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Abstract

Over three-quarters of observed galaxies are spiral galaxies, and of those spirals roughly

two-thirds are barred. The Milky Way, a barred spiral galaxy, is naturally a great founda-

tion to studying the structure of other barred spiral galaxies. Two important fundamental

constants are used to describe the Milky Way, R0 (the radial distance from the Sun to the

Galactic center) and Θ0 (the Galactic rotational velocity at R0). These two constants are

also crucial for developing the rotation curve of the Galaxy, which helps to understand the

mass distribution of the Galaxy and may be able to lend insight to the dark matter mass

contribution.

This work presents new, independently calculated values for R0 and Θ0. The error

distributions of a compilation of 28 (since 2011) independent measurements of R0 are wider

than a standard Gaussian and best fit by an n = 4 Student’s t probability density function.

Given this non-Gaussianity, the results of our median statistics analysis, summarized as

R0 = 8.0 ± 0.3 kpc (2σ error), probably provides the most reliable estimate of R0. The

unsymmetrized value for R0 is R0 = 7.96 +0.24
−0.30 kpc (2σ error). A complete collection of

18 recent (since 2000) measurements of Θ0 indicates a median statistics estimate of Θ0 =

220 ± 10 km s−1 (2σ error) as the most reliable summary for most practical purposes, at

R0 = 8.0± 0.3 kpc (2σ error). The resulting error distribution of this data set is only mildly

non-Gaussian, much more so than that of R0. These measurements use tracers that are

believed to more accurately reflect the systematic rotation of the Milky Way. Unlike other

recent compilations of R0 and Θ0, our collections includes only independent measurements.

This work concludes with a new set of Galactic constants (with 1σ error bars) of Θ0 =

222 ± 6 km s−1, R0 = 7.96 ± 0.17 kpc, and ω0 = Θ0/R0 = 27.9 ± 1.0 km s−1 kpc−1 as

probably the most reliable to date.
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Chapter 1

Introduction

Motivated to be able to describe the Milky Way with an updated set of describing parameters,

this work uses central estimate statistics on two data sets for R0, the galactocentric radius of

the Sun from Galactic center, and Θ0, the Galactic velocity at R0. This work describes the

way in which statistically independent data sets for each Galactic constant were compiled

for statistical independence, how these were analyzed, and the results for R0 and Θ0. Our

results for R0 and Θ0 will be useful for future work on creating an updated rotation curve

for the Milky Way.

It is expected that a large enough data set of N independent measurements will follow

a Gaussian distribution, however it is not unheard of for an astronomical parameter to not

obey a Gaussian distribution. Perhaps the most famous example is the Hubble constant

(Chen and Ratra, 2011a; Chen et al., 2003). For other examples in astronomy, cosmology,

and physics see Bailey (2017); Crandall and Ratra (2015); Farooq et al. (2013, 2017); Zhang

(2017), and references therein. Significant effort is devoted to testing for intrinsic non-

Gaussianity in physical systems (e.g. Park et al., 2001; Planck Collaboration, 2016), as

opposed to measurement induced non-Gaussianity, since Gaussianity is usually assumed in

parameter estimation (e.g. Chen and Ratra, 2011b; Ooba et al., 2017; Samushia et al., 2007).

Here is studied the data compilations of Table 2.1 (plus two sub-compilations) and 3.1 to

examine if they are non-Gaussian or not. If there is significant non-Gaussianity, this could
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be caused by improperly estimated errors.

To estimate the Gaussianity of a data collection we need to use a central estimate of

the data. We consider two main ones in this thesis: the median central estimate and the

weighted mean central estimate. The first of the data tables that are considered included

analysis with an additional central estimate, the arithmetic mean, primarily to show the

insignificance it holds.

1.1 Central Estimate Statistics

Median statistics does not use information of the error on a measurement at all and the true

median of a data set can be found independent of any of the individual measurements errors.

The estimated median will have a larger uncertainty than that of a weighted central estimate

statistic that makes use of error information. Used is the the median statistics technique

developed by Gott et al. (2001). The median is defined as the value with 50% of the data

being above it and 50% below it. Gott et al. (2001) show that for a data set of i = 1, 2, ..., N

independent values, Mi, the probability of the median being between Mi and Mi+1 is given

by the binomial distribution

P =
2−NN !

i!(N − i)!
. (1.1)

The 1σ error about the median is then defined by the range about it such that 68.27% of

the probability is included. This can be extended to finding the 2σ error about the median,

where instead 95.45% of the probability would be enclosed.

The weighted mean comes with the benefit of additional information in the errors, at the

potential expense of including inaccurate uncertainties (Podariu et al., 2001). The weighted

mean of the Galactic rotational velocity is

Mwm =

∑N
i=1Mi/σM

2
i∑N

i=1 1/σM 2
i

, (1.2)

where Mi and σMi are the rotational velocities and errors. The weighted mean standard
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deviation is

σwm
M =

1√∑N
i=1 1/σM 2

i

. (1.3)

It may also be of value to consider the arithmetic mean,

Mm =
1

N

N∑
i=1

Mi. (1.4)

The underlying assumptions here are that each of the measurements have roughly the same

uncertainty, and that the data come from a normally distributed set. The standard error of

the mean is

σm =

√√√√ 1

N2

N∑
i=1

(Mi −Mm)2. (1.5)

Note that the standard deviation of the data set, σ, and the standard error of the mean, σm,

differ by the square root of the amount of measurements: σm = σ/
√
N .

When studying the measurements of the radial distance of the Sun to the Galactic Center,

Mi, this will change to be R0i. The rotational velocity of the Galaxy at R0 is Θ0, with

individual measurements being Θ0i.

The next step in analyzing the data is to construct error distributions of the data based

on the chosen central estimate.

1.2 Error Distributions

For a central estimate (median, weighted mean, or arithmetic mean) MCE independent of

the data Mi, the number of standard deviations that each value deviates from the central

estimate is

NσM i =
Mi −MCE√

Var (Mi −MCE)
(1.6)

where Var (Mi −MCE) is the variance between the independent measurement, Mi and the

central estimate, MCE.

For median statistics when the central estimate is assumed to be slightly correlated with
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the data itself1 we have

Nmed
σMi

=
Mi −Mmed√(
σMi

)2
+
(
σmed
Mi

)2
. (1.7)

Here MCE is the central estimate of Mi and σCE is the error of the central estimate of Mi.

Nσi represents how much Mi deviates from the central estimate, taking into account both the

error associated with the measurement and the error associated with the central estimate.

(In this thesis we do not always symmetrize σCE for the median statistics cases (if the data

are not symmetric enough to justify it). Thus, when applicable, we use the upper/right-side

error σuCE for when Mi ≥ MCE and the lower/left-side error σlCE for when Mi ≤ MCE.)

For Gaussianly distributed measurements and the weighted mean central estimate estimated

from the data (and so correlated with the data) we instead have (see the Appendix of

Camarillo and Ratra (2018, hereafter C18)2

Nwm
σMi

=
Mi −Mwm√(
σMi

)2 −
(
σwm
Mi

)2
. (1.8)

In recent publications on error distribution analysis, the standard form has been eq. (1.11)

until discovering that the variance distributes to result in subtracting by quadrature when

the central estimate is directly derived from the data itself. With three central estimates-

the median, weighted mean, and arithmetic mean- we can label our error distributions Nmed
σ ,

Nwm
σ , and Nmean

σ . It was additionally found in C18 that a previously referred to Nmed
σ should

not be used, since the error used by integrating the area under a histogram out to 1 and 2σ

is not the actual error on the median.

These represent differing combinations of central estimates and errors, defined as

Nmed
σMi

=
Mi −Mmed√
σ2
i + σ2

Gott

, (1.9)

1As opposed to the heavy correlation a weighted mean has with the data itself.
2An analogous equation for median statistics, for the case when the median is estimated from the data

and so is correlated with the data, is not yet known.
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Nwm+
σMi

=
Mi −Mwm√
σ2
i + σ2

wm

; (1.10)

Nmean
σMi

=
Mi −Mm√
σ2
i + σ2

m

. (1.11)

Since the central estimates are calculated from the data, they must to some degree be corre-

lated with the error measurements and as explained, a more appropriate error distribution

is then3

Nwm−
σMi

=
Mi −Mwm√
σ2
i − σ2

wm

. (1.12)

The derivation of an equivalent error distribution that accounts for the correlation is non-

trivial for a median central estimate, however eq. (1.11) provides a valuable limiting case.4

1.3 Probability Density Functions

A commonly used method of qualitatively studying Gaussianity of an distribution is χ2

analysis. The Nσi distribution is binned, and a goodness of fit is calculated for a well-defined

probability density function (PDF). In this paper we use 4 PDF’s: Gaussian, Student’s t,

Cauchy, and Laplace (Double Exponential) distributions. The reduced χ2, χ2
ν = χ2/ν, can

be easily calculated from the number of degrees of freedom, ν. In this case, ν is one less

than the total number of measurements, ν = N − 1).5 The equation for reduced χ2 is

χ2
ν =

1

N − 1

b∑
i=1

[M(Nσi)−NP (Nσi)]
2

NP (Nσi)
(1.13)

where b is the number of bins, M(N
i
) is the number of values within Nσ bins, N is the

number of measurements, and P (Nσi) is the PDF in question.

χ2
ν supplies insight to the spread of the distribution, and a smaller value represents a

good fit to the PDF. For these two data sets however a more appropriate way to study the

3See the Appendix for a derivation.
4It would be interesting to account for the correlation between the measurements and the median from

eq. (1.1), but this is beyond the scope of this research.
5For a more detailed explanation of χ2 analysis see Crandall and Ratra (2015).
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Gaussianity is a test that may be more sensitive with unbinned data sets.6

We numerically study our error distributions using the one-sample Kolmogorov-Smirnov

(K-S) test (Feigelson and Babu, 2012). This non-parametric, distribution-free test deter-

mines the probability that the given sample distribution comes from a PDF, at a chosen

significance level α. The qualitative returns of a K-S test are a D-statistic and a p-value.

The D statistic is the supremum of, or the largest distance between, the cumulative sample

distribution and the cumulative PDF. The closer this value is to zero, the better the sample

distribution is well described by the PDF. For a sample distribution of N measurements

there is a critical value Dcrit(N) that must be less than the test result, D, in order to not

reject the null hypothesis at the specified significance level (which is conventionally set at

α = 0.05 for a confidence level of 95%). As an example, for N = 28 measurements (the

R0 measurements data set) Dcrit = 0.24993.7 The p-value follows from the D statistic and

represents not the probability that the sample set is from the proposed PDF, but rather the

probability that we cannot reject the null hypothesis that the distributions are the same. It

is for this reason that the probabilities of the K-S test should be used as qualitative indica-

tors of distribution fitting. It is of interest to study the K-S test results for as many PDF’s

as possible. We choose the PDF with the lowest D statistic and the highest P value as the

best representation of the error distribution under study.

We define our PDF’s as functions of |N| = |Nσ/S|, where S is a scale factor. When S = 1

and |N| = |Nσ|, P (|N|) is the standard form of the PDF. When S > 1, the distribution is

broader than the standard form, while S < 1 corresponds to a narrower distribution. While

Nσi is computed with unsymmetrized errors, the distribution of Nσ is symmetrized for the

K-S test.

We define a Gaussian distribution of Nσ with an expected 68.27% and 95.45% of the

6The results for NGott
σ (Nwm−

σ ) for our independent data set of R0 measurements is χ2
ν = 0.426 (χ2

ν =
3.464). The results for NGott

σ (Nwm−
σ ) for our independent data set of Θ0 measurements from ”Old” tracers

is χ2
ν = 0.209 (χ2

ν = 0.093). This indicates that it is appropriate to further test for the best fitting PDF as
the error distributions are not significantly non-Gaussian, or exceptionally spread out.

7See Appendix 3 of O’Connor and Kleyner (2012) for a table of Dcrit as a function of N .
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values falling within |Nσ| ≤ 1 and |Nσ| ≤ 2 respectively as

P (|N|) =
1√
2π

exp(−|N|2/2). (1.14)

The second distribution that we consider is a Laplace (Double Exponential), given by

P (|N|) =
1

2
exp (−|N|). (1.15)

The Laplace PDF is sharply peaked, with longer (smaller) tails than a Gaussian (Cauchy)

distribution. For this distribution, 68.27% and 95.45% of the values correspond to |Nσ| ≤ 1.2

and |Nσ| ≤ 3.1 respectively. The Cauchy (Lorentz) distribution

P (|N|) =
1

π

1

1 + |N|2
(1.16)

has much higher probability in the tails, with an expected 68.27% and 95.45% of the values

falling within |Nσ| ≤ 1.8 and |Nσ| ≤ 14 respectively. The Student’s t distribution is defined

by

P (|N|) =
Γ[(n+ 1)/2]√
πn Γ(n/2)

1

(1 + |N|2/n)(n+1)/2
(1.17)

where n is a positive non-zero parameter and Γ is the gamma function. When n = 1 this

is the Cauchy distribution, and when n → ∞ it becomes the Gaussian distribution. Thus,

for n > 1, it is a function with slightly less extended tails than a Cauchy, that decrease as n

increases. In this case, the limits corresponding to 68.27% and 95.45% of the values depend

on the value of n.

1.4 Determining Non-Gaussianity

In studying the results of the K-S test comes the conclusion of analyzing the Gaussianity of

the error distribution (and thus data set) in question. The non-Gaussianity is determined

by multiple factors and in the respective R0 and Θ0 chapters will be explanations of how to
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compare the results of a median statistics approach to a weighted mean statistics approach.
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Chapter 2

Fundamental Constants of the Milky

Way Galaxy: R0

There has been a slew of publications aiming to determine R0 and V0 in the last decade and

the research of this thesis brings to light the lack of independence and critical central estimate

analysis within some larger data sets in question. The work described in this chapter was

done in collaboration with Varun Mathur, Tyler Mitchell, and Dr. Ratra and published in

Camarillo and Ratra (2018).

2.1 R0 Introduction

The value of R0, the distance of the Sun to the center of the Milky Way Galaxy, is a

very important datum for astrophysics and cosmology. A quarter century ago, Reid (1993)

concluded that a reasonable summary value was R0 = 8.0 ± 0.5 kpc (errors are 1σ unless

indicated otherwise). More recent summary estimates include R0 = 7.9 ± 0.2 kpc from

Nikiforov (2004), R0 = 8.0±0.25 kpc from Malkin (2012), R0 = 8.3±0.2 (stat.)±0.4 (syst.)

kpc from de Grijs and Bono (2016), and R0 = 8.0± 0.2 kpc from V17.

de Grijs and Bono (2016) compiled 273 R0 measurements, not all of which are statistically

independent, and carefully studied how publication bias might have influenced R0 measure-
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ments. Their summary R0 value is based on a consideration of only a very few of their 273

measurements. Vallée (2017, hereafter V17) on the other hand only compiled 27 very recent

measurements, also not all independent; while we are able to reproduce his central estimate

of R0 = 8.0 kpc, we are unable to reproduce his ±0.2 kpc error bars from his compiled data

set.

Here, we revisit the issue of determining a best estimate for, and errors on, R0. Following

V17, we compile a list of 28 recent R0 measurements in the belief that the more recent

measurements are more reliable, but we carefully check to make sure that our list only

includes statistically independent measurements, unlike the recent de Grijs and Bono (2016)

and V17 compilations.

Following, and generalizing, Chen et al. (2003), we study the error distributions of this

28 measurement data set. We discover that the errors are somewhat non-Gaussian. This

is not unexpected (Bailey, 2017); well-known examples of non-Gaussianity include Hubble

constant H0 measurements (Chen et al., 2003), 7Li abundance measurements (Crandall and

Ratra, 2015; Zhang, 2017), and LMC and SMC distance moduli measurements (de Grijs

et al., 2014; ?).

Significant effort is often devoted to determining whether there is intrinsic non-Gaussianity

in astrophysical and cosmological systems (e.g., Park et al., 2001; Planck Collaboration,

2016), as opposed to non-Gaussianity introduced by measurement techniques. This is be-

cause Gaussianity is assumed in many parameter constraint analyses (e.g., Podariu and

Ratra, 2000; Ratra et al., 1999).

Care is required when analyzing data with non-Gaussian errors (e.g., Bailey, 2017; Gott

et al., 2001; Zhang, 2017). Gott et al. (2001) developed median statistics partially for this

purpose. Median statistics does not make use of the measurement errors and so is not

affected by the non-Gaussianity, but since it discards some of the measurement information

(the errors) it is less constraining. A well-known example of the use of median statistics

is the analysis of H0 measurements (Calabrese et al., 2012; Chen and Ratra, 2011a; Chen

et al., 2003; Gott et al., 2001).

In this paper, we apply median statistics to our compilation of 28 independent, recent

10



R0 measurements. We find R0 = 7.96 +0.11
−0.23 (+0.24

−0.30) kpc, where the errors are 1σ (2σ). For

most practical purposes, this can be taken to be R0 = 8.0± 0.3 kpc at 2σ.

In Sec. 2.2 we discuss our compilation of recent independent R0 measurements and how it

differs from that used by V17. In Ch. 1 we summarized our methods for computing central

estimates and errors of the compiled data set; the results of this process can be found in

Sec. 2.3 and Sec. 2.4. We conclude in Sec. 2.5.

2.2 R0 Data Compilation

The R0 data we use in our analyses are listed in Table 2.1. The second column of the table

lists the 27 R0 values given to one decimal place in Table 1 of V17. The third column of our

Table 2.1 updates these values, to two decimal places, from the original publications.

Of these 27 measurements, only 20 are statistically independent, and these are listed in

column 4 of Table 2.1. To these 20 measurements we added 8 new, post-2010, independent

values that we found after a fairly exhaustive search of the literature. We decided to only use

more recent (post-2010) data in the hope that they would be of better quality than earlier

data. These 28 measurements are listed in column 5 of Table 2.1. Most of our analyses here

focus on these 28 measurements.

In making our list of independent measurements, we ensure that no two estimates use

the same experimental data. If two papers use the same method but use data from different

equipment then we include both. Consider Boehle et al. (2016) and Gillessen et al. (2013):

both estimate R0 by using the orbits of S-stars about the Galactic Center, Sgr A∗. However,

they use distinct experiments to constrain the orbits. There are quite a few papers that use

the same method and data, from the same experiments, as the two above – we include only

the latest independent results and drop the rest. Some papers combine their result with

other data: Do et al. (2013) combines their estimate of R0 using statistical parallax with

Ghez et al. (2008), a predecessor of Boehle et al. (2016). In this case we use the measurement

of R0 from Do et al. (2013), that is not combined with Ghez et al. (2008) data, R0 = 8.92+0.58
−0.55

kpc. We assume that only a small degree of systematic error is present in measurements of

11



Table 2.1. R0 (in kpc) Measurements

Year Vallée Vallée: Vallée: Independent Reference
updateda independenta from 2011a

2011 - - - 7.94 ± 0.65 Fritz et al. (2011)
2011 - - - 8.07 ± 0.35 Trippe et al. (2011)
2012 7.7 ± 0.4 7.70 ± 0.40 - - Morris et al. (2012)
2012 8.0 ± 0.8 8.00 ± 0.45 8.00 ± 0.45 8.00 ± 0.45 Bovy et al. (2012)
2012 8.0 ± 0.4 8.05 ± 0.45 - - Honma et al. (2012)
2012 8.3 ± 0.4 8.27 ± 0.29 8.27 ± 0.29 8.27 ± 0.29 Schönrich (2012)
2013 7.6 ± 0.6 7.50 ± 0.60 7.50 ± 0.60 7.50 ± 0.60 Matsunaga et al. (2013)
2013 - - - 7.25 ± 0.32 Bobylev (2013)
2013 7.6 ± 0.3 7.64 ± 0.32 7.64 ± 0.32 7.64 ± 0.32 Bobylev (2013)
2013 - - - 7.66 ± 0.36 Bobylev (2013)
2013 - - - 7.73 ± 0.36 Dambis et al. (2013)
2013 - - - 7.91 ± 0.41 Bono et al. (2013)
2013 8.0 ± 0.8 7.98 ± 0.79 7.98 ± 0.79 7.98 ± 0.79 Zhu and Shen (2013)
2013 8.0 ± 0.7 8.03 ± 0.70 8.03 ± 0.70 8.03 ± 0.70 Zhu and Shen (2013)
2013 8.2 ± 0.8 8.25 ± 0.79 - - Zhu and Shen (2013)

2013 8.2 ± 0.2 8.13 ± 0.10b 8.13 ± 0.10b 8.13 ± 0.10b Cao et al. (2013)
2013 8.3 ± 0.2 8.33 ± 0.15 - - Dékány et al. (2013)
2013 - - - 8.20 ± 0.34 Gillessen et al. (2013)
2013 8.5 ± 0.4 8.46 ± 0.40 8.92 ± 0.57 8.92 ± 0.57 Do et al. (2013)
2014 6.7 ± 0.4 6.72 ± 0.39 6.72 ± 0.39 6.72 ± 0.39 Branham (2014)
2014 7.4 ± 0.3 7.40 ± 0.28 7.40 ± 0.28 7.40 ± 0.28 Francis and Anderson (2014)
2014 7.5 ± 0.3 7.50 ± 0.30 7.50 ± 0.30 7.50 ± 0.30 Francis and Anderson (2014)
2014 8.3 ± 0.2 8.34 ± 0.16 - - Reid et al. (2014)
2015 - - - 7.60 ± 1.35 Ali et al. (2015)
2015 7.7 ± 0.1 7.68 ± 0.07 7.68 ± 0.07 7.68 ± 0.07 Branham (2015)
2015 8.0 ± 0.3 8.03 ± 0.12 - - Bajkova and Bobylev (2015)
2015 8.3 ± 0.1 8.33 ± 0.11 8.27 ± 0.13 8.27 ± 0.13 Chatzopoulos et al. (2015)
2015 8.3 ± 0.4 8.27 ± 0.40 8.27 ± 0.40 8.27 ± 0.40 Pietrukowicz et al. (2015)
2015 8.3 ± 0.3 8.30 ± 0.25 8.30 ± 0.25 8.30 ± 0.25 Küpper et al. (2015)
2016 7.9 ± 0.1 7.86 ± 0.15 7.86 ± 0.15 7.86 ± 0.15 Boehle et al. (2016)
2016 8.4 ± 0.1 8.24 ± 0.12 8.24 ± 0.12 8.24 ± 0.12 Rastorguev et al. (2017)
2016 8.9 ± 0.4 8.90 ± 0.40 8.90 ± 0.40 8.90 ± 0.40 Catchpole et al. (2016)
2017 7.6 ± 0.1 7.64 ± 0.09 7.64 ± 0.09 7.64 ± 0.09 Branham (2017)
2017 8.0 ± 0.2 7.97 ± 0.15 - - McMillan (2017)
2017 8.2 ± 0.1 8.20 ± 0.09 8.20 ± 0.09 8.20 ± 0.09 McMillan (2017)

aWe determine the error by symmetrizing the error bars (if necessary) and adding the statistical
and systematic errors in quadrature.

bCao et al. (2013) does not list an error bar. We thank L. Cao and S. Mao for providing the value
listed here via private communication (2017).

R0.1

2.3 Analyzing R0

To construct error distributions of this data set, used is three central estimates: the median,

weighted mean, and arithmetic mean.2 This is the only analysis this thesis that will utilize

the arithmetic mean.

The central estimates and associated errors are recorded in Table 2.2 for each of the data

sets of Table 2.1. From column 2 of Table 2.2, we see our median, weighted mean, and

arithmetic mean central estimates of 8 kpc coincide with those of V17 (at the bottom of

1We do account for all stated systematic errors. Our results below, which show that the error distributions
are not very non-Gaussian, are consistent with our assumption that unknown systematic errors are small.

2We follow the conventions of Secs. 38 and 39 of Particle Data Group (2016).
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Table 2.2. R0 (in kpc) Central Estimates and Errors

Vallée Vallée: Vallée: Independent
updated independent from 2011

Median, integrala 8.00 +0.36
−0.34

+0.54
−1.26 8.03 +0.31

−0.32
+0.83
−1.27 8.02 +0.26

−0.55
+0.86
−1.24 7.96 +0.29

−0.50
+0.90
−1.20

1σ range 7.66− 8.36 7.71− 8.34 7.47− 8.28 7.46− 8.25
2σ range 6.74− 8.54 6.76− 8.86 6.78− 8.88 6.76− 8.86

Median, Gottb 8.00 +0.20
−0.00

+0.30
−0.30 8.03 +0.17

−0.05
+0.24
−0.33 8.02 +0.18

−0.16
+0.25
−0.38 7.96 +0.11

−0.23
+0.24
−0.30

1σ range 8.00− 8.20 7.98− 8.20 7.86− 8.20 7.73− 8.07
2σ range 7.70− 8.30 7.70− 8.27 7.64− 8.27 7.66− 8.20

Weighted Mean 8.02± 0.04 7.99± 0.03 7.93± 0.03 7.93± 0.03
1σ range 7.99− 8.06 7.95− 8.02 7.90− 7.97 7.89− 7.96

Arithmetic Mean 8.00± 0.08 7.99± 0.08 7.97± 0.11 7.92± 0.09
1σ range 7.91− 8.08 7.91− 8.07 7.86− 8.08 7.84− 8.01

aErrors are estimated by binning the measurements to 0.1 kpc and integrating outwards until
reaching 68.27% and 95.45% of the area under the distribution.

bErrors are estimated from the median statistics probability distribution of eq. (1.1).

his Table 1). However, we are unable to reproduce his weighted mean and arithmetic mean

error bars of ±0.2 kpc (he does not quote a median error bar); our weighted (arithmetic)

mean error bar is ±0.04 (0.4) kpc.

The last column of Table 2.2 summarizes our main result. As discussed below, we find

the error distribution for our chosen 28 measurements are somewhat non-Gaussian, but

not excessively so.3 Consequently we recommend that the median central value and the

symmetrized errors for the 68.27% and 95.45% confidence ranges as defined in Gott et al.

(2001) be used to describe the value of and errors on R0. This gives R0 = 7.96±0.17 (±0.27)

kpc, with symmetrized 1σ (2σ) error, though it might be preferable to use the unsymmetrized

result of R0 = 7.96 +0.11
−0.23 (+0.24

−0.30) kpc to take into account the slightly asymmetric nature of

the set of measurements. For most practical purposes, R0 = 8.0 ± 0.3 (2σ error) serves as

an appropriate summary estimate to one decimal place.

3Seeing as the error distribution calculated from the median statistics of eq. (1.1) is not very non-Gaussian
it is unlikely that most errors have been incorrectly estimated. Specifically, it is unlikely that there are large
undiscovered systematic errors.
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Table 2.3. K-S Test Probabilities

Nmed
σ NGott

σ
c Nwm+

σ Nwm−
σ Nmean

σ

PDF Sa P(%)b Sa P(%)b Sa P(%)b Sa P(%)b Sa P(%)b

Gaussian 1 69.4 1 53.4 1 11.9 1 11.7 1 17.8
Gaussian 0.85 99.5 1.24 99.6 1.68 99.9 1.73 99.8 1.56 99.9
Laplace 1 39.0 1 82.6 1 47.9 1 45.3 1 57.3
Laplace 0.77 93.6 1.13 97.7 1.40 99.8 1.52 99.9 1.28 99.0
Cauchy 1 4.1 1 32.8 1 64.6 1 88.7 1 50.2
Cauchy 0.51 84.6 0.70 84.8 0.77 90.2 0.83 97.2 0.75 88.1

n = 100 n = 3 n = 2 . . . . . . . . . . . . . e n = 2
Student’s td 1 67.7 1 97.5 1 81.1 . . . . . . . . . 1 88.8

n = 100 n = 4 n = 5 n = 2 n = 34
Student’s td 0.85 99.4 1.11 99.7 1.50 99.9 1.28 99.9 1.53 99.9

aScale factor S is first set at S = 1 (representing the case when |Nσ | = 1 corresponds to 1 standard
deviation for a Gaussian distribution) and is then allowed to vary with the width of the function as D
is minimized.

bThis is the P value described in Sec. 1.3. It is the probability that we cannot reject the hypothesis
that the sample distribution Nσ came from a distribution created from the probability density function.

cWe use the errors corresponding to 68.27% confidence in NGott
σ because we use 1 standard deviation

for Nmed
σ .

dWe allow n to vary between 1 and 100 for the Student’s t distribution.

eThe K-S test using a Student’s t PDF on Nwm−
σ for S = 1 yielded a best fit of n = 1 which is the

Cauchy distribution.

2.4 R0 Error Distributions

After determining the central estimates in table 2.2, the error distributions are constructed

by using the methods within Section 1.2.

It was decided to use the five error distributions of eqns. (1.9), (1.10), (1.11), (1.13), and

an additional now-obsolete equation to attempt to gain some insight into the R0 measure-

ments’ error distribution.4

Our K-S test results, for the 28 independent R0 values listed in column 5 of Table 2.1, are

shown in Table 2.3. While some S = 1 entries have low probabilities, and P = 11.7% for the

S = 1 Gaussian case of the weighted mean central estimate and the 1σ error distribution of

4The integral method of calculating σmed is not the error on the median itself (like the Gott et al. (2001)
method provides) but is the deviation of the data set about the median. It was only included in C18 to
remain consistent with previously published results regarding the Gaussianity of error distributions where
it was used in an attempt to also account for systematic uncertainties, e.g. Crandall and Ratra (2014).For
future analyses that this error should not be regarded as the uncertainty on the median nor be used in
calculating error distributions.
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eq. (1.13), overall, allowing S to vary a little away from unity, it is fair to conclude that the

errors of the 28 measurement data set are not very non-Gaussian, although they are slightly

so.5 Tables 2.4 and 2.5, which show the probabilities corresponding to |Nσ| ≤ 1 and |Nσ| ≤ 2

and the |Nσ| values corresponding to 68.27% and 95.45% of the probability for these favored

distributions, reinforce this conclusion.

Columns 4 and 5 of Table 2.3 show the probabilities are as high as 99.9% for a Gaussian

distribution with S = 1.68 and a Laplacian distribution with S = 1.52, respectively. The non-

Gaussianity associated with using the error bars from the R0 measurements in weighted mean

analyses can be substantiated from columns 4 and 5 of Tables 2.4 and 2.5: for the S = 1.68

Gaussian in Nwm+
σ , only 45% (77%) of the probability lies within |Nσ| ≤ 1 (|Nσ| ≤ 2) and

to attain the standard probability of 68.27% (95.45%) we must integrate out to |Nσ| = 1.7

(|Nσ| = 3.4); for the S = 1.52 Laplacian of Nwm−
σ , only 48% (73%) of the probability lies

within |Nσ| ≤ 1 (|Nσ| ≤ 2) and to attain the standard probability of 68.27% (95.45%) we

must integrate out to |Nσ| = 1.7 (|Nσ| = 4.7). The Gaussian fits for Nwm+
σ , Nwm−

σ , and

Nmean
σ require scale factors of S = 1.68, S = 1.73, and S = 1.56 respectively. For this

reason, it is best to use median statistics to determine the error bars on R0, which are looser

than those from weighted mean statistics and arithmetic mean statistics. The probability

distribution computed from eq. (1.1) then provides the best central estimate and errors

bars for determining the somewhat non-Gaussian nature of the error distribution of the 28

independent R0 measurements. The corresponding median-statistics error distribution of eq.

(1.9) is best fit by an n = 4 Student’s t PDF with an S = 1.1 scale factor, and is non-Gaussian

to the degree that with a probability of 99.6%, we cannot reject the hypothesis that it comes

from a Gaussian distribution with an S = 1.24 scale. The slightly broader-than-expected

Gaussian distributed error distribution could indicate some (slightly) improperly estimated

systematic uncertainties. This is, however, perhaps a mild concern until we can compile and

study a larger set of recent and statistically independent measurements of R0.

5On the other hand, the corresponding analyses for the data sets of columns 2 and 3 of Table 2.1 show that
those 27 measurement data sets are more non-Gaussian, as might be expected, given the non-independence
of some measurements.

15



2.5 Conclusion on R0

For more than three decades, the International Astronomical Union has recommended R0 =

8.5 kpc. In the last decade, evidence has been mounting that this might be a little too large

(de Grijs and Bono, 2016; Malkin, 2012; Nikiforov, 2004, V17).

We have compiled a list of 28 recent, independent R0 measurements. We find that the

corresponding error distributions are slightly wider than a standard Gaussian. Consequently

we believe a median statistics (Gott et al., 2001) analysis provides a more reliable estimate

of R0 from this compilation. For most purposes R0 = 8.0 ± 0.3 kpc (2σ error), somewhat

smaller than the 8.5 kpc IAU recommendation, is a reasonable summary of our results.
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Chapter 3

Fundamental Constants of the Milky

Way Galaxy: Θ0

3.1 Θ0 Introduction

A more accurate model of the Milky Way will improve the accuracy of inter- and extra-

galactic measurements. Two constants play a fundamental role in describing the current

model of the Milky Way: R0 (the radial distance of the Sun to the Galactic center, Sgr

A*) and Θ0 (the rotational velocity of the Milky Way at R0). Now that we have measured

R0 from a carefully compiled set of independent R0 data points, we focus attention on Θ0.

The work described in this chapter was done in collaboration with Pauline Dredger and Dr.

Ratra, and is available online at arXiv at 1805.01917.

There have been three recent attempts at measuring Θ0 from compilations of measure-

ments: Vallée (2017, hereafter V17), de Grijs and Bono (2017, hereafter dGB17), and Ra-

jan and Desai (2018, hereafter RD18). These analyses use compilations that include non-

independent measurements which can significantly affect the results and render them unreli-

able. In this paper we first put together a collection of 29 independent estimates of Θ0 that

have been published in 2000 or later. Of these 28 measurements, 18 correspond to tracers

(such as CO and H I gas clouds) that are believed to more accurately reflect the system-
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Table 3.1 Independent Θ0 measurements since 2000
Radius (kpc) Θ0 (km s−1) Rescaled Θres

0 (km s−1) Reference Tracer Type Notes
6.72 ± 0.39 203.35 ± 12.00 240.87 ± 20.59 Branham (2014) Young Table 3, Hipparcos catalog, 6288 OB stars
7.62 ± 0.32 205.00 214.15 ± 10.09 Battinelli et al. (2013) Old Figure 3, 4400 carbon stars
7.64 ± 0.32 217.00 ± 11.00 226.09 ± 15.63 Bobylev (2013) Young Table 3, Cepehids near Sun, UCAC4
7.97 ± 0.15 226.80 ± 4.20 226.52 ± 7.69 McMillan (2017) Both In Abstract, from alternative mass model
7.98 ± 0.79 238.54 ± 11.66 237.94 ± 26.76 Shen and Zhang (2010) Young From Hipparcos Cepheids

8.00 220.80 ± 13.60 219.70 ± 14.32 Bedin et al. (2003) Old From WFPC2/HST photometry on M4 globular
cluster

8.00 ± 0.50 202.70 ± 24.70 201.69 ± 27.95 Kalirai et al. (2004) Old From HST on M4 globular cluster, independent
of Bedin et al. (2003)

8.00 ± 0.50 236.00 ± 15.00 234.82 ± 21.52 Reid and Brunthaler (2004) Old From VLBA proper motion around Sgr A*
8.00 208.50 ± 20.00 207.46 ± 20.39 Xue et al. (2008) Old Averaged from Table 3 for range 7.5− 8.5 kpc
8.00 243.50 ± 13.00 242.28 ± 13.93 Yuan et al. (2008) Old From Hipparcos K-M giants
8.00 226.84 225.71 ± 4.82 Sharma et al. (2011) Old From comparing galaxy model to Hipparcos,

Geneva-Copenhagan survey, and SDSS
8.00 218.00 ± 10.00 216.91 ± 10.98 Bovy and Rix (2013) Old Figure 20, 16,269 G-type dwarfs, SEGUE

8.00 ± 0.40 234.00 ± 14.00 232.83 ± 18.82 Bobylev and Bajkova (2015) Young Data from spectroscopic binaries, in Results sec-
tion

8.00 ± 0.40 230.00 ± 15.00 228.85 ± 19.43 Bobylev and Bajkova (2015) Young Data from Calcium stars distance scale
8.00 236.00 234.82 ± 5.02 Aumer and Schönrich (2015) Young Page 3171, uses some APOGEE, mostly MW bar

stars
8.00 227.50 ± 5.50 226.36 ± 7.30 McGaugh (2016) Old From CO and H I clouds, error is average of pro-

vided upper and lower error bars
8.00 210.00 ± 10.00 208.95 ± 10.90 Rojas-Arriagada et al. (2016) Old Figure 8, from thin disk stars in Gaia-ESO survey

8.00 ± 0.40 230.00 ± 12.00 228.85 ± 17.24 Bobylev and Bajkova (2016) Young In Abstract, from RAVE4
8.00 ± 0.20 231.00 ± 6.00 229.85 ± 9.63 Bobylev (2017) Young From Gaia DR1 Cepheids
8.00 ± 0.20 219.00 ± 8.00 217.91 ± 10.71 Bobylev and Bajkova (2017) Young From Gaia DR1 OB stars
8.01 ± 0.44 202.00 ± 4.00 200.74 ± 12.48 Avedisova (2005) Old From 270 star forming regions
8.20 ± 0.70 215.00 ± 24.00 208.71 ± 29.67 Nikiforov (2000) Old From 5 H I data sets (Nikiforov and Petrovskaya,

1994) and 2 CO cloud catalogs (Brand and Blitz,
1993), differs from McGaugh (2016)

8.20 238.00 231.03 ± 4.93 Portail et al. (2017) Old Section 3.4, from red clump stars.
8.24 ± 0.12 236.50 ± 7.20 228.46 ± 9.12 Rastorguev et al. (2017) Old In Abstract, error from quadrature addition of

error on Θ0 and range
8.30 ± 0.25 233.00 ± 11.35 223.46 ± 13.66 Küpper et al. (2015) Old From Palomar 5 globular cluster, page 20, error

is average of upper and lower provided error bars
8.30 ± 0.20 236.00 ± 6.00 226.33 ± 9.29 Bobylev et al. (2016) Young In Abstract, from MWSC open-clusters catalog
8.34 ± 0.16 240.00 ± 6.00 229.06 ± 8.72 Huang et al. (2016) Old From LAMOST/LSS-GAC and SDSS/SEGUE

and SDSS-III/APOGEE, differs from Bovy and
Rix (2013); little overlap with Aumer and
Schönrich (2015)

8.40 ± 0.40 224.00 ± 12.50 212.27 ± 16.22 Koposov et al. (2010) Old From SDSS photometry and spectrometry,
USN0-B astrometry, and Calar Alto telescope

atic rotation of the Milky Way; these are the ones we use to estimate Θ0. We find that

this collection of 18 measurements is somewhat non-Gaussian so a median statistics analysis

(Gott et al., 2001) is needed for a more reliable estimate of Θ0. Using median statistics we

find Θ0 = 219.70 + 6.67
− 7.43

+ 8.77
− 10.75 km s−1 (1σ and 2σ error bars) which for most purposes can be

summarized as Θ0 = 220± 7± 10 km s−1. Given the extent to which our data compilation

is only mildly non-Gaussian, it is likely that undiscovered systematic errors will not signif-

icantly change these estimates and Θ0 = 220 ± 10 km s−1 (2σ error) probably provides the

most reliable estimate.

In § 3.2 we discuss our compilation of recent independent Θ0 measurements and how it

differs from those of V17 and dGB17. In § 3.3 we summarize the central estimates statistics

and the tests of Gaussianity. We present and discuss our results § 3.4. We conclude in § 3.5.
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3.2 Θ0 Data Compilation

Table 3.1 lists the Θ0 data we use in our analyses here. These are from measurements

published in or after 2000 and we believe this is an exhaustive list of all such independent

measurements.

In all cases the angular velocity ω0i = Θ0i/R0i was what was measured, so we list

Θ0i ± σΘ0i
and R0i ± σR0i

in this table. σΘ0 i and/or σR0 i are not listed in Table 3.1 if these

are not given in the cited reference. Using R0 ± σR0 = 7.96 ± 0.17 kpc, we compute the

rescaled

Θ0
res
i ± σres

Θ0i
=
R0Θi

R0i

1±

√(
σR0

R0

)2

+

(
σΘ0 i

Θ0i

)2

+

(
σR0 i

R0i

)2
 (3.1)

and list these in column 3 of Table 3.1.1

It has been known for quite a while now that Θ0 measured using different tracers differ

(Avedisova, 2005; Roman, 1950, 1952; Yuan et al., 2008; dGB17, and references therein). We

categorize the measurements listed in Table 3.1 into either Old or Young (one publication

uses both types of tracers and is listed as Both). Old tracers include CO and H I gas clouds

and are thought to better reflect the systematic rotation of the Galaxy while Young tracers

such as Cepheids are believed to have velocities that are contaminated by ”peculiar” motions.

In Table 3.1 we have 18 + 1 Old measurements and 10 + 1 Young ones.

Unlike the measurements listed in Table 3.1, the collections compiled by V17 and dGB17

include non-independent data points. In their analyses dGB17 and RD18 consider different

subsets of data, based on tracer type and/or year of publication, but like V17 they also do

not study a compilation of independent measurements. This lack of independence can bias

results. Here we have invested significant effort in compiling a collection of independent Θ0

measurements published during 2000-2017.

1More properly one would use the rescaled angular velocities in the analysis and then convert the resulting
angular velocity central value to a linear velocity central value. However, the uncertainty on R0 is small and
so results from the two different approaches will only differ slightly.
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Table 3.2 Rescaled Θ0 (in km s−1) Central Estimates and Errors
Statistic All Tracers Old Tracers Young Tracers

Median 226.35 + 2.50
− 2.89

+ 2.72
− 8.44 221.58 + 4.79

− 7.43
+ 6.89
− 12.63 228.85 + 3.98

− 2.33
+ 9.09
− 2.76

1σ range 223.46− 228.85 214.15− 226.36 226.52− 232.83
2σ range 217.91− 229.06 208.95− 228.46 226.09− 237.94
Weighted Mean 226.37± 1.85 222.01± 1.99 230.05± 3.09

1σ range 224.52− 228.22 222.28− 226.71 226.95− 233.14

Table 3.3 Nσ KS test results for rescaled Θ0
Nmed
σΘ0

Nwm
σΘ0

Type PDF pa Sb PDF pa Sb

All Gaussian 0.65 0.74 Gaussian 0.61 0.76
Cauchy 0.85 0.45 Cauchy 0.83 0.47
n = 2 Student’s t 0.76 0.58 n = 2 Student’s t 0.73 0.60
Laplace 0.79 0.68 Laplace 0.76 0.70

Old Gaussian 0.86c 1.04 Gaussian 0.95 1.03
Cauchy 0.81 0.71 Cauchy 0.91 0.72
n = 28 Student’s t 0.86d 1.03 n = 32 Student’s t 0.95 1.02
Laplace 0.84 1.04 Laplace 0.92 1.03

Young Gaussian 0.99 0.35 Gaussian 0.99 0.38
Cauchy 0.99 0.18 Cauchy 0.99 0.20
n = 2 Student’s t 0.99 0.23 n = 2 Student’s t 0.99 0.26
Laplace 0.99 0.27 Laplace 0.99 0.30

a The probability (p-value) that the input data doesn’t not come from
the PDF.

b The scale factor S that maximizes p.
c More precisely, p = 0.863.
d More precisely, p = 0.862.

3.3 Analyzing Θ0

We provide in Table 3.2 the central estimate statistics for the data listed in column 3 of

Table 3.1. In Table 3.2, column 2 shows the median (with 1σ and 2σ error ranges) and

weighted mean results for all 28 values. Column 3 shows the results of only analyzing the

18 Old tracer references. Column 4 shows the results of the 10 Young tracer types.

3.4 Θ0 Error Distributions

While Table 3.3 shows the highest probabilities for C2 tracer types, with all probabilities

p ≥ 0.99, the scale factors for all these PDFs are very non-Gaussian with all of them having

1σ ranges requiring |X| ≤ 0.5. The All tracers compilation is also fairly non-Gaussian.

For the C1 tracers collection with the median as the central estimate, p = 0.86 while
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S = 1.04 for the Gaussian PDF, indicating not unreasonable consistency with Gaussianity.

This is also supported by the weighted mean result for the Gaussian PDF. Together these

results indicate that the weighted mean summary for Θ0 is slightly less appropriate2 than

our median statistics one of Θ0 = 221.58 + 4.79
− 7.43

+ 6.89
− 12.63 km s−1 (1σ and 2σ errors), which for

most purposes can be taken to be Θ0 = 220 ± 6 ± 10 km s−1. In summary, for practical

purposes, we find at 1σ:

Θ0 = 222± 6 km s−1

R0 = 7.96± 0.17 kpc

ω0 = Θ0/R0 = 27.9± 1.0 km s−1 kpc−1

where the angular speed ω0 error is determined by adding the fractional uncertainties of Θ0

and R0 in quadrature.

Table 1 of V17 lists 28 measurements of Θ0 from mid-2012 to 2017. V17 arrives at a Θ0

close to 230 km s−1: median value Θmed
0 = 232 km s−1, weighted mean value Θwm

0 = 228± 2

km s−1, and an arithmetic mean value Θmean
0 = 229± 3 km s−1. He recommends the set of

Galactic constants:

Θ0 = 230± 3 km s−1

R0 = 8.0± 0.2 kpc

ω0 = Θ0/R0 = 29± 1 km s−1 kpc−1

We emphasize that several of the V17 Table 1 data are repeats of prior publications, big

offenders being masers, OB stars, and Cepheids. Less than half of V17 Table 1 measurements

are included in our list of independent measurements. V17 also does not distinguish between

C1 and C2 tracer measurements of Θ0. These are probably why the V17 Θ0 differs from our

estimate.

dGB17 on the other hand do note that C1 tracers provide a better estimate of Θ0 and

their recommended set of Galactic constants are (when their statistical and systematic errors

are added in quadrature):

2In fact, the data errors are quite consistent with Gaussianity, however the C1 weighted mean 1σ error is
±2 km s−1. This is quite small and at this level there are a number of corrections that must be accounted
for in measurements of Table 3.1. We hence choose to use the median statistics over the weighted mean
results.
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Θ0 = 225± 10 km s−1

R0 = 8.3± 0.4 kpc

ω0 = Θ0/R0 = 27.1± 1.8 km s−1 kpc−1.

While their C1 tracers compilation includes non-independent data points, dGB17 add on

rather large undiscovered systematic errors and so their results are not inconsistent with our

results. We note, in particular, as described in C18, that their estimate of R0 is based on a

very small set of data points (that are also not all independent). We emphasize that from

our analysis of the Gaussianity of our R0 and Θ0 compilations, here and in C18, we do not

see strong evidence for large undiscovered systematic errors that dGB17 advocate for.

RD18 use 139 Galactic rotation speed values, 137 of which are from the online database

of dGB17. Included are a number of non-independent measurements. For both median

and weighted mean statistics they use the error distribution form of eq. (1.11) and analyze

the full collection of data as well as various subsets. RD18 were the first to realize that the

dGB17 Θ0 data (and subsets) was non-Gaussian, but as they didn’t discard non-independent

measurements (as we have done) they found the data to be more non-Gaussian than we do.

From a median statistics analysis of the full data set they recommend:

Θ0 = 219.65 km s−1

R0 = 8.3 kpc

ω0 = Θ0/R0 = 26.46 km s−1 kpc−1.

They do not derive an R0 value, instead they use that estimated by dGB17. They also do

not estimate an error for Θ0.

3.5 Conclusion on Θ0

The data listed in Table 3.1 is the first compilation of independent Θ0 measurements pub-

lished during 2000-2017. Given the mild non-Gaussianity of the Old tracer measurements,

we favor a median statistics value of Θ0 = 219.70 + 6.67
− 7.43

+ 8.77
− 10.75 km s−1 (1σ and 2σ errors). For

most purposes this can be summarized as Θ0 = 220±7±10 km s−1. Given that the measured

non-Gaussianity is mild, we believe most current Θ0 error bars are reasonable and that at
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present there is no strong evidence for large undiscovered systematic errors. In summary our

recommended set of Galactic constants, with 1σ error bars,

Θ0 = 220± 7 km s−1

R0 = 7.96± 0.17 kpc

ω0 = Θ0/R0 = 27.6± 1.1 km s−1 kpc−1

are probably the most reliable.
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Chapter 4

Conclusions

It is my belief that the method of analysis we have used provide us the best way of determin-

ing central estimates and error bars of compilations of independent data that are Gaussianly

distributed. Our analysis focused on two important fundamental constants used in inter-

and extra-galactic calculations: R0 (the radial distance from the Sun to the Galactic center)

and Θ0 (the Galactic rotational velocity at R0).

The error distributions of a compilation of 28 (since 2011) independent measurements

of R0 are wider than a standard Gaussian and best fit by an n = 4 Student’s t probability

density function. Given this non-Gaussianity, the results of our median statistics analysis,

summarized as R0 = 8.0± 0.3 kpc (2σ error), probably provides the most reliable estimate

of R0. The unsymmetrized value for R0 is R0 = 7.96 +0.24
−0.30 kpc (2σ error). A complete

collection of 18 recent (since 2000) measurements of Θ0 indicates a median statistics estimate

of Θ0 = 220 ± 10 km s−1 (2σ error) as the most reliable summary. The resulting error

distribution of this data set is only mildly non-Gaussian, much less so than that obtained

from R0. These measurements use tracers that are believed to more accurately reflect the

systematic rotation of the Milky Way. Unlike other recent compilations of R0 and Θ0, our

collections includes only independent measurements. For 1σ error bars, Galactic constants

Θ0 = 220 ± 7 km s−1, R0 = 7.96 ± 0.17 kpc, and ω0 = Θ0/R0 = 27.6 ± 1.1 km s−1 kpc−1

probably provide the most carefully studied and reliable summary estimates.
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Appendix A

Derivation of Error Distribution for

Weighted Mean

While eq. (1.13) may be well known to practitioners, C18 was unable to find a derivation of

it, and so this derivation is provided here.

For i = 1, 2, .., N measurements Mi with individual errors σi, modeled to be Gaussian

about a central estimate with MCE which itself has uncertainty σCE, we define an uncertainty-

normalized difference

Nσi =
Mi −MCE√
σ2
i + σ2

CE

. (A.1)

This is the number of standard deviations a particular measurement differs from the central

value. If we use a central estimate like the weighted mean, we can again standardize an

Nwm
σ . We begin by defining the weighted mean and it’s error:

Mwm =

∑N
i=1Mi/σ

2
i∑N

i=1 1/σ2
i

(A.2)

and (Podariu et al., 2001)

1

σ2
wm

=
N∑
i=1

1

σ2
i

. (A.3)

However, a problem arises depending on how correlated Mi and MCE are. Defining Di
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that can be normalized to find a standardized Nσ where

Di = Mi −Mwm, (A.4)

we can calculate the variance of this quantity to later use for normalization

Var(Di) = Var(Mi −Mwm). (A.5)

If Mi and Mwm are independent, the variance is distributed as

Var(aX + bY ) = a2Var(X) + b2Var(Y ) (A.6)

and it is this case that yields the well-known result of adding errors in quadrature. As they

are correlated though, let’s try a different approach. The variance becomes

Var(Di) = Var

(
Mi −

∑N
j=1Mj/σ

2
j∑N

k=1 1/σ2
k

)
(A.7)

which can be rearranged as

Var(Di) = Var

[(
1− 1/σ2

i∑N
k=1 1/σ2

k

)
Mi −

∑N
j 6=iMj/σ

2
j∑N

k=1 1/σ2
k

]
. (A.8)

Here, the assumption is made that the measurements were made independently. Using eq.

(A.6), the above becomes

Var(Di) =

(
1− 1/σ2

i∑N
k=1 1/σ2

k

)2

Var(Mi) +

∑N
j 6=i Var(Mj)/σ

4
j

(
∑N

k=1 1/σ2
k)

2
(A.9)

which can be simplified by opening the squares and by sending Var(Mi) into the summation

over N

Var(Di) =

(
1− 2

1/σ2
i∑N

k=1 1/σ2
k

)
Var(Mi) +

∑N
j=1 Var(Mj)/σ

4
j

(
∑N

k=1 1/σ2
k)

2
. (A.10)
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Now we make the assumption that the Mi are Gaussianly distributed with variance σ2
i , an

assumption made even in the case of adding errors in quadrature, as in Bailey (2017). It

follows then that

Var(Di) =

(
1− 2

1/σ2
i∑N

k=1 1/σ2
k

)
σ2
i +

∑N
j=1 1/σ2

j

(
∑N

k=1 1/σ2
k)

2
= σ2

i − σ2
wm (A.11)

This gives the new equation that is better suited for correlated values,

Nσi =
Di√

Var(Di)
=

Mi −Mwm√
σ2
i − σ2

wm

(A.12)

which may look familiar to some as the pull of a Gaussian measurement Mi from the average

value MCE determined from the set of measurements.

It should be noted that the median and arithmetic mean determined from the mea-

surements are also correlated with the data and in a more careful analysis this should be

accounted for. It may be possible to account for the median’s correlation to the data using

a Monte Carlo analysis (this requires knowledge of the data distribution which depends on

the central estimate in question). We hope to discuss this elsewhere.
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