods, since

their performance would otherwise have been very poor. Some parameters either were not

listed in the original publications or were obviously inappropriate for these BCG data; these

parameters were adjusted through the parameter optimization step described earlier. For

many parameters, though, the published values were used directly without investigating

other settings. Notably, the filter types, orders, and corner frequencies were implemented

as published. Optimizing these parameters may have led to increased performance for some

methods, but doing so would substantially increase the complexity of the optimization. While

some methods originally included an automatic motion artifact removal step, that step was

skipped in this study since the BCG segments selected for this work were already free of

motion artifact.

As mentioned in the Methods section, BCG selection (i.e., one signal out of four available

load cell signals) was based on the signal with the highest SQI. While this step was performed

with the goal to select the best BCG, a higher SQI did not necessarily result in better

algorithm performance. Nonetheless, the performance comparison is still reasonable, since

the same BCG data were presented to all methods.

The overall low rmod as noted in Table 4.2 is due to the rvmod
factor in Eq. 4.7, which is

defined in Eq. 4.6. Eq. 4.6 is relatively strict at present. Ultimately, however, the research

goal is to place limits on the HRV estimate error rather than the time-domain jitter. Further

study will be required to elucidate this relationship.

A Bland-Altman plot compares only one performance aspect: the error between a GT

value and an estimate. Since false alarm events are ignored, similar plots can be obtained

for two methods with similar jitters but very different Det. and FAR values. The authors

therefore suggest that Bland-Altman plots are suitable but not fully sufficient for this type

of method comparison.

Since the BCG ground truth peaks were not based on the R peaks of ECG data, the

mean relative error between the R-to-R intervals (RRIs) and the heartbeat intervals (HBIs)

[133] was not used as a performance criterion in this work. Here, the authors believe that
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MAEp is a good replacement for this measure.

4.4.8 Future work

The role of sensor modality is unclear in terms of performance differences between these

peak-detection methods. The Lee method was originally proposed for use with load cell

data, consistent with this work. Lydon et al. used water pressure sensors in their original

work, but the Lydon method can clearly be successfully used with load cell-based BCGs,

since Lydon’s method outperformed Lee’s method in this study. Similarly, Brüser’s method,

though originally designed for data acquired with electromechanical films, had a high number

of detections and a low timing jitter. This suggests that Brüser’s method may be more robust

to sensor changes than the other techniques. On the contrary, the Alvarado and Sadek-MPP

methods, originally proposed for fiber-optic based sensors, performed poorly. Perhaps the

sensor modality mismatch is one reason. Further study is needed.

The existence of at least one subject-dependent parameter for each method suggests that

these methods will achieve their best performance in long-term and longitudinal studies only

if the parameters are personalized for each user. Since each data set for this study originated

from a single session, the authors cannot speak to the stability of these parameters over time.

In this study, a timing jitter up to 0.06 sec (when comparing a candidate peak to a GT

peak) resulted in the tally of a detected peak. However, it is not yet clear how much timing

jitter can be allowed before an HRV feature estimated using these detected peaks will become

useless. Further studies are necessary to assess the impact of timing jitter on the quality of

the HRV features.

As mentioned earlier, the results of this study are based on BCGs with no motion arti-

facts. When processing longer BCG segments, where motion artifacts are unavoidable, an

automatic motion detection algorithm such as in [108, 109] may prove useful. The preferred

peak-detection method as identified by this work can then be applied to the remaining clean

BCG data.

BCGs are not the only unobtrusive signals used for heartbeat detection. Several other
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non-contact heartbeat detection methods have been proposed in the literature, such as ca-

pacitive ECGs [29–34], mattress-based PPGs [35], PPG imaging [36–41], optical Doppler or

laser-based techniques (e.g., for tracking the cardiac chamber or arterial wall movements)

[57–62], thermography [134–137], video-based motion analysis [138, 139] (see [63] for a thor-

ough review), and high frequency electromagnetic fields [140–144] (see [145] for a review and

elaboration of some of these approaches). The platform developed for this work may show

promise when comparing the performance of heartbeat detection methods applied to data

acquired using these other sensing modalities.

4.5 Conclusion

This paper compared the peak-detection performance of various algorithms when applied to

ballistocardiographic data acquired from load cells placed under the corner posts of a bed.

No single method excelled in all comparison categories. However, Brüser’s method had the

lowest timing jitter, the second lowest false alarm rate, and the third highest detection power.

Sadek’s method also exhibited good performance, offering the highest detection power, the

lowest false alarm rate, and the third lowest timing jitters; it would be a strong candidate

if not for its high dependence on the “minimum peak distance” parameter, which requires

prior knowledge of an individual’s heartbeat interval. On the other hand, Sadek’s method

does have a subject-independent wavelet basis function which would be desirable if a robust

scheme to train the “minimum peak distance” could be developed. Interestingly, the simple

XCOR method presented by the authors would be in third place, as it yielded the second

highest detection power and the second lowest timing jitter. However, the high false alarm

rate reported by this method requires attention. The code that implements the framework

proposed in this study is accessible upon request to the corresponding author. A link to

Code Ocean repository will be available in the future.
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Chapter 5

The effects of BCG peak detection

errors on the HRV feature quality

5.1 Introduction

Based on the conclusions of Chapter 4, the best-performing method still introduces timing

jitter in the detected J-peaks. This timing jitter is with respect to GT-peaks as described

in Chapter 4. The jitter results in differences between HBI obtained from detected J-peaks

(HBIdet) and HBI obtained from the GT-peaks (HBIGT ). For easier reference we will call

this error the HBIdet-HBIGT error. Based on the Bland-Altman plot for the best-performing

method (bottom-most panel of Fig. 4.5), the resulting HBIdet-HBIGT error seems to be less

than 15ms for a total of 3000 heartbeats from 30 participants (100 heart beats from each

participant).

While an HBIdet-HBIGT error of less than 15 ms is comparable with HBI errors reported

in other HBI-related studies (Table 5.1), the effects of this range of error on the validity of

resulting HRV features is not known. In fact, the impact of HBI error on the accuracy of

health-related interpretations from HRV features doesn’t seem to have been investigated.

Although [84, 118, 147] have reported the resulting errors in HRV features due to the

JJI error and [18, 88] have reported correlation coefficient between JJI-based HRV features
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Table 5.1: List of JJI-RRI errors. MAE: Mean Absolute Error; RelErr: Relative Error;
Det. Rate: Detection rate; FPR: False Positive Rate; FNR: False Negative Rate; ME: Mean
Error. Empty cells mean unavailable.

Reference N MAE ME RelErr Det. Rate FPR FNR Coverage Remarks
(ms) (ms) (%) (%) (%) (%) (%)

[119] 1 92.7 0.5
[120] 24 7 0.25 2.86 BCG model
[17] 33 7 0.78 72.69
[21] 6 0.35
[19] 16 16.61 1.79 95
[77] 14 22
[117] 5 0.75
[146] 10 17

and RRI-based HRV features, the effects of such errors and discrepancies have not been

extended to the validity of resulting HRV features. For example, this information doesn’t

help to establish a relationship between JJI-RRI error and sleep staging accuracy - one of

several HRV applications.

An exception can be made for two studies of a single research group [80] and [148]. They

have reported their JJI estimation performance in [80] and sleep staging accuracy based on

that JJI in [148] where the accuracy was estimated based on polysomnogram (PSG)-based

sleep scores. However, the contribution of JJI estimation error to the sleep accuracy cannot

be back-calculated since JJI was not the only signal used in the study. Furthermore, the

only published application of JJI-based HRV features appears to be sleep staging, and even

in this area the studies have been limited to [4, 84, 88, 91, 147, 149–151] to our knowledge.

As a result, an agreed upon baseline for JJI-RRI error range does not exist beyond which

one should know that the resulting HRV features from the underlying JJI will no longer be

valid.

The focus of this chapter is to investigate the effects of JJI-RRI error on the quality

of resulting HRV features. In order to conduct this study, it is necessary to evaluate the

accuracy of health-related information inferred from the HRV features estimated from the JJI

in question. For that purpose, this work studies the effects of JJI-RRI error on the accuracy
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of sleep staging based on the HRV features. This task is accomplished by introducing random

timing jitters in the R peaks of the ECGs obtained from the sleep data in the National Sleep

Research Resource (NSRR) database. In addition, the error between JJIdet, also known as

HBIdet in Chapter 4, and RRI obtained from the data used in Chapter 4 will be compared

to the JJI-RRI error obtained from the ECG sets of the NSRR database.

Although other applications can be imaged, we chose sleep staging to be able to compare

with prior work. Furthermore, methods already exist for sleep staging with HRV features

obtained from the R-peaks of an ECG [152–156]. In addition, the ready availability of sleep

data with their associated ECG from the NSRR database was another motivation.

5.2 Methods

5.2.1 Data description

Simulated JJI-RRI error

We accessed the NSRR database to investigate the effects of HBI error on the accuracy of

sleep staging. The NSRR database contains de-identified sleep and other physiological data

including ECG recordings with corresponding sleep stage labels. The sleep stages are labeled

by sleep experts using PSG. The PSG contains ECG, from which we can obtained HRV

features synchronous to those sleep stage labels. To our knowledge, no database includes

simultaneous BCG signals and expert sleep scores.

The R-peaks obtained from the ECG is assumed to be our clean and ground truth

heartbeat data. Then artificial perturbations to the R-peak location is added to mimic timing

jitter in the detected J-peaks of BCG. Following, RRI from clean and error-contaminated

R-peaks are obtained. The RRI from R-Peaks with time jitters simulates the JJI from the

detected J peaks of a BCG, i.e., JJIdet. Consequently, it is possible to calculate JJIdet-RRI

error. The process continues by increasing the standard deviation of the perturbations until

the MAE between RRI and JJIdet reached 60 ms. We specified 60 ms as the maximum based

on the Bland-Altman plots in Fig. 4.5 and Fig. 4.6 of Chapter 4. There, the HBI error, i.e.
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HBIdet-HBIGT error, was typically below 60 ms.

The MAEs between the RRI and each JJI (the JJIdet resulting from R-Peaks with random

jitter) are obtained and each resulting JJIdet time series is then considered for HRV feature

estimation and further sleep staging. A sleep staging error is obtained and recorded against

each MAE. The effect of those R-peak perturbations on different features of HRV, in both

the frequency and time domains, is examined. The mentioned perturbations are supposed

to mimic the heartbeat detection errors when using BCG for HRV analysis.

Lab-based JJI-RRI error

The data from 5.2.1 will later be used to estimate the total allowable difference between GT,

R-peak based HBI (RRI) and detected, J-peak based HBI (JJIdet). This difference captures

all of the sources of error listed in 1.1, i.e., physiology, platform effects, and system errors.

By contrast, the metrics calculated in 4.2.4 refer to the temporal difference between GT and

detected J-peaks (JJIGT vs JJIdet), which captures only system errors. Thus the metrics are

not directly comparable. Rather, we must augment the numbers in 4.2.4 with the RRI-JJIGT

error. The RRI-JJIGT error captures both the physiological differences and platform effects,

making the metrics comparable, and can be included through simple addition.

It is worth mentioning that the RRI-JJIGT is a bi-product of the study conducted in

Chapter 4 where simultaneous ECGs was recorded when collecting BCGs.

5.2.2 HRV features

Frequency and time domain features of the HRV for each RRI and JJIdet time series were

calculated using 5 minute sliding windows with 90 % overlap.

Frequency-domain features

Low frequency (LF) and high frequency (HF) power was calculated using the Lomb-Scargle

normalized periodograms [157, 158] due to the unevenly sampled nature of the RRI and JJIdet

time series. The LF and HF frequency ranges correspond to 0.04-0.15 Hz and 0.15-0.4 Hz
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respectively [153]. In addition, the ratio of LF to HF, and one-dimensional median-filtered

version of the ratio were considered as two other frequency-domain features.

Time-domain features

The mean of RRI (HR) and standard deviation of RRI (SDNN) in each window were used

as time domain features.

5.2.3 The effects of JJI-RRI error on sleep staging accuracy

In order to examine the effects of HBI error on the quality of HRV features, in terms of their

role in sleep staging accuracy, the following tests were examined:

Bayes error test

Parametric estimates of the Bayes error: The Bayes error between two sleep stages

was first estimated using parametric methods. In parametric methods, the simplest bounds

of the Bayes error can be calculated from Bhattacharyya distance [159].

δ =
1

8
(µ1 − µ2)T

(Σ1 + Σ2

2

)−1

(µ1 − µ2) +
1

2
ln
|Σ1+Σ2

2
|√

|Σ1||Σ2|
(5.1)

where µi and Σi are the mean vectors and covariance matrices for classes i = 1and2,

respectively. Using the Bhattacharyya distance in Eq. 5.1 and prior class probabilities p(ci)

for classes i = 1, 2, Bayes error bounds can be obtained [160]

1

2

(
1−

√
1− 4p(c1)p(c2) exp(−2δ)

)
≤ Ebayes ≤ exp(−δ)

√
p(c1)p(c2) (5.2)

Eq. 5.2 gives a simple way of computing Bayes error if the class distributions are known

and it is restricted to a 2-class problem. In calculating Bayes error two scenarios, single

feature and multiple feature, were tested. In the single feature scenario one HRV feature
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was used to estimate Bayes error between distributions of that HRV feature from two sleep

stages. In the multiple feature case, all the estimated features were used together to calculate

Bayes error for separating the two sleep stages. The sleep stages were tested in their original

labels as well as in their re-labeled version as REM and N-REM. The N-REM in that case

would include all non-REM and non-wake stages. These errors were calculated for RRI time

series and, as well as for all the JJI versions, obtained in 5.2.1.

Non-parametric estimate of the Bayes error: Parametric estimates of the Bayes error

requires knowledge of class distribution parameters and their prior probabilities. To estimate

Bayes error in the absence of this information, non-parametric approaches can be used. For

instance, a method for L-class classification problem is provided in [161] using nearest-

neighbor (NN) classification. The NN classifier uses a predetermined distance metric to find

the closest class label for a given instance. Given an L-class problem with sufficiently large

training data, the Bayes error bounds can be calculated using Eq. 5.3 [162]:

L− 1

L
(1−

√
1− L

L− 1
ENN) ≤ Ebayes ≤ ENN (5.3)

Here again the data were tested using the original labels as well as in their re-labeled version

(only REM and N-REM) as described above.

Classification accuracy tests

For this test, classification accuracy was estimated using the HRV features. The HRV features

due to all levels of jitters in the R-Peaks as explained in 5.2.1 were examined and the resulting

classification accuracy was recorded against MAE of the underlying HBI for plotting. Two

classifiers were used in this process, k-nearest neighbors (K-NN) algorithm and support vector

machine (SVM). Two scenarios were tested: (i) all labels of sleep stages were provided as

class labels, and (ii) Non-REM sleep stages were merged to a single stage and assigned a

single label resulting in three stages, REM, N-REM and Wake. In the latter scenario the
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modified labels were provided as class labels to the classifier. In each scenario, two forms of

tests were performed. In the first form, all the HRV features were provided to the classifier.

In the second form, only one feature was provided to the classifier at a time.

5.3 Results

5.3.1 Parametric Bayes error

Fig. 5.1 includes plots of the Bayes error curves against the MAE between JJIdet and RRI

due to the increased levels of time jitter in the R-peaks. The Bayes error is estimated

between distributions of all HRV features of each pair of sleep stages. Vague gray lines in

the background belong to error curves for each participant whereas the dotted, bold and

black line is their ensemble average which shows the general trend of the curves.

Fig. 5.2 includes plots of the Bayes error curves against the MAE between JJIdet and

RRI due to the increased levels of time jitters in the R-peaks. The Bayes error is estimated

between distributions of all HRV features belonging to REM and N-REM pairs of sleep

stages.

As can be seen in Fig. 5.3, the Bayes error between some Non-REM sleep stages (par-

ticularly S1/S2, and S2/S3) is quite large. Therefore further comparisons using parametric

Bayes error for individual Non-REM stages is not done in this work.

KNN-based non-parametric Bayes error

Panel a of Fig. 5.4 shows KNN-based Bayes error due to all HRV features used together in

the KNN algorithm. The resulting error curves are obtained using Eq. 5.3. All sleep stage

labels were provided as classification labels for creating this plot. Similarly, panel b of Fig.

5.4 shows the error curves obtained from Eq. 5.3. While all features were still provided to

the KNN algorithm, the sleep stage labels were modified such that non-REM sleep stages

were all given a single label.

The panels of Fig. 5.4 show KNN-based Bayes error due to individual HRV features used
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Figure 5.1: Bayes error between multi-variate distributions of all HRV features obtained
from the sleep stages: (a) S1 and REM, (b) S3 and REM, (c) REM and N-REM, (d) S2 and
REM.

one at a time in the KNN algorithm. Again, the resulting error curves are obtained using

Eq. 5.3. All sleep stage labels were provided as classification labels for creating these plots.

Similar to the plots in Fig. 5.4, the plots in Fig. 5.6 show KNN-based Bayes error due to

individual HRV features used one at a time in the KNN algorithm. However, the contrast is

that the sleep stage labels are modified such that non-REM sleep stages are combined into

a single label.

5.3.2 KNN classification error

The following figures provide sleep stage classification errors obtained using RRI and JJIdets

with different MAEs for HRV feature estimation. Again, the gray curves in the background
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Figure 5.2: Bayes error across REM and N-REM using the HRV features: (a) LF, (b) HF,
(c) ratio of LF to HF, (d) median-filtered ratio of LF to HF HR, (e) HR, (f) SDNN.

belong to each individual participant whereas the dotted bold black line is the ensemble

average of those curves.

Panel a of Fig. 5.7 shows KNN-based classification error due to all HRV features used

together in the KNN algorithm. All sleep stage labels were provided as classification labels

for creating this plot. Panel b of Fig. 5.7, on the other hand, shows classification error
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Figure 5.3: Bayes error between multi-variate distributions of all HRV features obtained
from the sleep stages: (a) S1 and S2, (b) S1 and S3, (c) S2 and S3
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Figure 5.4: KNN-based Bayes error due to all HRV features when: (a) All sleep stage labels
were present, (b) Non-REM sleep stages were merged.

between REM and N-REM stages where the sleep stages not belonging to the REM stage

were given a single label, i.e., N-REM. Here, all HRV features were provided to the KNN

algorithm.

The panels of Fig. 5.8 show KNN-based classification error due to individual HRV fea-

tures used one at a time in the KNN algorithm. All sleep stage labels were provided as

classification labels for creating these plots.

Similar to the plots in Fig. 5.8, the plots in Fig. 5.9 show KNN-based classification error

due to individual HRV features used one at a time in the KNN algorithm. The contrast

here, however, is that the sleep stage labels are modified such that non-REM sleep stages

are combined into a single label, N-REM.
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Figure 5.5: KNN-based Bayes error across all sleep stages using the HRV features: (a) LF,
(b) HF, (c) ratio of LF to HF, (d) median-filtered ratio of LF to HF, (e) HR and (f) SDNN.
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Figure 5.6: KNN-based Bayes error across all sleep stages when non-REM sleep stages were
merged to a single stage of NREM. Bayes error was calculated using the HRV features: (a)
LF, (b) HF, (c) ratio of LF to HF, (d) median-filtered ratio of LF to HF, (e) HR and (f)
SDNN.

5.3.3 SVM classification error

Panel a of Fig. 5.10 shows SVM classification error due to all HRV features used together in

the classification. All sleep stage labels were provided as classification labels for creating this84
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Figure 5.7: KNN classification error due to all HRV features when: (a) All sleep stage labels
were present, (b) Non-REM sleep stages were merged.

plot. Panel b of Fig. 5.10, on the other hand, shows classification error between REM and

N-REM stages where the sleep stages not belonging to the REM stage were given a single

label, i.e., N-REM. In both cases all HRV features were provided to the classifier.

The panels of Fig. 5.11 show SVM classification error due to individual HRV features used

one at a time during the classification. All sleep stage labels were provided as classification

labels for creating these plots.

Finally, the plots in Fig. 5.12 show SVM classification errors due to individual HRV

features used one at a time for classifying REM and N-REM sleep stages. Again, non-REM

sleep stage labels were modified to a single label representing the N-REM stage in creating

the plots.

5.4 Discussion and conclusion

We examined both parametric and non-parametric Bayes error estimates and as well as

two classification algorithms. In addition, different sleep stage labeling and HRV feature

combination scenarios were tested. As observed from the results, SVM classification when

provided with all HRV features and all sleep stage labels, proved to be helpful in finding a

limit for JJIdet-RRI MAE that may result in acceptable sleep staging performance.
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Figure 5.8: KNN classification error across all sleep stages using the HRV features: (a) LF,
(b) HF, (c) ratio of LF to HF, (d) median-filtered ratio of LF to HF, (e) HR and (f) SDNN.

If we allow a 20% classification error, we need to limit the JJIdet-RRI MAE to approxi-

mately 30 ms as panel (a) of Fig. 5.10 suggests. The MAE of the HBI obtained using the

best performing method identified in Chapter 4 is mostly below 20 ms as seen in the bottom-
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Figure 5.9: KNN classification error across all sleep stages when non-REM sleep stages were
merged into a single stage of NREM, using the HRV features: (a) LF, (b) HF, (c) ratio of
LF to HF, (d) median-filtered ratio of LF to HF, (e) HR and (f) SDNN.

most panel of Fig. 4.5. In addition, the MAE of JJIGT -RRI was calculated to be 8.8 ms.

Therefore, the combination of both MAEs is still below the limit identified in this chapter
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Figure 5.10: SVM classification error due to all HRV features when: (a) All sleep stage labels
were present, (b) Non-REM sleep stages were merged.

(30ms). This comparison suggests that the system and methods presented in this disser-

tation are ready for BCG-based health monitoring studies and in particular sleep quality

assessment.

Two main scenarios were examined in the study; (i) preserving all sleep stage labels as

separate labels when provided to the classifier (Fig. 5.8 and Fig. 5.11); (ii) representing

non-REM sleep stages as a single N-REM stage (Fig. 5.9 and Fig. 5.12). A comparison of

the two scenarios suggests that finer grained sleep staging performance is more sensitive to

JJI-RRI error compared to coarse sleep staging performance. In other words, analyzing the

sleep microstructure with HRV features is difficult.

The error baseline is high in the plots of Fig. 5.8 and Fig. 5.11. Nonetheless, they assist

us in drawing conclusions about sensitivity of quality of certain HRV features to JJI-RRI

error. For example, HRV features LF, the ratio of LF to HF and HR are more sensitive to

the JJI-RRI error compared to others based on panels a, c and e of the mentioned figures.
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Figure 5.11: SVM classification error across all sleep stages using the HRV features: (a) LF,
(b) HF, (c) ratio of LF to HF, (d) median-filtered ratio of LF to HF, (e) HR and (f) SDNN.
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Figure 5.12: SVM classification error across all sleep stages when non-REM sleep stages were
merged to a single stage of NREM using the HRV features: (a) LF, (b) HF, (c) ratio of LF
to HF, (d) median-filtered ratio of LF to HF, (e) HR and (f) SDNN.

90



Chapter 6

Conclusions and future work

6.1 Conclusions

This work sheds light on both hardware and signal processing aspects of the challenges

encountered in BCG-based HRV estimation. A summary of the contributions from each

chapter follows.

Together, chapters 2 and 3 enabled us to design a multi-sensor, remotely accessible BCG

bed system. Chapter 2 enabled the objective selection of the data acquisition configuration;

Chapter 3 enabled the selection of a load cell for better BCG detection. Lessons learned

from the experiments in the course of testing different data acquisition configurations and

load cells were invaluable in the following experiments.

Chapter 4 is the first objective comparison of different BCG peak detection methods. In

addition to suggesting a method for our laboratory’s use, Chapter 4 identifies a baseline of

performance for future BCG peak detection algorithms. In addition, this chapter establishes

a platform for a performance comparison of BCG peak detection methods which can be

extended to other non-contact methods for heartbeat detection.

The observations from Chapter 5 suggest that a long-term health monitoring system

with sleep quality assessment capability using BCG is possible. The main contribution of

the chapter is the identification of acceptable range of HBI error for useful HRV feature
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extraction. Notably, the HBI error due to the hardware and BCG peak detection of our

system is within the acceptable HBI error range, indicating that the system is ready for use

in long-term, longitudinal studies.

6.2 Future work

As most of the error plots in Chapter 5 suggest, there is a relatively high error baseline in

sleep staging accuracy even with clean R-peaks. Therefore, as pursued by other research

groups, the inclusion of other physiological data such as breathing and motion information

may be worthwhile. We expect to improve the performance of sleep staging by adding such

information.

At the beginning of this dissertation, other health-related applications of HRV were

mentioned. While ECG-based studies are currently ongoing in these application spaces,

BCG-based HRV estimation has remained limited to sleep quality assessment in general. It

might be interesting to learn more about the capabilities of BCG in these domains as well.

As pointed out in Chapter 4, the performance of the methods introduced heavily depend

on subject-dependent parameters. Those parameters can be fine-tuned and personalized

if longitudinal studies of BCG peak detection were conducted. The system and methods

described in this dissertation could help plan and execute such studies.

For long-term BCG recordings, remotely accessible and compact systems are needed. In

order to address human dignity and privacy issues, it is also necessary to provide control

over the system to the user. Due to the fact that the system resides in a home environment,

inconveniences due to repeated visits for data gathering, system maintenance and fault

mitigation should be minimized if cannot be avoided altogether. For that reason and in

particular for data gathering, the trending practice is to conduct remote data collection. For

this purpose, the flexibility provided by cloud based services is ideal. The data acquisition

hardware described in this dissertation can be modified to address these requirements and

be deployed for home-based long-term health monitoring. Initial steps toward this direction

in terms of hardware modifications, current status and the limitations are discussed in detail
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in Appendix B.
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[117] Christoph Brüser, Stefan Winter, and Steffen Leonhardt. How speech processing can

help with beat-to-beat heart rate estimation in ballistocardiograms. In Medical Mea-

109



surements and Applications Proceedings (MeMeA), 2013 IEEE International Sympo-

sium on, pages 12–16. IEEE, 2013.

[118] Antti Vehkaoja, Satu Rajala, Pekka Kumpulainen, and Jukka Lekkala. Correlation

approach for the detection of the heartbeat intervals using force sensors placed under

the bed posts. Journal of medical engineering & technology, 37(5):327–333, 2013.

[119] Yu Yao, Christoph Bruser, Uwe Pietrzyk, Steffen Leonhardt, Stefan van Waasen, and

Michael Schiek. Model-based verification of a non-linear separation scheme for bal-

listocardiography. IEEE journal of biomedical and health informatics, 18(1):174–182,

2014.

[120] Yu Yao, J Schiefer, Stefan van Waasen, and Michael Schiek. A non-parametric model

for ballistocardiography. In Statistical Signal Processing (SSP), 2014 IEEE Workshop

on, pages 69–72. IEEE, 2014.

[121] Ibrahim Sadek, Jit Biswas, Victor Foo Siang Fook, and Mounir Mokhtari. Automatic

heart rate detection from fbg sensors using sensor fusion and enhanced empirical mode

decomposition. In Signal Processing and Information Technology (ISSPIT), 2015 IEEE

International Symposium on, pages 349–353. IEEE, 2015.

[122] Mariusz Krej,  Lukasz Dziuda, and Franciszek Wojciech Skibniewski. A method of

detecting heartbeat locations in the ballistocardiographic signal from the fiber-optic

vital signs sensor. IEEE journal of biomedical and health informatics, 19(4):1443–1450,

2015.

[123] Carlos Alvarado-Serrano, Pablo Samuel Luna-Lozano, and Ramon Pallàs-Areny. An
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[144] Axel Cordes, Jérôme Foussier, Daniel Pollig, and Steffen Leonhardt. A portable mag-

netic induction measurement system (pims). Biomedizinische Technik/Biomedical En-

gineering, 57(2):131–138, 2012.
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Appendix A

Supplimental material for Chapter 4

A.1 Replicated methods

A.1.1 Lee’s method

In this method, the signals from all the load cells are first windowed with length of five

seconds and band-pass filtered (5th order Butterworth with 1 to 20 Hz pass band). Then,

the resulting signal is differentiated and passed through a nonlinear transformation resulting

in the Shannon entropy (SE) values. Finally, a moving average is applied on the output

of the SE process for further smoothing. Peak detection is eventually performed on the

automatically selected optimal result from one of the four load cells. The next window is

then defined to begin 0.2 seconds after the last detected peak in the current window. Since

Lee’s method was proposed for data sampled at 1000 Hz, and our sampling rate is 250Hz,

we also tested an up-sampled BCG for this method to assess the impact of the sampling rate

mismatch on the performance of this method.

A.1.2 Lydon’s method

In the Lydon method, windowing is applied on the preprocessed BCG (6th order Butterworth

with 0.7 to 10 Hz pass band). The length of the window is proposed to be 0.3 seconds that
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will move across the BCG every 0.01 seconds. Then the energy of each sliding window is

obtained. The peaks in the resulting signal is supposed to correspond to the BCG and

thus is considered for peak detection. Since this method was proposed for data sampled at

100 Hz and again different with what we have sampled our data at, a down-sampled BCG

was tested for this method too. Furthermore, two moving-average filters were added to the

Lydon method to reduce the large number of false positives that were found in our data;

this addition can be justified by the use of a similar filter in Lee and similarity between Lee

and Lydon’s methods (we later learned from the original code that such a smoothing was

included but not mentioned in the paper).

A.1.3 Brüser’s method

Brüser also proposes a sliding window method, but takes a statistical approach to estimate

heartbeat intervals (HBI’s) within that sliding window at each iteration constrained to two

“upper and lower thresholds” based on prior knowledge of typical HR range. This method

has two main parts, the “basic” and the “extended” parts of the algorithm.

In the “basic” part of the algorithm a sliding window or as they call it “analysis window”

centered at a given point in time is selected. The length of the “analysis window” is restricted

to less than twice the “upper threshold” for time between two heartbeats to ensure inclusion

of at least two heartbeat events. A level thresholding is applied to each sliding window for

motion artifact removal. Then, a local interval length is estimated in each sliding window

using the estimators “Modified autocorrelation”, “Modified average magnitude difference

function (AMDF)” and “Maximum amplitude pairs (MAP)” at each window. The term

“Modified” is prefixed for the first two estimators due to varying length of the sliding window.

The mentioned estimators are then fused to obtain a “Probabilistic estimator” for the beat

to beat interval. For the definitions of the mentioned estimators and the fusion algorithm in

use, please refer to the original work.

The “extended” part of the algorithm makes use of the redundant peaks introduced due

to the sliding window in the “basic” part. All the estimates around the centers of each
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sliding window are narrowed down and merged using a confidence threshold constrained

under two conditions. The conditions are: 1. the peaks should be apart by approximately

the length of the local interval for a given center; and 2. they must be mirrored about the

center of the sliding window. Then if such peaks have the largest combined amplitudes, they

were called the “boundary peaks” of the interval and the peak to the right of the center

was referred to as the “anchor point”. These anchor points were later used to group the

interval estimates together and are “irrelevant” to the final interval estimation. In order to

exclude unreliable estimates from the set, a “quality indicator” or “confidence indicator” Qk

is derived by averaging the individual confidence values associated with each estimate and

then a fixed threshold thQ to be applied to each Qk. As can be inferred from the original

paper, thQ is a subject-specific threshold.

A.1.4 Alvarado’s method

This work applies a continuous wavelet transform (CWT) with B-Spline wavelets on the band

pass filtered BCG (0.5-20Hz 2nd order). Then it is hypothesized that the zero crossings in the

5th scale of CWT of the BCG correspond to the J-Peaks of the original BCG. Once the 5th

scale CWT of the BCG is obtained the rest of their work emphasizes more on how those zero

crossings in the new CWT signal are automatically identified by use of adaptive level and

interval thresholds to avoid false zero crossing events and consequently false J-Peaks. The

process has two steps of “Learning Stage” and “Decision Stage”. In the “Learning Stage”, a

set of detection thresholds to detect the first four beats is defined and a J-J interval average

is estimated. Also, a “refractory period” of 300 ms is introduced in this stage to avoid

false detection. In the “Decision Stage”, the information from the “Learning Stage” is used

as initial values based on which new level and J-J interval thresholds are estimated and

decisions made on peak detection. This process continues in this manner till the end.
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A.1.5 Sadek’s method

In this method the band-pass filtered BCG (Chebyshev 2.5 to 5 Hz pass band and sampled

at 50 Hz (or based on the paper, Butterworth 1 to 10 Hz pass band)) is decomposed into

approximation and detail coefficients using MODWT. Then the 4th level “smooth coefficient”

is selected for ten-second-long windowing and peak detection. The wavelet applied in the

decomposition is the 8th order Symlet (Sym8 in MATLAB). The peak detection part is not

described in detail, but from our inspection of the python code we were provided with,

appears very similar to the built-in function “findpeaks()” in MATLAB.

A.1.6 Simple cross-correlation method

For the cross correlation (XCOR) method, the BCG underwent preprocessing steps identical

to what is proposed in Lydon method. Then a single BCG complex is picked as a template

for performing the cross-correlation step and then using it for peak detection.

A.2 Parameters of interest in each method

Lee, Lee with up-sampled BCG (Lee-US), Lydon, Lydon with down-sampled BCG (Lydon-

DS) and XCOR methods use two moving-average filters for smoothing purposes and the

lengths for the filters had to be adjusted. The lengths of the filters were mostly subject-

specific for Lee and Lydon methods and subject-independent for XCOR method with the

exception of only one participant. The BCG for that particular participant had to be removed

later from the study as cross-correlation method failed to obtain non-zero detect and false

peaks which made it impossible to calculate the MAEp.

For the peak detection step, the “findpeaks” built-in function of MATLAB seems very

likely to have been used in the original work of Lee and we used it for Lee-US, Lydon, Lydon-

DS and XCOR methods as well. We also had to tune the “Mininimum Peak Prominence”

input of the mentioned MATLAB built-in function, “findpeaks”. Therefore, this was a two-

step optimization process. First, for a certain value of “Mininimum Peak Prominence” that

119



produced a reasonable pair of Det. and FAR, the lengths for the moving average filters were

optimized. Then using those optimal window lengths, “Mininimum Peak Prominence” was

iterated over different values to produce the ROC curves and a value for “Mininimum Peak

Prominence” was selected.

For Brüser Method, we had to first find an optimal value for the percent-overlap of

the “analysis window”. A single value for this parameter turned out to be optimal for all

other BCGs from the other participants. Next, the “confidence indicator threshold”, thQ, as

discussed when introducing Brüser method was tuned to yield good performance in terms of

“anchor points” or peaks elaborated earlier. Per our understanding from the original work,

this threshold has to be adjusted for the BCG data from each participant.

In Alvarado method, since the process is adaptive, any alterations to their proposed

constants or initial values for their proposed parameters turned out to have no effect on

the performance of this method. Therefore, those parameters were set to the same values

as initially proposed. However, the scale of the wavelet component of the BCG used for

peak detection, and the choice of wavelet for decomposition were affecting the performance

of this method significantly for our data. Since scale 5 of the CWT was resulting in very

poor performance for our data, we tried a range of scales until an acceptable range of scales

was found. Then within that range, scale numbers specific to each BCG set was selected

for optimal performance. For the choice of an optimal wavelet, MATLAB provides family

of “bior” wavelets that implement a B-Spline wavelet with bi-orthogonality and different

members of this family proved to be optimal for some of the BCG sets. For the BCG sets

where an optimal member from the “bior” family was not found, a member from its inverse,

“rbio”, or a member from the “sym” family was used. It is worth mentioning that for the

cases where a wavelet was not optimal, the performance was severely affected and therefore

sticking to a single wavelet was avoided in order not to penalize this method harshly. A

summary of wavelets and scale combination is reported in Table A.1.

For Sadek method, the first author assisted us by providing python code for it. Therefore,

little ambiguity were left to address in implementing their code in MATLAB. Due to different

sampling frequency (50Hz vs 250Hz which affects level selection in the wavelet transform), we
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did have to run some experiments to optimize for the right wavelet decomposition scale and

window length. A summary of wavelet decomposition scales and window lengths used in this

method for different participants is provided in Table A.2. Since the python code was using

“minimum peak distance” as a parameter to help find the peaks in the peak detection code,

the same parameter was used with MATLAB in this work to be consistent with the original

work when comparing the performance. Clearly, different values for the mentioned parameter

affect the overall performance of the method significantly and therefore this parameter was

also considered for optimization. It is worth mentioning that this parameter is not specified

in the paper and in the code we were provided with, a value of 1 i.e. one sample was assigned

to this parameter which was introducing tremendous number of false peaks and that was

another reason to optimize for that parameter. The drawback of using “minimum peak

distance” is that we need to have prior knowledge about heartbeat distances in order to

assign a value for this parameter which makes peak detection hard in an online scenario. In

addition, the mentioned parameter was not used in Lee, Lee-US, Lydon, Lydon-US and cross-

correlation methods which makes the comparison task harder. Therefore, the performance

of this method is evaluated based on the “minimum peak prominence” values as well. When

optimizing for this parameter, the decomposition scales determined earlier were first used

to find a value for the “minimum peak prominence” parameter such that a good pair of

detection and FAR was obtained. Then, using the values found for the “minimum peak

prominence”, the performance of the method was tested again for different decomposition

scales to check if a different scale would be optimal in this scenario. During this process,

different scales proved to be optimal for only BCGs from three participants. For those BCGs,

a new set of “minimum peak prominence” parameters corresponding to the optimal scales

were then sought.

A.3 Wavelets and wavelet decomposition scales

Table A.1 summarizes the combination of wavelet and wavelet decomposition levels used

to optimize the performance of Alvarado method. The “Number of Participants” column
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indicates the total number of participants for whom a certain combination of wavelet and

decomposition level that resulted in good performance for the method.

Table A.1: Wavelet name and wavelet component used to optimize the performance of
Alvarado method for different participants

Number of Wavelet Decomposation
Participants Name Levels

13 bior2.2 37, 30, 48, 37, 42, 32, 20,
49, 34, 50, 25, 47, 31

4 bior3.9 59, 76, 61, 41
7 bior4.4 34, 32, 48, 29, 29,

28, 19
4 rbio3.9 68, 31, 50, 50
1 sym4 25
1 sym8 39

Table A.2, summarizes the wavelet decomposition scales (left) and window lengths (right)

used to optimize the performance of Sadek method. Again, the “Number of Participants”

column indicates the total number of participants for whom a certain wavelet component

and window length maximized the performance of the method.

A.4 Signal quality index

The process of signal quality index (SQI), is based on Matched Filter approach [128]. The

matching is performed by comparing the signal in question with a known signal by obtaining

the correlation coefficient of the two [128]. In order to have a known BCG, BCG stream is

segmented and the ensemble average of the segments is taken [128]. In order to figure out

the starting point for each segment, R-peaks of the ECG were used as reference points; the

ECG was simultaneously recorded with the BCG. The minimum R-R interval was used for

the length of each BCG segment in [128].

In our case however, the segments’ lengths were left to be the same distance between their

corresponding R-R interval. This lead to unequal lengths of the segments. The length defi-

ciencies were corrected by zero padding the short vectors; and when obtaining the ensemble

averages, the zeros were excluded in the calculation.
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Table A.2: Left: Wavelet component used to optimize the performance of Sadek method for
different participants. Right: Window lengths used to optimize the performance of Sadek
method for different participants.

Number of Decomposition
Participants Scale

4 4
9 5
17 6

Number of Window
Participants Length

1 16
1 12
7 14
21 10

The obtained ensemble average is considered to be the known signal [128] or the “main

template” as referred to it in [128]. In addition, sub-templates were also made out of a

number of adjacent BCG segments such that sum of all those numbers will add up to the

total number of BCG segments in the stream.

Correlation coefficients were obtained by matching each sub-template with the main

template and the average of all the resulting correlation coefficients was called SQI [128].
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Appendix B

Nighttime vital signs recording

system

B.1 Introduction

This appendix provides a description of the building blocks of a long-term health monitoring

system. In addition to the basic circuitry necessary to detect and record BCG, this system

is equipped with additional features necessary for a DAQ system that is intended to dwell

in a home sitting of a person under study. The mentioned necessary parts and features are

described in the subsequent sections.

B.2 DAQ system description

The basic building block for this system is made of the signal conditioning circuit described

in 2.4 and data acquisition configuration III described in 2.5.3. The data acquisition con-

figurations introduced in 2.5.1 and 2.5.2 are modified and re-arranged slightly to adapt the

Configuration III and to address some issues concerning home-based remote data acquisition.

Recall that Configuration III was suffering from the interfacing limitation with the host PC.

This limitation can be overcome by employing a Raspberry Pi unit. In addition including a
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Raspberry Pi unit to the design makes interfacing to the cloud services significantly easier.

B.2.1 Recording control and observation

In order to provide the user sufficient control over the system, controlling push-buttons are

provided to help the user stop data recording when not desired and re-start recording when

desired. In addition, visual indicators are provided by means of LEDs to make the system

observable so the user know that the system has acknowledged their command to whether

start or stop recording. This part is integrated in the DAQ board and its circuit diagram is

provided in Appendix C Fig. C.3.

B.2.2 Ambient disturbance detector

An audio envelop amplifier is also included in the system to pickup noticeable ambient noise

without providing further auditory details due to privacy concerns. The recorded audio

envelops will help as a reference in case noisy segments of BCG is observed to confirm if the

noise is due to the environment or the system. In addition, the noise reference can be used

for further cleaning up the obtained BCG using adaptive filter approaches.

Figure B.1: The overall system overview.
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The DAQ block in the diagram of Fig. B.1 is further detailed in Fig. B.2. The Sig.

Cond blocks refer to the signal conditioning boards described in 2.4 which provides signal

conditioning to the load cell signals. Based on results of Chapter 2 (Table 2.1), a signal

conditioning in the vicinity of load cell helps maintain a better SNR for the signal.

The EMFi Sig. Cond block represent signal conditioning circuit that processes the signal

from the EMFi. This circuit is similar to the Sig. Cond. circuit with one difference that the

instrumentation amplifier is replaced with a charge amplifier. EMFi sensors are conisered in

the design to provide redundancy in hardware for BCG detection.

Aud Env Amp block represents the audio amplifier circuit necessary to provide ambient

noise detection capability. This part is integrated in the DAQ board and its circuit diagram

is provided in Appendix C Fig. C.4.

A circuit-level detail and PCB layout of the DAQ board is provided in Fig. B.3 and Fig.

B.4 respectively. Circuit diagrams for other peripheral parts necessary to run the system are

included in Appendix C Fig. C.5 through C.9. A PCB realization of the layout in Fig. B.4

is shown in Fig. B.5.

B.3 Raspberry Pi

Raspberry Pi unit is a Unix-based platform that operates as an stand-alone PC. Its robust

WiFi and Ethernet interfaces makes its connection to the internet very easy. In addition,

availability of I2C and SPI interface on its header board makes it possible to interface ADC

with it. Thus, it becomes a system of choice for our long-term home-based application.

B.4 Preliminary tests

The ADC in use in the DAQ system provides multiplexed channels with both options of

differential and single-ended modes. Furthermore, the Raspberry Pi unit provides 5 V and

3.3 V power supply pin-outs on its header interface while it was also possible to implement

power supply on the DAQ board. In order to decide on the best option, preliminary sine
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Figure B.2: DAQ block description.

Table B.1: ADC Input, and Power Supply effects on the sine wave SNR

ADC Input Power Supply SNR Remarks
Single Ended 3.3 from Pi Unit 28.61839
Single Ended 3.3 regulated 26.63543

from 5v on ADC board
Differential 3.3 regulated 26.57994 Regulator on

from 5v on Pi Unit ADC board
Differential 3.3 from Pi Unit 25.50507
Single Ended 3.3 regulated from 25.21033 Regulator

5v on Pi Unit on ADC board
Differential 3.3 regulated from 25.05374

5v on ADC board

wave tests were performed. Table B.1 provides the details of the test as well as the results

in terms of SNR values. The SNR values were obtained by applying a low amplitude sine

wave to the ADC and recording the ADC results in the PC. Then snr function of MATLAB

was used to evaluate the SNR similar to what was done in 2.6.1.

Based on the SNR values provided in Table B.1, we decided to use the ADC channels in
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Figure B.3: Circuit diagram implementing the multi-channel ADC-based DAQ.

single ended mode. Also, the 3.3 V power supply provided by the Raspberry Pi unit was

selected. A layout spot was still provided on the DAQ board for providing space for a voltage

regulator in case external power supply would be required in the future.

B.5 Current status

Successful sine wave test as reflected from the results provided in B.4 has been performed.

However, this was limited to smaller number of channels to be sampled or if all channels

were to be sampled, lower sampling rates (as low as 125 Hz) had to be considered.

Successful far end data communication with host PC has also been tested. Counters

were sent by the Raspberry Pi unit to a cloud based server and the host PC was able to
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Figure B.4: Board layout for the circuit diagram implementing the multi-channel ADC-based
DAQ.

access, download and interpret them. Bandwidth was not an issue either for the data rates

addressing our needs.

B.6 Limitations and alternative solutions

As mentioned earlier, Raspberry Pi unit was introduced to provide a solution to the problem

of data acquisition in the far-end by facilitating Ethernet or WiFi. However, the SPI interface

provided by this unit does not perform well for real-time applications as pointed out in B.5.

The issue is related to the general purpose operating system on the Raspberry Pi unit. This

leads to scheduling-related delays in communication with ADC over the SPI. Consequently,

unevenly samples were being recorded around the specified sampling rate.
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Figure B.5: Board layout realization for the circuit diagram implementing the multi-channel
ADC-based DAQ.

The problem can be addressed in two ways: (i) installing a real-time operating system or

(ii) including a microcontroller between the Raspberry Pi unit and the DAQ board. While

the former solution is not immediately pursued due to limited expertise in the real-time

operating system domain, the latter solution is tested. The microcontroller takes over the

responsibility of evenly sampling on its interface with ADC over the SPI. Then with a second

SPI module it communicates with the Raspberry Pi unit. However, this solution is pending

on proper handshaking protocols and data handling between the microcontroller and the

Raspberry Pi unit and is expected to be addressed soon.

The circuit diagram for the intermediate microcontroller is provided in Fig. B.6 and the

PBC implementation is shown in Fig. B.7. Other peripherals needed in implementing this

system in Appendix C Fig. C.10 and Fig. C.11.
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Figure B.6: microcontroller circuit diagram for interconnection between DAQ and Raspberry
Pi unit.
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Figure B.7: PCB implementation of the microcontroller circuit diagram for interconnection
between DAQ and Raspberry Pi unit.
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Appendix C

Bill of Material

This appendix includes additional peripheral circuits necessary of the operation of the core

material proved in Chapters 2 and B. In addition, bill of material used in realizing the circuits

is provided.

Figure C.1: Power supply circuit used in the circuits of Fig. 2.3 and Fig. 2.6

Fig. C.5 provide detail diagram of terminated PCB wires to the jumpers. The terminated
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Item Qty Ref Part MFR MFR# SPEC Footprint
Qty needed

for 4
Systems

Comments

1 2 C26, C28 0.056uF Ceramic, SMD, C SMD0603 SMD0603 8

2 5
C1, C3, C7, C24,
C27

0.1uF Ceramic, SMD, C SMD0603 SMD0603 20

3 2 C10, C13 0.33uF Ceramic, SMD, C SMD0603 SMD0603 8
4 1 C9 0.47uF Ceramic, SMD, C SMD0603 SMD0603 4

5 10
C2, C4, C5, C6,
C11, C12, C15,
C16, C29, C30

1uF Ceramic, SMD, C SMD0603 SMD0603 40

6 4
C14, C17, C25,
C31

10uF Ceramic, SMD, C SMD0603 SMD0603 16

7 3 C18, C19, C20 0.01uF Ceramic, SMD, C SMD0402 SMD0402 12
8 3 C21, C22, C23 0.1uF Ceramic, SMD, C SMD0402 SMD0402 12
9 1 C8 6.8uF Polarized Alum. Cap. TH TH 4 Will be mounted later
10 1 R9 0.2 R SMD0402 SMD0402 4
11 ROPEN R SMD0402 SMD0402 4 No to be populated
12 3 R11, R15, R18 100 R SMD0402 SMD0402 12
13 2 R7, R21 1K R SMD0402 SMD0402 8

14 10
R1, R2, R3, R5,
R10, R12, R13,
R14, R16, R17

10K R SMD0402 SMD0402 40

15 1 R8 20K R SMD0402 SMD0402 4
16 2 R6, R19 30K R SMD0402 SMD0402 8
17 1 R4 100K R SMD0402 SMD0402 4
18 1 R20 300K R SMD0402 SMD0402 4
19 1 LED SMD0402 SMD0402 4
20 2 U1, U2 LP2950D TO252 TO252 8
21 1 U3 REF3230 SOT23 6 SOT23 6 4
22 1 U4 LM2904 8 SOIC 8 SOIC 4
23 1 U5 INA122U 8 SOIC 8 SOIC 4
24 1 U6 OPA2333D 8 SOIC 8 SOIC 4
25 1 U7 THS4281 8 SOIC 8 SOIC 4
26 2 U8, U9 ADS8866 10 VSSOP 10 VSSOP 8
27 3 U10, U11, U12 DS90LV019 14 TSSOP 14 TSSOP 12
28 2 IN, OUT RJLSE4238101T SMD 8

Figure C.2: Bill of material for the circuits in Fig. 2.3 and Fig. 2.6.
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Figure C.3: Circuit diagram detailing the recording control and indicator part.

wires are labeled in the circuits of Fig. B.6 and Fig. C.10. The corresponding labels

also appear in the Fig. C.5. These jumpers provide flexibility to the system for future

requirements in case alternative sources would be required to be connected to the ADC2 of

the DAQ system.
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Figure C.4: Audio envelop amplifier for detecting ambient noise and disturbances.
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Figure C.5: Jumper headers providing flexible interconnection between various pieces of
hardware with the DAQ board.
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Figure C.6: Circuit diagram for analog ground supply to address dual supply requirement
of the devices.
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Figure C.7: Circuit diagram of the power supply used in the DAQ board.
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Figure C.8: Wiring diagram of Ethernet jacks providing power and signaling between the
signals conditioning boards and the main DAQ board
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Figure C.9: Circuit diagram for the reference voltage (VREF ) regulation necessary for the
VREF inputs of the ADC.
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Figure C.10: Interconnection diagram of headers in use on both sides of the microcon-
troller board.
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Figure C.11: Circuit diagram of the power supply used in the microcontroller board.
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Appendix D

Abbreviations

ADC Analog to Digital Converter
ANS Autonomic Nervous System
BBI Beat-to-Beat Interval
BCG Ballistocardiogram
COP Center of Pressure
dBc Deci bell measuring the noise power

density at a given offset from the Carrier.
ECG Electrocardiogram
HBI Heartbeat Interval
HPF Highpass Filter
HR Heart Rate
HRV Heart Rate Variability
JJI J peak to J peak Interval
J peak The prominent peak of a BCG related to blood

ejection at the aortic artery.
LPF Lowpass Filter
RR Respiration Rate
RRI R peak to R peak Interval
R peak The prominent peak of an ECG related to

ventricular contraction events.
SNR Signal to Noise Ratio
SPI Serial Peripheral Interface
SVM Support Vector Machine (SVM)
UART Universal Asynchronous Receiver/Transmitter
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