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Abstract 

Prostate cancer is the most common type of non-skin cancer found in men and 

preliminary evidence suggests prostate cancer has atrophic effects on cardiac and left ventricle 

(LV) mass which are associated with reduced endurance exercise capacity in rats. Using a pre-

clinical orthotopic model of prostate cancer, echocardiography was utilized to test the hypothesis 

that exercise training will mitigate prostate cancer induced-cardiac and skeletal muscle atrophy 

and improve LV function versus sedentary tumor-bearing counterparts. Methods: Dunning R-

3327 AT-1 prostate cancer cells were injected orthotopically in male Copenhagen rats aged 

(n=39; ~5 mo. old). Animals were randomized into four groups, exercise-trained tumor-bearing 

(EXTB) or control (EXCON) and sedentary tumor-bearing (SEDTB), or control (SEDCON). 

Exercise training was performed via a rodent treadmill set at 15m/min with a 15o incline for 60 

min/day for ~30 days. Animals underwent echocardiographic evaluation using the parasternal 

short axis view to examine ventricle dimensions pre-cancer or exercise (PRE) and 15 (Post 1) 

and 30 (Post 2) days post cancer cell injection and/or exercise training with tissues collected 

immediately after Post 2. Results:  Cardiac and LV mass of SEDTB animals were significantly 

lower than all groups (p<0.05). Tumor mass was significantly negatively correlated with LV 

mass in EXTB (-0.75, p<0.02) and SEDTB animals (-0.72, p<0.02). EXCON group had 

significantly higher stroke volume Post 2 assessment compared to both sedentary groups 

(p<0.05), but not EXTB animals. Conclusion: The current investigation demonstrates prostate 

cancer independent of anti-cancer treatment significantly reduces cardiac mass, and LV mass as 

well as locomotor muscle masses. However, moderate intensity exercise training can mitigate 

cardiac and skeletal muscle atrophy with prostate cancer. 
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Chapter 1 - Introduction  

  Cancer-related fatigue is one of the most common cancer related symptoms leading to an 

inability to perform activities of daily living, resulting in reduced quality of life in over 50% of 

cancer patients (9, 24). Although mechanisms of fatigue with cancer are multifaceted, they are 

often attributed to the adverse effects of treatment, as fatigue is common in cancer patients both 

during and after treatment(s) (18, 34). Despite up to 40% of cancer patients reporting fatigue at 

the time of diagnosis (24), the effects of cancer solely on fatigue, and potential 

pathophysiological mechanisms, has received relatively scant attention. Given cancer-related 

fatigue can compromise the completion of anti-cancer treatment regimes, it is clinically 

important to understand how cancer, independent of any conventional treatment(s), affects 

known cardiovascular parameters of exercise capacity (e.g., cardiac function). 

 In men, prostate cancer is the most frequently diagnosed non-skin cancer accounting for 

20% of all new non-skin cancer cases in the United States (3). Upon diagnosis of prostate cancer, 

many patients receive pharmacological or surgical androgen deprivation therapy (ADT), which is 

associated with reductions in muscle mass and bone density (19, 57), and increased 

cardiovascular disease (37). All of which can contribute to fatigue and frailty of patients (33). 

Other adjuvant therapies, such as radiation therapy or chemotherapy, also can elicit and/or 

exacerbate cardiovascular dysfunction (16, 45). In the human cancer patient, it is difficult to 

delineate the mechanisms of fatigue from cancer versus adjuvant therapies, in seperatum, as it is 

unethical to withhold treatment to study the independent effects of cancer (11, 56). Thus, pre-

clinical animal models, with and without cancer, are invaluable to investigate the tumor 

microenvironment and underlying mechanisms (32, 61), and cancer-related fatigue independent 

of treatment (15). Recent evidence suggests prostate cancer induces whole heart and left 
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ventricle (LV) atrophy (5) which were associated with reduced endurance exercise capacity in 

rats (15). Therefore, determining whether exercise training may mitigate cancer induced cardiac 

atrophy independent of treatment is important to potentially combat cancer-related fatigue and 

potentially reduce the cardiotoxicity associated with many adjuvant therapies.   

 Habitual exercise can decrease the morbidity and mortality of many diseases (20, 23) and 

is recognized as a fundamental component of cancer patient care programs (7, 22, 41) to 

attenuate complications, such as fatigue or loss of aerobic capacity (6, 46, 57) associated with 

adjuvant therapies.  Despite exercise prescription, the beneficial effects of aerobic exercise 

training on heart function and structure in prostate cancer populations, independent of therapy, 

are limited (2, 6,). Therefore, the purpose of the current set of investigations was to determine 

whether prostate cancer, independent of treatment, impacts left ventricular mechanics and/or 

function, and determine if aerobic exercise training (also referred to as aerobic exercise therapy) 

can prevent heart and skeletal muscle atrophy that has been previously shown across various 

forms of cancer (2, 15, 34). We hypothesized that prostate cancer-induced cardiac atrophy is 

mitigated with exercise training, and that left ventricular function (assessed with 2-D 

echocardiography) will be preserved in the exercise trained tumor-bearing rat compared to its 

sedentary counterpart.  Further, that exercise training will preserve locomotor skeletal muscle 

mass and oxidative capacity, versus sedentary counterparts, in an established pre-clinical model 

of prostate cancer. 
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Chapter 2 - Methods  

  Animals 

The procedures performed in this study were approved by the Kansas State University 

Institutional Animal Care and Use Committee and  complied with the National Institutes of 

Health Guide for the Care and Use of Laboratory Animals (National Research Council 

Committee, Washington, D. C., rev. 2011). Male immunocompetent Copenhagen rats (n=39, ~5 

mo. Old; COP/CrCrl: Charles River Wilmington, MA) were used in this study. Animals were 

housed in a temperature-controlled room (23°C) on a 12:12-hr light-dark cycle, with water and 

standard rat chow provided ad libitum.  

  Orthotopic Model of Cancer 

The cell line utilized in this study was the Dunning R-3327 AT-1 strain of rat prostate 

adenocarcinoma cells, characterized by a high growth rate, low metastatic potential, and similar 

growth characteristics as human prostate cancer (26). AT-1 cells were cultured in RPMI-1640 

media (GE Healthcare Life Sciences, Marlborough, MA) containing 10% fetal bovine serum 

(FBS; RMBIO, Missoula, MT), 2 mM L-glutamine (Fisher Scientific, Hampton, NH), 100 mM 

sodium pyruvate (Thermo Fisher Scientific, Waltham, MA), 1% penicillin/streptomycin (Thermo 

Fisher Scientific), and 0.025 mM dexamethasone (Cayman Chemical,  Ann Arbor, MI) and 

incubated at 37˚C with 5% CO2. Once cells reached ~80-90% confluence, a sample of the cells 

were counted via hemocytometer to calculate proper dilution (100,000 cells/ml) of the viable 

cells for a tumor cell stock solution placed in physiological salt solution (PSS). This solution was 

aliquoted such that each 0.1 mL increment contained ~104 AT-1 cells. These methods have been 

used previously to induce orthotopic prostate tumors (21, 32). 
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In tumor-bearing (TB) rats, animals were anesthetized (2-5% isoflurane, O2 balance) and 

a small incision of ~ 1cm or less was made in the abdomen, lateral of the midline. Under aseptic 

conditions, the bladder/prostate complex was exposed, the ventral lobe of the prostate isolated, 

and 104 AT-1 cells were injected using a sterile 26G insulin syringe. To prevent leakage of cells 

to the tissue surrounding the prostate, a sterile cotton tipped applicator was placed alongside the 

needle during removal. Immediately following injection, the abdominal wall was closed with 

sterile 3–0, polyglycolic acid coated suture (DemeTECH, Miami Lakes, FL) and the overlying 

skin/fascia was closed with 3–0 nylon monofilament (DemeTECH, Miami Lakes, FL) and sealed 

with skin adhesive (3M, Vet-Bond). Rats were administered 0.05mg/kg buprenorphine 

(Patterson Veterinary, Boone, IA) and 0.5mg/kg S.C. acepromazine (Patterson Veterinary, 

Boone, IA) for analgesia and sedation, respectively, and isoflurane was withdrawn. Daily 

postoperative monitoring of the animals was performed until animals were placed into sedentary 

or exercise trained groups ~7 days post-injection.  

  Echocardiographic assessment of LV function 

Three transthoracic echocardiographic evaluations were performed with a commercially 

available 2D ultrasound system (Logiq S8; GE Medical Systems, Milwaukee, WI) with an 

18MHz linear transducer (L8-18i) by a trained sonographer. For primary analysis, the first 

evaluation “Pre” exercise training and/or cancer (Pre) was performed the day preceding tumor 

injection, and post cancer cell injection and/or exercise were performed 15 (Post 1) and 32-35 

(Post 2) days after the onset of exercise training. The Post 1 measure reflects the acute cancer 

state (i.e., prior to any palpable tumors) whereas the Post 2 measure reflects an overt cancerous 

state with palpable tumors in all animals. All system settings and parameters used for 

echocardiographic evaluation remained unchanged throughout the experimental protocol for a 
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given animal. Echocardiographic data was collected and stored on a local hard drive and 

analyzed using the manufacturer’s dedicated software for imaging analysis. For measures, rats 

were anesthetized with 5% isoflurane/O2 balance, placed on a heating pad (42 °C) and 

maintained at 2% isoflurane/ O2 balance for the duration of the study to limit anesthesia effects 

on heart function (43, 50). Hair was removed from the sternum using a depilatory agent prior to 

any measurements. Two-dimensional guided M-mode images were obtained from parasternal 

short-axis views of the left (ventricle) LV at the level of the mitral leaflets in line with previous 

studies (14, 42). The following LV dimensions were measured: Left-ventricular end-diastolic 

and end-systolic dimensions (LVEDD, LVESD), and LV posterior wall thicknesses (PWT) at 

end-diastole and end-systole (PWS, PWD). These values were used in the calculation of volume 

using the Teichholz formula (53) specifically; left ventricular diastolic and systolic volumes 

[LVDV, LVSV= (7/2.4+D)*D3), stroke volume (SV; SV= LVDV-LVSV), fractional shortening 

(FS; FS  =  [(LVEDD-LVESD)/LVEDD]  ×  100), and ejection fraction (EF)  (EF; EF=  [(LVDV-

LVSV)/LVDV]  ×  100). Left Ventricle radial strain (deformation) and strain rate (deformation/D 

time) were derived from two-dimensional parasternal short axis using tissue Doppler imaging 

data as previously described (4). Myocardial function was evaluated using FS, EF, peak systolic 

strain, and peak systolic strain rate values with the mean values from a minimum of three cardiac 

cycles were used for analysis during each visit (52). A representative image collected for the 

non-invasive cardiac measures during systole and diastole is shown in Figure 1.  

  Exercise Training 

Rats were randomly assigned to an exercise-trained control (EXCON) (n = 10), sedentary 

control (SEDCON) (n = 10), exercise-trained tumor-bearing (EXTB) (n=10), and sedentary 

tumor-bearing (SEDTB) (n=9) groups. Animal exercise training began by habituation to 
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treadmill exercise, during which each rat walked on a motor-driven treadmill for ~ 5 min/day at 

15 m/min (0° incline) for 3-5 days. After the habituation period, the incline was raised to 15° for 

the duration of the training period while the 15 m/min speed was maintained. During the first 2 

weeks of training, the time of exercise training was increased by 10 min every 3 days, until 60-

min duration was reached by the 3rd week. The EXCON and EXTB rats continued to exercise 5 

days/week for 60 min/day for the remainder of the ~6-week training period. This training 

program was adapted from McCullough et al. (32). to represent a moderate-intensity of exercise 

training, eliciting ~60-70% of maximal aerobic capacity response from the animal of similar age 

and body mass as previously described (35,36) This moderate intensity of exercise was chosen, 

versus a higher intensity of exercise, as the former was well-tolerated by the animals, and there is 

evidence that the latter may enhance tumor metastases, as suggested by Cohen (12). Both 

EXCON and EXTB rats underwent echocardiography and were euthanized a minimum of 24 

hours after the last bout of exercise to avoid potential effects of acute exercise on reported 

measures. After the Post 2 ultrasound imaging, while under anesthesia (5% isoflurane, O2 

balance) rats were euthanized by a thoracotomy followed by removal of the heart. Subsequently, 

the right ventricle was removed from the left ventricle and intraventricular septum, and the 

tumor, prostate (when delineation from tumor was possible), soleus muscle, plantaris muscle, 

gastrocnemius muscle (subdivided into red and white portions) were immediately excised, 

weighed, flash frozen in liquid nitrogen, and stored at -80˚C for future analyses. The right femur 

was removed, cleaned of connective tissue and remnant muscle, weighed and measured before 

being stored at -80˚C. 
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  Citrate Synthase Activity 

To determine training efficacy, the soleus muscle and red portion of the gastrocnemius 

muscle were used for determination of citrate synthase activity. This mitochondrial enzyme is a 

marker of muscle oxidative potential and was analyzed according to the method of Sere (39). In 

brief, 15 µl and 30 µl samples were diluted using 210 µl and 195 µl of tris buffer, respectively. 

In addition, 15 µl of acetyl coenzyme A (Cayman Chemical, Ann Arbor, MI), and 30 µl of 

DTNB (Thermo Fisher Scientific, Waltham, MA) were added to each sample. Samples were 

incubated in a spectrophotometer (accuSkan GO; Fisher Scientific, Hampton, NH) for 5 min at 

30°C before readings. Following incubation, readings were collected with the spectrophotometer 

at 412 nm once per minute for 5 min followed by the addition of 30 µl of oxalacetic acid (Sigma-

Aldrich, St. Louis, MO) to all samples and immediately analyzed again. Citrate synthase enzyme 

activity is reported as µmol/min/g wet weight of sample tissue. 

 

  Data Analysis 

Prism (version 7.4, Graphpad software, INC., La Jolla, CA) data analysis software was 

used for all statistical analyses. Statistical comparisons were made with either one-way repeated 

measure analysis of variance (ANOVA), or two-way repeated-measure ANOVA with Holm-

Sidak post hoc tests used as appropriate to assess statistical differences between groups for all 

measures. Within the two tumor-bearing groups, Pearson correlations and linear regression 

analyses were performed to quantify relationships between tumor mass and select tissues. A 

p<0.05 was set for statistical significance with data reported as mean±SEM.  

.  
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Chapter 3 - Results 

Body mass increased in both sedentary (SEDCON and SEDTB) and exercise-trained 

(EXCON and EXTB) groups across the ~40-day period of experiments, with significant 

differences between control and tumor-bearing groups (p<0.05, Figure 2). However, there were 

no significant differences between EX and SED for controls or tumor-bearing groups (Figure 2). 

Tumor mass was not significantly different between EXTB vs. SEDTB groups (8.6±1.7 and 

6.6±1.3g, respectively). There were no differences in femur lengths across all groups (EXCON= 

39.2± 0.09mm, SEDCON= 39.0± 0.11 mm, EXTB= 39.1± 0.10 mm, SEDTB=39.0± 0.12 mm, 

p>0.3).  

  Echocardiographic Assessment of LV Function 

Left ventricle measures pre to post-exercise intervention and/or cancer were used to 

analyze potential changes in heart function. There were differences found between groups for a 

number of measures of ventricular function over time, with all groups demonstrating similar 

baseline (i.e., Pre) parameters (Table 2). At Post 3, LVDV, LVSV, and SV were significantly 

higher in the EXCON rats compared to both SEDTB and SEDCON (Table 2), but not different 

versus that of the EXTB group (p≤0.08 for all measures). Longitudinal measures in the EXTB 

group demonstrated a trend for an increased LVDV and SV from Pre to Post 2 (Table 2).  There 

were minimal within group changes between Pre and Post 1, with the exception that EXCON 

group demonstrated significant increases in SV (Table 2). From Pre to Post 2, there was a trend 

for a decreased level of LV strain in only the EXCON (75.7% vs. 59.9% p<0.06).  
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  Cardiac and Skeletal Muscle Mass and Skeletal Muscle Citrate Synthase Activity 

Cardiac and skeletal muscle mass and citrate synthase activity were all examined post 

exercise intervention and/or cancer in all groups. Absolute mass of the heart, LV, gastrocnemius 

muscle, soleus muscle, and plantaris muscle were all significantly greater (p<0.05) in the 

EXCON group versus both TB groups (Table 1). Heart and left ventricle masses were also 

significantly higher in the EXCON compared to the SEDCON animals (Table 2).  Cardiac tissue 

mass was normalized to body mass and femur length (FL, Table 1) to account for possible 

differences in growth between groups (62). When normalized to body mass or FL, significant 

differences were found between groups for the heart and LV (see Figure 4). However, there was 

no significant difference in RV mass normalized to body mass or femur length between groups 

(Table 1). Skeletal muscle tissue mass was also normalized to both body mass and femur length 

with significant differences between EXCON and SEDCON when compared to the SEDTB for 

gastrocnemius, soleus, and plantaris muscles (Table 1). 

 Within the EXTB bearing group, HR mass, LV mass, and body mass were all 

significantly correlated with tumor mass whereas only LV mass was correlated with tumor mass 

in the SEDTB (Figure 5). In the SEDTB group, there were no significant correlations between 

skeletal muscle mass and tumor mass (Figure 6). Contrastingly, in the EXTB group, there were 

significant negative correlations with tumor mass for both gastrocnemius mass and plantaris 

muscle mass, with a trend (p=0.09) in the soleus muscle (Figure 6). 

 Despite smaller absolute masses, prostate cancer did not affect citrate synthase activity of 

the locomotor skeletal muscles measured in the SEDTB versus SEDCON (Table 3). Skeletal 

muscle citrate synthase activity was greater in both exercise-trained groups versus sedentary 



10 

counterparts, confirming the efficacy of the training program. There were no differences in 

skeletal muscle citrate synthase activity between exercise-trained groups (Table 3).  
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Table 1. Cardiac and muscle mass characteristics 
 Exercise  

Control 
(n=10) 

Sedentary 
Control                      
(n=10) 

Exercise 
Tumor- 
Bearing 
(n=10) 

Sedentary 
Tumor- 
Bearing 

(n=9) 

Absolute Mass (g)     
Heart 0.95±0.01abc 0.81±0.01a 0.79±0.02a 0.64±0.01 
Left Ventricle 0.73±0.02abc 0.62±0.01ab 0.58±0.01a 0.47±0.01 
Right Ventricle 0.22±0.01 0.20±0.02a 0.21±0.01 0.18±0.02 
Gastrocnemius 2.33±0.05ac 2.09±0.09a 1.88±0.07 1.78±0.07 
Soleus 0.16±0.003ac 0.15±0.004a 0.14±0.004a 0.12±0.003 
Plantaris 0.28±0.004ac 0.26±0.01a 0.25±0.01a 0.21±0.01 
Tumor Mass - - 8.6±1.7 6.6±1.3 
Muscle Mass Normalized to 
Body Mass (mg/g) 

    

Heart/Body mass 2.69±0.04ab 2.40±0.05 2.59±0.06a 2.28±0.07 
Left Ventricle/Body mass 2.07±0.05abc 1.82±0.04a 1.87±0.04a 1.65±0.04 
Right Ventricle/Body mass 0.63±0.03 0.58±0.05 0.68±0.03 0.63±0.06 
Gastrocnemius/Body mass 6.7±0.13 6.2±0.28 6.3±0.21 6.3±0.20 
Soleus/Body mass 0.44±0.01 0.43±0.01 0.46±0.01 0.43±0.02 
Plantaris/ Body mass 0.80±0.01e 0.81±0.01a 0.82±0.02a 0.74±0.02 
Tumor/Body mass - - 30.98±5.9 23.62±4.7 
Mass Normalized to Femur 
Length (FL) (mg/mm) 

    

Heart/ FL 24.13±0.35abc 20.96±0.32a 19.69±0.57a 16.63±0.53 
Left Ventricle/ FL 18.56±0.39abc 15.96±0.46ab 14.25±0.29a 12.00±0.28 
Right Ventricle/ FL 5.57±0.28 5.01±0.39 5.44±0.31 4.64±0.46 
Gastrocnemius/ FL 59.69±1.10ac 53.78±2.49a 48.33±1.65 45.68±1.77 
Soleus/ FL 3.92±0.09a 3.81±0.15a 3.56±0.10e 3.12±0.10 
Plantaris/ FL 7.06±0.16a 6.79±0.11a 6.34±0.33a 5.41±0.16 

Abbreviations: FL, Femur Length  
Data are mean±SEM and were compared with Two-way ANOVA.  
a= p<0.05 vs. Sedentary Tumor-Bearing 
b= p<0.05 vs. Sedentary Control 
c= p<0.05 vs. Exercise Tumor-Bearing 
e= p≤0.07 vs. Sedentary Tumor-Bearing 
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Table 2. Echocardiographic measures 

Abbreviations: LVDV, left ventricle diastolic volume; LVSV, Left ventricle systolic volume; SV, Stroke 
volume; FS, fractional shortening; EF, ejection fraction; v/s, velocity or radial shortening per second.  
Data are mean±SEM and were compared with Two-way ANOVA.  
 
a= p<0.05 vs. Sedentary Tumor-Bearing 
b= p<0.05 vs. Sedentary Control 
c= p≤0.10 vs. Exercise Tumor-Bearing 
d= p≤0.10 vs. Sedentary Control 
e= p≤0.10 vs. Sedentary Tumor-Bearing  
f= p<0.05 Pre vs. Post 1 
g= p<0.05 Pre vs. Post 2 
  

Left Ventricle 
Measures 

Exercise  
Control 
(n=10) 

Sedentary  
Control 
(n=10) 

Exercise  
Tumor-Bearing 
(n=10) 

Sedentary 
Tumor-Bearing 
(n=9) 

Pre-Measure     
LVDV (ml) 0.83±0.04 0.85±0.07 0.83±0.03 0.79±0.05 
LVSV(ml) 0.23±0.03 0.19±0.02 0.21±0.02 0.18±0.02 
SV (ml) 0.59±0.02 0.66±0.06 0.61±0.03 0.60±6 
FS (%) 37.4±2.1 41.8±1.5 39.1±1.3 41.2±2.0 
EF (%) 72.5±2.3 77.8±1.7 74.8±1.5 76.9±2.2 
Strain (%) 76.0±12.1 88.1±13.3 74.1±8.1 82±6.8 
Strain Rate (v/s) 10.3±1.7 10.6±1.6 9.1±0.94 9.8±0.79 
Post 1 Measure     
LVDV (ml) 1.00±0.05  0.95±0.06 0.92±0.06 0.84±0.02 
LVSV(ml) 0.25±0.03  0.25±0.03 0.23±0.02 0.26±0.02 
SV (ml) 0.73±0.03 af 0.70±0.03 e 0.68±0.05 0.59±0.01 
FS (%) 40.6±2.2 37.8±1.5 39.2±1.4 35.0±1.2 
EF (%) 76.1±2.2 73.2±1.7 75.0±1.4 69.8±1.5 
Strain (%) 74.4±7.6  70.3±9.1 74.6±6.1 76.±10.3 
Strain Rate (v/s) 8.69±0.89 7.9±1.18 9.5±0.74 7.2±1.0 
Post 2 Measure     
LVDV (ml) 1.11±0.06 abcg 0.85±0.07 0.93±0.05 0.79±0.03 
LVSV(ml) 0.32±0.04 abcg 0.21±0.02 0.24±0.02 0.21±0.02 
SV (ml) 0.78±0.04 abg 0.65±0.05 0.69±0.03 e 0.58±0.03 
FS (%) 35.4±1.3 40.1±1.6 38.5±1.4 38.4±2.5 
EF (%) 70.0±1.2 75.9±1.9 74.1±1.7 73.7±2.5 
Strain (%) 59.9±6.4 d 93.0±6.1 76.5±8.1 76.0±10.3 
Strain Rate (v/s) 7.1±0.7 10.8±0.90 8.8±0.85 10.4±1.4 
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Table 3. Skeletal muscle citrate synthase activity (µmol/min/g) 
 

Mean±SEM and were compared with Two-way ANOVA.   
a= p<0.05 vs. Sedentary Tumor-Bearing 
b= p<0.05 vs. Sedentary Control 
  

 Exercise 
Control 

(n=9) 

Sedentary 
Control                      

(n=9) 

Exercise 
Tumor- 
Bearing 

(n=9) 

Sedentary 
Tumor- 
bearing 
 (n=9) 

Soleus  24.7±1.4ab 15.5±1.5 25.4±1.2ab 16.9±1.9 
Red gastrocnemius  33.8±1.6ab 26.3±1.5 35.9±1.8ab 23.6±1.0 
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Figure 1. Representative echocardiography images 
A representative rat image in both diastole (top) and systole (bottom) are presented. 2D image of 

LV at the level of the papillary muscle. Bottom panel has the analysis of the left ventricle 

dimensions as follows; 1= end-diastolic dimension of left ventricle, 2= end-diastolic posterior 

wall thickness, 3= end-systolic dimension of left ventricle, 4= end-systolic posterior wall 

thickness, 5= time between end-diastole to end-systole. 
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Figure 2. Change in body mass  
Body mass for both exercise and sedentary control groups were significantly higher (# = p<0.05 than both 

tumor bearing-groups, but not between groups. Tumor-bearing groups had no significant differences in 

body mass between groups. Both Control and Tumor-bearing groups had significant increases in mass 

from Pre-Post 2 (* = p<0.05). 
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Figure 3. Left ventricle change in volume 
The increase in diastolic (A), systolic (B), and stroke (C) volumes of the left ventricle from the first 

echocardiography measures to the final measures. The increases in these volumes were significantly 

higher in the exercise control animals compared to both sedentary groups(# = p<0.05 vs Sedentary tumor-

bearing; *= p<0.05 vs Sedentary control, except for left ventricular systolic volume (LVSV). 
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Figure 4. Cardiac data 
The heart (HR), left ventricle (LV), and right ventricle (RV) wear compared between exercise and 

sedentary control (EXCON, SEDCON) and tumor-bearing groups (EXTB, SEDTB) (Two way-ANOVA 

and Holm-Sidak post hoc tests). # = p<0,05 vs. SEDTB; * = p<0.05 vs. EXTB; $ = p<0.05 vs SEDCON.  
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Figure 5. Cardiac Correlations 
Within the tumor-bearing groups (closed circles) tumor mass was significantly negatively correlated with 

heart mass (B), left ventricle mass (D), and body mass (F) in the exercise-tumor-bearing group (EXTB). 

However, within the sedentary group only left ventricle mass significantly negatively correlated with 

tumor mass (C). The sedentary and exercise control groups are presented as open circles representing the 

mean and SEM (n=10) for each group, of which are shown only for comparison purposes, and are not 

factored into the correlation or regression calculations. 
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Figure 6. Muscle Correlations 
Within the tumor bearing groups (closed circles) tumor mass was significantly negatively correlated with 

gastrocnemius mass (B), plantaris mass (F), and a trend for soleus mass (D) in the exercise-trained tumor-

bearing group (EXTB). The Sedentary and Exercise control groups are presented as open circles 

representing the mean and SEM (n=10) for each group, of which are shown only for comparison purposes 

and are not factored into the correlation or regression calculations. 
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Chapter 4 - Discussion 

 Determination of the effects of prostate cancer on cardiac function and mechanics as well 

as skeletal muscle mass and the possible ability of exercise training to mitigate the effects of 

cancer on these parameters is clinically important. The primary finding of the current 

investigation is the significant atrophic effects of prostate cancer on the heart and skeletal 

muscle. Importantly, we show that exercise training can attenuate most of the atrophic effects in 

both heart and locomotor skeletal muscles. This is important as these results show the underlying 

effects of cancer, independent of treatment. Specifically, with prostate cancer  LV mass was 

negatively correlated with prostate tumor mass, in both EXTB and SEDTB animals. However, 

the LV mass loss with cancer was attenuated with moderate intensity exercise training. These 

findings demonstrate the mitigating effects of aerobic exercise, on cancer-related cardiac 

atrophy. Hence, cancer-related cardiac and skeletal muscle atrophy are likely an underlying 

potential cause of fatigue which may be exacerbated by ADT or adjuvant therapies (15, 57). 

  Prostate Cancer and Atrophy 

 The study of prostate cancer in the absence of treatment is clinically important to 

understanding the underlying mechanisms of the disease in patients prior to treatment. Previous 

work has shown cancer induced atrophy and cachexia in pre-clinical animal models (15, 40, 61) 

and humans (8, 34). Although the tumor-bearing animals in the current study were not cachexic 

(5% loss of body mass without signs of edema), there was significant atrophy of the heart, LV, 

and skeletal muscle in the sedentary group with cancer. There are several mechanisms potentially 

responsible for the atrophy observed herein contributing to the differences in mass, many of 
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which are discussed in a recent review (13). For example, Forkhead boxO (FoxO) expression in 

muscle increases with cancer and has been implicated as an important signaling pathway 

involved in cancer-induced skeletal muscle atrophy (28).  Further, a reduction in spontaneous 

physical activity of the SEDTB group could also induce muscle atrophy through disuse. 

Although spontaneous activity was not measured in the current study, there were no differences 

in locomotor muscle oxidative capacity (Table 3), indirectly suggesting gross alterations in 

spontaneous physical activity between sedentary groups was not present (17).  Compared to 

skeletal muscle, much less is known regarding the effect of prostate cancer on cardiac muscle. 

The ubiquitin ligase system is thought to be a primary contributor in skeletal muscle, and 

possibly in cardiac tissue as well.  However, actual mechanisms are speculative with the 

lysosome, calcium dependent and ubiquitin-dependent systems all as potential pathways of 

atrophy (1, 34). Further, two different E3 ligases i.e., atrogin-1/muscle atrophy F-box(MAFbx), 

and muscle ring finger-1 (MuRF-1), (both of which are upregulated via FoxO) are implicated in 

cancer-related cardiac atrophy (1,63). Specifically, in mice with C26 colon cancer both E3 

ligases were up-regulated and contributed to decreases in cardiac wall thickness and myocardium 

protein degradation (55, 63).  

  Aerobic Exercise Training 

Exercise training is known to increase LV mass in health as well as multiple disease states, 

potentially increasing cardiac output (Q) and aerobic capacity and combating cardiovascular 

dysfunction or increasing exercise performance. Hence, the elevated cardiac masses normalized 

to both body weight and FL were expected in the EXCON group after training, consistent with 

previous research (38, 58, 60). These increases in cardiac mass seen in the EXCON group were 

not as prominent in the EXTB animals, which is likely due to the aforementioned mechanisms of 
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cardiac atrophy with cancer. The lower LV mass of the SEDTB group was likely responsible for 

the significantly lower LVDV and SV versus the EXCON, and a similar trend seen versus 

EXTB. Cardiac atrophy previously associated with time to exhaustion (15) could be attributable 

to modifications in the ubiquitin proteasome system. Thus, the mitigation of cardiac atrophy 

observed with exercise herein could be altering the effect of cancer on the ubiquitin proteasome 

system. Further, exercise training has been demonstrated to prevent rises in heart and skeletal 

muscle FoxO levels during doxorubicin treatment (28). Within the heart, exaggerated levels of 

MAFbx and Murph-1 levels were significantly reduced in a model of heart failure following 4 

weeks of exercise training albeit of lesser volume (1). These findings are thought to be due to the 

chronic attenuation of inflammatory markers, such as tumor necrosis factor alpha (TNF-a) and 

interleukin-6 (IL-6). Specifically, TNF-a is contributing to the expression of MAFbx and 

Murph-1 E3 ligases and was significantly correlated with higher levels of both E3 ligases 

mentioned previously (1), with aerobic exercise training having the potential to regulate the 

expression of the E3 ligases mentioned above either directly, or indirectly through mitigation of 

circulating TNF-a (2). In addition, Padrão and colleagues (40) demonstrated that exercise can 

mitigate cardiac cachexia and remodeling in a pre-clinical model of urothelial carcinoma (40) 

with several potential mechanisms by which exercise training may mitigate cancer-induced 

cachexia. 

  Left Ventricular Function in Prostate Cancer and Exercise  

 In contrast to our hypothesis, there were not large changes in many of the non-invasive 

measures of cardiac function and mechanics in the EXTB versus SEDTB groups, despite 

significant differences in heart and LV mass between groups. Echocardiography evaluation of 

LV function has been a valuable tool in both clinical and pre-clinical investigations due to its 
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non-invasive nature and ability to track within subject longitudinal changes in both animals, (10, 

14, 31, 42, 51) and humans (25, 48). In the current study, we show that moderate intensity 

exercise training can mitigate prostate cancer induced atrophy of the LV, with exercise training 

resulting in a comparative heart size in the animals with cancer to that of the healthy sedentary 

controls. This is of higher clinical significance as heart and cardiovascular structure and function 

are important factors in determining the type of, and tolerance to, various anticancer therapies 

(1,11,45). If alterations in the heart (specifically LV) manifest with cancer prior to initiating 

treatment, regular physical exercise may improve heart mass, and potentially decrease both 

cardiac events associated with therapy (7, 57), as well as cancer-induced cardiac cachexic related 

deaths (34).  

 Non-invasively measured LVEDV as an indirect indicator of LV size, was only 

significantly increased in the EXCON animals over time, with a trend for an increase in the 

EXTB group (Table 2, Figure 3). This is in contrast to the absolute masses of the heart collected 

post-mortem (Table 1). Given the relative sensitivity of echocardiography it is difficult to 

delineate small difference in the rodent due to rapid heart rate and small chamber dimensions 

leading to a lack of fidelity of spatial and temporal resolution, which may explain, in part, the in 

vivo versus in vitro differences in measures (38). However, possible mechanisms discussed 

herein (E-3 ubiquitin ligases) that could be contributing to cardiac atrophy, should be 

investigated further as manifestation at a molecular level may delineate earlier changes than 

echocardiography can detect.  

  Limitations 

 Several limitations from this study should be addressed. Food consumption was not 

measured and could lead to decreased levels of protein synthesis, and ultimately contribute to the 
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cardiac or skeletal muscles atrophy in the tumor-bearing groups compared to controls (49, 54). 

However, the continued increase in mass (including non-tumor mass of all groups) and that 

femur length was not different between groups suggests growth rates of the cancer group were of 

similar proportion to the control groups indicating normal growth patterns (47). With no 

differences between groups in mean tumor mass, the similar burden of the tumor between EXTB 

and SEDTB groups strengthens the comparisons between groups. This similar tumor-burden 

coupled with the orthotopic model of cancer (vs. ectopic models) also strengthens the 

translational development of this particular cancers effects as the tumor is matched to its host 

tissue (i.e., prostate tumor in prostate) (29), on the heart and skeletal muscles. This is particularly 

important with exercise as the orthotopic model also mitigates possible confounding differences 

versus ectopic models on site-specific tumor blood flow with exercise, as previously shown (21). 

Lastly, the length of time and exercise modality requisite to induce significant increases in 

cardiac structure and function are debated in healthy humans as well as in clinical and pre-

clinical studies (44, 59, 60). From animal studies, the ideal length of training is typically 6-8 

weeks of constant load moderate intensity exercise to induce an exercise phenotype (30). Due to 

the growth rate of these cancer cells, the entire duration of the study could not be extended 

beyond 5-6 weeks due to potential tumor size limitation and ethical treatment of the animals. 

Hence, a longer period of training may have been needed to induce functional and mechanical 

changes in the LV between the ETB and SEDTB groups. 

  Conclusions 

 In summary, this investigation demonstrates that prostate cancer, independent of any 

adjuvant therapy, in a pre-clinical orthotopic prostate tumor model induces atrophy of cardiac, 

and select locomotor skeletal muscles. Furthermore, these reductions in muscle mass were 
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significantly negatively correlated with tumor mass, primarily among the EXTB animals. 

Although there are multiple potential contributing mechanisms to these reductions in muscle 

masses with cancer in tumor-bearing animals, exercise training mitigates gross changes in 

cardiac mass, and may benefit the patient and further support the importance of including 

exercise as a fundamental component of cancer patient care. Information garnered herein provide 

important insights into possible mechanisms of fatigue in cancer patients that could be 

exacerbated by concomitant treatment. Lastly, the present investigation promotes further 

investigation into the mechanisms by which prostate cancer independently reduces cardiac and 

locomotor skeletal muscle mass, and further the role of exercise in the attenuation of 

aforementioned reductions. 
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