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Abstract 

Rift Valley fever virus (RVFV) is an enveloped, negative-sense, ssRNA virus with a 

tripartite genome that causes morbidity and mortality in both livestock and humans. Although 

RVFV is mainly circulating in mainland Africa, this arthropod-borne virus is a potential threat to 

the other parts of the world. No fully licensed vaccines for human or animal use in the U.S., and 

effective antiviral drugs have not been identified. As virulent RVFV strains are only handled in 

biosafety level (BSL) 3 or higher level facilities in the U.S., few laboratories have access to 

RVFV which limits antiviral development. However, it is crucial to develop effective antivirals 

to protect public and animal health.  

Animal models that reproduce Rift Valley fever are vital to identifying and developing 

antiviral compounds. The currently available attenuated RVFV strain, MP12, provides a BSL-2 

challenge model virus for preliminary investigations of RVFV prior to using the virulent RVFV 

strains. All strains of RVFV have a highly conserved genome, indicating that antivirals or 

vaccines effective against any RVFV strain will most likely be effective for all RVFV strains. 

Therefore, we hypothesize that the MP12 is a suitable model virus that can be used for 

identification and evaluation of effective RVF antivirals.   

The first objective of this project was to establish a mouse model susceptible to MP12 

infection. Based on the literature, we selected and screened six different strains of mice to test 

their susceptibilities to MP12. We found the STAT-1 knockout mice are the most susceptible to 

MP12 infection based on clinical symptoms, mortality, viremia, virus replication, 

histopathological, and immunochemical analyses. Importantly, these mice displayed acute-onset 

hepatitis and delayed-onset encephalitis similar to severe cases of human RVFV infection.  



  

Our second objective was to identify potential antiviral drugs in vitro. We developed and 

employed a cell-based assay using the recombinant MP12 virus expressing Renilla luciferase to 

screen a library of 727 small compounds purchased from National Institutes of Health. Of the 

compounds, 23 were identified and further tested for their inhibitory activities on the 

recombinant MP12 virus expressing green fluorescent protein. Further plaque reduction assays 

confirmed that two compounds inhibited replication of parental RVFV MP12 strain with limited 

cytotoxic effects. The 50% inhibitory concentrations using an MP12 multiplicity of infection 

(MOI) of 2 were 211.4 µM and 139.5 µM, respectively.  

Our third objective was to evaluate these two candidates, 6-azauridine and mitoxantrone, 

in vivo using our mouse model. After one-hour post MP12 infection via an intranasal route, 

treatment was given intranasally twice daily. Mice treated with placebo and 6-azauridine 

displayed severe weight loss and reached the threshold for euthanasia with obvious neurological 

signs, while mice treated with ribavirin (a known antiviral drug) or mitoxantrone showed delayed 

onset of disease. This result indicates that the mitoxantrone can improve the outcome of RVFV 

infection in our mouse model.  

The underlying mechanism of mitoxantrone to inhibit RVFV replication remains to be 

investigated. Our studies build the foundation for identification and development of antivirals 

against RVFV in a BSL-2 environment. 
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Abstract 

Rift Valley fever virus (RVFV) is an enveloped, negative-sense, ssRNA virus with a 

tripartite genome that causes morbidity and mortality in both livestock and humans. Although 

RVFV is mainly circulating in mainland Africa, this arthropod-borne virus is a potential threat to 

the other parts of the world. No fully licensed vaccines for human or animal use in the U.S., and 

effective antiviral drugs have not been identified. As virulent RVFV strains are only handled in 

biosafety level (BSL) 3 or higher level facilities in the U.S., few laboratories have access to 

RVFV which limits antiviral development. However, it is crucial to develop effective antivirals 

to protect public and animal health.  

Animal models that reproduce Rift Valley fever are vital to identifying and developing 

antiviral compounds. The currently available attenuated RVFV strain, MP12, provides a BSL-2 

challenge model virus for preliminary investigations of RVFV prior to using the virulent RVFV 

strains. All strains of RVFV have a highly conserved genome, indicating that antivirals or 

vaccines effective against any RVFV strain will most likely be effective for all RVFV strains. 

Therefore, we hypothesize that the MP12 is a suitable model virus that can be used for 

identification and evaluation of effective RVF antivirals.   

The first objective of this project was to establish a mouse model susceptible to MP12 

infection. Based on the literature, we selected and screened six different strains of mice to test 

their susceptibilities to MP12. We found the STAT-1 knockout mice are the most susceptible to 

MP12 infection based on clinical symptoms, mortality, viremia, virus replication, 

histopathological, and immunochemical analyses. Importantly, these mice displayed acute-onset 

hepatitis and delayed-onset encephalitis similar to severe cases of human RVFV infection.  



  

Our second objective was to identify potential antiviral drugs in vitro. We developed and 

employed a cell-based assay using the recombinant MP12 virus expressing Renilla luciferase to 

screen a library of 727 small compounds purchased from National Institutes of Health. Of the 

compounds, 23 were identified and further tested for their inhibitory activities on the 

recombinant MP12 virus expressing green fluorescent protein. Further plaque reduction assays 

confirmed that two compounds inhibited replication of parental RVFV MP12 strain with limited 

cytotoxic effects. The 50% inhibitory concentrations using an MP12 multiplicity of infection 

(MOI) of 2 were 211.4 µM and 139.5 µM, respectively.  

Our third objective was to evaluate these two candidates, 6-azauridine and mitoxantrone, 

in vivo using our mouse model. After one-hour post MP12 infection via an intranasal route, 

treatment was given intranasally twice daily. Mice treated with placebo and 6-azauridine 

displayed severe weight loss and reached the threshold for euthanasia with obvious neurological 

signs, while mice treated with ribavirin (a known antiviral drug) or mitoxantrone showed delayed 

onset of disease. This result indicates that the mitoxantrone can improve the outcome of RVFV 

infection in our mouse model.  

The underlying mechanism of mitoxantrone to inhibit RVFV replication remains to be 

investigated. Our studies build the foundation for identification and development of antivirals 

against RVFV in a BSL-2 environment. 
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Chapter 1 - General Introduction 

 1.1 Rift Valley fever 

Rift Valley fever (RVF) is an acute, febrile disease caused by Rift Valley fever virus 

(RVFV) that affects cattle, buffalo, llamas, alpacas, sheep, goats, camels, and humans. Age and 

species, among other factors, determine the severity of the disease. In adult cattle and sheep, the 

fatality rates may reach 30%; however, in younger animals fatality could reach 100% (J. M. 

Meegan & Bailey, 1988). In humans infected with RVFV, clinical signs include weakness, 

headache, body ache, fever, and/or photophobia (B. C. Easterday, 1964; Weiss, 1957). Although 

most patients recover, less than 5% develop complications characterized by hepatitis, retinitis, 

hemorrhagic fever, and encephalitis with long-term neurologic deficits (Arthur, 2000; Gowen & 

Holbrook, 2008; Ikegami & Makino, 2011). Since RVFV is threating the health of both humans 

and animals, the CDC and the U.S Department of Agriculture (USDA) have classified RVFV as 

an overlap Select Agent (Bird, Ksiazek, Nichol, & MacLachlan, 2009). Moreover, due to the 

threat of terrorism, RVFV has been registered as a category A agent in the CDC bioterrorism list.  

(Bird et al., 2009).  

 1.1.1 History of RVF  

RVF was first identified during an investigation into an epidemic of abortion among 

sheep along the shores of Lake Naivasha in the Rift Valley of Kenya in 1930 (Daubney, Hudson, 

& Garnham, 1931). Since then, countries in Africa, such as Niger, Mauritania, Madagascar, 

Sudan, Kenya, and Egypt, have experienced numerous RVF outbreaks (Figure 1).  In the 1950s, 

the first cases of RVF outside of Kenya appeared in South Africa (Gear, De Meillon, Measroch, 

Davis, & Harwin, 1951). Subsequently, larger epizootics and epidemics occurred in Egypt in 

1977-1978 (JM Meegan, 1979) and Mauritania in the late 1980s during flooding (Digoutte & 
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Peters, 1989). The 1990’s brought the first cases of RVF outside of mainland Africa, occurring 

on the island of Madagascar. Fortunately, further research suggested the outbreak was caused by 

repeated introductions of RVFV from mainland Africa and not persistence of the virus in the 

local environment (Carroll et al., 2011). 

In 2000, a pivotal RVF epidemic occurred outside of Africa in Yemen and Saudi Arabia 

that resulted in significant human fatality.  Although both livestock and humans were affected, it 

was estimated that approximately 200 humans died out of 2,000 hospitalized patients (Balkhy & 

Memish, 2003; Shoemaker et al., 2002). After this outbreak, in 2006-2007, Somalia, Kenya, and 

Tanzania, also experienced a RVF outbreak with substantial human deaths. The epidemic 

resulted in 315 human deaths out of 1,062 cases, along with the loss of livestock (WHO, 2007). 

The spread of RVFV outside Africa was mainly due to the commercial transport of infected 

animals and windborne movement of infected mosquitoes. The most recent occurrence of RVF 

case outside of Africa occurred in 2016 in China (J. Liu et al., 2017). The single infected patient 

had recently returned from a trip to Angola, Africa, a RVF non-endemic country (J. Liu et al., 

2017). In the last decade, the CDC estimates the total mortality rate of hospitalized RVF patients 

to be around 10%. The potencial of dissemination of RVF poses a threat to not only the livestock 

industry but also to public health (Ahmed et al., 2009; J. Liu et al., 2017). 
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Figure 1 Distribution and spread of RVFV 

Countries that have reported substantial epizootics and epidemics are in dark pink. 

Countries with serologic evidence or virus isolation are marked with light pink. Cases were 

recognized in South Africa in 1950s. Larger epizootics and epidemics occurred in Egypt in 1978-

1979, in Mauritania in the late 1980s, and in Madagascar in the 1990s. And around 2000 in 

Yemen and Saudi Arabia, RVFV emerged for the first-time outside Africa in the Arabian 

Peninsula. Adapted from Nanyingi, M. O (2015). A systematic review of Rift Valley Fever 

epidemiology 1931-2014. Infect Ecol Epidemiol, 5, 28024. 
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 1.1.2 RVFV Classification 

RVFV is a spherical, negative-sense, single-stranded, three segmented RNA virus which 

belongs to the genus Phlebovirus, in the family of Phenuiviridae (D. H. Bishop et al., 1980). The 

nomenclature system for RVFV includes a geographic origin, the successive isolate number from 

that location, and the year of isolation, such as RVFBJ01/2016. So far, only one serotype is 

recognized, but RVFV strains have variable virulence. There are at least seven major genetic 

lineages, while Kenya-1 and Kenya-2 sub-lineages are predominant recently (M. Pepin, M. 

Bouloy, B. H. Bird, A. Kemp, & J. Paweska, 2010). However, at the nucleotide and amino acid 

level, all strains of RVFV remain closely related, which suggests a vaccine or an antiviral drug 

effective to one RVFV strain should have an effect on all the other RVFV strains.  

 1.1.3 RVFV Transmission 

As an arbovirus, RVFV is thought to be maintained in mosquitoes. Because mosquitoes 

can maintain RVFV for their whole lives and transmit it to offspring via eggs (Linthicum, Britch, 

& Anyamba, 2016). In the natural environment, RVF breaks out after periods of heavy rainfall 

and flooding because a significant amount of RVFV infected mosquito eggs might hatch and 

transmit the virus to animals and humans (Davies, Linthicum, & James, 1985). Other species of 

mosquitoes such as Culex, Mansonia, and Anopheles can be mechanical vectors for disease 

transmission from infected animals to healthy animals or to humans through blood feeding 

(Turell, Dohm, & Fonseca, 2014). Sandflies, midge, and tick can also serve as vectors based on 

the published data (Fontenille et al., 1998). Direct contact with infected body fluid or tissues can 

also result in human and ruminant infection (R. Swanepoel & Coetzer, 2004). Currently, no 

human-to-human transmission has been reported (Figure 2).  
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The severity of RVFV infection is varied among animals. Primary hosts of RVFV are 

cattle, sheep, goats, llamas, alpacas, dromedaries, rodents, wild ruminants, buffaloes, antelopes, 

wildebeest, etc. Besides transmission by Aedes mosquitoes, ruminants can also transmit the virus 

to their offspring through vertical transmission. Lambs, kids, puppies, kittens, mice, and 

hamsters are extremely susceptible to RVFV infection with 70–100% mortalities; sheep and 

calves are highly susceptible, and the mortalities are 20–70%; cattle, goats, African buffalo, 

domestic buffalo, Asian monkeys, and humans are moderately susceptible; camels, equids, pigs, 

dogs, cats, African monkeys, baboons, rabbits, and guinea pigs are resistant; birds, reptiles, and 

amphibians are not susceptible (Committee on Foreign and Emerging Diseases of the United 

States Animal Health Association, 2008). Humans are susceptible to RVFV infection (major 

zoonosis), while African monkeys and domestic carnivores present a transitory viremia after 

infection (Bird et al., 2009).  
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Figure 2. Transmission Cycles of RVFs 

Three transmission routes have been identified for RVFV: vectorial, direct, and vertical 

routes. Mosquitoes play a major role in RVFV transmission because RVFV can be maintained in 

mosquitoes’ eggs which can survive for years. Once heavy rainfalls or warm seasons occurred, 

the infected mosquitoes’ eggs would be stimulated to emerge from the resting stage to adult and 

start to spread disease among species, subsequently initiate the epizootic outbreaks. The direct 

transmission has also been identified among ruminant. No case of human-to-human transmission 

has been identified.  
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 1.1.4 RVFV lifecycle  

RVFV can infect and replicate in a variety of cell lines, such as African green monkey 

Vero cell line, white-tailed deer cell lines, and mosquito cell line (Gaudreault, Indran, Bryant, 

Richt, & Wilson, 2015; Weingartl, Zhang, et al., 2014). RVFV is usually transmitted by the 

vectorial route between different hosts. After infection, RVFV replicates at the infection site and 

the draining lymphatics followed by seeding the target organs via viremia. The main targeted 

organs of RVFV are liver, brain, spleen, thymus, and pancreas (Gommet et al., 2011; Reed et al., 

2012). The lifecycle of RVFV in cells includes three steps: 1. virus attachment, entry, and fusion; 

2. genome transcription, translation, and replication; 3. virion assembly, budding, and release 

(Figure 3) (Walter & Barr, 2011). 

Dermal dendritic cells (DCs) are the first cells that the RVFV may encounter when an 

infected mosquito bites a mammalian host (Švajger, Anderluh, Jeras, & Obermajer, 2010). The 

glycoproteins of RVFV may interact with the DC specific intercellular adhesion molecule 3 

(ICAM-3) grabbing non-integrin (DC-SIGN) which is expressed on DCs and some macrophages 

(Lozach et al., 2011; Phoenix et al., 2016; Soilleux, Barten, & Trowsdale, 2000). Another 

receptor, glycosaminoglycan heparan sulfate which is abundantly expressed on the memebrane 

of most animal cells, has been proven to be essential for RVFV to gain entry to cells (De Boer, 

Kortekaas, de Haan, et al., 2012). As RVFV has a broad range of hosts and cell tropism, it is not 

surprising to see that RVFV used more than one receptor to facilitate its entry. After the receptor 

binding, the virion enters the cell via endocytotic route (De Boer, Kortekaas, Spel, et al., 2012; 

Harmon et al., 2012). Because of histidine protonation occurs in the acidic microenvironment in 

the endosomal compartments, Gc protein is reorganized subsequently and results in membrane 
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fusion (De Boer, Kortekaas, Spel, et al., 2012; Dessau & Modis, 2013; Filone, Heise, Doms, & 

Bertolotti-Ciarlet, 2006; Garry & Garry, 2004).  

Next, the viral ribonucleoproteins (vRNPs) are delivered to the cytoplasm in where 

transcription and replication take place (Bouloy & Weber, 2010). To transcribe the negative 

stranded vRNAs into mRNAs, the L protein mediates the endonuclease activity to steal the 5’ 

cap from a host mRNA which is used to prime the transcription (Reguera, Weber, & Cusack, 

2010). The mRNAs are further truncated at the 3’ end relative to the genome template, and a 

transcription termination signal was observed on the ambisense S segments (Albariño, Bird, & 

Nichol, 2007; Mir, Duran, Hjelle, Ye, & Panganiban, 2008; Sen & Blau, 2005; Weil et al., 2012). 

Limited references are published related to the switch mechanism between transcription and 

replication (Bouloy & Weber, 2010). During replication, the segments replicate via a process 

involving complementary RNAs (cRNAs). Then the cRNAs serve as templates for the synthesis 

of new vRNAs. In the mature RVFV virions, a small amount of cRNAs has been identified. 

Reassortment occurs during virus replication since RVFV is a segmented RNA virus. Whole-

genome sequencing followed by phylogenetic analysis of a RVFV isolation in the latest imported 

human case of RVFV in China revealed a new reassortant from lineage E (L and M segments) 

and from lineage A (S segment) of RVFV (J. Liu et al., 2017). This fact indicates that the live 

RVFV vaccines could change some key characteristics, such as virulence and Differentiating 

Infected from Vaccinated Animals (DIVA) markers, through reassortment with wild-type strains. 

Virions assemble at the Golgi and egress by budding in the Golgi compartment followed 

by exocytosis (Viruses & Fauquet, 2005). The localization of the Gn glycoprotein to the Golgi is 

critical for virus maturation and assembly (S. Gerrard & S. Nichol, 2002; M. Pepin, M. Bouloy, 

B. Bird, A. Kemp, & J. Paweska, 2010; Wasmoen, Kakach, & Collett, 1988). Sonja R. et al. 
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demonstrated that the Gn and Gc heteromeric complex forms in the endoplasmic reticulum 

(Gerrard & Nichol, 2007). Then the virions assemble at the Golgi and egress by budding into the 

lumen of the Golgi apparatus (Viruses & Fauquet, 2005). The budding is also observed at the 

plasma membrane in the rat hepatocytes (G. Anderson & Smith, 1987). Finally, the progeny 

virions are transported by vacuoles to the plasma membrane and exocytosis takes place (M Pepin 

et al., 2010; Walter & Barr, 2011).  
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Figure 3. Schematics of RVFV replication cycle  

A model of infection cycle for RVFV. Copied from Whitehouse, C. A. (2004). Crimean–

Congo hemorrhagic fever. Antiviral Research, 64(3), 145-160. 
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 1.1.5 Morphology 

RVFV particles have an icosahedral structure with a T=12 triangulation number, ranging 

from 90–110 nm in diameter (Ellis, Simpson, Stamford, & Abdel Wahab, 1979; Huiskonen, 

Overby, Weber, & Grunewald, 2009) and can be observed under 40,000× electron microscopy 

magnification (Sherman, Freiberg, Holbrook, & Watowich, 2009) (Figure 4A). The virion 

envelope is composed of a lipid bilayer and two glycoproteins, Gn and Gc which are regularly 

arranged on its surface forming 5-8 nm length sub-units. Only one related phlebovirus, 

Uukuniemi virus, is known to have this structure (Freiberg, Sherman, Morais, Holbrook, & 

Watowich, 2008; Sherman et al., 2009). Inside the envelope, the vRNP corresponding to the S, 

M, and L segments, numerous copies of the nucleoprotein N, and the RNA-dependent RNA 

polymerase L are packaged (Figure 4B). Viruses within the Phenuiviridae family, they do not 

have matrix proteins; however, the bridge function of matrix proteins to link the envelope with 

the virus core would be compensated by the interactions between RNP and glycoproteins since a 

layer of RNP is situated proximal to the inner leaflet of the membrane which should be the 

cytosolic tail of the glycoproteins (M Pepin et al., 2010). 
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Figure 4 Electron micrograph and Schematic diagram for RVFV virion and genome 

A) Electron micrograph of RVFV (40,000×). B) Schematic diagram for RVFV virion. C) 

Schematic diagram for RVFV genome. The S segment encodes the N and NSs proteins in an 

ambisense manner. The M segment encodes the NSm, the 78-kDa protein and Gn and Gc. The 

first and second AUG of the M mRNA are in the preglycoprotein region which contains five in-

frame AUGs. The 78-kDa and the NSm proteins are synthesized beginning from first and second 

start codon respectively. The L segment encodes the L protein. Adapted from Pepin, M., Bouloy, 

M., Bird, B. H., Kemp, A., & Paweska, J. (2010). Rift Valley fever virus (Bunyaviridae: 

Phlebovirus): an update on pathogenesis, molecular epidemiology, vectors, diagnostics and 

prevention. Vet. Res., 41(6), 61, and Ikegami, T. (2012). Molecular biology and genetic diversity 

of Rift Valley fever virus. Antiviral Res, 95(3), 293-310.  

  

A B 

C 



13 

 1.1.6 Genome 

The RVFV genome is composed of three single-stranded RNA segments (Figure 4C): 

The L segment encodes the viral RNA-dependent RNA polymerase (RdRp) (L) protein; the M 

segment encodes the 78 kD protein, NSm proteins and protein precursors which are processed 

into the mature glycoproteins Gn and Gc; the S segment encodes the nucleoprotein (N) and NSs 

protein in an ambisense manner (CS Schmaljohn & Hooper, 2001). The M mRNA contains five 

in-frame AUGs (M Pepin et al., 2010). The NSm proteins are synthesized from the first and 

second AUG of the M mRNA in the preglycoprotein region (Elliott, 2013).  

 1.1.7 Functions of RVFV proteins  

 L protein 

The L protein (237.7 kDa), which is responsible for viral mRNA and genomic RNA 

synthesis, is encoded by the L-segment and packaged into the virions (Muller, Poch, Delarue, 

Bishop, & Bouloy, 1994; Piper, Sorenson, & Gerrard, 2011). As an RNA polymerase related to 

negative-stranded RNA virus, L protein plays a crucial role in synthesizing primary transcripts 

and initiating the infectious cycle in infected cells (Ikegami, Won, Peters, & Makino, 2005; 

Lopez, Muller, Prehaud, & Bouloy, 1995). In the RVFV L protein, identified functional motifs 

such as Regions 1, 2, and 3 (aa 60–185, aa 650–788, and aa 895–1206) are conserved among 

different RVFV strains (Bird, Khristova, Rollin, Ksiazek, & Nichol, 2007; Ikegami, 2012).  

 N protein 

The N protein is encoded in antisense by the S segment which has ambisense polarity 

(Collett et al., 1985; Struthers, Swanepoel, & Shepherd, 1984). The N protein along with the 

viral genomic RNA and L protein can be packaged into an RNP complex with a flexible 

serpentine-like structure (Raymond, Piper, Gerrard, & Smith, 2010). RNA binding cleft was 



14 

identified on the N protein, but the precise organization of RNA, N and L proteins in the RNP is 

still unclear (Ferron et al., 2011). All the functions related to the N protein, including viral RNA 

and antigenome protection, RNA transcription and replication, and virion assembly, involve 

RNA binding (Ikegami, Peters, & Makino, 2005; Lopez et al., 1995). This fact arouses interest in 

the identification of antiviral drugs which can inhibit this binding (Ellenbecker, Lanchy, & 

Lodmell, 2012). The N protein is highly conserved and immunodominant (R Swanepoel, 

Struthers, Erasmus, Shepherd, McGillivray, Shepherd, et al., 1986). Based on this knowledge, N 

protein was selected to test antibodies in vaccine studies. Strong humoral and lymphocyte 

proliferative immune responses were observed in mice immunized with N protein encoding 

cDNA and 60% of immunized mice survived in a virulent RVFV challenge (Lagerqvist et al., 

2009; Wallace et al., 2006a). In addition, a serological diagnostic method using recombinant N 

protein was developed to detect IgG and IgM antibodies against RVFV by indirect enzyme-

linked immunosorbent assays (ELISA) (Jansen van Vuren, Potgieter, Paweska, & van Dijk, 

2007). 

 Glycoproteins Gn and Gc 

Glycoproteins Gn and Gc are encoded by the RVFV M segment and are initially 

translated as protein precursors. The M mRNA contains five in-frame AUGs and the protein 

precursor generated from the first start codon is cleaved to 78 kD and Gc, while the other 

precursors generated from the second, third, fourth, or fifth AUG can be cleaved to mature Gn 

and Gc by the host cellular machinery (Kreher et al., 2014).  It is reported that the protein 

precursor from the second AUG is more efficient than the protein precursor from the third AUG 

for Gn expression (Suzich & Collett, 1988). The production of mature Gn and Gc production 

requires two signal peptidase cleavage sites (Gerrard & Nichol, 2007).  
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The glycoproteins of RVFV have the structural features of Phlebovirus including 

transmembrane domains, cysteine residues, and mature in the Golgi apparatus (Gro, Di Bonito, 

Fortini, Mochi, & Giorgi, 1997; CS Schmaljohn & Hooper, 2001). Because only Gn has a Golgi 

localization signal, it is hypothesized that oligomerization of viral glycoproteins is crucial for 

their accurate transit to Golgi apparatus (S. R. Gerrard & S. T. Nichol, 2002; Shi, Lappin, & 

Elliott, 2004). However, the Golgi localization signal domain of Gn is only functional in the 

precursors that start at the second, fourth,fd or fifth AUG but not in that start from the first start 

codon (Gerrard & Nichol, 2007).  

Glycoproteins Gn and Gc present on the surface of RVF virions and can induce 

neutralizing antibodies which are critical for protection against virus infection (Besselaar & 

Blackburn, 1991; Besselaar, Blackburn, & Meenehan, 1991). They are also related to virus 

attachment (C Schmaljohn & Nichol, 2007). Therefore, glycoproteins of RVFV can be ideal 

targets for vaccine development (Faburay et al., 2014). It has been reported that a Gn/Gc subunit 

vaccine can elicit a strong antibody response in sheep (Faburay et al., 2014). 

 NSs protein 

The NSs (31 kDa)  protein is translated from the NSs mRNA which is transcribed from 

the antiviral-sense portion of the S segment (Ikegami, 2012). As a major virulence factor of 

RVFV, the NSs protein plays a critical role in viral evasion and is responsible for lethal infection 

in mice (Bouloy et al., 2001; P. Vialat, A. Billecocq, A. Kohl, & M. Bouloy, 2000). NSs proteins 

are present in the nucleus and cytoplasm of infected cells (Yadani, Kohl, Préhaud, Billecocq, & 

Bouloy, 1999). To date, there is no report identified the nuclear localization signal in NSs protein 

which has a filamentous structure in the nucleus (Yadani et al., 1999). The filaments present in 

the nucleus results in DNA damage responses, cell cycle arrest, p53 activation, and apoptosis. It 
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has been reported that the ΩXaV motif (ΩXaV motif: Ω,omega: Tryptophan or Phenylalanine, 

X: any amino acid, a: Aspartic acid or Glutamic acid, V: Valine)  is responsible for the filament 

formation (Cyr et al., 2015) and PXXP motifs (P: proline, X: any amino acid) play a crucial role 

in NSs protein accumulation in nucleus (Billecocq et al., 2004). 

The NSs protein subserves the degradation of two host proteins, the TFIIH p62 and the 

double-stranded RNA (dsRNA)-dependent protein kinase (PKR) proteins via the cullin 1-Skp1-

Fbox E3 ligase complex (Habjan et al., 2009; Ikegami et al., 2009; Kalveram, Lihoradova, & 

Ikegami, 2011; Le May et al., 2004; Mudhasani et al., 2016). Usually, cellular protein 

degradation occurs via the ubiquitin (Ub)-proteasome system (Hershko & Ciechanover, 1998; 

Sorokin, Kim, & Ovchinnikov, 2009). To degrade TFIIH p62 and/or PKR, the protein(s) must be 

ubiquitinated first (Hershko & Ciechanover, 1998; Komander & Rape, 2012; Randow & Lehner, 

2009). Thus, the hypothesis that RVFV NSs protein engages as an adaptor protein in the E3 

ligase complex which can promote the transfer of Ub was proposed and is partially proved 

(Figure 5) (Kainulainen, Lau, Samuel, Hornung, & Weber, 2016; Mudhasani et al., 2016). Also, 

the NSs protein can directly bind to TFIIH p44 which is one of the ten proteins composed of 

TFIIH, inhibits the TFIIH assembly which is essential for rRNA synthesis and transcription-

coupled DNA repair subsequently (Iben et al., 2002; Le May et al., 2004). On the other hand, 

PKR is a double-stranded RNA-activated protein kinase induced by interferon and activated by 

viral dsRNA or ssRNA (Feng, Chong, Kumar, & Williams, 1992; Garcia, Meurs, & Esteban, 

2007; Nallagatla et al., 2007). One important function of the activated PKR is to phosphorylate 

the eukaryotic translation initiation factor 2 (eIF-2), further inhibits cellular and viral mRNA 

translation (Garcia et al., 2007; Sadler & Williams, 2008). However, the PKR can be stabilized 

by a proteasomal inhibitor of MG 132 or lactacystin when NSs is presented (Ly & Ikegami, 



17 

2016). PKR is mainly found in the cytoplasm, and a few is located in the nucleus. The 

degradation of this protein in RVFV-infected cells happens in both sites (Garcia et al., 2006; 

Ikegami et al., 2009).  

NSs protein is also responsible for the suppression of interferon (IFN)-β gene regulation 

(Bouloy et al., 2001; Muller et al., 1995). IFN-β belongs to Type-I IFNs which are essential for 

innate immunity when the body recognizes a virus invasion. To inhibit IFN-β expression, the 

NSs protein interacts with Sin3A-associated protein (SAP30) to form a complex of 

YY1/SAP30/NCoR/Sin3A/HDAC-3 on the IFN-β promoter region (Le May et al., 2008). 

However, the stability of the NSs gene relies on host alternation (Moutailler et al., 2011). The 

mutants of NSs protein can cause its failure in suppressing IFN-β gene upregulation (Head, 

Kalveram, & Ikegami, 2012). 
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Figure 5. Schematics of RVFV NSs-mediated TFIIH suppression and PKR degradation 

A) Schematics of RVFV NSs-mediated TFIIH suppression. As the picture illustrated, the 

NSs protein can suppress TFIIH by two ways: 1.binds to p44 and impounds it from the assembly 

site of TFIIH subsequently; 2. Formats the E3 ligase complex and promotes the degradation of 

p62 through RVFV NSs. B) Schematics of RVFV NSs-mediated PKR degradation. RVFV NSs 

protein forms the E3 ligase complex and further promotes the degradation of PKR via the 

ubiquitin-proteasome pathway. Adapted from Ly, H. J., & Ikegami, T. (2016). Rift Valley fever 

virus NSs protein functions and the similarity to other bunyavirus NSs proteins. Virology 

Journal, 13(1), 1-13. 
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 The 78-kD and NSm proteins 

The 78-kDa and the NSm (14 kDa) proteins are encoded by the M segment from the first 

and second AUGs, respectively (Kakach, Suzich, & Collett, 1989; Kakach, Wasmoen, & Collett, 

1988; C. Schmaljohn et al., 1989; Struthers et al., 1984). The biological functions of these two 

proteins are poorly understood. Until 2006, Won S. et al. first demonstrated that the 78-kDa and 

the NSm proteins are not essential for viral replication in cell culture by using a reverse genetics 

system to generate mutant viruses lacking the expression of one or both proteins (Won, Ikegami, 

Peters, & Makino, 2006); this group also reported that the NSm protein has an antiapoptotic 

function (Won, Ikegami, Peters, & Makino, 2007). Also, a recombinant RVFV with full NSm 

region deletion is highly attenuated in rats and shows a reduced ability to infect mosquitoes 

(Crabtree et al., 2012; Kading et al., 2014). While Weingartl H.M. et al. demonstrated that the 

78-kDa protein is a structural protein in C6/36 mosquito cell generated virus but not in Vero E6 

derived virus (Weingartl, Zhang, et al., 2014).  They hypothesized that the 78-kDa protein might 

play a major role in transmission from the mosquitoes to the ruminant host (Weingartl, Zhang, et 

al., 2014). 

 1.1.8 Animal models for RVFV 

Animal models are important to study the pathogenesis of RVFV and evaluate 

therapeutic and prophylactic interventions against the virus infection. Various animal species, 

including the virus targeted ruminants, rodents, and non-human primates, were used to conduct 

RVFV research. 

 1.1.8.1 Ruminants 

Ruminants can be reliable animal models since they are naturally very susceptible to 

RVFV infection. The evaluation of pathology, virology, and immunology for the infection can 
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easily be performed. The severity of the disease induced by virulent RVFVs is not only varied in 

young animals and adults but also depending on the virulence of the RVFV strain (Raymond et 

al., 2010). Hepatic lesions, such as swollen, mottled appearance, and necrosis can be observed in 

neonatal lambs after RVFV infection (G. Anderson, Jr., Lee, et al., 1991). Disease in RVFV 

infected adult sheep usually mild and subacute (C Schmaljohn & Nichol, 2007). Early-onset 

viremia with a transient pyrexia and mild hepatic lesions were observed in 4-5 month old sheep 

which were inoculated with RVFV subcutaneously (Faburay, Gaudreault, et al., 2016). 

Consistent results were obtained from 4-5 months old cattle RVFV challenge model (W. Wilson 

et al., 2016). Because the limitation of the space in BSL-3 facilities and only limited numbers of 

qualified experimental ruminants can be obtained in one study, less virulent RVFV studies have 

been performed on ruminants than rodents. 

 1.1.8.2 Rodents 

Rodents are used to study the pathogenesis of RVFV and to evaluate vaccines and 

antiviral drugs against this zoonotic pathogen. Different rodent species, such as mice, rats, 

hamsters, and gerbils have been used as animal models for RVFV infection (G. Anderson, 

Slayter, Hall, & Peters, 1990; G. Anderson, T. Slone, & C. Peters, 1987; G. Anderson, Slone, & 

Peters, 1988; Kende, Alving, Rill, Swartz, & Canonico, 1985; Morrill et al., 1987). Because of 

the absence of important clinical signs, such as on-set hepatitis and delayed encephalitis caused 

by RVFV infection, showed in hamster and gerbil models, they have not been extensively used 

as models for RVFV studies (G. Anderson et al., 1990; G. Anderson et al., 1988). 

 Mouse models 

In mouse models, virulent RVFV infection leads to acute hepatitis and encephalitis 

(Bhardwaj, Heise, & Ross, 2010; Flick & Bouloy, 2005; Ikegami & Makino, 2011). As the 
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overall disease developed by the virulent RVFV infection in mice is quite similar with RVFV 

pathology in humans, mice are excellent small animal models to study pathogenesis, vaccine 

efficacy, and antiviral drugs for RVFV (Boshra, Lorenzo, Busquets, & Brun, 2011; Ikegami & 

Makino, 2009, 2011). After challenge with a virulent RVFV via peripheral routes, BALB/c mice 

manifest clinical signs such as ruffled fur, decreased body weight, lethargy, and death. The 

clinical symptoms could be observed rapidly, usually less than 7 days. While some mice can 

succumb within three days post infection (dpi) without the development of clinical signs 

(Mandell et al., 2010). Acute viral hepatitis can be observed in both mice and humans since the 

primary site of RVFV-induced lesions is in the liver. Because of the apoptosis induced by RVFV 

infection, a lot of hepatocytes can be detected by Hematoxylin and eosin (H&E) as early as 3 dpi 

(D. Smith et al., 2010) stain. Meanwhile, the liver enzymes and bilirubin in the blood increase 

due to the infection as well (D. Smith et al., 2010).  

Although liver seems to be the early dominant target of RVFV, during severe infections, 

the virus can be detected in most tissues and cell types (Näslund et al., 2008; D. Smith et al., 

2010). In both mice and human severe fatal cases, development of delayed encephalitis was 

observed after acute hepatitis caused by RVFV (Van Yelden, Meyer, Olivier, Gear, & McIntosh, 

1977).  

Different infection routes of exposure in mouse model can also induce different severity 

of the disease. Compare with the peripheral routes, BALB/c mice with virulent RVFV aerosol 

exposure develop more neurologic clinical signs, such as cage circling or hind limb paralysis 

(Reed et al., 2013). But acute hepatitis is observed despite the routes of disposure. Ribavirin, an 

effective antiviral drug which can provide 80-90% protection from lethal challenge via the 

peripheral route, can hardly protect mice with lethal RVFV aerosol exposure (Morrill et al., 
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2010; Reed et al., 2013). These results indicate that early RVFV invasion of brain tissues via 

aerosol exposure likely account for the failure of ribavirin to protect mice from mortality. 

Meanwhile, aerosol exposure of BALB/c mice with RVFV virulent strains shrinks the mean time 

to death compared with the peripheral exposure, from 3 dpi to 5 dpi or longer (Ross, Bhardwaj, 

Bissel, Hartman, & Smith, 2012).  

Immunodeficient mouse models contribute the research on RVFV cell‐mediated immune 

responses which aspect has limited literature. In vitro studies demonstrated that virus replication 

was not affected no matter IFN-γ was present or not (Habjan et al., 2009; Nfon, Marszal, Zhang, 

& Weingartl, 2012). The in vitro results were corresponding to the in vivo study which showed 

that all IFNGR-/- mice were survived after MP12 challenge while all IFNAR-/- mice were dead 

due to infection (Bouloy et al., 2001). Among these innate immune factors, it is not surprising 

that type I IFN that plays a critical role in RVFV infection (Weber, Elliott, Brasier, Garcia-

Sastre, & Lemon, 2009). Because type I IFN is synthesized by the virus-infected cells to inhibit 

viral replication and stimulates the neighboring cells to express antiviral factors, subsequently 

preventing the spread of the viral infection (Samuel, 2001). Moreover, the IFN-induced antiviral 

factors can trigger apoptosis of the infected cells and they are essential modulators of adaptive 

immunity (Wilkins & Gale, 2010). Different in vitro and in vivo studies indicate that type I IFN 

plays a crucial role in RVFV infection. When type I IFN is present/absent in cell culture, RVFV 

replication was impaired/enhanced (G. Anderson & Peters, 1988; Do Valle et al., 2010; Ermler et 

al., 2013). While better outcomes were showed in the animals that were treated with IFN or IFN 

inducers prior/after the RVFV infection (Morrill, Jennings, Cosgriff, Gibbs, & Peters, 1989; 

Peters, Reynolds, Slone, Jones, & Stephen, 1986). Thus, during the first crucial stage of RVFV 

infection, type I IFN response is indispensable to limit the viral spread (Weber & Elliott, 2002). 
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While reduced viremia was observed in monkeys which were given IFN‐γ prior to infection 

compared to non-treated animals (Morrill, Czarniecki, & Peters, 1991). IFN‐γ is predominantly 

synthesized by natural killer (NK), natural killer T (NKT) cells, Th1 cells, and CTL effector T 

cells. So IFN‐γ is crucial in both innate immunity and adaptive immunity (Goodbourn, Didcock, 

& Randall, 2000). As high IFN‐γ response was observed after restimulation of cells from 

convalescent goats and sheep, and cell-mediated immunity played a role in post‐vaccinal 

protection against RVFV infection in mice, cell‐mediated immunity could be involved in the 

long‐term protection against RVFV (Boshra, Lorenzo, Rodriguez, & Brun, 2011; Busquets et al., 

2010; Nfon et al., 2012). 

 Rat models 

Rats are also susceptible to RVFV infection and have been used in research since the 

early 1930s (Findlay & Daubney, 1931). In the natural environment, mortality of rats occurs 

during outbreaks of RVF, although there is no evidence that showed these rats had a direct 

infection (Daubney & Hudson, 1933; Weinbren & Mason, 1957); indicating that rats could serve 

as an intermediate host for the RVFV during outbreaks.  

Susceptibilities to infection differ among different rat strains when infected with the same 

virulent RVFV strain (G. Anderson, Jr., Rosebrock, Johnson, Jennings, & Peters, 1991; Peters & 

Anderson Jr, 1981; Peters & Slone, 1982). Despite challenging routes, Wistar-Furth and Brown 

Norway rats are exquisitely susceptible to ZH501 with a median lethal dose of 1-5 plaque 

forming unit (PFU) (Peters & Anderson Jr, 1981; Peters & Slone, 1982). These two rat strains 

died within 3–5 days with fatal lesion of hepatic necrosis. The virus is found in many organs, 

such as lung, liver, spleen, and kidney (G. W. Anderson, Jr., T. W. Slone, Jr., & C. J. Peters, 

1987; Peters & Anderson Jr, 1981). High levels of viremia are detected as well (Bird et al., 
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2008). ACI and MAXX rats are moderately susceptible to ZH501 when challenged with 5 × 

103 to 5 × 105 PFU and died within 2 to 3 week with fatal encephalitis. The mortality rate is 50% 

after peripheral infection (Bucci, Moussa, & Wood, 1981; Peters & Slone, 1982). At the late 

stage of disease, virus and lesions can be only detected in the brains of rats with neurologic 

symptoms including circling in the cage, hind limb paralysis, head tremors, head tilt, and ataxis 

(Bucci et al., 1981; Peters & Slone, 1982). Although no clinical signs are observed in Lewis 

strain after ZH501 exposure, viremia and immune responses specific to RVFV infection are 

detected (G. Anderson & Smith, 1987; Peters & Anderson Jr, 1981; Peters & Slone, 1982). 

Additionally, virus replication occurs in the liver and spleen. While Buffalo, DA, and Fischer 

rats resist to ZH501 following infection subcutaneously with 5 × 105 PFU (Peters & Slone, 

1982). Inbred rat strains can display more differences in lethality reproducibly compared with 

inbred mouse strains (G. Anderson, Jr., Rosebrock, et al., 1991; Peters & Anderson Jr, 1981; 

Peters & Slone, 1982). Different strains of RVFV show million fold difference in virulent when 

to challenge the Wistar-Furth rats (G. Anderson & Peters, 1988). 

 1.1.8.3 Non-human primates 

Since RVF is a zoonotic disease, non-human primate models of RVF is crucial in 

investigating antiviral drugs and vaccines for human use. However, non-human primate models 

with RVFV infection does not produce a repeatable fatality. Most of the primates present mild 

clinical signs, such as a decrease in activity, viremia, fever, leukocytosis, followed by leukopenia 

(Findlay & Daubney, 1931; Ross et al., 2012). Rhesus macaques are the first used non-human 

primate model since 1931 and considered to be the best model when infecting with ZH501 to 

demonstrate the range of symptoms observed in humans (Findlay & Daubney, 1931; Peters & 

Linthicum, 1994; Ross et al., 2012). Infected rhesus macaques showed liver lesion characterized 
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by mid-zonal pattern, which is similar in human cases (Van Yelden et al., 1977).  It has been 

shown that IFN response is critical to prevent a fatal outcome in RVFV infected rhesus 

macaques and IFN-α is effective to prevent disease (Morrill, Czarniecki, et al., 1991; Morrill et 

al., 1990). Different exposure routes were researched and the results demonstrated that infection 

with aerosol exposure is slightly more susceptible than infection with peripheral exposure (B. 

Easterday, 1965). Neurotropic RVFV infection to rhesus macaques showed no febrile reaction 

after IP inoculation; however, fatal infection was observed in intracerebrally or intranasally 

inoculated rhesus macaques (Findlay, MacKenzie, & Stern, 1936). 

Lethal non-primate infection models are also needed to demonstrate the effectiveness of 

newly developed antiviral drugs and vaccines. In addition, RVFV rhesus macaque model needs 

intravascular (IV) infection which is different from the natural exposure route of extravascular 

infection transmitted by mosquitoes (Turell & Spielman, 1992). Recently, common marmoset 

(Callithrix jacchus) was used to evaluate the infectivity and pathogenicity of ZH501 by IV, 

subcutaneous (SC), and intranasal exposure routes (D. Smith et al., 2012). Results demonstrated 

that the overall disease of infected Marmoset was more severe than rhesus macaques. When 

infected virus via IV and SC routes, the major consequence of RVFV infection is an 

overwhelming infection of hepatocytes. Neurological impairment and hemorrhagic 

manifestations were observed as well (D. Smith et al., 2012). Both African green monkeys and 

Marmosets are susceptible to RVFV via aerosol exposure and developed fatal encephalitis 

(Hartman et al., 2014). H&E staining demonstrated meningoencephalitis caused by RVFV 

infection in both species (Hartman et al., 2014). It is worth to note that all these non-human 

primate studies used small sample sizes and no in-depth questions have been answered. These 

models should be tested further in validating candidate antiviral drugs or vaccines. 
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Other species of non-human primates, such as South American, Indian monkeys, spider 

monkeys, and baboons were evaluated for susceptibility of RVFV by different groups (B. 

Easterday, 1965; Findlay, 1932). Recombinant RVFV vaccines using vaccinia virus as a vector 

to express Gn and Gc of RVFV were tested in the baboon model and protective levels of 

antibody were induced (Papin et al., 2011). 

 1.1.9 RVFV vaccines 

As a strategy for prophylaxis, vaccination plays a critical role to impede the invasion of 

microbiologic pathogens. Niklasson et al. demonstrated that the humoral immunity induced by 

vaccines is sufficient for protection against RVFV (BS Niklasson, Meadors, & Peters, 1984). In 

addition, the RVFV strains are relatively conserved at the nucleotide and amino acid levels (Bird, 

Khristova, et al., 2007). Unfortunately, there is currently no fully licensed RVFV vaccine 

available in the U.S. for human or animal use. Currently, several groups are focusing on the 

RVFV vaccine development using different strategies. 

The fundamental mechanism for vaccination is based on the adaptive acquired immune 

system. It can remember the specific pathogens that have been encountered in the past for a 

period and once that pathogens invade the organism again, it reacts faster and more fiercely 

(Abbas, Lichtman, & Pillai, 2012). The adaptive immune system is subdivided into cell-mediated 

immunity and humoral immunity based on the factors and cells involved. Cell-mediated 

immunity is mediated by antigen-specific cytotoxic T-lymphocytes and requires the activation of 

phagocytes and the release of various cytokines. The main place of cell-mediated immunity is 

inside cells. While the humoral immunity is mediated by macromolecules that exist in 

extracellular fluids including secreted antibodies, complement proteins, and antimicrobial 

peptides. The humoral immunity fights against pathogens outside the cells (Abbas et al., 2012). 
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The specific adaptive immune response is triggered and initiated by antigen presenting 

cells (APCs) including dendritic cells and macrophages. APCs can engulf and digest viruses, 

transport the viral antigens to regional lymph nodes, and present them on major 

histocompatibility complex (MHC) molecules to naive T cells. These naive T cells will 

differentiate into effector cells once the relevant factors are present and the T-cell receptor is 

specific for the antigen. Because of the structure difference, the MHC class I molecules can be 

recognized by cytotoxic T lymphocytes (CD8+) which can differentiate into cytotoxic T 

lymphocytes (CTLs); while MHC class II molecules can be recognized by Helper T lymphocytes 

(CD4+) which can differentiate into different T helper (Th) cells. There are two major subtypes 

of Th cells, Th1, Th2 cells. Th1 cells are necessary for clearing intracellular pathogens, while 

Th2 cells are the host immunity effectors against extracellular organisms. Th cells can also 

produce distinct sets of cytokines which are important in cell signaling (Chaplin, 2010).  

The primary functions of CTLs are to identify and kill the virus-infected cells (Abbas et 

al., 2012). Because a wide range of cells can express MHC class I molecules which can 

recognize by CTLs, most of the virus-infected cells can report their situations to CTLs by 

presenting MHC I/peptide complexes on their cell surface. Upon recognition of infection, the 

CTL secretes cytotoxins perforin, granzymes, and granulysin. Granzymes enter the cytoplasm 

after the perforin created pores in the membrane and their serine protease function activates the 

caspase cascade that subsequently leads to apoptosis (Abbas et al., 2012). 

B cells play a crucial role in humoral immunity and they can recognize different antigens 

by their Ig receptor on the membrane. Once the receptor-recognition of an antigen happens, it 

activates B cells and the cell begins to proliferate and produce IgM. This process takes several 

days for RVFV infection. Then the activated B cell processes the antigen to peptides and further 
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presents the peptides by displaying them on MHC class II molecules to activated Th cells.  After 

that, the interacting Th cell secrets different signals to the B cell in order to make it proliferate. In 

this process, the secretion of antibodies shifts from IgM or IgD isotypes to IgA, IgE, or IgG 

(Abbas et al., 2012). Although part of the B cells differentiates into memory B cells which do not 

secrete antibodies to combat the invading pathogen, they are ready to give a faster respond if the 

specific antigen appears again. If the organism is exposed to a specific antigen prolonged or 

repeatedly, antibodies with higher affinity for that particular antigen will be produced. As the 

secreted antibodies enter the blood, they can perform their functions throughout the organism. 

Antibodies are quite useful to combat pathogens in three main ways: 1). coat pathogens and 

target them for phagocytosis; 2). stimulate other parts of the immune system in order to destroy 

the pathogens; 3). bind to the pathogens directly to inhibit the infection. 

 Antibodies are essential in clearance of the RVFV during the infection and in the 

prevention of re-infection in convalescent or immunized animals (Busquets et al., 2010; M Pepin 

et al., 2010). RVFV was cleared from the blood gradually after the IgM and IgG antibodies 

appear in experimentally-infected animals. Among the IgGs, neutralizing antibodies which have 

high affinities to some specific structures on the surface of the RVFV can inhibit the interaction 

between the virus and receptor binding. Thus, the cells are protected from infection (Reading & 

Dimmock, 2007). Although viremia was not able to be observed before the detection of 

neutralizing antibodies in experimentally-infected sheep (Busquets et al., 2010), the close times 

for  the appearance of neutralizing antibodies and viral clearance indicates that antibodies along 

with the innate immunity are necessary for controlling RVFV infection (G. Anderson et al., 

1987; Morrill et al., 1990). As mentioned before, glycoproteins Gn and Gc can elicit protective 

neutralizing antibodies. Non-immunized animals can be protected from infection after 
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administration of neutralizing monoclonal antibodies and new-born of immunized animals are 

protected via suckling (G. Anderson et al., 1987; Bhardwaj et al., 2010; Peters et al., 1986; 

Smithburn, 1949).  

The formalin-inactivated RVFV vaccines have a long history since 1962 (Randall, Gibbs, 

Aulisio, Binn, & Harrison, 1962). For veterinary use, one formalin-inactivated RVFV vaccine 

derived from a pantropic RVFV strain can significantly reduce the rates of abortion and mortality 

but still cannot entirely protect the whole population (Barnard & Botha, 1977; lTl Gemnoranda, 

1983). Because RVF is a zoonosis, humans can be threatened during an outbreak. Thus, the 

NDBR103, one of the earliest inactivated vaccines was developed for human use. NDBR103 can 

induce high titers of neutralizing antibodies in most of a group of UN soldiers after three-dose 

vaccination (Randall et al., 1962). Based on this knowledge, TSI-GSD 200 was further 

developed and is used for at-risk laboratory workers in the U.S. provided by the U.S. Army 

Medical Research Institute of Infectious Diseases (USAM-RIID) recently (Pittman et al., 2016). 

However, although inactivated vaccines are highly safe, boosters are required to get a long-term 

immunity which means limited access to this vaccine (Pittman et al., 1999; Rusnak, Gibbs, 

Boudreau, Clizbe, & Pittman, 2011). These two formalin-inactivated RVFV vaccines can induce 

immunization side effects such as erythema, swelling, tenderness or pain at the injection site 

(Kark, Aynor, & Peters, 1982; B Niklasson, 1982). Due to these reasons, live attenuated vaccines 

were developed for demand in animal and human use. 

The first live attenuated vaccine, Smithburn strain, was isolated from a mosquito and 

serial passaged in mouse brains/eggs (Smithburn, 1949). Although this vaccine is significantly 

attenuated, 29% of vaccinated pregnant cows showed  abortion (Botros et al., 2006). This fact 

raised the concern that Smithburn strain was not fully attenuated. In addition, as a live vaccine, 
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the Smithburn strain has a potential for reversion (Sall et al., 1999). Thus, the Smithburn strain is 

not recommended for use in RVFV non-endemic countries (Ikegami & Makino, 2009). 

Currently, two RVFV live attenuated vaccines, MP12 and Clone 13, are in clinical trials. 

The temperature-sensitive MP12 strain (Saluzzo & Smith, 1990) was obtained through 12 serial 

passages of a virulent isolate ZH548 in the presence of 5-fluorouracil and has been shown to be 

safe and efficacious against virulent RVFV challenge in sheep (Morrill et al., 1987), cattle 

(Morrill, Mebus, & Peters, 1997) and macaques (Morrill & Peters, 2003). Immunization of 

pregnant ewes with MP12 induced protective neutralizing antibodies without fetal abnormality 

(Baskerville, Hubbard, & Stephenson, 1992; Morrill, Carpenter, et al., 1991; Morrill, Johnson, et 

al., 1991). However, one group claimed that this vaccine still can cause abortion in ewes when 

vaccinated on the 28th day of pregnancy (Hunter, Erasmus, & Vorster, 2002). MP12 can also 

elicit high neutralizing antibody titers in alpacas but still pathogenic since mild multifocal 

necrotizing hepatitis was observed at 3 dpi (Rissmann et al., 2017). Currently, MP12 is the only 

conditionally licensed vaccine for use for veterinary purposes in the U.S (Ikegami et al., 2015) 

and just went through the Phase 2 clinical trial in humans (Pittman et al., 2016). After a single 

dose of vaccination, 8 of 9 vaccinees (89%) maintained an 80% plaque reduction neutralization 

titer (PRNT80) ≥1:20 after five years and no reversions of amino acids were observed by RNA 

sequencing (Pittman et al., 2016). Ikegami et al. demonstrated that the MP12 attenuation is 

caused by a combination of multiple partial attenuation mutations on different segments, 

suggesting that a single reversion mutation is hard to result in a reversion to virulence (Ikegami 

et al., 2015). 

On the other hand, the Clone 13 is a plaque isolate with  approximately 70% of the NSs 

ORF deletion and it is naturally significantly attenuated (Muller et al., 1995). No apparent side 
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effects were observed in experimental vaccine trials in both mice and ruminants, suggesting that 

the Clone 13 is safe to use (Dungu et al., 2010; P Vialat, A Billecocq, A Kohl, & M Bouloy, 

2000; Von Teichman et al., 2011). Although one study in pregnant sheep induced a protective 

immunity without abortions (Dungu et al., 2010), Makoschey B. et al. demonstrate that the Clone 

13 can cross the ovine placental barrier, resulting in malformations and stillbirths, suggesting 

Clone 13 could be applied to lambs but not to pregnant animals (Makoschey et al., 2016). 

As the reverse genetic system was established for RVFV in 2005, various recombinant 

RVFVs were developed as vaccine candidates and further evaluated in rodents and ruminants 

(Bird et al., 2008; Bird et al., 2011; Ikegami, Won, Peters, & Makino, 2006; Morrill et al., 2013; 

Weingartl, Nfon, et al., 2014). To enhance the safety of the MP12 vaccine, a single-cycle 

replicable MP12 was generated (Murakami, Terasaki, & Makino, 2016). This recombinant 

RVFV carries a normal L RNA of MP12, an S RNA encoding green fluorescent protein to 

replace the NSs protein, and an M RNA encoding a mutant envelope protein lacking an 

endoplasmic reticulum retrieval signal and defective for membrane fusion function (Murakami et 

al., 2016). This platform of the reverse genetic system can also benefit the development of DIVA 

vaccines and studies in molecular virology of RVFV (Ikegami et al., 2006).  

The drawback of live attenuated vaccines is the potential for reverse. As RVFV is a 

segmented RNA virus, reassortment could happen (J. Liu et al., 2017). Therefore, a live 

attenuated vaccine strain may reassort with a wild strain, resulting in an increase of virulence. 

Aside from the RVFV itself, other viral vectors which can express foreign antigens also could be 

used to generate recombinant RVFV vaccines. The glycoproteins of RVFV are considered to be 

immunogenic and can elicit robust neutralizing antibodies in animals (Besselaar & Blackburn, 

1991; Dalrymple, Hasty, Kakach, & Collett, 1989; Keegan & Collett, 1986). Therefore, 
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Venezuelan equine encephalitis virus (VEEV), lumpy skin disease virus (LSDV), vaccinia, and a 

replication-deficient chimpanzee adenovirus were used as vectors to express the glycoprotein(s) 

and protective antibodies were induced in animals (Boshra et al., 2013; Busquets et al., 2014; 

Gorchakov et al., 2007; Papin et al., 2011; Wallace et al., 2006b; Warimwe et al., 2013). These 

studies demonstrated that viral vectors could be useful tools to deliver RVFV glycoproteins to 

the host and have potentials to be veterinary vaccines in the future. 

Other strategies to develop RVFV vaccines, including subunit vaccines, DNA vaccines, 

and transgenic plants have been developed (Bhardwaj et al., 2010; Faburay et al., 2014; Kalbina 

et al., 2016; Lagerqvist et al., 2009; Näslund et al., 2009; C. S. Schmaljohn et al., 1989; Spik et 

al., 2006). These vaccines are DIVA compatible. But most of them still need to be improved in 

immunogenicity and inoculation times. The glycoprotein subunit vaccine which elicited high 

neutralizing antibody titers without viremia and fever can protect sheep from lethal RVFV 

challenge (Faburay, Wilson, et al., 2016). However, this vaccine still needs a booster and the 

efficacy of it in other susceptible animals and non-human primates is still unknown. 

 1.1.10 Diagnostic methods for RVFV  

RVFV can be detected by classical virological methods including histopathology, virus 

isolation (G. Anderson et al., 1989), detection of antigen and antibodies (Fukushi et al., 2012; 

Kortekaas et al., 2013; J Meegan et al., 1989; R Swanepoel, Struthers, Erasmus, Shepherd, 

McGillivray, Erasmus, et al., 1986; van der Wal et al., 2012), and molecular assays (Bird, 

Bawiec, Ksiazek, Shoemaker, & Nichol, 2007; Le Roux et al., 2009; Sall et al., 2002; W. Wilson 

et al., 2013).  

Hepatic lesions characteristic of RVFV can be observed in the infected host by 

histopathology test since the liver is the target organ of RVFV for both humans and animals. The 
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RVFV infection can be further confirmed by immunostaining using specific antibodies (G. 

Anderson et al., 1989; Coetzer, 1982). However, technical expertise is needed for this approach. 

RVFV can be isolated from whole blood/serum collected during the acute (febrile) stage of the 

disease and from the post-mortem samples (G. Anderson et al., 1989). But BSL-3 or higher level 

laboratories are required to perform this approach (Bird et al., 2009). Currently, a combination of 

serological and molecular methods is preferred in laboratory diagnosis. 

The gold standard serological assay for RVFV is the virus neutralization assay (VNA). 

Unfortunately, this approach can only be performed in BSL-3 facilities with the live virulent 

virus for the safety concern (Mansfield et al., 2015). Enzyme-linked immunosorbent assay 

(ELISA) is commonly used to confirm RVFV infection. Several assays are available for the 

detection of both RVFV antigens and anti-RVFV antibodies (Fukushi et al., 2012; BS Niklasson 

& Gargan 2nd, 1985; Paweska, Mortimer, Leman, & Swanepoel, 2005; Williams et al., 2011). 

Although cross-reaction between RVFV and other phleboviruses may happen, both the VNA and 

ELISAs are considered to be highly specific (M Pepin et al., 2010).  

Molecular methods are economical and rapid to detect the viral RNA. Therefore, a 

number of highly sensitive nucleic acid based molecular tests have been developed and proven 

useful during RVF outbreaks (Gerdes, 2004). However, expensive equipment and special 

techniques are needed which hindered the use of molecular methods in the field. Therefore, 

further studies to develop a diagnostic method for RVFV should focus on simplification of 

procedure and application on site of outbreaks. 

 1.1.11 Antiviral drugs for RVFV  

Currently, there are no licensed antiviral drugs approved for RVFV treatment in both 

humans and animals.  
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Ribavirin, a nucleoside analogue, can inhibit RVFV replication (Oestereich et al., 2014). 

However, ribavirin can hardly penetrate the blood-brain barrier, resulting in the failure to prevent 

delayed-onset neurologic disease. Moreover, a shift in disease characteristics from sudden-onset 

hepatic disease to delayed-onset neurologic disease was observed in animals which were infected 

with RVFV and further treated with ribavirin (Peters & Anderson Jr, 1981). Thus, ribavirin 

should only be considered in the treatment of complex RVF. 

Favipiravir (T-705) is a broad spectrum inhibitor against a number of different RNA 

viruses, such as influenza A virus, RVFV, Ebola virus, Paramyxoviruses, Human 

Metapneumovirus, Arenaviruses, and other Bunyaviruses, etc. in animal models (Caroline et al., 

2014; Furuta et al., 2013; Jochmans et al., 2016; Oestereich et al., 2014; Scharton et al., 2014). 

As a novel viral RNA polymerase inhibitor, Favipiravir-RTP, the active format of Favipiravir in 

cells, is significantly more selective for the influenza virus RNA-dependent RNA polymerase 

than human DNA-dependent RNA polymerase (Furuta et al., 2013). Administration of 

Favipiravir showed promising results in inhibiting replication of RNA viruses in animals; clinical 

trials should be scheduled soon. 

In conclusion, development of antiviral compounds with improved safety and efficacy is 

in urgent need for treatment of RVF.  
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Chapter 2 - Mouse Model for the Rift Valley Fever Virus MP12 

Strain Infection 

The data in this section has been published in Veterinary Microbiology (2016) 195: 70-77 

by Yuekun Lang, Jamie Henningson, et al., Mouse model for the Rift Valley fever virus MP12 

strain infection. 

 2.1 Introduction 

Rift Valley fever virus (RVFV), the causative agent of Rift Valley fever (RVF), belongs 

to the genus Phlebovirus, in the phenuiviridae family and is classified as a Category A pathogen 

designed by the NIH/NIAID (D. Bishop & Shope, 1979; Georgiev, 2009). RVF is an 

acute, fever-causing zoonotic disease that affects humans and animals such as cattle, buffalo, 

sheep, goats, and camels. RVFV was first reported in 1931 from a farm of Rift Valley in Kenya 

(Daubney et al., 1931). The virus has been circulating in the countries of the African continent 

and Madagascar, causing great economic loss and human deaths. The first RVF outbreak outside 

Africa was confirmed in 2000 in the Arabian Peninsula, resulting in loss of livestock and more 

than 200 human deaths out of approximately 2,000 hospitalized patients (Balkhy & Memish, 

2003; Shoemaker et al., 2002). This fact raised concern that the disease could spread worldwide 

(Ahmed et al., 2009).  

The RVFV MP12 attenuated strain provides a BSL-2 model virus for preliminary 

investigations of RVFV prior to using virulent RVFV strains that are required to be handled in an 

expensive high biosecurity BSL-3 facility (Gaudreault et al., 2015). This attenuated strain was 

obtained through 12 serial passages of a virulent isolate ZH548 in the presence of 5-fluorouracil 

and has been shown to be safe and efficacious against virulent RVFV challenge in sheep 

(Morrill, Carpenter, et al., 1991; Morrill et al., 1987), cattle (Morrill et al., 1997) and macaques 
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(Morrill & Peters, 2003). However, a previous study showed that this vaccine still can cause 

abortion in pregnant ewes (Hunter et al., 2002). MP12 is classified as Risk group 2 pathogen and 

commonly used in BSL-2 laboratories (Ikegami et al., 2015). MP12 is highly attenuated in mice 

at immunogenic doses (Caplen, Peters, & Bishop, 1985). However, it may cause tissue pathology 

in some strains of mice such as BALB/c and C57BL/6 mice when administered at high doses 

(Indran et al., 2013; Lihoradova et al., 2013). When RVFV natural hosts, such as cattle and 

lambs, were infected with a higher dose (106 PFU) of MP12 virus, clinical disease and viremia 

were not observed in inoculated animals (W. C. Wilson et al., 2014), indicating that they are not 

good models for evaluating antivirals using RVFV MP12 virus in a BSL-2 environment. It has 

been reported that all strains of RVFV remain closely related at the nucleotide and amino acid 

level (Ikegami, 2012), suggesting that antiviral drugs or vaccines effective against one strain may 

also be effective against all strains. To date, there is no fully licensed vaccine for human or 

animal use in the U.S., and effective antiviral drugs have not been identified (Eddy, Peters, 

Meadors, & Cole Jr, 1981; Hunter et al., 2002; Ikegami, 2012; L. Liu, Celma, & Roy, 2008). It is 

urgent to develop efficacious antivirals and vaccines to protect public and animal health. 

However, limited laboratories can perform efficacy testing of RVF antivirals and vaccines and 

have access to the virulent RVFV strains, since high biocontainment facilities are required and 

the cost for performing the antiviral test is also very expensive. Based on above knowledge, our 

objective was to establish a mouse model susceptible to infection with the MP12 vaccine strain 

in order to identify and evaluate antiviral compounds against RVFV in a BSL-2 level facility. 

BALB/c mice are highly susceptible to the virulent RVFVs such as the ZH501 strain, displaying 

acute-onset liver disease and delayed-onset encephalitis (D. Smith et al., 2010). Mouse strains 

including NZW/LacJ, 129S1/SvlmJ, and C57BL/6J have been reported to be susceptible to 
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infection with Punta Toro virus, another phlebovirus in the Phenuiviridae family (Ashley et al., 

2011; Mendenhall, Wong, Skirpstunas, Morrey, & Gowen, 2009). Furthermore, MP12 is able to 

infect and cause mortality in Sv129 IFN α/β receptor −/− (interferon α/β receptor knockout) mice 

that have been used to study vaccine efficacy (Boshra, Lorenzo, Rodriguez, et al., 2011; Bouloy 

et al., 2001; Lorenzo, Martin-Folgar, Hevia, Boshra, & Brun, 2010). Therefore, we selected and 

screened six strains of mice [129S6/SvEv, STAT-1 KO (129S6/SvEv-Stat1tm1Rds), 129S1/SvlmJ, 

C57BL/6J, NZW/LacJ, and BALB/c] to test their susceptibility to the MP12 strain in this study. 

The mouse strain most susceptible to the MP12 vaccine strain infection will likely be selected for 

further testing the efficacy of antiviral compounds in future studies. 

 2.2 Materials and Methods 

 Virus and Cells 

African green monkey kidney epithelial (Vero) E6 cells (ATCC-CRL 1586) were grown 

in 1x DMEM medium containing 10% fetal bovine serum (FBS, Atlanta Biologicals). The 

RVFV MP12 strain was kindly provided by the US Army Medical Research Institute for 

Infectious Diseases. The virus was propagated and passaged three times in Vero E6 cells. Cells 

were infected with 0.01 multiplicity of infection (MOI) of the virus in the medium of DMEM 

with 10% FBS. Cell cultures were collected when 80–95% of the infected cells showed 

cytopathogenic effect (CPE). The titer of viral stock was determined and calculated as tissue 

culture infective dose 50 (TCID50) based on the presence of cytopathic effect. 

 Animals 

Six groups (14 mice/group) of seven-week-old female mice were obtained from different 

companies. 129S6/SvEv and STAT-1 KO mice were purchased from Taconic, Hudson, NY; 

129S1/SvlmJ, C57BL/6J and NZW/LacJ mice were purchased from Jackson Lab, Harbor, ME; 
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BALB/c mice were purchased from Charles River Laboratories, Wilmington, MA. All animal 

procedures used in this study complied with guidelines set by the USDA and were approved by 

Kansas State University Animal Care and Use Committee. 

 Mouse Infection Experiment 

Mice were maintained in a mouse vivarium at the USDA, ARS, ABADRU, Manhattan, 

KS. Twelve mice of each group were intranasally inoculated with 1.58 ×106 TCID50 of the MP12 

virus in a volume of 70 μl (35 μl per nostril) under anesthesia using isoflurane. The remaining 

two mice of each group served as negative controls. Mice were weighed every 2 days and 

observed daily for clinical symptoms. On 3 and 6 days post-inoculation (dpi), three inoculated 

mice and one negative control from each group were euthanized and necropsied. The remaining 

six mice of each group were kept for 14 days. If a mouse has more than 25% weight loss or 

showed signs of neurologic disease, it was humanely euthanized and necropsied. During 

necropsy, livers, brains, spleens, and blood from each mouse were collected under sterile 

conditions. The half of liver or brain from each mouse collected and stored at -80oC for later 

virus detection, and the part of these tissues and spleen was fixed in 10% formalin for 

histopathologic analysis (C. Liu et al., 2011). Tissues were homogenized twice in PBS for 1 min 

in a Mini BeadBeater-8 (Biospec Products) to make 10% tissue homogenates. The homogenate 

was centrifuged at 640 g for 5 min, and the supernatant was transferred to 1.5 ml reaction tubes 

for virus isolation and titration in Vero E6 cells as described previously (Richt et al., 2003). The 

serum was isolated from collected blood samples for further viremia analysis using the real-time 

RT-PCR assay. 
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 RNA Extraction and Real-time RT-PCR 

Total RNA was extracted from serum samples collected from each mouse using the 

Applied Biosystems MagMAX-96 total RNA Isolation Magnetic bead capture kit according to 

the manufacturer’s protocols. Briefly, 130 μl of lysis/binding buffer was mixed with 50 μl of sera 

followed by shaking in a 96-well plate. Then 20 μl bead mix was added and the mixture was 

shaken for 5 min. After washing (150 μl each) for four times, the RNA was eluted in 50 μl of 

elution buffer at 65oC. RNA was quantitated using UV spectroscopy. 

Real-time RT-PCR was performed to detect viral RNA of serum samples using the 

AgPath ID rRT-PCR Kit (Life Technologies, Inc., Grand Island, NY) as described previously 

(W. Wilson et al., 2013). Briefly, the RVFV triplex rRT-PCR procedure was designed to contain 

L, M and S primers and probes and one of the external RNA control combinations using the 

following cycling conditions: 45℃ for 10 min, 95℃ for 10 min, followed by 40 cycles of 95℃ 

for 10 sec and 60℃ for 1 min. The Ct value of at least two of the three RVFV segments from 

one sample below 35 cycles would be considered positive.   

 Histopathological and Immunohistochemical Analysis 

Tissues including liver, brain, and spleen in 10% formalin buffer were routinely 

processed; sections were cut at 4 microns thick on a microtome and stained with hematoxylin 

and eosin. The amount of necrosis and inflammation were graded macroscopically. In the spleen 

and liver samples, a 5 point scale was used: 0=No necrosis, 1=Occasional scattered single cell 

necrosis, 2=Scattered 0.5-2 mm foci of random necrosis, the 3=Scattered larger random area of 

necrosis, often coalescing with each other, 4=Diffuse lobular necrosis. In the spleen, necrosis 

was seen as lymphocytolysis in periarteriolar sheaths. In the brain samples, a 4-point scale was 
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used: 0=No necrosis, 1=one focal area of necrosis and inflammation, 2=2-5 areas of necrosis and 

inflammation, 3≥6 areas of necrosis and inflammation.  

For immunohistochemical analysis, tissues were deparaffinized and rehydrated, antigen 

retrieval was performed in pH 9.0 EDTA buffer, Bond ER Solution 2 (Leica Microsystems, 

Buffalo Grove, IL) for 20 minutes at 100° C on the Leica Bond-Max autostainer. The primary 

polyclonal rabbit anti-RVFV antibody (Drolet et al., 2012) was diluted 1:3000 in Bond Primary 

Antibody Diluent (Leica Microsystem) and incubated for 15 minutes at ambient temperature 

with the tissue on the slide. Polymerization was done with Anti-rabbit Poly-HRP-IgG (Leica 

Microsystems, Buffalo Grove, IL) for 25 min at ambient temperature. Tissues were blocked with 

3% hydrogen peroxide for 5 minutes, visualized with DAB, and counterstained with 

hematoxylin. Immunohistochemical positivity was graded as follows: 0=No staining, 

1=Scattered individual cell staining, not more than 15 cells, 2=Moderate numbers of scattered 

cells, and 3=Diffuse multifocal staining, severe, greater than 75% of the sectional area with 

staining. 

 Statistical analysis 

The student t-test was used to analyze differences between groups for data collected at a 

given time point. A p ≤ 0.05 was considered statistically significant. 

 2.3 Results 

Clinical symptoms, morbidity and mortality of different mouse strains infected with 

the RVFV MP12 virus 

RVFV can be transmitted to human by aerosol exposure and intranasal infection with 

RVFV induces earlier and more severe neuropathology in the mouse model compared with other 

infection routes (Reed et al., 2013). Therefore, six different mouse strains of 12 mice/group were 
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intranasally inoculated with 1.58 × 106 TCID50/mouse of the RVFV MP12 virus in this study. 

Two control mice euthanized on day 3 and 6 dpi in each group did not show any clinical 

symptoms and gained weight normally. All infected STAT-1 KO mice started to exhibit weight 

loss at 2 dpi (Figure 6A) and obvious clinical signs including decreased activity, huddling, 

hunched posture, and ruffled fur as early as 4 dpi. Three STAT-1 KO mice were humanely 

euthanized as they developed neurological symptoms such as continual cage circling and head 

pressing at 8 (1 mouse) and 10 dpi (2 mice), and their weight loss was also close to 25%. The 

remaining 3 mice began to gain weight at 10 dpi but did not recover until the end of the 

experiment (14 dpi). In contrast, the BALB/c and C57BL/6J mouse strains started to gain weight 

post inoculation of RVFV MP12 virus and did not show clinical signs except for 2 BALB/c mice 

that developed vestibular neurological symptoms (continual cage circling and head pressing) at 

end of the study (14 dpi) and were euthanized. The infected NZW/LacJ mice showed a slight 

weight loss at 2 dpi and a severe weight loss at 12 dpi, then started to recover (Figure 6A). No 

obvious clinical signs were observed in these infected mice. Both infected 129S1/SvlmJ and 

129S6/SvEv mice showed approximately 10% weight loss at later time points (8 dpi or 10 dpi) 

when they displayed clinical signs such as decreased activity and ruffled fur. One of 6 infected 

129S1/SvlmJ mice showed neurological symptoms at 8 dpi and was humanely euthanized. In 

summary, RVFV MP12 infection caused weight loss and clinical signs in 3 mouse strains 

including STAT-1 KO, 129S1/SvlmJ and 129S6/SvEv, but the STAT-1 KO mice developed 

more severe disease with 50% mortality than other tested mouse strains (Figure 6A and 6B).  

 Viral replication in mouse livers and brains 

Three infected and one negative control mice from each group were sacrificed on 3 and 6 

dpi and viral titers of their livers and brains were determined. Virus was not detected in both 
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liver and brain samples from control mice of all strains on either day. Virus was detected in liver 

samples of each infected mouse strain on both days (Figure 7A). Virus titer of liver samples in 

infected STAT-1 KO mice on 3 dpi was higher than those of other 5 mouse strains. The virus 

titer in liver of the 129S6/SvEv mice was significantly lower than those of the NZW/LacJ and 

C57BL/6J mouse strains (Figure 7A), but the C57BL/6J mice did not show clinical symptoms. 

Although a higher virus titer was detected in the liver of the 129S1/SvlmJ on 6 dpi, no significant 

difference was observed among groups (Figure 7A). Virus was recovered from the brains of each 

infected mouse strain on both days, but statistically significant lower titers were found in both 

NZW/LacJ and C57BL/6J mouse strains when compared to the other 4 mouse strains (Figure 

7B). Furthermore, a significant lower virus titer was detected in brain samples of infected 

129S1/SvlmJ mice when compared to those in STAT-1 KO, 129S6/SvEv and BALB/c mice at 3 

dpi (Figure 7B). The results indicated that the RVFV MP12 was able to infect each tested mouse 

strain via the intranasal infection, but it showed different replication in the mouse livers and 

brains.  

 Immunohistochemistry results 

To detect RVFV MP12 antigens, immunohistochemistry staining was performed for the 

tissues including liver, brain, and spleen collected from mice euthanized on 3 and 6 dpi and from 

those that were euthanized later due to neurological symptoms (Table 3). In the liver, most 

RVFV MP12 antigen detected was seen in the STAT-1 KO group (Table 3, Figure 9B) with 3 

mice euthanized on 3 dpi and two mice euthanized later. One 129S6/SVEV mouse and one 

129S1/SVLMJ mouse had RVFV MP12 antigen detected in the liver. RVFV MP12 antigen 

detected was seen in the spleen of STAT-1 KO mice that were euthanized at 3 dpi (Figure 9D) or 

euthanized later due to neurological symptoms. One BALB/c mouse and two 129S6/SvEv mice 
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had RVFV MP12 antigen detected in the spleen at 3 dpi (Table 3). RVFV antigen detected was 

also present in the brain of 3 STAT-1 KO mice (Table 3, Figure 9F), 2 BALB/C mice, and one 

129S1/SvlmJ mouse that were euthanized later due to neurological symptoms. No RVFV MP12 

antigen was detected in the brain of all mice euthanized on 3 dpi (Table 3). 

Immunohistochemistry scores were summarized in Table 3.   

 Viremia of serum samples collected from infected different mouse strains 

Real-time RT-PCR assay was performed to detect viral RNA in serum samples collected 

from inoculated mice that were necropsied on 3 and 6 dpi and those that displayed neurological 

symptoms were humanely euthanized. Viral RNA was detected in all samples from STAT-1 KO 

mice on 3 and 6 dpi, but not in all 3 samples collected from humanely euthanized on 8 and 10 

dpi (Table 1), indicating that the virus was cleared from blood at later time points. All samples 

collected from infected NZW/LacJ and C57BL/6J mice on both days were negative. One of 3 

serum samples from infected 129S6/SvEv group on 3 dpi was positive; whereas the infected 

129S1/SvlmJ group had 2 positives out of 3 samples on 6 dpi (Table 1). Viral RNA was detected 

in serum sample of one mouse of infected BALB/c group on 6 dpi, and in one of 2 humanely 

euthanized animals on 14 dpi (Table 1).  

 Microscopic lesions of tissues collected from infected different mouse strains 

Liver, spleen and brain collected from each infected and control mouse were examined 

for lesions and scored. Five out of 6 groups of mice, which include the STAT-1 KO, BALB/c, 

129S6/SvEv, C57BL/6J and 129S1/SvlmJ, had histopathological lesions in one or more organs 

when compared to each respective control animals. Lesions were similar between groups but 

varied in severity. Histopathological scores for mice are summarized in Table 2. In the liver, 

there were random foci of hepatocellular necrosis and apoptosis with small numbers of 
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inflammatory cells, which included neutrophils, Kupffer cells and a few lymphocytes (Figure 

8B). In the spleen, 3 STAT-1 KO and 1 129S1/SvlmJ mice had mild lymphocytolysis in the 

white pulp (Figure 8D) and 1 STAT-1 KO mouse had a few individual scattered cells in the red 

pulp. The remainder of the mice in this study had normal spleens, which did not have necrosis or 

inflammation. Mice in this study had mild lymphoid hyperplasia and extramedullary 

hematopoiesis in the spleen in both control and infected animals of each strain; these findings 

were interpreted as incidental in the mouse splenic tissues and the role RVFV infection played in 

the development of hyperplasia cannot be determined. Lesions in the brain were consistent with 

varying degrees of encephalitis that included areas of pyknotic and karyorrhectic cellular debris 

with gitter cells and neutrophils. In addition, vessels were cuffed by neutrophils, lymphocytes 

and plasma cells (Figure 8F). On histopathological exam, three STAT-1 KO mice, which were 

humanely euthanized at 8 or 10 dpi due to neurological symptoms, had the most severe lesions in 

the brain, followed by the liver and then the spleen. Two BALB/C mice, which were humanely 

euthanized at 14 dpi, also had lesions in the brain. In the mice scheduled to be euthanized on 3 

dpi, lesions were observed in both the liver and spleen in STAT-1 KO and in the liver of the 

BALB/c group. The infected groups of BALB/c, 129S6/SvEv, C57BL/6J and 129S1/SvlmJ on 6 

dpi had liver lesions. Both 129S6/SvEv and 129S1/SvlmJ groups had lymphocytolysis in the 

spleen on 6 dpi while 129S6/SvEv was the only one to have encephalitis in 6 dpi. 

 2.4 Discussion 

The aim of this study was to establish a mouse model susceptible to infection with RVFV 

MP12 virus that can be used in the development and evaluation of antiviral therapeutics in BSL-

2 facilities in future studies. This mouse model using RVFV MP12 that can be used in a BSL-2 

level facility will make RVF research more affordable and facilitate identification of effective 



45 

antivirals against RVFV for human and animal use. Our results showed different susceptibilities 

of six mouse strains to RVFV MP12 vaccine strain infection based on clinical symptoms, 

mortality, viremia, virus replication, histopathological and immunochemistry analysis. The 

STAT-1 KO mice were the most susceptible to the tested six mouse strains, evidenced by that 

infected STAT-1 KO mice displayed obvious clinical signs including weight loss and 

neurological disease, 50% mortality, viremia, virus replication and histopathological lesions 

detected in liver and brain. Especially, the infected STAT-1 KO mice developed both acute-onset 

hepatitis and delayed-onset encephalitis that is very similar to the severe consequences of human 

RVFV infection (D. Smith et al., 2010). In contrast, both 129S1/SvlmJ and 129S6/SvEv mouse 

strains showed slight weight loss and clinical signs at later time points. Other three mouse strains 

including C57BL/6J, NZW/LacJ, and BALB/c did not show any clinical signs; however, the 

virus was detected in livers and brains of both NZW/LacJ and BALB/c strains, suggesting that 

they are not resistant to infection. Previous studies have reported that NZW/LacJ, 129S1/SvlmJ, 

and C57BL/6J mice are susceptible to infection with Punta Toro virus with approximately 100% 

mortality, another phlebovirus in the Phenuiviridae family (Ashley et al., 2011; Mendenhall et 

al., 2009); however, they are not susceptible to infection of RVFV MP12 strain. This fact 

suggests that different phleboviruses show differential pathogenicity in the same mouse strain. 

Although the 129S6/SvEv mice are the genetic background of STAT-1 KO mice, they are 

not as susceptible to RVFV MP12 infection when compared to the STAT-1 KO mice. The 

STAT-1 KO mice have a deficient immune cell response to alpha (α) and gamma (γ) interferons 

(Meraz et al., 1996), resulting in failure to induce type I IFN response and enhanced 

susceptibility to MP12 infection. Previous studies also showed that that a low dose of the MP12 

strain (approximately 104 PFU) can cause 100% mortality in Sv129 IFN α/β receptor −/− mice 
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that are defective for the IFN-α/β receptor (Boshra, Lorenzo, Rodriguez, et al., 2011; Bouloy et 

al., 2001; Lorenzo et al., 2010); whereas the Sv129 IFNGR−/− mice, which are defective for the 

IFN γ receptor, did not show any disease symptoms when infected with a same dose of the MP12 

virus (Bouloy et al., 2001).  It has been shown that MBT/Pas mouse cells induced an impaired 

induction of type I IFN response, leading to its extreme susceptibility to infection with the 

virulent RVFV ZH548 and Kenya 98 strains compared with BALB/cByJ mice (Do Valle et al., 

2010). All these data indicate that the IFN response plays an important role in controlling RVFV 

infection, but IFN-α/β is absolutely required when compared to the IFN-γ. BALB/c mice are 

susceptible to infection with the virulent RVFV (Mendenhall et al., 2009; D. Smith et al., 2010) 

and die due to severe hepatitis and encephalitis after infection (D. Smith et al., 2010). However, 

our results showed that they are not susceptible to RVFV MP12 strain infection although several 

BALB/c mice developed similar neurologic symptoms at the end of the experiment as those 

observed in the infected STAT-1 KO mice. The neurologic symptoms observed in BALB/c mice 

most likely attribute to the intranasal inoculation as a previous study has reported that aerosol 

exposure to RVFV induces earlier and more severe neuropathology in the mouse model when 

compared to the subcutaneous exposure (Reed et al., 2013). Aerosol exposure of wild-type 

RVFV results in uniformly fatal disease in mice, which is similar to subcutaneous infection with 

the same virus (Brown, Dominik, & Morrissey, 1981; Reed et al., 2013). Furthermore, RVFV 

can be transmitted to humans by aerosol exposure, which is evident by several laboratory 

workers who have become infected (Smithburn, Mahaffy, Haddow, Kitchen, & Smith, 1949). 

This indicates the potential high risk of infection of veterinarians and abattoir workers who 

handle infected animals. In our study, the STAT-1 KO mice developed acute-onset hepatitis and 

delayed-onset encephalitis after intranasal infection with attenuated MP12 vaccine strain, which 
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is consistent with the fatal neurological disease of C57BL/6 mice intranasally infected with an 

attenuated RVFV lacking NSs (Dodd et al., 2014). The neurologic disease is most likely 

associated with the intranasal infection, not due to immune-mediation (Dodd et al., 2014), which 

is consistent with findings in infected BALB/c and 129S1/SvlmJ mice that also developed 

neurologic symptoms in our study.         

Histopathological lesions and RVFV antigen detected were seen in the STAT-1 KO, 

129S6/SvEv, BALB/c, C57BL/6J, and 129S1/SvlmJ, which means these mice strains have 

varying degrees of susceptibility to RVFV MP12. Lesions in all groups of mice in this study 

were consistent with those that have been previously published and included hepatic necrosis 

with neutrophils, lymphocytolysis in the spleen, and multifocal encephalitis in a BALB/c mouse 

model challenge with RVFV strain ZH501 (D. Smith et al., 2010). All control and infected mice 

had lymphoid hyperplasia in the spleen which is found in normal mice and can depend on the 

location of the lymph node, age, health status and plane of section(Elmore, 2006). Since control 

mice were negative by IHC test, the lymphoid hyperplasia of the spleen was not interpreted as a 

lesion of rift valley fever infection. The most severe lesions, histopathological scores, and RVFV 

antigen detected were present in the STAT1-KO mice which coincides with increased mortality 

and weight loss supporting that STAT1-KO mice are a good mouse model for MP12 infection.  

Despite the STAT-1 KO mouse strain exhibiting severe diseases post infection with the 

RVFV MP12 strain, it is still not an ideal model to evaluate vaccine efficacy as it is 

immunodeficient, leading to failure to induce host type I IFN responses against virus infection. 

However, it could be a very useful small animal model at the BSL-2 level facility to initially 

screen and elevate antiviral compounds against RVFV prior to using virulent RVFV strains in a 

high biocontainment facility.         
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In conclusion, the STAT-1 KO mouse strain is susceptible to MP12 virus infection and 

develops representative disease including acute-onset hepatitis and delayed-onset encephalitis, 

indicating that STAT-1 KO mouse model for the MP12 has potential to be used to develop and 

evaluate RVF antivirals in a BSL-2 environment. 

 2.5 Conclusion 

The STAT-1 KO mouse strain is susceptible to MP12 virus infection and develops the 

disease. The STAT-1 KO model for the MP12 has the potential to be used to investigate 

antivirals in a BSL-2 environment.  
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Table 1 Viremia test results based on real-time RT-PCR. 

Mouse strain 3 dpi 6 dpi Early humane euthanasia 

STAT-1 KO 3/3a 3/3 0/3 

129S6/SvEv 1/3 0/3 N/Ab 

NZW/LacJ 0/3 0/3 N/A 

BALB/c 0/3 1/3 1/2 

C57BL/6J 0/3 0/3 N/A 

129S1/SvlmJ 0/3 2/3 0/1 

a. Positive animals/total animals; b. Not applicable. 
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Table 2 Histopathological scores for scheduled euthanized mice and early humane euthanized mice. 

  Scheduled Euthanasia  
Early Humane Euthanasia 

3dpi  6dpi  

Liver Brain Spleen  Liver Brain Spleen  Liver Brain Spleen 

STAT-1 KO 3/3a (1.5±0.5) 0/3 2/3 (1.5±0.5)  0/3 0/3 0/3  2/3 (2.0±0.0) 3/3 (3.0±0.0) 1/3 (1.0) 

129S6/SvEv 0/3 0/3 0/3  1/3 (1.0) 1/3 (1.0) 0/3  N/Ab N/A N/A 

NZW/LacJ 0/3 0/3 0/3  0/3 0/3 0/3  N/A N/A N/A 

BALB/c 1/3 (1.0) 0/3 0/3  2/3 (2.0±0.0) 0/3 0/3  0/2 2/2 (1.5±0.5) 0/2 

C57BL/6J 2/3 (1.5±0.5) 0/3 0/3  2/3 (1.5±0.5) 0/3 0/3  N/A N/A N/A 

129S1/SvlmJ 0/3 0/3 0/3  3/3 (2.0±0.0) 0/3 1/3 (1.0)  0/1 1/1 (2) 0/1 

a. Positive animals/total animals (mean histological score ± absolute deviation); b. Not applicable. 
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Table 3 Immunohistochemistry scores for scheduled euthanized mice and early humane euthanized mice. 

  Scheduled Euthanasia  Early Humane Euthanasia 

 3dpi  6dpi   

 Liver Brain Spleen  Liver Brain Spleen  Liver Brain Spleen 

STAT-1 KO 3/3 (2.5±0.5) a 0/3 3/3 (2.0±0.0)  2/3 (1.0±0.0) 0/3 0/3  2/3 (1.0±0.0) 3/3 (2.0±0.0) 3/3 (1.5±0.5) 

129S6/SvEv 1/3 (1.0) 0/3 2/3 (1.0±0.0)  3/3 (1.0±0.0) 0/3 1/3 (1.0)  N/Ab N/A N/A 

NZW/LacJ 0/3 0/3 0/3  1/3 (2.0) 0/3 1/3 (1.0)  N/A N/A N/A 

BALB/c 0/3 0/3 1/3 (1.0)  1/3 (1.0) 0/3 0/3  0/2 2/2 (3.0±0.0) 0/2 

C57BL/6J 1/3 (2.0) 0/3 0/3  3/3 (1.5±0.5) 0/3 1/3 (1.0)  N/A N/A N/A 

129S1/SvlmJ 1/3 (1.0) 0/3 0/3  3/3 (2.5±0.5) 0/3 0/3  0/1 1/1 (3) 0/1 

a. Positive animals/total animals (mean histological score ± absolute deviation); b. Not applicable. 
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Figure 6 Mouse weight loss and survival rate post infection with the MP12 virus.  

Each mouse strain was intranasally infected with 1.58 × 106 TCID50/mouse of the MP12 

vaccine strain and was monitored for 14 days post infection. A) Mouse weight loss: the 

percentage weight from each group and each time point are presented as means ±SD, and B) 

Mouse survival rate.   
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Figure 7 Virus titers of liver and brain samples collected from each mouse infected with the 

MP12 virus.  

A) Virus titer in liver samples, and B) virus titer in brain samples. Three mice from each 

mouse strain were necropsied at 3 and 6 days post-infection. All animals were positive for virus 

isolation at indicated time points. Error bars represent ± SEM (* P < 0.05).    
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Figure 8 Microscopic liver, brain and spleen sections from control or infected STAT-1 KO 

mice with the MP12 virus. 

A) This liver photomicrograph does not have inflammation or necrosis, which is 

consistent with normal liver in a control STAT-1 KO mouse that was euthanized at 3-day post 

infection. B) Liver of an infected STAT-1 KO mouse that was euthanized at 3-day post infection. 

Two areas of inflammatory cells consisting of viable and degenerate neutrophils, Kupffer cells, 

and lymphocytes admixed with necrotic and degenerate cells. C) No necrosis or inflammation in 

the normal spleen of a control STAT-1 KO mouse that was euthanized at 3-day post infection. 

D) Spleen from an infected STAT-1 KO mouse that was euthanized at 3-day post infection. 

There are extramedullary hematopoiesis, a lymphoid follicle, and the red pulp.  There is no 

obvious lesions present. Macrophages containing hemosiderin (brown cytoplasmic pigment from 

the breakdown of red blood cells) are present. E) No necrosis or inflammation consistent with the 

normal brain of a control STAT-1 KO mouse that was euthanized at 6-day post infection. F) The 

brain of an infected STAT-1 KO mouse showed neurological symptoms and euthanized at 8-day 

post infection. Encephalitis was characterized by necrosis and cellular debris. An inflammatory 

infiltrates composed of degenerate and intact neutrophils, macrophages and lymphocytes, which 

also cuff vessels. Neuronal necrosis and astrocytosis are present. The magnification of each 

image is 400×.  
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Figure 9 Immunohistochemistry staining results of liver, brain, and spleen sections from 

control or infected STAT-1 KO mice with the MP12 virus. 

A) No RVFV MP12 antigen was present in the liver of a control STAT-1 KO mouse that 

was euthanized at 3-day post infection; B) Liver of an infected STAT-1 KO mouse that was 

euthanized at 3-day post infection. Foci of degenerate and viable hepatocytes have positive 

cytoplasmic RVFV labeling.  C) No RVFV MP12 antigen was present in the spleen of a control 

STAT-1 KO mouse that was euthanized at 3-day post infection. D) Spleen from an infected 

STAT-1 KO mouse that was euthanized at 3-day post infection. Scattered cells in the lymphoid 

follicle positive and there are is a group of several cells in the red pulp with positive cytoplasmic 

labeling. E) No RVFV MP12 antigen was present in the brain of a control STAT-1 KO mouse 

that was euthanized at 6-day post infection. F) The brain of an infected STAT-1 KO mouse 

showed neurological symptoms and euthanized at 8-day post infection. Scattered RVFV MP12 

antigen among necrotic cells that have ruptured releasing antigen into the neuropil and in the 

cytoplasm of neurons. The magnification of each image is 400×.  
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Chapter 3 - Identification and evaluation of antivirals for Rift Valley 

fever virus  

 3.1 Introduction 

Rift Valley fever virus (RVFV) is the etiologic agent of Rift Valley fever (RVF) that 

affects both livestock and humans. RVFV is an arbovirus belonged to the genus Phlebovirus of 

the Phenuiviridae family. The first documented case was in the Rift Valley of Kenya in 1930 

(Daubney et al., 1931). Abortion storm was observed in sheep along the shores of Lake Naivasha 

during the outbreak (Daubney et al., 1931). Since then, countries in Africa have suffered from 

numerous RVF outbreaks (Digoutte & Peters, 1989; Gear et al., 1951; JM Meegan, 1979). 

Although some outbreaks have also been registered in Madagascar in the 1990s, evidence 

showed that they have resulted from repeated introductions of virus from mainland Africa 

(Carroll et al., 2011). Around 2000 in Yemen and Saudi Arabia, RVFV emerged for the first time 

outside Africa in the Arabian Peninsula and caused a dramatic loss of livestock production and 

fatalities in humans (Balkhy & Memish, 2003; Shoemaker et al., 2002). During 2006-2007 in 

Somalia, Kenya, and Tanzania, a large RVF epizootics and epidemics occurred and resulted in 

315 human deaths out of 1,062 cases, along with the loss of livestock (WHO, 2007). The first 

imported RVFV human case in China was reported in 2016 (J. Liu et al., 2017). RNA was 

extracted from the blood sample of the infected patient who returned from Angola, a non-

epidemic county, and whole-genome sequencing followed by phylogenetic analysis revealed that 

a new reassortant from lineage E (L and M segments) and from lineage A (S segment) of RVFV 

(J. Liu et al., 2017). Although the spread of RVFV outside Africa is mainly due to the 

commercial transport of infected animals and windborne movement of infected mosquitoes, the 

facts still raise the concern that the RVF could spread further to the other places in the world.  
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Until now, neither effective antiviral drugs nor commercial, fully licensed vaccine in the 

U.S. for human or animal use are available (Eddy et al., 1981; Hunter et al., 2002; Ikegami, 

2012; L. Liu et al., 2008). The phylogenetic evidence demonstrated that all strains of RVFV 

remain closely related (Bird, Khristova, et al., 2007; Grobbelaar et al., 2011; Ikegami, 2012), 

indicating that antivirals effective to one strain should be sufficient to all RVFV strains. The only 

conditionally licensed MP12 vaccine strain was derived from a virulent strain ZH548 in the 

presence of 5-fluorouracil after 12 serial passages (Caplen et al., 1985; Ikegami et al., 2015). 

Totally 23 mutations were found in the three genome segments and resulted in amino acid 

substitutions in nine locations including three silent mutations (Lokugamage, Freiberg, Morrill, 

& Ikegami, 2012). A reassortant study between MP12 and a virulent strain demonstrated that 

each segment of MP12 is independently attenuated (Saluzzo & Smith, 1990). In 2015, the 

Ikegami T. group approved that mutations within the M and L segments play more critical roles 

in the attenuation of the MP12 compared to those in the NSs gene (Ikegami et al., 2015).  

To identify the potential antiviral compounds, we employed a cell-based assay using the 

RVFV rMP12-rLuc strain to screen two NIH Clinical Collections total of 727 compounds, 

followed by confirmation of inhibition effect on the rMP12-GFP strain. RVFV rMP12-rLuc and 

rMP12-GFP strains were previously designed using reverse genetics system in a biosafety level 2 

(BSL-2) lab (Ikegami et al., 2006). RVFV rMP12-rLuc and rMP12-GFP strains are recombinant 

MP12 strains which have luciferase/GFP ORF instead of NSs ORF and can express 

luciferase/GFP stably (Ikegami et al., 2006). Cytotoxicity of the candidates was tested in 

different concentrations and plaque reduction assay was performed using MP12 parental strain. 

The 50% inhibitory concentrations (IC50) were further determined using MP12 as well. 
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The two candidates which can inhibit RVFV replication effectively with limited 

cytotoxic effect in vitro were further evaluated in vivo in the STAT-1 KO mouse model. The 

newly developed STAT-1 KO mouse model is susceptible to MP12 virus infection and develops 

representative disease including acute-onset hepatitis and delayed-onset encephalitis and can be 

used to establish and evaluate RVF antiviral compounds in a BSL-2 environment (Lang et al., 

2016). Efficacy of the treatments was measured by virus titration (brain and liver), viremia test, 

and histopathology.  

 3.2 Materials and Methods 

 Cells, Virus, and Small molecule Compounds 

African green monkey kidney epithelial (Vero) E6 cells (ATCC-CRL 1586) were grown 

in 1x DMEM medium with 10% fetal bovine serum (FBS, Atlanta Biologicals) (Growth 

Medium). The RVFV MP12 strain was kindly provided by the U.S. Army Medical Research 

Institute for Infectious Diseases. The RVFV rMP12-rLuc and rMP12-GFP strains were kindly 

provided by Dr. Ikegami, at the University of Texas Medical Branch at Galveston. Propagations 

of the RVFV MP12, the rMP12-rLuc, and the rMP12-GFP strains were done by infecting 

confluent Vero E6 cells with 0.01 multiplicity of infection (MOI) (Wolf et al., 2010) of the virus 

in Growth Medium. The viruses were propagated and passaged three times in Vero E6 cells. Cell 

cultures were collected when 80–95% of the infected cells showed cytopathogenic effect (CPE). 

The titer of viral stock was determined and calculated as 50% tissue culture infective dose per 

mL (TCID50/mL) based on the presence of cytopathic effects. Two NIH Clinical Collections total 

727 compounds were purchased from Evotec, South San Francisco, CA. 
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 Animals 

Seven-week-old female STAT-1 KO mice were obtained from Taconic, Hudson, NY and 

maintained in a vivarium in the Comparative Medicine Group at Kansas State University, 

Manhattan, KS. All animal procedures used in this study complied with guidelines set by the 

USDA and were approved by Kansas State University Animal Care and Use Committee. All 

efforts were made to minimize suffering. 

 Time course analysis of different rMP12-rLuc infection doses 

For rMP12-rLuc infection, Vero cells were seeded in a 96-well plate till 90% confluence. 

Then the cells were infected with rMP12-rLuc in triplicate  at different MOIs of 0.5, 1.0, 2.0, and 

5.0. While three wells of cells were mock-infected with PBS to serve as negative control. After 1 

hour post infection (hpi), cells were washed three times with phosphate-buffered saline (PBS) to 

remove the unattached virus. At 36, 48, and 60 hpi, 20µl supernatants of the infected cells in 96-

well plates were collected to test the luciferase using Renilla Luciferase Assay (Promega, 

Madison, WI) following the manufacturer’s instruction.  

Briefly, cell supernatants were prepared using Renilla Luciferase Assay Lysis Buffer 

prior to the performance of Renilla Luciferase Assay (Promega, Madison, WI). Then 20µL of 

cell supernatants were added to the according wells of a black 96-well opaque-bottom plate 

(Nunc, Rochester, NY), followed by 100µl Renilla Luciferase Assay Reagent dispensed to each 

well. Luminescence measurement of the samples was immediately initiated by a microplate 

reader (FLUOstar Omega, Cary, NC). Z-factor which is an attempt to quantify the suitability of a 

particular assay for use in a full-scale, high throughput screen was analyzed to determine the 

ideal time point and MOI for the high-throughput screening. 
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 Cell-based high-throughput Screening 

Total 727 compounds was screened to identify potential RVFV inhibitors. All 

compounds were dissolved in a final working concentration of 200 μM and the high-throughput 

screening was established in a 96-well format. Vero E6 cells were seeded in 96-well plates with 

200 μL Growth Medium in each well. When the cells reached to 90% confluence, 2 MOI RVFV 

rMP12-rLuc virus was used to infect the cells. After one-hour post infection (hpi), 20 nmol 

compounds were added to each well respectively. To set up the positive and negative controls, 

three wells were not infected with RVFV rMP12-rLuc virus or infected with the virus with 20 

nmol ribavirin treatment respectively. At 36 hpi, Renilla Luciferase Assay (Promega, Madison, 

WI) was performed as described above. The raw intensity data from each plate were normalized 

to the same Luminescence (RLU) scale. 

 Inhibition efficacy test  

Vero E6 cells were seeded in 96-well plates with 200 μL Growth Medium in each well. 

Then the 90% confluent cells were infected with 2 MOI of RVFV rMP12-GFP. Three wells of 

cells were not infected with RVFV rMP12-GFP were served as non-treatment control. To set up 

the positive control, three wells of cells were infected with RVFV rMP12-GFP virus and 20 

nmol of ribavirin was given. After one hpi, 20 nmol compounds selected from the high-

throughput screening were triplicate added to the plate. Cells were imaged at a 12-hour interval 

with Nikon Eclipse TE2000-S inverted phase microscope (Nikon, Melville, NY) using 

excitation/emission wavelength of  470/505 (GFP, green).  

 Cytotoxicity test 

Cellular toxicity was assayed using ToxiLightTM bioassay kit (Lonza, Anaheim, CA) 

according to manufacturer’s instruction. Briefly, 80% confluent Vero E6 cells in 96-well plates 



61 

were triplicate treated with 23 compounds which were selected from the first round of screening 

in 20 or 40 nmol at 37℃ for 4 h. Then the cells were washed three times with fresh DMEM 

followed by adding 100 μL Growth Medium per well. After 2-day incubation, all reagents and 

culture plate were brought up to room temperature before use. ToxiLightTM 100% lysis reagent 

set (Lonza) was used to set up the positive control and cells without compound treatment were 

used as negative control. After 15 min, 20µL of cell supernatant of each well was transferred to a 

black 96-well opaque bottom plate (Nunc, Rochester, NY) and 100 µL of AKDR was added to 

each well. After 5 min, the plate was read by a microplate reader (FLUOstar Omega, Cary, NC). 

 Plaque reduction assay 

Vero E6 cells were seeded in 6-well plates with 2 mL Growth Medium in each well. 

When the cells reached approximately 90% confluence, around 40 plaque forming units (PFU) of 

RVFV MP12 virus were used to infect the cells in each well, accompany with the 40 nmol 

candidate compounds. RVFV MP12 infected cells in wells were used to serve as a virus control. 

Infected cells treated with ribavirin and non-infected cells without treatment were used as 

negative control and assay control respectively. Agar overlay was added after 1 hpi and the cells 

were incubated for 4 days at 37 ℃ followed by staining with 0.4% crystal violet. The compounds 

which can reduce 50% plaques when compared with that of the virus control were considered as 

effective antiviral candidates. 

 Half maximal inhibitory concentration (IC50) 

Vero cells were infected with RVFV MP12 strain at 2 MOI in the presence of serially 2-

fold diluted mitoxantrone, 6- azauridine or ribavirin from 1000 μM. After 4 hpi, cells were 

washed three times with fresh DMEM followed by adding 100 μL Growth Medium per well. 

Supernatants were collected from the cell cultures after 3 days. RVFV infectious dose of each 
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supernatant was determined by an immunocytochemistry assay. Briefly, Vero cells were infected 

with 10-fold serially diluted viral supernatant respectively and cultured for 4 days with Growth 

Medium. After fixation with methanol for 10 min, cells were incubated with a mouse 

monoclonal antibody against the N protein of RVFV for 1 h. Then, the cells were treated with 

goat anti-mouse Goat anti-Mouse IgG (H+L) Secondary Antibody, HRP (Invitrogen). TCID50 

were determined by the last dilution showing visible specific staining. IC50 were calculated using 

regression analysis. 

 Mouse Experiment 

Totally 56 mice of seven-week-old female STAT-1 KO mice were maintained in a mouse 

vivarium in the Comparative Medicine Group at Kansas State University. Mice were divided into 

four infected groups (13 mice/group) and one control group (4 mice). Mice in each infected 

group were intranasally inoculated with 1.58 ×106 TCID50 of the MP12 virus in a volume of 70 

μl (35 μl per nostril) under anesthesia using 4% isoflurane. After one-hour post infection, mice 

were treated with antiviral drugs twice daily at an 8-hour interval for ten days under light 

anesthesia with isoflurane. Single doses for ribavirin, 6-azautidine, mitoxantrone were 100 

mg/kg, 50 mg/kg, and 0.1 mg/kg respectively. Mice were weighed and observed daily for clinical 

symptoms. On 3 and 6 dpi, three infected mice from each group and two negative control mice 

were euthanized and necropsied. The remaining seven mice of each infected group were kept 

until the end. Mice were euthanized and necropsied if more than 20% of the weight was lost after 

virus inoculation or showed signs of neurologic disease. During necropsy, samples of liver, 

brain, spleen, and blood from each mouse were collected under sterile conditions. The half of 

liver or brain from each mouse were stored at -80℃ for later virus detection, and the left part of 

these tissues and spleen was fixed in 10% formalin for histopathologic analysis (Liu et al., 2011). 
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Virus detection was performed in a 10% tissue homogenate in PBS that generated by 

homogenizing twice for 1 min in a Mini BeadBeater-8 (Biospec Products). After centrifuging at 

640 g for 5 min, the supernatant of the homogenate was transferred to 1.5 ml reaction tubes for 

virus isolation and titration in Vero E6 cells as described previously (Lang et al., 2016). The 

serum was isolated from blood samples for further analysis. 

RNA Extraction and Real-time RT-PCR 

Applied Biosystems MagMAX-96 Total RNA Isolation Magnetic-bead capture kit was 

used to extract total RNA from serum samples collected from each mouse following the 

manufacturer’s instructions. Briefly, 50 μl of sera was stirred with 130 μl of lysis/binding buffer. 

After shaking in a 96-well plate, 20 μl bead mix was added and the mixture was shaken for 

another 5 min. Then the mixture was washed (150 μl each) for four times. The RNA was eluted 

in 50 μl elution buffer at 95◦C and quantitated by a UV spectroscopy. 

As described previously, AgPath ID rRT-PCR Kit (Life Technologies, Inc., Grand Island, 

NY) was used to perform Real-time RT-PCR to detect viral RNA in serum samples (W. Wilson 

et al., 2013). Briefly, the RVFV triplex rRT-PCR procedure has been designed to contain L, M 

and S primers and probes and one of the external RNA control combinations using the following 

cycling conditions: 45℃ for 10 min, 95℃ for 10 min, followed by 40 cycles of 95℃ for 10 sec 

and 60℃ for 1 min. The Ct values with 35 or lower for all three segments was judged as 

positive.   

 Histopathological Analysis 

The histopathological analysis was performed as described before (Lang et al., 2016). 

Briefly, tissues including liver, brain, and spleen in 10% formalin buffer were routinely 

processed. The amount of necrosis and inflammation were graded macroscopically. In the spleen 
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and liver samples, a 5-point scale was used: 0=No necrosis, 1=Occasional scattered single cell 

necrosis, 2=Scattered 0.5-2 mm foci of random necrosis, 3=Scattered larger random area of 

necrosis, often coalescing with each other, 4=Diffuse lobular necrosis. In the spleen, necrosis 

was seen as lymphocytolysis in periarteriolar sheaths. In the brain samples, a 4-point scale was 

used: 0=No necrosis, 1=one focal area of necrosis and inflammation, 2=2-5 areas of necrosis and 

inflammation, 3≥6 areas of necrosis and inflammation.  

For immunohistochemical analysis, polyclonal rabbit anti-RVFV antibody (Drolet et al., 

2012) was diluted 1:3000 in Bond Primary Antibody Diluent (Leica Microsystem) on selected 

tissues. Slides were deparaffinized and rehydrated, the antigen was retrieved in pH 9.0 EDTA 

buffer, Bond ER Solution 2 (Leica Microsystems, Buffalo Grove, IL) for 20 minutes at 100° C 

on the Leica Bond-Max autostainer. The primary antibody was incubated for 15 minutes at 

ambient temperature. Polymerization was done with Anti-Rabbit Poly-HRP-IgG (Leica 

Microsystems, Buffalo Grove, IL) for 25 min at ambient temperature. Slides were blocked with 

3% hydrogen peroxide for 5 minutes, visualized with DAB, and counterstained with 

hematoxylin. Immunohistochemical positivity was graded as follows: 0=No staining, 

1=Scattered specific cell staining, not more than 15 cells, 2=Moderate numbers of scattered cells, 

and 3=Diffuse multifocal staining, severe, greater than 75% of the sectional area with staining. 

 Statistical analysis 

The student t-test was used to analyze differences between groups for data collected at a 

given time point. A p ≤ 0.05 was considered statistically significant. 
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 3.3 Results 

 Time course analysis of different rMP12-rLuc infection doses 

The Z-factor is an attempt to quantify the suitability of a particular assay for use in a full-

scale, high-throughput screening. The statically ideal Z-factor is 1.0. Between 0.5 and 1.0, the 

experiment can be considered as an excellent assay. Between 0 and 0.5, the experiment can be 

considered as a marginal assay. Less than 0, the experiment cannot be used in the high-

throughput screening. As shown in Figure 10, data at 36 hpi with different infected doses follow 

the normal distribution, suggesting data collected at this time point are reliable. While the peak 

Z-factors is 0.73 at 36 hpi with 2 MOI infection, indicating this assay is excellent for high 

throughput screening when the observation time point is 36 hpi with the infection dose of 2 MOI 

(J. Zhang, Chung, & Oldenburg, 1999; X. Zhang, 2008). 

 High-throughput screening to identify new RVFV inhibitors 

Then two NIH Clinical Collections total of 727 compounds were screened. As shown in 

Figure 11, ribavirin inhibited the rMP12-rLuc replication efficiently. While luminescences of the 

other tested 23 compounds were statistically significantly different from that of the Mock 

treatment control, suggesting they might show antiviral effect on rMP12-rLuc and can be used as 

potential RVFV inhibitors. While the other 704 compounds did not show inhibition effect on 

RVFV rMP12-rLuc.  

 Inhibition efficacy and cytotoxicity of the selected 23 potential RVFV antiviral 

compounds 

Since some other factors, such as the interaction between the compound and the 

Luciferin/ Luciferase, and cell viability, can also result in a reduction of luminescence in the first 

round of screening, we further tested the inhibition efficacy of these 23 compounds using 
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rMP12-GFP strain and their cytotoxicity. As shown in Figure 12, Compound 8, 11, 12, 13, 16, 

18, 19, 21, and 23 showed less GFP signals compared with the non-treatment cells, indicating 

that they can inhibit rMP12- GFP effectively. No GFP signal was detected in ribavirin treated 

cells, indicating it can inhibit the rMP12- GFP replication efficiently. While Compound 11 can 

inhibit rMP12- GFP as effectively as ribavirin. However, GFP signals were still detectable in 

Compound 8, 12, 13, 16, 18, 19, 21, or 23 treated cells, indicating they are not as effective as the 

ribavirin in inhibition of rMP12- GFP.  

ToxiLightTM bioassay kit (Lonza, Anaheim, CA) was used to test the cellular toxicity of 

the 23 compounds with 20 or 40 nmol in 96-well plates. Most of the compounds are toxic to 

Vero E6 cells at the indicated concentration. This may cause by the compounds are targeting to 

the cancer cells. Although Vero E6 is a continuous and aneuploid cell line which does not form 

tumors in immunosuppressed rodents, these cells are not “normal” compared with the primary 

cells and immortalized cell lines are usually considered as the in vitro equivalent of cancerous 

cells (Sheets, 2000). While two compounds showed limited cytotoxicity also showed inhibition 

effect on rMP12- GFP. In Figure 13, compared to the toxic and non-toxic controls, Compound 8 

and 11 showed no toxicity to Vero E6 cells at the effective antiviral concentrations. Furthermore, 

intraperitoneal LD50 of Compound 8 in rat is 1640 mg/kg. In addition. Compound 11 showed 

similar results with Compound 8 and the intraperitoneal LD50 of the agent in the rat is 9400 

mg/kg, indicating both of the compounds should be safe to use as antiviral candidates at effective 

concentrations with limited cytotoxicity. Thus, these two compounds were selected for further 

test. 
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 Inhibition efficacy of Compound 8 and 11 by plaque assay 

Since NSs is the major virulent factor of RVFV and the two recombinant MP12 viruses 

expressed report proteins instead of NSs, we want to know whether these two candidates can 

inhibit the replication of the parental strain MP12 or not. Therefore, we did the plaque reduction 

assay. Compared with the plaque count of the virus control, Compound 8 and 11 treated cells 

reduced more than 50% plaques indicating they are effective antiviral candidate (Figure 14).  

 IC50 

The antiviral activity of Compound 8 and 11 against the RVFV strain MP12 was 

evaluated in Vero cells in parallel with ribavirin. Compound 8 and 11 inhibited replication of 

RVFV by approximately 3 or 7 log units at a concentration of 1,000 µM (Figure 15), the IC50 of 

Compound 8 and 11 were 211.4 µM and 139.5 µM, respectively. Compared with the IC50 of 

ribavirin, Compound 11 inhibited the replication of MP12 effectively.  

Clinical symptoms, morbidity, and mortality of MP12 infected STAT-1 KO mice 

with different treatment 

The STAT-1 KO mouse model for the MP12 was established and can be used to evaluate 

antivirals in a BSL-2 environment (Lang et al., 2016). Therefore, mice in four infected groups 

were intranasally inoculated with 1.58 × 106 TCID50/mouse of the RVFV MP12. Different 

treatments were given intranasally twice daily at an 8-hour interval for ten days to each infected 

group after one hour post infection. Four control mice euthanized on 3 and 6 dpi did not show 

any clinical symptoms and gained weight normally. All mice received placebo or 6-azauridine 

treatment showed consecutive weight loss starting from 2 dpi till the end. Obvious clinical signs 

included decreased activity, huddling, hunched posture, and ruffled fur as early as 3 dpi (Figure 

16A). In addition, all mice in these two groups reached the 20% weight loss threshold or came to 
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a moribund condition at 8 dpi (Figure 16B). Noticeable weight loss was observed in ribavirin 

treated groups at 3 dpi and the mice started to gain weight till 5 dpi. Mice in mitoxantrone treated 

group exhibited weight loss from 3 dpi and less severe disease was observed overall. However, 

like the ribavirin treated group, after 5 dpi the weight decreased dramatically till the end (Figure 

16A). Ribavirin and mitoxantrone treated mice showed one day delay compared with mice in the 

other infected groups to reach the 100% mortality (Figure 16B).  

 Viral replication in mouse livers and brains 

Two control and three infected mice from each group were euthanized on 3 and 6 dpi and 

viral titers in their livers and brains were determined. The virus was detectable in liver samples 

from each infected mice on both days (Figure 17A). Lower virus titer of liver samples in 6-

azauridine treated group (10 TCID50/mL) was detected compared with that in the other infected 

groups, suggesting the 6-azauridine inhibits RVFV replication in liver. Although no significant 

difference was observed among the placebo, ribavirin, and mitoxantrone treated groups, mice in 

mitoxantrone treated group showed less severe clinical signs (Figure 17A). MP12 was recovered 

from the brains of each infected mice at both 3 and 6 dpi. But statistically, significant lower titer 

was found in 6-azauridine treated mice at 3 dpi when compared to the placebo and mitoxantrone 

treated mice, suggesting the 6-azauridine inhibits RVFV replication in brain effectively at least 

for the first 3 dpi (Figure 17B). However, no significant difference was found in titers of brains 

samples among groups on 6 dpi, indicating MP12 grew dramatically between 3 and 6 dpi in 6-

azauridine treated mice.  

 Viremia of serum samples collected from mice  

Real-time RT-PCR was performed to detect viral RNA in serum samples from all 

infected mice. As shown in Table 4, no viral RNA was detected in all samples collected from 
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ribavirin treated mice, indicating that ribavirin can inhibit virus replication in blood to an 

undetectable level. Mice treated with placebo showed viremia only on 3 dpi. While samples 

collected from the 6-azauridine or mitoxantrone treated mice was positive at different ratios on 3 

and 6 dpi and in samples collected from humanely euthanized of infected mice, indicating these 

two compounds can hardly prevent MP12 from circulating in the blood-stream. 

 Microscopic lesions and Immunohistochemistry of tissues obtained from mice 

received different treatment 

Livers and brains collected from each mouse were examined for lesions, viral antigen and 

the summarized scores were shown in Table 5. In the liver, the antigen was detected at both 3 

and 6 dpi, sporadic extramedullary hematopoiesis was observed in 6-azauridine treated group at 

3 dpi and in ribavirin/mitoxantrone treated group at 6 dpi. No lesions were seen in livers 

collected from humanely euthanized mice. At 3 dpi, no lesion in the brain was found in each 

group and only one out of three mice showed antigen positive in the placebo-treated group. 

Lesions in the brain were observed in all infected groups at 6 dpi but the degrees are various and 

all humanely euthanized mice showed severe perivascular meningoencephalitis with necrosis 

(Table 5). As we expected all mice euthanized at 6 dpi with placebo treatment showed 

encephalitis characterized by necrosis with abundant necrotic cellular debris and meningitis and 

abundant RVFV antigen labeling was seen (Figure 18I and 18J). While in ribavirin and 6-

azauridine treated groups, only one out of three mice have little necrosis in the brain with much 

less antigen labeling compared with the placebo-treated group at 6 dpi (Figure 18A, 18B, 18E, 

and 18F). While mice treated with mitoxantrone had moderate RVFV antigen presented in the 

neurons and the neuropil and the disease was less severe than the placebo-treated group (Figure 

18C and 18D). 
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 3.4 Discussion 

The aim of this study was to identify antivirals for RVFV from the two NIH clinical 

collections and evaluate their efficacy in vitro and in vivo.  

Our in vitro study screened total 727 compounds using a cell-based high throughput 

assay and 23 of them showed promising and were selected for further testing. Nine of 23 

compounds showed inhibition of the RVFV rMP12-GFP replication; two candidates, 6-

azauridine and mitoxantrone, showed efficient inhibition of MP12 replication by the plaque 

reduction assay with negligible cytotoxicity at the active antiviral concentration.  

Mitoxantrone and 6-azauridine were further tested in vivo using the previously 

established mouse model in a BSL-2 environment (Lang et al., 2016). This mouse model can 

produce representative disease including acute-onset hepatitis and delayed-onset encephalitis. 

Therefore, routes of treatment administration should be taken into consideration because of the 

special immune environment of the brain. Intraperitoneal or intravenous administration are easy 

to perform. But the antivirals into the central nervous system (CNS) needs to penetrate the blood-

brain barrier (BBB) which depend on the antiviral characteristics such as molecular size, electric 

charge, lipophilicity, plasma protein binding, and the host factors (Nau, Sörgel, & Eiffert, 2010). 

The lack of effective antiviral drugs capable to bypass the BBB is still a problem for therapeutic 

of RVFV (Bird & McElroy, 2016).  Intranasal delivery is a alternative pratical method of 

bypassing the BBB to deliver small therapeutic molecules to the brain and spinal cord (Hanson 

& Frey, 2008). These therapeutic agents can be delivered to the brain by olfatory and trigeminal 

pathways which providing a direct connection with the CNS (Dixon et al., 2016; Ross et al., 

2004; Thorne, Pronk, Padmanabhan, & Frey, 2004).In addition, the previous study reported that 
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intranasal application of ribavirin can increase its availability inside the brain (Colombo et al., 

2011). So we chose to give the treatment intranasally in order to bypass the BBB.  

MP12 infected mice were given different treatments intranasally after one-hour post 

infection routinely. As we expected, placebo-treated mice showed severe weight loss and first 

reach the threshold of 20% weight loss with visible neurologic signs at 8 dpi. While ribavirin and 

mitoxantrone treated mice showed delayed disease compared to the other two groups which 

exhibited weight loss as early as 2 dpi. Virus was detectable in the blood of all experimental 

mice except for ribavirin-treated animals. Virus replication was detected in brains and livers of 

the all experimental mice at both designed necropsy day, but significant lower titer was found in 

the livers of 6-azauridine treated mice, indicating virus replication was inhibited in the liver in 

the presence of 6-azauridine. In addition, the significant lower titer was also found in the brains 

of 6-azauridine treated mice at 3 dpi but not at 6 dpi, demonstrating MP12 can hardly replicate in 

brains in the presence of 6-azauridine at the early stage of infection. Although 6-azauridine 

showed inhibition in the mouse livers and brains, it did not improve the outcome compared with 

the placebo-treated mice. 

Histopathological lesions and RVFV MP12 antigen were found in livers and/or brains of 

mice from each infected group at 6 dpi, but fewer mice and less severe lesions in brains of mice 

in ribavirin and 6-azauridine treated groups compared with that of the other two groups (Table 

5). Virus antigen was detectable in livers of infected mice at 3 dpi but only one mouse in 6-

azauridine treated group showed mild lesions. These results indicate that ribavirin and 6-

azauridine can inhibit lesion development in brains at least for 6 dpi. No hepatitis was observed 

but encephalitis in humane euthanasia mice, suggesting the fatal cases are most likely resulted 

from encephalitis even with antiviral treatment.  
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In our in vitro and in vivo studies, we used ribavirin as a positive antiviral drug since it 

can inhibit RVFV replication (Oestereich et al., 2014). Ribavirin is a broad-spectrum antiviral 

agent which was first synthesized in 1972 (Snell, 2001). It can hardly penetrate the BBB and 

subsequently resulting in the failure to prevent delayed-onset neurologic disease. Moreover, a 

shift in disease characteristics from sudden-onset hepatic disease to delayed-onset neurologic 

disease was observed in animals which were infected with RVFV and further treated with 

ribavirin (Peters & Anderson Jr, 1981). Therefore, development of novel compounds with 

improved safety and efficacy is in urgent need for treatment and control of RVF. 

Similar with ribavirin, the mitoxantrone improved the outcome of intranasal MP12 

infection in a mouse model. Mitoxantrone is an anthracenedione agent which showed inhibition 

effect on Poxviruses by blocking the virus assembly (Deng et al., 2007). However, the 

mechanism of the virus inhibition on Poxviruses is unclear. Vaccinia virus forms protein 

precursors of structure proteins. In the presence of mitoxantrone, the precursors of vaccinia virus 

were synthesized during virus infection but limited processing to mature forms (Deng et al., 

2007). While RVFV also forms protein precursors of the preglycoproteins, mitoxantrone may 

employ the same mechanism to inhibit RVFV with vaccinia virus. Deng et al. suggesting that 

mitoxantrone may target a viral protein because antiviral resistant strains were identified (Deng 

et al., 2007). However, mitoxantrone showed no beneficial effect in vivo against vaccinia virus 

infection (Altmann et al., 2012; Deng et al., 2007). 

Although 6-azauridine did not benefit the survival in RVFV MP12 infected mice, 

inhibition of the virus replication in lungs and brains was observed. 6-azauridine, a synthetic 

triazine analogue of uridine with antimetabolite activity, can inhibit multiplication of a broad 

range of DNA and RNA viruses (Crance, Scaramozzino, Jouan, & Garin, 2003; Neyts, 

https://pubchem.ncbi.nlm.nih.gov/compound/uridine
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Meerbach, McKenna, & De Clercq, 1996; Rada & Dragúň, 1977). However, the antiviral 

mechanism of the 6-azauridine is still unknown. The fact that the RVFV MP12 replicated fast 

from 3 dpi to 6 dpi in 6-azauridine treated mice may imply that MP12 gained 6-azauridine 

resistance in the presence of the antiviral. 

Our mouse model resembled the severe consequences of human RVFV infection which 

are acute-onset hepatitis and delayed-onset encephalitis (Lang et al., 2016; D. Smith et al., 2010). 

But no severe hepatitis was developed in all infected mice in this study. In addition, all infected 

mice were dead in less than 10 days in this study while the previous study showed 50% mortality 

after infection. This may result from the more stress received by the mice in the present study, 

such as twice daily anesthesia and restraining handling, and everyday weighing. Also, mice may 

be hurt by the side effect from the inhaled dissolved treatment. Therefore, a lot of optimization, 

such as infection dose, dosage form, formulation, and delivery device, should be done in the 

future (Vasa, O’Donnell, & Wildfong, 2015).  

In summary, two NIH Clinical Collections were screened in vitro and two candidates 

were further tested in the established mouse model in a BSL-2 environment. In vivo study 

demonstrated that only mitoxantrone benefit the outcome in MP12 infected mice. Our results 

promise better understanding in improving the antiviral development against RVFV. Further 

studies will focus on the inhibition mechanism of virus replication, and structural analysis and 

modification of 6-azauridine and mitoxantrone. 

 3.5 Conclusion 

Two antiviral drugs against RVFV were identified and shown to inhibit MP12 replication 

efficiently in vitro. In vivo studies testing two candidates, 6-azauridine and mitoxantrone, reveal 
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that only mitoxantrone has a reduction of virus replication and improved clinical outcomes in 

mice. These data would benefit antiviral development against RVFV. 
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Table 4. RNA level in mouse sera determined by a real-time RT-PCR assay 

 
3 DPI 6 DPI Humane euthanasia 

Ribavirin - - + (0/7) 

6-azauridine + (2/3)* + (1/3) + (1/7) 

Mitoxantrone + (3/3) + (1/3) + (1/7) 

Sodium chloride + (3/3) - + (0/7) 

*RVFV RNA positive mouse counts/ total mouse counts 
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Table 5. Histopathological (HE) and immunohistochemistry (IHC) scores for infected mice with different treatment 

 

 Scheduled Euthanasia Humane Euthanasia 

 3 dpi 6 dpi 

 Liver Brain Liver Brain HE 

 HE IHC HE IHC HE IHC HE IHC Liver Brain 

Ribavirin 0/3a 2/3 (1.0) 0/3 0/3 1/3 (2.0) 1/3 (1.0) 1/3 (2.0) 3/3 (2.0±1.0) 0/7 7/7 (2.5±0.5) 

6-azauridine 1/3 (1.0) 3/3 (1.0) 1/3 (1.0) 0/3 0/3 2/3 (1.0) 1/3 (1.0) 3/3 (2.5±0.5) 0/7  7/7 (2.5±0.5) 

Mitoxantrone 0/3 3/3 (1.0) 0/3 0/3 1/3 (1.0) 1/3 (1.0) 3/3 (2.5±0.5) 3/3 (3.0) 0/7  7/7 (3.0) 

Sodium chloride 0/3 3/3 (1.0) 0/3 1/3 (1.0) 0/3 2/3 (1.0) 3/3 (2.0±1.0) 3/3 (2.5±0.5) 0/7  7/7 (3.0) 

 

a. Positive animals/total animals (mean histological score ± absolute deviation); 
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Figure 10 Time course analysis of different rMP12-rLuc infection doses. 

The Z-factor is an attempt to quantify the suitability of a particular assay for use in a full-

scale, high-throughput screen. Observations at 36 hpi with different infected doses followed the 

normal distribution. The ideal Z-factor is 1.0. Between 0.5 and 1.0, the experiment can be 

considered as an excellent assay. Between 0 and 0.5, the experiment can be considered as a 

marginal assay. Less than 0, the experiment cannot be used in the high-throughput screening. 
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Figure 11 Screening of antiviral compounds by a cell-based high-throughput assay using 

RVFV rMP12-rLuc strain.   

Mock treatment: cells were only infected with rMP12-rLuc without treatment. Ribavirin: 

cells were treated with ribavirin after infection. Compound 1 – Compound 23: 23 of compounds 

showed promising results.  
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Figure 12 Inhibition efficacy of antiviral compounds by using RVFV rMP12-GFP strain.  

Non-treatment: cells were neither infected with virus nor treated. Ribavirin: cells were 

treated with ribavirin after infection. Compound 8, 11, 12, 13, 16, 18, 19, 21, and 23:  Cells were 

treated with each compound after virus infection. Compound 8 and Compound 11 showed 

inhibition of the rMP12-GFP virus replication. 
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Figure 13 Cytotoxicity test for one representative potential compound with different 

concentrations. 

Toxic: ToxiLight 100% lysis reagent set (Lonza) was used to set up the toxic control. 

Non-toxic: supernatant from healthy cell culture. Compound 8 (mitoxantrone): Cells were treated 

with the compound 8 with 40 μmol. Limited cytotoxicity on Vero E6 cells. Compound 11 (6-

azauridine): Cells were treated with the compound 11 with 40 μmol. Limited cytotoxicity on 

Vero E6 cells. Error bars represent ± SEM (*** P < 0.001) 
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Figure 14 Plaque reduction of different compounds using MP12 strain. 

Mock treatment: cells were only infected with MP12 without treatment. Ribavirin:  Cells 

were treated with 40 μmol ribavirin after MP12 infection. Compound 8 (mitoxantrone): cells 

were treated with 80 μmol the Compound 8 after MP12 infection. Compound 11 (6-azauridine): 

cells were treated with 80 μmol the Compound 11 after MP12 infection. Compound 8 and 11 

showed statically significant plaque reduction effect on MP12 strain. Error bars represent ± SEM 

(** P < 0.01) 
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Figure 15 In vitro antiviral activity of Compound 8 and 11. 

Inhibitory effect of Compound 8, 11, and ribavirin on RVFV MP12 replication in Vero 

cells. Vero cells were pretreated with serially 2-fold diluted Compound 8, 11, or ribavirin 4 h 

before infection and were inoculated with RVFV MP12 at an MOI of 2. The virus infectious 

dose in the culture supernatants and a sigmoidal dose-response curve was fitted to the data using 

GraphPad Prism 6 (GraphPad Software). 
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Figure 16 Weight loss and survival rate of mice infected with MP12 and treated with 

different candidates.  

A: Weight of mice in ribavirin group decreased from 1 dpi to 3 dpi and then increased till 

5 dpi. After 5 dpi, the weight of mice decreased dramatically. Mitoxantrone treated group 

showed slower weight loss than the placebo (Sodium chloride) group; B: Mice in ribavirin and 

mitoxantrone groups survived one more day than the placebo (Sodium chloride) group. 
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Figure 17 Virus titers in mouse livers and brains collected on 3 and 6 dpi. 

A: Virus was detected in mice from all groups on 3 and 6 dpi. A lower virus titer was 

found in mouse livers of the 6-azauridine group; B: Virus was detected in mice from all groups 

on 3 and 6 dpi. A significant lower virus titer was found in mouse brains of the 6-azauridine 

group on 3 dpi. Error bars represent ± SEM (* P < 0.05). 
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Figure 18 H&E and IHC results from mouse brain samples collected at 6 dpi. 

A, C, E, G, and I: H&E results from different groups. A): There is a focal area of necrosis 

in the mouse from the ribavirin group, the remainder of the brain section is normal. C): In the 

mouse from the mitoxantrone treatment group, the brain has necrosis with necrotic cellular 

debris. E): There is a single small focal aggregate of inflammation (*) in the neuropil in this 

mouse from the 6-azauridine treatment group. G): No lesions consistent with normal brain of a 

non-challenged control mouse. I): In the mouse from the sodium choloride treatment group, the 

brain has extensive necrosis with abundant necrotic cellular debris. This mouse also had 

meningitis, which is not pictured. B, D, F, H, and J: IHC results from different groups. B): A 

focal area of RVFV antigen deposition is present in neurons and the neuropil. D): RVFV antigen 

is present in the neurons and the neuropil in mitoxantrone 1 treated mouse brain. F): Moderate 

RVFV antigen is present in the neurons and the neuropil. H): No RVFV antigen was present in 

the brain of a non-challenged control mouse. J): Extensive RVFV antigen is present in the 

neurons and the neuropil. (H& E and IHC RVFV, ×400).   
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Chapter 4 - General Discussion and Conclusion  

Since the 1960s, antivirals have been used to treat certain viral infections (Heymann, 

Gulick, De Boer, De Stevens, & Mayer, 1958; Hurst & Hull, 1956; Tsuji, 1954). Approximately 

90 compounds were formally licensed to use as clinical antiviral therapies, half of them treating 

human immunodeficient virus (HIV) infection (De Clercq, 2004; De Clercq & Li, 2016). Other 

approved antiviral treatments act on hepadnavirus (HBV), hepacivirus (HCV), herpes simplex 

virus (HSV), influenza viruses, human cytomegalovirus (HCMV), varicella-zoster virus (VZV), 

respiratory syncytial virus (RSV), and human papillomavirus (HPV) (De Clercq & Li, 2016). 

Although these antivirals are effective against specific viral infections, a few broad-spectrum 

antiviral drugs are effective against a wide range of viruses (Aman et al., 2009; Caroline et al., 

2014; Hoffmann, Kunz, Simon, Palese, & Shaw, 2011; Snell, 2001). Because of specific 

licensing,  antiviral therapies are still unavailable for quite a lot of critical transboundary and 

emerging viral infections. 

Currently, there are no licensed antiviral drugs approved for RVFV treatment in the U.S. 

As a Category A pathogen, virulent RVFV strains can only be handled in a BSL-3 or higher 

facility, limiting RVFV antiviral development (D. Bishop & Shope, 1979; Georgiev, 2009). Due 

to these facts, our first objective is to establish a suitable mouse model that can be used to test 

antivirals in a BSL-2 environment using BSL-2 approved RVFV strains. In our study, the STAT-

1 KO mouse strain has been shown to develop representative disease characterized by acute-

onset hepatitis and delayed-onset encephalitis after intranasal MP12 infection (Boshra, Lorenzo, 

Rodriguez, et al., 2011; Bouloy et al., 2001; Dodd et al., 2014; Lang et al., 2016; Lorenzo et al., 

2010). The immune deficient mouse strain, 129Sv IFNAR−/−, are susceptible to MP12 infection, 

suffering 100% mortality after infection (Lorenzo et al., 2010). Previously, these mice were used 
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in RVFV vaccine efficacy studies (Boshra, Lorenzo, Rodriguez, et al., 2011; Lorenzo et al., 

2010). After vaccination, IFNAR−/− mice generated an immune response and were protected 

against lethal RVFV MP12 challenge. Unfortunately, no RVFV specific clinical signs were 

observed in the IFNAR−/− mouse model, indicating, this model should be sufficient to evaluate 

prognosis but not for prophylaxis. Due to these factors, we hypothesize the STAT-1 KO mouse 

can be used to evaluate RVFV antivirals in a BSL-2 environment.  

In chapter three, we screened two NIH Clinical Collections for identification of effective 

antiviral candidates, and they were further evaluated in vitro and in vivo. Previously, ribavirin 

has been used as antiviral against RVFV. However, this antiviral drug can only be considered as 

the treatment for complex RVF disease. In this study, we used it as a positive control. Two 

candidates, 6-azauridine and mitoxantrone, showed inhibition effect on MP12 replication by the 

plaque reduction assay with negligible cytotoxicity at the active antiviral concentration in vitro. 

While in vivo study showed better outcomes in ribavirin and mitoxantrone treated mice but not in 

mice received 6-azauridine treatment. Mitoxantrone can inhibit Poxviruses by blocking the virus 

assembly with unclear mechanism in vitro (Deng et al., 2007). Similar with RVFV, vaccinia 

virus also forms protein precursors of structure proteins (Ngo, Mirzakhanyan, Moussatche, & 

Gershon, 2016). Therefore, mitoxantrone may employ the same mechanism that restrained 

vaccinia virus package to inhibit RVFV. While 6-azauridine showed inhibition effect in vitro and 

can inhibit virus replication in livers and brains on the early stage of infection. A broad range of 

viruses can be inhibited by this synthetic triazine analogue of uridine with unknown mechanisms 

(Crance et al., 2003; Neyts et al., 1996; Rada & Dragúň, 1977). It is interesting to see that the 

RVFV MP12 replicated fast in brains from 3 dpi to 6 dpi of 6-azauridine treated mice. This fact 
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implies that MP12 may gain 6-azauridine resistance in the presence of the antiviral treatment. 

Therefore, the use of antivirals could be a double-edged sword in some cases. 

Besides the side effects, antiviral treatments might lead to even worse situations since 

they could select drug-resistant strains. Ribavirin, a nucleoside analogue, can inhibit a broad 

spectrum of viruses in vitro with pleiotropic mechanisms including inhibition of viral capping 

enzymes, lethal mutagenesis of viral RNA genomes, and inhibition of viral RNA synthesis 

(Graci & Cameron, 2006; R. Smith & Kirkpatrick, 1980). Resistance has been identified in 

poliovirus although a 99.3% loss in infectivity was observed after ribavirin treatment which 

caused a 9.7-fold increase in mutagenesis. Poliovirus mutant with only one single amino acid 

change in the viral RNA-dependent RNA polymerase results in resistance (Crotty, Cameron, & 

Andino, 2001; Pfeiffer & Kirkegaard, 2003). The mutant RNA polymerase has a greater fidelity 

compared with that of the parental strain. Different from most antibiotics, specific antivirals were 

designed to target the viral proteins instead of destroying the pathogen (De Clercq, 2007b). 

Neuraminidase (NA) inhibitors (NAIs) are in a group of antiviral therapeutics to treat infection 

caused by influenza viruses. NA is a surface protein of influenza viruses and its primary function 

is to cleave sialic acids from the cell surface and subsequently release the newly formed virus 

particles. The NAIs mimic the structure of sialic acids. Therefore they can bind to the active site 

of NA and then, the newly synthesized virions cannot be released to spread (Von Itzstein et al., 

1993). Currently, there are three Food and Drug Administration (FDA) approved NAIs available 

for human use in the U.S.: oral oseltamivir, inhaled zanamivir, and intravenous peramivir. 

However, zanamivir and peramivir can only be prescribed to ≥7 years and ≥18 years patients 

respectively (CDC, 2014; Harper et al., 2009). Because of the consistent use of NAIs, several 

NAI-resistant mutations were identified in different strains at various places (Ferraris & Lina, 
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2008; Hatakeyama et al., 2007; Horthongkham et al., 2016). Therefore, viruses can gain 

resistance to a specific antiviral treatment by mutating over time. As influenza virus is a 

segmented RNA virus, there are potentials that wild influenza strains would obtain the resistance 

by reassortment which can lead to an even more complicated situation for treatment. Thus, once 

we have obtained potential therapeutics for RVFV which is also a segmented virus, human 

clinical trials should be done carefully. Because antiviral resistant mutations could be a potential 

risk to public health.  

As important viral pathogens caused morbidity and mortality in humans, the treatment for 

RVFV should not be neglected. While there are arbitrarily 13 functional groups available now 

for the nine human infectious diseases (De Clercq & Li, 2016). They are: (i) 5-substituted 2’-

deoxyuridine analogues (treatment for HSV (De Winter & Herdewijn, 1996), and VZV 

(McGuigan et al., 1999)); (ii) nucleoside analogues (for HSV (Fyfe, Keller, Furman, Miller, & 

Elion, 1978), HBV (van Bömmel et al., 2010), and VZV (Balzarini & McGuigan, 2002)); (iii) 

(nonnucleoside) pyrophosphate analogues (for HCMV (Gilbert & Boivin, 2005), and HSV 

(Eriksson, Öberg, & Wahren, 1982)); (iv) nucleoside reverse transcriptase inhibitors (for HIV 

(Group, 2008), and HBV (Margeridon-Thermet et al., 2009)); (v) nonnucleoside reverse 

transcriptase inhibitors (for HIV (Merluzzi, Hargrave, Labadia, Grozinger, & Skoog, 1990)); (vi) 

protease inhibitors (for HIV (Condra, Schleif, Blahy, & Gabryelski, 1995), and HCV (C Lin et 

al., 2004)); (vii) integrase inhibitors (for HIV(Pommier, Johnson, & Marchand, 2005)); (viii) 

entry inhibitors (for HIV (Reeves et al., 2002), HSV (Gong et al., 2002), VZV (Zhu, Gershon, 

Ambron, Gabel, & Gershon, 1995), and RSV (Razinkov, Huntley, Ellestad, & Krishnamurthy, 

2002)); (ix) acyclic guanosine analogues (for HCMV (Wahren, Larsson, Rudén, Sundqvist, & 

Sølver, 1987), HSV (De Clercq et al., 2001), and VZV (Karlström, Källander, Abele, & Larsson, 
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1986)); (x) acyclic nucleoside phosphonate (ANP)analogues (for HIV, HCMV, and HBV(De 

Clercq, 2007a),); (xi) HCV NS5A and NS5B inhibitors; (xii) influenza virus inhibitors; and (xiii) 

immunostimulators, interferons, oligonucleotides, and antimitotic inhibitors (for HBV (Sokal et 

al., 1998), HCV (Manns et al., 2001), HCMV (Chapman, Thayer, Vincent, & Haigwood, 1991), 

and HPV (Jach, Basta, & Szczudrawa, 2003)). Unlike the viruses with available treatment, the 

underlying mechanisms of RVFV entry, replication, and release are poorly understood. 

Therefore, screening work from the available antiviral candidates is in great need.  

To avoid the generation of directed mutations caused by a single type of treatments, a 

combination of antiviral therapeutics with different functions should be employed to treat the 

viral diseases. As more than nine million life-years were saved from HIV infection by 

combination antiretroviral therapy, we should learn the therapeutic method to control other 

important pathogens such as RVFV (Joint United Nations Programme on HIV/AIDS, 2012). Last 

but not least, because encephalopathy was observed in the severe cases of RVFV combination of 

infections, different formations of treatment should be considered to increase and stabilize the 

antiviral concentration in the brain (CH Lin et al., 2006; M Pepin et al., 2010; Sazgar, Robinson, 

Chan, & Sinclair, 2003). As different antivirals have different characteristics such as molecular 

size, electric charge, lipophilicity, plasma protein binding, and the host factors, it is difficult to 

predict whether they can penetrate the BBB or not if we treat the host intraperitoneally or 

intravenously (Nau et al., 2010). Intranasal delivery is a pratical method to bypass the BBB to 

deliver small therapeutic molecules to the brain and spinal cord (Hanson & Frey, 2008). These 

therapeutic agents can be delivered to the brain by olfatory and trigeminal pathways which 

providing a direct connection with the CNS (Dixon et al., 2016; Ross et al., 2004; Thorne et al., 

2004). In addition, Colombo et al. reported that ribavirin could transport from the nose to brain 
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rapidly after nasal administration in the powder formation (Colombo et al., 2011), indicating 

intranasal route could be an alternative way to administrate antiviral treatment for RVFV 

infection. 

Taken together, our studies cast light on the antiviral development against RVFV in vitro 

and in vivo. To provide a better therapeutic method for this important viral disease lacking 

attentions, we will identify and develop more effective antiviral drugs against RVFV with 

different antiviral mechanisms. Meanwhile, antiviral mechanisms of 6-azauridine and 

mitoxantrone against RVFV infection will be further studied. In addition, a combination therapy 

will be developed with RVFV antiviral candidates in the future as well.  
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