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Abstract

Cybersecurity is playing a vital role in today’s network. We can use security devices, such

as a deep packet inspection (DPI) device, to enhance cybersecurity. However, a DPI has

a limited amount of inspection capability, which cannot catch up with the ever-increasing

volume of network traffic, and that gap is getting even larger. Therefore, inspecting every

single packet using DPI is impractical.

Our objective is to find a tradeoff between network security and network performance.

More explicitly, we aim at maximizing the utilization of security devices, while not decreasing

network throughput. We propose two prototypes to address this issue in a demilitarized zone

(DMZ) architecture.

Our first prototype involves a flow-size based DMZ criterion. In a campus network

elephant flows, flows with large data rate, are usually science data and they are mostly safe.

Moreover, the majority of the network bandwidth is consumed by elephant flows. Therefore,

we propose a DMZ prototype that we inspect elephant flows for a few seconds, and then we

allow them to bypass DPI inspection, as long as they are identified as safe flows; and they

can be periodically inspected to ensure they remain safe.

Our second prototype is a congestion-aware DMZ scheme. Instead of determining whether

a flow is safe or not by its size, we treat all flows identically. We measure the data rates of

all flows, and use a global optimization algorithm to determine which flows are allowed to

safely bypass a DPI. The objective is to maximize DPI utilization.

Both prototypes are implemented using OpenFlow in this work, and extensive experi-

ments are performed to test both prototypes’ feasibility. The results attest that the two

prototypes are effective in ensuring network security while not compromising network per-

formance. A number of tools for SDN network configuring and testing are also developed.
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Chapter 1

Introduction

1.1 Motivation

Security plays a vital role in today’s network. Without proper attention to security issues,

information may be leaked, altered, intercepted, or become inaccessible. On May 12, 2017,

a ransomware cyberattack called WannaCry4 was launched. The attacker encrypted the

victim’s files, and asked for a $300 ransom to decrypt them. This attack infected more

than 200,000 computers in 150 countries. This would have been even more destructive if

the network had been a cyber-physical network used in a smart city or on the Internet of

Things5. For example, Koscher et al.6 hacked into a smart car, which gave them full control

of the instrument panel cluster. They were able to display arbitrary messages on car’s LED,

display false speedometer and fuel-level readings, adjust the illumination of instruments, etc.

These can be very dangerous events when driving a car. Also, on Oct. 21, 2016, a successful

DDoS attack7 was launched toward Dyn’s DNS servers by exploiting the vulnerability of IoT

devices, which led to large-scale websites becoming unreachable including Twitter, Netflix,

Reddit, etc. This was the largest DDoS attack in history; however, the majority of devices

the attacker exploited were network printers, IP cameras, and baby monitors.

We can act upon many aspects to enhance network security. Examples are encrypting

messages, keeping systems up to date, etc. We can also use security devices (e.g., deep
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packet inspection, DPI) to analyze packet contents, filter unsecured flows, and prevent net-

works from being attacked. Currently, DPIs are widely deployed in most campus networks

for security inspection. However, these DPIs don’t solve our problem entirely. Ideally, secu-

rity inspection should be applied on all traffic. However, user demand on networks is ever

increasing8, and it is unrealistic to expect that all traffic can be properly inspected. Many

universities such as Yale, University of Michigan, UAB, and others have updated their core

network to 100 Gbps. However, on the other hand, security devices in the network only

provide a fixed amount of inspection capability, which cannot catch up with the increasing

user demand, and the gap between them is getting even larger. Since DPI represents the

bottleneck of the network, if we perform a full inspection on all traffic, network throughput

will be brought down to the DPI’s capacity, which is destructive for the network. But if all

traffic is not inspected, network security is compromised. Therefore, we need to find a way

to allocate the traffic these security resources. This is the problem we are trying to solve.

Specifically, in a local area network with network security enhanced by security devices, how

best can the limited security resources be allocated to all network traffic, in order to achieve

a tradeoff between network security and network performance?

The demilitarized zone (DMZ) model is a good fit for such purposes. DMZ refers to

a subnetwork or subset of network traffic where no security inspection is performed. This

is justified as it is assumed that all traffic within the DMZ is trusted. The science DMZ

model is already widely deployed in universities for performance consideration. For example,

Yale University has a 100G network that deploys the DMZ9. The University of Alabama at

Birmingham (UAB) also upgraded its campus network in 2016, installing a 100G edge with

a science DMZ10. Inspired by the science DMZ prototype, we can allow a subset of flows

to bypass DPI inspection for a short period of time when congestion occurs. This process

is shown in Fig. 1.1. In normal cases, flows are inspected by DPI, as shown in Fig. 1.1a.

When DPI resources are scarce, we allow some flows to bypass DPI inspection, as shown in

Fig. 1.1b.

For now, DMZ rules are static. However, we need to configure them dynamically, i.e.,

implement a dynamic DMZ. This requires us to find a way to obtain traffic information in

2



(a) A flow inspected by the DPI. (b) A flow bypassing DPI inspection.

Figure 1.1: In usual cases, flows are inspected by DPI, shown as Fig. 1.1a. When DPI
resource is scarce, we allow some flows to bypass DPI inspection, shown as Fig. 1.1b.

real time, and reroute flows automatically and dynamically. Fortunately, software-defined

networking (SDN) allows us to acquire flow statistics information in near real-time resolution

and configure the network on the fly. SDN brings new features to a network: dynamic

flow control, network-wide visibility with centralized control, network programmability, and

simplified data plane — features proven to be beneficial in enhancing network security11;12.

Moreover, SDN is capable of enabling dynamic service chains13;14. In our case, the service

chains are either routing a flow through a DPI, or bypassing DPI inspections. OpenFlow15,

as an enabler of SDN, serves as the communication protocol between the SDN control plane

and data plane.

1.2 Contributions

Our contributions toward this work are listed below.

1. Develop an OpenFlow application to balance network security and performance for

networks with insufficient security resources, using a size-based criterion.

We proposed and implemented a flow-management prototype with size-based crite-

rion. In this prototype, we proposed to differentiate elephant flows and mice flows by a

threshold. Since elephant flows cause congestion and are usually science data, we can

allow the flows to bypass security inspection. We also performed theoretical calcula-

tions on the ingress data rate of the security device, which can guide in the selection

3



of the threshold value. This will be explained in depth in Chapter 4.

2. Develop an OpenFlow application to realize a dynamic DMZ in a general-topology

network with multiple security devices, avoiding congestion on the security devices.

We proposed and implemented a congestion-aware dynamic DMZ prototype. The

scheme can be applied on a general local area network with distributed DPIs. In this

scheme, limited security resources are allocated to the flows. We aimed at 1) maximiz-

ing utilization of security devices, therefore enhancing maximum network security; and

2) avoiding overwhelming the security devices in order to minimize packet loss at the

network bottleneck. We proposed a capacity reservation scheme to accomplish this. In

order to maximize the devices’ utilization, we formulated the problem into an integer

linear programming problem, and obtained a near-optimal solution for this problem.

We will explain this scheme in detail in Chapter 5.

3. Implement a real-time flow-rate-obtaining module.

For both prototypes mentioned above, the controller needs accurate flow rate infor-

mation in order to optimize. However, obtaining flow rates in OpenFlow is nontrivial.

In this dissertation, we elaborate on our work on the flow-rate-obtaining process in

OpenFlow in Section 4.1 and 5.4.4.

Lastly, though we were focusing on the resource allocation on security devices, the work

can be extended to any resource-limited middlebox.

1.3 Organization

The structure of this dissertation is outlined below. The fundamental concepts used in our

network, including SDN, OpenFlow and middleboxes, are illustrated in Chapter 2. State-

of-the-art research reviews are presented in Chapter 2 as well. Chapter 3 introduces the

networking software tools used in this work: we explain how Open vSwitch, POX controller,

and Mininet are used. A size-based flow-management prototype is discussed in Chapter 4,

and the congestion-aware flow-management prototype is explained in 5. In fact, the work

4



shown in Chapter 5 can be seen as an extension of the work in Chapter 4. Finally, Chapter

6 concludes this dissertation and discusses possible future work and challenges.
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Chapter 2

Background

In the previous chapter, we defined the problem we want to solve and explained SDN is the

best solution for this problem. In this chapter, we will introduce the basic concepts used in

our network prototype. We will give a brief introduction to SDN and middleboxes; explain

what OpenFlow is, how it works, and why we use it; and present our DMZ model. At the

end of this chapter, we will present the current state-of-the-art work that is closely related

to this topic.

2.1 Software-defined networking

Conventional networks are still constrained after decades of development. Limitations of

conventional network are as follows:

1. Flexibility. Too many complex functions are added to the network devices, e.g. OSPF,

NAT, Multicast, BGP, etc. Moreover, new protocols keep emerging at an ever-increasing

speed. The complexity is already a huge burden on conventional networks, which have

difficulty adapting.

2. Global optimization. Devices in conventional networks either don’t have a global view

of the entire network, or it takes too long for the devices to obtain a global view. To

make things even harder, the devices have to start updating again when a topology
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change occurs, and the converging process can take a long time as well. Therefore,

devices in a conventional network are not able to obtain the real-time global view of

the network, let alone perform global optimization to improve network performance.

However, global optimization is critical, since high bandwidth utilization is vital in

data centers and enterprise networks.

3. Customization. We have the needs to configure network devices dynamically in today’s

environment. Conventional network devices mostly use vendor-specific configuration

commands; moreover, many configuration changes are done manually on each device.

This is neither portable nor scalable.

Software-Defined Networking (SDN) is introduced to address these limitations. The main

contribution of SDN is its ability to decouple the network data plane and control plane, as

shown in Fig. 2.1b. On the contrary, the control plane and data plane are combined in

conventional networks as depicted in Fig. 2.1a. The control plane is where all controlling

decisions are made. In an SDN network, the centralized SDN controller is located in the

control plane. On the other hand, the data plane does the work of transmitting data from

one place to another. The data plane doesn’t make decisions; when unsure what to do about

a packet, the data plane will ask the control plane instead. The most well-known protocol

for controller-switch communication is OpenFlow (introduced in Section 2.2), but there are

other protocols/standards in SDN as well. For example, OpenConfig is trying to use a more

accurate, descriptive way to configure SDN devices in networks, including both switches and

wireless APs. OpenConfig is aiming at allowing convenient and dynamic network device

configuration. A number of vendors are already starting to support OpenConfig.

By moving all control logic into the controller, SDN allows the feasibility of configuring

the switches when required. SDN brings the following new features to a network: dynamic

flow control, network-wide visibility with centralized control, network programmability, and

a simplified data plane — features proven beneficial for enhancing network security11;12.

Moreover, SDN is capable of enabling dynamic service chains13;14. In our network prototypes,

the service chains are either routing a flow through a DPI, or bypassing the DPI.
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(a) Conventional network architecture. (b) SDN architecture.

Figure 2.1: Architecture comparison between conventional network and SDN.

The SDN architecture does have its own limitations. First, the centralized controller

becomes the single point of failure. If the controller is unreachable, the entire network is

down. For the same reason, the controller is very likely to become the target of attackers.

Second, SDN network is difficult to scale up further when it reaches a ceiling. This is limited

by the processing capability of the controller. Third, SDN network is error-prone. It’s likely

the controller code contains bugs, which will result in the network behaving unexpectedly.

However, SDN still brings more benefits than drawbacks, because of its high flexibility and

programmability.

2.2 OpenFlow

OpenFlow15 is an open standard communication protocol in the SDN environment. It re-

alizes all concepts brought up by SDN. Therefore, OpenFlow is the enabler of SDN. Open-

Flow protocol is used for communication between the SDN controller and OpenFlow-enabled

switches.

2.2.1 Basic architecture of OpenFlow

Fig. 2.2 shows the basic architecture of an OpenFlow enabled network. The infrastructure

layer (or data layer) is where all switches reside. It talks to the control layer with OpenFlow
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protocol, so the control layer can store network status. The application layer communicates

with the control layer with northbound API. In this way, the applications can have access to

the current state of the network, and furthermore, perform complex tasks. For clarification,

though this OpenFlow architecture looks like the OSI 5-layer model, they are not related.

The application layer in OSI is the place where applications can write in their data; however,

the application layer in OpenFlow is where the control logic resides.

Figure 2.2: Basic architecture of an OpenFlow-enabled network.

2.2.2 Flow entry

In OpenFlow networks, a switch keeps track of a flow table, which contains multiple flow

entries. The structure of a flow entry is shown in Fig. 2.3, consisting of three parts: headers,

action, and statistics. In short, any packet whose header matches the header field of this

flow entry should perform all actions in the action field, and then the switch will update the

counters in the statistics field.

Specifically, the header contains 12 matching fields. The fields are retrieved from the

packet. It includes source and destination MAC address, IP address, port number, and

protocol type, physical interface, etc. They range from layer 2 (data link layer) to layer 4
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Figure 2.3: Structure of OpenFlow flow entry.

(transport layer), and OpenFlow is capable of matching all the fields simultaneously. There-

fore, an OpenFlow switch can be seen as a layer 2/3/4 switch.

A flow is defined as the set of all packets which share the same packet-matching fields.

However, this does not necessarily mean all packets in a flow share the same 12-field header.

We can set a field as wildcard in a flow entry, so that the field is ignored in header matching,

whatever its value is. We can either use all 12 fields, whereby one single difference in the

packet header will be recognized as a different flow, or set some fields as wildcards.

Setting the wildcard rule is important when we need to combine or distinguish traffic

between applications. For example, consider two packets both sourced from 10.0.0.1 and

destined to 10.0.0.2. Both packets have the same destination port — 80, while their source

ports are 5100 and 5200, respectively. If no field is set as a wildcard, then these two packets

belong to different flows, since their source port numbers are different. However, if we set

the source port number field to be a wildcard, these two packets are now in the same flow.

We care which flow a packet belongs to because the minimal unit in OpenFlow is a flow, not

a packet. A flow entry performs the same actions on every packet that belongs to this flow.

The next field in OpenFlow flow entry is actions. Typically, an action is simply forwarding

the packet to a specific interface. However, the action can be more complex, as in examples

of broadcasting, dropping, modifying a packet, or even several actions mentioned above

combined. For security purposes, a flow is dropped by default, unless we explicitly specify

its outgoing interface.
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Lastly, the statistics field keeps track of several counters of the flow, including number

of bytes and of packets in the flow, duration of the flow, etc. Though this information does

not directly interfere with the packet’s forwarding process, it is still important because the

controller can learn the speed of all traffic in the network from these data, and further reroute

some flows for optimizing the usage of network resources.

The switch doesn’t proactively send the stats to the controller. Instead, the controller

will first send a flow-statistic request to the switch, then the switch will answer with a

flow-statistic response packet containing the stats of all active flow entries installed on the

switch.

Apart from the three fields in a flow entry, two other properties are important to a flow

entry: priority and timeout. The priority is an integer ranging from 1 to 65535. Because of

the existence of wildcards, it’s possible that a packet is able to match multiple flow entries.

In this case, the flow entry with the highest priority is matched. A flow entry with no

wildcard rule (exact match) always has the highest priority (priority 65535).

The timeout field consists of a hard timeout and an idle timeout. When the flow entry is

installed, we must set the values of hard timeout and idle timeout. These values specify when

the flow entry should expire. For example, we can set the hard timeout as 30 seconds and

the idle timeout as 10 seconds. This means if the switch hasn’t received a packet matching

this flow entry for 10 seconds, the flow entry reaches its idle timeout time and therefore, is

removed from the switch. Also, as soon as the flow entry is 30 seconds old, it reaches its hard

timeout and is removed from the switch. The timeout mechanism helps keep the switch in

a clear state; otherwise, switch flow tables will overflow with obsolete flow entries. For flow

entries we want to keep on the switch indefinitely, we can set both hard timeout and idle

timeout as permanent.

2.2.3 Packet forwarding process in OpenFlow

Fig. 2.4 shows the basic process of a packet being forwarded with OpenFlow. When a packet

arrives at an OpenFlow switch, the switch will first look up its flow table, trying to find a
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matching flow entry, which will indicate the action that should be applied on this packet.

But if the switch failed to find a matching flow entry, it will pack this packet together with

the OpenFlow header (forms an OpenFlow packet-in type packet, OFPT PACKET IN), and

then send them to the controller, in order to query where to send this packet. The controller

will make this decision, and send the action that should be applied on this packet back to the

switch. Finally, the switch applies the action to this packet, and saves the packet header and

its corresponding action in its flow table (i.e. install flow entry) for serving upcoming packets

in this flow. Though this entire process may take long (tens or a hundred milliseconds), it

only applies to the first packet of a flow.

Figure 2.4: Basic architecture of OpenFlow.

In the procedure above, we use a flow-modification type packet (OFPT FLOW MOD)

to install a new flow entry on the switch. The installed flow entry can help speed up the

forwarding process when new packets of this flow arrive. Alternatively, in some cases we

just want to forward this packet, but not install any new flow entries. For example, when

the controller receives a packet without registered forwarding information, we may want to

broadcast this packet. In this case, a packet-out type packet (OFPT PACKET OUT) can

be used. When the switch receives a packet-out type packet, it applies the actions on the
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packet just as a flow-modification packet. The only difference is that it doesn’t install the

flow entry on the switch.

2.2.4 Advantages of using OpenFlow

There are numerous benefits in using OpenFlow on the network.

• OpenFlow makes centralized control easier. In a conventional network, since the control

layer is distributed across every single networking device, no device can obtain a global

view of the entire network, let alone perform global optimization. However, in an

OpenFlow network, a centralized controller is deployed. The controller is capable

of obtaining information on all switches and all flows, and issuing commands to the

switches. Therefore, centralized control is made much easier. Centralized control will

make discover-based protocols run much faster, e.g., spanning tree protocol and OSPF

protocol. It can also help keep the control logic consistent on all switches.

• OpenFlow is highly programmable and flexible. In a conventional network, there’s no

way we can program packet-forwarding logic. For example, in a network, we desire all

flows from H1 to H2 to be routed through route A for only the first two seconds, and

then reroute them to route B. We may find it very hard to implement these regulations

in a conventional network. However, in an OpenFlow network, since the controller is

a software running on a server, we can easily program the control logic.

• OpenFlow can help modify the packet according to our rules. One possible application,

with the help of this feature, is that an OpenFlow switch can serve a NAT device,

because we can easily modify the IP address and port numbers of a packet. This

feature is also highly critical from a security perspective. For example, as shown in

Fig. 2.5, the controller realized H1 is an attacker that is trying to send malicious traffic

to the server S. Instead of simply dropping H1’s traffic, we can make H1 talk to a

“fake” server, which is in fact the network monitor device M , in order to gather more

information about the attacker. The monitor should talk to H1 as if it was the attacked
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server. This can be easily achieved by installing the flow entries listed in Table. 2.1 to

the switch.

Figure 2.5: An example topology — H1 is launching an attack to server S.

Table 2.1: Flow entries to be installed on the switch.

Match field
Action field

Source Destination

H1 S Forward to interface 2
M H1 Change source IP to S, forward to interface 3

• OpenFlow standardizes the switch configuration API. This is very important when

the devices in a network are from multiple vendors. To configure the switches in

conventional networks, usually means doing so manually one by one. Moreover, the

fact that each vendor has its own set of CLI (command line interface) commands makes

the configuration process much more complicated. OpenFlow solves this problem by

establishing and using a vendor-neutral standard, so the configuration commands will

be identical no matter what vendor the device is from. This also helps automate the

configuration process, which makes the configuration of multiple switches much easier.

• OpenFlow is completely transparent to end-users and even legacy switches. OpenFlow

is a protocol only used between the controller and switch, so end-users can talk normally

without awareness of OpenFlow protocol in use. For the same reason, we can also run
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OpenFlow in a hybrid mode, i.e., place OpenFlow switches in the same network with

legacy switches, as long as the OpenFlow switches are connected to a controller.

2.3 Middlebox and deep packet inspection

A middlebox (MB), as suggested by the name, is a device that lies in the middle of network

traffic and performs actions on the traffic that goes through it. Formally, a middlebox is a

networking device which inspects and manipulates traffic16;17. Traditional packet-forwarding

devices, e.g., switches and routers, are not considered middleboxes.

Middleboxes can be deployed either off-path or on-path. An off-path middlebox deploy-

ment means the middlebox is connected, and only connected to one switch, as shown in

Fig. 2.6a. On the contrary, on-path deployment means the middlebox is connected to two

switches, thus lying in the middle of a path, as shown in Fig. 2.6b.

(a) Off-path Middlebox Deployment. (b) On-path Middlebox Deployment.

Figure 2.6: Comparison between off-path middlebox and on-path middlebox.

An on-path middlebox has the advantage of easy deployment; however, because the

middlebox lies in the middle of a path, this will result in every flow that needs to go through

this link being processed by this middlebox. However, this flow might already have been

processed by another middlebox. On-path deployment also lowers the link bandwidth to

the middlebox’s capacity. Therefore, on-path deployment is often a waste of resources.

Conversely, off-path middlebox placement enables efficient use of middleboxes18.

Among security devices deployed in the campus network, deep packet inspection (DPI)

device is the most commonly used network packet-filtering middlebox. Unlike a firewall,

which only inspects the header fields of a packet, DPI inspects the traffic content to determine
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whether a packet is malicious. DPI can be used by companies to block content from a

certain websites or applications as well, for example, Twitter. Currently, DPI is widely used

in networks for security inspection, spam filtering, etc. In our network prototype, we use

off-path deployed DPI to identify malicious packets.

DPI has the following drawbacks as well: using DPIs brings down network performance.

Security inspection by DPI is expensive. Security devices such as firewalls only try to match

the packet header with some pre-defined rules; however, DPI analyzes the content of a packet

and evaluates it for anomaly classification. This is the reason why the DPI processing rate is

slow when compared with network bandwidth. If everything is forwarded to DPI for security

inspection, the throughput of the entire network will be limited to the DPI’s processing

capability, therefore bringing down the network performance. This is the problem we are

trying to solve.

2.4 DMZ model

As introduced in Section 1.1, DMZ is a conceptual network design where no security inspec-

tion is performed. DMZ was first introduced to isolate servers exposed to the public from

internal workstations, as shown in Fig. 2.7.

Figure 2.7: DMZ isolates internal workstations from exposed servers.
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In a campus network, science DMZ model has been introduced to differentiate science-

data networks from general-purpose networks. We call it science DMZ because we don’t

perform any security inspection on science data, just as with the traffic to the servers exposed

to the public in the DMZ model. Science DMZ can allow trusted flows to bypass security

inspection and improve network performance19.

We can set pre-defined rules in the network to realize science DMZ; however, it will only

apply to the network where we have had a whitelist beforehand. In case we have no pre-

knowledge about the network, we will have to propose our own DMZ rules. We will propose

two different DMZ rules and illustrate how we can enhance network security with these rules

in Chapter 4 and Chapter 5, respectively.

2.5 Literature review

We are trying to balance network performance and network security. Therefore, we will

present the literature review on both the network performance aspect as well as the network

security aspect.

2.5.1 Performance

On the performance side, this problem can be seen as a traffic engineering problem. Four

aspects are most critical to a traffic engineering problem: resource allocation (flow manage-

ment), fault tolerance, topology update, and traffic analysis20. In our work, we focus on

resource allocation and traffic analysis.

Resource allocation

Resource competing may occur in many places — for example, the link21, switch22;23, con-

troller24;25, and middleboxes26. Since in our network prototype, middleboxes are the bottle-

neck, we will focus on the resource allocation problem on middleboxes.

When allocating middlebox resources, conventional works have focused on admission
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control, optimizing routes for given traffic demands, or traffic sampling to avoid overwhelming

the DPI device. Admission control27 avoids congestion on links or middleboxes by checking

if current resources are sufficient before connection establishment. Therefore, when the

“resources” are link capacities in bps, it requires us to know the data rate of a flow as soon

as its first packet arrives. The optimization approach28;29 performs an offline optimization

before the network starts; therefore, it requires pre-knowledge of exact traffic demands of

the entire network. In a general campus network, we can neither obtain a flow’s data rate as

soon as it arrives, nor have a pre-knowledge of all traffic demands. Traffic sampling30;31 is

a good approach in general; however, it is not suitable in a network secured by DPI. At the

application level or content level of DPI inspections, the inspection of contiguous packets is

important because this process can help a DPI “understand” the content of the flow, and

further increase accuracy of the inspection; however, packet sampling breaks down the flow.

Traffic analysis

In order to perform optimization, we need accurate and real-time traffic statistics. In a

conventional network, we can use MIB/SNMP32 or traffic sampling33;34 to obtain real-time

traffic statistics. SNMP is the most widely used protocol for monitoring network status.

However, SNMP is complex, unscalable, and hard to implement. Traffic-sampling approaches

such as sFlow have proven to work well together with OpenFlow31; however, they only offer

an estimation of traffic rate instead of an accurate one. Though there are other excellent

works on flow statistics monitoring, e.g. OpenNetMon35, which provides flow statistics in a

more accurate way, they will make our network prototype unnecessarily complex. We found

the best way to obtain traffic statistics in an OpenFlow network is by using OpenFlow’s

built-in counter fields in flow entries.

Traffic Engineering with SDN

SDN makes it easier to implement traffic engineering strategies such as load balancing and

algorithms for flows routing20;21;36;37. Paper21 studies a traffic engineering solution for a
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network where SDN is only partially implemented, i.e. SDN switches were incrementally

introduced into an existing network. This means only a few nodes are controllable by the

controller. They formulated this scenario as a linear programming problem and then solved

it, which in turn improved link bandwidth utilization, and reduced delay and packet loss.

Zhang et al. presented a hybrid routing approach, which combined destination-based routing

with explicit routing, in order to achieve load balancing with low complexity and good

scalability36.

No matter what TE technique we are using, the controller’s ability of rapidly retrieving

real-time monitoring information is a must, using the less overheads the better22;38. Curtis

et al. developed DevoFlow22, an improved OpenFlow model, to reduce the cost of unneces-

sary overheads and achieve high-performance networks. Rasley et al. presented a network

measurement architecture “Planck”38, which is able to extract network information in hun-

dreds of microseconds to milliseconds. Fioreze et al.39 analyzed the reliability of network

information collected from NetFlow.

2.5.2 Security

On the security side, many works focused on the science DMZ/firewall bypassing prototype.

Calyam et al. presented a campus science DMZ reference architecture in19 and demonstrated

how the DMZ model could simultaneously achieve network security and high throughput by

allowing specific users to bypass security devices. However, their architecture requires pre-

knowledge of trusted users.

Balas et al. proposed a firewall bypassing prototype called Scipass40. Scipass uses both

firewall and load-balanced IDSes as security devices, because a single IDS can no longer

support the entire network. This is a common approach that uses distributed devices for load

balancing. Scipass performs bypassing according to a whitelist. An entry on the whitelist can

be, for example, a trusted sending pattern. However, the main drawback of this approach is

that it requires pre-knowledge of characteristics of secure flows. Also, a whitelisted flow will

never be sent back for inspection again, even if there are sufficient resources.
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Miteff et al. introduced a new science DMZ design called NFShunt41. NFShunt proposes

a hybrid design using a science DMZ design and a Netfilter as a stateful firewall to enhance

security of a science DMZ. To shunt a flow, it is routed from the slow path (security inspection

path) to the fast path (bypassing path), and an idle/hard timeout timer is set on the fast

path route. When the timer expires, the flow is routed back to the slow path.

Therefore, though these studies did good work on addressing the issue of security resource

shortage, the solutions still have the following limitations:

1. The solutions relied on pre-knowledge of the flow/user whitelist.

First, obtaining the entire whitelist can be difficult, and the list also changes frequently.

Second, considering the possibility that a whitelisted host can also be compromised,

no host or flow can be considered 100 percent safe. In our prototype, we assume we

have no pre-knowledge about the network.

2. The solutions didn’t take flow size and security device capacity into consideration.

Security device capacity is, instead, critical in our DMZ decision making. First, a large

flow is more likely to be a science data flow, so it is more likely to be rerouted, bypassing

DPI inspection. Second, we should be aware of not overwhelming the security devices.

3. The solutions assumed a single-switch, single-security device topology.

However, we need to provide a security inspection for a general-topology network as

well. Distributed security devices are also widely deployed in today’s networks.

Therefore, we proposed two DMZ prototypes in Chapter 4 and Chapter 5, respectively,

aiming at solving the three issues listed above. Limitations 1 and 2 are resolved in the first

prototype. In addition, our second prototype solved all three limitations.
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Chapter 3

Networking tools

Before we introduce our work in the following two chapters, we will first briefly introduce

the software tools used or altered in this work: Open vSwitch, POX controller, and Mininet.

We used Open vSwitch to emulate a software switch for experiments in the work in Chapter

4, and used Mininet to emulate a network for performance testing in the work in Chapter 5.

3.1 Open vSwitch

Open vSwitch (OVS)42;43 is an open-source virtual switch software, that can run on any

Linux machine, turning the machine into a virtual switch. OVS gives very good OpenFlow

protocol support: for now, OpenFlow 1.0 - 1.2 is fully supported by OVS, and OpenFlow

1.3 - 1.5 is partially supported.

The process whereby OVS turns a workstation into a virtual switch is shown below.

Consider a topology where two hosts (H1, H2) are both connected to workstation S, as

shown in Fig. 3.1a, and our objective is to make the workstation a virtual switch so the two

hosts can communicate.

1. First, install OVS on the Linux workstation. Type this one-line command in the ter-

minal:

apt-get install openvswitch-switch
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(a) Initial network topology. H1 and H2 cannot
talk.

(b) Bridge br0 established.

(c) IP addresses of the interfaces are removed. (d) Interfaces are added into bridge br0. Now
workstation S is acting as a switch.

Figure 3.1: The process of a bridge is established.

OVS should be installed automatically. If the workstation already has Mininet in-

stalled, this step can be skipped, since OVS is contained in the Mininet installation

package.

2. Then create a bridge on the workstation.

ovs-vsctl add-br br0

This command creates a bridge named br0 on workstation S, as shown in Fig. 3.1b.

A bridge works on the data link layer (layer 2) and is capable of connecting separated

networks. We will use this bridge to allow H1 and H2 to talk to each other.

3. Next clear the IP address settings on both interfaces, as shown in Fig. 3.1c:

ifconfig eth0 0

ifconfig eth1 0

Since a switch’s interfaces shouldn’t have IP addresses, we clear the IP address settings

on both interfaces.

4. Finally, place the interfaces into the bridge.

ovs-vsctl add-port br0 eth0
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ovs-vsctl add-port br0 eth1

Adding interfaces into the bridge is similar to plugging Ethernet cables into a switch.

Now the two interfaces, eth0 and eth1, are no longer isolated, but are connected by the

bridge. For now, the workstation is already acting as a switch, where the two interfaces

are eth0 and eth1. Fig. 3.1d shows the current state of this step.

The workstation has already been configured as a virtual switch; however, the hosts may

still not talk to each other. This is because OVS emulates a virtual OpenFlow switch, which

can only work together with an OpenFlow controller. To connect the virtual switch to a

controller, we should first start a controller either locally or remotely, then:

ovs-vsctl set-controller br0 tcp:10.1.2.3:6633

where 10.1.2.3 is the IP address of the machine the controller is running on. The controller

is running on port number 6633 by default.

Finally, we set the controller failure mode to “secure.”

ovs-vsctl set-fail-mode br0 secure

The failure mode can be either “secure” or “standalone.” This configuration takes effect

when the switch is not able to talk to the controller. In standalone mode, the switch itself

will take over the responsibility and act as a layer 2 learning switch. Instead, in secure mode,

the switch will drop all received packets. In our network prototype, we are more concerned

about network security than network availability. Therefore, we set the failure mode to

“secure.”

3.2 POX controller

As introduced in Section 2.2, an OpenFlow-enabled switch has to be connected to an Open-

Flow controller to start working. There are many choices for OpenFlow controllers: Open-

Daylight44, Beacon45, POX46, etc. Among these, we use the POX controller to control our

OVS switches. POX is a python-based, light-weight OpenFlow controller. Compared with

other “powerful” controllers, POX provides just enough functionalities to program a con-
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troller. The simplicity of POX’s architecture and the flexibility of Python language allows

us to only focus on the real control logic of the network.

The POX controller provides a layer 2 learning switch code as a starting point (file

l2 learning.py). The basic diagram of l2 learning.py is shown in Fig. 3.2. We can

develop our own control logic by simply modifying this code. For example, in our network

prototype, we need to query the switches every two seconds. We can either start a query

thread on every single switch-connection-handling instance, and send statistic requests every

two seconds; or start only one query thread on the main process, to send statistic requests

to all switches every two seconds. It is often the case a task can be accomplished in two or

even more ways, thanks to the programmability of the controller and the flexibility in SDN

architecture.

Figure 3.2: POX controller’s layer 2 learning switch code diagram.

Though the control logic in file l2 learning.py looks simple and straightforward, it can

24



cause potential problems when multiple switches are in the network. Let’s take the network

topology shown in Fig. 3.3a as an example. The topology is a linear topology with three

switches. Now assume Host H1 establishes a flow with Host H2. The red arrows show the

entire route of the first packet in this flow, and the circled number next to the arrow is the

sequence number. The detailed packet forwarding process, including how the switches talk

to the controller, is depicted in Fig. 3.3b.

(a) The sequence that the first packet of a flow travels
from source to destination.

(b) The detailed packet forwarding pro-
cess.

Figure 3.3: The process that the first packet of a flow is forwarded in a linear topology
network using simple l2-learning POX controller.

This forwarding process, simple as it is, is not recommended for at least two reasons:

• The packet delay is too long for the first few packets. This can be easily seen in Fig.

3.3. The round trip between switch and controller is the most time-consuming step in

the entire forwarding process; however, we need to multiply this time by n if we have

n switches in a row. As a result, the delay of the first packet will be huge, and this

can even cause problems if the packet is delay-sensitive.

• Resources are wasted in the controller. When the packet reaches the controller for

the first time, i.e., when switch S1 sends the packet to the controller, the controller is

already aware of this flow and has calculated the entire path from source to destination.

However, we made the controller recomputed the paths for a second and third time

because S2 and S3 would send the exact same packet to the controller.
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To solve this problem, we can slightly modify the routing process: when the controller

notices the flow for the first time, it computes the entire source-destination path, and installs

flow entries on all switches on the way. The packet’s forwarding process details are shown

in Fig. 3.4.

(a) The sequence that the first packet of a flow trav-
els from source to destination. Note the flow entry
installation are performed simultaneously in step 3○.

(b) The detailed packet forwarding pro-
cess.

Figure 3.4: The process that the first packet of a flow is forwarded in a linear topology
network using a revised forwarding approach.

However, this approach brings a new problem while solving the long-delay issue. The

problem is, though we expect all switches to install the flow entry simultaneously, a slight

difference exists between their flow entry installation times, and this can cause a big problem.

Assume switch S1 installed the flow entry first, so the packet is forwarded to switch S2.

However, by the time the packet reaches S2, S2 has not yet finished installing the flow entry,

so it will query the controller again about this packet. However, the controller’s logic is that

it will receive packet in requests from the first switch on the flow’s path only, thus this will

cause unexpected behavior from the controller. Sending the flow entry installation request

in sequence S3 → S2 → S1 doesn’t help either. Since the flow mod requests can be sent

out instantly, but processing the request has a large variance in time, the switches may still

install the flow entries in any order and this is totally unpredictable. We have to find a way

to send the flow mod request to S1 only when all other switches are done installing their

flow entries. Fortunately, in OpenFlow, a feature called barrier is designated for this.

There are barrier request and barrier response in the barrier module. When the switch
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processes a barrier request packet, it will reply to the controller with a barrier response

packet. If we first send the switch a flow mod packet and then a barrier request, then we know

the flow mod request is processed for sure when the controller receives the barrier response

back from the switch. Therefore, we can let the controller send a barrier request to all

switches on the flow’s path except S1; and only when we get all barrier responses, do we

then install the flow entry on S1. The entire process is shown in Fig. 3.5.

Figure 3.5: The process that the first packet of a flow is forwarded in a linear topology
network using barrier.

Another issue occurs in this forwarding process when we send a UDP flow in the network.

When sending a UDP flow, the host sends packets out at a very fast rate. When these packets

reach the first switch, the first packet of this flow is sent to the controller to query for the

actions. However, querying for actions takes time (around 100 milliseconds), and in the

meantime, new packets of this flow arrive at the switch as well. Ideally a table should be

maintained in the switch, recording which flow has already been sent to the switch for action

querying, so that we can just send the first packet of a flow to the controller and buffer

the rest in the switch. This is not the case in reality. In fact, all subsequent packets are

forwarded to the controller as well until the flow mod packet arrives. If we don’t do anything

about this, the controller will process the same request again and again. This will be a great

waste of precious controller resources.

We can solve this problem in the controller. We can keep track of a table, with the
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packet’s signature (tuple: source IP, destination IP, source port, destination port) as the

key, and the content of this packet as the value. When a new packet in request comes in, we

first check to see if the signature exists in the table. If so, we don’t process this packet in, but

we still buffer the packet content to avoid losing this packet; if not, we insert this signature

into the table and process the packet in. Algorithm 1 presents this process in detail as

follows:

Algorithm 1 Avoid duplicate packet in

1: signature← tuple (source IP, destination IP, source port, destination port)
2: if signature exists in table then
3: Push current packet into buffer[signature]
4: else
5: Insert signature into table
6: Process this packet in
7: Send all packets in buffer[signature] back to the switch

3.3 Mininet

Mininet47 is a network emulator and testbed that creates and emulates a network of virtual

hosts, switches, controllers, and links. By using Mininet, we can easily emulate a network

with complex topology and send control commands to the hosts. In Mininet, all hosts are

running in a VM-like environment: each host has its own IP address. All switches are

emulated using OVS.

Advantages of using Mininet for networking experiments are numerous. First, it elimi-

nates the restriction on the amount of hardware switches; we can experiment on a 10-node

network, even if we don’t have a single switch. All experiments can be carried out with one

workstation. Second, the experiment topology is highly scalable. We are able to test on a

topology with different numbers of switches by only changing a parameter. Last but not

least, using Mininet makes the testing process highly automated. In an experiment with

a conventional network, where we need the hosts to send traffic or execute a command at

the same time, it can be hard to synchronize them. However, in a Mininet testbed, it can
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be easily achieved since the Mininet main process is able to send commands to the hosts it

created.

This feature is very helpful in the experiments. When we need to generate random traffic,

our requirement may be, for example, “send a flow every 0.1 second from a random host to

another host,” or “send traffic to any random host at random speed, but limit total ongoing

traffic in the network to no more than 1 Gbps.” These tasks cannot be done if we don’t have

a coordinator. Fortunately, Mininet can act as the coordinator. Using Mininet, the random

traffic generating process can be very simple, as shown in Algorithm 2.

Algorithm 2 Generate random traffic

1: time← 0
2: while time < targettime do
3: Generate random host src and dst where src 6= dst
4: Send host src the following command: “use iPerf to send traffic to host dst”
5: time← time+ 0.1
6: Sleep 0.1 second
7: end while

Moreover, we can modify the sending interval to a random number in order to make the

sending rate follow a particular random distribution. For example, we can generate an expo-

nential distribution sending interval to make the sending rate follow a Poisson distribution.

When generating the desired traffic, we use iPerf to generate a constant bit rate UDP

flow, and combine multiple iPerf instances to obtain the variable bit rate traffic. Ideally,

we should use iPerf to measure total throughput as well, since iPerf is able to output the

statistics for each flow it generated, including transferred bytes, packet loss, etc., as shown

in Fig. 3.6a. However, iPerf sometimes gives anomalous output, shown in Fig. 3.6b, and the

occurrence pattern is unpredictable. There’s only one thing we know about the bug: it only

occurs when the network is congested. Moreover, the bug is inside iPerf, so there’s nothing

we can do about it. Fortunately, we can use Mininet to circumvent this problem.

Since Mininet provides a VM-like environment for each emulated host, each host has

its own emulated interface, and there are statistics on the interface. The statistics are

maintained per-interface. Though this is not as good as the per-flow statistics provided by
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(a) Normal output of iPerf.

(b) Anomalous output of iPerf.

Figure 3.6: Normal and anomalous outputs of iPerf.

iPerf, the per-interface statistics are sufficient to calculate total throughput. Moreover, it is

an error-proof way of throughput measurement. In the Mininet console, we type the following

command to obtain the number of bytes sent (TX) and received (RX) at this interface:

mininet> h2 ifconfig h2-eth0

Irrelevant output......

RX bytes:12845466 (12.8 MB) TX bytes:11036 (11.0 KB)

So fetching the number itself can be easily done with a single-line shell script.

• Get number of bytes received:

ifconfig h2-eth0 | grep "RX bytes" | cut -d: -f2 | awk '{ print $1 }'

• Get number of bytes sent:

ifconfig h2-eth0 | grep "TX bytes" | cut -d: -f3 | awk '{ print $1 }'

To obtain total throughput of the entire network, we can calculate the ratio between total

bytes received and total bytes sent.

Using Mininet for network experiments also has its drawbacks. First, the testing topology

cannot scale up arbitrarily. In Mininet, all switches and hosts are emulated by the worksta-

tion, therefore consuming the workstation’s resources. Given the limited CPU and memory

resources on the workstation machine, we cannot scale the experiment network up without
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limits. In fact, a desktop PC with i7 CPU and 8GB memory can handle up to around 20

switches and 20 hosts, and there should be no more than 200 flows in the network simultane-

ously as well. Secondly, since all elements are sharing the resources of the host machine, the

experiment in Mininet is easily influenced by other applications running in the host machine,

especially when the host machine is a virtual machine running on another machine. Even if

we use a dedicated desktop machine for the Mininet experiment, and are careful not start

any other software during the experiment, the experiment results sometimes still have large

variability. In this case, we have to run the experiment many times and take the average to

eliminate the influence on this variability. Last but not least, even though Mininet provided

APIs to set parameters such as packet loss rate and delay on links, it still cannot emulate the

real-world network environment accurately. We cannot guarantee a network prototype which

works in Mininet will also work in hardware switches. A gap still exists between Mininet

emulations and hardware experiments; therefore, though Mininet can help test a network

prototype, it can never substitute hardware experiments.
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Chapter 4

Size-based flow management

Current networking solutions for cybersecurity adopt static policies for traffic routing through

security devices. Packets to and from supercomputers go through a DPI device for security

inspection before being routed toward their destinations. Since the DPI almost always

represents the system bottleneck, it is typically the main factor that limits the performance

of the entire network. In this chapter, we introduce a size-based flow management prototype

to solve this problem.

4.1 Network prototype

Consider the current configuration of the K-State campus, shown in Fig. 4.1, as an example.

Packets from and to Beocat (the K-State supercomputer) go through a Procera DPI device

for security inspection before being routed toward their destinations. The bandwidth of the

links is equal to 10 Gbps, but the speed of the DPI equals only 3 Gbps. If every packet is

sent to the DPI for security purposes, the DPI will limit the bandwidth of the path down to

3 Gbps, representing the system bottleneck.

Most current designs either have no DPI at all, providing less security but higher perfor-

mance, or every packet is required to route through a DPI, which is prohibitively expensive

to license for large-scale dataflows and reduces performance. We aim at finding a solution
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Figure 4.1: Basic DMZ configuration of the KSU network.

which takes care of both network performance and security.

Many publications39;48–50 are interested in differentiating flows according to flow data

rate (flow size), and applying different actions on them. The majority of these works focus

on mice flows because mice flows often dominate more than 90 percent of the number of

flows. However, in fact, elephant flows should receive a larger degree of security inspection,

because they can take up more than 90 percent of the traffic, and therefore, are the flows

which typically create network congestion. We observed that in a campus network, the

traffic that takes the majority of the bandwidth (elephant flows) are science data. Moreover,

science data is almost always secure. Therefore, we bring up the idea of allowing elephant

flows to bypass DPI inspections.

Therefore, we can divide all traffic in the network into two groups based on flow sizes: one

group consists of mice flows, while the other group contains elephant flows. Mice flows have

a flow size smaller than a given threshold, while all other flows are elephant flows. When a

flow arrives, we measure its size, and if it belongs to a mice flow, we route it through the

DPI; but if it’s an elephant flow, we allow it to bypass DPI. This is the general rule of our

science DMZ.

When selecting threshold value, we must take both DPI processing rate and flow size

distribution into consideration. We take a simple case as an example: we have two flows
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with 20 Mbps and 30 Mbps data rates, respectively, and DPI processing rate is 40 Mbps. If

we set the threshold to be more than 30 Mbps, it will yield network congestion; but if it is

less than 20 Mbps, no packet will be inspected. Overall, 25 Mbps is a good value for the

threshold. Thus, the threshold should not be picked arbitrarily. Even though the threshold

is a fixed value after the network starts, we still need to pick the value carefully, considering

the flow size distribution and DPI processing rate.

We need the size of a given flow to identify whether it’s an elephant flow or a mice flow.

We may want to obtain its flow size as soon as the new flow arrives, so we can route it to the

right path at the earliest possible time, but this is neither feasible nor secure. First, when

the controller realizes the existence of this new flow, it only has received a single packet on

this flow. It’s impossible for the controller to get any information on the size of this flow with

only a single packet. Second, even though elephant flows are science data the majority of

the time, there is still a chance that an attacker is trying to trick the system by sending huge

amounts of traffic. Therefore, the best strategy is to route all flows into DPI for security

inspection at the beginning. Later on, after we have gained enough information on this flow

— both on flow-size and security sides, we make the decision if a rerouting is necessary. In

this case, all flows are inspected by the DPI for at least a few seconds, so network security

is retained.

With regard to how to obtain the flow size in realtime with enough measurement reso-

lution, OpenFlow switches use statistics (counters), which are components in flow entry, to

maintain flow statistics51. The counters collect statistics based on the number of bytes and

packets received, and are maintained per table, per flow, per port, and per queue. In our

prototype, we need the number of byte counters maintained per flow. The controller can

query the switch for flow statistics through a secure channel15, and the switch responds as

soon as it receives the query.

Using the statistics field, we can easily get the size of any flow with the following proce-

dure:

1. Program the controller such that it sends a statistic query every two seconds.
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2. Let the controller obtain the number of bytes counter flow statistics from the switch.

(a) If this is the first time we receive the counter of this flow, we save it in the

controller.

(b) If this is the second time we receive the counter of this flow, we find the difference

with the previous counter we saved, and divide that by two seconds to get the

flow rate.

It is worth mentioning that flow statistics responded by the switch are not in full real

time. As shown in Fig. 4.2, flow statistics are updated at discrete time points: the red

line shows the actual number of bytes received by the switch, and the blue line shows the

number of bytes the switch will respond when it was queried. In OVS, it is updated every

0.5 second (0.25 second in some versions); in a hardware switch, this may take longer. This

0.5-second update interval means that flow statistics information that the controller receives

can be delayed for at most 0.5 of a second. In other words, no matter how many times

the controller queries the switch within this 0.5 second, the switch will always respond with

the same result — the statistic that was most recently updated. Fortunately, this does not

impact our prototype, because in order to obtain the size of a flow, we only care about the

difference in number of bytes between two measurements. Though our first query is a little

delayed, when we query for the second time, it will be delayed for the same amount of time,

as two seconds is a multiple of 0.5 of a second, so the difference of byte counters will stay

unchanged, as shown in Fig. 4.2.

Finally, according to the threshold mechanism on flow statistics, the controller may send

a flow entry modification command to the switch when a flow is identified as an elephant

flow. This finalizes the entire dynamic DMZ process. Details of how flow entry installation

and modification works will be introduced in Section 4.2.
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Figure 4.2: Timing approach for obtaining flow statistics.

4.2 Flow entry installation

In order to conduct a realistic experiment, the network topology is simplified, as shown in

Fig. 4.3. The two hosts will represent the KanREN network and Beocat server, respectively,

in Fig. 4.1.

In order to enforce network security, all flows are routed to the DPI when it arrives.

This is accomplished by installing two flow entries: flow entry 1○ and 2○, as shown in Fig.

4.4a. The flow will reach the switch twice, and is never modified; however, we need to

apply different actions to the flow. The first time it arrives, it is sent to the DPI; and the

second time, it’s sent to the destination. Fortunately, there is an “incoming port” field in

the matching tuple in the OpenFlow header that can be used to differentiate these two flows.

In our case, flow entry 1○ tells the switch: for this single flow, if the incoming port is from

H1, then we forward it to the DPI; and flow entry 2○ means if the incoming port is from the

DPI, we forward it to the destination. These two flow entries are listed in Table. 4.1.

When the flow is identified as an elephant flow, we can allow it to bypass DPI inspection.
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Figure 4.3: Simplified network topology.

(a) For any new flow, we enforce it to go through
the DPI.

(b) Elephant flow is bypassing DPI.

Figure 4.4: Flow entry installation process.

This is done by modifying flow entry 1○ to flow entry 3○, as shown in Fig. 4.4b. The flow

previously destined for DPI will be sent directly to H2. We don’t delete the flow entry 2○,

because some packets may have already been sent to the DPI but not yet sent back. If we

delete this entry, those packets will be lost.
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Table 4.1: Flow entries to be installed in Fig. 4.4a for security enforcement.

in port source destination src port dst port action

H1 H1 H2 5001 5002 Forward to DPI
DPI H1 H2 5001 5002 Forward to H2

4.3 Rerouting example

Fig. 4.5 is an example of rerouting an elephant flow to bypass the DPI after its data rate it

known to be above a threshold. This figure shows the data rate in Mbps on three interfaces

of the software switch. Red and black curves are data rates on the DPI interface of two

mice flows, respectively. The blue curve is the data rate of an elephant flow from the client,

the pink dots represent the data rate of the elephant flow to the server, and the green curve

is the data rate of the elephant flow on the DPI interface. Because the controller obtains

aggregate statistics every two seconds, a peak in the DPI interface is observed. The peak

represents the first several packets of the elephant flow initially routed to the DPI. The green

curve drops back to 0 because this flow has already been rerouted, consequently bypassing

the DPI; the blue curve and pink dots show no packet loss during the rerouting process. The

two mice flows continue to be inspected normally throughout the measurement. Because

the DPI interface records bidirectional packets, its curve is twice as high as those in other

interfaces.

Figure 4.5: Routing example data rate curve.
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4.4 Experiment

4.4.1 Experiment environment

We used three desktop computers for this experiment. The topology is shown in Fig. 4.6: two

NIC cards are installed on a computer workstation configured as a virtual switch, connecting

to hosts H1 and H2. We start a controller inside the workstation, which is also serving as

the switch, and also create an emulated DPI, connecting it to the OVS switch. It doesn’t

perform any actual security inspection, but instead sends back whatever traffic it receives.

Figure 4.6: Topology used in the experiment.

All NIC cards have a licensed sending rate of 100 Mbps. We use the Linux command

tc to limit the bandwidth between the switch and the DPI to 30 Mbps so it becomes the

bottleneck. Consequently, when more than 30 Mbps data are coming into the DPI, the

exceeded part will be dropped after the buffer is full. The same behavior will occur on a real

DPI device.

We also use tcpdump to obtain network traffic measurements. Tcpdump is an open-

source software useful for counting total size of multiple flows matching a specific filter. In

order to obtain the current data rate and total number of packets, we run the command

“sudo tcpdump -i eth0 -l -e -n udp dst port 5001” to capture all packets the switch
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receives and sends. Then we pipe the results to a small script that counts the statistics and

outputs them into a file every 0.1 of a second. We should add a parameter “-Q in” or “-Q

out” in the command in order to identify ingress and egress packets on the DPI.

Specifications on the various components used for this evaluation are shown below:

Workstation: Ubuntu 12.04 LTS with Intel i7 Processor, 8GB RAM

H1/H2: 10/100Mb Ethernet card, iPerf 2.0.5-252 on Windows 7 Enterprise

Software switch: Open vSwitch 2.3.0

OpenFlow controller: POX carp branch

DPI: Open vSwitch on Ubuntu

4.4.2 Traffic generator

From the client, we send multiple UDP flows to the server. To generate flows with desired

random characteristics, three parameters are required: flow size, flow start time, and flow

duration. Flow start time follows a Poisson distribution, i.e., let Ni denote the number of

flows starting in the ith second, P (Ni = k) = λke−λ

k!
, where λ is the average number of flows

starting per second. For each flow, we assume the duration follows a uniform distribution,

i.e., tj ∼ unif(a, b) with an average of a+b
2

. For flow size, the probability that a flow is an

elephant flow follows a Bernoulli distribution with parameter p; i.e., a flow is an elephant

flow for probability p, otherwise it is a mice flow. Flow sizes of both elephant flows and

mice flows follow Gaussian distributions: re ∼ Φ(µe, σ
2
e) and rm ∼ Φ(µm, σ

2
m), respectively.

Therefore, the average data rate of the flow is

d =
a+ b

2
λ[µep+ µm(1− p)] (4.1)

When µe = 20 Mbps, σ2
e = 16, µm = 3 Mbps, σ2

m = 3, p = 0.2, the probability density is

shown in Fig. 4.7. In general, the probability density is

fR(r) = pN (µe, σ
2
e) + (1− p)N (µm, σ

2
m) (4.2)
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Figure 4.7: Sample flow rate probability density.

In addition, if λ = 1.25, a = 5 seconds, and b = 15 seconds, average data rate is d = 80

Mbps. Mice flows account for 80 percent of the number of flows, with a total data rate of

30 Mbps on average. The remaining 20 percent are elephant flows and total data rate is 50

Mbps.

Flows are generated with iPerf, an open-source network performance evaluator that can

conveniently generate constant bit rate flows. We write a python script that generates flows

by running iPerf multiple times with various flow rates and durations for each flow. Fig.

4.8 illustrates randomly generated traffic in which the Y-axis indicates total Mbps and the

X-axis indicates time in seconds.

Figure 4.8: Sample generated traffic.
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4.4.3 Experiment plan

In order to attest our prototype can help improve network performance, and learn how mice-

elephant threshold influences performance of the entire network, we propose the experiments

and corresponding definitions as follows:

1. Throughput vs threshold: throughput is defined as

(Data Received by Server)/(Data Sent by Client)53.

2. Packet loss vs threshold: packet loss is defined as

1− (Packets Received by Server)/(Packets Sent by Client).

3. DPI utilization vs threshold: utilization is defined as

(Egress DPI Data Rate)/(Maximum DPI Data Rate).

Maximum data rates from H1 to switch and from switch to H2 are both 100 Mbps, and the

DPI maximum processing rate is 30 Mbps. In all three experiments, we vary the threshold

value from 2 Mbps to 28 Mbps, in 2 Mbps steps. For each step, we generate flows for 100

seconds and evaluate data for the corresponding experiment. We run each experiment five

times and calculate the average of the results in order to minimize the influence of random

traffic.

4.5 Packet loss theoretical analysis

Although total data rate of mice flows is 30 Mbps and the DPI processing rate is also 30

Mbps, it does not indicate that all mice flows can be transmitted successfully through the

DPI. The two-second statistic pull interval results in a fraction of the DPI processing rate

occupied by elephant flows that have not yet been rerouted. When the threshold is equal

to 2 Mbps, elephant flows use an average of 11.62 Mbps DPI processing rate. When the

threshold is equal to 10 Mbps, elephant flows take up 9.96 Mbps. That is because elephant

flows have very high data rates and consume huge amounts of resources in a very short time

(less than 2 seconds).
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We can use theoretical calculations to analyze the amount of traffic transmitted to the

DPI on average. Let D denote traffic sent to the DPI in one second. We use fR(r) to denote

flow size probability density, h to denote the threshold, and tr to indicate average duration

of a flow, but we cannot simply write D = λtr
∫ h
−∞ rfR(r)dr because we are not rerouting

elephant flows whenever one reaches the switch. Instead, we have to consider flow arrival

time. Without loss of generality, we assume statistics are pulled from the switch every n

seconds, and for a certain flow, we can always find a n-second interval that covers its arrival

time t(0 ≤ t < n). Furthermore, t follows a uniform distribution in [0, n]. Therefore, we

have54

fT (t) =
1

n
(4.3)

We also derive their joint probability density function as f(t; r). Because fT and fR are

independent from each other, we have54

f(t; r) = fT (t)fR(r) (4.4)

Consider the arrival time t of an elephant flow. If t is very close to n, it is very likely we

identify this flow as mice flow in this n-second time interval, and we need another n seconds

to learn this is actually an elephant flow. So in order to identify an elephant flow in the

n-second interval, we must have
(n− t)r

n
≥ h, i.e. t ≤ n − nh

r
. If an elephant flow can be

identified in the current interval, we know the total data sent to the DPI will be equal to

g = (n− t)r; otherwise, we have to wait for another n seconds. Therefore, g = (2n− t)r. So

D can be formulated as

D(h) = λtr

∫ h

0

rfR(r)dr + λ

∫ ∞
h

∫ n

0

g(t; r)f(t; r)dtdr (4.5)

g(t; r) =


(n− t)r, if t ≤ n− nh

r

(2n− t)r, if t > n− nh

r

(4.6)

In the experiment, we have n = 2, tr = 10, λ = 1.25, and fR(r) = 0.8N (3, 3) + 0.2N (20, 16).
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Therefore,

D(h)

=

∫ h

0

12.5rfR(r)dr + 1.25

∫ ∞
h

∫ n

0

g(t; r)f(t; r)dtdr (4.7)

=

∫ h

0

12.5rfR(r)dr + 1.25×∫ ∞
h

[∫ 2− 2h
r

0

1

2
(2− t)rdt+

∫ 2

2− 2h
r

1

2
(4− t)rdt

]
fR(r)dr (4.8)

=

∫ h

0

12.5rfR(r)dr +

∫ ∞
h

1.25(r + 2h)fR(r)dr (4.9)

The theoretical graph of D is the blue curve shown in Fig. 4.9, while the red curve shows

results from the experiments. They agree very closely.

Figure 4.9: DPI ingress data rate D.

Therefore, according to theoretical analysis, when given a specific flow rate distribution

and a DPI processing rate, the best threshold value can be found using this graph, thereby

maximizing DPI utilization while guaranteeing high throughput. D as a function of h is a

monotonously increasing function, and the function value of the best threshold value should

equal (or slightly less than) the DPI processing rate.
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4.6 Analysis of experimental results

(a) Packet loss.

(b) DPI utilization.

Figure 4.10: Dynamic DMZ experimental results.

We compared network performance with and without the dynamic DMZ approach. When

the dynamic DMZ model is not implemented, the DPI is the bottleneck of the network and

the egress data rate is limited to 30 Mbps because every packet is sent to the DPI. In the

experiment, the egress data rate is 28.4 Mbps and corresponding throughput is 37.8 percent.

However, when the dynamic DMZ model is implemented on the switch and the threshold
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is set to equal 8 Mbps, the egress data rate becomes 61.7 Mbps and the corresponding

throughput is 81.1 percent.

When the threshold increases, we expect the percentage of lost packets to increase be-

cause more packets will go to the DPI. Experimental results are shown in Fig. 4.10a. The

throughput demonstrated the opposite trend with respect to packet loss. Packet loss and

throughput will sum to 1, because all packets generated by iPerf have an identical size. For

DPI utilization, as the threshold increases, DPI utilization is expected to become closer to

100 percent and ultimately remain there. The red curve in Fig. 4.10b shows results from

experiments and the blue curve is the theoretical result following the model illustrated in

Section 4.5.

The graphs meet our expectations very well, with experimental results nearly reaching

the theoretical peak of 30 Mbps or 100 percent, while remaining subject to normal system

overhead.

4.7 Summary

We proposed a dynamic DMZ model and developed a controller that simultaneously achieved

high network performance for research data flows and higher network security than tradi-

tional DMZ configurations. The controller periodically pulled flow statistics from the switch,

and sent a flow modification command to the switch to reroute elephant flows directly to

the destination, thereby bypassing the DPI. Our experiments verified the efficiency of our

approach and tested the influence of the threshold value on several important network per-

formance indicators. Implementation of our approach allowed more traffic to be sent than

the DPI processing rate, which is the bottleneck of the entire network. Setting a smaller

threshold reduced packet loss and achieved higher throughput; however, fewer packets would

be sent to the DPI for inspection because only initial packets of elephant flows would be in-

spected. Finally, we performed a theoretical analysis of the DPI ingress data rate, which is

a guide of threshold selection with given flow rate distribution and DPI processing rate.

The work in this chapter is one of our main contributions, listed as contribution 1 in
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Section 1.2.
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Chapter 5

Congestion-aware flow management

A few drawbacks in the prototype are discussed in the previous chapter. First, we assumed all

elephant flows are secure, and we will not send a flow back to a DPI for security inspection

after it is permitted to bypass the DPI. However, a potential loophole exists which the

attacker could exploit: the attacker can first send huge amounts of benign traffic to get

permission to bypass the DPI, then start launching the attack. Second, the network is

limited to a single-switch single-DPI topology, which cannot scale up. In this chapter, we

will present a work which solves all these issues in the work of the previous chapter. This

will be based on a general topology network with distributed DPIs. We proposed a new

bypassing rule, which is no longer simply based on flow size. Instead, this bypassing rule is

congestion-aware, because it can detect and eliminate congestions on DPI automatically.

5.1 Network prototype

In this network prototype, security is enforced by routing a flow through a DPI, and the

DMZ is realized by allowing a flow to bypass DPI inspection. Consider a network topology

with multiple switches and multiple DPIs, as shown in Fig. 5.1. Traffic demand can exist

between every pair of hosts in the network. Each traffic demand is a flow, since it has a

unique combination of source and destination IPs and port numbers. For each flow, we can
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either force it to go through one of the DPIs, or allow it to bypass all DPIs. For example,

consider a flow from H3 to H2. If this flow is assigned to a DPI, say DPI1, then the path

will be H3 → S5 → DPI1 → S5 → S2 → H2, which is the shortest path from H3 to DPI1,

followed by the shortest path from DPI1 to H2. If this flow bypasses the DPIs, the path will

be H3 → S5 → S2 → H2, which is the shortest source-destination path.

Figure 5.1: Sample multiple DPI topology.

Our goal is to maximize the security of the entire network, i.e., maximize the total data

rate of inspected flows. However, in the meantime, we don’t want to overly sacrifice network

performance. Therefore, our objective is to achieve a balance between network throughput

and network security.

To quantify network throughput and network security, we define network throughput as

total bytes transmitted to a destination (in percentage of total bytes sent), and network

security as the proportion of traffic inspected. In the following section of this work, we refer

to these two objectives as “throughput” and “security.”

5.1.1 Assumptions

No pre-knowledge about the network

We do not assume to know anything about the network before it starts. This includes

whitelisted or blacklisted users, patterns of secure flows, demand matrix between users, etc.
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In a general network, knowing the traffic-demand matrix in advance is impossible. Also,

considering the possibility that a whitelisted host can also be compromised, these hosts are

not 100 percent safe. Therefore, our approach is more general, secure, and realistic.

Links have sufficient bandwidth

In a network with security inspection devices, the devices always represent the bottleneck

of the network, as the processing rate is always much lower compared to link bandwidth.

Therefore, we can safely assume links always have sufficient bandwidth.

Flows don’t split

First, flow splitting is not natively supported in OpenFlow. Also, though a DPI can work

with individual packets, a DPI needs contiguous packets to “understand” the traffic content

better when working at application or content level.

5.1.2 Wildcard rule for flow entries

As illustrated in Section 2.2.2, flow is defined as the set of packets which share the same

packet-matching fields. In OpenFlow, 12 matching fields can be used as flow recognition51,

which includes source and destination MAC addresses, IP addresses, port numbers, etc. We

can either use all 12 fields or set some fields as wildcards, and setting the wildcard rule is

important to combine or distinguish traffics.

In our prototype, we will use a full 12-field matching, i.e., no field is set as a wildcard.

This is because in the perspective of security, even if one application from a specific user is

secure, it does not imply the other applications from this user are also secure. The decision of

whether traffic from one application should bypass or not should not be interfered with other

applications. A 12-field matching includes source and destination port numbers; therefore,

it is capable of isolating each application from one another.
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5.1.3 Accommodating new flows and optimizing current flows

When the switch receives a packet that doesn’t belong to any existing flow entries, it knows a

new flow has arrived and this packet is its first one. That packet is then sent to the controller

so the controller is also aware of this new flow.

Ideally, the controller should find out the data rate of this flow, then execute a global

optimization algorithm55 to decide which DPI this flow should be sent to and how to reroute

the other flows to accommodate it, finally sending rerouting commands to the switches.

However this procedure is not feasible. First, the controller is not able to know the data

rate of this flow at this point in time. Usually, we can determine the data rate of a flow by

dividing the number of bytes received by flow duration. However, since we just received the

first packet, flow duration is still 0. We need more time to find out its data rate. Second, even

if we know its data rate, such frequent global optimization will overwhelm the controller.

Lastly, frequent rerouting of the flows will cause packet loss in the network, further bringing

down network throughput.

Therefore, we cannot find a perfect-fit DPI for a new flow when it first arrives; however,

this flow has to be assigned to a DPI instantly to enhance network security. We propose the

following two-step approach to achieve both security and throughput:

Step 1: Settlement

When the first packet of a flow arrives, since we don’t yet know its data rate, we settle this

flow in the DPI with the greatest remaining capacity, in order to maximize the probability

the DPI will be able to accommodate this flow. This settlement step applies only to new

flows; additionally, the arrival of this flow will not impact any other flows.

Step 2: Optimization

Every few seconds, a global optimization is executed. Unlike the settlement step, this

step is global: all flows currently residing in the network will have this optimization per-

formed jointly. The purpose of the optimization is to maximize utilization of the DPIs. It

is performed with the following steps: the controller will first obtain flow statistics from all

switches, which includes number of bytes in each flow and flow establishment time; thus
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the switch knows the data rate and duration of each flow. Then the controller will forward

this data to the optimization module, and results will be obtained shortly afterwards. Re-

sults will show which DPI is assigned to each flow, or this flow may bypass DPI inspection.

Finally, the controller sends commands back to the switches to reroute flows according to

optimization results. This step is performed periodically, so a flow may go through this step

several times, thus being rerouted several times.

The settlement step inspects the initial part of each flow, guaranteeing the flow is ini-

tially secure; and the optimization step is able to inspect a flow which is already bypassing

inspections, guaranteeing the flow didn’t change its nature from benign to malicious. Thus

this two-step approach is able to secure the network.

In the settlement step, we need the information of remaining capacity for each DPI in

order to pick the largest one. However, there is no such API to query a DPI for its remaining

capacity. The only time we can exactly know their remaining capacities is immediately

following rerouting in the optimization step, because this is when we know the exact data

rate of each flow and which flow is assigned to which DPI. After a new flow has been assigned

to a DPI, we can no longer know the exact remaining capacity of it until the next optimization

step. The workaround is assuming the new flow’s data rate is equal to the average data rate

of all flows from this host as seen so far.

5.1.4 Capacity reservation

As illustrated in Section 5.1.3, in this prototype, every flow is sent to a DPI when it first

arrives in the settlement step, regardless of current DPI utilization. However, a DPI may

become far too congested in this process. Consider the case where DPIs are already unable

to handle all flows. Then after an optimization step, all DPIs are running at near 100

percent utilization, since the optimization step attempts to maximize utilization of the DPIs.

Consequently, when a DPI accepts new flows in the settlement step, it is overwhelmed and

packet loss will occur.

We propose a capacity reservation approach to solve this problem. Each time we reallo-
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cate the flows, we reserve some processing capability on each DPI, i.e., we only use a fraction

θ of the DPI’s capacity. Formally, for a given DPI with capacity c, we will only use θc of the

DPI capacity and reserve the rest for new-coming flows.

With regard to the value of θ, we can either pick a constant value, or dynamically compute

a best fit θ according to previous traffic. The dynamic θ approach aims at estimating a

suitable θ value for the current network. We can keep track of a θi value for DPIi, which

indicates what capacity the DPIi can use, at most, for allocating current flows. If this DPI

gets overwhelmed, i.e., we find this DPI was allocated more traffic than its capacity at the

optimization step, we can then decrease the θ value to reserve more capacity for new-coming

flows; otherwise, we would need to increase θ value in consideration of higher DPI utilization.

In this work, since the flow-arrival rate and data rate distribution will not change after

the network starts, we applied the constant θ approach.

5.2 Formulation and solver

Since our objective is to maximize utilization of DPIs, we can formulate this into a linear

programming problem and then solve it.

5.2.1 Basic formulation

Notations:

R: objective, total data rate of inspected flows (i.e., network security).

ci: capacity of DPIi.

rf : data rate of flow f .

ufi: binary variable: indicating flow f is inspected by DPIi or not. If flow f is

inspected by the DPIi, ufi = 1; otherwise ufi = 0.

θ: the proportion of DPI’s capacity in use for existing flows, as explained in

Section 5.1.4.

Basic formulation:
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maximize

R =
∑
f,i

ufirf (5.1)

subject to ∑
f

ufirf ≤ θci ∀i (5.2)

∑
i

ufi ≤ 1 ∀f (5.3)

ufi is a binary variable ∀f, i (5.4)

The ufi binary variables are the only variables in the formulation. We can define Rf =∑
i ufirf , which denotes the data rate that flow f occupies in all DPIs. In fact, a flow can

only be inspected by, at most, one DPI; therefore, Rf = rf if flow f is inspected by a DPI,

0 otherwise. In the objective (Eqn. 5.1), we want to maximize network security (i.e., total

DPI-inspected traffic), which is R =
∑

f Rf =
∑

f,i ufirf .

Eqn. 5.2 indicates total data rate of flows being inspected by a specific DPIi will never

exceed its capacity θci, as explained in Section 5.1.4. Eqn. 5.3 guarantees a flow may be

inspected by at most one DPI, that is, a flow is either going through one DPI (
∑

i ufi = 1)

or bypassing all DPIs (
∑

i ufi = 0).

Integer variables ufi make this problem NP-Hard. No efficient algorithm exists to solve

it. Fortunately, sub-optimal solutions are also acceptable in this situation. We can solve this

problem using a heuristic algorithm, e.g. simulated annealing algorithm (SAN), or an ILP

problem solver with a relative tolerance (EpGap in CPLEX, for example).

5.2.2 The impact of θ

From the analysis above, it is clear that picking the value for θ is important, as it has great

impact on network performance. In extreme cases, if we want to maximize security, we

should try to make the best use of DPI resources, with no resource reserved for future flows,

i.e. θ = 1. We can easily see this will cause massive packet loss. If we want to maximize
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throughput, we should reserve as much capacity as possible at the DPIs, i.e. θ = 0. However,

θ = 0 means no security resources are provided to existing flows. That is to say, all flows

are inspected for only the first few seconds until they reach the first optimization step, then

bypass inspection from that point on. Needless to say, either case is unacceptable.

In fact, we can balance network throughput and network security by merely picking a

proper θ. As θ increases from 0 to 1, more DPI capacity will be utilized for current flows,

while the capacity reserved for new flows will decrease. As a consequence, DPIs are more

likely to be overwhelmed and the packets are more likely to be dropped. Therefore, we can

predict that network throughput will drop while network security will rise. We will prove

this with simulation results in Section 5.5.

5.2.3 Revised formulation

The objective of basic formulation is maximizing inspected traffic. In theory, this should

work fine. However, a flow may have to be rerouted back and forth between DPIs frequently

in order to satisfy the maximization of the security inspection, and the rerouting process

may cause packet loss. We have to study further whether frequent rerouting has an impact

on network performance. Therefore, we propose the following problem formulation, in which

we aim at minimizing flow rerouting, while maximizing inspected traffic. However, since

these two objectives are conflicting, we will merge them into one by computing a weighted

sum.

Notations in addition to the basic formulation:
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W : weighted sum of two conflicting objectives: total inspected traffic and flows

stayed in place.

F : total number of flows.

u∗fi: this constant is equal to 1, if in the previous optimization step, flow f is

assigned to DPIi; 0 otherwise.

u′fi: a transformation variable for absolute value.

α: constant for weight balancing between total inspected traffic and flows

staying in place.

Revised formulation:

maximize

W = α

∑
f,i ufirf∑
i θci

+ (1− α)

(
1−

∑
f,i |ufi − u∗fi|

2F

)
(5.5)

subject to

Eqns. 5.2, 5.3 and 5.4

The only variables in the formulation are still ufi. The revised formulation has the same

constraints as the basic formulation; the only difference is the objective. As discussed pre-

viously, the objective W is a weighed sum of network security and in-place DPI assignment.

Therefore, the objective is in the form of W = αW1 + (1−α)W2, where α is the weight used

for balancing the two parts, ranging from 0 to 1. To make W1 and W2 comparable, we will

normalize them to the range [0, 1].

W1 represents network security, i.e., DPI utilization; and thus it is the same with the

objective R in the basic formulation, except it is normalized by the total capacity of all DPIs∑
i θci.

W2 shows to what extent flows are staying in place at this time point. Note that u∗fi are

known constants showing whether flow f was assigned to DPIi in the previous optimization

step, so
∑

i |ufi − u∗fi| shows whether this flow f has moved (either moving to another DPI

or bypassing). Both moving out from a DPI and moving into a DPI will contribute a value

of one to the sum. Therefore, this sum equals two if this flow f is rerouted from one DPI to
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another; the sum equals one if this flow was in a DPI and is now bypassing, or was bypassing

and is now assigned to a DPI; and the sum is zero if this flow does not move at this point in

time. This is coincident with how much packet loss will occur in each case: not moving at

all being the lowest, and moving from one DPI to another being the highest. This is because

starting flow-rerouting commands cannot be synchronized, thus in the case where a flow is

moved from DPIA to DPIB, it’s likely the flow is already moved in DPIB, while the flows

in DPIB that are planning to move out have not yet done so. Returning to the formulation,

because one flow can contribute at most a value of two to the sum and there are F flows in

total, we can divide the sum by 2F to normalize it into range [0, 1]. Lastly, the normalized

expression shows the extent that flows are moved, thus it is subtracted by one to show the

extent that flows are staying in place.

This formulation contains the absolute value of a variable, which is non-linear. To adjust

it to a linear programming problem, we introduce dummy variables u′fi to replace the absolute

value part, and constraints Eqns. 5.7, 5.8 to enforce absolute value rules. The final form of

the ILP formulation is shown below:

maximize

W = α

∑
f,i ufirf∑
i θci

+ (1− α)

(
1−

∑
f,i u

′
fi

2F

)
(5.6)

subject to

Eqns. 5.2, 5.3 and 5.4

ufi − u∗fi ≤ u′fi ∀f, i (5.7)

ufi − u∗fi ≥ −u′fi ∀f, i (5.8)

5.2.4 The impact of α

Variable α is the weight constant for balancing the two contradictory objectives. When

α = 1, the objective becomes “maximize W =
∑
f,i ufirf∑
i θci

.” Because the denominator is a

constant, the entire linear programming problem is identical to the basic formulation. As
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alpha reduces, we emphasize more on the in-place flow assignment side. Our objective is to

find a proper value for α, where the network has the largest throughput.

5.3 Optimization problem solver

Since both basic and revised formulation are ILP problems in nature, their solving steps

are similar. Therefore, we will only show how to solve the basic formulation. Because of

the binary variables in the formulation, this problem is NP-hard and cannot be solved in

polynomial time. Even the branch and bound algorithm (BBA)56, a very efficient algorithm

for ILP, takes exponential time in terms of number of binary variables.

Many algorithms can provide a sub-optimal solution for this ILP problem. We will

compare three of them: simulated annealing algorithm (SAN)56, feasible ILP solver (FEA),

and relative tolerance ILP solver (GAP)57.

5.3.1 SAN algorithm

The SAN algorithm is a general heuristic algorithm for these NP-hard problems. SAN

simulates the physical process of cooling down a material in order to approximate the optimal

solution. SAN is a probabilistic algorithm in nature, so it’s only able to provide a sub-optimal

solution. Despite this, SAN is still an excellent algorithm in finding sub-optimal solutions in a

discrete search space optimization problem because of its fast running speed, high optimality,

and ability to jump out of local optimum.

5.3.2 Feasible ILP solver algorithm

We can also transform the basic formulation into a feasibility problem and run an ILP solver

on it, for example, CPLEX. We call this feasible ILP solver algorithm (FEA). It provides a

feasible, sub-optimal solution instead of the global optimal one. The formulation is shown

below: original constraints remain unchanged, but we altered the original objective (Eqn.

5.1) into a new constraint (Eqn. 5.9).

58



maximize 0

subject to

Eqns. 5.2, 5.3 and 5.4

∑
f,i

ufirf ≥ τ
∑
i

θci (5.9)

In the formulation, maximizing 0 means this is a feasibility problem; any solution which

satisfies the constraints terminates the algorithm, thus shrinking running time greatly. How-

ever, we still require the original objective to be large enough, otherwise a trivial solution is

ufi = 0 ∀f, i, which is obviously feasible but not acceptable, since no flow at all is inspected.

Therefore, we introduced Eqn. 5.9 to enforce that the original objective must be greater

than a threshold. In fact, the original objective is to maximize total inspected traffic, which

is bounded by total DPI capacity. In other words, we want the total inspected traffic to be as

close to total DPI capacity as possible, so the threshold should be less than, but close enough

to, total DPI capacity. We can achieve this goal by using Eqn. 5.9 and setting the threshold

parameter, τ , to be slightly less than 1, say 0.95. Though it’s not guaranteed a feasible

solution exists with this τ value, we can reduce the value of τ and rerun the algorithm until

we find a feasible solution for the problem.

5.3.3 Relative tolerance ILP solver method

An ILP solver is able to solve ILP problems and find the optimal solution, but it usually takes

a long time to do so. Running time can be greatly reduced by setting a relative tolerance,

a.k.a. gap, in the ILP solver. In this case, the solver terminates as soon as the current

integer feasible solution is proved to be within a certain percentage of the optimal solution.

The relative gap is a parameter. The larger the gap, the worse the solution, and the

faster the algorithm. We can adjust the gap parameter according to our needs, so this is a

very flexible algorithm.
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5.3.4 CPLEX ILP solver

We formulated the optimization problem into an integer linear programming problem in FEA,

GAP, and BBA algorithms. However, solving an integer linear programming problem is NP-

hard. In order quickly to solve the optimization problems, we used a linear programming

problem solver called CPLEX, developed by IBM.

When CPLEX solves an integer linear programming problem, it uses the branch-and-

bound algorithm. It gives the optimal solution but the running time is long. By setting the

“EpGap” parameter, we can set a relative tolerance between the current feasible solution and

the optimal solution so the algorithm will run faster, but the solution we get is no longer

optimal. We can also set the objective to 0, then the ILP problem becomes a feasibility

problem.

The controller needs to call the CPLEX optimization module frequently. The best way

to do this is calling the CPLEX API. Since the controller is written in Python, we desire to

call CPLEX API in Python as well. However, the CPLEX Python wrapper PyCPX58 has

a memory-leaking bug, which will consume all memory gradually and eventually freeze the

controller. Moreover, running speed of Python is a big concern. Therefore, the C++ version

of CPLEX API was eventually used. We compiled the C++ code into an executable file,

and communicated with the controller in Python with file I/O.

5.3.5 Comparison of algorithms

Fig. 5.2 shows the comparison of performance between these algorithms when optimizing

a problem with four DPIs and 100 flows. In this chart, performance of each algorithm

is evaluated in two aspects: objective value (blue bar on the left, normalized by optimal

objective value) and running time (yellow bar on the right). Our aim is to find an algorithm

with a large objective value and low running time.

All algorithms perform well on objective value. The GAP algorithm has the best per-

formance, as it provides high objective value (99.9 percent of optimal solution) with low

running time (30.7 ms). The SAN algorithm provides a lower objective value and takes
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Figure 5.2: Algorithms efficiency and effectiveness comparison.

more time, so it’s eliminated. The FEA algorithm is faster, but the objective value is not as

good. In fact, we can adjust the gap parameter in the GAP algorithm to make it run faster,

so FEA and GAP actually have a comparable performance. However, we eventually adopted

the GAP algorithm instead of FEA, mainly because the FEA algorithm may be infeasible

with the τ value we picked. Because we don’t know the exact optimal value, we set the

threshold proportional to total DPI capacity. Instead, the GAP algorithm is guaranteed to

be feasible, since the termination condition is proportional to the optimal value. In case

FEA is infeasible, we will have to run it again with a lower τ . The GAP is more stable in

running time than FEA.

5.4 Experiment implementation

5.4.1 Network topology

To test the efficiency of our network prototype, we use a 14-node network topology as shown

in Fig. 5.3. Every node shown in the figure is a switch; in addition, a host is connected to

each switch, which is not drawn on the figure for simplicity. Four DPIs are deployed in the

network. Note that a flow does not necessarily pick the nearest DPI. For example, there is

a chance a flow from switch 1 to switch 2 is assigned DPI4 for security inspection. In the

experiment, each DPI has a processing capability of 140Mbps.
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Figure 5.3: Experiment topology.

5.4.2 Flow generator

All flows are randomly generated. They are “random” in terms of sender, receiver, flow

starting time, flow duration, and flow data rate.

Every host is potentially both a sender and a receiver. We can pick a random sender/receiver

pair easily: first pick a sender among all 14 hosts in uniform distribution, then pick a

receiver among the remaining (13 hosts) in uniform distribution. Flow arrivals follow a

Poisson distribution, i.e., the time interval t between two flows’ arrival follows the expo-

nential distribution: fe(t) = λe−λt. Flow duration d follows the Weibull distribution59

fw(d;ω, k) = k
ω

( d
ω

)k−1e−(x/ω)
k
. Since network traffic consists of mice flows, which dominate

in amount, and elephant flows, which dominate in size, we model the flow rate distribution

as a Gaussian mixture model. Specifically, let re be the data rate of elephant flows, rm be the

data rate of mice flows, and proportion p be the probability a flow is an elephant flow, and we

have re ∼ N (µe, σ
2
e), rm ∼ N (µm, σ

2
m); and for a flow f , rf ∼ pN (µe, σ

2
e)+(1−p)N (µm, σ

2
m).

Therefore, the average data rate of each flow is µep + µm(1 − p), and the total data rate

inside the network in one second is λ−1ωΓ(1 + k−1)(µep+ µm(1− p)).

For the experiment, we pick the following parameters: λ = 0.2, k = 10, and ω = 21, so

five new flows will arrive in one second on average, and the mean flow duration is 20 seconds.

We also have µe = 16Mbps, σe = 4Mbps, µm = 3Mbps, σm = 1Mbps, and p = 0.2, which
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gives us the average data rate of a flow as 5.6Mbps, and total data rate in the network as

560Mbps. We call this data rate “standard data rate,” because at this point, total traffic

is equal to the total processing capacities of all DPIs (140Mbps × 4). In the experiment,

network performance will be measured when total traffic varies from 0.5× standard data

rate to 4× standard data rate, in order to evaluate network performance in cases when DPI

resources are abundant, just enough, or limited.

5.4.3 Experiment environment

We tested our flow-management prototype with Mininet60, a network emulator which creates

and emulates a network of virtual hosts, switches, controllers, and links. Mininet virtual hosts

run standard Linux network software, and its switches run Open vSwitch software, which

supports OpenFlow. By using Mininet, we can easily start a network with complex topology

and send control commands to the hosts. All 14 switches started by Mininet are connected

to a POX OpenFlow controller61.

Traffic generating is done by iPerf, a useful tool for measuring TCP and UDP bandwidth.

In order to measure bandwidth, iPerf will generate testing traffic so it can be used as a traffic

generator as well. In iPerf, we can select our desired sending data rate in UDP. Though

iPerf can only generate constant bit-rate traffic, we can write a script to start multiple iPerf

processes, in order to get a time-variant total traffic.

All software mentioned above runs on an Ubuntu 16.04 Linux workstation, CPU: i7-860,

memory: 8GB.

5.4.4 Flow data rate determination

We need an accurate flow data rate for each flow in the optimization step. We introduced

how to obtain flow sizes for each flow in Section 4.1, and this method can be used directly in

this prototype. At the beginning of this step, the controller will send a flow statistics request

to each switch and wait for the reply. In the replied statistics, we are primarily interested

in the following data: flow duration and byte count (i.e., number of bytes received). We can

63



obtain the data rate by simply dividing bytes received by flow duration.

The data rate obtained in this way is not 100 percent accurate. Though flow duration is

accurate to the millisecond, byte count in the switch is not updated in full real time. Instead,

it’s updated every half second. This means, within this half second, no matter how many

times we send flow a statistics request to the switch, we will always get the same result.

However, this method is causing new issues in this prototype. The 0.5-second flow statis-

tic updating period is maintained per flow; therefore, rerouting a flow will reset the flow’s

statistic updating timer. Two seconds later, when we obtain a new flow statistics response

from the switch, we cannot tell whether the data we collected is the byte count of 1.5 sec-

onds (updating happens right after the query) or the byte count of two seconds (updating

happens right before the query), as shown in Fig. 5.4. A possible way of solving this prob-

lem is, instead of sending flow statistics request every two seconds, we can send every 2.01

seconds. The extra 0.01 second gives the switch the time to update its flow statistics, so we

can guarantee the response is the byte count of two seconds.

Figure 5.4: Flow statistics timing.
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The multi-switch topology brings in a new issue as well. Because a switch will report flow

statistics for all flows traversing through it, the controller will receive multiple reports of a

given flow — equal to the number of switches on the path of this flow. Flow durations are

identical, while byte counts sometimes may vary by a small amount. Maximal byte count

among all switches always occurs on the first switch on its path because of packet loss when

traffic travels in the network. Therefore, we used the maximum byte count in calculating

the data rate as it’s closest to the real amount of data transmitted.

5.4.5 Flow establishment and flow migration

In order to route a flow along a given path in the network, we need to install flow entries on

all switches on that path. Flow entries will be modified in two scenarios: flow establishment

in the settlement step, in which we need to install flow entries to accommodate the new

flow; and flow migration in the optimization step, in which we need to modify the path for

each flow that changed its path. We must pay attention to these flow-entry modification

processes, because during them, packet losses are likely to happen, in addition to the scenario

of packet loss on the DPI because of an overwhelmed DPI.

Packet loss will occur during flow establishment. This is because when a UDP flow

arrives, the switches will not be ready to handle all packets. The only way to avoid packet

loss is to pre-install the flow entries before the flow arrives62, but this is not possible given

we have no pre-knowledge about the upcoming traffic. However, we can still do our best to

mitigate packet loss during flow establishment.

In OpenFlow when a new flow arrives at its first switch, in order to query what action

should be applied to it, the first packet is sent to the controller. The controller determines the

action and sends the flow-installation command to the switch. However, while the controller

is making decisions, the switch is still receiving packets from this flow. Ideally, these packets

should be buffered at the switch, waiting for the command from the controller. However,

this is not the case. First, switches are usually implemented in a way that all packets are

sent to the controller, as long as there is no corresponding flow entry, regardless of whether
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another packet belonging to the same flow has already been sent to the controller. Second,

even if the switch chooses to buffer all these packets on itself, it’s very likely that its buffer

will overflow. We used a controller packet buffer method to reduce packet loss. We first

created a packet buffer at the controller to save a packet if the flow it belongs to is being

processed by the controller. We made the switches send all packets to the controller as

long as there’s no matching flow entry installed. So before the switch receives a flow-entry

installation command from the controller, it will send many packets to the controller. The

controller will process the first packet and buffer the others, then send control commands to

the switches, and finally send the buffered packets back.

Packet loss also occurs at flow migration. Rerouting a flow will more or less drop some

packets, and thus we want to minimize the number of reroutings in the revised formulation.

In order to reroute a flow at the optimization step, flow entries must be inserted, modified,

or removed from switches. To avoid flow-entry modification and removal commands, which

are likely to bring packet-loss issues, we performed the following flow rerouting procedure,

which only consists of flow installation:

1. In the settlement step, we installed flow entries to switches with a priority equal to 1,

which is the lowest priority.

2. In the following optimization steps of this flow, we installed flow entries with a higher

priority value than before; for example, priority 2 in the first optimization step and priority 3

in the subsequent optimization step. We can do this safely because if a flow can be matched

with multiple flow entries, the flow entry with the highest priority is adopted. We don’t need

to remove the low-priority flow entry manually, as it will no longer be matched to a packet.

Its idle timeout will trigger and it will be removed by the switch automatically.
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5.5 Results analysis

5.5.1 Effectiveness of our approach

We first evaluated the effectiveness of our approach. Fig. 5.5 shows our experiment results

on a performance comparison between our prototype (revised formulation with θ = 0.8 and

α = 1) and a round robin approach:

In both graphs in Fig. 5.5, the X-axis represents the standardized traffic rate, i.e., the

total data rate at this point normalized by the standard data rate (standardized traffic rate =

total data rate (Mbps)
standard data rate (Mbps)

). The standard data rate is a constant value as introduced in Section

5.4.2, which is 560 Mbps in this experiment, so the X-axis is essentially ranging from 280

Mbps to 2240 Mbps. The Y-axis in Fig. 5.5a shows the throughput of the entire network,

i.e., what percentage of data sent are actually received. In Fig. 5.5b, the Y-axis denotes

total traffic inspected by all DPIs in gigabytes.

In the round robin approach, the first-arriving flow will be assigned to DPI1, the second

will be assigned to DPI2, then DPI3 and DPI4, and then loop back to DPI1. No rerouting

is performed in the round robin approach, so flows will compete for DPI resources, and

therefore, DPIs become the bottleneck of the network. In this case, DPIs have near 100

percent utilization at all times, so the round robin approach will inspect a little more traffic

than our approach. In fact, as shown in Fig. 5.5b, our approach inspects around 11.8 percent

less traffic than the round robin approach. However, we can predict the total throughput

of our approach is much higher than that of the round robin, because in a round robin, the

network throughput is restricted by total DPI capacity. The throughput in our approach is

close to 100 percent, since our rerouting mechanism allows flows to bypass DPI inspection,

which can avoid DPIs being the bottleneck. Results are shown in Fig. 5.5a: when the

standardized traffic rate is greater than 1, the round robin begins to show a huge decrease in

throughput, while our approach consistently keeps the throughput greater than 95 percent.

Overall, our approach greatly outperforms the round robin approach.
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Figure 5.5: Performance comparison between our prototype and round robin approach.

5.5.2 Impact of α in the revised formulation

Next, we studied the impact of α on network throughput and security in the revised formu-

lation. We performed thorough experiments to measure network performance with different

values of α when θ = 0.8, and the results are shown below in Fig. 5.6. The axes have the
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same meaning as Fig. 5.5. Each line in the figure shows network performance as a function

of standard data rate for a given α.
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Figure 5.6: Performance comparison with different α values when θ = 0.8.

Results in Fig. 5.6b show inspected traffic elevated as α increases from 0 to 1. In fact,

as α increases, we place more and more emphasis on total DPI utilization; therefore, more

traffic will be inspected. Specifically, when α = 0, DPI utilization is no longer a part of the
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objective: the objective becomes “minimizing flow rerouting” when α = 0. In this case, once

a flow bypasses security inspection, it will never return to a DPI, even if the DPI has enough

capacity to allocate it, because we want to minimize flow rerouting, and total inspected

traffic is not even a consideration. That’s why the total inspected traffic amount is so low

at α = 0.

On the other hand, as shown in Fig. 5.6a, network total throughput is very high when

α = 0 — near 100 percent. This is because almost all flows are bypassing DPIs; therefore,

the DPIs never get overwhelmed. The throughput decreases as α shifts from 0 to 1.

Considering both network throughput and security, the network performs best when

α = 0.8, since it has comparable security and more throughput than α = 1. This means

our revised formulation is effective: appropriately reducing the number of reroutings does

have a positive impact on network throughput. The difference between their performances

is not huge, so both α = 0.8 and α = 1 are acceptable α values. In the following experiment,

α = 1 is applied, though we can use α = 0.8 as well. As analyzed in Section 5.2.4, a revised

formulation with α = 1 is identical to the basic formulation.

5.5.3 Impact of θ parameter

We studied the impact of θ on network performance. We iterated the value of θ from 0.6 to

1.0, and measured network throughput and inspected traffic when α = 1. See Fig. 5.7 for

the results.

In Section 5.2.2, we explained that as θ value increases, more DPI capacity is used for

serving current flows, and less capacity is reserved for future flows, which leads to a higher

chance of DPI becoming overwhelmed. Therefore, the total throughput will drop, while

network security will rise. These predictions are well verified by experiment results shown

in Fig. 5.7.

Picking the most proper value of θ depends greatly on network flow distribution. In our

case, taking both throughput and security into consideration, we can select θ = 0.8, which

balances the two objectives nicely.
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Figure 5.7: Performance comparison with different θ values when α = 1.

5.5.4 Theoretical analysis on θ value selecting

Finally, we provide a theoretical analysis on selecting a proper θ value.

The ideal amount of capacity to reserve is equal to the total data rate of newly arriving

traffic before the next optimization step. However it’s impossible to predict upcoming traffic
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amounts in the future. It’s also not possible to guarantee a certain amount of capacity is

100 percent sufficient, because the total amount of traffic can be arbitrarily large in theory.

Fortunately, we can predict reserving how much capacity is sufficient within a certain level

of confidence by collecting some data from the network. For example, we can tell how much

capacity to reserve such that the reserved capacity is enough 90 percent of the time.

We first run the network for a while to collect the following information: flow data rate

cumulative distribution function (CDF) SR(r), number of flow arrivals in one second PDF

PU(u), and average flow duration T . Note we don’t have to obtain the exact formulation

(and are not able to most of the time); an approximate statistical result will suffice.

Next, since the optimization step is performed every τ seconds, we just need to ensure

our reserved capacity is greater than the total data rate arriving in this τ seconds. Total data

rate can be denoted as
∑

f rf , which is the total data rates of all flows arriving in τ seconds.

Since flow data rate variables rf are independent and identically distributed (i.i.d), we have∑
f rf = FτR, where Fτ is a random variable representing the number of flows arriving in

τ seconds, and R is a random variable denoting the data rate of a flow. Moreover, we have

Fτ = τF , where F is also a random variable denoting the number of flow arrivals in one

second. The equality obviously holds by definition.

Considering flows are terminating in this τ seconds as well, let rq be the total data rate of

flows terminated; the net data rate arriving in this τ seconds can be denoted as (
∑

f rf )−rq.

Now we can start to formulate the CDF of total data rate arriving in the next τ seconds.

We use a random variable X to denote the total data rate arriving in the next τ seconds,

and with SX(x) as the CDF of X, we have SX(x) = p((
∑

f rf )− rq ≤ x) by definition. If we

wish the reserved capacity to be sufficient 90 percent of the time, for instance, we simply let

SX(x) = 0.9 and solve for x.

rq can be approximated as rq ≈ B−x
T/τ

, where B is total DPI capacity. This is because

the flows being inspected by the DPI are taking up a bandwidth of B − x; we assume their

starting time ranges uniformly, so τ
T

of them will terminate in the upcoming τ seconds. Let

N = T
τ

, and substitute the approximation of rq in the formula, we get:
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SX(x) =p(τFR− rq ≤ x) (5.10)

=p(τFR− B − x
N

≤ x) (5.11)

=p(τFR ≤ B + (N − 1)x

N
) (5.12)

by applying the law of total probability,

=
∞∑
u=0

p(τFR ≤ B + (N − 1)x

N
|F = u)PU(u) (5.13)

=
∞∑
u=1

p(R ≤ B + (N − 1)x

Nτu
)PU(u) + PU(0) (5.14)

=
∞∑
u=1

SR(
B + (N − 1)x

Nτu
)PU(u) + PU(0) (5.15)

Now we can substitute SR(r) and PU(u) into Eqn. 5.15 to get the final expression of

SX(x), and then plot it. So if we desire the reserved capacity to be sufficient for 90 percent

of the time, with the help of the plot, we can find the value of x∗ such that SX(x∗) = 0.9. x∗

is the best amount of total DPI capacity to reserve, and therefore 1− x∗

B
is the best θ value

to pick.

We have validated that we can obtain an approximation of the original CDF by using

the approach above. We first plot an actual CDF curve of the flow generator used in our

experiment. Next, we generate a few flows using the flow generator, and reversely approx-

imate the original CDF in the following cases: using 10 flows, using 100 flows, and using

1000 flows. Finally, we compare the estimated CDF with the actual CDF. Fig. 5.8 shows

the results.

The figure proves the effectiveness of this approach. The CDF estimation from 1000 flows

accurately matched the actual CDF. Even the estimation result from 100 flows is already

very close. Note, while the figure may look like we are approaching the actual CDF from

above as the number of flows increases, that’s not always the case. It also happens that

we are underestimating the CDF and approaching it from below. If we overestimate the
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Figure 5.8: Estimating original CDF using flow stats.

CDF, we will underestimate the arriving traffic; therefore, the DPIs will more likely become

overwhelmed. Conversely, if we underestimate the CDF, we waste DPI resources. We desire

the CDF estimation to be as close to actual CDF as possible.

In practice, we can safely use the approximate CDF from 100 flows, and furthermore,

find the best-fit θ. We can even integrate this approach into the controller in future work,

so the controller can pick a proper θ parameter automatically after collecting information

from 100 flows.

5.6 Enhancements over previous work

In general, this work presented our flow-management prototype for a network with limited

security inspection resources. It aimed to solve the problem of how to allocate limited security

inspection resources, or allow a specific flow to temporarily bypass security inspection, in

order to enhance network security, while maintaining high-level network performance.

Compared to previous work on this topic, our prototype is superior in the following

aspects:
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1. General network topology: Previous work1;40;41 has focused on a single-switch star

topology or a star-like topology, while the network in our prototype is a general network.

In a general network, flow routing becomes more complicated, and we must be careful

when installing flow entries to minimize packet loss when establishing or rerouting a

flow.

2. Distributed security devices: Previous work assumed resource shortages occur on a

single, centralized security device. Scipass40 integrated a load-balancing multiple IDS

model; however, its 1Gbps firewall is the actual resource-limited security device, so

essentially it is still a single-point resource-limited architecture.

3. No pre-knowledge: We had no knowledge of any network characteristics beforehand.

This included whitelist, traffic demands, etc. This means our prototype is not an ad

hoc design but a general approach to a common network issue.

4. Global optimization in real time: We designed a real-time optimization architecture

for maximizing inspected network traffic. Optimization theory has been used success-

fully in many areas related to communication networks, such as optimal routing, flow

control, and power control63. In this work, we formulate and solve an integer linear

programming problem to maximize network security. Moreover, this architecture is

general and can be applied on any prototype with real-time optimization, regardless

of the objective or what solver/algorithm is used.

5. Capacity reservation: Instead of using up all processing capability in the DPI, we

reserved a portion of the DPI capacity to accommodate new-coming flows. This mech-

anism enhances network security since we inspect all flows from the beginning and

avoid overwhelming the DPIs, consequently reducing network packet loss.

6. No bypassing is permanent: In some previous work, once a flow was determined to be

secure, it bypassed security inspection indefinitely from that point on. However, we

can’t guarantee the nature of a flow will never change. If bypassing is permanent, an

attacker may trick the security system by sending benign packets first, then launch the
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attack after the flow bypasses the security inspection. In our prototype, no bypassing

is permanent. A currently bypassing flow may be rerouted back to a DPI at some

time; moreover, the rerouting time is unpredictable. Therefore, we can minimize the

possibility that an attacker can trick us by exploiting the loophole in the design.

5.7 Summary

Security devices are becoming the network’s bottleneck, since security devices’ capabilities

are not able to catch up with increasing demands from users. To solve this problem, we

introduced an OpenFlow-based flow-management prototype. The prototype allows flows

to temporarily bypass DPI inspection and further increases network throughput. We also

maximized utilization of DPIs by formulating an integer linear programming problem and

solving it. Experiment results showed our approach gains 150 percent more throughput than

the round robin approach. Results also proved that by picking proper parameters for θ and

α in the formulation, we could achieve a balance between network throughput and security.

At the end, we presented a theoretical analysis on how to pick a proper network parameter

θ by collecting flow characteristics. This chapter is one of our main contributions, listed as

contribution 2 in Section 1.2.

We have to admit, there are still some limitations in this work. We assumed the links

always have sufficient bandwidth, and this may cause a flow to be assigned to a far-away

DPI. Even in a network with unlimited link bandwidth, statistically, longer paths will lead

to more packet loss. In future work, we can merge path length as part of the objective in the

formulation. Li et al. has done a similar work, latency-aware middlebox scheduling, in64.

Also, this work assumed flow arrival rate and data rate distribution will not change after

the network starts; therefore, we used a constant θ value throughout each experiment run.

However, considering peaks and valleys in real networks, a dynamic θ mechanism is more

appropriate. The θ parameter should be adjusted to the traffic dynamically and automati-

cally. We hope to accomplish this goal as well in future work. In the end, we would like to

mention network function virtualization (NFV). It helps elastically allocate middleboxes’ re-
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sources, which is a cost friendly technology for increasing or decreasing middlebox resources

as needed65–67.
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Chapter 6

Conclusions and future work

6.1 Conclusion

This dissertation is providing a solution for the following issue: in a local area network with

limited security resources, how to allocate these resources to the flows, in order to trade-

off network performance and network security. We proposed a size-based flow management

prototype in Chapter 4, and a congestion-aware flow management prototype in Chapter 5.

Networking tools utilized in the network emulation and experiment are also introduced, see

Chapter 3.

Networking tools used in all the author’s previous work are listed in Chapter 3. This

includes Open vSwitch, POX controller, and Mininet. Open vSwitch is a virtual switch

software, which can turn a Linux workstation into a switch. POX controller is an OpenFlow

controller in charge of sending control commands to the switches. Mininet is a network

emulation testbed. In Mininet, we can easily emulate and perform experiments on a network.

We used hardware workstations and Open vSwitch for network performance evaluation in

the first work, and Mininet to emulate a 14-switch network for testing in the second.

Chapter 4 introduces how we enhance network security in a single-switch network (star

topology). We realize this dynamic DMZ model based on an OpenFlow-enabled switch and

controller. In our approach, the controller detects flows with bit rate greater than a given
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threshold (elephant flows) and controls the switch in order to reroute elephant flows bypassing

the security device. Extensive experiments are performed to verify the feasibility of this

approach and test how the threshold value influences network performance. Results indicate

our approach effectively increases network performance but does not significantly influence

flow security. Finally, we perform theoretical calculation on the deep packet inspection (DPI)

input data rate in order to guide selection of the threshold value with a given traffic flow

distribution and maximum DPI processing rate.

Chapter 5 explains how we extend the work in Chapter 4 into a prototype, which has

general LAN network topology and distributed DPIs. In this work, the security inspec-

tion resources are still the bottleneck of the network, bringing down network throughput.

We propose a flow management prototype, which can properly allocate limited security re-

sources in order to achieve the objective of making the best use of security resources without

compromising network throughput. We introduce a capacity reservation scheme to enforce

network security and avoid security devices becoming congested. In order to optimize uti-

lization of security devices, we formulate the resource-constrained problem as an integer

linear programming problem and solve it. Extensive experiments are performed to attest to

the effectiveness of our prototype. Finally, we analyze results of the experiment, including

the impact on network performance of two parameters in the optimization formulations.

Compared to other works, we have the following strengths: our model is implemented on a

general network topology with distributed security devices; we formulate the flow allocation

problem into a linear programming problem and perform the optimization in the controller

in real time; and no pre-knowledge about the network, hosts, or traffic is needed.

6.2 Future work

In this work, all DPIs mentioned are hardware DPIs. However, hardware DPI has the follow-

ing disadvantages: scalability issues, high expenses, hard-to-change configuration, vendor-

specific configuration, etc. If we have more flows needed to be inspected, we have to buy

a new device with higher capability to substitute the old one, deploy it, and reconfigure
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it. Network function virtualization (NFV) is an emerging network technology that provides

possibilities to solve those issues by decoupling the physical network equipment from the

functions that run on them68. With the NFV technology, we no longer need hardware DPIs

— we can just install DPI software on a virtual machine (VM) and scale it as needed. In

addition, deploying NFV to provide DPI function is easier and with lower expenses — in

case we need to change configurations, we just need to update the software.

Furthermore, not only can the DPI be virtualized to a function, but also any other types of

middleboxes, say Firewall, intrusion detection systems (IDS), NAT, etc. NFV allows flexible

network function deployment and promotes utilization of the resources. For example, if we

have cloud NFV, we can obtain those resources based on our needs with more flexibility and

lower expenses. We can adjust the resource we allocate to a given function dynamically,

depending on usage of each virtual network function.

We propose to apply NFV in the science DMZ model in the future. Potential research

work can be done on how to efficiently allocate resources in a NFV-enabled DMZ network,

to maximize network security without compromising network performance.

There are also some limitations in our previous works. First, we used a workstation as

a virtual switch in the work in Chapter 4. However, ideally, a hardware OpenFlow switch

should be adopted. Second, in the congestion-aware network prototype, we assumed all links

have sufficient bandwidth, so link bandwidth is not a part of the formulation. However, this

may result in a long path when picking DPI for a flow. In the future, work should be done

on adding path length as a variable in the formulation as well, to avoid link bandwidth being

wasted.
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