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Abstract

The paper studies the predictive content of jet fuel prices for the U.S. aviation industry

through in-sample and out-of-sample forecasting exercises. Our results suggest the

possibility of limited improvements in the predictions of airline fares, and little evidence

of predictability from jet fuel prices to measures of air travel demand.
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1 Introduction

Labor and fuel costs represent the major cost sources for airlines. Fuel costs constituted

approximately 20% to 50% of total costs for airlines in 2014 (Koopmans and Lieshout,

2016), while labor costs accounted for about 32.9% of systemwide unit cost (Stalnaker et al.,

2015). Whereas labor costs are generally stable in the short run (Figure 1B), jet fuel costs

tend to fluctuate significantly depending on crude oil prices (Figure 1A).

As a consequence of the high volatility of the price of jet fuel relative to other costs,

consumers, airline industry firms, and financial market participants, pay special attention

to fuel costs when predicting airline industry variables. Consumers concerned about the

cost and availability of air travel, time their purchases based on expected ticket prices and

the possibility that preferred flights sell out. Airline industry firms need an estimate of

future ticket prices and overall demand for air travel when making scheduling and related

Figure 1: Jet Fuel Prices, Crude Oil Prices, and Average Labor Cost for Airline Employees
A. Jet Fuel and Crude Oil Prices B. Wages and Salaries, and Pension and Benefits
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decisions. Financial market participants value airline industry stocks based on projected

future airline revenue. Despite the huge cost share of jet fuel for airlines, and the uncertainty

caused by fluctuations in jet fuel prices, not much research has addressed the question of the

predictability of airline variables following jet fuel price movements.

This paper asks whether jet fuel price movements are helpful as predictors of airline

industry variables. We investigate whether including jet fuel price movements in benchmark

autoregressive models helps improve the in-sample fit and out-of-sample forecasts of aviation

industry variables. We find some evidence of predictability of airfares. For other airline

industry variables, the improvements in forecast accuracy are at best minimal.

2 Methodology

2.1 Data

The aviation industry variables we consider include airfares, the consumer price index for

airfares (CPI airfares), enplanements, revenue passenger miles, available seat miles, flights

performed, and load factor, all for U.S. air carrier domestic and international scheduled

passenger flights. Data on all employees in the air transportation and warehousing sector

(employment), net income, and operating revenue of all U.S. air carriers are also used. The

data are all monthly, except airfares, net income, and operating revenue which are quarterly.

The monthly data were downloaded from the Federal Reserve Economic Database (FRED),

for the period 2000 : M1 − 2016 : M12. The quarterly data come from the Bureau of

Transportation Statistics for the period 2000 : Q1 − 2016 : Q4. Figure 2 plots the airline

variables. We take the year-over-year growth rates when estimating the forecasting models.

The data on jet fuel prices are monthly U.S. Gulf Coast kerosene-type jet fuel prices down-

loaded from FRED. We also use monthly data on global crude oil production, global real eco-

nomic activity (REA), and the U.S. refiner acquisition cost (RAC) of imported crude oil as a

proxy for crude oil prices (Kilian and Vigfusson, 2013; Baumeister et al., 2017). Global crude
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Figure 2: U.S. Airline Industry Indicators
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oil production and RAC come from the U.S. Energy Information Administration. REA come

from Kilian (2009), available at: http://www-personal.umich.edu/~lkilian/reaupdate.txt.1

All nominal variables are converted to real terms by deflating by the CPI.

2.2 Forecasting Models

The benchmark model is an autoregressive (AR) model of order p:

xt = α +
p∑

i=1
βixt−i + εt (1)

where xt is a U.S. aviation industry variable, εt is the error term, and p denotes the lag

length, chosen using the Schwarz Information Criterion (SIC) with 1 ≤ p ≤ 12.
1See Kilian (2009), and Kilian and Zhou (2017) for the construction of and rationale for this index.
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The first alternative model is a bivariate vector autoregressive (V AR) model:

xt = α +
p∑

i=1
βixt−i +

p∑
i=1

δi∆jett−i + εt (2)

where ∆jet denotes the percentage change in real jet fuel prices.

The second alternative model recognizes that demand and supply factors underlying the

crude oil market drive jet fuel prices. To disentangle these factors, we follow Kilian (2009).

We only present a brief discussion of the model as details can be found in Kilian (2009).

Consider the structural VAR (SVAR) model:

A0Xt = α +
24∑

i=1
AiXt−i + εt

Xt contains, in the order listed, global crude oil production (prodt), global real economic

activity (reat), and real RAC oil prices (oilt). Oil price changes are assumed to be driven

by shocks to oil supply (εst), aggregate demand (εyt), and crude oil demand (εot). Rewriting

the SVAR model in reduced-form as:

prodt = α0 +
24∑

i=1
α1iprodt−i +

24∑
i=1

α2ireat−i +
24∑

i=1
α3ioilt−i + est

reat = β0 +
24∑

i=1
β1iprodt−i +

24∑
i=1

β2ireat−i +
24∑

i=1
β3ioilt−i + eyt

oilt = γ0+
24∑

i=1
γ1iprodt−i +

24∑
i=1

γ2ireat−i +
24∑

i=1
γ3ioilt−i + eot

where et denotes the reduced-form residuals, identification restrictions are imposed, leading

to a recursively identified structural model:

et ≡


est

eyt

eot

 =


a11 0 0

a21 a22 0

a31 a32 a33




εst

εyt

εot



These identification restrictions are discussed in Kilian (2009). Once the structural shocks
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are recovered, we estimate a regression of the percentage change in real jet fuel prices (∆jet)

on the oil shocks:

∆jetst = α +
p∑

i=0
βiεs,t−i + ejst

∆jetot = α +
p∑

i=0
βiεo,t−i + ejot

The fitted values, ∆̂jetst and ∆̂jetot, denote jet fuel price movements due to oil supply and

demand factors. Jet fuel supply shocks will cause jet fuel prices to rise, hurting demand for

air travel, while jet fuel demand shocks capture factors such as the macroeconomy that drive

up both the demand for air travel and jet fuel prices.

Forecasts of x due to demand and supply factors can then be estimated using the model:

xt = α +
p∑

i=1
βixt−i +

p∑
i=1

δi∆̂jets,t−i +
p∑

i=1
γi∆̂jetd,t−i + εt (3)

If one does not distinguish between movements in jet fuel prices driven by supply and demand

factors, it is unclear what the relationship will be between jet fuel price movements and

aviation industry variables, or if there should be a systematic relationship at all.

We also compare the forecast performance of the models against that of a random walk

model. Random walk model forecasts are commonly used as benchmarks in forecast eval-

uation (see e.g. Alquist et al., 2013). The inability to beat random walk forecasts is often

interpreted as evidence that a variable cannot be forecast.

2.3 Forecast Evaluation

We use the mean squared forecast errors (MSFE) of the models relative to the benchmark

AR (p) model to evaluate forecast performance. Let x̂j,t+h denote the recursive out-of-sample

forecast of xt+h based on the jth forecasting model. Denote recursive forecasts from the AR(p)
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benchmark by x̂1,t+h. The MSFE of model j relative to the AR (p) benchmark is:

relative MSFE =

T2−h∑
t=T1

(xt+h − x̂j,t+h)2

T2−h∑
t=T1

(xt+h − x̂1,t+h)2
(4)

where T1 and T2 denote the start and end dates over which the h-step-ahead forecasts are

constructed. In this paper, T1 = 2010 : M1 and T2 = 2016 : M12 when using monthly data,

and T1 = 2010 : Q1 and T2 = 2016 : Q4 for quarterly data. A relative MSFE < 1 indicates

that the jth model outperforms the AR(p) benchmark.

3 Empirical Results

3.1 In-Sample Evidence of the Predictive Content of Jet Fuel

Price Movements

We investigate the in-sample predictability of jet fuel prices using the heteroskedasticity-

robust Granger-causality test statistic (Table 1). For flights, the tests reject the null of no

predictive content, providing evidence of predictability of jet fuel prices. Model 2 further

provides evidence of predictability for airfares, CPI airfares, available seat miles and employ-

ment, while model 3 shows that jet fuel price movements driven by oil supply and demand

factors are helpful in predicting operating revenue.

The finding of predictability of airfares is not surprising. Jet fuel costs represent the

single most significant cost to airlines. To the extent that airlines pass these costs through

to passengers in the form of higher airfares, this evidence of predictability is exactly what one

would expect. We also find that jet fuel prices have no predictive content for the remaining

airline variables, suggesting that jet fuel price movements in either direction are offset by

changes in prices only to the extent that it does not affect travel demand.
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Table 1: In-Sample Evidence of the Predictive Content of Jet Fuel Price Movements
Airline industry V ariable Model 2 p− value Model 3 p− value
Airfares 4.368∗∗ (0.017) 1.990 (0.109)
CPI Airfares 10.578∗∗∗ (0.000) 1.493 (0.206)
Enplanements 0.272 (0.762) 0.801 (0.526)
Flights Performed 4.087∗∗ (0.019) 3.091∗∗ (0.018)
Revenue Passenger Miles 0.434 (0.649) 1.045 (0.385)
Available Seat Miles 2.226 (0.111) 0.726 (0.575)
Load Factor 0.213 (0.808) 2.720∗∗ (0.031)
Airline Employment 2.564∗ (0.080) 1.699 (0.152)
Net Income 2.193 (0.121) 1.114 (0.359)
Operating Revenue 1.387 (0.258) 3.341∗∗∗ (0.016)

Notes: Numbers are Wald F −statistics, and numbers in parentheses are p-values. ’*’, ’**’, and ’***’ indicate significance at
the 10%, 5%, and 1%.

3.2 Out-of-Sample Forecasts

The one-step-ahead MSFE of the random walk model relative to the AR(p) benchmark is

displayed in column 1 of Table 2. The relative MSFE > 1 in all cases, implying that there

is a substantial predictable component in each series. The question is whether jet fuel price

movements can help to identify the predictable component.

The relative MSFE forecasts of Models 2 and 3 are in columns 2 and 3 of Table 2. The

table shows that both models yield gains in forecast accuracy relative to the benchmark for

airfares (MSFE < 1). For the remaining variables, improvements in forecast accuracy are

sporadic. Including ∆jet into the benchmark improves forecasts of only CPI airfares and

operating revenue (Model 2), while the model with ĵetst and ĵetot (Model 3) shows forecast

gains for flights and load factor.

Until now, we have only considered one-step-ahead forecasts. Changes in jet fuel prices

may not immediately affect variables like revenue passenger miles because those decisions

are made several months in advance. Reported in Table 3 are the relative MSFE of Models

2 and 3 at h = 3, 6, 12. Lag lengths are selected using the SIC. Airfares continue to be

predictable after three months, but at longer horizons, improvements in forecast performance

are minor. Jet fuel prices have strong predictive power for airline employment at all horizons.
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Table 2: One-Step-Ahead MSFE of Candidate Models Relative to AR(p) Benchmark
Airline Industry V ariable Random Walk Model 2 Model 3
Airfares 7.373 0.865 0.980
CPI Airfares 7.072 0.951 1.111
Enplanements 5.579 1.023 1.326
Flights Performed 1.499 1.090 0.982
Revenue Passenger Miles 3.256 1.026 1.263
Available Seat Miles 17.097 1.101 1.157
Load Factor 7.143 1.060 0.991
Airline Employment 50.245 1.126 1.088
Net Income 2.831 1.237 1.116
Operating Revenue 23.900 0.844 1.273

Notes: Boldface indicates gains in accuracy relative to the benchmark model.

Table 3: Multi-Steps-Ahead MSFE of Candidate Models Relative to AR(p) Benchmark
3-Steps-Ahead 6-Steps-Ahead 12-Steps Ahead

Airline Industry Model 2 Model 3 Model 2 Model 3 Model 2 Model 3
V ariable

Airfares 1.043 0.689 1.388 1.336 1.627 0.995
CPI Airfares 0.837 1.018 1.074 1.015 1.080 0.984
Enplanements 1.107 1.949 1.096 1.480 1.750 1.098
Flights Performed 1.310 1.056 1.560 1.117 1.907 1.082
Revenue Pass. Miles 1.040 2.272 1.012 1.550 1.285 1.311
Available Seat Miles 1.131 1.651 1.282 1.452 0.917 1.051
Load Factor 1.084 1.472 1.139 1.127 1.112 1.344
Airline Employment 0.942 1.163 0.827 1.023 0.893 0.997
Net Income 1.678 0.990 1.355 2.307 1.265 1.007
Operating Revenue 1.457 1.265 2.126 1.567 1.297 0.872

Notes: Boldface indicates gains in accuracy relative to the benchmark model.

When forecasting at longer horizons, it is no longer clear whether the SIC estimate of

lag lengths makes sense (Kilian and Lütkepohl; 2017). To ensure that the multi-step-ahead

forecasts are not biased because the SIC selects too few lags, we now report relative MSFE

for h = 3, 6, 12, and p = 3, 6, 9, 12 (Table 4) for the seven monthly variables. We omit

the quarterly variables because using more than 4 lags is generally not recommended for

quarterly data. In addition, over 4 lags causes serious degrees of freedom problems given our

small sample size. The table shows minimal gains in forecast accuracy. Worth noting are
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the gains in accuracy of our models for the six step-ahead forecasts of airfares.

4 Conclusion

This paper has investigated whether jet fuel prices are helpful in forecasting airline fares

and the demand for air travel. We rely on mean squared forecast errors (MSFE) to evaluate

the out-of-sample forecast performance of our models relative to the benchmark model. We

find some evidence of predictability of airfares. For measures of air travel demand and

other variables, improvements in forecast accuracy, however, are minimal. Our findings are

consistent with complementary evidence provided in Baumeister and Kilian (2017) on the

absence of a stimulus from the 2014/15 oil price decline on the U.S. transportation sector in

general, and on airline passenger revenue miles in particular.
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