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Abstract

Images today are increasingly shared online on social networking sites such as Facebook,

Flickr, Foursquare, and Instagram. Image sharing occurs not only within a group of friends

but also more and more outside a user’s social circles for purposes of social discovery. De-

spite that current social networking sites allow users to change their privacy preferences,

this is often a cumbersome task for the vast majority of users on the Web, who face diffi-

culties in assigning and managing privacy settings. When these privacy settings are used

inappropriately, online image sharing can potentially lead to unwanted disclosures and pri-

vacy violations. Thus, automatically predicting images’ privacy to warn users about private

or sensitive content before uploading these images on social networking sites has become a

necessity in our current interconnected world.

In this dissertation, we first explore learning models to automatically predict appropriate

images’ privacy as private or public using carefully identified image-specific features. We

study deep visual semantic features that are derived from various layers of Convolutional

Neural Networks (CNNs) as well as textual features such as user tags and deep tags generated

from deep CNNs. Particularly, we extract deep (visual and tag) features from four pre-trained

CNN architectures for object recognition, i.e., AlexNet, GoogLeNet, VGG-16, and ResNet,

and compare their performance for image privacy prediction. Results of our experiments

on a Flickr dataset of over thirty thousand images show that the learning models trained

on features extracted from ResNet outperform the state-of-the-art models for image privacy

prediction. We further investigate the combination of user tags and deep tags derived from

CNN architectures using two settings: (1) SVM on the bag-of-tags features; and (2) text-

based CNN. We compare these models with the models trained on ResNet visual features

obtained for privacy prediction.



Further, we present a privacy-aware approach to automatic image tagging, which aims at

improving the quality of user annotations, while also preserving the images’ original privacy

sharing patterns. Experimental results show that, although the user-input tags comprise

noise, our privacy-aware approach is able to predict accurate tags that can improve the

performance of a downstream application on image privacy prediction, and outperforms an

existing privacy-oblivious approach to image tagging. Crowd-sourcing the predicted tags

exhibits the quality of our privacy-aware recommended tags.

Finally, we propose an approach for fusing object, scene context, and image tags modal-

ities derived from convolutional neural networks for accurately predicting the privacy of

images shared online. Specifically, our approach identifies the set of most competent modal-

ities on the fly, according to each new target image whose privacy has to be predicted. Ex-

perimental results show that our approach predicts the sensitive (or private) content more

accurately than the models trained on individual modalities (object, scene, and tags) and

prior privacy prediction works. Additionally, our approach outperforms the state-of-the-art

baselines that also yield combinations of modalities.
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Chapter 1

Introduction

In this chapter, we discuss the background and motivation of our study in Image Privacy

Prediction.

1.1 Background

Technology today offers innovative ways to share photos with people all around the world,

making online photo sharing an incredibly popular activity for Internet users. These users

document quotidian details through images and also post pictures of their significant mile-

stones and private events, e.g., family photos and cocktail parties1. Furthermore, smart-

phones and other mobile devices facilitate the exchange of information in content sharing

sites virtually at any time, in any place. Although current social networking sites allow users

to change their privacy preferences, this is often a cumbersome task for the vast majority of

users on the Web, who face difficulties in assigning and managing privacy settings2. Even

though users change their privacy settings to comply with their personal privacy prefer-

ence, they often misjudge the private information in images, which fails to enforce their own

privacy preferences3. Thus, new privacy concerns4 are on the rise and mostly emerge due

to users’ lack of understanding that semantically rich images may reveal sensitive informa-

tion3;5–7. For example, a seemingly harmless photo of a birthday party may unintentionally
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reveal sensitive information about a person’s location, personal habits, and friends.

Along these lines, Gross and Acquisti8 analyzed more than 4,000 Carnegie Mellon Uni-

versity students’ Facebook profiles and outlined potential threats to privacy. The authors

found that users often provide personal information generously on social networking sites,

but they rarely change default privacy settings, which could jeopardize their privacy. Em-

ployers often perform background checks for their future employees using social networking

sites and about 8% of companies have already fired employees due to their inappropriate

social media content9. A study carried out by the Pew Research center reported that 11% of

the users of social networking sites regret the content they posted10. The Director of the AI

Research at Facebook, Yann LeCun yannlecun urges the development of a digital assistant

to warn people about private or sensitive content before embarrassing photos are shared with

everyone on social networks.

1.2 The Importance of Research in Image Privacy Pre-

diction

Identifying private or sensitive content from images is inherently difficult because images’

privacy is dependent on the owners’ personality traits and their level of awareness towards

privacy. Still, images’ privacy is not purely subjective, but generic patterns of privacy exist.

For example, Zerr et al. 7,11 conducted a study that manually annotated and consistently

rated online images as private and public by multiple annotators. An image is considered to

be private if it belongs to the private sphere (e.g., portraits, family, friends, home) or contains

information that can not be shared with everybody on the Web (e.g., private documents),

whereas the remaining images are considered to be public7.

Researchers showed that generic patterns of images’ privacy can be automatically identi-

fied when a large set of images are considered for analysis and investigated binary prediction

models based on user tags and image content features such as SIFT (Scale Invariant Fea-

ture Transform) and RGB (Red Green Blue)7;12;13. More recently, several studies14 started
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to explore privacy frameworks that leverage the benefits of Convolutional Neural Networks

(CNNs) for object recognition since, intuitively, the objects present in images significantly

impact images’ privacy.

1.3 Motivation and Contributions

Our research is motivated by the fact that increasingly, online users’ privacy is routinely

compromised by using social and content sharing applications15. Our models can help users

to better manage their participation in online image sharing sites by identifying the sensitive

content from the images so that it becomes easier for regular users to control the amount of

personal information that they share through these images.

The main purpose of this dissertation is to accurately identify private or sensitive content

from images before they are shared on social networking sites. Precisely, given an image,

we aim to learn models to classify the image into one of the two classes: private or public,

based on generic patterns of privacy. To achieve our goal, we extract a variety of features

from several CNNs and identify those CNNs that have the highest discriminative power for

image privacy prediction.

As the privacy of an image can be determined by the presence of one or more objects

and scenes described by the visual content and the description associated with it in the form

of tags, we consider both visual features and image tags for our analysis. For the purpose

of this study, we did not consider other contextual information about images (e.g., personal

information about the image owner or the owner social network activities, which may or

may not be available or easily accessible) since our goal is to predict the privacy of an image

solely from the image’s content itself. We rely on the assumption that, although privacy is a

subjective matter, generic patterns of images’ privacy exist that can be extracted from the

images’ visual content and textual tags.

In this dissertation, we divided this research into four tasks and they are:

1. The Use of “Deep” Features for Online Image Sharing.
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2. DeepPrivate Features For Image Privacy Prediction.

3. Privacy-Aware Tag Recommendation for Image Sharing.

4. Dynamically Fusing Deep Multi-modal Features for Image Sharing.

1.3.1 The Use of “Deep” Features for Online Image Sharing.

We present an analysis of various “deep” feature representations for image privacy prediction

(i.e., for predicting the class of an image as private or public). Unlike previous works, we

explore features that can be directly obtained from a pre-trained CNNs for privacy prediction.

Our contributions are as follows:

• We use three deep feature representations corresponding to the output of three fully-

connected layers of an eight-layer deep neural network pre-trained on ILSVRC-2012,

a subset of ImageNet dataset consisting of 1.2M+ images labeled with 1,000 object

categories16, as well as the probability distribution over the 1,000 categories obtained

from the last layer of the network via softmax.

• As discussed earlier, the set of user tags may be incomplete and noisy. Hence, unlike

previous works, we leverage CNNs for automatically generating object tags. We also

propose the extraction of scene tags to capture additional information from the visual

content that is not captured by existing object tags. We call these object and scene

tags as “deep tags.”

• We evaluate the performance of the “deep” features (extracted from AlexNet17) on

a subset of the PicAlert dataset of Flickr images, labeled as private or public. The

PicAlert dataset was made publicly available by Zerr et al.7.

• We empirically show that learning models trained on deep visual features and deep tags

for privacy prediction outperform strong baselines such as those trained on hierarchical

deep features, SIFT, GIST (global image descriptors) and user provided tags. We also
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show that deep visual features provide improved performance for the private class (i.e.,

correctly identifying more images as private) as compared to baseline approaches.

• Our results show that the deep image tags yield better performing models as compared

to user tags and the combination of deep tags and user tags outperforms each set of

tags individually.

1.3.2 DeepPrivate Features For Image Privacy Prediction.

Previous studies used only the AlexNet architecture of CNNs for image privacy prediction.

To date, many deep CNN architectures have been developed and achieve state-of-the-art

performance on object recognition. These CNNs include GoogLeNet18, VGG-1619, and

ResNet20 (in addition to AlexNet17). In this task, we present an extensive study to carefully

identify the CNN architectures and features derived from these CNNs that can adequately

predict the class of an image as private or public.

Our contributions are as follows:

• We study deep visual semantic features and deep image tags derived from CNN archi-

tectures pre-trained on the ImageNet dataset and use them in conjunction with Support

Vector Machine (SVM) classifiers for image privacy prediction. Specifically, we extract

deep features from four successful (pre-trained) CNN architectures for object recogni-

tion, AlexNet, GoogLeNet, VGG-16, and ResNet and compare their performance on

the task of privacy prediction. Through carefully designed experiments, we find that

ResNet produces the best feature representations for privacy prediction compared with

the other CNNs.

• We fine-tune the pre-trained CNN architectures on our privacy dataset and use the

softmax function to predict the images’ privacy as public or private. We compare

the fine-tuned CNNs with the SVM models obtained on the features derived from

the pre-trained CNNs and show that, although the overall performance obtained by

the fine-tuned CNNs is comparable to that of SVM models, the fine-tuned networks
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provide improved recall for the private class as compared to the SVM models trained

on the pre-trained features.

• We show that the best feature representation produced by ResNet outperforms sev-

eral baselines for image privacy prediction that consider CNN-based models and SVM

models trained on traditional visual features such as SIFT and global GIST descriptor.

• Next, we investigate the combination of user tags and deep tags derived from CNNs

in two settings: (1) using SVM on the bag-of-tags features; and (2) applying the text

CNN21 on the combination of user tags and deep tags for privacy prediction using

the softmax function. We compare these models with the models trained on the most

promising visual features extracted from ResNet (obtained from our study) for privacy

prediction. Our results show that the models trained on the visual features perform

better than those trained on the tag features.

• Finally, we explore the combination of deep visual features with image tags and show

further improvement in performance over the individual sets of features.

1.3.3 Privacy-Aware Tag Recommendation for Image Sharing

We present a privacy-aware approach to automatic image tagging, that aims at improving

the quality of user annotations (or user tags), while also preserving the images’ original

privacy sharing patterns. Precisely, we recommend potential tags for each target image by

mining privacy-aware tags from the most similar images of the target image, which we obtain

from a large collection of images.

Our contributions are as follows:

• We study our privacy-aware recommended tags obtained by the proposed privacy-aware

weighting scheme in an ablation experiment for privacy prediction. In this experiment,

we compare various privacy-aware and privacy-oblivious weighting schemes and observe

how the privacy prediction performance varies for these weighting schemes. We also

experiment with various parameter values to estimate the best parameter setting.
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• We compare the performance of privacy prediction using tags recommended by the

proposed approach against the tags recommended by a prior state-of-the-art image

annotation method. Our objective in this experiment is to verify whether the recom-

mended tags by the proposed approach can capture better privacy characteristics than

the prior state-of-the-art annotation.

• We investigate tag recommendation in a binary image privacy prediction task and show

that the predicted tags can exhibit relevant cues for specific privacy settings (public or

private) that can be used to improve the image privacy prediction performance.

• Our results show that we achieve a better privacy prediction performance when we add

the recommended privacy-aware tags to the original user tags and predicted deep tags

of images as compared to prior approaches of image privacy prediction.

• We also evaluate the recommended tags by employing crowd-sourcing to identify rele-

vancy of the suggested tags to images. The results show that, although the user-input

tags comprise noise or even some images do not have any tags at all, our approach

is able to recommend accurate tags. In addition, we evaluate both privacy-aware and

privacy-oblivious recommended tags and show that the privacy-aware recommended

tags describe an image’s content more accurately as compared to the privacy-oblivious

tags.

1.3.4 Dynamic Deep Multi-modal Fusion for Image Privacy Pre-

diction.

We propose a novel approach that dynamically fuses multi-modal information of online

images, derived through Convolutional Neural Networks (CNNs), to adequately identify the

sensitive image content. To our knowledge, this is the first study to fuse the most relevant

semantic models based on a query image for privacy prediction. In summary, we make the

following contributions:
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• Our significant contribution is to estimate the competence of object, scene and tag

modalities for privacy prediction and dynamically identify the most competent modal-

ities for a target image whose privacy has to be predicted.

• We derive “competence” features from the neighborhood regions of a target image and

learn classifiers on them to identify whether a modality is competent to accurately

predict the privacy of the target image. To derive these features, we consider privacy

and visual neighborhoods of the target image to bring both sensitive and visually

similar image content closer.

• We provide an in-depth analysis of our algorithm in an ablation setting, where we

record the performance of the proposed approach by removing its various components.

The analysis outline the crucial components of our approach.

• Our results show that we identify images’ sensitive content more accurately than sin-

gle modality models (object, scene, and tag), multi-modality baselines and prior ap-

proaches of privacy prediction, depicting that the approach optimally combines the

multi-modality for privacy prediction.

1.4 Dissertation Outline

In what follows, we provide a brief description of the chapters in the dissertation. The

dissertation is published in AAAI Doctoral Consortium22. Each chapter corresponds to

a paper. The research work of the dissertation has been published either in conference

proceedings, or is under review in a journal proceeding. Our goal is to accurately identify

private or sensitive content from images before they are shared on social networking sites.

Precisely, given an image, we aim to learn models to classify the image into one of the two

classes: private or public, based on generic patterns of privacy. This research is motivated by

the fact that, increasingly, online users’ privacy is routinely compromised by using social and

content sharing applications15. Identifying sensitive content is inherently difficult because

it requires the tool to have an in-depth understanding of the visual content of the image.
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Moreover, the problem is very subjective, and users are generally reluctant to give full access

to their private images (but only access to the images’ tags) for the image content analysis,

which can hinder the personalized privacy prediction using visual features. Hence, we aim

to carefully identify features derived from the multi-modal information of the image that

can adequately understand the image content and predict the prevalent privacy and sharing

needs of users’ uploaded images. The models trained on these features can enable users to

better manage their participation in online image sharing systems by making it easier for

regular users to control the amount of personal information shared through images, and thus

reduce the escalating privacy risks. Moreover, the proposed tags can also provide the relevant

cues for privacy-aware image retrieval7 and can become an essential tool for surfacing hidden

content of the deep Web without exposing sensitive details. In this dissertation, we propose

to derive image tags, and visual content features by leveraging CNN architectures, which are

used in conjunction with machine learning classifiers and dynamically fuse these modalities

to identify sensitive content accurately.

This dissertation is structured as follows:

Chapter 2: We first propose to use the AlexNet CNN architecture17 to extract deep

visual features and deep image tags for all images in the PicAlert dataset7 that are labeled

as private or public. AlexNet implements an eight-layer network that is pre-trained on a

subset of the ImageNet dataset16. The first five layers of AlexNet interleave convolution and

pooling, whereas the remaining three layers are fully-connected (FC). The convolution layers

represent high-level features, whereas the FC layers give the non-linear combination of the

features in the layers below. We extract deep visual features from the last three FC layers,

and the “prob” layer that produces a probability distribution over 1000 object categories for

the input image.

Since, not all images on social networking sites have tags or the set of tags is very

sparse23, we automatically derive tags (deep tags) for images based on their visual content.

For deep tags, the top K categories are predicted from the probability distribution extracted

from the CNN.24. We propose that scene tags can also contribute along with object tags to

learn privacy characteristics of a given image as they can help provide clues into what the
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image posters intended to show through the photo. Therefore, we employ two types of deep

tags for privacy prediction based on: (1) objects stream, pre-trained on a large scale object

dataset (ImageNet)16, to capture the object information depicted in the image; and (2) scene

stream, pre-trained on a large scale scene dataset (Places2)25, to obtain the pattern about

scene context of the image26.

Chapter 3: Previous studies used only the AlexNet architecture of CNNs for image

privacy prediction. To date, many deep CNN architectures have been developed and achieve

state-of-the-art performance on object recognition. These CNNs include GoogLeNet18,

VGG-1619, and ResNet20 (in addition to AlexNet17). In this chapter, we present an ex-

tensive study to carefully identify the CNN architectures and features derived from these

CNNs that can adequately predict the class of an image as private or public.

Chapter 4: As image tags are at the sole discretion of the users, they tend to be

noisy and incomplete. In this chapter, we ask the following questions: Can we develop

an automated approach to recommend accurate image tags that can also take into account

the sharing needs of the users for images in questions? Can this method make precise tag

recommendations for newly uploaded images that have an incomplete set of user tags or

no tags at all? Can these recommended tags help improve the image privacy prediction

performance? We address these questions with our research agenda and propose privacy-

aware tag recommendation algorithm, that aims at improving the quality of user annotations

while also preserving the images’ original sharing settings. These improved set of tags help

improve the privacy prediction performance.

Chapter 5: Finally, we propose to combine all the information i.e., object, scene and

tags for image privcay prediction and conjecture that simply combining objects, scenes and

user tags modalities using feature-level fusion (i.e., concatenation of all object, scene and user

tag features) or decision-level fusion (i.e., aggregation of decisions from classifiers trained on

objects, scenes and tags) may not always help to identify the sensitive content of images.

Thus, we propose a novel approach that dynamically fuses multi-modal information of on-

line images (i.e., object, scene and tags), derived through Convolutional Neural Networks

(CNNs), to adequately identify the sensitive image content.
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Chapter 6: We summarize and conclude the dissertation. We also provide a summary

of contributions and directions for future research.

1.4.1 Published Work

• Chapter 2 on On the Use of “Deep” Features for Online Image Sharing has been pub-

lished in Proceedings of the American Association for Artificial Intelligence (AAAI)

2016, 201824;26, and the Web Conference Companion (WWW) 201827. To our knowl-

edge, this is the first work to uncover the scene context from the image content for

privacy prediction. In this work, we empirically show that learning models trained on

deep visual features and deep tags for privacy prediction outperform strong baselines

such as those trained on hierarchical deep features, SIFT, GIST (global image descrip-

tors) and user provided tags. We also show that deep visual features provide improved

performance for the private class (i.e., correctly identifying more images as private)

as compared to baseline approaches. Using “deep” tags, we show that we can achieve

performance comparable to the visual content features for privacy prediction. We also

evaluate the combination of all three types of tags (object, scene, and user) and show

that the combination yields better performance compared with user tags alone and the

combination of user tags with scene or object tags.

• Chapter 3 has been submitted to ACM Transactions on the Web (TWEB) and is under

review. To our knowledge, this is the first study to provide a detailed analysis of various

CNN architectures for privacy prediction. Our comprehensive set of experiments can

provide the community with evidence about the best CNN architecture and features for

the image privacy prediction task, especially since the results obtained outperformed

other complex approaches, on a large dataset of more than 30, 000 images. In this

this work, we extract deep (visual and tag) features from four pre-trained CNN archi-

tectures for object recognition, i.e., AlexNet, GoogLeNet, VGG-16, and ResNet, and

compare their performance for image privacy prediction. Among all four networks, we

observe that ResNet produces the best feature representations for this task. We also
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fine-tune the pre-trained CNN architectures on our privacy dataset and compare their

performance with the models trained on pre-trained features. The results show that

even though the overall performance obtained using the fine-tuned networks is com-

parable to that of pre-trained networks, the fine-tuned networks provide an improved

performance for the private class as compared to models trained on the pre-trained fea-

tures. Results of our experiments on a Flickr dataset of over thirty thousand images

show that the learning models trained on features extracted from ResNet outperform

the state-of-the-art models for image privacy prediction. We further investigate the

combination of user tags and deep tags derived from CNN architectures using two

settings: (1) SVM on the bag-of-tags features; and (2) text-based CNN. We compare

these models with the models trained on ResNet visual features obtained for privacy

prediction. Our results show that even though the models trained on the visual fea-

tures perform better than those trained on the tag features, the combination of deep

visual features with image tags shows improvements in performance over the individual

feature sets.

• Chapter 4 has been published in Proceedings of the ACM conference on Hypertext and

Social Media (HT) 201828. A journal version of this work that augments our study by

providing extensive experiments to validate the proposed approach has been accepted

to ACM Transactions on Intelligent Systems and Technology (TIST) 2019. In this

work, we study our privacy-aware recommended tags obtained by the proposed privacy-

aware weighting scheme in an ablation experiment for privacy prediction. In this

experiment, we compare various privacy-aware and privacy-oblivious weighting schemes

and observe how the privacy prediction performance varies for these weighting schemes.

We also experiment with various parameter values to estimate the best parameter

setting. We compare the performance of privacy prediction using tags recommended

by the proposed approach against the tags recommended by a prior state-of-the-art

image annotation method. Our objective in this experiment is to verify whether the

recommended tags by the proposed approach can capture better privacy characteristics
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than the prior state-of-the-art annotation. We further investigate tag recommendation

in a binary image privacy prediction task and show that the predicted tags can exhibit

relevant cues for specific privacy settings (public or private) that can be used to improve

the image privacy prediction performance. Our results show that we achieve a better

privacy prediction performance when we add the recommended privacy-aware tags to

the original user tags and predicted deep tags of images as compared to prior approaches

of image privacy prediction. We also evaluate the recommended tags by employing

crowd-sourcing to identify relevancy of the suggested tags to images. The results show

that, although the user-input tags comprise noise or even some images do not have

any tags at all, our approach is able to recommend accurate tags. Additionally, we

evaluate both privacy-aware and privacy-oblivious recommended tags and show that

the privacy-aware recommended tags describe an image’s content more accurately as

compared to the privacy-oblivious tags.

• Chapter 5 has been published in AAAI 201929 and WWW 201930. This work identifies

the set of most competent modalities on the fly, according to each new target image

whose privacy has to be predicted. The approach considers three stages to predict

the privacy of a target image, wherein we first identify the neighborhood images that

are visually similar and/or have similar sensitive content as the target image. Then,

we estimate the competence of the modalities based on the neighborhood images.

Finally, we fuse the decisions of the most competent modalities and predict the privacy

label for the target image. Experimental results show that our approach predicts the

sensitive (or private) content more accurately than the models trained on individual

modalities (object, scene, and tags) and prior privacy prediction works. Additionally,

our approach outperforms the state-of-the-art baselines that also yield combinations

of modalities.
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Chapter 2

On the Use of “Deep” Features for

Online Image Sharing

Online image sharing in social networking sites such as Facebook, Flickr, and Instagram can

lead to unwanted disclosure and privacy violations, when privacy settings are used inappro-

priately. Despite that social networking sites allow users to set their privacy preferences, this

can be cumbersome for the vast majority of users. In this chapter, we explore privacy pre-

diction models for social media that can automatically identify private (or sensitive) content

from images, before they are shared online, in order to help protect users’ privacy in social

media. More precisely, we study “deep” visual features that are extracted from various layers

of a pre-trained deep Convolutional Neural Network (CNN) as well as “deep” image tags

generated from the CNN. Experimental results on a Flickr dataset of thousands of images

show that the deep visual features and deep image tags can successfully identify images’

private content and substantially outperform previous models for this task.

With the exponential increase in the number of images that are shared online every day,

the development of effective and efficient learning methods for image privacy prediction has

become crucial. Prior works have used as features automatically derived object tags from

images’ content and manually annotated user tags. However, we believe that in addition

to objects, the scene context obtained from images’ content can improve the performance
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of privacy prediction. Hence, we propose to uncover scene-based tags from images’ content

using convolutional neural networks. Experimental results on a Flickr dataset show that the

scene tags and object tags complement each other and yield the best performance when used

in combination with user tags.

2.1 Introduction

The rapid increase in multi-media sharing through social networking sites such as Facebook,

Flickr, and Instagram can cause potential threats to users’ privacy, when privacy settings

are used inappropriately5. Many users quickly share private images about themselves, their

family and friends, but they rarely change the default privacy settings, which could jeopardize

their privacy7. These shared images can potentially reveal a user’s personal and social

habits. Furthermore, the smartphones facilitate the exchange of information virtually at

any time with people all around the world. Employers often perform background checks for

their future employees using social networking sites and it was reported that about 8% of

companies already fired employees due to their indecent media content9. A study by the

Pew Reserch center1 reports that 11% of the social networking sites users regret the posted

content.

Users’ privacy is recognized as a concern by social networking sites researchers as well.

For example, the Director of AI Research at Facebook, Yann LeCun2 urges the development

of a digital assistant, to warn people about sensitive content while uploading embarrassing

photos, in order to help them avoid regrets later. Thus, in order to avoid privacy violations

and protect users’ shared content in social media, it has become critical to develop automated

privacy-aware models that can accurately detect private (or sensitive) content from images

before they are shared online.

A rule-based classifier that classifies an image as private if it contains people does not work

well in a real-world scenario. Consider, for example, an image of a music band in a concert,

1http://www.pewinternet.org/2012/02/24/privacy-management-on-social-media-sites
2https://www.wired.com/2014/12/fb/all/1
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(a) Private

(b) Public

Figure 2.1: Examples of private and public images.

which is identified as consisting of public content. The rule-based classifier will mistakenly

classify this image as private. Similarly, an image that does not contain people could be

private. Laxton et al.31 described a “tele-duplication attack” that allows an adversary to

create a physical key duplicate simply from an image. The rule-based model will fail to

predict the image of a key as consisting of private (or sensitive) content, which needs to be

protected. Figure 2.1 shows examples of private and public images, i.e., having private or

public content, from a publicly available dataset7.

Several studies explored classification models of image privacy using user tags and image

content features such as SIFT (or Scale Invariant Feature Transform) or RGB (or Red Green

Blue). For example, Zerr et al. 7 and Squicciarini et al. 12 found that SIFT features and user

tags are informative for the task of classifying images as private or public. Yet, as images’

tags are at the sole discretion of users, they tend to be noisy and incomplete, with many

images on the Web containing only a very sparse set of manually annotated tags or no tags at

all23. More recently, due to the success of object recognition from images using Convolutional

Neural Networks (CNNs)17, researchers started to investigate privacy frameworks based on

CNNs14. However, identifying private content automatically is inherently difficult because

it requires an in-depth “understanding” of the visual content of the image. In addition, the

task is very subjective, depending on factors such as users’ personalities and their privacy

awareness. Moreover, users are often reluctant to give access to their private images, which
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can hinder the personalized privacy preferences prediction. Recently, Zhong et al.32 discussed

challenges faced by both generic and personalized models for image privacy classification.

Specifically, they highlight that generic privacy patterns do not capture well an individual’s

sharing behavior, whereas personalized models generally require large amounts of individual

user data to learn reliable models, and are time and space consuming to train and store

models for each user. We recognize that progress should be made on both directions to

improve hybrid approaches of generic and personalized models. Thus, in this paper, we

aim at identifying a set of generic privacy patterns, i.e., “deep” features (derived from deep

CNNs) that have the highest discriminative power for image privacy prediction.

Contributions. We present an analysis of various “deep” feature representations for

image privacy prediction (i.e., for predicting the class of an image as private or public).

Unlike previous works, we explore features that can be directly obtained from a pre-trained

object CNN for privacy prediction. Specifically, we use three deep feature representations

corresponding to the output of three fully-connected layers of an eight-layer deep neural

network pre-trained on ILSVRC-2012, a subset of ImageNet dataset consisting of 1.2M+

images labeled with 1,000 object categories16, as well as the probability distribution over

the 1,000 categories obtained from the last layer of the network via softmax. As discussed

earlier, the set of user tags may be incomplete and noisy. Hence, unlike previous works, we

leverage CNNs for automatically generating object tags. We also propose the extraction of

scene tags to capture additional information from the visual content that is not captured by

existing object tags. Precisely, we investigate object tags and scene tags, which we call “deep

tags” that correspond to the top-ranked probabilities from the probability distribution over

the 1, 000 object categories and 365 scene categories. We explore the combination of user

tags with the object, scene and object-scene tags for privacy prediction. Using these “deep”

tags, we show that we can achieve performance comparable to the visual content features

for privacy prediction. We evaluate the combination of all three types of tags (object, scene,

and user) and show that the combination yields better performance compared with user

tags alone and the combination of user tags with scene or object tags. These tags can also

provide the relevant cues for privacy-aware image retrieval7 and can become an essential tool
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for surfacing the hidden content of the deep Web without exposing sensitive details.

We evaluate the performance of the “deep” features (extracted from AlexNet17) on a

subset of the PicAlert dataset of Flickr images, labeled as private or public. The PicAlert

dataset was made publicly available by Zerr et al.7. We empirically show that learning

models trained on deep visual features and deep tags for privacy prediction outperform

strong baselines such as those trained on hierarchical deep features, SIFT, GIST (global

image descriptors) and user provided tags. We also show that deep visual features provide

improved performance for the private class (i.e., correctly identifying more images as private)

as compared to baseline approaches. Moreover, the results show that the deep image tags

yield better performing models as compared to user tags and the combination of deep tags

and user tags outperforms each set of tags individually.

2.2 Related work

Emerging privacy violations and security threats in social media have started to attract var-

ious researchers to this field. Several works are carried out to study users’ privacy concerns

in social networks, privacy decisions about sharing resources, and the risk associated with

them. For example, Ahern et al. 5 examined privacy decisions and considerations in mobile

and online photo sharing. The authors explored critical aspects of privacy such as users’

consideration for privacy decisions, content and context based patterns of privacy decisions,

and user behavior towards personal information disclosure. The conclusion was that appli-

cations that support and influence the process of users’ privacy decision-making should be

developed.

Buschek et al. 33 presented an approach to assigning privacy to shared images using

metadata (location, time, shot details) and visual features (faces, colors, edges). Zerr et al. 7

proposed privacy-aware image classification, and learned classifiers on Flickr photos. Au-

thors considered user-annotated tags and visual features such as color histograms, faces,

edge-direction coherence, and SIFT for the privacy classification task and found that SIFT

has a high discriminative power for image privacy detection. Consistent with Zerr et al. 7 ,

18



Squicciarini et al. 12,13 also found that SIFT and user-annotated tags work best for predicting

privacy of users’ images. SIFT as well as GIST are among the most widely used traditional

features for image analysis in computer vision. SIFT34 detects scale, rotation and translation

invariant key-points of objects in images and extracts a pool of visual features, which are

represented as a “bag-of-visual-words.” GIST35 encodes global descriptors for images and

extracts a set of perceptual dimensions (naturalness, openness, roughness, expansion and

ruggedness) that represent the dominant spatial structure of the scene.

Recently, the computer vision community has shifted towards CNNs for tasks such as

object detection36;37 and semantic segmentation38. CNNs have also acquired state of the

art results on ImageNet (a highly challenging dataset used for object recognition)16 using

supervised learning17. Karayev et al. 39 described an approach for predicting the style of

images using CNNs. Given the recent success of CNNs, Tran et al. 14 investigated CNNs

for privacy prediction and showed improved performance compared with visual features

such as SIFT and GIST (this approach is one of our strong baselines). Spyromitros-Xioufis

et al. 40 explored features extracted from CNNs to provide more accurate personalized privacy

classification. Yu et al. 41 adopted CNNs to achieve semantic image segmentation and also

learned object-privacy relatedness to identify privacy-sensitive objects.

2.3 Convolutional Neural Networks

Convolutional Neural Network (CNN) is a type of feed-forward artificial neural network

which is inspired by the organization of the animal visual cortex. Learning units in the

network are called as neurons. These neurons learn to convert input data i.e. a picture of

dog into its corresponding label i.e. “dog” through automated image recognition. Bottom

layers of CNN consist of interleaved convolution and pooling layers, and top layers consist of

fully-connected (fc) layers, and a probability (prob) layer obtained by applying the softmax

function to the input from the previous fc layer, which represents the probability distribution

over the available categories for an input image. As we ascend through an architecture, the

network acquires: (1) lower layers features (color blobs, lines, corners); (2) middle layer
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features (textures resulted from a combination of lower layers); and (3) higher (deeper)

layers features (high-level image content like objects obtained by combining middle layers).

As online images may contain multiple objects, we consider features extracted from deeper

layers as they help to encode the objects precisely.

A CNN exploits the 2D topology of image data, in particular, local connectivity through

convolution layers, performs weight sharing to handle very high-dimensional input data, and

can deal with more abstract or global information through pooling layers. Each unit within

a convolution layer receives as input a small region of its input at location l, denoted rl(x)

(a.k.a. receptive field), and applies a non-linear function to it. More precisely, given an

input image x, a unit that is responsible for region l computes σ(W · rl(x) + b), where

W and b represent the matrix of weights and the vector of biases, respectively, and σ is a

non-linear function such as the sigmoid activation or rectified linear activation function. W

and b are learned during training and are shared by all units in a convolution layer. Each

unit within a pooling layer receives a small region from the previous convolution layer and

performs average or max-pooling to obtain more abstract features. During training, layers

in CNNs are responsible for a forward pass and backward pass. The forward pass takes

inputs and generates the outputs. The backward pass takes gradients with respect to the

output and computes the gradient with respect to the parameters and to the inputs, which

are consecutively back-propagated to the previous layers42.

2.4 Image Privacy Classification

The privacy of an image can be determined by the presence of one or more objects described

by the visual content and the description associated with it in the form of tags.

Problem Statement: Given an image to be uploaded online, the task is to classify it

into one of the two classes: private or public, i.e., consisting of private or public content,

respectively.

Next, we describe the features used in the classification.

Feature Extraction: We extract “deep” features from images using a pre-trained CNN.
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Figure 2.2: Deep features: 1. CNN is used to extract deep visual features and deep image
tags for input images. 2. The features from the fully-connected (fc) layers, “Prob” layer and
deep tags are used to predict the class of an image as public or private using SVM. 3. Using
these features, we train SVM classifiers to predict the privacy class of an image as private
or public.

A CNN is a feed-forward neural network in which bottom layers consist of interleaved convo-

lution and pooling layers, and top layers consist of fully-connected (FC) layers, a probability

(prob) layer obtained by applying the softmax function to the input from the previous FC

layer, and finally the output layer, which outputs the probabilities of the objects in the

input image. This is illustrated in Figure 2.2. A CNN exploits the 2-dimensional topology

of image data, e.g., local connectivity through convolution layers, performs weight sharing to

handle very high-dimensional input data, and can deal with more abstract or global informa-

tion through pooling layers. The convolution layers represent high-level features of images,

whereas the FC layers give the non-linear combination of the features in the layers below. In

CNNs, features are extracted from images through each layer in a feed-forward fashion. We

used the AlexNet CNN architecture17 to extract deep visual features and deep image tags

for all images in the dataset, which are labeled as private or public. AlexNet implements an

eight-layer network pre-trained on the ILSVRC-2012 object classification subset of the Im-

ageNet dataset16. The first five layers of AlexNet interleave convolution and pooling layers,

and the last three layers are fully-connected. We show the AlexNet architecture in Figure

2.2. The reason for using features derived from a pre-trained network is that the sensitive
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content is limited for model training and training or fine-tuning a deep network requires a

large amount of privacy data.

Deep Visual Features: We extracted deep visual features from the last three fully-

connected layers, which are referred as fc6, fc7, and fc8, and from the “prob” layer (the cyan

block in Figure 2.2). Figure 2.3 shows the visual features fc6, fc7, fc8 and Prob extracted

using AlexNet. The dimensions of fc6, fc7, and fc8 are 4096, 4096 and 1000, respectively,

and the “prob” layer produces a probability distribution over 1000 object categories for the

input image. The conditional probability distribution over object categories c can be defined

using a softmax function as given below:

P (y = c|z) =
exp(zk)∑
j exp(zj)

where, in our case, z is the output of the last fully connected layer (i.e., the fc8 layer).

(a) fc6 (b) input (c) fc8

(d) fc7 (e) Deep Tags (f) Prob

Figure 2.3: Deep feature representations of a given image.

Deep Image Tags: It is interesting to mention that not all images on social networking

sites have tags or the set of tags is very sparse23. Thus, we use an automatic annotation

technique to derive tags for images based on their visual content. We believe that scene
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tags can contribute along with object tags to learn privacy characteristics of a given image,

as they can help provide clues into what the image owners intended to show through the

photo. Therefore, we employ two types of semantic features for privacy prediction based

on: (1) objects stream, pre-trained on a large scale object dataset (ImageNet)16, to capture

the objects depicted in the image; and (2) scene stream, pre-trained on a large scale scene

dataset (Places2)25, to obtain the pattern about scene context of the image. For automatic

image annotation, we predict the top K object/scene categories from the probability distri-

bution extracted from the deep neural network. More precisely, given an input image x, the

automatically annotated tags (or deep tags) correspond to the object/scene categories of the

top K probabilities.

Object-centric Tags. To automatically obtain object tags from the visual content, we

adopt an approach given in24. We use the probability distribution over 1000 object categories

for the input image obtained by applying the softmax function over the last fully-connected

layer of the AlexNet Convolutional Neural Network (CNN)17. AlexNet is pre-trained on

the ImageNet dataset and obtained from the CAFFE distribution42. We consider the top

k objects of highest probabilities as object tags. We can see from Figure 2.3 that the deep

tags such as “Maillot” and “Tank suit” are representative for the image (note that only top

K = 5 deep tags are shown), but important tags such as “people” and “women” are not

included. This is because the 1, 000 object categories used for training do not contain these

tags.

Scene-centric Tags. Similar to object tags, we obtain the top k scenes derived from the

probability distribution over 365 scene categories of the pre-trained AlexNet on the Places2

dataset. We refer to the top k predicted scenes as scene tags.

2.5 Dataset and Evaluation Settings

We trained and evaluated models based on deep features on a subset of 32, 000 Flickr images

sampled from the PicAlert dataset, made available by Zerr et al.7. PicAlert consists of Flickr

images on various subjects, which are manually labeled as private or public by external
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viewers. The data have been labeled by six teams providing a total of 81 users of ages

between 10 and 59 years of varied backgrounds. In our experiments, the 32, 000 images are

split into Train and Test sets of 10, 000 and 22, 000 images, respectively. We consider a

higher number of test images (compared to Training images) to evaluate the “deep” features

on a large set of unseen images for limited number of training images. Each experiment

was repeated five times with a different train/test split (obtained using five different random

seeds). The results presented in the next section are averaged across the five runs. Also, the

F1-score is calculated as a weighted average of the F1-score of both the classes. The public

and private images are in the ratio of 3:1 in both train and test.

Evaluation Setting. To evaluate the deep features, we used the Support Vector Ma-

chine (SVM) classifier implemented in Weka and chose the hyper-parameters that gave the

best performance on the Train set using 10-fold cross-validation. We experimented with

C = {0.001, 0.01, 1.0, · · · , 10.0}, kernels: Polynomial and RBF, the γ parameter in RBF,

and the degree d of a polynomial. Hyper-parameters shown in all result tables follow the

format: “R/P,C,γ/d” where “R” denotes “RBF” and “P” denotes “Polynomial.”

2.6 Experiments and Results

In this section, we present the experimental evaluation of the deep features. We compare

the performance of the models trained on deep visual features with the models trained on

baseline visual features for privacy prediction. In previous works7;12, tag features perform

very well for privacy prediction, and hence, we examine the quality of tag features using

both user annotated tags and automatically annotated (deep) tags. In order to learn the

tags which help in privacy prediction, we also perform an analysis of the most informative

tags with respect to the binary privacy settings.
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2.6.1 Results for Deep Visual Features

Experimental design: We wish to identify the most promising visual features from the

set of deep features that have the highest discriminative ability for privacy classes. To

achieve this, we first compare the deep visual features among each other. We then compare

the performance of models based on deep visual features with several baselines that we

described below.

Baselines. Tran et al. 14 proposed PCNH, a privacy CNN-based framework, that com-

bines features obtained from two architectures: one that extracts convolutional features (size

= 24), and another that extracts object features (size = 24). The Object CNN is a deep

network of 11 layers obtained by appending three fully-connected layers of size 512, 512, 24

at the end of the fully-connected layer of AlexNet. The PCNH framework is first trained on

the ImageNet dataset and then fine-tuned on a small privacy dataset. As images’ privacy

greatly depends on the objects in images, we believe that the features controlling the distinct

attributes of the objects obtained through the higher number of neurons (4096 neurons in

FC7 of AlexNet) can better approximate the privacy function compared with adding more

non-linear layers (as in PCNH). The increase in the number of complex non-linear layers in-

troduces more parameters to learn, and at the same time, with comparatively small amount

of training data (PicAlert vs. ImageNet), which may result in over-fitting. Moreover, train-

ing such a deep network on ImageNet and then fine-tuning on the privacy data significantly

increases the processing power and time complexity. Furthermore, if new objects are added

to the object dataset, the networks need to be retrained from scratch. Conversely, features

derived from state-of-the-art CNN architectures can reduce the overhead of re-training and

still achieve good performance for privacy prediction. Hence, we compare models trained

on the deep features extracted from the fully-connected layers of AlexNet, as explained in

Section 3, with the PCNH privacy framework, and consider the latter as our first baseline.

Unlike Tran et al. 14 who used 800 images in their evaluation, we evaluate our models on

a large set of images (22000) to validate the performance of the deep features for a large

variety of image subjects.
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We regard classifiers trained on the best performing features between SIFT, GIST, and

their combination as the second strong baseline. Our choice of these features is motivated

by their good performance over other features such as colors, patterns, and edge directions

in prior works7;12. For SIFT, we constructed a vocabulary of 128 visual words for our

experiments as visual words of length 500 or above did not yield significant improvement

over 128 visual words. For a given image, GIST is computed by: (1) convolving the image

with 32 Gabor filters at 4 scale and 8 orientations, which produces 32 feature maps; (2)

dividing the feature map into a 4 × 4 grid and averaging feature values of each cell; (3)

concatenating these 16 averaged values for 32 feature maps, which result in a feature vector

of 512 (16× 32) length.

We also compare the performance of the deep features with two naive rule-based clas-

sifiers, which predict an image as private if it contains persons. Otherwise, the image is

classified as public. For the first rule-based classifier, we detect front and profile faces by

using Viola-Jones algorithm43. For the second rule-based classifier, we consider user tags

such as “women,” “men,” “people.” Recall that these tags are not present in the set of

1, 000 categories of ILSVRC-2012, and hence, we restrict to user tags only. If an image

contains one of these tags, we consider it as “private,” otherwise “public.” For the deep

visual features, we use the AlexNet pre-trained CNN implemented in CAFFE42, which is an

open-source framework for deep neural networks. We resize images in both Train and Test

to the CAFFE convolutional neural net compatible size of 227× 227 and encode each image

using the three deep feature representations corresponding to the output of the layers FC6,

FC7, FC8, and “Prob,” which is the probability distribution obtained from FC8 via softmax.

Results: Table 2.1 shows results of the comparison (Precision, Recall, F1- Measure and

Accuracy) of SVMs using each deep feature type extracted from AlexNet, fc6, fc7, fc8, and

“Prob,” and the results of their comparison with the performance of baselines (i.e., SVMs

trained using the baseline features), on Test. We can see from the table that the SVMs

trained on fc7 and fc8 perform similarly, and the performance improves as we go from fc6 to

fc7. This is because higher layers of the network capture high level feature descriptions of

objects present in the image. We notice that all fc6, fc7, fc8 deep features are able to achieve
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Features H-Param Acc % F1 Prec Re

#1 Deep visual features

fc6 R,1.0,0.05 85.49 0.844 0.847 0.855
fc7 R,2.0,0.01 85.83 0.851 0.851 0.858
fc8 R,1.0,0.05 85.80 0.851 0.851 0.858
Prob R,5.0,1.0 83.18 0.824 0.822 0.832

#2 Hierarchical Deep Features14

PCNH R,1.0,0.01 84.21 0.833 0.832 0.842

#3 SIFT/GIST (Zerr et al. 7 ,Squicciarini et al. 12,13)

SIFT P,1.0,2.0 77.31 0.674 0.598 0.773
GIST R,0.001,0.5 77.33 0.674 0.598 0.773
SIFT+GIST R,0.05,0.5 72.67 0.704 0.691 0.727

#4 Rule-based models

Rule-1 − 77.35 0.683 0.694 0.672
Rule-2 − 77.93 0.673 0.704 0.644

Table 2.1: Deep visual features vs. Baselines

performance higher than 85% in terms of all compared measures. Note that a naive baseline

which classifies every image as “public” obtains an accuracy of 75%. It is worth mentioning

that “prob” features perform worse than the features extracted from the fully-connected

layers. One possible explanation could be that squashing the values at the previous layer

(e.g., fc8 in AlexNet) through the softmax function, which yields the “prob” layer, produces

a non-linearity that is less useful for SVM compared to the un-transformed values. The

results of fully-connected layers over the “prob” layer are statistically significant for p-values

< 0.05.

Table 2.1 shows also that deep visual features fc6, fc7, fc8 provide better feature represen-

tations than baseline visual features for privacy prediction. Precisely, the models obtained

using deep visual features extracted from AlexNet outperform models trained on baseline

features, PCNH, SIFT, GIST and SIFT + GIST. For example, F1-measure improves from

0.833 obtained by PCNH features to 0.851 obtained by fc8. We achieve improvement in

F1-measure as high as 15% over SIFT + GIST models, i.e., our second baselines. “Prob”

features also perform better than SIFT + GIST. With a paired T-test, our improvements

over the baseline approaches for F1-measure are statistically significant for p-values < 0.05.

It is also interesting to note that rules based on facial features exhibit better performance
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Private Public

Features F1 Prec Re F1 Prec Re

#1 Deep visual features

fc7 0.642 0.752 0.56 0.912 0.88 0.946

#2 Hierarchical Deep Features (Tran et al. 14)

PCNH 0.598 0.708 0.518 0.902 0.869 0.937

#3 SIFT/GIST (Zerr et al. 7 ,Squicciarini et al. 12,13)

SIFT+GIST 0.27 0.343 0.223 0.832 0.793 0.874

#4 Rule-based models

Rule-1 0.509 0.47 0.556 0.853 0.875 0.832
Rule-2 0.458 0.373 0.593 0.897 0.914 0.88

Table 2.2: Class specific privacy prediction performance.

than SIFT and GIST and suggest that features representing persons are helpful to predict

private content of images. This is consistent with Tran et al.14, who showed that adding the

“person” category in the object classes helped to improve the accuracy. However, AlexNet-

based “deep” features outperform: (1) the rule-based models based on facial features by

more than 10% in terms of all measures (see Table 2.1, #4 Rule-based models), and (2)

the PCNH features that incorporate the “person” category by more than 2.5-3% in terms of

all measures (see Table 2.1, #3 Hierarchical Deep Features). Simple rule-based models will

not suffice for this task and advanced AI technology for image content analysis such as deep

learning is required.

We also show the class specific privacy prediction performance in Table 2.2 to identify

which features characterize the private class effectively as sharing private images on the

Web with everyone is not desirable. We found that the SVMs trained on AlexNet-based

deep visual features obtain improved performance for the private class as compared with

the SVMs trained on the baseline features. Precisely, using the best-performing deep visual

features FC7, F1-measure for the private class improves from 0.598 obtained by PCNH to

0.642 obtained by FC7. Similarly, the F1-measure for the public class improves from 0.902

obtained by PCNH to 0.912 for FC7.

Next, we examine the quality of tag features and contrast the deep image tags with the

user annotated tags.
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k = 2 k = 10

Feat. Acc % F1 Pre. Re. #Inc Acc % F1 Pre. Re. #Inc

UT 81.73 0.789 0.803 0.817 - 81.73 0.789 0.803 0.817 -

UT + ST 82.26 0.797 0.81 0.823 293 83.21 0.814 0.821 0.832 503

UT + OT 83.09 0.812 0.819 0.831 477 84.35 0.833 0.834 0.843 755

UT + ST +
OT

83.59 0.819 0.825 0.836 587 84.80 0.841 0.84 0.848 854

Table 2.3: Privacy prediction performance using tag features.

2.6.2 Results for Deep Image Tags

Experimental design: We investigate the performance of SVMs on user tags and deep

image tags for privacy prediction. We also examine the combination of user tags and deep

tags, which captures different aspects of an image.

For user tags, we remove special characters and numbers from the user tags, as they do

not provide any information with respect to privacy. Examples of user tags for the image in

Figure 2.3 are: “Birthday Party,” “Night Life,” “People,” etc. To obtain object and scene

tags (deep tags) from CNNs, we experimented with two values of k as k = 2 and k = 10 (for

the top k tags). The choice for k = 2 is motivated by the fact that an image may contain only

a few scenes or objects, whereas the choice for k = 10 is motivated by its best results. We

also contrast the combination of user, scene, and object tags with the combination of user

and scene tags and user tags alone. To encode the automatically derived scene and object

tags, we use the probability of the tag obtained from the softmax layer of the corresponding

CNN. The user tags are encoded using a binary representation.

Results: Table 2.3 shows the results obtained from the experiments for tag features on

the Test and compares the performance obtained using models trained on deep tags, user

tags and their combination. Precisely, the table shows the performance obtained before and

after adding scene tags (ST), object tags (OT) and scene + object tags (ST+OT) to the

user tags (UT). We observe that models trained on the combination of all tag types yield

the best performance and show an improvement as high as 5.2% in F1-measure over models

trained on UT alone. From the table, we also notice that deep tags (object and scene tags)
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perform better than user tags, however, the combination of the two outperforms each one

individually, the user tags and the deep tags (UT + OT and UT + ST). This can be justified

by the fact that the user tags have some general tags, whereas deep tags contain some specific

tags, which capture various aspects of the data. To see this, using only general tags can cause

overlap in the two different privacy classes. For example, if we consider more general tags

such as “clothes” instead of “swimsuit,” then the tag can appear in both classes and hence

will fail to differentiate between them. Similarly, if we would consider only very specific tags,

the models may overfit and will not generalize well on unseen data. Moreover, we note that

the combination of UT+ST performs better than UT alone, but does not perform as good

as the combination of OT+UT. Table 2.3 also shows the increase in the number of accurate

predictions (denoted by #Inc) for UT+ST, UT+OT, and UT+ST+OT over the user tags.

As can be seen, the highest increase is achieved by the combination of UT+ST+OT.

2.7 Chapter Summary and Future Directions

In this chapter, we explored AI technology, i.e., deep features extracted from various CNN

layers, for image privacy classification. Our results show that the deep visual features corre-

sponding to the fully-connected layers of the AlexNet CNN outperform those corresponding

to the “prob” layer. We also examined user annotated tags and deep tags (generated from

the “prob” layer) and found that the combination of both the tags outperforms individual

sets of tags. In addition, models trained on deep features yield improvement in performance

over several baselines. The result of our classification task is expected to aid other very

practical applications. For example, a law enforcement agent who needs to review digital

evidence on a suspected equipment to detect sensitive content in images and videos, e.g.,

child pornography. The learning models developed here can be used to filter or narrow

down the number of images and videos having sensitive or private content before other more

sophisticated approaches can be applied to the data.

In future, other CNN architectures can be explored for privacy prediction. Also, user

tags can be explored in various ways, e.g., to include information from description, comment,

anchor tags to obtain additional information about the image.
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Chapter 3

Image Privacy Prediction Using Deep

Neural Networks

Images today are increasingly shared online on social networking sites such as Facebook,

Flickr, Foursquare, and Instagram. Image sharing occurs not only within a group of friends

but also more and more outside a user’s social circles for purposes of social discovery. De-

spite that current social networking sites allow users to change their privacy preferences,

this is often a cumbersome task for the vast majority of users on the Web, who face diffi-

culties in assigning and managing privacy settings. When these privacy settings are used

inappropriately, online image sharing can potentially lead to unwanted disclosures and pri-

vacy violations. Thus, automatically predicting images’ privacy to warn users about private

or sensitive content before uploading these images on social networking sites has become a

necessity in our current interconnected world.

In this chapter, we explore learning models to automatically predict appropriate images’

privacy as private or public using carefully identified image-specific features. We study

deep visual semantic features that are derived from various layers of Convolutional Neural

Networks (CNNs) as well as textual features such as user tags and deep tags generated from

deep CNNs. Particularly, we extract deep (visual and tag) features from four pre-trained

CNN architectures for object recognition, i.e., AlexNet, GoogLeNet, VGG-16, and ResNet,
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and compare their performance for image privacy prediction. Among all four networks, we

observe that ResNet produces the best feature representations for this task. We also fine-tune

the pre-trained CNN architectures on our privacy dataset and compare their performance

with the models trained on pre-trained features. The results show that even though the

overall performance obtained using the fine-tuned networks is comparable to that of pre-

trained networks, the fine-tuned networks provide an improved performance for the private

class as compared to models trained on the pre-trained features. Results of our experiments

on a Flickr dataset of over thirty thousand images show that the learning models trained

on features extracted from ResNet outperform the state-of-the-art models for image privacy

prediction. We further investigate the combination of user tags and deep tags derived from

CNN architectures using two settings: (1) SVM on the bag-of-tags features; and (2) text-

based CNN. We compare these models with the models trained on ResNet visual features

obtained for privacy prediction. Our results show that even though the models trained on

the visual features perform better than those trained on the tag features, the combination of

deep visual features with image tags shows improvements in performance over the individual

feature sets. Our code, features, and the dataset used in experiments are available at https:

//github.com/ashwinitonge/deepprivate.git.

3.1 Introduction

Online image sharing through social networking sites such as Facebook, Flickr, and Instagram

is on the rise, and so is the sharing of private or sensitive images, which can lead to potential

threats to users’ privacy when inappropriate privacy settings are used in these platforms.

Many users quickly share private images of themselves and their family and friends, without

carefully thinking about the consequences of unwanted disclosure and privacy violations5;7.

For example, it is common now to take photos at cocktail parties and share them on social

networking sites without much hesitation. The smartphones facilitate the sharing of photos

virtually at any time with people all around the world. These photos can potentially reveal

a user’s personal and social habits and may be used in the detriment of the photos’ owner.
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Gross and Acquisti 8 analyzed more than 4,000 Carnegie Mellon University students’

Facebook profiles and outlined potential threats to privacy. The authors found that users

often provide personal information generously on social networking sites, but they rarely

change default privacy settings, which could jeopardize their privacy. In a parallel study,

Lipford et al. 2 showed that, although current social networking sites allow users to change

their privacy preferences, the vast majority of users on the Web face difficulties in assign-

ing and managing privacy settings. Interestingly, Orekondy et al. 3 showed that, even when

users change their privacy settings to comply with their personal privacy preference, they

often misjudge the private information in images, which fails to enforce their own privacy

preferences. Not surprising, employers these days often perform background checks for their

future employees using social networks and about 8% of companies have already fired em-

ployees due to their inappropriate social media content9. A study carried out by the Pew

Research center reported that 11% of users of social networks regret the posted content10.

The Director of the AI Research at Facebook, LeCun 1 urges the development of a digital

assistant to warn people about private or sensitive content before embarrassing photos are

shared with everyone on social networks.

Identifying private or sensitive content from images is inherently difficult because images’

privacy is dependent on the owners’ personality traits and their level of awareness towards

privacy. Still, images’ privacy is not purely subjective, but generic patterns of privacy exist.

Consider, for example, the images shown in Figure 3.1, which are manually annotated and

consistently rated as private and public by multiple annotators in a study conducted by Zerr

et al. 7,11 . Notice that the presence of people generally pinpoints to private images, although

this is not always true. For example, an image of a musical band in concert is considered to

be public. Similarly, images with no people in them could be private, e.g., images with door

keys, music notes, legal documents, or someone’s art are considered to be private. Indeed,

Laxton et al. 31 described a “tele-duplication attack” that allows an adversary to create a

physical key duplicate simply from an image.

Researchers showed that generic patterns of images’ privacy can be automatically identi-

fied when a large set of images are considered for analysis and investigated binary prediction
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private images
public images

Figure 3.1: Examples of images manually identified as private (left) and public (right).

models based on user tags and image content features such as SIFT (Scale Invariant Feature

Transform) and RGB (Red Green Blue)7;12;13. More recently, several studies14;24;27 started

to explore privacy frameworks that leverage the benefits of Convolutional Neural Networks

(CNNs) for object recognition since, intuitively, the objects present in images significantly

impact images’ privacy (as can be seen from Figure 3.1). However, these studies used only

the AlexNet architecture of CNNs on small dataset sizes. To date, many deep CNN architec-

tures have been developed and achieve state-of-the-art performance on object recognition.

These CNNs include GoogLeNet18, VGG-1619, and ResNet20 (in addition to AlexNet17). To-

wards this end, in this chapter, we present an extensive study to carefully identify the CNN

architectures and features derived from these CNNs that can adequately predict the class of

an image as private or public. Our research is motivated by the fact that increasingly, online

users’ privacy is routinely compromised by using social and content sharing applications15.

Our models can help users to better manage their participation in online image sharing sites

by identifying the sensitive content from the images so that it becomes easier for regular

users to control the amount of personal information that they share through these images.

Our contributions are as follows:

• We study deep visual semantic features and deep image tags derived from CNN archi-

tectures pre-trained on the ImageNet dataset and use them in conjunction with Support

Vector Machine (SVM) classifiers for image privacy prediction. Specifically, we extract

deep features from four successful (pre-trained) CNN architectures for object recogni-
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tion, AlexNet, GoogLeNet, VGG-16, and ResNet and compare their performance on

the task of privacy prediction. Through carefully designed experiments, we find that

ResNet produces the best feature representations for privacy prediction compared with

the other CNNs.

• We fine-tune the pre-trained CNN architectures on our privacy dataset and use the

softmax function to predict the images’ privacy as public or private. We compare

the fine-tuned CNNs with the SVM models obtained on the features derived from

the pre-trained CNNs and show that, although the overall performance obtained by

the fine-tuned CNNs is comparable to that of SVM models, the fine-tuned networks

provide improved recall for the private class as compared to the SVM models trained

on the pre-trained features.

• We show that the best feature representation produced by ResNet outperforms sev-

eral baselines for image privacy prediction that consider CNN-based models and SVM

models trained on traditional visual features such as SIFT and global GIST descriptor.

• Next, we investigate the combination of user tags and deep tags derived from CNNs

in two settings: (1) using SVM on the bag-of-tags features; and (2) applying the text

CNN21 on the combination of user tags and deep tags for privacy prediction using

the softmax function. We compare these models with the models trained on the most

promising visual features extracted from ResNet (obtained from our study) for privacy

prediction. Our results show that the models trained on the visual features perform

better than those trained on the tag features.

• Finally, we explore the combination of deep visual features with image tags and show

further improvement in performance over the individual sets of features.
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3.2 Related work

Emerging privacy violations in social networks have started to attract various researchers

to this field15. Researchers also provided public awareness of privacy risks associated with

images shared online44;45. Along this line, several works are carried out to study users’

privacy concerns in social networks, privacy decisions about sharing resources, and the risk

associated with them8;46–51.

Moreover, several works on privacy analysis examined privacy decisions and considera-

tions in mobile and online photo sharing5;8;52;53. For example, Ahern et al. 5 explored critical

aspects of privacy such as users’ consideration for privacy decisions, content and context

based patterns of privacy decisions, and how different users adjust their privacy decisions

and behavior towards personal information disclosure. The authors concluded that appli-

cations that could support and influence users’ privacy decision-making process should be

developed. Jones and O’Neill 52 reinforced the role of privacy-relevant image concepts. For

instance, the authors determined that people are more reluctant to share photos capturing

social relationships than photos taken for functional purposes; certain settings such as work,

bars, concerts cause users to share less. Besmer and Lipford 53 mentioned that users want

to regain control over their shared content, but meanwhile, they feel that configuring proper

privacy settings for each image is a burden.

More recent and related to our line of work are the automated image privacy approaches

that have been explored along four lines of research: social group based approaches, in which

users’ profiles are used to partition the friends’ lists into multiple groups or circles, and

the friends from the same circle are assumed to share similar privacy preferences; location-

based approaches, in which location contexts are used to control the location-based privacy

disclosures; tag-based approaches, in which tags are used for privacy setting recommendations;

and visual-based approaches, in which the visual content of images is leveraged for privacy

prediction.
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Social group based approaches.

Several works emerged to provide the automated privacy decisions for images shared online

based on the social groups or circles7;54–69. For example, Christin et al. 55 proposed an

approach to share content with the users within privacy bubbles. Privacy bubbles represent

the private sphere of the users and the access to the content is provided by the bubble creator

to people within the bubble. Bonneau et al. 60 introduced the notion of privacy suites which

recommend users a set of privacy settings that “expert” users or the trusted friends have

already established so that ordinary users can either directly accept a setting or perform

minor modifications only. Fang and LeFevre 61 developed a privacy assistant to help users

grant privileges to their friends. The approach takes as input the privacy preferences for the

selected friends and then, using these labels, constructs a classifier to assign privacy labels

to the rest of the (unlabeled) friends based on their profiles. Danezis 63 generated privacy

settings based on the policy that the information produced within the social circle should

remain in that circle itself. Along these lines, Adu-Oppong et al. 70 obtained privacy settings

by forming clusters of friends by partitioning a user’s friends’ list. Yuan et al. 69 proposed

an approach for context-dependent and privacy-aware photo sharing. This approach uses

the semantics of the photo and the requester’s contextual information in order to define

whether an access to the photo will be granted or not at a certain context. These social

group based approaches mostly considered the user trustworthiness, but ignored the image

content sensitiveness, and thus, they may not necessarily provide appropriate privacy settings

for online images as the privacy preferences might change according to sensitiveness of the

image content.

Location-based approaches.

These approaches69;71–81 leverage geo-tags, visual landmarks and other location contexts to

control the location-based privacy disclosures. The geo-tags can be provided manually via

social tagging or by adding location information automatically through the digital cameras

or smart-phones having GPS. The location can also be inferred by identifying places from
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the shared images through the computer vision techniques.

Tag-based approaches.

Previous work in the context of tag-based access control policies and privacy prediction for

images7;54;56;62;67;68;82–88 showed initial success in tying user tags with access control rules.

For example, Squicciarini et al. 62,88 , Zerr et al. 7 , and Vyas et al. 84 explored learning models

for image privacy prediction using user tags and found that user tags are informative for

predicting images’ privacy. Moreover, Squicciarini et al. 67 proposed an Adaptive Privacy

Policy Prediction framework to help users control access for their shared images. The authors

investigated social context, image content, and metadata as potential indicators of privacy

preferences. Klemperer et al. 68 studied whether the user annotated tags help to create and

maintain access-control policies more intuitively. However, the scarcity of tags for many

online images23 and the dimensions of user tags precluded an accurate analysis of images’

privacy. Hence, in our previous work,24;26–28, we explored automatic image tagging and

showed that the predicted tags combined with user tags can improve the overall privacy

prediction performance.

Visual-based approaches.

Several works used visual features derived from the images’ content and showed that they are

informative for predicting images’ privacy settings7;12–14;24;27;33;89–102. For example, Buschek

et al. 33 presented an approach to assigning privacy to shared images using metadata (lo-

cation, time, shot details) and visual features (faces, colors, edges). Zerr et al. 7 proposed

privacy-aware image classification and learned classifiers on Flickr images. The authors

considered image tags and visual features such as color histograms, faces, edge-direction

coherence, and Scale Invariant Feature Transform (SIFT) for the privacy classification task.

SIFT as well as GIST are among the most widely used traditional features for image analysis

in computer vision. SIFT34 detects scale, rotation, and translation invariant key-points of

objects in images and extracts a pool of visual features, which are represented as a “bag-of-

38



visual-words.” GIST35 encodes global descriptors for images and extracts a set of perceptual

dimensions (naturalness, openness, roughness, expansion, and ruggedness) that represent the

dominant spatial structure of the scene. Squicciarini et al. 12,13 performed an in-depth anal-

ysis of image privacy classification using Flickr images and found that SIFT and image tags

work best for predicting privacy of users’ images.

Recently, the computer vision community has shifted towards convolutional neural net-

works (CNNs) for tasks such as object detection36;37 and semantic segmentation38. CNNs

have acquired state-of-the-art results on ImageNet for object recognition16 using supervised

learning17. Given the recent success of CNNs, several researchers14;24;27;89–91 showed promis-

ing privacy prediction results compared with visual features such as SIFT and GIST. Yu

et al. 41 adopted CNNs to achieve semantic image segmentation and also learned object-

privacy relatedness to identify privacy-sensitive objects.

Using CNNs, some works started to explore personalized privacy prediction models3;32;40.

For example, Spyromitros-Xioufis et al. 40 used features extracted from CNNs to provide per-

sonalized image privacy classification. Zhong et al. 32 proposed a Group-Based Personalized

Model for image privacy classification in online social media sites that learns a set of archetyp-

ical privacy models (groups) and associates a given user with one of these groups. Orekondy

et al. 3 defined a set of privacy attributes, which were first predicted from the image content

and then used these attributes in combination with users’ preferences to estimate personal-

ized privacy risk. Although there is evidence that individuals’ sharing behavior is unique,

Zhong et al. 32 argued that personalized models generally require large amounts of user data

to learn reliable models, and are time and space consuming to train and store models for

each user, while taking into account possible sudden changes of users’ sharing activities and

privacy preferences. Orekondy et al. 3 tried to resolve some of these limitations by clustering

users’ privacy profiles and training a single classifier that maps the target user into one of

these clusters to estimate the personalized privacy score. However, the users’ privacy profiles

are obtained using a set of attributes. which are defined based on the Personally Identifiable

Information103, the US Privacy Act of 1974 and official online social network rules, instead

of collecting opinions about sensitive content from the actual users of social networking sites.
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Hence, the definition of sensitive content may not meet a user’s actual needs, which limits

their applicability in a real-world usage scenario104. In this context, it is worth mention-

ing that CNNs were also used in another body of privacy related work such as multi-party

privacy conflict detection105 and automatic redaction of sensitive image content97.

The image representations using visual features and tags are pivotal in above privacy

prediction works. In this chapter, we aim to study “deep” features derived from CNNs,

by abstracting out users’ privacy preferences and sharing behavior. Precisely, our goal is

to identify a set of “deep” features that have the highest discriminative power for image

privacy prediction and to flag images that contain private or sensitive content before they

are shared on social networking sites. To our knowledge, this is the first study to provide a

detailed analysis of various CNN architectures for privacy prediction. Our comprehensive set

of experiments can provide the community with evidence about the best CNN architecture

and features for the image privacy prediction task, especially since the results obtained

outperformed other complex approaches, on a large dataset of more than 30, 000 images.

3.3 Problem Statement

Our goal is to accurately identify private or sensitive content from images before they are

shared on social networking sites. Precisely, given an image, we aim to learn models to

classify the image into one of the two classes: private or public, based on generic patterns

of privacy. Private images belong to the private sphere (e.g., self-portraits, family, friends,

someone’s home) or contain information that one would not share with everyone else (e.g.,

private documents). Public images capture content that can be seen by everyone without

incurring privacy violations. To achieve our goal, we extract a variety of features from

several CNNs and identify those features that have the highest discriminative power for

image privacy prediction.

As the privacy of an image can be determined by the presence of one or more objects

described by the visual content and the description associated with it in the form of tags, we

consider both visual features and image tags for our analysis. For the purpose of this study,
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we did not consider other contextual information about images (e.g., personal information

about the image owner or the owner social network activities, which may or may not be

available or easily accessible) since our goal is to predict the privacy of an image solely from

the image’s content itself. We rely on the assumption that, although privacy is a subjective

matter, generic patterns of images’ privacy exist that can be extracted from the images’

visual content and textual tags.

We describe the feature representations considered for our analysis in the next section.

3.4 Image encodings

In this section, we provide details on visual content encodings and tag content encodings

derived from various CNNs (pre-trained and fine-tuned) to carefully identify the most in-

formative feature representations for image privacy prediction. Particularly, we explore four

CNN architectures, AlexNet17, GoogLeNet18, VGG-1619, and ResNet20 to derive features

for all images in our dataset, which are labeled as private or public. The choice of these

architectures is motivated by their good performance on the large scale ImageNet object

recognition challenge16. We also leverage a text-based CNN architecture used for sentence

classification21 and apply it to images’ textual tags for privacy prediction.

3.4.1 Features Derived Through Pre-Trained CNNs

We describe a diverse set of features derived from CNN architectures pre-trained on the

ILSVRC-2012 object classification subset of the ImageNet dataset that contains 1000 object

categories and 1.2 million images16. We consider powerful features obtained from various

fully-connected layers of a CNN that are generated by the previous convolutional layers,

and use them to learn a decision function whose sign represents the class (private or public)

assigned to an input image x. The activations of the fully connected layers capture the

complete object contained in the region of interest. Hence, we use the activations of the

fully-connected layers of a CNN as a feature vector. For image encoding, we also use the
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PicAlert Dataset
Image

VGG-16 CNN pre-trained on ImageNet
224×224×3 224×224×64

112×112×128

56×56×256

28×28×512
14×14×512

7×7×512

1×1×4096 1×1×1000

Pre-trained
Vectors

convolution+ReLU
max pooling
fully connected+ReLU (fc6-V, fc7-V, fc8-V)
softmax (prob-V)

SVM

Private / Public

Privacy Prediction

Figure 3.2: Image encoding using pre-trained CNN: (1) We employ a CNN (e.g. VGG-
16) pre-trained on the ImageNet object dataset. (2) We derive high-level features from the
image’s visual content using fully connected layers (fc6-V, fc7-V, and fc8-V) and probability
layer (softmax) of the pre-trained network. The pictorial representation of VGG is adapted
from the image given at: https: // github. com/ durandtibo/ deep_ archi_ latex .

probability (prob) layer obtained by applying the softmax function to the output of the (last)

fully-connected layer. We extract features from the four pre-trained CNNs as follows.

The AlexNet architecture implements an eight-layer network; the first five layers of

AlexNet are convolutional, and the remaining three layers are fully-connected. We extract

features from the three fully-connected layers, which are referred as fc6-A, fc7-A, and fc8-A,

and from the output layer denoted as “prob-A.” The dimensions of fc6-A, fc7-A, fc8-A, and

prob-A are 4096, 4096, 1000, and 1000, respectively.

The GoogLeNet architecture implements a 22 layer deep network with Inception ar-

chitecture. The architecture is a combination of all layers with their output filter bank

concatenated so as to form input for the next stage. We extract features from the last two

layers named as “loss3-G/classifier” (InnerProduct layer) and the output layer denoted as

“prob-G.” The dimension of loss3-G and prob-G is 1000.

The VGG-16 architecture implements a 16 layer deep network; a stack of convolutional

layers with a very small receptive filed: 3 × 3 followed by fully-connected layers. The ar-
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chitecture contains 13 convolutional layers and 3 fully-connected layers. The number of

channels of the convolutional layers starts from 64 in the first layer and then increases by a

factor of 2 after each max-pooling layers until it reaches 512. We refer to features extracted

from the fully-connected layers as fc6-V, fc7-V, fc8-V, and the output layer as “prob-V.” The

dimensions of fc6-V, fc7-V, fc8-V, and prob-V are 4096, 4096, 1000, and 1000, respectively.

The ResNet (or Residual network) alleviates the vanishing gradient problem by intro-

ducing short paths to carry gradient throughout the extent of very deep networks and allows

the construction of deeper architectures. A residual unit with an identity mapping is defined

as:

X l+1 = X l + F(X l)

whereX l is the input andX l+1 is the output of the residual unit; F is a residual function, e.g.,

a stack of two 3×3 convolution layers in20. The main idea of the residual learning is to learn

the additive residual function F with respect to X l 106. Intuitively, ResNets can be explained

by considering residual functions as paths through which information can propagate easily.

This interprets as ResNets learn more complex feature representations which are combined

with the shallower descriptions obtained from previous layers. We refer to features extracted

from the fully-connected layer as fc-R and the output layer as “prob-R.” The dimension of

fc-R and prob-R is 1000.

The feature extraction using the pre-trained network for an input image from our dataset

is shown in Figure 3.2. In the figure, we show VGG-16 as the pre-trained network for

illustrating the feature extraction.

3.4.2 Fine-tuned CNN

For this type of encoding, models trained on a large dataset (e.g., the ImageNet dataset) are

fine-tuned using a smaller dataset (e.g., the privacy-labeled dataset). Fine-tuning a network

is a procedure based on the concept of transfer learning107;108. This strategy fine-tunes the

weights of the pre-trained network by continuing the back-propagation on the small dataset,

i.e., privacy dataset in our scenario. The features become more dataset-specific after fine-
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Object Dataset (ImageNet)
Image

VGG-16 CNN pre-trained on ImageNet
224×224×3 224×224×64

112×112×128

56×56×256

28×28×512
14×14×512

7×7×512

1×1×4096 1×1×1000

convolution+ReLU
max pooling
fully connected+ReLU
softmax (1000 object classes)

Transfer Learning

Privacy Dataset (PicAlert)
Image

VGG-16 CNN fine-tuned on PicAlert
224×224×3 224×224×64

112×112×128

56×56×256

28×28×512
14×14×512

7×7×512

1×1×4096 1×1×2

convolution+ReLU
max pooling
fully connected+ReLU
modified fully connected layer (fc8-P)
softmax (2 privacy classes)

Private / Public

fc8-P

Figure 3.3: Image encoding using fine-tuned CNN: (1) We modify the last fully-connected
layer of the pre-trained network (top network) by changing the output units from 1000 (ob-
ject categories) to 2 (privacy classes). (2) To train the modified network (bottom network)
on privacy dataset, we first adopt weights of all the layers of the pre-trained network as
initial weights and then iterate through all the layers using privacy data. (3) To make a
prediction for an input image (privacy dataset), we use the probability distribution over 2
privacy classes (softmax layer, yellow rectangle) for the input image obtained by applying the
softmax function over the last modified fully-connected layer (fc8-P, bottom network) of the
fine-tuned network. The pictorial representation of VGG is adapted from the image given
at: https: // github. com/ durandtibo/ deep_ archi_ latex .
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tuning, and hence, are distinct from the features obtained from the pre-trained CNN. We

modify the last fully-connected layer of all four network architectures, AlexNet, GoogLeNet,

VGG-16, and ResNet by changing the output units from 1000 (object categories) to 2 (with

respect to privacy classes) (e.g., changing fc8 with 1000 output units to fc8-P with 2 output

units). We initialize the weights of all the layers of this modified architectures with the

weights of the respective layers obtained from the pre-trained networks. We train the network

by iterating through all the layers of the networks using the privacy data. We use the softmax

function to predict the privacy of an image. Precisely, we use the probability distribution

over 2 privacy classes for the input image obtained by applying the softmax function over

the modified last fully-connected layer (e.g. fc8-P in VGG-16) of the fine-tuned networks

(See Figure 3.3, second network, blue rectangle). The conditional probability distribution

over 2 privacy classes can be defined using a softmax function as given below:

P (y = Pr|z) =
exp(zPr)

exp(zPu) + exp(zPr)
, P (y = Pu|z) =

exp(zPu)

exp(zPu) + exp(zPr)

where, in our case, z is the output of the modified last fully connected layer (e.g., the fc8-P

layer of VGG-16) and Pr and Pu denote private and public class, respectively. The fine-tuning

process using VGG-16 is shown in Figure 3.3.

3.4.3 Image Tags (Bag-of-Tags model)

Prior works on privacy prediction7;12;24;88 found that the tags associated with images are

indicative of their sensitive content. Tags are also crucial for image-related applications such

as indexing, sharing, searching, content detection and social discovery109–112. Since not all

images on social networking sites have user tags or the set of user tags is very sparse23,

we use an automatic technique to annotate images with tags based on their visual content

as described in our previous work24. Precisely, we predict top k object categories from

the probability distribution extracted from a pre-trained CNN. These top k categories are

images’ deep tags, used to describe an image. For example, we obtain deep tags such as
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PicAlert Dataset
Image

Deep Tags

Maillot,
Miniskirt,
Wig,
Brassiere, Bra

User Tags

Birthday,
Party,
People,
Night, Life

· · · People Maillot Birthday · · · Portrait Miniskirt Bra · · ·
· · · 1 1 1 · · · 0 1 1 · · ·

Tag vector (Binary)

Private/Public

Figure 3.4: Image encoding using tag features: We encode the combination of user tags
and deep tags using binary vector representation, showing presence and absence of tags from
tag vocabulary V . We set 1 if a tag is present in the tag set or 0 otherwise. We refer this
model as Bag-of-Tags (BoT) model.

“Maillot,” “Wig,” “Brassiere,” “Bra,” “Miniskirt” for the picture in Figure 3.4 (note that

only top 5 deep tags are shown in the figure). Note that the deep tags give some description

about the image, but still some relevant tags such as “people” and “women” are not included

since the 1000 object categories of the ImageNet dataset do not contain these tags. Images

on social networking sites also give additional information about them through the tags

assigned by the user. We call these tags “User Tags.” Examples of user tags for the image

in Figure 3.4 are: “Birthday Party,” “Night Life,” “People,” etc. For user tags, we remove

special characters and numbers from the user tags, as they do not provide any information

with respect to privacy.

We combine deep tags and user tags and generate a binary vector representation for

the tag set of an image, illustrating presence or absence of tags from tag vocabulary V .

Particularly, we create a vector of size |V |, wherein, for all tags in the tag set, we set 1 on

the position of the tag in the vocabulary (V ) and 0 otherwise. We refer to this model as a

Bag-of-Tags (BoT) model and show it’s pictorial representation in Figure 3.4.
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Figure 3.5: Tag CNN architecture to classify an image as public or private using image
tags.

3.4.4 Tag CNN

CNN based models have achieved exceptional results for various NLP tasks such as semantic

parsing113, search query retrieval, sentence modeling114, sentence classification21, and other

traditional NLP tasks115. Kim 21 developed a CNN architecture for sentence level classifica-

tion task. A sentence contains keywords in the form of objects, subjects, and verbs that help

in the classification task. Image tags are nothing but keywords that are used to describe

an image. Thus, for privacy prediction, we employ a CNN architecture that has proven

adequate for sentence classification21.

The CNN architecture by Kim 21 shown in Figure 3.5 is a slight variant of the CNN

architecture of Collobert et al. 115 . This architecture contains one layer of convolution on

top of word vectors obtained from an unsupervised neural language model. The first layer

embeds words (tags in our case) into the word vectors. The word vectors are first initialized

with the word vectors that were trained on 100 billion words of Google News, given by Le

and Mikolov 116 . Words that are not present in the set of pre-trained words are initialized

randomly. These word vectors are then fine-tuned on the tags from the privacy dataset. The

next layer performs convolutions on the embedded word vectors using multiple filter sizes of
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3, 4 and 5, where we use 128 filters from each size and produce a tag feature representation.

A max-pooling operation115 over a feature map is applied to take the maximum value of

the features to capture the most important feature of each feature map. These features are

passed to a fully connected softmax layer to obtain the probability distribution over privacy

labels. An illustration of the Tag CNN model can be seen in Figure 3.5.

3.5 Dataset

We evaluated our approach on a subset of 32, 000 Flickr images sampled from the PicAlert

dataset, made available by Zerr et al. 7,11 . PicAlert consists of Flickr images on various

subjects, which are manually labeled as public or private by external viewers. The dataset

contains photos uploaded on Flickr during the period from January to April 2010. The data

have been labeled by six teams providing a total of 81 users of ages between 10 and 59 years.

One of the teams included graduate computer science students working together at a research

center, whereas other teams contained users of social platforms. Users were instructed to

consider that their camera has taken these pictures and to mark them as “private,” “public,”

or “undecidable.” The guideline to select the label is given as private images belong to the

private sphere (like self-portraits, family, friends, someone’s home) or contain information

that one would not share with everyone else (such as private documents). The remaining

images are labeled as public. In case no decision could be made, the image was marked

as undecidable. Each image was shown to at least two different users. In the event of

disagreement, the photos were presented to additional users. We only consider images that

are labeled as public or private.

For all experiments, our 32, 000 images dataset is split into train and test sets of 27, 000

and 5, 000 images, respectively. Each experiment is repeated five times with a different

train/test split (obtained using five different random seeds), and the final results are averaged

across the five runs. The public and private images are in the ratio of 3:1 in both train and

test sets.
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3.6 Experiments, Results and Observations

In this section, we perform a broad spectrum of experiments to evaluate features extracted

from various deep architectures in order to understand which architecture can capture the

complex privacy characteristics and help to distinguish between privacy classes. We first

choose the machine learning classifier between generative models, ensemble methods, and

discriminative algorithms for privacy prediction. Then, we use the chosen classifier to ex-

amine the visual features extracted from all four deep architectures AlexNet, GoogLeNet,

VGG-16, and ResNet pre-trained on object data. We further investigate these architectures

by fine-tuning them on the privacy data. Next, we compare the performance of models

trained on the highest performing features with that of the state-of-the-art models and base-

line approaches for privacy prediction. Additionally, we show the performance of the deep

tags obtained through all four pre-trained networks and also study the combination of deep

tags and user tags in details for privacy prediction. We show the tag performance in two

settings: (1) Bag-of-Tags models and (2) Tag CNN. We analyze the most promising features

derived from both visual and tag encodings for privacy classification. We also provide a

detailed analysis of the most informative tags for privacy prediction. Finally, we show the

performance of the models trained on the fusion of visual and most informative tag features.

3.6.1 Classification Experiments for Features Derived From Pre-

Trained CNNs

We first determine the classifier that works best with the features derived from the pre-

trained CNNs. We study the performance of the features using the following classification

algorithms: Naive Bayes (NB), Random Forest (RF), Logistic Regression (LR) and Support

Vector Machine (SVM). NB is a generative model, whereas RF is an ensemble method using

decision trees, and SVM and LR are discriminative algorithms. We evaluate the performance

of these classifiers using the features derived from the last fully-connected layer of all the

architectures, i.e., fc8-A of AlexNet, loss3-G of GoogLeNet, fc8-V of VGG-16, and fc-R of
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(a) AlexNet (b) GoogLeNet

(c) VGG (d) ResNet

Figure 3.6: Performance of various classifiers (LR, NB, RF, SVM) using the features
derived from all four architectures AlexNet, GoogLeNet, VGG, and ResNet.

ResNet. Figure 3.6 shows the performance of these classifiers in terms of F1-measure for all

four architectures. From the figure, we notice that almost all the classifiers perform similarly

except NB which performs worse. For example, for Alexnet, with NB we get an F1-measure

of 0.781, whereas SVM obtains an F1-measure of 0.849. We can also observe that, generally,

SVM and LR perform better than RF. For example, for ResNet, using SVM, we get an F1-

measure of 0.872, whereas with RF we get an F1-measure of 0.848. SVM and LR perform

comparably to each other for almost all the architectures except for ResNet. For ResNet, we

obtain F1-measure of 0.872 and 0.865 using SVM and LR, respectively. The results of SVM

over the LR classifier are statistically significant for p-values < 0.05. Thus, we chose to use

SVM with the features derived from pre-trained CNNs for all of our next experiments.

To evaluate the proposed features, we used the SVM Weka implementation and chose

the hyper-parameters that gave the best performance using 10-fold cross-validation on the

training set. We experimented with C = {0.001, 0.01, 1.0, · · · , 10.0}, kernels: Polynomial
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and RBF, the γ parameter in RBF, and the degree d of a polynomial. Hyper-parameters

shown in all subsequent tables follow the format: “R/P,C,γ/d” where “R” denotes “RBF”

and “P” denotes “Polynomial” kernel.

3.6.2 The Impact of the CNN Architecture on the Privacy Pre-

diction

In this experiment, we aim to determine which architecture performs best for privacy predic-

tion by investigating the performance of privacy prediction models based on visual semantic

features extracted from all four architectures, AlexNet, GoogLeNet, VGG-16, and ResNet

pre-trained on object data of ImageNet. We extract deep visual features: (1) fc6-A, fc7-A,

fc8-A and “prob-A” from AlexNet, (2) loss3-G and “prob-G” from GoogLeNet, (3) fc6-V, fc7-

V, fc8-V and “prob-V” from VGG-16, and (4) fc-R and “prob-R” from ResNet. For AlexNet

and GoogLeNet, we used the pre-trained networks that come with the CAFFE open-source

framework for CNNs42. For VGG-16, we used an improved version of pre-trained models

presented by the VGG-16 team in the ILSVRC-2014 competition19. For ResNet, we use the

ResNet pre-trained models of 101 layers given by He et al. 20 .

Table 3.1 shows the performance (Accuracy, F1-measure, Precision, Recall) of SVMs

trained on the features extracted from all four pre-trained networks. From the table, we can

observe that the models trained on the features extracted from ResNet consistently yield

the best performance. For example, ResNet achieves an F1-measure of 0.872 as compared

with 0.849, 0.861, 0.864 achieved by AlexNet, GoogLeNet, and VGG-16, respectively. These

results suggest that the deep Residual Networks have more representational abilities com-

pared to the other networks, and are more effective for predicting appropriate privacy classes

of images. Additionally, ResNets are substantially deeper than their “plain” counterparts,

which allows extracting various image-specific features that are beneficial for learning im-

ages’ privacy characteristics better. Since privacy involves understanding the complicated

relationship between the objects present in images, the features derived from ResNet prove

to be more adequate than the features obtained by simply stacking convolutional layers. In
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Overall Private Public

Features H-Param Acc % F1 Prec Re F1 Prec Re F1 Prec Re

AlexNet

fc6-A R,1.0,0.05 82.29 0.82 0.819 0.823 0.613 0.639 0.591 0.885 0.875 0.895

fc7-A R,2.0,0.01 82.97 0.827 0.825 0.83 0.627 0.656 0.602 0.889 0.878 0.901

fc8-A R,1.0,0.05 85.51 0.849 0.849 0.855 0.661 0.746 0.595 0.908 0.881 0.936

prob-A R,5.0,1.0 82.76 0.815 0.816 0.828 0.568 0.704 0.477 0.892 0.851 0.937

GoogLeNet

loss3-G P,0.001,2.0 86.42 0.861 0.86 0.864 0.695 0.746 0.652 0.913 0.895 0.93

prob-G R,50.0,0.05 82.66 0.815 0.816 0.827 0.573 0.694 0.488 0.891 0.853 0.933

VGG-16

fc6-V R,1.0,0.01 83.85 0.837 0.836 0.839 0.652 0.67 0.636 0.895 0.888 0.902

fc7-V R,2.0,0.01 84.43 0.843 0.842 0.844 0.663 0.684 0.644 0.899 0.891 0.907

fc8-V R,2.0,0.05 86.72 0.864 0.863 0.867 0.7 0.758 0.65 0.915 0.895 0.935

prob-V R,2.0,0.05 81.72 0.801 0.804 0.817 0.528 0.687 0.429 0.887 0.84 0.939

ResNet

fc-R R,1.0,0.05 87.58 0.872 0.872 0.876 0.717 0.783 0.662 0.92 0.899 0.943

prob-R R,2.0,0.05 80.6 0.784 0.789 0.806 0.473 0.67 0.366 0.881 0.826 0.943

Table 3.1: Comparison of SVMs trained on features extracted from pre-trained architectures
AlexNet, GoogLeNet, VGG-16 and ResNet. The best performance is shown in bold and blue
color. The best performance for each network is shown in italics and orange color.

Table 3.1, we also show the class-specific privacy prediction performance in order to identify

which features characterize the private class effectively as sharing private images on the Web

with everyone is not desirable. Interestingly, we found that the model trained on features

obtained from ResNet provides improved F1-measure, precision, and recall for the private

class. Precisely, F1-measure for the private class improves from 0.661 (for AlexNet) to 0.717

(for ResNet), yielding an improvement of 6%. Similarly, for precision and recall, we obtain

an increase of 4% and 7%, respectively, using ResNet features over the AlexNet features.

From Table 3.1, we also notice that the overall best performance (shown in orange and

blue color) obtained for each network is higher than ≈ 85% in terms of all compared measures

(overall - Accuracy, F1-measure, precision and recall). Note that a naive baseline which

classifies every image as “public” obtains an accuracy of 75%. Additionally, analyzing the

results obtained by the VGG-16 features, we notice that as we ascend the fully-connected
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Figure 3.7: Box plot of F1-measure
(overall) obtained for the best-performing
features derived from each CNN over five
splits.

Figure 3.8: Precision-recall curves for
the private class obtained using features ex-
tracted from all four architectures AlexNet
(fc8), GoogLeNet (loss3), VGG-16 (fc8-V)
and ResNet (fc-R).

layers of the VGG-16 network from fc6-V to fc8-V, the F1-measure improves from 0.837 to

0.864 (see Table 3.1). Similarly, for AlexNet, the F1-measure improves from 0.82 (for fc6-A)

to 0.849 (for fc8-A). This shows that the high-level object interpretations obtained through

the last fully-connected layer helped to derive better privacy characteristics. Moreover, it

is worth noting that “prob” features perform worse than the features extracted from the

fully-connected layers (on all architectures). For example, prob-G obtains an F1-measure

of 0.815, whereas loss3-G achieves an F1-measure of 0.861. One possible explanation could

be that squashing the values at the previous layer (e.g., loss3-G in GoogleNet) through the

softmax function, which yields the “prob” layer, produces a non-linearity that is less useful

for SVM compared to the untransformed values. We also experimented with a combination of

features, e.g., fc7-A concatenated with fc8-A, but we did not obtain a significant improvement

over the individual (fc7-A and fc8-A) features.

We also analyze the performance by showing the box plots of F1-measure in Figure

3.7, obtained for the most promising features of all the architectures over the five random

splits of the dataset. The figure indicates that the model trained on ResNet features is

statistically significantly better than the models that are trained on the features derived from

the other architectures. We further compare features derived through all the architectures

using precision-recall curves given in Figure 3.8. The curves show again that features derived
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Overall Private Public

Features H-Param Acc % F1 Prec Re F1 Prec Re F1 Prec Re

Fine-tuned AlexNet

ft-A fc 85.01 0.846 0.845 0.851 0.657 0.723 0.606 0.904 0.883 0.926

ft-A fc-all 85.14 0.849 0.847 0.852 0.669 0.713 0.632 0.904 0.889 0.92

ft-A all 85.07 0.848 0.847 0.851 0.67 0.707 0.638 0.904 0.89 0.917

Pre-trained AlexNet

fc8-A R,1,0.05 85.51 0.849 0.849 0.855 0.661 0.746 0.595 0.908 0.881 0.936

Fine-tuned GoogLeNet

ft-G fc 86.27 0.86 0.859 0.863 0.694 0.74 0.653 0.911 0.895 0.928

ft-G all 86.77 0.867 0.867 0.868 0.717 0.732 0.705 0.914 0.909 0.919

Pre-trained GoogLeNet

loss3-G P,0.001,2 86.42 0.861 0.86 0.864 0.695 0.746 0.652 0.913 0.895 0.930

Fine-tuned VGG-16

ft-V fc 86.74 0.864 0.865 0.869 0.695 0.782 0.631 0.916 0.891 0.944

ft-V fc-all 86.92 0.869 0.87 0.869 0.722 0.73 0.717 0.914 0.912 0.917

ft-V all 86.76 0.867 0.867 0.868 0.718 0.729 0.709 0.913 0.91 0.917

Pre-trained VGG-16

fc8-V R,2,0.05 86.72 0.864 0.863 0.867 0.700 0.758 0.65 0.915 0.895 0.935

Fine-tuned ResNet

ft-R fc 87.23 0.87 0.869 0.873 0.717 0.759 0.68 0.918 0.903 0.932

ft-R all 86.19 0.856 0.856 0.863 0.672 0.776 0.594 0.913 0.881 0.946

Pre-trained ResNet

fc-R R,1,0.05 87.58 0.872 0.872 0.876 0.717 0.783 0.662 0.92 0.899 0.943

Table 3.2: Fine-tuned networks vs. Pre-trained networks. The best performance is shown
in bold and blue color. The performance measures that achieve a better performance after
fine-tuning a CNN over pre-trained features are shown in italics and orange color.

from ResNet perform better than the features obtained from the other architectures, for a

recall ranging from 0.5 to 0.8. For example, for a recall of 0.7, we achieve a precision of 0.75,

0.8, 0.8 and 0.85 for AlexNet, GoogLeNet, VGG-16, and ResNet, respectively.

3.6.3 Fine-Tuned Networks vs. Pre-Trained Networks

Previous works showed that the features transferred from the network pre-trained on the

object dataset to the privacy data achieved a good performance14. Moreover, many other

works used “transfer learning” to get more dataset specific features107;108. Thus, we deter-
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mine the performance of fine-tuned networks on the privacy dataset. We compare fine-tuned

networks of all four architectures with the deep features obtained from pre-trained networks.

We refer the fine-tuned networks of AlexNet, GoogLeNet, VGG-16, and ResNet as “ft-A,”

“ft-G,” “ft-V,” and “ft-R” respectively. For fine-tuning, we used the same CNN architec-

tures pre-trained on the object dataset, and employed in previous experiments. To fine-tune

the networks, we experiment with the three types of settings: (1) fine-tune the last fully-

connected layer (that has two output units corresponding to 2 privacy classes) with higher

learning rates as compared to the learning rates of the rest of the layers of the networks

(0.001 vs. 0.0001), referred as “fc.” (2) fine-tune all the fully-connected layers of the net-

works with higher learning rates and convolutional layers are learned with smaller learning

rates. We refer to this setting as “fc-all.” (3) fine-tune all layers with the same learning rates

and denoted as “all.” Note that since ResNet and GoogLeNet have only one fully-connected

layer, we report the performance obtained only using “fc,” and “all” settings. The very low

learning rate avoids substantial learning of the pre-trained layers. In other words, due to

a very low learning rate (0.0001), pre-trained layers learn very slowly as compared to the

layers that have a higher learning rate (0.001) to learn the required weights for privacy data.

Table 3.2 shows the performance comparison of the models obtained by fine-tuning archi-

tectures on privacy data and the models trained on the features derived from the pre-trained

networks. We notice that we get mostly similar results when we fine-tune pre-trained models

on our privacy dataset as compared to the models trained on the features derived from the

pre-trained architectures. However, we get improved recall for the private class when we

fine-tune the networks on the privacy dataset. For example, the fine-tuned VGG-16 net-

work gets an improvement of 6.7% in the recall for the private class (see ft-V, fc-all setting

vs. fc8-V) over the models trained on the features extracted from the pre-trained VGG-16.

The performance measures that achieve a better performance after fine-tuning a CNN over

pre-trained features are shown in italics and orange color for each network. We notice that

the fine-tuned VGG gives the best performance for the F1-measure and recall of the private

class (shown in bold and blue color). However, the models trained on the features derived

from the pre-trained ResNet yield the best overall performance (shown in bold and blue
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color). Thus, we compare the models trained on fc-R features with prior privacy prediction

approaches in the next subsection.

3.6.4 ResNet Features-Based Models vs. Prior Works

We compare the performance of the state-of-the-art works on privacy prediction, as detailed

below, with the models trained using ResNet features, i.e., fc-R.

1. PCNH privacy framework14: This framework combines features obtained from two

architectures: one that extracts convolutional features (size = 24, referred as Convolutional

CNN), and another that extracts object features (size = 24, referred as Object CNN). The

Convolutional CNN contains two convolutional layers and three fully-connected layers of size

512, 512, 24, respectively. On the other hand, the object CNN is an extension of AlexNet

architecture that appends three fully-connected layers of size 512, 512, and 24, at the end

of the last fully-connected layer of AlexNet and form a deep network of 11 layers. The

two CNNs are connected at the output layer. The PCNH framework is first trained on the

ImageNet dataset and then fine-tuned on a small privacy dataset.

2. AlexNet features24;27: We consider the model trained on the features extracted

from the last fully-connected layer of AlexNet, i.e., fc8-A as another baseline, since in our

previous works we achieved a good performance using these features for privacy prediction.

3. SIFT & GIST7;12;13: We also consider classifiers trained on the best performing

features between SIFT, GIST, and their combination as our baselines. Our choice of these

features is motivated by their good performance over other visual features such as colors,

patterns, and edge directions in prior works7;12. For SIFT, we construct a vocabulary of

128 visual words for our experiments. We tried different numbers of visual words such as

500, 1000, etc., but we did not get a significant improvement over the 128 visual words. For

a given image, GIST is computed by first convolving the image with 32 Gabor filters at 4

scale and 8 orientations, which produces 32 feature maps; second, dividing the feature map

into a 4 × 4 grid and averaging feature values of each cell; and third, concatenating these

16 averaged values for 32 feature maps, which results in a feature vector of 512 (16 × 32)

56



Overall Private Public

Features H-Param Acc % F1 Prec Re F1 Prec Re F1 Prec Re

Highest performing CNN architecture

fc-R R,1.0,0.05 87.58 0.872 0.872 0.876 0.717 0.783 0.662 0.92 0.899 0.943

#1 PCNH framework

PCNH − 83.13 0.824 0.823 0.831 0.624 0.704 0.561 0.891 0.863 0.921

#2 AlexNet Deep Features

fc8-A R,1.0,0.05 85.51 0.849 0.849 0.855 0.661 0.746 0.595 0.908 0.881 0.936

#3 SIFT & GIST models

SIFT P,1.0,2.0 77.31 0.674 0.598 0.773 0.002 0.058 0.001 0.87 0.772 0.995

GIST R,0.001,0.5 77.33 0.674 0.598 0.773 0.002 0.058 0.001 0.87 0.772 0.995

SIFT &
GIST

R,0.05,0.5 72.67 0.704 0.691 0.727 0.27 0.343 0.223 0.832 0.793 0.874

#4 Rule-based models

Rule-1 − 77.35 0.683 0.694 0.672 0.509 0.47 0.556 0.853 0.875 0.832

Rule-2 − 77.93 0.673 0.704 0.644 0.458 0.373 0.593 0.897 0.914 0.88

Table 3.3: Highest performing visual features (fc-R) vs. Prior works.

length.

3. Rule-based classifiers: We also compare the performance of models trained on

ResNet features fc-R with two rule-based classifiers which predict an image as private if

it contains persons. Otherwise, the image is classified as public. For the first rule-based

classifier, we detect front and profile faces by using Viola-Jones algorithm43. For the second

rule-based classifier, we consider user tags such as “women,” “men,” “people.” Recall that

these tags are not present in the set of 1, 000 categories of the ILSVRC-2012 subset of the

ImageNet dataset, and hence, we restrict to user tags only. If an image contains one of these

tags or detects a face, we consider it as “private,” otherwise “public.”

Table 3.3 compares the performance of models trained on fc-R features (the highest per-

forming features obtained from our previous experiments) with the performance obtained

by prior works. As can be seen from the table, the deep features extracted from the pre-

trained ResNet achieve the highest performance, and hence, are able to learn the privacy

characteristics better than the prior works with respect to both the classes. Precisely, using
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fc-R features, F1-measure improves from 0.824 obtained by PCNH framework to 0.872 ob-

tained by fc-R features, providing an overall improvement of 5%. Moreover, for the private

class, fc-R features yield an improvement of 9.8% in F1-measure over the more sophisticated

PCNH framework (from 0.624, PCNH to 0.717, fc-R features).

One possible explanation could be that the object CNN of PCNH framework is formed

by appending more fully-connected layers to the AlexNet architecture and the increase in

the number of complex non-linear layers (fully-connected layers) introduces more parameters

to learn. At the same time, with a relatively small amount of training data (PicAlert vs.

ImageNet), the object CNN model can over-fit. On the other hand, as images’ privacy

greatly depends on the objects in images, we believe that the low-level features controlling

the distinct attributes of the objects (e.g., edges of swim-suit vs. short pants) obtained

through the convolutional layers can better approximate the privacy function compared

with adding more non-linear layers (as in PCNH). This is justified by the results, where

the network with more convolutional layers, i.e., ResNet achieves a better performance as

compared to the network with more fully-connected layers, i.e., PCNH. Additionally, even

though PCNH attempted to capture convolutional features using Convolutional CNN, both

CNN (convolutional and object) vary in their discriminative power and thus obtaining an

optimal unification of convolutional CNN and object CNN is difficult. Moreover, PCNH is

required to first train on ImageNet and then fine-tune on the PicAlert dataset. Training a

deep network such as PCNH two times significantly increases the processing power and time.

On the other hand, through our experiments, we found that the features derived from the

state-of-the-art ResNet model can reduce the overhead of re-training and achieve a better

performance for privacy prediction.

As discussed before, the models trained on ResNet features outperform those trained on

AlexNet features. Interestingly, the best performing baseline among all corresponds to the

SVM trained on the deep features extracted from the AlexNet architecture. For example,

the SVM trained on the AlexNet features (fc8-A) yields an F1-measure of 0.849 as compared

with the F1-measure of 0.824 achieved by the PCNH framework. We hypothesize that this

is due to the model complexity and the small size of the privacy dataset used to train the

58



PCNH framework. For example, merging two CNNs (as in PCNH) that vary in depth, width,

and optimization algorithm can become very complex and thus the framework potentially

has more local minima, that may not yield the best possible results. Additionally, unlike

Tran et al. 14 , that used 800 images in their evaluation, we evaluate the models on a large

set of images (32000), containing a large variety of image subjects. The features derived

from the various layers of the state-of-the-art AlexNet reduce the overhead of training the

complex structure and still achieve a good performance for privacy prediction.

Another interesting aspect to note is that, although we showed earlier that the fine-tuned

network (in this case VGG-16) does not show a significant improvement over the ResNet

pre-trained features (see Table 3.2), our fine-tuning approach yields better results compared

to the PCNH framework. For example, fine-tuned VGG-16 (ft-V) achieves an F1-measure of

0.869 whereas PCNH achieves an F1-measure of 0.824 (see Tables 3.2 and 3.3). The possible

reasons could be that we use a larger privacy dataset to fine-tune a simpler architecture,

unlike PCNH that merges two convolutional neural networks. Additionally, we fine-tune the

state-of-the-art VGG-16 model presented by Simonyan and Zisserman 19 , contrary to PCNH

that required estimating optimal network parameters to train the merged architecture on

the ImageNet dataset.

As expected, we can see from Table 3.3 that the baseline models trained on SIFT/GIST

and the rule-based models are the lowest performing models. For example, the fc-R based

models achieve improvement in performance as high as 17% over SIFT/GIST models. With

a paired T-test, the improvements over the prior approaches for F1-measure are statistically

significant for p-values < 0.05. It is also interesting to note that rules based on facial features

exhibit better performance than SIFT and GIST and suggest that feature representing per-

sons are helpful to predict private images. However, fc-R features outperform the rule-based

models based on facial features by more than 10% in terms of all measures.

We further analyze fc-R features and compare their performance with the prior works

through precision-recall curves shown in Figure 3.9 (a). As can be seen from the figure, the

SVM trained on ResNet features achieve a precision of ≈ 0.8 for recall values up to 0.8, and

after that, the precision drops steadily.
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(a) Precision-Recall curves (b) Threshold curves

Figure 3.9: Precision-Recall and Threshold curves for the private class obtained using
ResNet features (fc-R) and prior works.

The performance measures shown in previous experiments are calculated using a classi-

fication threshold of 0.5. In order to see how the performance measures vary for different

classification thresholds, we plot the threshold curve and show this in Figure 3.9 (b). From

the figure, we can see that the precision increases from ≈ 0.68 to ≈ 0.97 at a slower rate with

the classification threshold. The recall slowly decreases to 0.8 for a threshold value of ≈ 0.4,

and the F1-measure remains comparatively constant until ≈ 0.75. At a threshold of ≈ 0.4,

we get equal precision and recall of ≈ 0.78, which corresponds to the breakeven point. In

the figure, we also show the false negative rate and false positive rate, so that depending on

a user’s need (high precision or high recall), the classifier can run at the desired threshold.

Also, to reduce the number of content-sensitive images shared with everyone on the Web,

lower false negative (FN) rates are desired. From Figure 3.9 (b), we can see that we achieve

lower FN rates up to ≈ 0.4 for the threshold values up to 0.8.

3.6.5 Best Performing Visual Features vs. Tag Features

Image tags provide relevant cues for privacy-aware image retrieval7 and can become an es-

sential tool for surfacing the hidden content of the deep Web without exposing sensitive

details. Additionally, previous works showed that user tags performed better or on par com-

pared with visual features7;12;24;27. For example, in our previous work24;27, we showed that

the combination of user tags and deep tags derived from AlexNet performs comparably to
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Overall Private Public

Features H-Param Acc % F1 Prec Re F1 Prec Re F1 Prec Re

Best performing CNN architecture

fc-R R,1.0,0.05 87.58 0.872 0.872 0.876 0.717 0.783 0.662 0.92 0.899 0.943

#1 User Tags (BoT)

UT R,2.0,0.05 78.63 0.777 0.772 0.786 0.496 0.565 0.442 0.865 0.837 0.894

#2 Deep Tags (BoT)

DT-A R,1.0,0.1 83.34 0.825 0.824 0.833 0.601 0.699 0.529 0.895 0.863 0.929

DT-G R,1.0,0.05 83.59 0.828 0.827 0.836 0.606 0.699 0.534 0.896 0.866 0.929

DT-V P,1.0,1.0 83.42 0.826 0.825 0.834 0.607 0.698 0.537 0.895 0.865 0.927

DT-R P,1.0,1.0 83.78 0.833 0.831 0.838 0.631 0.688 0.584 0.896 0.876 0.917

#3 User Tags & Deep Tags

UT+DT-
R (BoT)

R,1.0,0.05 84.33 0.84 0.839 0.843 0.67 0.709 0.636 0.897 0.882 0.913

Tag
CNN

− 85.13 0.855 0.855 0.854 0.706 0.700 0.712 0.901 0.903 0.898

Table 3.4: Visual features vs. Tag features.

the AlexNet based visual features. Hence, in this experiment, we compare the performance

of fc-R features with the tag features. For deep tags, we follow the same approach as in our

previous work24;27 and consider the top k = 10 object labels since k = 10 worked best. “DT-

A,” “DT-G,” “DT-V,” and “DT-R” denote deep tags generated by AlexNet, GoogLeNet,

VGG-16, and ResNet, respectively. Deep tags are generated using the probability distri-

bution over 1, 000 object categories for the input image obtained by applying the softmax

function over the last fully-connected layer of the respective CNN.

Table 3.4 compares the performance obtained using models trained on fc-R features with

the performance of models trained on the tag features. We consider tag features as: (1)

user tags (UT); (2) deep tags (DT) obtained from all architectures; (3) the combination

of user tags and best performing deep tag features using Bag-of-Tags (BoT) model; and

(4) Tag CNN applied to the combination of user and deep tags. As can be seen from the

table, the visual features extracted from ResNet outperform the user tags and deep tags

independently as well as their combination. The models trained on fc-R features achieve an

improvement of 2% over the CNN trained on the combination of user tags and deep tags
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Figure 3.10: Precision-Recall curves for the private class obtained using visual features
(fc-R) and tag features as user tags (UT), deep tags (DT-R), the combination of user tags
and deep tags (UT + DT-R).

(Tag CNN). Additionally, the models trained on fc-R features yield an increase of 9.5% in

the F1-measure over the user tags alone and an increase of 4% over the best performing deep

tags, i.e., DT-R (among the deep tags of the four architectures).

From Table 3.4, we also observe that the Tag CNN performs better than the Bag-of-Tags

model (DT-R+UT), yielding an improvement of 3.0% in the F1-measure of private class.

Additionally, even though the visual features (fc-R) yield overall a better performance than

the tag features, for the private class, the F1-measure (0.717) of the visual features (fc-R)

is comparable to the F1-measure (0.706) of the Tag CNN. It is also interesting to note that

the Visual CNN (fc-R) achieves an increase of 8% in the precision (private class) over the

Tag CNN whereas the Tag CNN obtains an improved recall (private class) of 5% over the

Visual CNN.

In order to see how precision varies for different recall values, we also show the precision-

recall curves for the visual and tag features in Figure 3.10. To avoid clutter we show the

precision-recall curves for deep tags derived through ResNet and the combination of user

tags and deep tags (DT-R) using BoT model. From the curves, we can see that the ResNet

visual features perform better than the tag features, for a wide range of recall values from

0.3 to 0.8.

We further analyze both the type of image encodings (visual & tag) by examining the

privacy predictions obtained for anecdotal examples using both the encodings.
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Features
(a) (b) (c) (d) (e) (f)

Visual private private public public public private

Tags private private private private private public

Figure 3.11: Privacy predictions obtained by image content encodings.

Anecdotal Examples:

In order to understand the quality of predictions obtained by visual and tag features, we

show privacy predictions for some samples obtained by both type of features. Figure 3.11

shows the predictions obtained using SVM models trained on the visual features and those

trained on the combination of user tags and deep tags. Correct predictions are shown in

italics and green in color. We can see that for images (a) and (b), the models trained

on image tags (UT+DT) and visual features provide correct predictions. The tags such as

“groom,” “bride,” “wedding,” “photography” describe the picture (a) adequately, and hence,

using these tags appropriate predictions are obtained. Similarly, visual features identify the

required objects, and a relationship between the objects and provide an accurate prediction

for these images. Consider now examples (c) and (d). For these images, visual features

capture the required objects to make accurate predictions, whereas, image tags such as

“bruins,” “fight,” of image (c) and “cute,” “wool,” “bonnet” of image (d) do not provide

adequate information about the picture and hence, yield an incorrect prediction. However,

tags such as “hockey,” “sports” for image (c) and “toy,” “doll” for image (d) would have

helped to make an appropriate prediction. We also show some examples, (e) and (f), for

which visual features fail to predict correct privacy classes. Particularly, for image (f), we

notice that visual features capture object information that identifies the image as private. On

the other hand, the image tags such as “festival” and “sport” (describing the scene) provide

additional information (over the object information) that helps the tag-based classifier to

identify the picture as public.
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Next, we provide the detailed analysis of image tags with respect to privacy.

Analysis of Image Tags with Respect to Privacy Classes:

Rank 1-10 Rank 11-20 Rank 21-30 Rank 31-40 Rank 41-50
people pyjama maillot promontory jersey

wig jammies girl t-shirt mole
portrait sweatshirt suit of clothes foreland groin
bow-tie outdoor ice lolly headland bulwark

neck brace lakeside suit bandeau seawall
groom lakeshore lollipop miniskirt seacoast

bridegroom sun blocker two-piece breakwater indoor
laboratory coat sunscreen tank suit vale stethoscope

hair spray sunglasses bikini hand blower valley
shower cap military uniform swimming cap jetty head

Table 3.5: Top 50 highly informative tags. We use the combination of deep tags and user
tags (DT+UT) to calculate the information gain. User tags are shown in bold.

(a) Private (b) Public

Figure 3.12: High frequency tag clouds with respect to public and private images.

We provide an analysis of the deep tags (capturing the visual content of the image) and

user tags to learn their correlation with the private and public classes. First, we rank user

tags and deep tags based on their information gain on the train set. Table 3.5 shows top 50

tags with high information gain. From the table, we observe that the tags such as “maillot,”

“two-piece,” “sandbar” provide high correlation to the privacy classes. We also notice that

deep tags (objects) contribute to a significant section of top 50 highly informative tags.

64



(a) Private (b) Public

Figure 3.13: Tag association graph.

Secondly, we rank both the tags (user and deep tags) based on their frequency in public and

private classes. We show 50 most frequent tags for each privacy class using word clouds in

Figure 3.12. The tags with larger word size depict a higher frequency of the tag. We notice

that tags such as “indoor,” “people,” “portrait” occur more frequently in the private class,

whereas tags such as “outdoor,” “lakeside,” “fountain,” occur more frequently in the public

class.

We also observe that some informative tags overlap in both public and private clouds (See

Figure 3.12, e.g., “indoor”). Thus, we analyze other tags that co-occur with the overlapping

tags to further discriminate between their association with the public and private classes.

To inspect the overlapping tags, we create two graphs with respect to public and private

classes. For the public graph, we consider each tag as a node in the graph and draw an

edge between the two nodes if both the tags belong to the same public image. Likewise, we

construct another graph using private images. Figure 3.13 shows portions of both public and

private graphs for “indoor” tag. To reduce the complexity of visualization, we only display

nodes with stronger edges that have the co-occurrence greater than a certain threshold. Note

that stronger edges (edges with higher width) represent the high co-occurrence coefficient

between two nodes (in our case, tags). From the graphs, we observe that the overlapping

tag “indoor” tends to have different highly co-occurring tags for public and private classes.

For example, the “indoor” tag shows high co-occurrence with tags such as “people,” “bath,”
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(a) Ratio of private to public images for
top 10 tags

(b) Tag frequency of top 1000 tags

Figure 3.14: Analysis of top frequently occurring tags.

“coat,” “bowtie,” “bra” (tags describing private class) in the private graph. On the other

hand, in the public graph, the tag shows high co-occurrence with “dust,” “light,” “hankey,”

“bakeshop,” “rubber,” and so forth (tags describing public class). Even though some tags

in the graph have comparatively low co-occurrence, the tags occurring in the private graph

tend to associate with the private class whereas the tags from the public graph are more

inclined towards the public class.

We further analyze the privacy differences of top 10 private and public image subjects.

We consider “outdoor,” “indoor,” “fountain,” “lakeshore,” and “coast” for the public class.

On the other hand, we consider “indoor,” “people,” “wig,” “portrait,” “outdoor,” “groom,”

and “maillot” for the private class. Note that since images may have various tags associated

with them, an image can be counted towards more than one tag. Given that the dataset

contains three times more public images than private images (3 : 1 public to private ratio),

we count 3 for each private image as opposed to the public class where we count 1 for each

public image for a fair comparison. The ratio of private to public content for a specific tag is

shown in Figure 3.14 (a). For example, out of the total images that possess the “indoor” tag,

60% images are of private class. From the figure, we observe that tags except for “indoor”

show a significant difference in the inclination towards public and private classes. We also

plot the frequency of top 1000 tags normalized by the dataset size in Figure 3.14 (b). The

plot shows that the top 200 tags befall in 3% − 30% of the dataset with very few tags
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Overall Private Public

Features Acc % F1 Prec Re F1 Prec Re F1 Prec Re

fc-R 87.58 0.872 0.872 0.876 0.717 0.783 0.662 0.92 0.899 0.943
fc-R+UT 88.29 0.881 0.88 0.883 0.753 0.799 0.713 0.923 0.907 0.94

Table 3.6: Results for the combination of visual and tag features.

occurring in around 20% of the dataset. We also observe that most of the tags lie below 3%

of the dataset showing the variation in the images’ subjects and complexity of the dataset

which justifies the fact that increasing the number of images increases the challenges of the

problem statement.

3.6.6 Fusion of Visual and Tag Features for Image Privacy Pre-

diction

Visual encoding and tag encoding capture different aspects of images. Thus, we add the top

350 correlated tags to the visual features fc-R and evaluate their performance for privacy pre-

diction. We experiment with the number of top correlated tags = {10, 20, · · · , 50, 100, · · · ,

500, 1000, 5000, 10000}. However, we get the best results with the top 350 correlated tags.

Table 3.6 shows the results obtained using SVMs trained on fc-R and the combination of

fc-R with the top 350 correlated user tags (fc-R+tag). The results reveal that adding the

highly correlated tags improves the privacy prediction performance. Precisely, we get a sig-

nificant improvement of 4% on F1-measure of private class over the performance obtained

using visual features fc-R. Note that, in our previous works24;27 and Experiment 3.6.5 (where

we compare visual and tag features), we described visual content using tags (deep tags) and

combined with the user tag to achieve a better performance. However, the combination of

user tags and deep tags (combining one type of encoding) yields a lower performance as com-

pared to the combination of user tags and fc-R features (combining two types of encodings).

Precisely, the combination of user tags (UT) and fc-R features yields an improvement of 5%

in the F1-measure of private class (refer Tables 3.4 and 3.6) over the combination of user

tags and deep tags.
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3.7 Chapter Summary and Future Directions

In this chapter, we provide a comprehensive study of the deep features derived from various

CNN architectures of increasing depth to discover the best features that can provide an

accurate privacy prediction for online images. Specifically, we explored features obtained

from various layers of the pre-trained CNNs such as AlexNet, GoogLeNet, VGG-16, and

ResNet and used them with SVM classifiers to predict an image’s privacy as private or

public. We also fine-tuned these architectures on a privacy dataset. The study reveals that

the SVM models trained on features derived from ResNet perform better than the models

trained on the features derived from AlexNet, GoogLeNet, and VGG-16. We found that

the overall performance obtained using models trained on the features derived through pre-

trained networks is comparable to the fine-tuned architectures. However, fine-tuned networks

provide improved performance for the private class as compared to the models trained on

pre-trained features. The results show remarkable improvements in the performance of image

privacy prediction as compared to the models trained on CNN-based and traditional baseline

features. Additionally, models trained on the deep features outperform rule-based models

that classify images as private if they contain people. We also investigate the combination

of user tags and deep tags derived from CNN architectures in two settings: (1) using SVM

on the bag-of-tags features; and (2) applying the text CNN over these tags. We thoroughly

compare these models with the models trained on the highest performing visual features

obtained for privacy prediction. We further provide a detailed analysis of tags that gives

insights for the most informative tags for privacy predictions. We finally show that the

combination of deep visual features with these informative tags yields improvement in the

performance over the individual sets of features (visual and tag).

The result of our classification task is expected to aid other very practical applications.

For example, a law enforcement agent who needs to review digital evidence on a suspected

equipment to detect sensitive content in images and videos, e.g., child pornography. The

learning models developed here can be used to filter or narrow down the number of images

and videos having sensitive or private content before other more sophisticated approaches can
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be applied to the data. Consider another example, images today are often stored in the cloud

(e.g., Dropbox or iCloud) as a form of file backup to prevent their loss from physical damages

and they are vulnerable to unwanted exposure when the storage provider is compromised.

Our work can alert users before uploading their private (or sensitive) images to the cloud

systems to control the amount of personal information (eg. social security number) shared

through images.

In the future, using this study, an architecture can be developed, that will incorporate

other contextual information about images such as personal information about the image

owner, owner’s privacy preferences or the owner social network activities, in addition to

the visual content of the image. Another interesting direction is to extend these CNN

architectures to describe and localize the sensitive content in private images.
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Chapter 4

Privacy-Aware Tag Recommendation

for Image Sharing

Online images’ tags are very important for indexing, sharing, and searching of images, as well

as surfacing images with private or sensitive content, which needs to be protected. Social

media sites such as Flickr generate these metadata from user-contributed tags. However,

as the tags are at the sole discretion of users, these tags tend to be noisy and incomplete.

In this chapter, we present a privacy-aware approach to automatic image tagging, which

aims at improving the quality of user annotations, while also preserving the images’ original

privacy sharing patterns. Precisely, we recommend potential tags for each target image

by mining privacy-aware tags from the most similar images of the target image, which are

obtained from a large collection. Experimental results show that, although the user-input

tags comprise noise, our privacy-aware approach is able to predict accurate tags that can

improve the performance of a downstream application on image privacy prediction, and

outperforms an existing privacy-oblivious approach to image tagging. The results also show

that, even for images that do not have any user tags, our proposed approach can recommend

accurate tags. Crowd-sourcing the predicted tags exhibits the quality of our privacy-aware

recommended tags. Our code, features, and the dataset used in experiments are available

at: https://github.com/ashwinitonge/privacy-aware-tag-rec.git.
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4.1 Introduction

Images are constantly shared on social networking sites such as Facebook, Flickr, and In-

stagram. For instance, it is common to take photos at cocktail parties and upload them

on social networking sites without much hesitation for self-promotion and personal shar-

ing. However, when privacy settings are used inappropriately, these photos can potentially

reveal a user’s personal and social habits, resulting in unwanted disclosure and privacy vi-

olations5;7;12;13;40. For example, malicious attackers can take advantage of these accidental

leaks to launch context-aware or even impersonation attacks. Personal data can be harvested

through social media without users’ consent if the privacy settings of social media are not

managed properly, which could lead to online privacy risks117. A study carried out by the

Pew Research center reports that 11% of the users of social networking sites regret the con-

tent they posted10. Thus, several works have been developed in recent years in an attempt

to provide appropriate privacy settings for online images7;12;14;24;26;27;32;40;88.

Prior works on privacy prediction7;12;24;26;27;88 found that the tags associated with images

are indicative of their sensitive content. Tags are also important for image-related applica-

tions such as indexing, sharing, searching, content detection and social discovery109–112. Yet,

the tags are at the sole discretion of users, and hence, they tend to be noisy and incomplete23.

Despite that many approaches to automatic image tagging have been developed118–123, these

approaches do not consider the privacy aspect of an image while making the annotations (or

tagging) and could not be sufficient for identifying images’ private content.

We posit that visually similar images can possess very different sets of tags if these

images have different privacy orientations. For example, Figure 4.1 shows anecdotal evidence

obtained from a Flickr dataset in which visually similar images of private and public classes

display different sets of user tags. The picture of a woman that belongs to the private class in

Figure 4.1(a) contains tags such as “Elegant,” “Corporate,” “Style,” and “Pretty,” whereas

the picture of a woman that belongs to the public class in Figure 4.1(b) contains tags such as

“Celebrity,” “Famous,” “News,” and “Hollywood.” An image is considered to be private if it

belongs to the private sphere (e.g., portraits, family, friends, home) or contains information
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(a) Private: Stylish, Elegant (b) Public: Parisi, Sabrina
Corporate, Style, Street News, Celebrity
Fashion, Girl, Woman Famous, Girl
Skirt, Top, Bag, Pretty Woman, Hollywood

Figure 4.1: Anecdotal evidence for visually similar images with privacy-aware user tags.

that can not be shared with everybody on the Web (e.g., private documents), whereas the

remaining images are considered to be public7. Figure 4.1 shows that the images’ tags are

correlated to each image’s privacy patterns6;68;88. These tags are very useful when access to

the visual content of images is not allowed due to users reluctance to share the actual images

for visual content analysis (which could reveal a user’s identity through the face and friends,

etc.). In such cases, privacy-aware tags can become good indicators of the privacy settings

and can help improve the privacy prediction methods to reduce privacy breaches.

To this end, we ask the following questions: Can we develop an automated approach

to recommend accurate image tags that can also take into account the sharing needs of the

users for images in questions? Can this method make precise tag recommendations for newly

uploaded images that have an incomplete set of user tags or no tags at all? Can these rec-

ommended tags help improve the image privacy prediction performance? We address these

questions with our research agenda. In particular, we draw ideas from the collaborative

filtering line of research and explore its applicability to privacy-aware image tagging. Col-

laborative filtering is widely used to make recommendations for unknown items to users

and relies on the assumption that similar users express similar interests or preferences on

similar items124. Hence, we explore tag recommendation to images based on images’ similar

neighbors.

Our contributions are as follows:
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• We present a privacy-aware approach to automatic image tagging, that aims at im-

proving the quality of user annotations (or user tags), while also preserving the images’

original privacy sharing patterns. Precisely, we recommend potential tags for each tar-

get image by mining privacy-aware tags from the most similar images of the target

image, which we obtain from a large collection of images.

• We study our privacy-aware recommended tags obtained by the proposed privacy-aware

weighting scheme in an ablation experiment for privacy prediction. In this experiment,

we compare various privacy-aware and privacy-oblivious weighting schemes and observe

how the privacy prediction performance varies for these weighting schemes. We also

experiment with various parameter values to estimate the best parameter setting.

• We compare the performance of privacy prediction using tags recommended by the

proposed approach against the tags recommended by a prior state-of-the-art image

annotation method. Our objective in this experiment is to verify whether the recom-

mended tags by the proposed approach can capture better privacy characteristics than

the prior state-of-the-art annotation.

• We investigate tag recommendation in a binary image privacy prediction task and show

that the predicted tags can exhibit relevant cues for specific privacy settings (public or

private) that can be used to improve the image privacy prediction performance.

• Our results show that we achieve a better privacy prediction performance when we add

the recommended privacy-aware tags to the original user tags and predicted deep tags

of images as compared to prior approaches of image privacy prediction.

• We also evaluate the recommended tags by employing crowd-sourcing to identify rele-

vancy of the suggested tags to images. The results show that, although the user-input

tags comprise noise or even some images do not have any tags at all, our approach

is able to recommend accurate tags. In addition, we evaluate both privacy-aware and

privacy-oblivious recommended tags and show that the privacy-aware recommended
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tags describe an image’s content more accurately as compared to the privacy-oblivious

tags.

4.2 Related work

In this section, we briefly review the related work on three lines of research: 1) automatic

image annotation, 2) tag recommendation using collaborative filtering, and 3) online image

privacy.

4.2.1 Automatic Image Annotation

Numerous approaches to automatic image annotation (or tagging) have been proposed in

the literature to improve the search and retrieval of images based on text queries. We clas-

sify these methods into five categories: Generative methods that maximize the generative

likelihood of image features and tags; Discriminative methods that consider the image an-

notation task as a multi-label classification problem; Tag completion methods that predict

tags by automatically identifying the missing labels and also correcting the noisy labels for

images; Deep learning based methods that train deep networks for predicting labels; Nearest

neighbors methods that obtain tags from the similar images of the target image.

Generative methods.

The generative methods try to maximize the generative likelihood of the image features and

tags118;125–139. For example, Lavrenko et al. 125 learned joint probabilistic models of image

content features and tags. These models compute the conditional likelihood of words given

image content features that can be used to infer the most likely tags for an image. Simi-

larly, Feng et al. 118 learned a joint probability distribution of tags and image features in a

relevance model framework. Other approaches treated the problem as statistical inference in

graphical models, e.g., Latent Dirichlet Allocation (LDA) like models126–128. Feng and Lap-

ata 129 proposed an approach to automatically annotate images embedded in news articles by
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using words from captions and article’s content. They used the idea that the accompanying

document can provide accurate tags and reduce the effect of noise comprised in captions.

Later, Feng and Lapata 130 used LDA to infer topics that capture co-occurrences of visual

features and words.

Discriminative methods.

Discriminative methods perceive image annotation as a multi-label classification problem.

In these works, the authors typically treat the image tagging as a classification task and

train classifiers (e.g., Support Vector Machines) for each tag using image’s textual and/or

visual features140–145. In recent years, the graph-based learning (semi-supervised) methods

are also used for image annotation in which the model is the graph of the entire data. The

label correlation is incorporated in the graph as graph weights120;146–150 or as an additional

constraint151;152. In addition to the graph-based learning methods, some studies exploit

the local label correlations153, underlying correlations among labels using a multi-label dic-

tionary learning algorithm154 and handle the missing tags issues155. On the other hand,

Li et al. 156 considered image annotation as multi-correlation learning to the rank problem

where the visual similarity among images and the semantic relevance among tags are ex-

plored simultaneously. Ivasic-Kos et al. 157 proposed a two-tier annotation model wherein

the first tier corresponds to object-level annotation and the second tier to scene-level (image

context) annotation.

Tag completion methods.

The tag completion methods automatically annotate images by identifying the missing tags

and correcting the noisy tags. The entire dataset is represented as an initial matrix with each

row as an image and each column as a tag. The tag completion methods recover this initial

matrix by identifying correct associations between images and labels. The tag completion-

based annotation is achieved by matrix completion158;159, linear sparse reconstruction160;161,

subspace clustering with matrix completion162, and low-rank matrix factorization163;164.
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Deep learning methods.

The deep-learning based image annotation adopt image features and semantic tag relation-

ships extracted using deep networks165–167. For example, Gong et al. 167 used weighted ap-

proximate ranking to train deep convolutional neural networks (CNN) for multi-label image

annotation tasks. Wang et al. 168 proposed a multitask voting automatic image annotation

CNN, which contains shallow layers and regards each category as a label directly, using the

raw images as inputs for large scale image annotation. Yang et al. 169 provided a multi-view

stacked auto-encoder model for image annotation. Wang et al. 170 proposed a framework in

which CNN and recurrent neural network (RNN) are jointly utilized to derive an image rep-

resentation and the correlation between the adjacent labels, based on which the probabilities

of the labels are computed. Jin and Nakayama 171 also used the CNN-RNN framework for

image annotation and Wu et al. 172 proposed a joint deep multi-instance learning framework

that learns objects and images’ tags simultaneously.

Nearest neighbors methods.

The nearest neighbor model-based image annotation methods assume that visually similar

images are more likely to share common labels173–177. For a given target image, these meth-

ods first obtain a set of similar images and then the tags of the target image are derived

based on the tags of the similar images. For example, Makadia et al. 121 proposed a joint

equal contribution model that utilizes global low-level image features and a simple com-

bination of basic distance measures to find nearest neighbors of a given image. Tags are

then assigned from the nearest neighbor(s) based on the co-occurrence of tags. Guillaumin

et al. 119 proposed the “TagProp” model, which integrates a weighted nearest neighbor based

method and metric learning capabilities into a discriminative framework. Chen et al. 122 pro-

posed an approach called “FastTag” to image annotation, in which the authors learned two

classifiers to predict tags: one that reconstructs the complete tag set from the tags avail-

able during training and the other that maps image features to the reconstructed tag set.

Kalayeh et al. 178 developed a hybrid model by integrating the nearest-neighbor scheme into
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a generative model.

Furthermore, Cheng et al. 179 discussed advantages and disadvantages of these methods

in details. For instance, the generative models may not be able to capture the intricate rela-

tionship between image features and labels, which is imperative to identify the privacy-aware

tags. Additionally, the multi-label classification based discriminative approaches cannot be

extended to a large number of image tags since a binary classifiers has to be trained for

each tag, which is not feasible for the online images that contain diverse sets of tags. The

authors also discussed that the correlation between image visual features and labels are often

neglected by some discriminative methods. On the other hand, the tag completion models

suffer from a major weakness, that is, the transformation of the tag completion process to

an optimization problem. The process of optimizing the objective function may be time-

consuming and computationally very complex, and cannot guarantee global optimization.

Moreover, despite that deep learning based methods have shown significant improvements in

the performance of image annotation, there are still a few shortcomings with these methods.

The main drawback is that although RNN + CNN solve issues pertaining to label quantity

prediction and label dependencies for large-scale image annotation, still a better solution to

rank labels is needed as RNN requires an ordered sequential list as input, which is mostly not

present in the online images. Another drawback is that the increase in the depth and breadth

of the deep networks can cause the decrease in the efficiency of annotation methods. The

nearest neighbor based methods are clear and intuitive, and many of them have been proven

to be quite successful for tag prediction due to their high flexibility. However, improvements

are still needed because of some inherent shortages. For instance, the performance of these

methods is highly sensitive to the retrieval performance. Thus, an efficient way to identify

appropriate neighbors for unlabeled images is highly sought.

In contrast to previous annotation mechanisms, we take advantage of both nearest neigh-

bors and deep learning based approaches to provide privacy-aware image annotations. We

consider nearest neighbor based approaches as our strong baselines.
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4.2.2 Tag Recommendation using Collaborative Filtering

Our tag recommendation approach draws ideas from collaborative filtering, and hence, here

we briefly review the most relevant works on tag recommendation using collaborative fil-

tering. Xu et al. 180 designed a collaborative filtering approach to suggest high-quality tags

for Web objects, according to several criteria (coverage, popularity, effort, uniformity). The

authors employed a co-occurring strategy and considered that if two tags frequently co-

occur when describing a specific object, they should also co-occur in the recommended set of

tags. A similar approach was presented later by Sigurbjörnsson and van Zwol 181 , who recom-

mended tags for Flickr images. They used knowledge from the Flickr community and applied

it in a co-occurring strategy. Specifically, given a user-input tag, they considered the tags

co-occurring with it as good candidates for recommendation. Peng et al. 182 designed a novel

technique for collaborative filtering in social tagging systems, in which all the interactions

among users, items and tags are leveraged. They generated joint item-tag recommendations

for users, where the tags represent topics from an item (i.e., a web resource) in which the

user may be interested. Seitlinger et al. 183 used a model of human category learning (i.e.,

ALCOVE) for social tags recommendation. The model uses semantic information regarding

a user-specific bookmark (e.g., Wikipedia categories or LDA topics). Tags are predicted to

a user by applying the semantic information to a connectionist network with three layers,

which simulates the user’s categorization and the bookmark formalization.

Recently, several works have been proposed to recommend tags for visual content types184–189.

For example, Liu et al. 184 explored locations to recommend tags to images.185 proposed a sys-

tem to automatically recommend tags to YouTube videos based on their audio-visual content.

Gong and Zhang 186 adopted CNNs to recommend hashtags for microblogs. Zhang et al. 187

proposed a co-attention network incorporating textual and visual information to recommend

hashtags for multimodal tweets. Nguyen et al. 188 presented a personalized content-aware

image tag recommendation approach that combines both historical tagging information and

image-based features in a factorization model. Seah et al. 189 concurrently generated ranked

lists of comments and tags of a social image based on their joint relevance to the visual
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features, user comments, and user tags.

In contrast to these works, we recommend privacy-aware tags for images shared online.

4.2.3 Online Image Privacy

The rapid increase in images uploaded on the Web intrigued researchers to focus on estab-

lishing adequate privacy models to help protect users’ sensitive information. Researchers

also provided public awareness of privacy risks associated with images shared online44;45.

Along this line, several works were carried out to study users’ privacy concerns in social net-

works, privacy decisions about sharing resources, and the risk associated with them8;46–51;190.

Additionally, several works on privacy analysis examined privacy decisions and considera-

tions in mobile and online photo sharing5;8;52;53. For example, Ahern et al. 5 studied the

effectiveness of location information and tags in predicting privacy settings of images. They

also conducted a study to verify whether the visual features are relevant to an image’s pri-

vacy and found that content is one of the discriminatory factors affecting image privacy,

especially for images depicting people. This supports the core idea underlying our work:

that tags depicting private categories obtained from image content are pivotal for identi-

fying the sensitive content from the search results. For example, tags such as “wedding,”

“bride,” “people” describing a wedding event (private category) represent the private class

that particular categories of image content are pivotal for identifying the sensitive content

from the search results in establishing users’ images sharing decisions. Jones and O’Neill 52

reinforced the role of privacy-relevant image concepts. For instance, they determined that

people are more reluctant to share photos capturing social relationships than photos taken

for functional purposes; certain settings such as work, bars, concerts cause users to share

less. Besmer and Lipford 53 discussed that users want to regain control over their shared

content, but meanwhile, they feel that configuring proper privacy settings for each image is

a burden.

In the context of automated approaches, image privacy is explored along four lines of

research: social group based approaches, in which users’ profiles are used to partition the
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friends’ lists into multiple groups or circles, and the friends from the same circle are assumed

to share similar privacy preferences; location-based approaches, in which location contexts

are used to control the location-based privacy disclosures; visual-based approaches, in which

the visual content of images is leveraged for privacy prediction; and tag-based approaches, in

which tags are used for privacy setting recommendations.

Social group based approaches.

Several works emerged to provide the automated privacy decisions for images shared online

based on the social groups or circles7;54–69. For example, Christin et al. 55 proposed an

approach to share content with the users within privacy bubbles. Privacy bubbles represent

the private sphere of the users and the access to the content is provided by the bubble creator

to people within the bubble. Bonneau et al. 60 introduced the notion of privacy suites which

recommend users a set of privacy settings that “expert” users or the trusted friends have

already established so that ordinary users can either directly accept a setting or perform

minor modifications only. Fang and LeFevre 61 developed a privacy assistant to help users

grant privileges to their friends. The approach takes as input the privacy preferences for the

selected friends and then, using these labels, constructs a classifier to assign privacy labels

to the rest of the (unlabeled) friends based on their profiles. Danezis 63 generated privacy

settings based on the policy that the information produced within a social circle should

remain in that circle itself. Along these lines, Adu-Oppong et al. 70 obtained privacy settings

by forming clusters of friends by partitioning a user’s friends’ list. Yuan et al. 69 proposed an

approach for context-dependent and privacy-aware photo sharing. This approach uses the

semantics of the photo and the requester’s contextual information in order to define whether

an access to the photo will be granted or not at a certain context. These social group

based approaches mostly consider the user trustworthiness, but ignore the image content

sensitiveness, and thus, they may not necessarily provide appropriate privacy settings for

online images as the privacy preferences might change according to sensitiveness of the

image content.
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Location-based approaches.

These approaches69;71–81 leverage geo-tags, visual landmarks and other location contexts to

control the location-based privacy disclosures. The geo-tags can be provided manually via

social tagging or by adding location information automatically through the digital cameras

or smart-phones having GPS. The location can also be inferred by identifying places from

the shared images through the computer vision techniques.

Visual-based approaches.

Several works use visual features derived from the images’ content and show that they

are informative for predicting images’ privacy settings7;12–14;24;27;33;89–102;191. For example,

Buschek et al. 33 presented an approach to assigning privacy to shared images using metadata

(location, time, shot details) and visual features (faces, colors, edges). Zerr et al. 7 proposed

privacy-aware image classification and learned classifiers on Flickr images. The authors

considered image tags and visual features such as color histograms, faces, edge-direction

coherence, and Scale Invariant Feature Transform (SIFT) for the privacy classification task.

Squicciarini et al. 12,13 performed an in-depth analysis of image privacy classification using

Flickr images and found that SIFT and image tags work best for predicting privacy of

users’ images. Given the recent success of CNNs, several researchers14;24;27;89–91 showed

promising privacy prediction results compared with visual features such as SIFT and GIST.

Yu et al. 41 adopted CNNs to achieve semantic image segmentation and also learned object-

privacy relatedness to identify privacy-sensitive objects. Using CNNs, some works started to

explore personalized privacy prediction models3;32;40. In this context, it is worth mentioning

that CNNs were also used in another body of privacy related work such as multi-party

privacy conflict detection105 and automatic redaction of sensitive image content97.

Tag-based approaches.

Previous work in the context of tag-based access control policies and privacy prediction for

images7;54;56;62;67;68;82–88 showed initial success in tying user tags with access control rules.
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For example, Squicciarini et al. 62,88 , Zerr et al. 7 , and Vyas et al. 84 explored learning models

for image privacy prediction using user tags and found that user tags are informative for

predicting images’ privacy. Moreover, Squicciarini et al. 67 proposed an Adaptive Privacy

Policy Prediction framework to help users control access for their shared images. The authors

investigated social context, image content, and metadata as potential indicators of privacy

preferences. Klemperer et al. 68 studied whether the user annotated tags help to create and

maintain access-control policies more intuitively. However, the scarcity of tags for many

online images23 and the workload associated with user-defined tags preclude an accurate

analysis of images’ sensitivity based on this dimension. Recently, in our prior work24;26;27,

we showed that the images’ tags that are automatically obtained from the visual content

of images using Convolutional Neural Networks (CNNs) can improve the performance of

image privacy prediction. Yet, since the CNNs are trained on ImageNet (1.2M+ images

labeled with 1000 object categories)16 and Places2 (which contains 365 scene classes with

2.5 million images)25, these tags depict objects or scenes given in the image and fail to

capture the privacy characteristics (or orientation) of the image while generating the tags.

To this end, drawing ideas from collaborative filtering, we recommend privacy-aware tags

for online images that have the potential to improve the set of user tags for online image

sharing.

4.3 Privacy-Aware Image Tag Recommendation

Our approach to recommending privacy-aware tags for newly posted images in online content

sharing sites is inspired from collaborating filtering (CF)192. Particularly, in user-item CF,

items are recommended to users by finding the most similar users to the target user (from

the user-item matrix) and recommending items to the target user based on the items that

the similar users purchased/seen. The large amounts of images posted on the Web in recent

years facilitate the study of potential relationships between images and tags. Our approach

leverages these ideas to exchange tags between similar images. The analogy with conventional

CF methods is that images correspond to users and tags correspond to items (i.e., in our
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Algorithm 1 Tag Recommendation

1: Input: A dataset D = {I1, · · · , In} of images and their sets of tags {T1, · · · , Tn}; a
target image I and its set of tags T ; pr(I) the privacy label of the target image I (could
be private or public); k the number of nearest neighbors of I from D; r the number of
tags to be recommended.

2: Output: A set R of recommended tags for I.
3: R← φ; // the set of recommended tags, initially empty.

4: S ← φ;
5: if T = φ then // if the set of tags is empty.

6: x← ImageContentEncoding(I); // deep features for I

7: for all Ij ∈ D do
8: xj ← ImageContentEncoding(Ij); // deep features for Ij
9: sj ← similarity(x,xj); // compute the visual content similarity between I and Ij

10: S ← S ∪ (Ij, sj); // store Ij and its similarity with I

11: end for
12: else
13: x← ImageTagEncoding(I); // get tags’ features of I

14: for all Ij ∈ D do
15: xj ← ImageTagEncoding(Ij); // get tags’ features of Ij
16: sj ← similarity(x,xj); // compute the tags similarity between I and Ij
17: S ← S ∪ (Ij, sj); // store Ij and its similarity with I

18: end for
19: end if
20: S.similarities.sort(); // sort the images in decreasing order of their similarity scores

21: S ← top k (Ij, sj) entries; // get k images with the highest similarities with I, and their

similarities

22: W ← TagRanking(S, pr(I)); // rank the tags from S images

23: R← r tags with the highest scores from W ;
24: return R

setting, we deal with an image-tag matrix). Specifically, we aim to recommend tags for

a target image by transferring privacy-aware tags from its most similar images, which are

obtained from a large collection. We base our models on the assumption that privacy-aware

similar images possess similar tags.

Algorithm 1 describes the process in detail. Specifically, the nearest neighbors of a target

image are found by comparing rows in the image-tag matrix. Recommendations are made

for the target image based on the neighboring images’ tags (as a privacy-aware weighted

sum of occurrences of tags). A common problem in CF is the cold start problem124. In

our case, this refers to images that have very few tags or no tags at all, and hence, there
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is not enough information available to find accurate nearest neighbors for a target image.

However, in our domain, images can be represented using two different views or feature

types: (1) image content; and (2) image tags. We take advantage of both of these views (as

shown in Algorithm 1).

The input of the algorithm is a dataset D = {I1, · · · , In} of images and their associated

sets of tags, {T1, · · · , Tn}, respectively; a target image I and its set of tags T , which could

possibly be empty; pr(I) the privacy label of I, which could be private or public; k the

number of nearest neighbors of I from D; and r the number of tags to be recommended.

The output of the algorithm is a ranked list of r tags, which are recommended for the target

image. The algorithm starts by checking if the set of tags T corresponding to the target

image I is empty (Alg. 1, line 5). If T 6= φ, the similarities between I and all images in

D \ {I} are computed based on images’ tags (Alg. 1, lines 13-18). The top k most similar

images to I are returned (Alg. 1, lines 20-21) and the candidate set that represents the union

of the sets of tags extracted from these k similar images is ranked inside the subroutine for

tag ranking (line 22). The tag ranking subroutine is described in Algorithm 2. The most

highly ranked r tags from the candidate set are returned as recommended tags for the target

image I (Alg. 1, line 23-24). For the cold start setting, if the initial tag set is empty, i.e.,

T = φ for image I, Algorithm 1 recommends r tags from the k most similar images in D,

where, this time, the similarity is computed based on image content features (not tags) (Alg.

1, lines 5-12).

For each tag in the candidate set, we compute its score as the privacy-aware sum of

similarities between the target image and its similar images that contain that tag (Alg. 2,

lines 6-12). This weighting method was employed based on the assumption that a “good”

tag is very likely to be exchanged between similar images. Specifically, the weight (or score)

of a tag t, wt, is computed as:

wt =
∑
j∈S

cjt · sj · P (t|pr(I)) (4.1)

where S represents the neighborhood of I, i.e., its k most similar images from D, cjt is an
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Algorithm 2 Tag Ranking

1: function TagRanking(S, pr(I))
2: W ← φ; // the set of tags and their scores, initially empty.

3: for all Ij ∈ S do
4: Tj ← Ij.tags // get the set of tags of image Ij .

5: sj ← Ij.similarity // similarity of target image and Ij .

6: for all t ∈ Tj do
7: wt ← W.scoreOf(t) // wt stores the score of t

8: if wt = null then // if tag t is not in W already

9: W ← W ∪ (t, 0) // add t to W

10: end if
11: wt ← wt + sj · P (t|pr(I)) //score of t weighted by privacy

12: end for
13: end for
14: W.scores.sort() // sort the scores in W in the decreasing order.

15: return W .
16: end function

indicator variable, which is 1 if tag t belongs to the tag set Tj of image Ij from S and 0

otherwise, and sj is the similarity between image Ij and I. The probability P (t|pr(I)) is

the likelihood of the tag t belonging to one of the privacy classes (i.e., public or private)

corresponding to the privacy of the target image I. For instance, if I is of private class,

then P (t|pr(I)) gives the probability of tag t belonging to the set of private images. In

experiments, the likelihood is calculated based on the dataset D. We wish to obtain privacy-

aware tags, i.e., tags weighted by their likelihood of occurrence in private or public classes,

without missing out on the high-quality tags. Thus, we consider privacy-aware similarity

that relies on the privacy likelihood of the tag instead of considering a privacy-enforced

similarity. Here, we define privacy-enforced similarity as a similarity that considers privacy

as an additional parameter in the image similarity, i.e., tags could be exchanged between

images of the same privacy class (either public or private). A similarity weighted with

privacy likelihood favors tags with a given privacy setting as opposed to the privacy-enforced

similarity that would enforce tags of the same privacy settings as the target image. For

example, using privacy-enforced similarity, for Figure 4.1(b) (given its public nature), tags

such as “Women,” “Girl” (inclined to private class) would not be recommended. Conversely,

privacy-aware weights can help obtain tags that are descriptive of an image content and help
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Collection of
Images D

Target image I (Public)
(Newly uploaded)

Image

Similarity

“Cute”

(5)
“Cute”

“Coolcat”
“Indoor”

+

(4)
“Cute”
“Doll”
“Shop”

+

(3)
“Cute”

“Happiness”
“Eyechips”

+

(2)
“Cute”
“Toy”
“Doll”

+

(1)
“Cute”
“Doll”
“Toy”

Weighted Sum
of Occurrences

Top k = 5
Similar Images

Recommended Tags r = 3: “Doll,” “Toy,” “Coolcat”

Figure 4.2: Illustration of the privacy-aware tag recommendation algorithm using an ex-
ample: 1) A newly uploaded image on the Web that has an incomplete set of user-input
tags, i.e., {“Cute”}, is considered as the target image I. 2) We can use images’ tags or
content features to compute the similarity between the target image I and the images from
the collection D. For this example, we use visual content features to compute the similarity.
3) Top r = 3 tags { “Doll,” “Toy,” “Coolcat”} are recommended using top k = 5 similar im-
ages, through our privacy-aware tag recommendation approach. Note that the recommended
tags “Doll” and “Toy” are appropriate tags for the target image I and can help correctly
characterize its privacy class as public.

in identifying appropriate sharing needs of the image as it considers both image’s content

and the privacy aspect of the image.

Figure 4.2 shows the illustration of the privacy-aware tag recommendation algorithm

through an example. We consider a newly uploaded target image I on the Web that is of

public class and has an incomplete set of user-input tags. For this illustration, we use visual

content features to compute the similarity between the target image I and the images from

the collection D (shown in Figure 4.2 with a blue cylinder). Note that the images’ tags can

be used to compute the similarity as well (as discussed in Alg. 1). The top k = 5 similar

images are shown in the figure where the similarity decreases from left to right (the most

similar image is labeled as (1)). Using these similar images, we obtain the set of candidate
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Candidate Tags Count P (t|pr = private) P (t|pr = public) wt, sj = 1

Doll 3 0.1 0.9 3 × 0.9 = 2.7

Toy 2 0.15 0.85 2 × 0.85 = 1.7

Cute 5 0.7 0.3 5 × 0.3 = 1.5

Coolcat 1 0.0 1.0 1 × 1.0 = 1.0

Shop 1 0.0 1.0 1 × 1.0 = 1.0

Eyechips 1 0.3 0.7 1 × 0.7 = 0.7

Indoor 1 0.6 0.4 1 × 0.4 = 0.4

Happiness 1 0.6 0.4 1 × 0.4 = 0.4

Table 4.1: Privacy-aware weighted sum of tag occurrences (k = 5) given that the target
image is public. Bold words indicate the top r = 3 tags. Since the tag “Cute” appears
already in the original set of user tags, we add the next important tag from the ranked list,
i.e., “Coolcat.” The tags with same weights are selected randomly.

tags for which we compute privacy-aware weights. The candidate tags and their privacy-

aware weight calculation is shown in Table 4.1. For illustration purposes, we use sj = 1 in

Eq. 1, instead of the actual similarity between the target image and images in D (where

0 ≤ sj ≤ 1). As we can see from Table 4.1, the tag “Cute” occurred in all five similar images,

once in each image (see the column labeled as “Count”). The tag “Cute” is highlighted in

blue color in Figure 4.2. Given that the target image is annotated as public, the tag “Cute”

is weighted by the privacy likelihood P (Cute|public), which is 0.3 (see Table 4.1). Recall that

P (t|private) and P (t|public) are calculated from D. Thus, the privacy-aware weighted sum

of occurrences is given as 1.5. Table 4.1 shows the calculations for privacy-aware weighted

sum of tag occurrences. Likewise, final weights are calculated for all candidate tags and

top r = 3 tags are recommended for the target image (the recommended tags are shown in

bold font in Figure 4.2 and Table 4.1). Note that since we consider privacy-likelihood of the

tag instead of privacy-enforced similarity with the target image, the tag “Cute” describing

the image content is recommended to the target image even though the tag “Cute” has

privacy-related (“private”) connotations. However, since the tag “Cute” appears already in

the original set of user tags, we do not add it to our set of recommended tags (to avoid

over-counting), and add the next tag from the ranked list. We select the next tag with

highest weight, i.e., “Coolcat” (shown in bold font in Table 4.1). The tags with the same
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Dataset #Total #Avg. #min. #max. #Private #Public
Images Tags Tags Tags Images Images

D 8000 9.73 1 71 2000 6000
IE (Images I for Evaluation) 4189 18.65 11 78 1047 3142

Table 4.2: Datasets summary.

weights are selected randomly.

4.4 Dataset

We explore the effectiveness of the privacy-aware recommended tags for: (1) their ability to

predict the private or sensitive content of online images; and (2) their relevancy to the images’

content. Hence, we evaluate our recommendation algorithm on Flickr images sampled from

the PicAlert dataset, made available by Zerr et al. 7 . The PicAlert dataset contains both

user-input tags and privacy labels. PicAlert is comprised of Flickr images on various subjects,

which are manually labeled as private or public. The dataset contains photos uploaded in

Flickr during the period from January to April 2010. The images have been labeled by six

teams providing a total of 81 users of ages between 10 and 59 years. The guideline to select

the label is given as: private images belong to the private sphere (like self-portraits, family,

friends, someone’s home) or contain information that one would not share with everyone

else (such as private documents). The remaining images are labeled as public. Each image

was shown to at least two different users. In the event of disagreement, the photos were

presented to additional users.

We split the PicAlert dataset into two subsets. The first subset corresponds to the

dataset D from Alg. 1 and is a collection of 8, 000 images, labeled as private or public,

that are used to recommend tags for the target images. We refer to this subset as D. The

second subset corresponds to target images that we use for evaluation and consists of 4, 189

images from PicAlert, also labeled as private or public. We refer to this subset as IE or

images I for evaluation. The ratio of public to private images in both the subsets D and

IE is 3 : 1. Table 4.2 shows a summary (number of total images, the average number of
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(a) Tag frequency of top 1000 tags (b) Top 5 frequent tags (c) Less 5 frequent tags (from
1000 tags)

Figure 4.3: Tag frequency (%) in the PicAlert dataset. The frequencies are normalized by
the size of the dataset.

tags per image, the minimum number of tags per image, the maximum number of tags per

image, number of private and public images) of these datasets. For each image I in IE,

we randomly split its set of tags into two subsets (i.e., visible and hidden). The motivation

behind using random split is that newly uploaded images might have an incomplete and/or

noisy set of user-input tags23 and we desire to know if the proposed algorithm can overcome

these challenges. The visible subset is denoted by T in Alg. 1 and is used to compute the

similarity between the visible subset of the target image I in IE with the original set of

tags of images in D. The hidden subset is considered as gold standard for the evaluation of

recommended tags. To calculate the precise similarity between two images using tags, we

want to have at least five tags in the set of visible tags. Hence, we consider images with a

number of user tags greater than 10 for the dataset IE (see Table 4.2, #minimum tags). In

case less than 10 tags are available for an image, we can use the image content similarity.

We filter out stop words, numbers, URLs, words with length less than 3 characters, and

words with document frequency less than 2. After preprocessing, the size of the vocabulary

is reduced to ≈ 19, 000. Note that for similarity computation (cosine in our experiments),

we used the stemmed version of tags and synonyms obtained from WordNet193. We also plot

the frequency of top 1, 000 tags normalized by the dataset size in Figure 4.3(a). The plot

shows that top 200 tags befall in 3%−30% of the data with very few tags occurring in around
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20% of the dataset. Note that most of the tags occur below 3% showing the variation in the

images’ subjects and the complexity of our dataset. We also show the top 5 most frequent

and less frequent tags with their frequency in Figures 4.3(b) and 4.3(c), respectively. Note

that the frequencies of tags are normalized by the dataset size.

4.5 Experiments and Results

In this section, we evaluate the tags obtained by the privacy-aware tag recommendation

algorithm for images in IE, by transferring tags from their most similar images from D in

several settings. That is, the quality of recommended tags is determined by: (1) whether

these tags hint to specific image privacy settings; and (2) whether these tags are good enough

to describe the content of an image. Hence, we adopt two evaluation mechanisms: (1)

we examine the performance of models trained on the recommended tags combined with

the original tags (when available) for image privacy prediction to determine their ability

in building more robust models for identifying private or sensitive content for online image

sharing; and (2) we compare the recommended tags against the ground-truth, i.e., the hidden

set of tags, and also evaluate their quality through crowd-sourcing. We provide details of

these evaluation types below.

Image Privacy Prediction. Similar to prior works on privacy prediction7;12;13;24;27,

we aim at identifying generic privacy patterns using the recommended tags to verify if these

tags are indicative of the privacy classes. For this, we split IE into two subsets Train and

Test to determine if the recommended tags are able to enhance the training set and learn

better privacy characteristics. From IE, we randomly sample 3, 689 images for Train and

500 for Test. We use Train to train Support Vector Machine (SVM) classifiers based on

the recommended tags and use Test to test these classifiers. We provide the privacy class

of images in Train as input to Alg. 1 and generate privacy-aware recommended tags for

these images by exchanging tags from similar images in D. The similarity between images

is computed between the visible set of a target image in Train and all available tags from

an image in D. We train SVM classifiers on these recommended tags of Train and evaluate
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them on the visible tags of the images in Test. Note that we do not recommend tags to

images in Test as we assume that we do not know the privacy class of these images. We use

the Weka implementation of SVM classifiers and choose the hyper-parameters that give best

performance on Train using 10-fold cross-validation. For hyper-parameters, we experimented

with C ∈ {0.001, 0.01, 1.0, · · · , 10}, kernels: Polynomial and RBF, the γ parameter in RBF,

and the degree d of a polynomial.

Tag relevance. To evaluate the relevancy of the recommended tags, we randomly

sample 500 images from IE. We denote this subset as DRel. We recommend privacy-aware

tags for images in DRel by exchanging tags from similar images in D. The similarity between

images is computed between the visible set of a target image in DRel and all available tags

from an image in D. The hidden subset is considered as gold standard for evaluation, and

contrasted with the predicted tag set. We also conduct a crowd-sourcing experiment to

determine whether the recommended tags of the DRel dataset are relevant to the image’s

content.

For all the experiments, we generate five random splits of visible and hidden subsets of

tags and report performance (Accuracy, F1-measure, Precision, Recall) averaged over these

five splits. We use a Boolean representation of tags, i.e., 1 if a tag is present for an image

and 0 otherwise, since tags generally appear only once per image.

4.5.1 Evaluation of Privacy-Aware Recommended Tags by Pri-

vacy Prediction

The performance of privacy-aware recommended tags for image privacy pre-

diction. We first evaluate our privacy-aware recommended tags obtained by the proposed

weighting scheme in an ablation experiment for image privacy prediction. Specifically, we

compare the performance of SVM classifiers trained only on recommended tags, where the

recommended tags are obtained in several settings: (1) by our privacy-aware scoring mecha-

nism, denoted as p-Weights, that ranks candidate tags using a privacy-aware weighted sum

of tag occurrences (see Eq. 1); (2) recommending privacy-aware tags from the candidate
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(a) r = 5 (b) r = 10

(c) r = 15 (d) r = 20

Figure 4.4: F1-measure obtained for various parameter values, k and r of Alg. 1. p-
Weights and p-Freq are privacy-aware scoring mechanism whereas Weights, Freq and Random
are privacy-oblivious scoring mechanisms.
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set of tags based on their frequency in the k similar images, without considering images’

similarity sj (see Eq. 1 with sj = 1), denoted as p-Freq (privacy-aware); (3) recommending

tags by weighted sum of occurrences without considering the privacy likelihood (i.e., Eq.

1 without the term P (t|pr(I))), denoted as Weights (not privacy-aware); and (4) recom-

mending tags based on their frequency in the k similar images, without considering images’

similarity sj and the privacy likelihood P (t|pr(I)), denoted as Freq (not privacy-aware). We

also compare p-Weights with a random approach that recommends r tags randomly from

the vocabulary of tags, denoted as Random (not privacy-aware).

To compare these methods, we study Algorithm 1 in the setting where each image in

Train has a seed set of tags associated with it, i.e., T 6= φ (lines 13-18). The similarity

between images is thus computed between the visible set of a target image in Train and

all available tags from an image in D. The similarity between two sets of tags is given as

the cosine similarity of the corresponding bag-of-words vectors. We experiment with various

numbers of similar images k = 2, · · · , 10, in steps of 1, and recommended tags r = 5, · · · , 20,

in steps of 5.

Figure 4.4 shows the average F1-measure achieved by SVM classifiers using the four

ranking strategies for different values of k (number of similar images) and r (number of

recommended tags), and the Random naive approach. The SVMs are trained on the recom-

mended tags of the Train dataset and evaluated on the visible tags of the Test dataset. We

can see from the figure that recommended tags obtained using p-Weights can learn bet-

ter privacy characteristics than Random, Weights, Freq (not privacy-aware) and perform

comparable to p-Freq (privacy-aware), for values of r = {10, 15, 20} regardless of the value

of k. We also notice that the p-Weights scoring mechanism achieves the best performance

for r = 5 and k = 4, outperforming all the other models including p-Freq, which shows that

all scoring components (sj and P (t|pr(I))) play a role in the overall performance. It is also

interesting to mention that Weights (not privacy-aware) scoring mechanism consistently

performs better than Freq (not privacy-aware) scoring method.

In the previous experiment, we only used recommended tags to compare various scoring

schemes. Next, we wish to identify how recommended tags perform when we add them to
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the visible set of images in Train for privacy prediction. In what follows, since the results

are generally similar for k = 4, 5, 10 (see Figure 4.4), we use these values to augment the set

of tags for Train with recommended tags by p-Weights.

Features Acc. % F1 Precision Recall
vt 74.83 0.743 0.739 0.748

k = 4
vt & rt (r = 5) 77.84 0.766 0.755 0.778
vt & rt (r = 10) 77.47 0.763 0.752 0.776
vt & rt (r = 15) 77.31 0.757 0.744 0.771
vt & rt (r = 20) 76.83 0.754 0.741 0.769

k = 5
vt & rt (r = 5) 77.96 0.769 0.758 0.781
vt & rt (r = 10) 77.80 0.766 0.755 0.778
vt & rt (r = 15) 77.60 0.764 0.752 0.776
vt & rt (r = 20) 77.27 0.760 0.747 0.773

k = 10
vt & rt (r = 5) 78.20 0.772 0.762 0.783
vt & rt (r = 10) 77.80 0.765 0.754 0.777
vt & rt (r = 15) 77.92 0.767 0.758 0.778
vt & rt (r = 20) 77.43 0.758 0.745 0.771

Table 4.3: Performance for privacy prediction after adding recommended tags. “vt” denotes
a set of visible tags and “rt” denotes a set of recommended tags, e.g., {“cute”, “toy”, “doll”}.
“r” is the number of tags recommended.

The performance of privacy-aware recommended tags for image privacy

prediction when added to the visible tags. Table 4.3 shows the performance (Accuracy,

F1-measure, Precision, Recall) obtained by the SVM classifiers trained on the combination

of recommended tags (rt) and visible tags (vt) (as we increase r from 5 to 20) for the

images in Train and evaluated on the fixed set of visible tags of the images in Test (for

consistency). The results show that the performance of privacy prediction improves when

we add recommended tags to the set of visible tags for images in Train. Specifically, we get

the best performance when we use k = 10 and r = 5 with F1-measure of 0.772, whereas

the SVM trained on only visible tags achieves 0.743 F1-measure, yielding an improvement

of 3% in overall performance. We notice that generally, the performance increases with the

decreasing value of r (best performance is given by r = 5) and increasing value of k (best
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performance is given by k = 10). This can be justified by the fact that given the diverse

nature of the data and the large vocabulary, a large r may introduce noise in the results.

Similarly, a high value of k leads to higher number of similar images from which we get a set

of good candidate tags.

The previous experiments used image tags to find the neighborhood of an image. How-

ever, not all images on social networking sites have user tags associated with them23, and

this gives rise to the cold start problem for collaborative filtering. Next, we discuss how we

overcome the problem. In the following experiments, we use the privacy-aware weighting

scheme p-Weights, k = 10 and r = 5.

4.5.2 Solution to the Cold Start Problem

Cold start is a challenging problem particularly in many collaborative filtering approaches,

where the absence of items (i.e., tags, in our case) that are used to bootstrap the algorithms

may theoretically hinder the recommendations to be produced. Hence, we evaluate our

approach p-Weights for image tag recommendation in the setting where we assume that

each image in Train has no tags associated with it, i.e., T = φ. This involves recommending

tags from visually similar images (lines 5-12 of Alg. 1). The similarity between two images

is given as the cosine similarity of the corresponding feature vectors. We consider two types

of image features extracted from a deep convolutional neural network (CNN): 1) deep visual

feature pool5, and 2) deep tags. The choice of the features is motivated by their performance

for privacy prediction in prior works14;24;27.

We extract the deep visual features and deep image tags using GoogLeNet architecture18,

which implements a 22 layer deep network with the Inception architecture. The architecture

is a combination of all layers with their output filter bank concatenated to form input for the

next stage. We extract visual features pool5 from the layer named as “pool5/drop 7x7 s1”

(dropout layer). For deep tags, we use the probability distribution over 1, 000 object cat-

egories for the input image obtained by applying the softmax function over the last fully-

connected layer of the CNN. We consider the top k objects of highest probabilities as deep
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tags. The GoogLeNet network is pre-trained on a subset of the ImageNet dataset16, which

is distributed with the CAFFE open-source framework for CNN107.

Features Acc.% F1 Precision Recall

rt-pool5 75.74 0.743 0.729 0.757
rt-DT 74.19 0.731 0.725 0.742

vt 74.83 0.743 0.739 0.748
DT 68.54 0.645 0.619 0.685

Table 4.4: Visual content-based similarity (k = 10, r = 5).

Table 4.4 shows the performance of privacy prediction obtained by the SVM models

trained on the privacy-aware tags recommended from visually similar images based on pool5

(rt-pool5) and deep tags (rt-DT) for the images in Train and evaluated on the visible tags

of the images in Test. For this experiment, we assume that we do not know the set of

visible tags for images in Train. However, we wish to examine how would the recommended

tags obtained using visual content similarity perform as compared to the visible tags and

predicted deep tags (DT) of images in Train, as done in our prior work24;27. Thus, we also

show the performance of the models trained on visible tags alone (vt) and deep tags (DT) in

Table 4.4. The results show that the models trained on the recommended tags yield similar

results to the models trained on visible tags (user-input tags - if we would know them) and

outperform those trained on the top k predicted deep tags (from GoogLeNet) for each image

in Train24;27. Precisely, we obtain maximum value of F1-score as 0.743 and best recall of

0.757 with recommended tags r = 5.

From the table, we observe that the models trained on tags recommended from visually

similar images calculated based on pool5 (rt-pool5) outperform those trained on tags rec-

ommended from visually similar images calculated based on deep tags (rt-DT). The models

trained on recommended tags obtained using pool5 also outperform the models trained on

the top k predicted deep tags (DT) presented in our prior works24;27, that are generated

without any tag recommendation (i.e., the exchange of tags from similar images). This can

be explained by the fact that the deep tags belong to only 1, 000 object categories due to

which many relevant tags can not be captured. For example, tags such as “walking” and
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“culture” are not present in the 1, 000 object categories, but may be relevant tags for a given

picture.

4.5.3 The Proposed Approach vs. Prior Privacy Prediction Works

We compare the performance of privacy prediction models trained on the user tags improved

by the set of recommended tags with the performance obtained by following prior privacy

prediction approaches. Mainly, we compare the performance obtained with the recommended

tags with two types of features, viz., visual features (fc8 and PCNH) and tag features (User

Tags, Deep Tags, and their combination).

1. fc8
24;27: We consider the model trained on the features extracted from the last fully-

connected layer of AlexNet, i.e., fc8 as our baseline, since in our previous work we achieved

a good performance using these features for privacy prediction.

2. PCNH privacy framework14: This framework combines features obtained from two

architectures: one that extracts convolutional features (size = 24, referred as Convolutional

CNN), and another that extracts object features (size = 24, referred as Object CNN). The

Convolutional CNN contains two convolutional layers and three fully-connected layers of size

512, 512, 24, respectively. On the other hand, the object CNN is an extension of AlexNet

architecture that appends three fully-connected layers of size 512, 512, and 24, at the end

of the last fully-connected layer of AlexNet and forms a deep network of 11 layers. The

two CNNs are connected at the output layer. The PCNH framework is first trained on the

ImageNet dataset and then fine-tuned on a small privacy dataset.

3. Image Tags: Previous works used user tags (UT)7;12, deep tags (DT)24;27 and their

combination (UT+DT)24;27 for privacy prediction and hence, we consider models trained on

these tags as other baselines. Note that we describe deep tags in details in our previous

experiment where we evaluated the cold start problem.

Table 4.5 compares the privacy prediction performance obtained with the recommended

tags (RT) with the performance obtained by the prior works. The table shows that when we

add the recommended tags (RT) to the existing user tags (UT), the F1-measure improves
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Features Acc.% F1 Precision Recall

With Recommended Tags
RT 75.37 0.75 0.747 0.754
UT+RT 78.20 0.772 0.762 0.783
UT+DT+RT 81.9 0.810 0.811 0.819

Visual features
fc8

24;27 81.16 0.805 0.803 0.812
PCNH14 77.91 0.768 0.764 0.779

Tag features
UT7;12;13 74.83 0.743 0.739 0.748
DT24;27 68.54 0.645 0.619 0.685
UT+DT24;27 78.81 0.786 0.784 0.789

Table 4.5: Comparison of privacy prediction performance obtained using the proposed
approach and prior privacy prediction approaches.

by 3% over the user tags alone. Similarly, when we add the recommended tags (RT) to the

combination of user tags and deep tags (UT + DT), we get improvement in the F1-measure of

3% over the combination of user tags and deep tags. We also observe that the model trained

on the tag features with the recommended tags (UT+DT+RT) yields a better performance

to the models trained on the visual features fc8 and PCNH. For example, the UT+DT+RT

achieves an F1-measure of 0.81, whereas fc8 and PCNH obtain F1-measure of 0.805 and

0.768, respectively. Even though the tag features do not yield a great improvement over

visual features (fc8), tag features are also essential for the privacy prediction as they provide

other aspects of an input image that have not been captured by the visual content. For

example, consider an image containing “people with glasses in their hands.” Solely using

visual content, one cannot differentiate from a “birthday party” to “event launch party.”

User tags (generated by image owner) can contain such information, which can provide

relevant cues for privacy prediction. It is interesting to mention here that, improving user

tags with the set of recommended tags reduces the performance gap between the tag and

visual features. Visual features and tag features can complement each other, and hence, can

be combined to obtain improved privacy prediction performance in the future. Additionally,

these privacy-aware tags can predict privacy of an image accurately even when access to the

visual content of the image is not allowed due to users reluctance to share the actual image
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for visual content analysis (which could reveal a user’s identity through the face and friends,

etc.).

Next, we compare the privacy prediction performance of recommended tags by our ap-

proach (privacy-aware) with the tags generated by prior image annotation mechanism (not

privacy-aware).

4.5.4 The Proposed Approach vs. Prior Image Annotation Works

In this experiment, we compare the performance of privacy prediction using tags recom-

mended by the proposed approach “p-Weights” against the tags recommended by prior

nearest neighbors based image annotation works. Particularly, we consider the modified

version of “Fast image tagging” (or FastTag)122 and image annotation by Makadia et al. 121

as our baselines. We provide details of our baselines as follows.

1. FastTag122: FastTag addresses the tag sparsity problem, which motivates the choice

of FastTag as our baseline. This is particularly critical to our dataset as we can see in

Figure 4.3, very few tags occur in around 20% of the dataset. Additionally, similar to our

approach, FastTag also considers images with partial tags to predict tag annotations. For

FastTag, authors considered traditional image features such as Gist descriptor35, global color

histograms, and bag-of-word visual features. Recently, Mayhew et al. 194 trained nearest

neighbors-based image annotation algorithms using the features derived from CNNs and

achieved better performance than using traditional image features. Thus, similar to our

approach, we use pool5 (CNN based feature representation) as image features in the FastTag

algorithm. For other parameters in FastTag, we consider the best (default) values given by

the authors.

2. Makadia et al. 121 : Similar to our work, Makadia et al. 121 also transfers tags from

the most similar images of a target image and thus, we consider it as our another baseline.

The tag transfer mechanism of Makadia et al. 121 is different from our tag scoring mechanism

“p-Weights”. Makadia et al. 121 follows a three step process to transfer tags to a target image

from its neighbors. First, the authors rank the tags according to their frequency in the dataset
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Features Acc.% F1 Precision Recall
#1 Original User Tags (Visible Tags)

vt 74.83 0.743 0.739 0.748
#2 Prior Image Annotation Works

vt & rt by FastTag122 74.55 0.741 0.738 0.745
vt & rt by Makadia et al. 121 74.87 0.730 0.723 0.749

#3 Visual Content Similarity (T = φ)
vt & rt (r = 5) 75.23 0.741 0.730 0.752
vt & rt (r = 10) 75.63 0.742 0.727 0.757
vt & rt (r = 15) 76.71 0.752 0.737 0.768
vt & rt (r = 20) 76.27 0.747 0.732 0.763

#4 Tag Similarity (T 6= φ)
vt & rt (r = 5) 78.20 0.772 0.762 0.783

Table 4.6: Privacy-aware Tag recommendation vs. Prior Image Annotation Works.

(in our case D). Second, the highest ranking tags of the first neighbor (first similar image)

are transferred to the target image. If the number of tags of the first neighbor is greater than

r, then only the top r tags are transferred. Last, the tags of neighbors 2, · · · , k are ranked

based on two factors: 1. co-occurrence of tags in training (D) with the tags transferred in

step 2; and 2. frequency of tags of neighbors 2, · · · , k. The highest ranking tags are selected

and the remaining tags (r - tags transferred in step 2.) are transferred to the target image.

Makadia et al. 121 also considered color and texture-based visual features (traditional image

features). Even in this case, we use pool5 as image features for an unbiased comparison.

Similar to our approach, we compute cosine similarity between two visual feature vectors to

obtain top k = 10 neighbors and recommend r = 5 tags.

For this comparison, we include the tags obtained by both the settings when the seed set

T 6= φ (tag similarity, Alg. 1, lines 13-18) and T = φ (visual content similarity, Alg. 1, lines

5-12). Specifically, we compare the models for privacy prediction trained on the combination

of visible tags and recommended tags by the proposed approach with the models trained on

the combination of visible tags and the tags obtained by FastTag.

Table 4.6 shows the privacy prediction performance comparison between the models

trained on the combination of visible tags (vt) and the recommended tags (rt) by Alg.

1, FastTag and Makadia et al. 121 . From the table, we can observe that the models trained
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on the tags obtained by the proposed approach perform better than the models trained on

the tags obtained by FastTag and Makadia et al. 121 . Specifically, models trained on the com-

bination of visible tags and tags recommended by visual content yield F1-measure as high as

0.752 (Table 4.6, #3 Visual Content Similarity), whereas the models trained on the combi-

nation of visible tags and tags obtained by FastTag and Makadia et al. 121 get F1-measure of

0.741 and 0.730 respectively. We achieve the best performance of 0.772 (F1-measure) using

the tag similarity (Table 4.6, #4 Tag Similarity). Note that the F1-measure obtained by

models trained on the combination of visible tags and the tags obtained by FastTag (0.741)

or Makadia et al. 121 (0.730) (Table 4.6, #2 Prior Image Annotation Works) is even slightly

worse than the F1-measure (0.743) obtained for the models trained on only visible tags (Ta-

ble 4.6, #1 Original User Tags). The results show that even though we use the same set of

visual features (deep features) for all the three methods (p-Weights, FastTag and Makadia

et al. 121) to generate the tags, the tags obtained by FastTag and Makadia et al. 121 , which

are privacy-oblivious, are not very helpful for identifying images’ private content. Despite

that FastTag performs well for general image annotation179, it fails to recommend privacy

preserving tags on the PicAlert dataset because, unlike our approach, the impact of the

privacy of an image is not considered.

4.5.5 Quality Assessment of Recommended Tags

In the above experiments, we compared the privacy prediction performance obtained by

privacy-aware and privacy-oblivious tags. In this experiment, we determine which set of

recommended tags (privacy-aware vs. privacy-oblivious) describe an image’s content appro-

priately. Precisely, we obtain two sets of recommended tags: (1) using our privacy-aware

weighting scheme, referred as privacy-aware tags (see Eq. 4.1), and (2) using weighting

scheme without privacy likelihood, referred as privacy-oblivious tags (Eq. 4.1 without the

term P(t—pr(I))). We compare these tags against the ground-truth (i.e., the hidden set of

tags). For this experiment, we recommend tags (using both privacy-aware and privacy-

oblivious weighting schemes) for images in DRel, where each image has a seed set of tags
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Figure 4.5: Image with recommended tags, r=10.

associated with it, i.e., T 6= φ. For each image in DRel, we randomly split its set of tags

into two subsets, i.e., visible and hidden, where the visible set is used for tag similarity and

the hidden set is used as gold-standard set. The similarity between images is thus computed

between the visible set of a target image in DRel and all available tags from an image in D.

Table 4.7 shows the performance (Precision@r) obtained for r ∈ {1, · · · , 10} tags recom-

mended for the images in DRel when compared against the gold-standard set of tags (those

that are hidden from the original user tags). We compute Precision as the total number of

recommended and relevant tags over the number of tags recommended (i.e., r). The results

show that the privacy-aware tags obtain better precisions than the privacy-oblivious tags,

yielding the highest precision of 0.197 (r = 4) using gold-standard. The gold-standard set is

nothing but a subset of user annotated tags, which may not provide all the possible tags that

can be associated with an image content. Hence, the gold-standard set may fail to capture

highly relevant tags provided by the recommendation strategy. For example, in Figure 4.5,

we can see that tags relevant to the image content (shown in italic) are recommended, but do

not appear in the user-input tags. Specifically, even though tags such as culture, street, walk-

ing are consistent with the image content, these tags are not considered for calculating the

precision values since they do not appear among the tags in the hidden set or gold-standard

set.

Crowd-sourcing can be used to address the above limitation. Hence, we employ crowd-

sourcing to make use of the “wisdom of the crowd,” as follows: we use two annotators from
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#Tags Gold-standard Crowd-sourcing

PA PO PA PO
(r) P@r P@r P@r P@r

1 0.162 0.182 0.87 0.863
2 0.186 0.182 0.85 0.84
3 0.195 0.180 0.812 0.822
4 0.197 0.186 0.791 0.793
5 0.190 0.184 0.77 0.77
6 0.184 0.178 0.753 0.75
7 0.174 0.169 0.742 0.738
8 0.168 0.164 0.731 0.72
9 0.162 0.158 0.72 0.71
10 0.156 0.153 0.71 0.704

Table 4.7: Gold-standard and User evaluation of privacy-aware and privacy-oblivious
recommended tags.

Figure Eight1 to determine if the recommended tags are relevant to images’ content. For

each tag, annotators were asked to choose between: relevant, irrelevant and not sure. To

calculate precision values, we consider a tag as Relevant if at least one annotator marked it

as relevant as the tags can be subjective and one annotator can observe more in an image

than the other.

Table 4.7 also shows the performance obtained through crowd-sourcing. We notice that

the results of crowd-sourcing are higher than those obtained by relying only on gold standard

to compute the performance. Precisely, through crowd-sourcing, the precision increased from

0.197 (gold-standard set) to 0.87 for privacy-aware tags, reassuring that the generated tags

are relevant to images’ content. Similarly, for privacy-oblivious tags, the precision increased

from 0.182 to 0.863. The difference in the results can be justified by the fact that the

user tags tend to be noisy, incomplete, and may not relate to the image content23. We

observe that, for the crowd-sourcing experiment, precision obtained using privacy-aware

tags is higher than the precision obtained using privacy-oblivious tags for r = {1, 2, 7− 10}.

Note that for r ranging from 3 to 6, the performance of privacy-aware tags is comparable

to the performance of privacy-oblivious tags. One reason could be that some relevant tags

have higher weights and are recommended irrespective of their privacy likelihood. Consider

1https://make.figure-eight.com/
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#Tags Nouns Only Verb Only Adjective Only Noun & Verb

PA PO PA PO PA PO PA PO
(r) P@r P@r P@r P@r P@r P@r P@r P@r

1 0.812 0.808 0.64 0.626 0.872 0.865 0.815 0.805
2 0.792 0.796 0.633 0.626 0.849 0.848 0.792 0.790
3 0.778 0.776 0.638 0.626 0.848 0.846 0.780 0.780
4 0.756 0.750 0.638 0.626 0.848 0.846 0.755 0.753
5 0.741 0.735 0.638 0.626 0.848 0.846 0.742 0.736
6 0.737 0.730 0.638 0.626 0.848 0.846 0.735 0.729
7 0.735 0.728 0.638 0.626 0.848 0.846 0.734 0.726
8 0.734 0.727 0.638 0.626 0.848 0.846 0.733 0.726
9 0.734 0.727 0.638 0.626 0.848 0.846 0.732 0.725
10 0.734 0.727 0.638 0.626 0.848 0.846 0.726 0.731

Table 4.8: User evaluation of recommended tags that are Noun, Verb, Adjective, and Noun
& Verb. Privacy-aware tags are denoted as PA and privacy-oblivious are denoted as PO.

a private image of “people on the beach” for which “beach” (being considered as nature)

would be recommended even though it has higher likelihood towards the public class.

The tags depicting objects (such as beach, furniture) or actions (such as walking) in im-

ages are more objectively identified by annotators, whereas abstract tags such as “beautiful,”

“pretty,” etc., are more subjective. This could be another justification for the similar results

that we obtain for privacy-aware and privacy-oblivious tags for values of r = {3−6} in Table

4.7. To understand this, we further investigate both privacy-aware and privacy-oblivious sets

of tags by obtaining part-of-speech (POS) tags for the recommended tags. The recommended

tags for DRel contain approximately 45% of nouns, 4% of verbs, 5% of adjective POS tags,

and the remaining are the proper nouns (44%). Table 4.8 shows the user evaluation of the

recommended tags (privcay-aware and privacy-oblivious) that are nouns, verbs, adjective,

and nouns & verbs. Note that we do not consider proper nouns as solely from the visual

content (without user’s information), it is difficult to identify whether a particular place or

a person is relevant to a target image. For example, one can recognize a “beach” from the

visual content of a target image, but for some images it is difficult to know the exact location

(i.e., a proper noun) of the beach (e.g., oregon coast). In the table, the privacy-aware tags

are denoted as “PA”, and privacy-oblivious tags are denoted as “PO”. The table shows that

for nouns (that depict objects and scenes in the image), privacy-aware tags obtain higher
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(a) “beautiful” (b) “pretty” (c) “picturesque”

Figure 4.6: Subjective Adjective (Tags)

performance than the privacy-oblivious tags for almost all values of r. Similarly, for verbs

(that depict actions of the objects in the image), privacy-aware tags yield higher performance

than the privacy-oblivious tags. Note that images might not have more than 1−2 verbs; thus

the performance does not change after r = 3. Conversely, for adjectives, we observe that the

performance is comparable for both sets of tags. One reason might be that the adjectives are

subjective and even though the privacy-aware tags have recommended good adjective tags,

those are not reflected in the performance for values of r = {3−6} in Table 4.7. To illustrate

this, we provide some examples in Figure 4.6 that contain subjective adjectives (tags). For

example, for image (a), some people might identify that the shot was taken beautifully, and

hence, they might consider tag “beautiful” as relevant tag for the image. On the other hand,

others might find the animal scary and they might not consider the tag relevant.

4.6 Chapter Summary and Future Directions

We proposed an approach to recommending privacy-aware image tags that can improve the

original set of user tags and, at the same time, preserve images’ privacy to help reduce

the private content from the search results. Our approach draws ideas from collaborative

filtering (CF). Although the user-input tags are prone to noise, we were able to integrate

them in our approach and recommend accurate tags. More importantly, we simulated the

recommendation strategy for newly-posted images, which had no tags attached. This is a
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particularly challenging problem, as in many CF approaches, the absence of items (tags in

our case) may theoretically hinder the recommendations to be produced, due to the lack

of enough information available to find similar images to a target image. Through our

experiments, we showed that we achieve better performance for image privacy prediction

with recommended tags than the original set of user tags, which in turn indicates that the

suggested tags comply to the images’ privacy. We also show that improving user tags with a

set of privacy-aware recommended tags can reduce the performance gap between the tag and

visual features for privacy prediction. Visual features and tag features can complement each

other, and hence, can be combined to obtain improved privacy prediction performance in

the future. Last, we conducted a user evaluation to inspect the quality of our privacy-aware

recommended tags. The results show that the proposed approach is able to recommend

highly relevant tags.

In future work, it would be interesting to study the algorithm for multiple sharing needs

of the user such as friends, family, and colleagues by considering privacy likelihood with

respect to multi-class privacy settings. We plan to explore alternative ways of computing

images’ similarity, such as combining information from both tags and visual content. Also,

another interesting direction would be to explore image-content features depicting various

image subjects such as scene and location, which could lead to more accurate results.
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Chapter 5

Dynamic Deep Multi-modal Fusion

for Image Privacy Prediction

With millions of images that are shared online on social networking sites, effective methods

for image privacy prediction are highly needed. In this chapter, we propose an approach for

fusing object, scene context, and image tags modalities derived from convolutional neural

networks for accurately predicting the privacy of images shared online. Specifically, our

approach identifies the set of most competent modalities on the fly, according to each new

target image whose privacy has to be predicted. The approach considers three stages to

predict the privacy of a target image, wherein we first identify the neighborhood images

that are visually similar and/or have similar sensitive content as the target image. Then,

we estimate the competence of the modalities based on the neighborhood images. Finally,

we fuse the decisions of the most competent modalities and predict the privacy label for

the target image. Experimental results show that our approach predicts the sensitive (or

private) content more accurately than the models trained on individual modalities (object,

scene, and tags) and prior privacy prediction works. Additionally, our approach outperforms

the state-of-the-art baselines that also yield combinations of modalities.
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5.1 Introduction

Technology today offers innovative ways to share photos with people all around the world,

making online photo sharing an incredibly popular activity for Internet users. These users

document daily details about their whereabouts through images and also post pictures of

their significant milestones and private events, e.g., family photos and cocktail parties1.

Furthermore, smartphones and other mobile devices facilitate the exchange of information in

content sharing sites virtually at any time, in any place. Although current social networking

sites allow users to change their privacy preferences, this is often a cumbersome task for the

vast majority of users on the Web, who face difficulties in assigning and managing privacy

settings2. Even though users change their privacy settings to comply with their personal

privacy preference, they often misjudge the private information in images, which fails to

enforce their own privacy preferences3. Thus, new privacy concerns4 are on the rise and

mostly emerge due to users’ lack of understanding that semantically rich images may reveal

sensitive information3;5–7. For example, a seemingly harmless photo of a birthday party may

unintentionally reveal sensitive information about a person’s location, personal habits, and

friends. Along these lines, Gross and Acquisti8 analyzed more than 4,000 Carnegie Mellon

University students’ Facebook profiles and outlined potential threats to privacy. The authors

found that users often provide personal information generously on social networking sites, but

they rarely change default privacy settings, which could jeopardize their privacy. Employers

often perform background checks for their future employees using social networking sites and

about 8% of companies have already fired employees due to their inappropriate social media

content9. A study carried out by the Pew Research center reported that 11% of the users of

social networking sites regret the content they posted10.

Motivated by the fact that increasingly online users’ privacy is routinely compromised

by using social and content sharing applications15, recently, researchers started to explore

machine learning and deep learning models to automatically identify private or sensitive

content in images3;7;12;14;24;26;27. Starting from the premise that the objects and scene contexts

present in images impact images’ privacy, many of these studies used objects, scenes, and
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Single modality is correct

Image Tags Probabilities
Base classifiers Fusion

bed, studio scene: 0.62 Feature-level: 0.21
dining table object: 0.5 Decision-level: 0.33

(a) speakers, music tags: 0.29

birthday scene: 0.57 Feature-level: 0.21
night object: 0.78 Decision-level: 0.33

(b) party, life tags: 0.39

toeic, native scene: 0.02 Feature-level: 0.27
speaker, text object: 0.15 Decision-level: 0.33

(c) document, pen tags: 0.86

Multiple modalities are correct

Image Tags Probabilities
Base classifiers Fusion

girl, baby scene: 0.49 Feature-level: 0.77
indoor, people object: 0.87 Decision-level: 0.67

(d) canon tags: 0.97

people, party scene: 0.92 Feature-level: 0.69
awesome, tea object: 0.38 Decision-level: 0.67

(e) bed, blanket tags: 0.7

indoor, fun scene: 0.92 Feature-level: 0.89
party object: 0.73 Decision-level: 1

(f) people tags: 0.77

Figure 5.1: Anecdotal evidence of private images and their tags. The feature-level fusion is
given as the concatenation of all the features (object, scene, tag) and the decision-level fusion
is obtained by averaging the predictions.

user tags, or their combination (i.e., feature-level or decision-level fusion) to infer adequate

privacy classification for online images.

However, we conjecture that simply combining objects, scenes and user tags modalities

using feature-level fusion (i.e., concatenation of all object, scene and user tag features) or

decision-level fusion (i.e., aggregation of decisions from classifiers trained on objects, scenes

and tags) may not always help to identify the sensitive content of images. Figure 5.1 illus-

trates this phenomenon through several images. For example, let us consider image (a) in

the figure. Both feature-level and decision-level fusion models yield very low private class
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probabilities (Feature-level fusion: 0.21 and decision-level fusion: 0.33). Interestingly, a

model based on the scene context (bedroom) of the image outputs a high probability of 0.62,

showing that the scene based model is competent to capture the sensitive content of the im-

age on its own. Similarly, for the image (b) (self-portrait) in Figure 5.1, where scene context

is seldom in the visual content, the objects in the image (the “persons,” “cocktail dress”)

are more useful (0.78) to predict appropriate image’s privacy. Moreover, for images such

as “personal documents” (image (c)), user-annotated tags provide broader context (such as

type and purpose of the document), capturing the sensitive content (0.86), that objects and

scene obtained through images’ content failed to capture. On the other hand, in some cases,

we can find more than one competent model for an image (e.g., for image (d)). To this

end, we propose a novel approach that dynamically fuses multi-modal information of online

images, derived through Convolutional Neural Networks (CNNs), to adequately identify the

sensitive image content. In summary, we make the following contributions:

• Our significant contribution is to estimate the competence of object, scene and tag

modalities for privacy prediction and dynamically identify the most competent modal-

ities for a target image whose privacy has to be predicted.

• We derive “competence” features from the neighborhood regions of a target image and

learn classifiers on them to identify whether a modality is competent to accurately

predict the privacy of the target image. To derive these features, we consider privacy

and visual neighborhoods of the target image to bring both sensitive and visually

similar image content closer.

• We provide an in-depth analysis of our algorithm in an ablation setting, where we

record the performance of the proposed approach by removing its various components.

The analysis outline the crucial components of our approach.

• Our results show that we identify images’ sensitive content more accurately than sin-

gle modality models (object, scene, and tag), multi-modality baselines and prior ap-

proaches of privacy prediction, depicting that the approach optimally combines the
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multi-modality for privacy prediction.

5.2 Related Work

We briefly review the related work as follows.

Ensemble models and Multi-Modality. Several works used ensemble classifiers (or

bagging) to improve image classifications195–197. Bagging is an ensemble technique that

builds a set of diverse classifiers, each trained on a random sample of the training data to

improve the final (aggregated) classifier confidence198;199. Dynamic ensembles that extend

bagging have also been proposed200–202 wherein a pool of classifiers are trained on a single

feature set (single modality) using the bagging technique198;199, and the competence of the

base classifiers is determined dynamically.

Ensemble classifiers are also used in the multi-modal setting203;204, where different modali-

ties have been coupled, e.g., images and text for image retrieval205 and image classification203,

and audio and visual signals for speech classification206. Zahavy et al. 207 highlighted that

classifiers trained on different modalities can vary in their discriminative ability and urged the

development of optimal unification methods to combine different classifiers. Besides, merging

the Convolutional Neural Network (CNN) architectures corresponding to various modalities,

that can vary in depth, width, and the optimization algorithm can become very complex.

However, there is a potential to improve the performance through multi-modal information

fusion, which intrigued various researchers205;208–210. For example, Frome et al. 211 merged

an image network17 with a Skip-gram Language Model to improve classification on Ima-

geNet. Zahavy et al. 207 proposed a policy network for multi-modal product classification in

e-commerce using text and visual content, which learns to choose between the input signals.

Feichtenhofer et al. 212 fused CNNs both spatially and temporally for activity recognition

in videos to take advantage of the spatio-temporal information present in videos. Wang

et al. 213 designed an architecture to combine object networks and scene networks, which

extract useful information such as objects and scene contexts for event understanding. Co-

training approaches214 use multiple views (or modalities) to “guide” different classifiers in
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the learning process. However, co-training methods are semi-supervised and assume that all

views are “sufficient” for learning. In contrast with the above approaches, we aim to cap-

ture different aspects of images, obtained from multiple modalities (object, scene, and tags),

with each modality having a different competence power, and perform dynamic multi-modal

fusion for image privacy prediction.

Online Image Privacy. Several works are carried out to study users’ privacy concerns

in social networks, privacy decisions about sharing resources, and the risk associated with

them46–51. Ahern et al. 5 examined privacy decisions and considerations in mobile and online

photo sharing. They explored critical aspects of privacy such as users’ consideration for pri-

vacy decisions, content and context based patterns of privacy decisions, how different users

adjust their privacy decisions and user behavior towards personal information disclosure.

The authors concluded that applications, which could support and influence user’s privacy

decision-making process should be developed. Jones and O’Neill 52 reinforced the role of

privacy-relevant image concepts. For instance, they determined that people are more reluc-

tant to share photos capturing social relationships than photos taken for functional purposes;

certain settings such as work, bars, concerts cause users to share less. Besmer and Lipford 53

mentioned that users want to regain control over their shared content, but meanwhile, they

feel that configuring proper privacy settings for each image is a burden. Buschek et al. 33 pre-

sented an approach to assign privacy to shared images using metadata (location, time, shot

details) and visual features (faces, colors, edges). Zerr et al. 7 developed the PicAlert dataset,

containing Flickr photos, to help detect private images and also proposed a privacy-aware

image classification approach to learn classifiers on these Flickr photos. Authors considered

image tags and visual features such as color histograms, faces, edge-direction coherence, and

SIFT for the privacy classification task. Squicciarini et al. 12,13 found that SIFT and image

tags work best for predicting sensitivity of user’s images. Given the recent success of CNNs,

Tran et al. 14 , and Tonge and Caragea 24,27 showed promising privacy predictions compared

with visual features such as SIFT and GIST. Yu et al. 41 adopted CNNs to achieve semantic

image segmentation and also learned object-privacy relatedness to identify privacy-sensitive

objects.
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Spyromitros-Xioufis et al. 40 used features extracted from CNNs to provide personalized

image privacy classification, whereas Zhong et al. 32 proposed a Group-Based Personalized

Model for image privacy classification in online social media sites. Despite that an individ-

ual’s sharing behavior is unique, Zhong et al. 32 argued that personalized models generally

require large amounts of user data to learn reliable models, and are time and space consum-

ing to train and to store models for each user, while taking into account possible deviations

due to sudden changes of users’ sharing activities and privacy preferences. Orekondy et al. 3

defined a set of privacy attributes, which were first predicted from the image content and

then used these attributes in combination with users preferences to estimate personalized

privacy risk. The authors used official online social network rules to define the set of at-

tributes, instead of collecting real user’s opinions about sensitive content and hence, the

definition of sensitive content may not meet a user’s actual needs104. Additionally, for pri-

vacy attribute prediction, the authors fine-tuned a CNN pre-trained on object dataset. In

contrast, we proposed a dynamic multi-modal fusion approach to determine which aspects

of images (objects, scenes or tags) are more competent to predict images’ privacy.

5.3 Multi-Modality

The sensitive content of an image can be perceived by the presence of one or more objects,

the scenes described by the visual content and the description associated with it in the form

of tags12;24;26;27. We derive features (object, scene, tags) corresponding to the multi-modal

information of online images as follows.

Object (F o): Detecting objects from images is clearly fundamental to assessing whether

an image is of private nature. For example, a single element such as a firearm, political signs,

may be a strong indicator of a private image. Hence, we explore the image descriptions

extracted from VGG-1619, a CNN pre-trained on the ImageNet dataset16 that has 1.2M+

images labeled with 1, 000 object categories. The VGG-16 network implements a 16 layer

deep network; a stack of convolutional layers with a very small receptive field: 3×3 followed

by fully-connected layers. The architecture contains 13 convolutional layers and 3 fully-
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connected layers. The input to the network is a fixed-size 224 × 224 RGB image. The

activation of the fully connected layers capture the complete object contained in the region

of interest. Hence, we use the activation of the last fully-connected layer of VGG-16, i.e., fc8

as a feature vector. The dimension of object features F o is 1000.

Scene (F s): As consistently shown in various user-centered studies5, the context of an

image is a potentially strong indicator of what type of message or event users are trying

to share online. These scenes, e.g., some nudity, home, fashion events, concerts are also

often linked with certain privacy preferences. Similar to object features, we obtain the scene

descriptors derived from the last fully-connected layer of the pre-trained VGG-1617 on the

Places2 dataset which contains 365 scene classes within 2.5 million images25. The dimension

of scene features F s is 365.

Image Tags (F t): For image tags, we employ the CNN architecture of Collobert

et al. 115 . The network contains one convolution layer on top of word vectors obtained

from an unsupervised neural language model. The first layer embeds words into the word

vectors pre-trained by Le and Mikolov 116 on 100 billion words of Google News, and are pub-

licly available. The next layer performs convolutions on the embedded word vectors using

multiple filter sizes of 3, 4 and 5, where we use 128 filters from each size and produce a tag

feature representation. A max-pooling operation over the feature map is applied to capture

the most important feature of length 256 for each feature map. To derive these features, we

consider two types of tags: (1) user tags, and (2) deep tags. Because not all images on social

networking sites have user tags or the set of user tags is very sparse23, we predict the top d

object categories (or deep tags) from the probability distribution extracted from CNN.

Object + Scene + Tag (F ost): We use the combination of the object, scene, and

tag features to identify the neighborhood of a target image. We explore various ways given

in212 to combine the features. For example, we use fc7 layer of VGG to extract features

of equal length of 4096 from both object-net and scene-net and consider the max-pooling

of these vectors to combine these features. Note that, in this work, we only describe the

combination of features that worked best for the approach. We obtain high-level object

“F o” and scene “F s” features from fc8 layer of object-net and scene-net respectively and

114



concatenate them with the tag features as follows: F ost = f cat(F o, F s, F t). F ost = F o(i), 1 ≤

i ≤ 1000, F ost(i+ 1000) = F s(i), 1 ≤ i ≤ 365, F ost(i+ 1365) = F t(i), 1 ≤ i ≤ 256.

5.4 Proposed approach

We seek to classify a given image into one of the two classes: private or public, based on

users’ general privacy preferences. To achieve this, we depart from previous works that

use the same model on all image types (e.g., portraits, bedrooms, and legal documents),

and propose an approach called “Dynamic Multi-Modal Fusion for Privacy Prediction” (or

DMFP), that effectively fuses multi-modalities (object, scene, and tags) and dynamically

captures different aspects or particularities from image. Specifically, the proposed approach

aims to estimate the competence of models trained on these individual modalities for each

target image (whose privacy has to be predicted) and dynamically identifies the subset of the

most “competent” models for that image. The rationale for the proposed method is that for a

particular type of sensitive content, some modalities may be important, whereas others may

be irrelevant and may simply introduce noise. Instead, a smaller subset of modalities may

be significant in capturing a particular type of sensitive content (e.g., objects for portraits,

scenes for interior home or bedroom, and tags for legal documents, as shown in Figure 5.1).

The proposed approach considers three stages to predict the privacy of a target image,

wherein we first identify the neighborhood images that are visually similar and/or have simi-

lar sensitive content as the target image (Section 5.4.1). Then, using a set of base classifiers,

each trained on an individual modality, we estimate the competence of the modalities by de-

termining which modalities classify the neighborhood images correctly (Section 5.4.2). The

goal here is to select the most competent modalities for a particular type of images (e.g.,

scene for home images). Finally, we fuse the decisions of the most competent base classi-

fiers (corresponding to the most competent modalities) and predict the privacy label for the

target image (Section 5.4.3).

Our approach considers two datasets, denoted as DT and DE, that contain images labeled

as private or public. We use the dataset DT to train a base classifier for each modality
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to predict whether an image is public or private. Particularly, we train 3 base classifiers

B = {Bo, Bs, Bt} on the corresponding modality feature sets from F . Note that we use the

combination of feature sets F ost only for visual content similarity and do not train a base

classifier on it. The competences of these base classifiers are estimated on the DE dataset.

We explain the stages of the proposed approach as follows. The notation used is shown in

Table 5.1.

Notation Description
DT = {(I1, Y1), · · · , (Im, Ym)} a dataset of labeled images for base classifier training.
DE = {(X1, Y1), · · · , (Xn, Yn)} a dataset of labeled images for competence estimation.
T A target image with an unknown privacy label.
F = {F o, F s, F t, F ost} a collection of modality feature sets of object, scene, tag, and

object+scene+tag, respectively.
B = {Bo, Bs, Bt} a set of base classifiers trained on corresponding modality feature

sets from F (e.g., Bo is trained on F o).
NT

V The visual similarity based neighborhood of image T estimated using visual content
features F ost, i.e., the set of most similar images to T based on visual content.

kv The size of NT
V , where 1 ≤ kv < n.

NT
P The privacy profile based neighborhood of target T , i.e., the set of most similar

images to T based on images’ privacy profiles.
kp The size of NT

P , where 1 ≤ kp < n.
C = {Co, Cs, Ct} a set of “competence” classifiers corresponding to the base classifiers

from B (e.g., Co for Bo).
Φ = {φo, φs, φt} a set of “competence” feature vectors for training the “competence”

classifiers.

Table 5.1: Mathematical notations.

5.4.1 Identification of Neighborhoods

The competence of a base classifier is estimated based on a local region where the target

image is located. Thus, given a target image T , we first estimate two neighborhoods for T :

(1) visual similarity based (NT
V ) and (2) privacy profile based (NT

P ) neighborhoods.

The neighborhood NT
V of target image T consists of the kv most similar images from DE

using visual content similarity. Specifically, using the F ost features obtained by concatenating

object, scene, and tag features (as explained in Section 5.3), we determine the kv most visually

similar images to T by applying the K-Nearest Neighbors algorithm on the DE dataset.
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The neighborhood NT
P of target image T consists of kp most similar images to T by calcu-

lating the cosine similarity between the privacy profile of T and images from the dataset DE.

We define privacy profile (denoted by T ) of image T as a vector of posterior privacy prob-

abilities obtained by the base classifiers B i.e., T =
⋃

Bi∈B{P (YT = private|T,Bi), P (YT =

public|T,Bi)}. For image (a) in Figure 5.1, T = [0.62, 0.38, 0.5, 0.5, 0.29, 0.71]. We consider

the privacy profile of images because images of particular image content (bedroom images

or legal documents) tend to possess similar privacy probabilities with respect to the set of

base classifiers B. For instance, irrespective of various kinds of bedroom images, the prob-

abilities for a private class obtained by base classifiers B, would be similar. This enables

us to bring sensitive content closer irrespective of their disparate visual content. Moreover,

we consider two different numbers of nearest neighbors kv and kp to find the neighborhoods

since the competence of a base classifier is dependent on the neighborhood and estimating

an appropriate number of neighbors for the respective neighborhoods reduces the noise.

5.4.2 “Competence” Estimation

We now describe how we estimate the “competence” of a base classifier. For instance, for

the image (a) in Figure 5.1, scene model has a higher competence than the others, and here,

we capture this competence through “competence” features and “competence” classifiers.

Specifically, we train a competence classifier for each base classifier that predicts if the base

classifier is competent or not for a target image T . The features for learning the competence

classifiers and the competence learning are described below.

Derivation of “Competence” Features

We define three different sets of “competence” features wherein each set of these features

captures a different criterion to estimate the level of competence of base classifiers dynam-

ically. The first competence feature φ1, for image T , is derived from the neighborhood NT
V

(based on visual similarity) whereas the second competence feature φ2 is obtained from the

neighborhood NT
P (based on privacy profile). The third competence feature φ3 captures
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the level of confidence of base classifiers for predicting the privacy of the image (T ) itself.

We create a “competence” feature vector by concatenating all these competence features

φ = {φ1 ∪ φ2 ∪ φ3} into a vector of length |φ| = kv + kp + 1. We extract such competence

vectors corresponding to each base classifier in B (e.g., φo for Bo, refer to Figure 5.2). We

extract these “competence” features as follows.

φ1: A vector of kv entries that captures the correctness of a base classifier in the visual

neighborhood region NT
V . An entry j in φ1 is 1 if a base classifier Bi ∈ B accurately predicts

privacy of image Xj ∈ NT
V , and is 0 otherwise, where j = 1, · · · , kv. For the target image in

Figure 5.2, φ1 = {1, 1, 0, 1, 0, 1, 1}, obtained by Bo.

φ2: A vector of kp entries that captures the correctness of a base classifier in the privacy

profile neighborhood region NT
P . An entry j in φ2 is 1 if a base classifier Bi ∈ B accurately

predicts privacy of image Xj ∈ NT
P , and is 0 otherwise, where j = 1, · · · , kp. For the target

image in Figure 5.2, φ2 = {1, 1, 1, 1, 1}, obtained using Bo.

φ3: We capture a degree of confidence of base classifiers for target image T . Particularly,

we consider the maximum posterior probability obtained for target image T using base

classifier Bi i.e. Max(P (YT = Private|T,Bi), P (YT = Public|T,Bi)), where Bi ∈ B. For

the target image in Figure 5.2, φ3 = 0.67, obtained using Bo.

“Competence” Learning

We learn the “competence” of a base classifier by training a binary “competence” classifier

on the dataset DE in a Training Phase. A competence classifier predicts whether a base

classifier is competent or not for a target image. Algorithm 3 describes the “competence”

learning process in details. Mainly, we consider images from DE as target images (for the

training purpose only) and identify both the neighborhoods (NV , NP ) from the dataset DE

itself (Alg. 3, lines 6–8). Then, we extract “competence” features for each base classifier

in B based on the images from these neighborhoods (Alg. 3, line 10). To reduce noise,

we extract “competence” features by considering only the images belonging to both the

neighborhoods. On these “competence” features, we train a collection of “competence”
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Algorithm 3 The “Competence” Learning

1: Input: A dataset DE = {(X1, Y1), · · · , (Xn, Yn)} of labeled images; F ost
Xj

combination of

modality feature sets for Xj; a set of base classifiers B = {Bo, Bs, Bt}.
2: Output: A set of “competence” classifiers C = {Co, Cs, Ct}.
3: D = {Do, Ds, Dt} ← ∅; // Datasets for training competence classifiers, initially empty.

4: C ← ∅; // A set of competence classifiers, initially empty.

5: for all Xj ∈ DE do

6: N
Xj

V ← IdentifyV isualNeighborhood(kv, Xj, F
ost
Xj
,DE); // kv nearest neighbors of Xj

obtained using visual content similarity.

7: Xj ← ComputePrivacyProfile(Xj,B); //Privacy profile.

8: N
Xj

P = IdentifyPrivacyNeighborhood(kp, Xj,DE); // kp most similar images of Xj

obtained using privacy profile similarity.

9: for all Bi ∈ B do // Iterate through the set of base classifiers.

10: φi,j ← CompetenceFeatures(Xj, N
Xj

V , N
Xj

P , Bi);
11: if Predict(Bi, Xj) = Yj then // predicted correctly.

12: Li,j ← 1; // Bi is competent for Xj .

13: else
14: Li,j ← 0; // Bi is not competent for Xj .

15: end if
16: Di ← Di ∪ {(φi,j, Li,j)}
17: end for
18: end for
19: for all Di ∈ D do // Train competence classifiers.

20: Ci ← TrainCompetenceClassifier(Di);
21: C ← C ∪ Ci

22: end for
23: return C;

classifiers C corresponding to each base classifier in B (Alg. 3, lines 19–22). Precisely, we

train 3 competence classifiers C = {Co, Cs, Ct}. To train “competence” classifier Ci ∈ C, we

consider label Li = 1 if base classifier Bi ∈ B predicts the correct privacy of a target image

(here, Xj ∈ DE), otherwise 0 (Alg. 3, lines 11–16).

5.4.3 Dynamic Fusion of Multi-Modality

In this stage, for given target image T , we dynamically determine the subset of most compe-

tent base classifiers. We formalize the process of base classifier selection in Algorithm 4. The

algorithm first checks the agreement on the privacy label between all the base classifiers in B

(Alg. 4, line 5). If not all the base classifiers agree, then we estimate the competence of all
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Algorithm 4 Dynamic Fusion of Multi-Modality

1: Input: A target image T ; DE = {(X1, Y1), · · · , (Xn, Yn)} a dataset of labeled images;
F ost
T combination of modality feature sets for T ; a set of base classifiers B = {Bo, Bs, Bt};

and a set of competence classifiers C = {Co, Cs, Ct}.
2: Output: Privacy label YT .
3: B′ ← ∅; // the subset of most competent base classifiers.

4: CS ← ∅; // the set of competence scores.

5: Tba ← Agreement(B, T ); // Base classifiers’ agreement on T ’s label.

6: if Tba ≤ |B| then
7: NT

V ← IdentifyV isualNeighborhood(kv, T, F
ost
T ,DE); // kv nearest neighbors of T

obtained using visual content similarity.

8: T ← ComputePrivacyProfile(T,B); //Privacy profile of T .

9: NT
P = IdentifyPrivacyNeighborhood(kp, T ,DE); // kp most similar images of T ob-

tained using privacy profile similarity.

10: for all Bi ∈ B & Ci ∈ C do // Iterate through the set of base and competence classifiers.

11: φi ← CompetenceFeatures(T,NT
V , N

T
P , Bi);

12: CSi ← PredictCompetence(Fi, Ci); // Predict competence score for base classifier

Bi.

13: if CSi > 0.5 then // If the predicted competence score is greater than 0.5 then the

base classifier Bi is competent.

14: B′ ← B′ ∪ {Bi}
15: CS ← CS ∪ {CSi}
16: end if
17: end for
18: YT = WeightedMajorityV ote(T,B′, CS) // Votes are first weighted by the competence

score and then majority vote is taken.

19: end if
20: return YT

the base classifiers and identify the subset of most competent base classifiers for the target

image as follows. Given target image T , Algorithm 4 first identifies both the neighborhoods

(NT
V , NT

P ) using the visual features F ost and privacy profile from DE dataset (Alg. 4, lines

7–9). Using these neighborhoods, we extract “competence” feature vectors (explained in

Section 5.4.2) and provide them to the respective “competence” classifiers in C (learned in

the Training Phase) to predict competence score of base classifier Bi. If the competence score

is greater than 0.5, then base classifier Bi is identified as competent to predict the privacy of

target image T (Alg. 4, lines 10–17). Finally, we weight votes of the privacy labels predicted

by the subset of most competent base classifiers by their respective “competence” score and

take a majority vote to obtain the final privacy label for target image T (Alg. 4, line 18).
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Target image T
(Private)

Presentation
Day, School
Town-hall

Outdoor, Girls

#1 Neighborhoods
NT

V (kv = 7) NT
P (kp = 5)

#2 “Competence” Features (Φ)
φo

1 1 0 1 0 1 1 1 1 1 1 1 0.67

φ1 φ2 φ3
φs 1 0 1 1 1 1 1 0 0 0 0 0 0.58

φt 0 0 0 1 0 1 1 1 1 1 1 1 0.99

#3 Dynamic Fusion of
Multi-Modality

Is a base classifier competent?

Competent base classifiers
are selected.

Co Cs Ct

Bo
CSo = 0.97

Object
Bs

CSs = 0.08

Scene
Bt

CSt = 0.99

Tag

Private Private

#Votes
Private : 0.97 (CSo)+

0.99 (CSt) = 1.96
Public : 0

Majority Vote: Private

Figure 5.2: Illustration of the proposed approach using an example.

A “competence” score CSi is given as a probability of base classifier Bi being competent.

We consider the majority vote of the most competent base classifiers because certain images

(e.g., vacation) might require more than one base classifiers (object and scene) to predict the

appropriate privacy. If both the privacy classes (private and public) get the same number of

votes, then the class of a highest posterior probability is selected.

Illustration of the Proposed Approach

Figure 5.2 shows the illustration of the proposed approach through an anecdotal example.

We consider a target image T whose privacy has to be predicted. For T , we first identify

two neighborhoods: (1) visual content (NT
V ), 2. privacy profile (NT

P ). For NT
V , we use visual

content features F ost to compute the similarity between target image T and the images from

the dataset DE. The top kv = 7 similar images for NT
V are shown in the figure (left blue

rectangle). Likewise, for NT
P , we compute the similarity between privacy profile of the target

image T and privacy profiles of images in DE. We show the top kp = 5 similar images

for NT
P in the right blue rectangle of Figure 5.2. From these neighborhoods, we derive a

“competence” feature vector φ for each base classifier in B (e.g., φo for Bo). We show these
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“competence” features in the figure as a matrix of feature values. We input these features

to the respective “competence” classifiers from C (e.g., φo to Co), that predict whether a

base classifier Bi ∈ B is competent to predict correct privacy label of the target image (T ).

The “competence” classifiers (Co, Cs, Ct) are shown as blue rectangles on the right side of

Figure 5.2. The base classifiers Bo and Bt are predicted as competent and hence are selected

to obtain the final privacy label for the target image. The competent base classifiers are

shown in green rectangles on the right side of Figure 5.2. Once we select the competent base

classifiers, we take a weighted majority vote on the privacy labels, predicted by these base

classifiers. For example, in this case, the competent base classifiers Bo and Bt predict the

privacy of T as “private,” and hence, the final privacy label of T is selected as “private.” It

is interesting to note that the target image (T ) contains “outdoor” scene context that is not

useful to predict the correct privacy label and hence, the scene model Bs is not selected by

the proposed approach for the target image.

5.5 Dataset

We evaluate our approach on a subset of 32, 000 Flickr images sampled from the PicAlert

dataset, made available by Zerr et al. 7 . PicAlert consists of Flickr images on various subjects,

which are manually labeled as public or private by external viewers. The guideline to select

the label is given as: private images belong to the private sphere (like self-portraits, family,

friends, someone’s home) or contain information that one would not share with everyone

else (such as private documents). The remaining images are labeled as public. The dataset

of 32, 000 images is split in DT , DE and Test sets of 15, 000, 10, 000 and 7, 000 images,

respectively. Each experiment is repeated 5 times with a different split of the three subsets

(obtained using 5 different random seeds) and the results are averaged across the five runs.

The public and private images are in the ratio of 3:1 in all subsets.
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5.6 Experiments and Results

We evaluate the privacy prediction performance obtained using the proposed approach

DMFP, where we train a set of base classifiers B on images in the dataset DT , and dy-

namically estimate the “competence” of these base classifiers for target images in Test by

identifying neighborhoods (NV , NP ) using images in DE. We first consider various values

of neighborhood parameters kv and kp and show their impact on the performance of the

proposed approach. Then, we compare the performance of the proposed approach with the

performance obtained using three types of mechanisms: (1) components of the proposed

approach, that are used to fuse the multi–modal characteristics of online images, (2) the

state-of-the-art approaches for privacy prediction, and (3) strong baselines that select mod-

els based on their competence (e.g., Zahavy et al. 207) and that attempt to yield the optimal

combination of base classifiers (for instance, using stacked ensemble classifiers).

Evaluation Setting. We train base classifiers (B) using the Calibrated linear Support

Vector Machine (SVM) implemented in Scikit-learn library215;216 to predict more accurate

probabilities. We use 3-fold cross-validation on the dataset DT to fit the linear SVM on the

2−folds, and the remaining fold is used for calibration. The probabilities for each of the

folds are then averaged for prediction. We train “competence” classifiers (C) on the dataset

DE using logistic regression to predict “competence” scores between 0−1 for base classifiers.

If base classifier Bi gets a “competence” score greater than 0.5 then the base classifier is

considered competent. To derive features from CNN, we use pre-trained models presented

by the VGG-16 team in the ILSVRC-2014 competition19 and the CAFFE framework42. For

deep tags, we consider top d = 10 object labels as d = 10 worked best.

Exploratory Analysis.

We provide exploratory analysis in Table 5.2 to highlight the potential of merging object,

scene and tag modality for privacy prediction. We predict privacy for images in the Test

set using base classifiers in B and obtain “private” (Pr), “public” (Pu) and “overall” (O)

accuracy for: (a) a modality is correct (e.g., object), (b) all modalities are correct, (c) all
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Test Pr(%) Pu(%) O(%)

Object is correct 49 95.7 84.8
Scene is correct 51 94.7 84.4
Tag is correct 57 91.1 83
All are correct 30 87.3 73.9
All are wrong 27 1.5 7.4
Atleast one modality is correct 73 98.5 92.6

Table 5.2: Exploratory analysis.

modalities are wrong, and (d) at least one modality is correct. Table 5.2 shows that out

of the three base classifiers (top 3 rows), the tag model yields the best accuracy for the

private class (57%). Interestingly, the results for “at least one modality is correct” (73%)

show that using multi-modality, there is a huge potential (16%) to improve the performance

of the private class. This large gap is a promising result for developing multi-modality

approaches for privacy prediction. Next, we evaluate DMFP that achieved the best boost in

the performance for the private class using these modalities.

5.6.1 Impact of Parameters kv and kp on DMFP

We show the impact of neighborhood parameters, i.e., kv and kp on the privacy predic-

tion performance obtained by the proposed approach DMFP. kv and kp are used to iden-

tify visual (NV ) and privacy profile (NP ) neighborhoods of a target image, respectively

(Alg. 4 lines 7–8). We experiment with a range of values for both the parameters kv, kp =

{10, 20, · · · , 100, 200, · · · , 1000}, in steps of 10 upto 100 and then in steps of 100. We also

experiment with larger kv and kp values, but for better visualization, we only show the

values with significant results. Figure 5.3 shows the F1-measure obtained (using 3-fold

cross-validation on the DE dataset) for the private class for various kv and kp values. We

notice that when we increase the kv parameter the performance increase whereas when we

increase kp parameter, the performance increases upto kp = 200, then the performance de-

creases gradually. The results show that the performance is quite sensitive to changes in the

privacy neighborhood (NP ) parameter kp, but relatively insensitive to changes in the visual

neighborhood (NV ) parameter kv. We get the best performance for kv = 900 and kp = 100.
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Figure 5.3: F1-measure obtained for various kv and kp values.

Private Public Overall
Features Pre. Re. F1 Pre. Re. F1 Acc. Pre. Re. F1

(%)

DMFP 0.752 0.627 0.684 0.891 0.936 0.913 86.36 0.856 0.859 0.856

Components of the proposed approach

DMFP−NV 0.763 0.575 0.655 0.879 0.945 0.91 85.79 0.85 0.852 0.847
DMFP−NP 0.74 0.572 0.645 0.877 0.938 0.907 85.21 0.843 0.847 0.841
NV − CL 0.79 0.534 0.637 0.87 0.956 0.911 85.71 0.85 0.851 0.843
NP − CL 0.788 0.537 0.639 0.87 0.956 0.911 85.73 0.85 0.851 0.843
{NV +
NP } − CL

0.79 0.534 0.637 0.87 0.956 0.911 85.71 0.85 0.851 0.843

“Competence” Features

DMFP−φ1 0.777 0.553 0.646 0.874 0.951 0.911 85.74 0.849 0.852 0.844
DMFP−φ2 0.74 0.565 0.641 0.875 0.939 0.906 85.11 0.842 0.846 0.84
DMFP−φ3 0.752 0.627 0.683 0.891 0.936 0.913 86.35 0.856 0.859 0.856

Table 5.3: Evaluation of dynamic multi-modal fusion for privacy prediction (DMFP).

We use these parameter values in the next experiments.

5.6.2 Evaluation of the Proposed Approach

We evaluate the proposed approach DMFP for privacy prediction in an ablation experiment

setting. Specifically, we remove a particular component of the proposed approach DMFP

and compare the performance of DMFP before and after the removal of that component.

We consider excluding several components from DMFP: (1) the visual neighborhood NV

(DMFP−NV ), (2) the privacy profile neighborhood NP (DMFP−NP ), (3) “competence”

features (e.g., DMFP−φ1), and (4) base classifier selection without “competence” learning

(e.g., NV − CL). For option (4), we consider a simpler version of the proposed algorithm,
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in which we do not learn a competence classifier for a base classifier; instead, we rely solely

on the number of accurate predictions of the samples from a neighborhood. We evaluate it

using images from three regions: (a) neighborhood NV only (NV − CL), (b) neighborhood

NP only (NP − CL), and (c) both the neighborhoods NP and NV ({NP +NV } − CL).

Table 5.3 shows the class-specific (private and public) and overall performance obtained

by the proposed approach (DMFP) and after removal of its various components detailed

above. Primarily, we wish to identify whether the proposed approach characterizes the

private class effectively as sharing private images on the Web with everyone is not desirable.

We observe that the proposed approach achieves the highest recall of 0.627 and F1-score

of 0.684 (private class), which is better than the performance obtained by eliminating the

essential components (e.g., neighborhoods) of the proposed approach. We notice that if we

remove either of the neighborhood NV or NP , the recall and F1-score drop by 5% and 4%.

This suggests that both the neighborhoods (NV , NP ) are required to identify an appropriate

local region surrounding a target image. It is also interesting to note that the performance of

DMFP−NP (removal of NP ) is slightly lower than the performance of DMFP−NV (removal

of NV ), depicting that neighborhood NP is helping more to identify the competent base

classifier(s) for a target image. The NP neighborhood brings images closer based on their

privacy probabilities and hence, is useful to identify the competent base classifier(s) (this is

evident in Figure 5.2). We also show that when we remove competence learning (CL) i.e.,

NV − CL, NP − CL, and {NV +NP} − CL, the precision improves by 4% (private class),

but the recall and F1-score (private class) drops by 9% and 5% respectively, showing that

competence learning is necessary to achieve the best performance.

We also remove the “competence” features one by one and record the performance of

DMFP to understand which competence features are essential. Table 5.3 shows that when

we remove feature φ1 corresponding to the neighborhood NV , the performance drops signif-

icantly (≈ 4%). Likewise, when we remove φ2 (feature corresponding the NP region), we

notice a similar decrease of 4% in the F1-score of private class. Note that, when we remove

the “competence” features corresponding to their neighborhoods (such as φ1 for NV and

φ2 for NP ), we get nearly similar performance as we remove the respective neighborhoods
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Private Public Overall

Features Pre. Re. F1 Pre. Re. F1 Acc. Pre. Re. F1

(%)

DMFP 0.752 0.627 0.684 0.891 0.936 0.913 86.36 0.856 0.859 0.856

Object
(Bo)

0.772 0.513 0.616 0.864 0.953 0.907 84.99 0.843 0.85 0.838

Scene
(Bs)

0.749 0.51 0.606 0.863 0.947 0.903 84.45 0.836 0.844 0.833

Image
tags
(Bt)

0.662 0.57 0.612 0.873 0.91 0.891 83.03 0.823 0.83 0.826

Table 5.4: Dynamic multi-modal fusion for privacy prediction (DMFP) vs. base classifiers
of DMFP.

from the proposed approach (DMFP−NV and DMFP−NP ); implying that removing “com-

petence” features (e.g., φ1) is as good as removing the corresponding neighborhood (NV ).

However, a close look at the performance suggests that the performance obtained using

DMFP−φ1 (recall of 0.553) is slightly worse than the performance of DMFP−NV (recall of

0.57). Similarly, for DMFP−φ2, the performance (recall) decrease from 0.572 obtained using

DMFP−NP to 0.565. The performance decrease can be explained as when we remove the

neighborhood NV or NP , the respective “competence” features are empty, and that might be

helpful for some cases (as zero-valued φ2 feature of φs was helpful in Figure 5.2). Addition-

ally, the recall of DMFP−NV and DMFP−NP are similar whereas the recall of DMFP−φ1

(0.553) is slightly worse than the recall of DMFP−φ2 (0.565). The results suggests that the

neighborhood NV is more dependent on the “competence” features as compared to the neigh-

borhood NP . We experimented with the probability based “competence” features (instead

of boolean features), but did not yield improvements in the performance.

5.6.3 Proposed Approach vs. Base Classifiers

We compare privacy prediction performance obtained by the proposed approach DMFP with

the set of base classifiers B: 1. object (Bo), 2. scene (Bs), and 3. image tags (Bt).

Table 5.4 compares the performance obtained by the proposed approach (DMFP) and
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Model
(a) (b) (c) (d)

DMFP 3 3 3 7

Object 7 3 3 7

Scene 3 7 3 7

Tags 3 3 7 7

Figure 5.4: Predictions for private images.

B overall private public

object 16.52 14.00 23.75
scene 27.71 21.78 42.63
Tags 37.02 26.90 58.79

Table 5.5: Errors corrected (%).

base classifiers. We achieve the highest performance as compared to the base classifiers and

show a maximum improvement of ≈ 10% in the F1-score of private class. We notice that our

approach based on multi-modality yields an improvement of 11% over the recall of object

and scene models and an improvement of ≈ 6% over the recall of the tag model, that is the

best-performing single modality model obtained for the private class from the exploratory

analysis (refer to Table 5.2). Still, our approach makes some errors (See Table 5.2 and 5.3,

73% vs. 62%). A close look at the errors discovered that a slight subjectivity of annotators

could obtain different labels for similar image subjects (e.g., food images are very subjective).

Error Analysis

We perform error analysis to further analyze the results of the proposed approach. We first

determine the errors generated by all the base classifiers in B and corrected by the proposed

approach DMFP. We calculate the percentage of corrected errors for private class, public

class and overall (considering both the classes) and show them in Table 5.5. We compute

the percentage of corrected errors as the number of corrected errors of private (or public)

class over the total number of private (or public) class errors. We calculate the fraction of

overall corrected errors by considering both public and private classes. The table shows that

we correct 14%−27% of private class errors, 18%−58% of public class errors and overall we
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eliminate 16%− 37% errors. Note that errors generated for the private class are much larger

than the public class (See Table 5.4) and hence, even a comparatively smaller percentage of

corrected errors constitute to a significant improvement. We also analyze results by showing

predictions of samples in Figure 5.4, for which at least one base classifier fails to predict the

correct privacy of an image. For instance, for example (b), scene model failed to predict

the correct privacy of the image; however, DMFP identifies the competent base classifiers,

i.e., object, and tag and predict the correct privacy label. We also show an example (image

(d)) for which all the base classifiers fail to predict the correct privacy class and hence,

the proposed approach also fails to predict the correct label. The image of a food is very

subjective and hence, generic base classifiers will not be sufficient to predict the correct

labels of such images. In the future, these generic models can be extended to develop hybrid

approaches, that consider both generic and subjective privacy notions to predict personalized

privacy labels.

5.6.4 Proposed Approach vs. Baselines

We compare the performance of the proposed approach DMFP with multi-modality based

baselines described below.

1. Model Selection by Zahavy et al. 207: The authors proposed a deep multi-modal

architecture for product classification in e-commerce, wherein they learn a decision-level

fusion policy to choose between image and text CNN for an input product. Specifically, the

authors provide class probabilities of a product as input to the policy trained on a validation

dataset and use it to predict whether image CNN (or text CNN) should be selected for the

input. In other words, policy determines the competence of the CNNs for its input and thus,

we consider it as our baseline. For a fair comparison, we learn 3 policies (corresponding

to the competence classifiers C), wherein each policy (say object policy) predicts whether

the respective base classifier (object) should be selected for a target image. Note that we

learn these policies on the DE dataset. Finally, we take a majority vote of the privacy label

predicted by the selected base classifiers (identified by the policies) for a target image.

129



2. Majority Vote: We consider a majority vote as another baseline, as we use it for

final selection of privacy label for a target image. Unlike our approach, a vote is taken

without any pre-selection of base classifiers. We predict privacy of a target image using base

classifiers in B and select a label having highest number of votes.

3. Decision-level Fusion: Fixed rules, that average the predictions of the different

CNNs17 or select the CNN with the highest confidence204. The first rule is equivalent to the

majority vote baseline, and hence, we show the results for the second rule only. The second

rule is given as: YT = argmaxi([Pi
o +Pi

s +Pi
t]/3), where i = 0 (public), 1 (private). P o, P s,

and P t denotes the posterior probabilities (private or public) obtained using object (Bo),

scene (Bs) and tag (Bt) modality respectively.

4. Stacked Ensemble (Stacked–en): Stacking learns a meta-classifier to find an

optimal combination of the base learners217;218. Unlike bagging and boosting, stacking en-

sembles robust and diverse set of base classifiers together, and hence, we consider it as one

of the baselines. We use the same set of base classifiers B to encode images in DT using pos-

terior probabilities P (YI = private|I, Bi) and P (YI = public|I, Bi) where Bi ∈ B. We train

a meta-classifier on this encoded DT dataset using calibrated SVM classifier. We use this

meta-classifier to predict privacy class of an encoded target image T (using the posterior prob-

abilities obtained by the base classifiers P (YT = private|T,Bi) and P (YT = public|T,Bi)).

As we use DE only to learn “competence” classifiers, we do not consider it for training a

meta-classifier for a fair comparison.

5. Clusters-based Models (Cluster–en): We create 5 clusters of DT dataset using

hierarchical clustering mechanism and the combination of object, scene and tag features

(F ost). We train a calibrated SVM model on each cluster using the combination of features

F ost. For target image T , the most relevant cluster is identified using k = 15 nearest

neighbors, and the model trained on that cluster is used to predict the privacy of the target

image. We consider this as another baseline, because clustering images that are shared

online, brings similar image types (e.g., portraits) together and models trained on these

clusters can be competent to predict privacy of target images of respective image types. The

number of clusters and neighbors are estimated based on the DE dataset.
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Private Public Overall

Features Pre. Re. F1 Pre. Re. F1 Acc. Pre. Re. F1

(%)

DMFP 0.752 0.627 0.684 0.891 0.936 0.913 86.36 0.856 0.859 0.856

Zahavy
et al. 207

0.662 0.568 0.612 0.873 0.911 0.891 83.02 0.82 0.825 0.821

Majority
Vote

0.79 0.534 0.637 0.87 0.956 0.911 85.71 0.85 0.851 0.843

Decision-
level Fusion

0.784 0.555 0.65 0.874 0.953 0.912 85.94 0.852 0.853 0.846

Stacked–En 0.681 0.59 0.632 0.879 0.915 0.897 83.86 0.829 0.834 0.831

Cluster–En 0.748 0.429 0.545 0.845 0.956 0.897 83.17 0.822 0.831 0.814

Table 5.6: Dynamic multi-modal fusion for privacy prediction (DMFP) vs. baselines.

Table 5.6 compares the performance obtained by the proposed approach DMFP with

the performance obtained using the baseline models. We observe that DMFP learns better

privacy characteristics than baselines with respect to private class by providing improvements

of 4.5% − 14% and 4% − 20% in the F1-score and recall of private class. When we learn

the “competence” of the base classifiers (B) on the DE dataset without identifying the

neighborhoods (the first baseline, Zahavy et al. 207), the precision, recall and F1-score drop

by 9%, ≈ 6%, ≈ 7%. It is interesting to note that the precision of DMFP−CL (Refer

Table 5.3, NV −CL, NP −CL, {NV +NP}−CL), i.e., 0.79 is better than the first baseline

(Zahavy et al. 207), i.e., 0.662 whereas the recall of the first baseline (0.568) is better than

DMFP−CL (0.534). However, when we combine the neighborhoods ({NV + NP}) and

the first baseline (competence learning), i.e., the proposed approach DMFP, we get better

performance than each of these methods. Another detail to note that the performance of the

first baseline (Zahavy et al. 207) is very close to the image tags model (see Table 5.6, 5.4) and

even though the baseline uses multi-modality, the performance does not exceed significantly

over the individual base classifiers (object, scene, image). Zahavy et al. 207 performed well for

product classification, but it failed to yield improved results for privacy prediction because

unlike product images or ImageNet images (that contains single object in the image), images
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that are shared online are much more complex (containing multiple objects, and scene) and

diverse (having different image subjects such as self-portraits, personal events). The results

suggest that it is hard to generalize the competency of base classifiers on all types of image

subjects and hence, the competence of the base classifiers needs to be determined dynamically

based on the neighborhoods of a target image.

Table 5.6 also shows that F1-measure of private class improves from 0.637 achieved

by majority vote (the second baseline), 0.65 obtained by decision-level fusion (the third

baseline), 0.636 obtained by stacked–en (the fourth baseline), and 0.545 obtained by cluster–

en (the fifth baseline) to 0.684 obtained by DMFP. Additionally, we notice that the proposed

approach is able to achieve a performance higher than 85% in terms of all compared measures.

Note that a naive baseline which classifies every image as “public” obtains an accuracy of

75%. With a paired T-test, the improvements over the baseline approaches for F1-measure

of a private class are statistically significant for p-values < 0.05.

5.6.5 Proposed Approach vs. Prior Image Privacy Prediction

Works

We compare the privacy prediction performance obtained by the proposed approach DMFP

with the state-of-the-art works of privacy prediction: 1. object24;27 (Bo), 2. scene26 (Bs),

3. image tags12;24;27 (Bt), 4. PCNH privacy framework14, and 5. Concatenation of all

features26. Note that the first three works are the feature sets of DMFP and are evaluated

in the Experiment 5.6.3. We describe the remaining prior works (i.e., 4 and 5) in what follows.

4. PCNH privacy framework14: The framework combines features obtained from two

architectures: one that extracts convolutional features (size = 24), and another that extracts

object features (size = 24). The object CNN is a very deep network of 11 layers obtained by

appending three fully-connected layers of size 512, 512, 24 at the end of the fully-connected

layer of AlexNet17. The PCNH framework is first trained on the ImageNet dataset16 and

then fine-tuned on a privacy dataset. 5. Combination of Object, Scene and User Tags

(Concat)26: Tonge et al. 26 combined object and scene tags with user tags and achieved
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Private Public Overall
Features Pre. Re. F1 Pre. Re. F1 Acc. Pre. Re. F1

(%)

DMFP 0.752 0.627 0.684 0.891 0.936 0.913 86.36 0.856 0.859 0.856

PCNH14 0.689 0.514 0.589 0.862 0.929 0.894 83.15 0.819 0.825 0.818
Concat26

(F ost)
0.671 0.551 0.605 0.869 0.917 0.892 83.09 0.82 0.826 0.821

Table 5.7: Dynamic multi-modal fusion for privacy prediction (DMFP) vs. prior image
privacy prediction works.

an improved performance over the individual sets of tags. Thus, we compare the proposed

approach with the SVM models trained on the combination of all feature sets (F ost) to show

that it will not be adequate to predict the privacy of an image accurately. In our case, we

consider object and scene visual features instead of tags and combine them with user tags

to study multi-modality with the concatenation of visual and tag features.

Table 5.7 compares the performance obtained by the proposed approach (DMFP) and

prior works. We achieve the highest performance as compared to the prior works and show

a maximum improvement of ≈ 10% in the F1-score of private class. We notice that our

approach based on multi-modality yields an improvement of 11% over the recall of almost all

the prior works (Refer Table 5.4 and 5.7). Particularly, we show improvements in terms of all

measures over the PCNH framework, that uses two kinds of features object and convolutional.

We found that adding high-level descriptive features such as scene context and image tags to

the object features help improve the performance. In addition to the individual feature sets,

we also outperform the concatenation of these feature sets (denoted as “Concat”), showing

that “Concat” could not yield an optimal combination of multi-modality. We notice that

the performance of “Concat” is slightly lower than the performance of base classifiers (Refer

Tables 5.4 and 5.7). We find this is consistent with Zahavy et al. 207 results, that concatenated

various layers of image and tag CNN and trained the fused CNN end-to-end but did not

yield a better performance than the individual CNN (image or tag).
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5.7 Chapter Summary and Future Directions

In this chapter, we estimate the competence of object, scene and image tag modalities,

derived through convolutional neural networks and dynamically identify the set of most

competent modalities for a target image to adequately predict the class of the image as

private or public. The proposed approach contains three stages wherein we first identify

neighborhoods for a target image based on visual content similarity and privacy profile

similarity. Then, we derive “competence” features from these neighborhoods and provide

them to the “competence” classifiers to predict whether a modality is competent for the

target image. Lastly, we select the subset of the most competent modalities and take a

majority vote to predict privacy class of the target image. Experimental results show that

our approach predicts the sensitive (or private) content more accurately than the models

trained on an individual modality (object, scene, and tags), multi-modality baselines and

prior privacy prediction approaches. Also, our approach could aid other applications such

as event understanding, image classification, to on the fly decide which CNN (object, scene

or tag) to use based on a target image.

In the future, it will be interesting to study dynamic multi-modal fusion in personal-

ized privacy setting. Also, other types of competence learning approaches and competence

features can be developed for estimating the competence of base classifiers.
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Chapter 6

Summary and Discussion

In this chapter, we summarize the the contributions of this work and present future direction

in our research.

6.1 Dissertation Summary

Images today are increasingly shared online on social networking sites such as Facebook,

Flickr, Foursquare, and Instagram. Image sharing occurs not only within a group of friends

but also more and more outside a user’s social circles for purposes of social discovery. De-

spite that current social networking sites allow users to change their privacy preferences,

this is often a cumbersome task for the vast majority of users on the Web, who face diffi-

culties in assigning and managing privacy settings. When these privacy settings are used

inappropriately, online image sharing can potentially lead to unwanted disclosures and pri-

vacy violations. Thus, automatically predicting images’ privacy to warn users about private

or sensitive content before uploading these images on social networking sites has become a

necessity in our current interconnected world.

The result of our classification task is expected to aid other very practical applications.

For example, a law enforcement agent who needs to review digital evidence on a suspected

equipment to detect sensitive content in images and videos, e.g., child pornography. The
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learning models developed here can be used to filter or narrow down the number of images

and videos having sensitive or private content before other more sophisticated approaches can

be applied to the data. Consider another example, images today are often stored in the cloud

(e.g., Dropbox or iCloud) as a form of file backup to prevent their loss from physical damages

and they are vulnerable to unwanted exposure when the storage provider is compromised.

Our work can alert users before uploading their private (or sensitive) images to the cloud

systems to control the amount of personal information (eg. social security number) shared

through images.

Through this study, we first derive image tags, and visual content features by leveraging

CNN architectures, which are used in conjunction with machine learning classifiers and then

dynamically fuse these modalities to identify sensitive content accurately. Specifically, we

divided this research into four tasks. The following is a summary of this dissertation:

• The Use of Deep Features for Online Image Sharing: In this work, we explored

AI technology, i.e., deep features extracted from various CNN layers, for image privacy

classification. Our results show that the deep visual features corresponding to the fully-

connected layers of the AlexNet CNN outperform those corresponding to the “prob”

layer. We also examined user annotated tags and deep tags (generated from the “prob”

layer) and found that the combination of both the tags outperforms individual sets of

tags. In addition, models trained on deep features yield improvement in performance

over several baselines.

• DeepPrivate Features For Image Privacy Prediction: In this chapter, we pro-

vide a comprehensive study of the deep features derived from various CNN architectures

of increasing depth to discover the best features that can provide an accurate privacy

prediction for online images. Specifically, we explored features obtained from various

layers of the pre-trained CNNs such as AlexNet, GoogLeNet, VGG-16, and ResNet

and used them with SVM classifiers to predict an image’s privacy as private or public.

We also fine-tuned these architectures on a privacy dataset. The study reveals that the

SVM models trained on features derived from ResNet perform better than the models
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trained on the features derived from AlexNet, GoogLeNet, and VGG-16. We found

that the overall performance obtained using models trained on the features derived

through pre-trained networks is comparable to the fine-tuned architectures. However,

fine-tuned networks provide improved performance for the private class as compared to

the models trained on pre-trained features. The results show remarkable improvements

in the performance of image privacy prediction as compared to the models trained on

CNN-based and traditional baseline features. Additionally, models trained on the deep

features outperform rule-based models that classify images as private if they contain

people. We also investigate the combination of user tags and deep tags derived from

CNN architectures in two settings: (1) using SVM on the bag-of-tags features; and (2)

applying the text CNN over these tags. We thoroughly compare these models with

the models trained on the highest performing visual features obtained for privacy pre-

diction. We further provide a detailed analysis of tags that gives insights for the most

informative tags for privacy predictions. We finally show that the combination of deep

visual features with these informative tags yields improvement in the performance over

the individual sets of features (visual and tag).

• Privacy-Aware Tag Recommendation for Image Sharing. We proposed an

approach to recommending privacy-aware image tags that can improve the original set

of user tags and, at the same time, preserve images’ privacy to help reduce the private

content from the search results. Our approach draws ideas from collaborative filtering

(CF). Although the user-input tags are prone to noise, we were able to integrate them

in our approach and recommend accurate tags. More importantly, we simulated the

recommendation strategy for newly-posted images, which had no tags attached. This

is a particularly challenging problem, as in many CF approaches, the absence of items

(tags in our case) may theoretically hinder the recommendations to be produced, due

to the lack of enough information available to find similar images to a target image.

Through our experiments, we showed that we achieve better performance for image

privacy prediction with recommended tags than the original set of user tags, which in
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turn indicates that the suggested tags comply to the images’ privacy. We also show

that improving user tags with a set of privacy-aware recommended tags can reduce the

performance gap between the tag and visual features for privacy prediction. Visual

features and tag features can complement each other, and hence, can be combined to

obtain improved privacy prediction performance in the future. Last, we conducted a

user evaluation to inspect the quality of our privacy-aware recommended tags. The

results show that the proposed approach is able to recommend highly relevant tags.

• Dynamic Deep Multi-modal Fusion for Image Privacy Prediction: In this

chapter, we estimate the competence of object, scene and image tag modalities, de-

rived through convolutional neural networks and dynamically identify the set of most

competent modalities for a target image to adequately predict the class of the image as

private or public. The proposed approach contains three stages wherein we first identify

neighborhoods for a target image based on visual content similarity and privacy profile

similarity. Then, we derive “competence” features from these neighborhoods and pro-

vide them to the “competence” classifiers to predict whether a modality is competent

for the target image. Lastly, we select the subset of the most competent modalities

and take a majority vote to predict privacy class of the target image. Experimental

results show that our approach predicts the sensitive (or private) content more accu-

rately than the models trained on an individual modality (object, scene, and tags),

multi-modality baselines and prior privacy prediction approaches. Also, our approach

could aid other applications such as event understanding, image classification, to on

the fly decide which CNN (object, scene or tag) to use based on a target image.

6.2 Summary of Contributions

This section presents the contributions of our works in this dissertation:

1. The Use of Deep Features for Online Image Sharing.
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• We use three deep feature representations corresponding to the output of three

fully-connected layers of an eight-layer deep neural network pre-trained on ILSVRC-

2012, a subset of ImageNet dataset consisting of 1.2M+ images labeled with 1,000

object categories16, as well as the probability distribution over the 1,000 categories

obtained from the last layer of the network via softmax.

• As discussed earlier, the set of user tags may be incomplete and noisy. Hence,

unlike previous works, we leverage CNNs for automatically generating object tags.

We also propose the extraction of scene tags to capture additional information

from the visual content that is not captured by existing object tags. We call these

object and scene tags as “deep tags.”

• We evaluate the performance of the “deep” features (extracted from AlexNet17)

on a subset of the PicAlert dataset of Flickr images, labeled as private or public.

The PicAlert dataset was made publicly available by Zerr et al.7.

• We empirically show that learning models trained on deep visual features and

deep tags for privacy prediction outperform strong baselines such as those trained

on hierarchical deep features, SIFT, GIST (global image descriptors) and user

provided tags. We also show that deep visual features provide improved perfor-

mance for the private class (i.e., correctly identifying more images as private) as

compared to baseline approaches.

• Our results show that the deep image tags yield better performing models as

compared to user tags and the combination of deep tags and user tags outperforms

each set of tags individually.

2. DeepPrivate Features For Image Privacy Prediction.

• We study deep visual semantic features and deep image tags derived from CNN ar-

chitectures pre-trained on the ImageNet dataset and use them in conjunction with

Support Vector Machine (SVM) classifiers for image privacy prediction. Specif-

ically, we extract deep features from four successful (pre-trained) CNN archi-
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tectures for object recognition, AlexNet, GoogLeNet, VGG-16, and ResNet and

compare their performance on the task of privacy prediction. Through carefully

designed experiments, we find that ResNet produces the best feature representa-

tions for privacy prediction compared with the other CNNs.

• We fine-tune the pre-trained CNN architectures on our privacy dataset and use the

softmax function to predict the images’ privacy as public or private. We compare

the fine-tuned CNNs with the SVM models obtained on the features derived from

the pre-trained CNNs and show that, although the overall performance obtained

by the fine-tuned CNNs is comparable to that of SVM models, the fine-tuned

networks provide improved recall for the private class as compared to the SVM

models trained on the pre-trained features.

• We show that the best feature representation produced by ResNet outperforms

several baselines for image privacy prediction that consider CNN-based models

and SVM models trained on traditional visual features such as SIFT and global

GIST descriptor.

• Next, we investigate the combination of user tags and deep tags derived from

CNNs in two settings: (1) using SVM on the bag-of-tags features; and (2) apply-

ing the text CNN21 on the combination of user tags and deep tags for privacy

prediction using the softmax function. We compare these models with the models

trained on the most promising visual features extracted from ResNet (obtained

from our study) for privacy prediction. Our results show that the models trained

on the visual features perform better than those trained on the tag features.

• Finally, we explore the combination of deep visual features with image tags and

show further improvement in performance over the individual sets of features.

3. Privacy-Aware Tag Recommendation for Image Sharing.

• We present a privacy-aware approach to automatic image tagging, that aims at

improving the quality of user annotations (or user tags), while also preserving the
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images’ original privacy sharing patterns. Precisely, we recommend potential tags

for each target image by mining privacy-aware tags from the most similar images

of the target image, which we obtain from a large collection of images.

• We study our privacy-aware recommended tags obtained by the proposed privacy-

aware weighting scheme in an ablation experiment for privacy prediction. In this

experiment, we compare various privacy-aware and privacy-oblivious weighting

schemes and observe how the privacy prediction performance varies for these

weighting schemes. We also experiment with various parameter values to estimate

the best parameter setting.

• We compare the performance of privacy prediction using tags recommended by

the proposed approach against the tags recommended by a prior state-of-the-art

image annotation method. Our objective in this experiment is to verify whether

the recommended tags by the proposed approach can capture better privacy char-

acteristics than the prior state-of-the-art annotation.

• We investigate tag recommendation in a binary image privacy prediction task and

show that the predicted tags can exhibit relevant cues for specific privacy settings

(public or private) that can be used to improve the image privacy prediction

performance.

• Our results show that we achieve a better privacy prediction performance when we

add the recommended privacy-aware tags to the original user tags and predicted

deep tags of images as compared to prior approaches of image privacy prediction.

• We also evaluate the recommended tags by employing crowd-sourcing to identify

relevancy of the suggested tags to images. The results show that, although the

user-input tags comprise noise or even some images do not have any tags at

all, our approach is able to recommend accurate tags. In addition, we evaluate

both privacy-aware and privacy-oblivious recommended tags and show that the

privacy-aware recommended tags describe an image’s content more accurately as

compared to the privacy-oblivious tags.
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4. Dynamic Deep Multi-modal Fusion for Image Privacy Prediction.

• Our significant contribution is to estimate the competence of object, scene and

tag modalities for privacy prediction and dynamically identify the most competent

modalities for a target image whose privacy has to be predicted.

• We derive “competence” features from the neighborhood regions of a target image

and learn classifiers on them to identify whether a modality is competent to

accurately predict the privacy of the target image. To derive these features,

we consider privacy and visual neighborhoods of the target image to bring both

sensitive and visually similar image content closer.

• We provide an in-depth analysis of our algorithm in an ablation setting, where

we record the performance of the proposed approach by removing its various

components. The analysis outline the crucial components of our approach.

• Our results show that we identify images’ sensitive content more accurately than

single modality models (object, scene, and tag), multi-modality baselines and

prior approaches of privacy prediction, depicting that the approach optimally

combines the multi-modality for privacy prediction.

6.3 Future Directions

As we mentioned before, the main purpose of image privacy prediction systems is to ac-

curately identify private or sensitive content from images before they are shared on social

networking sites. In this study, given an image, we learn models to classify the image into

one of the two classes: private or public, based on generic patterns of privacy. As immediate

next steps we plan to:

• Recently, Zhong et al.32 discussed challenges faced by both generic and personalized

models for image privacy classification. Specifically, they highlight that generic privacy

patterns do not capture well an individual’s sharing behavior, whereas personalized
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models generally require large amounts of individual user data to learn reliable models,

and are time and space consuming to train and store models for each user. In future,

hybrid approaches can be developed that contain both generic and personalized models.

• An architecture can be developed, that will incorporate other contextual information

about images such as personal information about the image owner, owner’s privacy

preferences or the owner social network activities, in addition to the visual content

of the image. Another interesting direction is to extend these CNN architectures to

describe and localize the sensitive content in private images.

• The tags depicting objects (such as beach, furniture) or actions (such as walking) in im-

ages can be identified objectively, whereas abstract tags such as “beautiful,” “pretty,”

etc., are more subjective. These abstract concepts can be studied in personalized pri-

vacy settings and can help predict image sensitiveness which explicitly accounts for the

variance of human privacy notions.

• It will be interesting to study dynamic multi-modal fusion in personalized privacy

settings. Also, other types of competence learning approaches and competence features

can be developed for estimating the competence of base classifiers. For example, instead

of identifying neighborhood using nearest neighbors, which can be time-consuming,

images can be clustered and the most relevant image cluster can be considered for a

target image.
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