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Abstract 

We describe a comprehensive system for comparative evaluation of uploaded and preprocessed 

data in physics education research with applicability to standardized assessments for discipline-

based education research, especially in science, technology, mathematics, and engineering.  

Views are provided for inspection of aggregate statistics about student scores, comparison over 

time within one course, or comparison across multiple years. The design of this system includes 

a search facility for retrieving anonymized data from classes similar to the uploader’s own. 

These visualizations include tracking of student performance on a range of standardized 

assessments.  These assessments can be viewed as pre- and post-tests with comparative statistics 

(e.g., normalized gain), decomposed by answer in the case of multiple-choice questions, and 

manipulated using pre-specified data transformations such as aggregation and refinement (drill 

down and roll up).  Furthermore, the system is designed to incorporate a scalable framework for 

machine learning-based analytics, including clustering and similarity-based retrieval, time series 

prediction, and probabilistic reasoning. 

Keywords 

discipline-based education research, data science, information visualization, information 

retrieval, analytics 

Introduction 

We describe two primary components of an analytics system for STEM education research, 

developed for the American Association for Physics Teachers (AAPT).  The purpose of this data 

exploration system is to allow instructors to comparatively assess student performance in 

intraclass, longitudinal, and interinstitutional contexts.  The interface allows instructors to upload 

course data including student demographics and exams to a secure site, then retrieve descriptive 

statistics and detailed visualizations of this data. 

The first component consists of a rule-based system for pattern analysis that infers multiple 

common assessment formats with minimal metadata, and in some cases without headers.  This 

paper describes the incremental development of a priority-based inference mechanism with 

matching heuristics, based on real and synthetic sample data, and further discusses the 

application of machine learning and data mining algorithms to the adaptation of probabilistic 

pattern analyzers. Early results indicate potential for user modeling and adaptive personalized 

recognition of document types and abstract type definitions. 

The second component is an information retrieval and information visualization module for 

comparative evaluation of uploaded and preprocessed data. Views are provided for inspection of 

aggregate statistics about student scores, comparison over time within one course, or comparison 

across multiple years. These visualizations include tracking of student performance on a range of 

standardized assessments including the Force Concept Inventory (FCI).1 the Force and Motion 



Conceptual Evaluation (FMCE) of Thornton and Sokoloff (1998)2, and the Brief Electricity and 

Magnetism Assessment (BEMA).3  Assessments can be viewed as pre- and post-tests with 

comparative statistics (e.g., normalized gain), decomposed by answer in the case of multiple-

choice questions, and manipulated using prespecified data transformations such as aggregation 

and refinement (drill down and roll up).  The system is designed to support inclusion of a range 

of supervised inductive learning methods for schema inference, unsupervised learning algorithms 

for similarity-based retrieval, supervised learning for regression-based time series prediction, and 

Bayesian models for causal inference on the decision support end.   

Both informal assessment of the system and intensive user testing on a pre-release version have 

yielded positive feedback. This feedback is instrumental in feature revision, both to improve 

system functionality and to plan the adaptation of the design of these two data exploration 

components to other STEM disciplines, such as computer science and mathematics. Lessons 

learned from visualization design and user experience feedback are reported in the context of 

usability criteria such as desired functionality of the pattern inference system. 

The paper concludes with a discussion of the system as an emerging technology, the schedule for 

its deployment and continued augmentation, and the design rationale for user-centered intelligent 

systems components. The focal point of future work in this area is on facilitating meaningful 

interactive exploration of the data by multiple types of stakeholders who have been identified for 

this type of education research portal. This is achieved using a synthesis of data-driven 

approaches towards information extraction, retrieval, transformation, and visualization. 

 

Figure 1. Data Explorer intake interface depicting workflow (left) and example of schema 

inference and interactive validation (right). 

  



System Overview: Data Explorer 

The system (referred to throughout the paper as the Data Explorer) consists of three primary 

functional modules:  

1. Data uploading and preparation, including schema and header inference 

2. Information visualization, including breakdown of assessments by question and tracking 

student performance in courses over time (within-course or longitudinally) 

3. Information retrieval, comprising query interfaces and query synthesis 

The Data Explorer is a data management system and federated display for educational data that 

provides data import, integration, interactive validation, and analytics functions. This section 

describes the first three components, which consist of a data intake front-end where instructors 

can import assessment data in a spreadsheet format.  Next, they can annotate uploaded files by 

adding metadata for courses and assessment provenance. Then can then specify the organization 

of data, using a file mapping system that automatically infers the tabular schema of the data. This 

schema specifies the sequence of columns, similar to a relational database schema but without 

database normalization requirements.  The system infers this schema from sequences of column 

headers that are scanned and parsed (the parser component) from patterns of data formats 

observed in tabular data (the guesser component).  The user can then interactively check and edit 

the result, reviewing the tentative file mapping using the preview shown in Figure 1 and 

correcting any inference errors.  Finally, the result is sent to the analytics and rendering 

components of the Data Explorer, which prepare descriptive statistics, comparative statistics, and 

visualizations of the imported data. 

Emerging Technology: Data Import, Schema, and Header Inference 

The first approach, typified by the work of Keininger (19984, 20015) on block segmentation, 

focuses on matching cells using a neighborhood-based search.  Because the intake process for 

the Data Explorer involves no optical character recognition (OCR) or handwritten character 

recognition (HCR), we omit layout recognition aspects of the document path and focus on 

schema inference from delimited files that are either already properly aligned or admit a proper 

alignment given a correctly inferred schema.  

This is closer to the second approach, exemplified in the previous work of Doan, Domingos, and 

Halevy (2003)6 on using machine learning to produce classifiers for schema matching.  

Cafarella, Halevy, Wang, Wu, and Zhang (2008)7 extend this approach by targeting relational 

schema and using constraints on relational well-formednesss.  More recently, Venetis, Halevy, 

Madhavan, Paşca, et al. (2011)8 infer semantic properties of web data by using observed weak 

typing constraints (isA relations, also known as hyponymy) in online knowledge sources.  In a 

variation on this general approach, we also use pattern matching heuristics and constraints, but 

restrict our matching to type constraints such as enumerative types on multiple-choice questions. 

Finally, the third approach, holistic information extraction from tables, is characteristic of 

systems such as that of Nagy, Seth, Jin, Embley, et al., (2011)9, which use syntactic elements of 

tables – header paths in particular – to extract relational tuples.  This approach subsumes tabular 

data cleaning.  For example, Fang, Mitra, Tang, and Giles (2012)10 use supervised inductive 

learning to learn the concept of a genuine table (as opposed to spacers and decorative elements), 



and also empirically validate heuristics for physical structure analysis (table segmentation, which 

is obviated in our task) and logical structure analysis. Suchanek and Weikum (2013)11 examine 

how to capture such tables in the wild, e.g., as embedded in articles on the web or in print; some 

relevant ideas from this approach are how to use rule-based data transformations to segment 

uploaded data (remove headers, trim extraneous elements) and validate them against known 

good tuples. Adelfio and Samet (2014)12 specifically address our chief problem of schema 

extraction for tabular data by using a conditional random field (CRF) classifier learned from 

data; this approach has achieved marked success in shallow parsing tasks such as named entity 

recognition in text.  Finally, Zhang (2014)13 re-examines the problem of capturing relations in 

tables using a combination of named entity recognition and the kinds of semantic constraints 

applied by the second approach.  

 

 

Figure 2. Data flow for importer of Data Explorer. 

Our methodology is informed by the latter (schema inference and tuple extraction) approaches 

described above rather than the first (layout analysis) approach. The users of our system who are 

usually Physics educators upload their historical assessments through an iterative data upload 

interface depicted in Figure 2. The data upload interface accepts assessment files that are in a 

limited set of formats in the current system. The accepted file formats are xls, xlsx, and csv. 

Simplistic file requirements, which include having a header row and one student per data row, 

help assure extraction of the correct headers and student data while allowing users to upload a 

wide range of data formats.   

Apart from accepting and verifying the integrity of the uploaded files the data upload interface 

prompts the user to specify meta information (“Add Meta Data” in Figure 2), such as 

approximate number of students that took the assessment and whether the file contains either 

pre-, post-, or pre- and post-test assessment data. Some of these assessment features are required, 

while others are optional. The assessment specific information, such as assessment name and 

assessment type (belief survey or standard multiple choice), provide a rough estimate of the 

number of questions (usually represented as columns) that are present within the uploaded, 

whereas the number of students gives an estimate of the number of rows with student scores. The 

data upload interface checks the integrity of the file and extracts all the data that is present within 

the various file types. The extracted data is saved as a data frame, a two-dimensional data 

structure, where the atomic data items present in the input file are stored in individual cells of the 



data frame. The row-column relationships of the data items in the uploaded files are preserved in 

the data frame. 

The objective of the file parser is to identify the boundaries of the assessment scores within the 

data frame, as well as identify the location of the headers. The presence of other extraneous 

legacy information within the data makes the task of extracting payload data from the data frame 

a complicated exercise. Some of the various kinds of information that is available within these 

files, apart from the payload, could be the rubric or the scoring criteria for the particular 

assessment; it could also have information dealing with aggregate student demographic 

information and other extraneous data. Considering all these variabilities, we create a heuristics 

based parser that takes the meta information that is provided during the file upload process to 

extract the valid assessment payload from the test data. The presence of both pre- and post-

assessment scores within the same data frame is another degree of freedom that adds to the 

complexity of the parsing approach. 

Table 1. Heuristics for identifying the header row. 

Heuristic 

(𝜶) 

Description Condition to Count (𝝈) Contributed 

Value (𝜸) 

String cells The number of cells in a row 

that are text. 
> 𝒕𝒉𝒓𝒆𝒔𝒉 1 

Integer 

cells 

The number of cells in a row 

that contain integers. 
> 𝒕𝒉𝒓𝒆𝒔𝒉 1 

Float cells The number of cells in a row 

that contain floating-point 

numbers 
< 𝟎 -1 

Duplicate 

cells 

The number of duplicate cells 

in a row 
> 𝒕𝒉𝒓𝒆𝒔𝒉 1 

Unique 

cells 

The number of unique cells 

in a row 
< 𝒏𝒖𝒎𝒃𝒆𝒓𝑶𝒇𝑸𝒖𝒆𝒔𝒕𝒊𝒐𝒏𝒔 -1 

Pre/Post Detects whether or not the 

row contains “pre” or “post” 
> 𝟎 1 

Long 

question 

number 

Detects the number of large 

question numbers (helps 

when assessment data is 

outputted by online tools) 

> 𝒏𝒖𝒎𝒃𝒆𝒓𝑶𝒇𝑸𝒖𝒆𝒔𝒕𝒊𝒐𝒏𝒔
− 𝟏𝟎 

𝒏𝒖𝒎𝒃𝒆𝒓𝑶𝒇𝑸𝒖𝒆𝒔𝒊𝒐𝒏𝒔 > 𝟎 

1 

Max 

consecutive 

number 

Detects the largest 

consecutive number series in 

a row after stripped of alpha 

characters (Q1, Q2, Q3, etc.) 

> 𝒕𝒉𝒓𝒆𝒔𝒉 3 

Unique 

markers 

The number of unique known 

headers (Student ID, Gender, 

etc.) 
> 𝟏 2 

Repeated 

markers 

The number of repeated 

known headers (question, 

ques, q, pre, post) 
> (𝒕𝒉𝒓𝒆𝒔𝒉 − 𝟑) 2 



In order to identify the boundaries of the payload within the data, we first start by identifying the 

header row of the payload. The header row consists of column names of the various columns 

available in the assessment scores. These could be student particulars such as name, identifier, or 

gender, or the particular assessment information, such as grade, question number, or aggregate 

score. Our model consists a series of heuristics that score rows and columns for identifying 

which row contains column headers, and which rows contain the student data.  This helps 

eliminate user added calculations and miscellaneous data, and extracts relevant student 

information. Table 1 shows the heuristics for determining the header row, where 

𝒏𝒖𝒎𝒃𝒆𝒓𝑶𝒇𝑸𝒖𝒆𝒔𝒕𝒊𝒐𝒏𝒔 is equal to the number of questions in the assessment (collected in the 

add metadata phase) and 𝒕𝒉𝒓𝒆𝒔𝒉 = ⌊𝒏𝒖𝒎𝒃𝒆𝒓𝑶𝒇𝑸𝒖𝒆𝒔𝒕𝒊𝒐𝒏𝒔 − (𝒏𝒖𝒎𝒃𝒆𝒓𝑶𝒇𝑸𝒖𝒆𝒔𝒕𝒊𝒐𝒏𝒔 ∗
. 𝟐)⌋. 

This threshold gauges an approximate number of columns to expect for questions; the buffer 

adds tolerance for poorly formatted files. From Table 1, we define the header row to be ∀𝒓 ∈
𝒓𝒐𝒘𝒔 𝐦𝐚𝐱 (∑ 𝜸𝒊 𝒊𝒇 𝝈𝒊

𝒏
𝜶𝒊,𝒓

 where 𝜶𝒊,𝒓
𝒎  is the heuristics for row 𝒓. The header row is then used to 

determine the table boundaries for relevant student data by comparing each row to row markers 

from known templates; otherwise, in the case a row is absent of markers, the length of the row 

(number of non-empty cells) is compared to 𝒕𝒉𝒓𝒆𝒔𝒉, as defined for Table 1.  If a row is blank, 

we use a combination of 80% of the class size (given by the user as metadata) and a two-row 

margin in order to allow small gaps in student data.  If this margin is exceeded, and the number 

rows in the current block of data parsed is less than 80% of the class size, the start of the student 

data is moved after the blank rows and parsing continues.  This allows the parser to skip over 

blocks of precomputed statistics and other user specific information; however, if the user gives a 

greatly over or under estimate on class size, files with more than two row gaps in the data 

underneath header will be unsuccessfully parsed.    

The schema inference model is able to successfully parse 77/80 testing files (a mixture of 

sanitized real data submitted to the project and synthetic data).  A file is parsed successfully if it 

identified the header row and included all rows of student data. If the parser includes 

miscellaneous columns of data, the test is allowed to pass as these columns can be excluded in 

post processing; 23 tests were passed in this manner.  The last three tests failed due to the 

assessment answer keys being included as part of the block of student data.  This problem can be 

solved for templated files; however, for semi-structured files, we are unable to differentiate 

answer keys from real student data. Accuracy of the schema inference during beta testing and 

future production deployment is partly dependent on user feedback (missing student rows or 

columns), as well as the headers that are verified by the user (columns thought to be student data 

but was not).   

The guesser module (interface seen in Figure 1 and position in system as “File Mappings” in 

Figure 2), uses a hybrid similarity measure to detect approximate matches between candidate 

header strings and template strings.  This consists of a convex combination of two edit distance 

functions (Levenshtein and Jaro-Winkler), both computed by dynamic programming.  The 

weights are calculated using a generalized logistic function: 

𝒘 = 𝒀(𝒕) = 𝑨 +
𝑲 − 𝑨

(𝑪 + 𝑸𝒆−𝑩(𝒕−𝑴))
𝟏
𝝂

 



where 𝑲 = 𝑪 = 𝟏, 𝑨 = 𝟎. 𝟑, 𝑸 = 𝝂 = 𝑴 = 𝟓, 𝑩 = 𝟐. 𝟕, and 𝒕 is the Levenshtein distance.  𝑨 is 

the lower asymptote, 𝑲 is the upper asymptote, 𝑩 is the growth rate, 𝑴 is the baseline distance 

(input),  𝝂 is a skew parameter (for controlling the inflection point), and 𝑸 is the baseline weight 

(output). The final distance measure for strings 𝒔𝟏 and 𝒔𝟐can then be defined as:  

𝒅𝒊𝒔𝒕(𝒔𝟏, 𝒔𝟐) = 𝒘𝒅𝟏 + (𝟏 − 𝒘)𝒅𝟐 

where  𝒅𝟏 and 𝒅𝟐 are normalized Jaro-Winkler and thresholded Levenshtein edit distances, 

respectively,  𝒅𝑱𝑾 is the raw Jaro-Winkler distance and: 

𝒅𝟏 = (𝟏 − 𝒅𝑱𝑾)
𝒕(𝑴−𝑩)

𝑴  

The confidence of a column header labeled as a given class is then given by: 

𝒄𝒐𝒏𝒇 =  𝟏 − 𝒅𝒊𝒔𝒕(𝒉𝒆𝒂𝒅𝒆𝒓, 𝒍𝒂𝒃𝒆𝒍) 

If the header and the class label both contain numeric parts (i.e. “Question 24”), then we 

compare the distance of the numeric and alpha parts separately and then combining with weights 

.75 and .25 respectively. This increases the likelihood of labeling alphanumeric question 

columns with the correct question number.  If the confidence of the best candidate label for a 

column header is less than .45, the inferred header in the File Mappings is presented to the user 

as “Unknown, otherwise the inferred header is shown. 

From initial beta testing, inference of column headers shows strong positive results.  While being 

able to match columns in our synthetic data, we judge the performance of our model on the data 

which users have uploaded and completed the file mappings process. In order measure 

performance, we first frame true positives (TP), false positives (FP), true negatives (TN), and 

false negatives (FN) in our problem.  If we infer a column header and the user verifies it as 

correct, it is counted as a TP.  However, if the inferred header was verified as something 

different (inferred header is overridden), it is counted as a FP.  This incorrect guess would 

normally be counted as a TN; however, while our task is to infer column headers, we also are 

tasked with excluding columns of extraneous data mingled in with student data.  For this reason, 

if the inferred column header is “Unknown,” and the user verifies the header as “Do Not 

Import,” we count it as a TN since this column is confirmed to be unnecessary for analysis and 

visualization.  If a column header is “Unknown,” and the user verifies the column as actual 

student data, we count this as a FN.  The results from the initial user testing are found in Table 2.  

Users 16,17, 19, and 20 have been highly active compared to other testers, but still show strong 

positive results.  User 18 has shown to have a bad experience using our system to upload their 

files.  Upon inspection of the raw headers stored, it seems that either the system picked the 

wrong row as the header or the file does not contain headers.  Due to privacy concerns, we do 

not store the files in their original state. After they are mapped to student records, the original file 

cannot be reverse engineered making ground truth, verification, and debugging difficult for both 

the schema and column tag inference models without user input.   



User 
Number 

of Files 

Number of 

Columns 
TN FN TP FP Accuracy Precision Recall F1 

1 1 32 0 0 31 1 0.9688 0.9688 1.0000 0.9841 

2 1 40 5 7 27 1 0.8000 0.9643 0.7941 0.8710 

3 1 44 1 1 42 0 0.9773 1.0000 0.9767 0.9882 

4 4 50 3 6 40 1 0.8600 0.9756 0.8696 0.9195 

5 2 62 0 0 62 0 1.0000 1.0000 1.0000 1.0000 

6 2 62 0 0 62 0 1.0000 1.0000 1.0000 1.0000 

7 2 68 0 0 68 0 1.0000 1.0000 1.0000 1.0000 

8 2 70 5 2 62 1 0.9571 0.9841 0.9688 0.9764 

9 2 88 0 0 87 1 0.9886 0.9886 1.0000 0.9943 

10 3 96 0 0 96 0 1.0000 1.0000 1.0000 1.0000 

11 4 124 0 1 123 0 0.9919 1.0000 0.9919 0.9960 

12 6 186 0 1 185 0 0.9946 1.0000 0.9946 0.9973 

13 4 192 0 2 187 3 0.9740 0.9842 0.9894 0.9868 

14 6 198 0 0 198 0 1.0000 1.0000 1.0000 1.0000 

15 6 218 1 14 201 2 0.9266 0.9901 0.9349 0.9617 

16 12 471 0 4 404 63 0.8577 0.8651 0.9902 0.9234 

17 15 785 2 20 710 53 0.9070 0.9305 0.9726 0.9511 

18 17 905 2 80 487 33

6 

0.5403 0.5917 0.8589 0.7007 

19 20 909 9 31 830 39 0.9230 0.9551 0.9640 0.9595 

20 34 1632 0 0 1632 0 1.0000 1.0000 1.0000 1.0000 

Table 2. Results from the column tagger for initial beta users. 

Work in Progress: Information Visualization 

The information visualization facility of the Data Explorer contains a variety of functions 

implemented using the D3.js JavaScript library by Bostock, Ogievetsky, and Heer (2011)14. 

Figure 3 shows how normalized (Hake) gain is plotted, with order statistics (mean and median) 

and standard deviation, for a class’s performance on an assessment.  Figure 4 shows how the 

visualization services also allow drill-down (“breakdown”) by question, an important type of 

analytical query that results in the display of a distribution of answers for each question and 

facilitates comparative analytics for pre- and post-instructional assessments. The objective of 

these visualizations is to provide instructors with actionable insight concerning: topics covered; 

the impact of instruction and classwork on student learning as assessed formally using tests such 

as FCI, FMCE, and BEMA; and longitudinal trends of concern. In continuing work, we are 

exploring additional ways to drill down into multidimensional assessment data, such as using the 

TableLens visualization of Rao and Card (1994)15. 

 

 



 

Figure 3. Data visualizer component of the Data Explorer, displaying a histogram of normalized 

gain for a hypothetical class on the Force Concept Inventory (FCI) assessment. 



 

Figure 4. A "Breakdown by Question" view, showing drill-down for a single question and 

multiple-choice responses, together with the distribution of student responses, on a post-

instructional assessment question (also for the FCI). 



 

Figure 5. Visualization of student performance on pre- and post- assessment, organized by 

classification of question. Class labels are assigned by subject matter experts (physics education 

researchers). 

Continuing Work: Information Retrieval and Data Mining  

A further capability, designed to facilitate instructor exploration of assessment data, is that of 

grouping questions by known or discovered category.  Figure 5 shows the results of visualizing 

hand-labeled categories (which are known as classes in machine learning, clusters in statistics, 

and segments in business analytics).  Work in progress aims at using unsupervised learning to 

perform clustering of assessment questions (by topic modeling or by other similarity-based 

learning). The key capability that this future work aims at is that of retrieving classes like mine 

relative to longitudinal data (short time series) and similarity measures adapted to such time 

series. Meanwhile, clustering can also enable similarity-based queries for time series data as 

introduced by Rafiei and Mendelzon (1997)16.  Our time series consist of student assessment 

scores and normalized gain measures, and thus admit the same kind of dimensionality reduction 

and indexing as developed by Keogh, Chakrabarti, Pazzani, and Mehrotra (2000)17.  Ultimately, 

our goal is to develop a data-driven approach towards concept similarity in assessment data in 

STEM education, as Madhyastha and Hunt (2009)18 were able to do to some degree for 

diagnostic assessments. 



 

Figure 6. Visualization of courses over time: tracking performance across classes in multiple 

offerings (semesters and sections) in a longitudinal study. 

Future Work: Instructional Decision Support and Adaptive Recommendation 

Figure 6 includes a visualization of assessments across multiple courses taught at a single 

institution, typically by a single instructor under whose login the data are grouped for multiple 

semester combinations. The visualization subsystem also provides a facility for drilling down by 

section.  This provides the analytical setting for one of our long-term objectives: to progress from 

interactive visualization within this federated display to adaptive decision support systems and 

tutoring systems.19 

Conclusion 

In this paper we have presented a data integration and information management system for 

STEM education research.  The functionality outlined in the example screen captures is focused 

around our continuing research regarding schema inference and educational data mining from 

student assessments.  The key novel contributions with respect to data integration are intelligent 

systems components for schema inference where columns and other elements are unlabeled, 

nonstandard, and may include missing data. The novel contribution with respect to analytics are 

the interactive information visualization components that both provide insights into assessment 

data and generate requirements for similarity-based retrieval and comparative evaluation of 

student performance. 
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