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Abstract 

Low-power systems implemented on Field Programmable Gate Arrays (FPGA) have 

become more practical with advancements leading to decreases in FPGA power consumption, 

physical size, and cost.  In systems that may need to operate for an extended time independent of 

a central power source, low-power FPGA’s are now a reasonable option.  Combined with 

research into energy harvesting solutions, a FPGA-based system could operate independently 

indefinitely and be cost effective. 

 

Four simple demodulator designs were implemented on a FPGA to test and compare the 

performance and power consumption of each.  The demodulators were a Counter that tracked the 

length of the input signal period, a One-Shot that counted the input edges over time, a Phase-

Frequency Detector (PFD), and a PFD with preprocessing on the input signal to mitigate 

distortion introduces by the 1-bit subsampling. 

 

The designs demodulated a binary frequency shift keying (BFSK) signal using 10.69MHz 

and 10.71MHz as the input frequencies and a 1kHz data rate.  The signal was 1-bit subsampled 

at 75kHz to provide the demodulators with a signal containing 15kHz and 35kHz.  The design 

size, power consumption, and error performance of each demodulator were compared.  At the 

frequencies and data rate used, the Counter and One-Shot are the most energy efficient by a 

significant margin over the PFDs.  The error performance was nearly equal for all four.  As the 

BFSK baseband frequencies and especially the data rate are increased, the PFD options are 

expected to be the better options as the Counter and One-Shot may not react quickly enough.   
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Chapter 1 - Introduction 

This research was accomplished through an Experimental Program to Stimulate 

Competitive Research (EPSCoR) grant partnering Kansas State University (KSU) with the 

National Aeronautics and Space Administration (NASA).  Part of the project research focused on 

developing an intra-suit, wireless sensor network to collect the vital sign data of an astronaut 

performing an extravehicular activity (EVA) and transmit the data back to the spacecraft.  As 

part of the wireless sensor network, each of the vital sign sensors would communicate through a 

wireless radio link to an in-suit central radio with a microcontroller unit (MCU) for data 

processing.  The MCU would collect, compress, and transmit the data to the spacecraft for 

analysis.  Wireless sensors need a battery that can last several hours or an energy harvesting 

system to replenish the energy consumed.  To increase the power source lifetime, the sensors, 

radio, and MCU need to use minimal power when active and when the system is asleep. 

 

Transmitting and receiving signals in low-power systems required investigation of 

techniques that would conserve power in each part of the system.  Using a digital system would 

allow for reduced power consumption, reasonable noise immunity, and flexible implementation 

options [1].  At a high level, a communication system requires two parts, a transmitter and a 

receiver.  The transmitter modulates the input signal and transmits the data using the decided 

frequencies and bandwidth.  The receiver demodulates the data from the input signal and 

provides the system MCU with the raw demodulated data.  This thesis focused on low-power 

demodulation design options to recover Frequency Shift Keying (FSK) modulated data. 

 

A primary objective was to reduce the power consumption of the FSK demodulator.  

Four demodulator designs were investigated and compared.  The demodulators were 

implemented digitally and tested using a Microsemi flash-based, Igloo nano Field Programmable 

Gate Array (FPGA).  FGPAs have gained popularity as technological developments allowed 

FPGAs with higher capacity, smaller physical size, and lower cost.  The size, power 

consumption, and further potential development of each design were compared.  An advantage to 

using the Igloo nano FPGA family was that the power consumption was shown to be nearly 

proportional to the size of the digital design implemented on the FPGA [2]. 
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 Frequency Shift Keying 

The data in the system will be modulated using Binary Frequency Shift Keying (BFSK).  

BFSK modulation uses two frequencies; the higher frequency (𝑓𝐻) is transmitted to represent 

when the data is a 1 and the lower frequency (𝑓𝐿) is transmitted when the data is a zero.  An 

example of a BFSK signal is shown in Figure 1-1.  As the BFSK waveform changes between 𝑓𝐻 

and 𝑓𝐿 , the frequency change will be detected and the demodulated data at the bottom of  Figure 

1-1 will be produced by the digital demodulator on the FPGA.   

 

 

Figure 1-1. BFSK and Demodulated Waveforms 

 

The frequencies and bandwidth used vary depending on the FSK system.  The transmitted 

signal frequencies, 𝑓𝐻 and 𝑓𝐿, have a defined frequency separation (∆f).  To demodulate the data, 

the receiver detects when each frequency is transmitted.  ∆f must be large enough so the 

demodulator can distinguish 𝑓𝐻 and 𝑓𝐿, but the ∆f should be minimized to reduce the bandwidth 

required because it will affect the signal power needed [1].  Higher-order Multiple-FSK (MFSK) 

modulations are also used.  MFSK uses 2𝑁 different frequencies to transmit N bits of 

information at a time.  The main advantage of high-order FSK systems is higher data rates can be 

used, so data can be transmitted quicker.  The main disadvantages are a larger bandwidth and 
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more power are required and the demodulation is more complex.  The work in this paper will 

focus only on BFSK demodulation. 

 Demodulation Methods 

FSK modulated signals can be demodulated in several ways.  Common techniques 

include coherent and non-coherent detection methods that use filtering and comparators to 

determine the frequency received.  A phase-locked loop (PLL) could also be used.  A PLL can 

track the input frequency changes, but the PLL complexity may be excessive for a low power 

application since BFSK demodulation only needs to distinguish between two frequencies.  These 

common methods, though proven and effective, require more power and increased design space 

on the FPGA than some simpler demodulators, so other demodulation solutions were pursued.  

The four methods investigated were a Counter, a One-Shot edge detector, a Phase Frequency 

Detector (PFD), and a PFD with a pre-processor.  Each method is introduced below and 

discussed in more detail in chapter 3. 

 

The Counter was used as a period detector.  The frequency of each BFSK frequency, 𝑓𝐻 

and 𝑓𝐿, will be significantly different similarly the period length, 𝑇𝐻 and 𝑇𝐿, of each BFSK input 

will be significantly different.  The Counter measures the period length by counting the number 

of clock cycles during the period of the input.  The counter value will rise and fall with the input 

period length.  A threshold value will be set between the expected values for a 𝑇𝐻 and 𝑇𝐿, and the 

input will be demodulated to a 1 or 0 based on the counter value relative to the threshold. 

 

The One-Shot demodulator detects the edges of the input signal.  The signal is 

demodulated by detecting when more or fewer edges are present over a time period.  More edges 

indicate a higher frequency which is used to determine when the input is 𝑓𝐻 or 𝑓𝐿.  This 

demodulator will output a pulse with each edge detected.  The length of the generated pulse is 

𝑇𝐻, so the pulse output for a 𝑓𝐻 input will be constantly high.  When the input is 𝑓𝐿,the output 

will be a pulse train where the duty cycle (D) can be found with equation 1.1.  The output will be 

filtered to find the average value of the signal.  The output during 𝑓𝐻 will be at or near the 

maximum value, and the output during 𝑓𝐿 will be near D.  A threshold will be set between the 
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expected values.  The actual value being above or below the threshold will determine if the input 

is demodulated to a 1 or 0. 

𝐷 = 𝑇𝐻/(𝑇𝐿 − 𝑇𝐻)     (1.1) 

 

The PFD uses a digital circuit represented in Figure 1-2.  This circuit is commonly used 

as part of digital PLL circuits to track the input frequency as it changes [3, 4].  A PLL uses a 

PFD to provide a measure of the difference between the D flip-flops (DFF) inputs.  A PLL will 

adjust the Reference Frequency using feedback to match the input of the other DFF.  A BFSK 

demodulator only needs to determine which of two possible input frequencies are present, so the 

operation was simplified and the feedback removed.  Using a constant Reference Frequency set 

between the two BSFK frequencies, the PFD can detect whether the BFSK Input is higher or 

lower than the Reference Frequency. 

 

The PFD produces UP and DOWN output pulses based on the time difference of the 

input rising edges.  UP and DOWN outputs pulses are used to indicate if the BFSK Input 

frequency is higher or lower than the Reference Frequency.  The outputs can be filtered and then 

combined by subtracting DOWN from UP.  A threshold will be set between the values expected 

when the BFSK Input is 𝑓𝐻 and 𝑓𝐿.  Comparing the combined output with the threshold will 

determine if the input is demodulated to a 1 or 0.  Figure 1-3 shows example input and outputs 

for a PFD [5]. 

 

The PFD with preprocessing uses the same circuit in Figure 1-2.  The preprocessing was 

added because distortion that can occur with the sampling method used.  The distortion causes 

the input to have some jitter.  The jitter is predictable based on the input frequency and the 

sample frequency.  The preprocessing uses period detection, binomial filtering, and a 

numerically controlled oscillator (NCO) to reduce the distortion and generate a new signal that is 

used as the BFSK Input. 
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Figure 1-2. Phase-Frequency Detector Circuit Model 

 

 

Figure 1-3. Example PFD Inputs and Outputs 
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Chapter 2 - Sampling 

When a signal is sampled correctly, the original frequency information can be recovered 

from the set of samples.  The forms of equation 2.1 show the Nyquist sampling theorem specifies 

the sample frequency (𝑓𝑠) must be at least twice the bandwidth (BW) of the sampled signal to 

preserve the information in the original signal (𝑓𝑖𝑛) similarly a sample must be taken at least at 

the Nyquist sample interval, (𝑇𝑠). 

𝑓𝑠  ≥ 2 ∗ 𝐵𝑊   (2.1a) 

𝑇𝑠  ≤  
1

2𝐵𝑊
        (2.1b) 

To maintain the actual frequencies in 𝑓𝑖𝑛, it must be sampled at twice the maximum 

frequency (𝑓𝑚) present in the signal. 

𝑓𝑠  ≥ 2 ∗ 𝑓𝑚     (2.1c) 

 

Figure 2-1 shows the result of a signal being sampled at several different rates and 

examples of recovered waveforms based on those sample rates.  The graphs show an input signal 

(blue), sample points (red circles), and the recovered waveform from the samples (red).  Figure 

2-1a (top left) used 8 samples per cycle, 𝑓𝑠 = 8 ∗ 𝑓𝑚, and the samples preserved the signal 

frequency and shape.  Figure 2-1c (bottom left) used 0.9 samples per cycle, 𝑓𝑠 = 0.9 ∗ 𝑓𝑚.  Too 

few samples were taken to preserve the frequency, so the output is an aliased frequency.  The 

original frequency and alias are related through 𝑓𝑠, so if the alias and 𝑓𝑠 are known, the original 

frequency may be determined. 

 

Figures 2-1b (top right) and 2-1d (bottom right), both display what can happen if the 

minimum rate of two samples per cycle is used, 𝑓𝑠 = 2 ∗ 𝑓𝑚.  If the samples are taken when the 

waveform is at its peak, the samples can recover the signal frequency and some of the shape.  

The samples could just as likely be taken when the signal is at the zero crossings.  The recovered 

signal would be a dc value where no frequency or shape information could be successfully 

recovered.  These examples illustrate why the theoretical minimum number of samples per cycle 

is two, but practically the number of samples taken per cycle should greater than two and 

preferably several times higher when feasible. 



7 

 

 

Figure 2-1 (a-d). Signal Sample Rates 

 

Equation 2.1a implies that a signal reconstructed from a set of samples can use only 

frequencies from 0Hz up to 
1

2
𝑓𝑠.  Because equation 2.1a specifies BW not 𝑓𝑚, the reconstructed 

signal may not always appear the same as the original.  Aliasing may occur but the information 

can still be preserved.  If the low end of the signal BW is located anywhere other than 0Hz, then 

the Nyquist rate still applies, but the recovered signal may be represented with frequencies that 

are not identical to the original frequencies in 𝑓(𝑡).  To avoid aliasing, the 𝑓𝑠 could be increased 

meet equation 2.1c.  The same process would be used to recover the information from the 

samples, but the sample frequency may need to be increased to a value that is not practical or 

possible in the system. 
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Aliasing can be used intentionally while still preserving the frequency relationships in 

𝑓(𝑡).  When 𝐵𝑊 ≤  𝑓𝑚, the signal information can be preserved despite the original frequencies 

being lost.  When the bandwidth does not start at 0Hz, equations 2.1a and 2.1c are no longer 

equal because  𝑓𝑚 is greater than the BW.  As 𝑓𝑚 increases, equation 2.1c may not be practical, 

so subsampling may be utilized.  For the signals in Figure 2-2, the same 𝑓𝑠 could be used, but if 

𝑓𝑚 is used for both, the signal on the right would need 𝑓𝑠 to be six times higher.  In a low power 

system, the higher 𝑓𝑠 would use more power and require more resources to analyze. 

 

Figure 2-2. Signal Bandwidth Position 

 

 Subsampling 

Subsampling, also called under-sampling, harmonic sampling, band-pass sampling, or 

super-Nyquist sampling is a technique that uses aliasing intentionally to convert high frequency 

signals to baseband [6].  Intentionally aliasing a signal will not allow the original signal 

frequencies to be reconstructed from just the samples; however, the information contained in the 

signal can still be preserved.  As long as equation 2.1a holds, the aliased components maintain 

the signal information through alias frequencies.  If 𝑓𝑠 is chosen correctly, two components 

separated by a frequency difference (𝑓𝑑𝑖𝑓𝑓) in the original spectrum will maintain the same 𝑓𝑑𝑖𝑓𝑓 

after sampling, aliasing, and signal reconstruction [7]. 

 

The choice of 𝑓𝑠 requires some additional planning.  In addition to equation 2.1a, 𝑓𝑠 must 

be chosen so that no two frequencies in the sampled signal have the same alias frequency.  If 

multiple frequencies in the sampled band do have the same alias, there is no way to distinguish 

which frequency produced the alias, so the reconstructed signal is corrupted.  If any part of the 

signal bandwidth lies on a multiple of 𝑓𝑠 2⁄ , then part of the band will overlap and some 
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frequencies will have the same alias [8].  A simple way to find whether any frequencies will 

share an alias is to divide the maximum and minimum frequencies in the signal by 𝑓𝑠 2⁄ , as 

shown in equation 2.2.  If the integer part of the quotients are equal, then none of the signal 

bandwidth lies on a multiple of 𝑓𝑠 2⁄ . 

𝑓𝑙𝑜𝑜𝑟 (
𝑓𝑚𝑎𝑥

𝑓𝑠 2⁄
) = 𝑓𝑙𝑜𝑜𝑟 (

𝑓𝑚𝑖𝑛

𝑓𝑠 2⁄
)  (2.2) 

 

Figure 2-3 shows two signals prior to sampling.  After sampling and reconstruction, both 

bands produced aliases using the same frequencies.  Sampling parameters must be chosen to 

avoid alias overlap or the original signal must be filtered to remove the unwanted components in 

the original signal.  An aliasing diagram can be used to visualize this concept.  As shown in 

Figure 2-3c, an aliasing diagram is a graph of the frequency domain, but instead of extending 

frequency axis continuously to the right, the graph extends to 𝑓𝑠 2⁄  after which the x-axis is 

folded back on itself and placed below.  The axis continues from right to left from 𝑓𝑠 2⁄  to 𝑓𝑠.  

The graph is cut and placed below again and continues from left to right from 𝑓𝑠 to 3𝑓𝑠 2⁄  and the 

frequency-axis continues with an “S” shaped pattern [9]. 

 

 

Figure 2-3. Aliasing Diagram Showing Alias Overlap 

 

The  alias of a signal is related to the original signal through 𝑓𝑠.  Another form of a 

frequency alias is given by equations 2.2, 2.3, and 2.4 below [10].  In the equations, 𝑓𝑎 is the 
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aliased frequency, 𝑓𝑖𝑛 is the input signal frequency being sampled, 𝑓𝑠 is the sampling frequency, 

and W is an integer which is selected so that 𝑓𝑎 is minimized.  W can be found by taking the ratio 

of 𝑓𝑖𝑛 𝑓𝑠⁄  and rounding to the nearest integer.  R represents the fractional remainder rounded off 

to make W an integer.  

 

𝑓𝑎(𝑊) = |𝑓𝑖𝑛 − 𝑊𝑓𝑠|   (2.2) 

𝑊 + 𝑅 = 𝑓𝑖𝑛 𝑓𝑠⁄    (2.3) 

𝑓𝑎 = 𝑅 ∗ 𝑓𝑠    (𝑅 ≤ 0.5)   (2.4𝑎) 

𝑓𝑎 = (1 − 𝑅) ∗ 𝑓𝑠    (𝑅 > 0.5)   (2.4𝑏) 

 

For example, if 𝑓𝑖𝑛 = 10.7𝑀𝐻𝑧 and 𝑓𝑠 = 500𝑘𝐻𝑧, 𝑓𝑖𝑛 𝑓𝑠 = 21.4⁄ , then 𝑊 = 21 and 

𝑅 = 0.4 =  2 5⁄ .  The alias frequency can be found using equation 2.2.  𝑓𝑎 =  |10.7𝑀𝐻𝑧 − 21 ∗

500𝑘𝐻𝑧| = 200𝑘𝐻𝑧.  

 

If present, undesired signals outside of the desired spectrum may alias to the same 

frequency as part of the desired spectrum.  Any signal above 𝑓𝑠 2⁄  will be aliased to some 

frequency in the range of the reconstructed signal spectrum, from 0Hz to 𝑓𝑠 2⁄ .  If undesired 

signals are not accounted for, the reconstructed signal could be corrupted by the alias of an 

undesired signal.  Theoretically an infinite number of frequencies could alias to the same 

frequency.  Though an infinite number of those frequencies will likely not appear in the system, 

some may be present.  The aliased frequency will be a copy of the original frequency that is 

shifted down by a multiple of 𝑓𝑠.  The multiple is represented by W in equation 2.3.  There is an 

𝑓𝑖𝑛 for each value of W that will result in the same alias frequency.  One frequency on each level 

of the aliasing diagram in Figure 2-3 would alias to one of the reconstructed alias frequencies.  

The 𝑓𝑖𝑛 values that have the same alias are spaced by 𝑓𝑠 in the original signal.  This is one reason 

why subsampling must be done carefully.  Using equation 2.2, the values of 𝑓𝑖𝑛that alias to the 

same frequency can be found.  If 𝑓𝑎 = 200𝑘𝐻𝑧 and 𝑓𝑠 = 500𝑘𝐻𝑧, different values of 𝑓𝑖𝑛with the 

same alias can be found by plugging in values for W.  Choosing example W values of 1, 5, 10, 

15, and 25, 𝑓𝑖𝑛 components of 700kHz, 2.7MHz, 5.2MHz, 7.7MHz, and 12.7MHz respectively, 

all will alias to 200kHz when 𝑓𝑠 is 500kHz.   
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Depending on where undesired signals appear in the frequency spectrum, the choice of 𝑓𝑠 

may lead to undesired signals being aliased on top of the desired signal spectrum when it is 

sampled and aliased.  Figure 2-4 shows a spectrum and the effect of aliasing on that spectrum.  

The gray triangle represents the desired signal to be sampled.  The other signals, f1, f2, and f3 

represent undesired signals.  When the spectrum is sub-sampled at 𝑓𝑠, f1 is aliased on top of the 

desired signal alias.  

 

 

Figure 2-4 (a-d). Frequency Domain  

Original Spectrum (Top), Recovered Spectrum With No Filter (Middle), Recovered 

Spectrum Using a Filter (Bottom) and Aliasing Diagram (Right) 

 

One way to combat undesired signals from aliasing to the same frequency as a desired 

signal is to attenuate the undesired signals before the sampling occurs.  An anti-aliasing filter can 

be used to pass the desired signal and attenuate the undesired signals.  The anti-aliasing filter will 

attenuate undesired signals prior to sampling to prevent them from corrupting the desired 

spectrum.  An attenuated portion of the undesired signals will still be present and can alias on top 
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of the desired spectrum, but the filter should attenuate the signal enough so that the power of any 

undesired signals is insignificant compared to the power of the desired signals. 

 

Ideally a brick-wall filter with a bandwidth that perfectly matched the desired signal 

spectrum bandwidth would be used to attenuate all signals outside the desired spectrum.  Since a 

brick-wall filter is impossible in practice, equation 2.5 can be used as a 1
st
 order constraint.  The 

filter needs to be wide enough to pass the whole desired spectrum, but not wider than the 

spectrum that will be reconstructed.  Because the signal reconstructed from the samples can only 

represent frequencies from 0Hz to 𝑓𝑠 2⁄ , the anti-aliasing filter BW should not pass a spectrum 

any wider than what the samples can represent.  If the filter BW is less than 𝑓𝑠 2⁄ , no undesired 

signals will alias to the same frequency as the desired signal spectrum without being filtered first.  

Other signals may pass through the filter, but none that will corrupt the desired signal.  Figure 

2.4c shows that f3 was within the filter BW and passed through the filter, but f3 does not overlap 

with any of the desired signal, so the reconstructed data is not corrupted.  The filter bandwidth 

also needs to be close to centered about the desired signal spectrum.  Just as the desired signal 

spectrum should not cross a multiple of 𝑓𝑠 2⁄ , the filter spectrum should not either.   

𝐵𝑊𝑠𝑖𝑔𝑛𝑎𝑙 ≤ 𝐵𝑊𝑓𝑖𝑙𝑡𝑒𝑟  ≤ 𝑓𝑠 2⁄   (2.5) 

 

In practice the filter does not need to have a very sharp roll-off if 𝑓𝑠 is chosen to be 

greater than 2*BW.  As 𝑓𝑠 gets larger than 2*BW, the filter cutoff can be relaxed more because 

the spectrum of the reconstructed signal is larger, which allows for a more gradual roll-off.  A 

steep roll-off is still desired, but the size and cost of a filter generally increase with the steepness 

of its roll-off. 

   

 1-bit Sampling Distortion 

1-bit sampling uses a comparator to determine whether the input is above or below a 

threshold and records a 1 or 0 depending on the comparison result.  The major advantage of 

using 1-bit sampling are that it can be implemented easily using low complexity and low-power 

circuitry in a digital system.  Because the data recorded only uses one bit per sample, the shape 

of the original signal will be lost due to quantization, but the frequency can be preserved.  A 
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signal transmitting data using BFSK can work well with 1-bit sampling since the data is 

transmitted using changes in frequency.  The signal to be sampled will be centered at 10.7MHz 

and provided by a radio frequency integrated circuit (RFIC) designed at Kansas State University 

[11]. 

 

The ratio of input frequency to the sample frequency indicates how often a sample is 

taken.  Using the values from the previous aliasing example, 𝑓𝑖𝑛 𝑓𝑠  =
10.7𝑀𝐻𝑧

500𝑘𝐻𝑧
= 21.4⁄ , one 

sample will be taken every 21.4 cycles of the input.  Using equation 2.3 and 2.4, W = 21, R = 

0.4, and 𝑓𝑎 = 200𝑘𝐻𝑧.  The R value can be used to find the alias frequency.  The aliasing 

diagram in Figure 2-4 shows visually where a frequency will alias.  The W value in the ratio 

represents how many levels down on the diagram that 𝑓𝑖𝑛 is, and R represents the position of the 

frequency on the level.  As R gets closer to 0, the alias frequency decreases, and as R gets closer 

to its maximum value of 0.5, the alias frequency increases.  This happens because R represents 

the phase shift between each sample taken.  With this example there are 21.4 cycles of the input 

signal between each sample.  If the first sample is taken at the rising edge of a signal or 0° phase, 

the next would be 21.4 cycles later at 0.4*360° = 144°.  The subsequent samples would also shift 

in phase by 40% of a cycles or 144°.  Using a sine wave as an example, the sample will be a 1 if 

taken when the phase is from 0° - 180° and a 0 if taken from 180° - 360°.  Regardless of the 

number of whole cycles skipped between samples, the phase shift, represented by R, is the same.  

A larger change in phase between samples means the value of the sampled value will change 

more often, so the alias frequency will be higher.   

 

A problem that arises when using 1-bit sampling is the waveform reconstructed from the 

samples usually will not have a 50% duty cycle or a consistent period.  The single bit in the 

samples at the given sample rate does not always provide enough resolution for the samples to 

perfectly reconstruct every frequency from 0Hz to 𝑓𝑠 2⁄ .  The sample is either a 1 or 0 and only 

indicates whether the cycle was on the top half or bottom half of the cycle when that sample was 

taken.  The input may have been right at a peak, a zero-crossing, or anywhere in between.  When 

undersampling and using one-bit sampling like this, the samples can rarely reconstruct a 

waveform to perfectly match the expected alias frequency.  The frequency can still be 

reproduced, but the waveform will be reconstructed using a combination of the closest frequency 
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above and closest frequency below the expected alias.  The reconstructed signal will alternate 

between the two frequencies with a repeating pattern.  The average frequency over the full 

pattern will be the expected alias frequency.  The reconstructed wave will have a distorted 

appearance because of the frequency changing back and forth.  The distortion is related to the 

ratio, R, from equation 2.4a. 

  

R is similar to the inverse of the sample rate.  If R, the ratio of the input frequency to the 

sampling frequency, has a remainder of 0.42, then a sample will be taken every 0.42 cycles, or 

there will be 1/R = 2.38 samples per cycle.  The number of samples per cycle is not an integer, so 

there may be either two or three samples taken during a single cycle in this case depending on 

the phase of the first sample.  If an inconsistent number of samples are used to reconstruct each 

cycle in the waveform, the reconstructed cycles will necessarily have inconsistent period lengths 

and therefore an inconsistent frequency.  Some cycles will have a longer or shorter period by one 

sample, but the period lengths in the waveform will follow a repeating pattern.  Since the 

frequency cannot be represented in a single cycle, the reconstructed waveform produces a pattern 

using long and short periods, or a higher and lower frequency that will average out to the 

expected frequency over a complete pattern.  If R = 0.42, there are 2.38 samples per cycle, so 

38% of the input cycles will be sampled three times and the remaining 62% of the cycles will 

only be sampled two times.  The rational form of R, seen in equation 2.6, can be used to find the 

number of cycles (N) and the number of samples (M) in the whole pattern.  N/M = 42/100 = 

21/50, so there will be 21 cycles made of 50 samples in the repeating pattern that is formed.  Not 

all frequencies will require that many samples or cycles for a pattern.  Some patterns require only 

two samples, but some patterns require hundreds of samples to complete a pattern.   

𝑅 = 𝑁 𝑀⁄   (2.6) 

𝑅 − 1 = (1 − 𝑁) 𝑀⁄    (2.7) 

 

The alias frequency and both the frequencies that will be averaged to get the alias 

frequency can be determined using the same ratio. From equation 2.4, the alias will be R times  

𝑓𝑠/2.  When rounded up or down, the inverse of R indicates the number of samples that will be 

used to reconstruct the long or short periods of the waveform respectively.  The sample 

frequency divided by those rounded values of R give the frequencies produced.  For example, if 
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the input was 54.2kHz with a 10kHz sample rate, R = 0.42 = N/M = 21/50.  The alias frequency 

would be 0.42*10kHz = 4.2kHz.  There would be two or three samples per period, so fL = fs/3 = 

3.33kHz and fH = fs/2 = 5kHz. 

 

The following example with Figure 2-5a-d illustrates what happens when 1-bit distortion 

occurs.  When the number of samples per cycle is inconsistent, the waveform periods get 

lengthened and shortened as more and fewer samples are used in a given cycle.  An additional 

sample in a cycle causes the waveform to stay high or low for another sample time interval.  The 

samples will be taken in time intervals that are multiples of R.  Using R = 0.4 = N/M = 2/5, the 

pattern will be two cycles long and have five samples.  Because 1-bit sampling is used, samples 

with a decimal value of 0.5 or above are ones and samples with a decimal value below 0.5 are 

zeros.  Assume that the sampling starts with the beginning of the first cycle at time 0.0s and 0°.  

The sample times in terms of cycles will be R = 0.4, 0.8, 1.2, 1.6, 2.0, … The integer portion of 

the terms are ignored, and the samples are converted to a 1 or 0 based on the range they are in.  

The sampled result will repeat the five-sample pattern: 0-1-0-1-0.  The sampled waveform 

pattern will average out to be the correct frequency using equation 2.4.  The average period when 

taken over the full pattern is equal the expected period based on equation 2.4a.   

 

Figure 2-5 below shows an input signal sampled at two different rates and the 

reconstructed waveforms.  Fig 2-5a and 2-5c show the original signal with the sample points 

marked for 𝑓𝑠 = 0.4𝑀𝐻𝑧 and 𝑓𝑠 = 0.5𝑀𝐻𝑧 on the input signal.  Figure 2-5b and 2-5d show the 

respective reconstructed, aliased waveforms.  The different sample rates show how the aliased 

output can be a consistent frequency or a combination of two frequencies. 

 

The trivial solution for the problem of signal aliases having inconsistent periods would be 

to make sure that any frequencies used have a remainder where N = 1 or 1-N = 1 so that no extra 

processing was required to extract the actual alias frequencies.  If possible that would be great, 

but non-idealities in a real systems cause frequencies to not always be perfectly generated, 

transmitted, or received, so the received signal may drift up or down in frequency from what is 

expected even if the system is setup carefully.  The most straight forward way to get the true 

alias frequency or at least get close to it is to average the periods over a number of cycles.  The 
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best method would be to match the number of cycles in an alias pattern with the number of 

cycles averaged, but that is not always practical especially as full patterns can be lengthy, and 

non-ideal signals have extra error introduced through jitter, frequency drift, and noise.   

 

 

Figure 2-5 (a-d). 1-bit Sampling Distortion Examples  

 

 Averaging 

The most apparent solution to reduce the problems caused by the 1-bit sampling 

distortion is to take the average over several periods of the sampled waveform to get more 

accurate values for the period and frequency.  The problem with averaging is that the length of 

the patterns representing different frequencies varies.  Using, 𝑅 = 𝑁 𝑀⁄ , M samples are needed 

to complete the N cycles in a pattern.  Another way to look at it is 𝑅−1 cycles are needed 

complete the pattern.  If 𝑅−1 is not an integer, then the first multiple of 𝑅−1 that is an integer 

indicates how many cycles need to be averaged to find the period.  A signal can require 

anywhere from one to hundreds of cycles or more to complete waveform pattern.  No matter how 

many cycles are averaged, the result will not be perfect for most frequencies, but averaging can 

still be a significant help and give a good approximation to the actual alias frequency. 
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A whole pattern may not be needed to get a good estimate of a signal period.  Though a 

fraction like 𝑁/𝑀 = 5001 10000⁄  technically requires 5001 cycles to be averaged to find the 

exact average, the fraction is close to 1 2⁄  which needs no averaging.  For most patterns, a 

practical middle ground can be found.  Most long patterns look very similar to a shorter pattern.  

A shorter averaging window can be used which will reduce the overall effect of the distortion 

and give a close estimate to the actual value.  Figure 2-6 below shows the pattern for a frequency 

with R=17/100.  The figure used samples per period vs total samples to show the inconsistent 

period length.  The expected average of the samples (red) and the 3-period moving average 

(green) are shown. 

 

 

Figure 2-6. Period Averaging Example, R = 17/100  

 

The error between the reconstructed signal and the expected average can be measured for 

each period and accumulated using the mean squared error (MSE).  The effect of averaging to 

reduce the error will be tested for different R values.  The error values will be checked for R 

values from 1/100 to 50/100 in steps of 1/100.  R values above 0.5 produce duplicate, mirrored 

values and are not shown.  Figure 2-7 shows the accumulated MSE over 1000 samples with no 

averaging.  Figure 2-8 shows the accumulated MSE over 1000 samples after a length of 8 
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periods have been averaged.  Note the scale of Figure 2-7 has a maximum of 0.25 and Figure 2-8 

has a maximum of 4x10
-3

, so there is a large reduction in MSE. 

 

 

Figure 2-7. MSE with No Averaging 

 

Figure 2-8. MSE with Averaging 8 Periods 

 

The error measures the difference in the number of samples used per cycle and the 

expected.  The averaging decreases the error by nearly a factor of 60 in the worst cases and 

significantly more in other cases.  There is not a particular range of R values that appears suitable 
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to focus on aliasing signals to that area.  Some particular values are better than others, but the 

averaging helps no matter where in the spectrum the signal is aliased.  Averaging over a larger 

number of cycles would reduce the error even more.  The easiest averaging choice for digital 

systems would be a power of two because the divide operation can be implemented in a 

hardware design language (HDL) easily using a shift operator if the divide is a power of two.  

 

Chapter 3 - Demodulator Design 

The signal demodulation will occur after the 1-bit sampling has occurred.  The BFSK 

frequencies will be in the kHz range after the sampling and waveform reconstruction.  This will 

allow the demodulators to run at a lower clock frequency contributing to power conservation in 

the digital design.  To reduce the effects of 1-bit sampling distortion, accumulating over multiple 

periods, using a moving average filter, or binomial average filter were explored as possible 

solutions for each demodulator [12].  Each of the demodulators were tested using parameters 

taken from [13].  The IF 𝑓ℎ, 𝑓𝑙 BFSK frequencies were 10.71MHz and 10.69MHz with a 1kbps 

data rate.  After 1-bit sampling at 75kHz, the baseband 𝑓ℎ, 𝑓𝑙 BFSK frequencies used at the input 

to the demodulators were 35kHz and 15kHz. 

 Counter 

The counter demodulator uses a counter to measure the time between positive edges of 

the input signal, 𝑓𝑖𝑛.  If the period of the BFSK frequencies can be counted, measured, and 

distinguished from each other, then the data in 𝑓𝑖𝑛 can be demodulated.  The number of clock 

cycles between the positive edges of  𝑓𝑖𝑛 measure the period, 𝑇𝑖𝑛.  The clock used for the count is 

the input clock driving the FPGA demodulator module.  The counter output signal can be 

represented using equation 3.1.  As the input changes between 𝑓𝐻 and 𝑓𝐿, the value of Ncount 

produces a pseudo-square wave that mimics the values modulated data.  The value of Ncount is 

inversely proportional to the input frequency.  The output from the counter will need to be an 

actual digital signal, so the output will be created by comparing the Ncount waveform to a 

threshold value.  When Ncount is above or below the threshold, the output will be demodulated to 

a 1 or 0 respectively.       

𝑁𝑐𝑜𝑢𝑛𝑡 =  𝑓𝑐𝑙𝑘 𝑓𝑖𝑛   (3.1)⁄  
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The counter demodulator would benefit from the FPGA clock running at a high 

frequency.  More clock cycles per 𝑓𝑖𝑛 cycle allows higher count values and a larger difference 

between Ncount for 𝑓𝐿 and 𝑓𝐻.  The value Ncount can also be increased by accruing the count over 

multiple cycles of 𝑓𝑖𝑛.  Ncount is accumulated over several periods to reduce the effects of the 1-

bit distortion.   The accumulation required additional registers in the HDL design, and the output 

would be delayed, but the output would have more consistent and clearly defined data 

transitions.  Using a count accumulated over multiple cycles also helps increase the difference 

between the values for each BFSK frequency. 

  

The HDL counter design consists of two blocks, the edge detector and the counter with 

accumulator.  The counter increments on every system clock edge.  The edge detector detects the 

edges of the input signal and prompts the counter to output the current value and start a new 

count.  Ncount is the sum of the most recent four count values. 

 

The counter demodulator signal can be seen in Figure 3-1.  The figure shows four signals.  

From top to bottom, the signals are 1MHz FPGA clock (green), FSK input signal (red) using 𝑓𝐿 = 

15kHz and 𝑓𝐻 = 35kHz, Ncount (blue), binary output (blue).  Ncount is accumulated over four 

cycles, so the expected values using equation 3.1 are 114 and 266.  The Ncount values are 

typically one lower than expected because the clock and signal are not in sync, so the clock cycle 

at the beginning of a 𝑓𝑖𝑛 cycle is usually not captured.  The actual values seen in the simulation 

are 110 and 262.  The threshold is set midway between the values, 186.  The binary output in 

Figure 3-1 is converted to 1’s and 0’s based on the comparison of Ncount with the threshold.  The 

output does not perfectly reflect the input signal.  The Ncount waveform requires a transition time 

and the waveform shortens the time that represents 𝑓𝐿.  Both of these occur because the counter 

uses the length of the input cycle to perform operations.  Because 𝑓𝐿 has a longer cycle, the 

transitions from  𝑓𝐻 to  𝑓𝐿 are slower.  The threshold is also reached slower meaning the 

transitions take more time, so the time that the output can be interpreted as a 1 or 0 is reduced.  

The bit decision will still be determined by taking a sample in the middle of the bit period, so the 

demodulator will still function as intended, but the timing gets delayed slightly.  This problem is 

increased as the ratio of the data rate to 𝑓𝐿 is increased.  If a bit is held for a shorter time, then the 
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transition time becomes more significant.  The simulation in Figure 3-1 does not include 1-bit 

distortion.  The inputs are ideal 15kHz and 35kHz signals. 

   

 

Figure 3-1. Counter Demodulator Simulation 

 One-Shot 

The One-Shot demodulator detects the signal edges of an FSK input signal [13].  The 

number of edges over a period of time is proportional to the frequency of the signal.  Over a set 

period of time, the number of edges can be used to detect whether the FSK input is 𝑓𝐻 or 𝑓𝐿 .  

The number of edges over a period of time can be counted and the result viewed as a pseudo-

analog value that is proportional to the input data. 

 

When an edge is detected on the input, the demodulator produces a pulse.  The length of 

the pulse is designed to be the same length as a period of 𝑓𝐻.  With the input at 𝑓𝐻, the output 

pulses will run together producing a constant value until the input changes to 𝑓𝐿.  When the input 

is 𝑓𝐿, the edges will occur less often.  The produced pulses remain the same length and occur at 

every positive edge as before.  Since there are fewer edges, and those edges are more spread out, 

the average value of the output when the input is 𝑓𝐿 will be lower. 

 

The average value of the output pulses over a time interval can be used to demodulate the 

input.  The average values taken from the output pulses give a pseudo-analog waveform that 

represents the data modulated in the input.  The waveform can be converted back to a binary 

signal by finding an appropriate threshold value and comparing it to against the One-Shot output.  

The result indicates when the signal should be demodulated to a 1 or 0. 

 

The HDL design uses three blocks.  One module detects the edges of the input BFSK 

signal. Another produces a pulse for each edge detected.  The last module averages the pulsed 

signal to make the pseudo-analog waveform and then the bit decision based on the threshold to 
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demodulate the waveform to a 1 or 0.  The output can then be put into a bit-sync module.  The 

clock running at the bit rate can be synced with the data.  The middle of the bit period can be 

found, and the data can be sampled to produce the final demodulated output. 

 

Simulated signals from the One-shot demodulator are shown in Figure 3-2.  From top to 

bottom the signals in the figure are the system clock (green), FSK input (blue), edge detector 

output (blue), output pulse (red), averaged pulse (light green), binary output (yellow).  As a scale 

reference, the yellow vertical bar on the ride edge of the figure intersects the averaged pulse 

waveform near the median value, 950.  The simulation in Figure 3-2 does not include 1-bit 

distortion.  The inputs are ideal 15kHz and 35kHz signals. 

 

 

Figure 3-2. One-Shot Simulation 

 

 Phase-Frequency Detector 

The PFD demodulator is built around the PFD design shown in Figure 3-3.  The PFD 

uses two DFFs and one AND gate.  The inputs to both DFFs are tied to logic high.  In the figure, 

the upper DFF clock is tied to the BFSK input and the lower DFF to a constant Reference 

Frequency, 𝑓𝑟𝑒𝑓.  The 𝑓𝑟𝑒𝑓 is generated by the FPGA for the PFD and set between the BFSK 

frequencies.  𝑓𝑟𝑒𝑓 is 25kHz for the demodulator comparison.  The outputs from the PFD are UP 

and DOWN.  The PFD outputs produce pulses that indicate whether the BFSK Input to the upper 

DFF is at a higher or lower frequency than 𝑓𝑟𝑒𝑓 though only one of the outputs produces outputs 

at a time.  

 

The output pulses timing and duration depend on the spacing between the rising edges of 

the inputs.  On each DFF clock edge, the input is passed to the output.  When both the UP and 

DOWN lines are high, the AND gate output goes high resetting the DFF outputs.  Both remain 
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outputs remain low until an input has a rising edge.  Because the outputs depend on the timing of 

the inputs, the UP and DOWN pulses have an inconsistent pattern, but the output pulse trends 

show the frequency relationship between 𝑓𝑟𝑒𝑓 and the BFSK Input frequency. 

 

Figure 3-3. Phase-Frequency Detector Circuit Model 

 

The general parameters of the output pulses can be determined using the periods of the 

inputs.  The maximum output pulse is the 𝑇𝐿 minus one clock cycle (𝑇𝐶𝑙𝑘), equation 3.2.  The 

minimum pulse is the difference between 𝑇𝐿 and 𝑇𝐻, equation 3.3.  The difference in pulse length 

from one pulse to the next is defined as the Shift and the same as the minimum pulse length, 

equation 3.4.  

𝑇𝑀𝑎𝑥 =  𝑇𝐿 −  𝑇𝐶𝑙𝑘   (3.2) 

𝑇𝑀𝑖𝑛 =  𝑇𝐿 −  𝑇𝐻   (3.3) 

𝑆ℎ𝑖𝑓𝑡 =  𝑇𝑀𝑖𝑛   (3.4) 

 

If 𝑇𝐿 and 𝑇𝐻 are close in length, the output pulse length will slowly increase from 𝑇𝑀𝑖𝑛 to 

𝑇𝑀𝑎𝑥 similar to the top trace (green) in Figure 3-4.  Those output pulses are more difficult to 

average usefully because all the similarly sized pulses are grouped together.  The output will 

show a similar increase even with averaging several pulses.   If there is a larger difference 

between 𝑇𝐿 and 𝑇𝐻, the pulse lengths vary more, and different pulses lengths get interleaved like 

in Figure 3-5.  Both figures show that the pulses have a repeating pattern.  Both figures repeat the 

pattern twice. 
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The length of a full pulse pattern is the least common multiple of the two period lengths, 

equation 3.5.  Outputs like in Figure 3-5 have subpatterns that make up the full pattern.  The 

subpattern refers to the pulses that increase in size before overflowing and starting with a shorter 

pulse.  The subpatterns in Figure 3-5 are three, two, and two pulses long then the full pattern 

repeats.  The number of pulses in a subpattern is given by equation 3.6, and the number of 

subpatterns in full pattern is given by equation 3.7.  Averaging over an output that has 

subpatterns gives a more even output since consecutive pulse lengths vary more. 

𝑁𝐹𝑢𝑙𝑙𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑃𝑢𝑙𝑠𝑒𝑠 =  𝐿𝐶𝑀(𝑇𝐿 , 𝑇𝐻)  (3.5) 

𝑁𝑆𝑢𝑏𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑃𝑢𝑙𝑠𝑒𝑠 =  𝐹𝑙𝑜𝑜𝑟(𝑇𝑀𝑎𝑥 − 1𝑠𝑡 𝑃𝑢𝑙𝑠𝑒/𝑇𝑀𝑖𝑛)  (3.6) 

𝑁𝑆𝑢𝑏𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠 =  (𝑇𝐿 /(𝑇𝐿 − 𝑇𝐻))  (3.7) 

 

 

Figure 3-4. PFD Pulses 
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Figure 3-5. PFD Pulse Subpatterns 

 

Once the output pulses are formed, the relationship between the BFSK and 𝑓𝑟𝑒𝑓 should be 

visually apparent.  A filter averages and smooths the output pulses.  The averaging operation will 

be performed on the UP and DOWN pulses separately.  The outputs are near inverses and the 

values from both show when the BFSK value is higher or lower than the 𝑓𝑟𝑒𝑓.  Only one output 

produces pulses at a time, so one of the outputs will be a constant value of zero.  If DOWN is 

subtracted from UP, the result produces values that show an even larger difference between 

values that represent the BFSK input frequencies than they do separately.  A threshold value will 

be set for the combined output to determine when to demodulate the output to a 1 or 0. 

 

The HDL design uses modules for a clock divider, the PFD, and an averaging module.  

The clock divider is used to establish 𝑓𝑟𝑒𝑓.  The FPGA clock is divided to a frequency that is half 

way between 𝑓𝐻 and 𝑓𝐿.  The PFD code implements the circuit in Figure 3-3.  Separate Verilog 

always blocks are used for the DFFs, so each can perform operations on the appropriate input 

signal edge.  On a positive edge of the input signal, the output register is set high.  A wire 

defined as the AND of both DFF outputs is used to reset the DFF outputs.  On the negative edge 

of the reset signal, both DFF outputs are set low.  The averaging module uses registers and a 

counter.  The register of size N holds the last N outputs bit values.  The register acts as a FIFO to 
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shift the bits in and out.  The counter increments when a 1 is shifted in and decrements if a 1 is 

shifted out to keep a running count of the number of 1’s over the most recent n bits.  The 

simulated output used N = 1000.   

 

Simulated PFD signals are shown in Figure 3-6 below.  From the top down, the signals 

are the 20MHz system clock (green), FSK input (red), reference frequency (red), PFD UP output 

(blue), PFD DOWN output (blue), filtered UP (green), filtered DOWN (green), Sum (green), 

output (yellow).  The frequencies of 35kHz, 15kHz, and 25kHz are used for 𝑓𝐻, 𝑓𝐿, and 𝑓𝑟𝑒𝑓 

respectively with a 1kHz data rate.  The UP and DOWN signals were generated to be ideal.  1-bit 

sampling distortion was not included.  UP and DOWN were filtered using moving average 

filters.  The signal Sum is UP minus DOWN.  The output is determined using a threshold of zero 

for Sum.  For reference, the vertical yellow marker on the right of the figure intersects Sum at a 

value of zero.   

 

 

Figure 3-6. PFD Demodulator Simulation 

 

 Phase Frequency Detector with Preprocessor 

The PFD used here is the same as the PFD demodulator described in the previous section.  

The preprocessor used on the PFD input can correct some of the distortion introduced by the 1-

bit sampling.  The waveform reconstructed from the 1-bit sampling function may have varying 

period lengths as described in Chapter 2.  The preprocessor will reduce the period length 

variations prior to the PFD input.  The preprocessor uses period detection, filtering, and a 

numerically controlled oscillator (NCO) to produce a new signal with more uniform period 

lengths.  The period detector counts the number of clock cycles between edges to measure the 

length of the input signal period.  The counts between the edges are filtered using a binomial 
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filter to provide a more consistent output frequency [12].  The NCO generates a new waveform 

using the filtered value to set the period length.  The block diagram of the preprocessor is shown 

below in Figure 3-7.  All three of the blocks in the preprocessor can be implemented in hardware 

using few resources on a FPGA. 

 

Figure 3-7. PFD Preprocessor 

The HDL design uses modules for each of the pre-processor blocks.  The period detector 

is similar to the Counter demodulator without the accumulator.  A binomial filter is used to 

average the pulse lengths and provide a value to the NCO.  The NCO produces a new BFSK 

input that is passed to the PFD. 

  

The PFD outputs are based on the location of the input edges, so the output pulses are 

inconsistent with the theoretical pattern when the input has variation.  The processed input 

waveform provides a more consistent frequency to the PFD input allowing the outputs to 

produce the expected pulses.  Figure 3-8 below shows the output from the processed input 

 

From the top down, the signals are the 1kHz bit clock, BFSK input with 1-bit distortion, 

processed BFSK waveform, Period Detector output, and the output from the PFD.  The same 

frequencies of 35kHz, 15kHz, and 25kHz are used for 𝑓𝐻, 𝑓𝐿, and 𝑓𝑟𝑒𝑓, but 𝑓𝐻 and 𝑓𝐿 were 

generated to represent the 1-bit distortion expected. 

  

 

Figure 3-8. PFD Preprocessor 
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Digital Loop FilterNCO PFD
Period
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1-Bit

Sampling
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Chapter 4 - Demodulator Comparison Tests 

 Power Consumption 

Power consumption on the Microsemi Igloo FPGA’s are directly related to the size of the 

design and the frequencies used in the design [2, 14].  Amsler shows the power consumption 

trends almost linearly with both parameters.  Libero, the Microsemi Integrated Development 

Environment (IDE), allows the size of the design to be viewed after the files are compiled and 

the layout run.  The layout was optimized in Libero minimize timing and power consumption.  

The estimated power usage can be viewed with the Smart Power feature in Libero.  The Smart 

Power calculations are typically slightly low compared to observed power, but the values do 

provide a good approximation [2].  Smart Power also gives an approximate battery life based on 

a given battery size for the design.  The battery life does not always follow with the size of the 

design.  The actual power usage will vary based on several factor including, the exact FPGA 

used, the voltages used on the FPGA, and the clock frequencies used to run each module.  These 

values do provide a good means of comparison of the demodulator designs because all power 

approximations will use the same factors except for the demodulator design. 

 Size of Design 

The size of the design can be measured within Smart Power.  The design size of the 

AGLN250 FPGA on the development board used for this project can be measured by the number 

of flip-flops (FF) used.  The AGLN250 has 6144.  The FPGA uses components other than FFs, 

but the number of FFs used provides a good indicator of design size. 

 

A simpler design can lead to a smaller design.  The Counter was the simplest design 

discussed in this paper and produced the smallest FPGA design.  The Counter used 356 of 6144 

FFs.  The simplicity and size are the greatest advantages to the Counter.  The downside of the 

design is that its functionality is very dependent on the clock frequency.  The design can be 

slowed, but the reaction time of the Counter will also be slowed meaning it will not work at 

higher data rates.  As expected, the more complicated designs required increased FPGA 

resources to implement.  The One-Shot, PFD, and PFD with preprocessor used 269, 2574, 3066 

FFs respectively. 
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 Power 

Ultimately, the power consumption and battery life are the most important factors.  

Design size and frequency contribute to the power, but the primary figure of merit must be 

power consumption.  Using as little power as possible and extending battery life is the most 

important factor.  The battery life calculations were found using Smart Power assuming a 

100mAh battery.  The power and battery life for each demodulator are shown in Table 4-1. 

 

Demodulator Power (mW) Design Size 

(FFs) 

Active Time (hr) per 

100mAh Battery  

Counter 0.30 356 398 

One-Shot 0.54 269 222 

PFD 

PFD w/preproc 

6.10 

6.69 

2574 

3066 

19.7 

17.9 

Table 4-1. Demodulator Power Consumption 

 

  Again, these values do not exactly reflect how the demodulators will perform on any 

given system.  The power measurements are approximations made with several assumptions, but 

because these values were all found using the same set-up, the measurements can be useful for 

comparing the demodulators. 

 Error Analysis 

The demodulator performance in a system must also be evaluated when noise is present 

together with the signal.  The noise performance was evaluated using random input data.  Errors 

are projected on top of the data.  The errors invert the input causing the BFSK signal to use the 

incorrect frequency.  A random number of errors, from 1 to 5, with random lengths, up to 𝑇𝑏 

were projected onto the input.  The total of the errors covered between 0.1% and 10% of the 

input.  The induced error inverted the logic level of the input causing the opposite IF BFSK 

frequency to be used.  The outputs of the demodulators were checked to see how many of the 

errant bit decision were made by each demodulator compared to the error free input.   MATLAB 

was used to simulate 10,000 inputs with errors.  The outputs were plotted with the error percent 

on the x-axis and the number of errors in the demodulated output on the y-axis.  To better view 
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the data, box plots were used to show the distribution of the output data.  Figures 4-1 through 4-4 

show the box plots of each demodulator.   

 

Figure 4-1. Counter Error Simulation Results 

 

 

Figure 4-2. One-Shot Error Simulation Results 
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Figure 4-3. PFD Error Simulation Results 

 

 

Figure 4-4. PFD with Preprocessor Error Simulation Results 
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Each of the demodulators has very similar error box plots.  The total number of errors over the 

10,000 simulations was accumulated for each demodulator.  Those results are shown in Table 4-

2 below.  From this error analysis, all of the demodulators are nearly equivalent for this setup of 

𝑓𝐻, 𝑓𝐿, 𝑓𝑠, and 𝑇𝑏.   

 

Demodulator Total Simulation Errors 

Counter 13576 

One-Shot 13295 

Phase-Frequency Detector 13384 

Phase Frequency Detector w/Preprocessor 13365 

Table 4-2 Error Simulation Results 

 

 Eye Diagram 

As a first order test to compare the noise added by each of the demodulators, an eye diagram for 

each is shown below in Figure 4-5.   

 

Figure 4-5. Demodulator Eye Diagrams 
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The waveform data was pulled from simulations in ModelSim with the results scaled and 

plotted in MATLAB.  Each of the plots was scaled to make the minimum zero and maximum 

one for easy comparison.  Each of the eye diagrams showed similar results for the maximum low 

value, approximately 0.2, and minimum high value, approximately 0.8.  These were first order 

simulations.  The ripple in the waveforms could be reduced if picking the inputs frequencies to 

provide the demodulator inputs with closer to ideal inputs, but the case used in the simulation 

provides a representative case for when input are not picked specifically for demodulator 

performance.   Overall, the noise in each of the demodulators appears to be about equal. 

 

 

Chapter 5 - Conclusions and Future Work 

Low-power designs will continue to gain opportunities for use with FPGAs as the 

technology progresses.  The BFSK demodulators investigated were all demonstrated to be viable 

options for a low-power FPGA-based system.  The best one for a particular design would depend 

on the system requirements.  For the NASA EPSCoR project using the demodulators as part of a 

network of body sensors, the PFD with preprocessor showed the highest ceiling for usefulness 

based on power consumption, and transition time between input changes.  As the bit rate and 

BFSK frequencies were increased, the PFD with preprocessor would be expected to outperform 

the other demodulators.  If a low bit rate was used in the final system, the Counter or One-Shot 

would be the best options. 

 

While the performance of all the demodulators is tied to the BFSK Input frequencies and 

the frequency separation, the counter is the most limited.  The Counter allows for a very simple 

and small design, but the design is limited based on the number of clock cycles counted between 

edges.  Averaging over several periods helps, but that also adds delay and increases transition 

time.  The Counter does use the least power, so if the Counter were to meet system requirements, 

the Counter would be an obvious choice.  The One-Shot is similar in that enough edges have to 

accumulate before the output can develop into a 1 or 0.  The Counter and One-Shot will be 

slower with lower frequencies and have more defined outputs with larger frequency separation. 

 



34 

 

The PFD, with or without the preprocessing, is also dependent on the input frequencies, 

but as soon as an edge occurs, an output pulse is started.  The output still needs to be filtered, but 

less transition time in the PFD is needed before changing between UP and DOWN output pulses.  

Once the BFSK input changes, the output pulse reflect the change.   

 

If the frequencies out of the 1-bit sampling could be picked to optimize the BFSK input 

into the PFD, the performance could increase and the preprocessor may not be needed.  With the 

right frequencies, the averaging could be reduced or eliminated, the transition time could be 

reduced, and the ripple in the output pulses could be reduced.  Those improvements would lead 

to higher data rate capability, less delay, decrease in design size, and decreased power 

consumption. 

 

This study was mainly comparing the demodulator designs, but several steps could be 

taken to minimize the power consumption once a design is selected.  Reducing every register to 

the bare minimum size would reduce the static and dynamic power usage.  Synthesis of the HDL 

design should remove unneeded parts or registers, but changing the design directly would be 

cleaner and less ambiguous if a question of logic operation were to arise.  Reducing every clock 

rate as much as possible would be the next step.  Internal clocks could likely be reduced with no 

harmful effect on the demodulated output.  Writing efficient code to perform operations in 

parallel could be another option to reduce time and power.  The HDL designs all used non-

blocking statements which may take more time resulting in more power usage.  Every bit of 

improvement helps when considering low-power designs especially when the power may rely 

solely on an energy harvesting solution. 

 

The input frequency could even be manipulated in a different way.  There are several 

frequencies that are important to the design.  The clock frequency will play a large part in how 

much power the design uses and also the data rate that the design can demodulate.  The BFSK 

frequencies will play a part in the bandwidth of the signal, the ease of demodulating the under-

sampled signal, and influence the maximum data rate that can be used.  The data rate, 𝑅𝑏, must 

be a much lower frequency than 𝑓𝐿.  In order to detect the frequency, several cycles of 𝑓𝐿 must be 

present for the demodulator to measure.  If 𝑓𝐿was 20kHz and the data rate was 10kHz, 𝑓𝐿 would 
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only have time for two cycles before the BFSK Input would change back to 𝑓𝐻.  That is not 

enough for the demodulators to make a good measurement.  A first order rule of thumb could be 

for the data rate to be an order of magnitude lower than 𝑓𝐿. 

 

One option to get around the requirement 𝑓𝐿 ≫  𝑅𝑏 could be to choose the sample 

frequency so 𝑓𝐿 is very close to 0Hz.  The subsampled BFSK signal would use a 𝑓𝐿 near 0Hz and 

𝑓𝐻 near the frequency separation, 2∆f.  The signal would then appear to be similar to modulated 

using On-Off Keying (OOK).   

 

 

Figure 5-1. OOK Waveform [15] 

 

The demodulator in this case would need to detect when the signal is present and when it 

is not.  A low pass filter is commonly used for OOK demodulation.  Any of the demodulators 

investigated in this paper would also work.  One of the main advantages to using BFSK 

frequencies that could alias to make an pseudo-OOK signal is that the data rate could potentially 

be larger than 𝑓𝐿.  The requirement would change to 𝑓𝐻 ≫  𝑅𝑏.  Lower BFSK frequencies could 

also be used, so a lower clock frequency could run the demodulator leading to lower power 

consumption.  The 1-bit distortion may be less of a concern too.  Averaging the signal after 1-bit 

sampling would still be desirable, so 𝑓𝐻 would be more consistent, 𝑓𝐿 would not be of much 

concern as long as it was still close to 0Hz. 
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The clock frequency used in the design will not need to be as high as the board clock in 

most cases.  The frequency needed will depend partly on the FSK frequencies used and the data 

rate.  The Counter may need to be run with a faster clock for the design to work better.  The One-

Shot and PFD may be able to run on a slower clock. 

 

Regardless of the frequencies or the type of demodulator used, low-power systems 

implemented on Field Programmable Gate Arrays (FPGA) have become more practical with 

advancements leading to decreases in FPGA cost, power consumption, and physical size.  In 

systems that may need to operate for an extended time independent from a central power source, 

low-power FPGA’s are a reasonable option.  Combined with research into energy harvesting 

solutions, a FPGA-based system could operate independently indefinitely. 
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Appendix A – Hardware Design Language (HDL), Verilog Code 

 Counter 

// Counter_all.v 

///////////////////////////////////////////////////////////////// 

// Riley Harrington 

// Kansas State University 

// Electrical and Computer Engineering 

 

// This file contains the modules used in the Counter BFSK  

// demodulator. 

// Modules:  

// -Counter 

// -Edge Detector 

///////////////////////////////////////////////////////////////// 

`timescale 1ps / 1ps 

// Counter Module 

module Counter_all(clk, ar, SigIn, SigOut); 

  // inputs 

  input clk; 

  input ar; 

  input SigIn; 

  // outputs 

  output wire SigOut; 

  // end module I/O 

  // Parameters 

  parameter CountSize = 20; 

  parameter RegSize = 15; 

  parameter Ref_clock = 2; 

   

  // For a clock frequency of 20MHz and FSK frequencies of 15kHz and 35kHz,  

  // the count value will be between 5333 for 15kHz and 2286 for 35kHz. 

  // Thoase numbers are found by dividing the clock frequency by the FSK 

  // frequency then multiplying the result by four since the four cycles are 

  // accumulated before setting the value to Count. 

  // 20MHz/15kHz = 1333.3 --> 1333.3*4=5333 

  // 20MHz/35kHz = 571.43 --> 571.43*4=2286 

  // The mid-point between the numbers is ~3800 

  parameter Threshold = 180;//3800; 

  // end parameters 

  // Registers 

  reg [20:0] OutputCount, CountUp; 

  reg AvgOut; 

  reg [RegSize-1:0] S4, S3, S23, S34, S123, S234, S1234, Sout; 

  // end registers 

  // Wires & assignments 

  wire EdgeP, EdgeN;   

  wire Edges; 

  wire ref_clk; 

  assign Edges = EdgeP || EdgeN;  

  assign SigOut = (Sout > Threshold)? 1'b1:1'b0; 

  // end wires 
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  // Calls to other modules     

  EdgeDetect_Cnt Edge1 ( .clk(clk), .ar(ar), .SigIn(SigIn),  

                         .EdgeOutP(EdgeP), .EdgeOutN(EdgeN) ); 

                          

  Clk_Div #(Ref_clock) RefClkDivider( .clk(clk), .ar(ar), .d_clk(ref_clk) ); 

  // end module calls 

       

  always @(posedge ref_clk or negedge ar) 

    if(~ar) 

      begin 

        // Initialize reg values to 0 

        CountUp = {CountSize{1'b0}}; 

        OutputCount = {CountSize{1'b0}};         

        S4 = {RegSize{1'b0}}; 

        S3 = {RegSize{1'b0}}; 

        S23 = {RegSize{1'b0}}; 

        S34 = {RegSize{1'b0}}; 

        S123 = {RegSize{1'b0}}; 

        S234 = {RegSize{1'b0}}; 

        S1234 = {RegSize{1'b0}}; 

        Sout = {RegSize{1'b0}}; 

      end 

    else 

      if(EdgeP) 

        begin 

          // bring in new sample & roll older values 

          S3 = S4; 

          S4 = CountUp; 

          S23 = S34; 

          S34 = S3 + S4; 

          S123 = S234; 

          S234 = S23 + S34; 

          S1234 = S123 + S234; 

          Sout = S1234 >> 4'd4; 

          CountUp = {CountSize{1'b0}};         

        end // end if EdgeP block 

      else 

        begin 

          // If no edge, count number of clock cycles since last edge 

          CountUp = CountUp + 1; 

             

          //Go through output count 

          if(OutputCount > Sout) 

            begin 

              // AvgOut = ~AvgOut; 

              OutputCount = 10'b0; 

            end 

          else 

            begin 

              OutputCount = OutputCount + 1; 

            end 

        end // end EdgeP else block 

         

endmodule // end "Counter" 
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 One-Shot 

// OneShotDemod.v 

// Riley Harrington 

// Kansas State Univesity 

 

// This file will contain all modules used to run the 1-shot demodulator 

// 1. Edgedetector which will indicate input positive edges 

// 2. PulseOut which will output a pulse of a certain length after a positve 

data edge 

// 3. Moving Average Filter will smooth out the output from PulseOut and  

//    make a decision based on a threshold whether the data is a one or zero. 

// 4. Bit-sync will sync to the output of the filter and then take a sample 

at mid bit-period 

 

// This module will provide all parameter values, input, wire, and outputs 

needed 

// for a complete demod that can be tested on a FPGA. 

`timescale 100ps / 100ps 

 

module OneShotDemod(clk, ar, SigIn, DemodOut); 

  input clk; 

  input ar; 

  input SigIn; 

   

  parameter FilterSize = 20; 

  output wire DemodOut; 

   

  // This parameter is used to determine how many clock cycles will be  

  // in the time frame to check for edges 

  parameter FilterLen = 20; 

  

  // This parameter is used to determine how long the output pulse will last 

  // Ideally the pulse will last the same time as a period of the higher  

  // frequency used in the FSK. 

  parameter PulseLen = 50; 

  parameter Threshold = 1000; 

  wire SigIn; 

  wire EdgeOutP; 

  wire PulseOut; 

  wire DataOut; 

  wire [FilterSize-1:0] AvgOut; 

  assign DemodOut = (AvgOut > Threshold)? 1'b1:1'b0; 

 

  always @(posedge clk or negedge ar) 

    if(~ar) 

      begin 

      end 

    else 

      begin 

      end 

         

  // Finds edges on input on SigIn 

  EdgeDetect Edge1( .clk(clk), .ar(ar), .SigIn(SigIn), .EdgeOutP(EdgeOutP), 

.EdgeOutN() );     

 

  // Takes output from EdgeDetect and outputs a pulse when an edge is found 
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  // Output pulse should be close to or the same as the number of clock 

cycles in the period 

  // of the higher frequency 

  // Tclk = 1/20MHz = 5e-8, T1 = 1/35kHz = 2.857e-5 ->570 

  OutputPulse #( .PulseLen(571), .PulseReg(12) )  

         Pulse1( .clk(clk), .ar(ar), .SigIn(EdgeOutP), .PulseOut(PulseOut) );     

 

  // Moving Average Filter 

  // This should be set long enough to cover a full period of the longer FSK 

frequency period 

  MovingAvg #( .FilterLen(FilterLen), .FilterSize(FilterSize) ) // 

         Avg1( .clk(clk), .ar(ar), .In(PulseOut), .Out(AvgOut) ); 

        

  // should have a reg long enough to count the number of clock cycles in a 

data bit period 

  BitSync #( .Divider(10000) )  

      Sync1( .clk(clk), .ar(ar), .DataIn(FilteredOut), .DataOut(DataOut) );           

endmodule 

 

 

////////////////////////////////////////////////// OutputPulse 

// OutputPulse.v 

 

// Riley Harrington 

// Kansas State University 

 

// This module will be used to Output a pulse 

// The pulse will be put out when an input positive edge is found 

// on the input. The pulse will last for a number of clock cycles  

// indicated by the parameter PulseLen. 

 

`timescale 100ps / 100ps 

 

module OutputPulse(clk, ar, SigIn, PulseOut); 

  input clk; 

  input ar; 

  input SigIn; 

  output wire PulseOut; 

 

  // Pulse Len determines how long the output pulse will be 

  // Set this to be the length of the high FSK period. 

  parameter PulseLen = 25;  

  // Used to set register length. 

  parameter PulseReg = 6; 

  // This reg keeps track of the number of ones of the filter length. 

  reg [PulseReg-1:0] Counter; 

  wire EdgeOutP; 

  assign EdgeOutP = SigIn; 

 

  // Output assignment (Wire is asynchronous, but Counter changes on 

posedge.) 

  assign PulseOut  = (Counter == 0)? 1'b0:1'b1;   

   

  always @(posedge clk or negedge ar) 

    if(~ar) 

      begin 

        Counter = {PulseReg{1'b0}}; 
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      end 

    else 

      begin 

        if(EdgeOutP) 

          begin 

            Counter = PulseLen; 

          end 

        else 

          begin 

            // If Counter is at zero, no action (Counter=Counter), else 

decrement Counter 

            Counter = (Counter == 0)? Counter:(Counter-1);             

          end 

      end 

endmodule // end OutputPulse 

 

 

 

 Phase Frequency Detector 

// PFD.v 

// Riley Harrington 

// Kansas State University 

 

// Phase-Frequency Detector (PFD) 

// PFD based on digital circuit using two D flip-flops and an AND gate  

// with "UP" and "DOWN" outputs from DFFs.  D inputs on both FFs are  

// tied high.  The Q output of the FFs will go HIGH at the next clk  

// posedge after the input goes HIGH.  The first output to go HIGH 

// will remain HIGH until the other output also goes HIGH.  When both 

// outputs are HIGH, the AND gate will reset the FF outputs. 

// The UP and DOWN outputs indicate whether the input signal frequency 

// (InA) is higher or lower than the reference frequency (InB). 

 

`timescale 100ps/100ps 

 

module PFD(clk, ar, InA, InB, up, down); 

  input clk; 

  input ar; 

  input InA; 

  input InB; 

  output reg up; 

  output reg down; 

  

  // DFF_Rst will reset both FFs if a reset is needed either 

  // from the system level (~ar) or from the PFD, both inputs to the 

  // AND gate being HIGH.  In either case, the outputs, up and down, 

  // will be set to their default, LOW. 

  // **The AND gate is incorporated into this reset 

  wire DFF_Rst; 

  assign DFF_Rst = ( (up && down) || (~ar) )? 1'b0:1'b1; 

   

  // This always block will take in the InA input signal. 

  // The input will be transferred to the output on the 

  // positive edge of clk.  The output will be reset to 

  // LOW when there is a system reset or the other output, 
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  // (down) goes HIGH. 

  always @(posedge InA or negedge DFF_Rst) 

    if(~DFF_Rst) 

      begin 

        up = 1'b0; 

      end 

    else 

      begin 

        up = 1'b1; 

      end 

       

  // This always block will do the same as the above InA 

  // block except the input is from InB and the output  

  // is "down" not "up". 

  always @(posedge InB or negedge DFF_Rst) 

    if(~DFF_Rst) 

        begin 

          down = 1'b0; 

        end 

    else 

      begin 

        down = 1'b1; 

      end 

endmodule 

 Phase Frequency Detector with Preprocessor 
// PFD_preproc_all.v 

// Riley Harrington 

// Kansas State University 

 

// Phase-Frequency Detector (PFD) 

// PFD based on designs using two D-flip-flops and an AND gate  

// with "UP" and "DOWN" outputs 

// D inputs on both FFs are tied high. 

// The Q output of the FF will go HIGH at the next the posedge of the clock 

after the input goes HIGH. 

// That output will remain HIGH until the other output also goes HIGH. 

// The AND gate will reset the FFs when both outputs are HIGH. 

// The UP and DOWN outputs should indicate whether the input signal frequency 

(InA) 

// is higher or lower than the reference frequency (InB).  

`timescale 100ps/100ps 

 

module PFD_proproc_all(clk, ar, SigIn, DemodOut); 

  input clk; 

  input ar; 

  input SigIn; 

  output wire DemodOut; 

  // Parameters 

  parameter Threshold = 1000; 

  // Parameters for called modules 

  parameter FilterLen = 1000; 

  // The FilterSize register needs to be large enough to count up to the 

value of  

  // FilterLen, so the requirement is 2^FilterReg > FilterLen   

  parameter FilterSize = 20;  
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  parameter skipnum = 2; 

  parameter CountSize = 20; 

  parameter RegSize = 15; 

  // end parameters 

  // Registers 

  reg Up, Down; 

  // end registers 

  // Wires and Assignments 

  // DFF_Rst will reset both of the FFs if a reset is needed either 

  // from the system level (~ar) or from the PFD (both inputs to the 

  // AND gate being HIGH.  In either case, the outputs, up and down, 

  // will be set to their LOW default value. 

  // **The AND gate is incorporated into this reset 

  wire DFF_Rst; 

  assign DFF_Rst = ( (Up && Down) || (~ar) )? 1'b0:1'b1; 

  wire Sample_clk; 

  wire BFSK_In; 

  wire TENMHz_clk; 

  wire BFSK_Ref; 

  wire BFSK_Baseband; 

  wire BFSK_Baseband_avg; 

  wire [FilterSize-1:0] UpAvg; 

  wire [FilterSize-1:0] DownAvg; 

  wire [FilterSize-1:0] UpDown; 

  assign DemodOut = (UpDown > Threshold)? 1'b1:1'b0; 

  assign UpDown  = UpAvg  - DownAvg; 

  // end wires 

 

  // Module calls 

  // Create PFD reference from 20MHz clock.  BFSK are 15kHz & 25kHz, so 

divide down to 25kHz. 

  Clk_Div #(399) RefClkDivider1 ( .clk_in(clk), .ar(ar), .clk_out(TENMHz_clk) 

); 

  // Divide 20MHz system clock down to 10MHz for 1-bit Sampling 

  Clk_Div #(1) RefClkDivider2 ( .clk_in(clk), .ar(ar), .clk_out(BFSK_Ref) );   

  // 1-bit sample BFSK input to bring it down to a BFSK_baseband signal 

  OneBit_Sampling OneBitSample1 (.SampleClock(TENMHz_clk), .ar(ar), 

.SigIn(SigIn), .SampledOut(BFSK_Baseband) ); 

 

  // #(.CountSize(CountSize), .RegSize(RegSize))  

  Binomial_4thOrder BinAvg4( .clk(clk), .ar(ar), .SigIn(BFSK_Baseband), 

.SigOut(BFSK_Baseband_avg) ); 

  // MovingAvg Up output 

  MovingAvg //#(.FilterLen(FilterLen), .FilterSize(FilterSize), 

.skipnum(skipnum))  

            PFDFiltAvgUp( .clk(clk), .ar(ar), .In(Up), .Out(UpAvg)); 

  // MovingAvg Down Output 

  MovingAvg //#(.FilterLen(FilterLen), .FilterSize(FilterSize), 

.skipnum(skipnum)) 

            PFDFiltAvgDown( .clk(clk), .ar(ar), .In(Down), .Out(DownAvg)); 

  // end module calls 

 

  // This always block will take in the InA input signal. 

  // The input will be transferred to the output on the 

  // positive edge of the clock.  The output will 

  // be reset to LOW when either there is a system reset or 

  // the output, (down) from the other output goes HIGH. 
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  always @(posedge BFSK_Baseband_avg or negedge DFF_Rst) 

    if(~DFF_Rst) 

      begin 

        Up = 1'b0; 

      end 

    else 

      begin 

        Up = 1'b1; 

      end 

       

  // This always block will do the same as the above 

  // except the input is from InB and the 

  // output is "down" not "up". 

  always @(posedge BFSK_Ref or negedge DFF_Rst) 

    if(~DFF_Rst) 

      begin 

        Down = 1'b0; 

      end 

    else 

      begin 

        Down = 1'b1; 

      end 

endmodule 

 Supporting Modules 

 Edge Detector 

////////////////////////////////////////////////// EdgeDetect 

// This module will take in an input signal and  

// output a pulse when there is an edge detected. 

// A parameter will specify when positive or negative 

// edges or both are desired. 

 

module EdgeDetect(clk, ar, SigIn, EdgeOutP, EdgeOutN); 

  // inputs 

  input clk; 

  input ar; 

  input SigIn; 

  // outputs 

  output wire EdgeOutP, EdgeOutN; 

  // end I/O 

   

  // EdgeIn will record the last two input bits. 

  // These will be used to find when edges have occurred. 

  reg [1:0] EdgeIn; 

   

  // Wires &  assignments 

  assign EdgeOutP = (~EdgeIn[1] & EdgeIn[0])? 1'b1:1'b0; 

  assign EdgeOutN = ( EdgeIn[1] &~EdgeIn[0])? 1'b1:1'b0; 

  // end wire assignments 

 

  always @(posedge clk or negedge ar) 

    if(~ar) 

      begin 



47 

 

        EdgeIn = 2'b0; 

      end 

    else 

      begin 

        EdgeIn = {EdgeIn[0] ,SigIn}; 

      end // end always if-else block       

endmodule // end "EdgeDetect" 

 

 Clock Divider 
 

////////////////////////////////////////Clock Divider 

module Clk_Div(clk, ar, d_clk); 

  input clk; 

  input ar; 

   

  output reg d_clk; 

 

  parameter div = 1; 

  parameter divsize = 2;   

  reg [divsize-1:0] divreg; 

 

  always @(posedge clk or negedge ar) 

    if(~ar) 

      begin  

        d_clk = 1'b0;  

        divreg = {divsize{1'b0}}; 

      end//reset block 

    else 

      begin 

        divreg = divreg + 1; //increment count 

          if (divreg > div) //check if count has reached divisor 

            begin 

              d_clk = ~d_clk; //if divisor reached, toggle d_clk 

              divreg = {divsize{1'b0}}; //and clear the divreg 

            end 

      end     

endmodule //end clock divider 

 Bit Sync 

////////////////////////////////////////////////// BitSync 

// BitSync.v 

// Riley Harrington 

// Kansas State University 

 

// This module will have the following tasks 

// 1. Produce a data clock signal at the same frequency as the data rate 

//   -The data rate will be known. 

// 2. Align the negative edge of the data clock with the edges of the data 

// 3. Take a sample on the positive edge of the data clock.  The sampled 

value 

//    will be transferred to the output at that time. 

 

// This module will take a input signal bit stream, sync with the data, and 

// sample the data in the middle of the bit periods. 
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// If there are mulitple of the same bits in a row, no data transition will 

// be detected, so the sample clock will not be aligned in that perdiod. 

// The negative edge will be lined up with the data edges and samples will be 

// taken on the positive edges of the sample clock. 

`timescale 100ps/100ps 

 

// Data is independent. 

// on system clock edges, check for data edges 

// If data edge detected, align clock (reset) 

// on data clock posedge, take sample 

module BitSync(clk, ar, DataIn, DataOut); 

    input clk; 

    input ar; 

    input DataIn; 

   // output wire Sample;//probably doesn't need to be an output 

    output wire DataOut; 

    

   // SampledData will store the latest sample from the input. 

    reg SampledData; 

    // DataOut will reflect the latest sample from SampledData. 

    assign DataOut = SampledData;     

    // This reg will have the newest bit from the DataIn shifted in 

    // It will be used to find when data edges occur 

    reg [1:0] DataEdge; 

    // Divider should divide the system clock to generate a clock 

    // that is the same frequency as the data. (One cycle per data bit 

period) 

    parameter Divider = 99;  

    wire DataClk; 

    wire RstDataClk; 

    assign RstDataClk = (DataEdge[1] != DataEdge[0])? 1'b0:1'b1;  

    // This will produce a data clock.  Once the clock is aligned with the 

data, the  

    // posedges, will indicate when to take a sample. 

    Clk_Div #( .div(Divider) ) DataClock ( .clk(clk), .ar(RstDataClk), 

.d_clk(DataClk) ); 

        

    // This takes the sample of DataIn and stores it in SampledData 

    // The output DataOut is assigned to SampledData, so the output reflects 

the 

    // value of SampledData. 

    always @(posedge DataClk or negedge ar) 

      if(~ar) 

        begin 

          SampledData = 1'b0; 

        end 

      else 

        begin 

          SampledData = DataIn; 

        end 

     

   // This is used to detect when an edge of DataIn occurs. 

   // Those data edges are used to reset/align DataClk 

    always @(posedge clk or negedge ar) 

        begin 

            if(!ar) 

                begin 
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                  DataEdge = 2'b11; 

                end 

            else 

              begin 

                DataEdge = {DataEdge[0], DataIn};                           

              end 

        end 

endmodule // end "BitSync" 

 

 Binomial Average Filter 

// Binomial_avg.v 

// Riley Harrington 

// Kansas State University 

`timescale 1ps / 1ps 

 

module Binomial_4thOrder(clk, ar, SigIn, SigOut); 

  // inputs 

  input clk; 

  input ar; 

  input SigIn; 

  // outputs 

  output wire SigOut; 

  // end I/O 

  // parameters 

  parameter CountSize = 20; 

  parameter RegSize = 15; 

  // end parameters 

  // registers 

  reg [20:0] OutputCount, CountUp; 

  reg AvgOut; 

  reg [RegSize-1:0] S4, S3, S23, S34, S123, S234, S1234, Sout; 

  // end regs 

   // wires and assignments 

  wire EdgeP, EdgeN;   

  wire Edges; 

  assign Edges = EdgeP || EdgeN;  

  assign SigOut = AvgOut; 

  //end wires 

   

  // module calls 

  EdgeDetect #() Edge1 ( .clk(clk), .ar(ar), .SigIn(SigIn),  

                         .EdgeOutP(EdgeP), .EdgeOutN(EdgeN) ); 

  //end calls 

   

  always @(posedge clk or negedge ar) 

    if(~ar) 

      begin 

        // Initialize reg values to 0 

        CountUp = {CountSize{1'b0}}; 

        OutputCount = {CountSize{1'b0}};             

        S4 = {RegSize{1'b0}}; 

        S3 = {RegSize{1'b0}}; 

        S23 = {RegSize{1'b0}}; 

        S34 = {RegSize{1'b0}}; 



50 

 

        S123 = {RegSize{1'b0}}; 

        S234 = {RegSize{1'b0}}; 

        S1234 = {RegSize{1'b0}}; 

        Sout = {RegSize{1'b0}}; 

        AvgOut = 1'b0; 

      end 

    else 

      begin 

        if(EdgeP) 

          begin 

            // bring in new sample & roll older values 

            S3 = S4; 

            S4 = CountUp; 

            S23 = S34; 

            S34 = S3 + S4; 

            S123 = S234; 

            S234 = S23 + S34; 

            S1234 = S123 + S234; 

            Sout = S1234 >> 4'd4; 

            CountUp = {CountSize{1'b0}}; 

          end 

        else 

          begin 

            // If no edge, count number of clock cycles since last edge 

            CountUp = CountUp + 1; 

            //Go through output count 

            if(OutputCount > Sout) 

              begin 

                AvgOut = ~AvgOut; 

                OutputCount = 10'b0; 

              end 

            else 

              begin 

                OutputCount = OutputCount + 1; 

              end 

          end 

      end 

endmodule 

 

 Moving Average Filter 

////////////////////////////////////////////////// MovingAvg 

// MovingAvg.v 

// Riley Harrington 

// Kansas State University 

 

// This module separates a moving average filter into a separate module 

// The module will add up the number of ones over a certain number of samples 

// which is set by "FilterLen" 

 

// SigIn has nearly constant pulses when the signal is at the higher FSK 

frequency 

// the signal will have intermittent pulses when the input is at the lower 

FSK frequency. 
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// PFD_MovingAvg.v is the same as MovingAvg. with an extra input and 

registers to handle 

// a moving average operation on two signals at once.  One of the resulting 

Sum values 

// is subtracted from the other to combine them into one signal.  This worked 

well for 

// the particular situation this module was needed for where only one output 

was desired. 

`timescale 100ps / 100ps 

 

module MovingAvg(clk, ar, In, Out); 

  // PARAMETERS or #define sections 

////////////////////////////////////////// 

  // FilterLen is the length of the filter.  FilterLen of bits will be summed 

  // to provide the moving average. 

  // It is easier to make this a power of two, so the divide needed for the  

  // average can use logical shift operation.  

  parameter FilterLen = 64; 

  // The FilterSize register needs to be large enough to count up to the 

value of  

  // FilterLen, so the requirement is 2^FilterReg > FilterLen   

  parameter FilterSize = 7;  

  // END PARAMETERS 

/////////////////////////////////////////////////////////// 

  // I/O 

///////////////////////////////////////////////////////////////////// 

  input clk; 

  input ar; 

  input In; 

  output wire [FilterSize-1:0] Out; 

  // End I/O 

///////////////////////////////////////////////////////////////// 

  // REGISTERS 

//////////////////////////////////////////////////////////////// 

  // This register will hold the bits that will be summed 

  reg [FilterLen-1:0] FilterReg; 

  // This register will sum the values in the FilterReg. 

  // This reg will need to be large enough to count up to the length of 

FilterLen 

  // 2^FilterReg > FilterLen   

  reg [FilterSize-1:0] FilterSum; 

  reg [FilterSize-1:0] skip; 

  parameter skipnum = 2; 

  // END REGISTERS 

//////////////////////////////////////////////////////////// 

 

  //assign Out = (FilterSum[FilterSize-1] == 0)? 1'b1:1'b0; 

  assign Out = FilterSum; 

   

  always @(posedge clk or negedge ar) 

    if(~ar) 

      begin 

        // Reset the registers to all zeros on a reset 

        FilterReg = {FilterLen{1'b0}}; 

        FilterSum = {FilterSize{1'b0}}; 

        skip = {FilterSize{1'b0}}; 

      end 
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    else 

      begin 

        // Four situations can happen 

        // 1. A zero is shifted in and a zero is shifted out 

        // 2. A one is shifted in and a one is shifted out 

        //    No change needed for either case 

        // 3. A one is shifted in and a zero is shifted out 

        //    One is to be added to the sum 

        // 4. A zero is shifteed in and a one is shifted out 

        //    One is to be subtracted from the sum 

         

        // If data bits going in and out are different 

        // then if SigIn is one add one to the sum 

        //   else (if SigIn is zero) subtract one 

        // else (if the original condition is zero) the 

        // bits going in and out are equal, so no change to the sum 

        if(skip == skipnum) 

          begin 

            FilterSum = (FilterReg[FilterLen-1] ^ In)? 

                        ( (In == 1)? (FilterSum +1):(FilterSum -1) ) : 

FilterSum;       

            // Shift new data into FilterReg and shift old data out 

            FilterReg = {FilterReg[FilterLen-2:0], In}; 

            skip = {FilterSize{1'b0}}; 

          end 

        else 

          begin 

            FilterSum = FilterSum; 

            skip = skip + 1;         

          end 

 

        // Ideally the FilterSum value will equal the size of FilterReg  

        // when the lower of the FSK frequencies is at the input.  When 

        // the higher FSK freq is at the input, it should be considerably  

        // less.  

                 

        // FilterReg Size GUIDE: 

        // Overall the register needs to be long enough so that the 

accumulation 

        // developed from the pulses using the lower and higher FSK freqs can 

be 

        // distinguished from one another.  A logical size would be enough to  

        // cover the period of the lower FSK frequency.  The pulse should be 

high 

        // all or nearly all the time when the higher FSK frequency is 

present, so 

        // the size constraint can be based more on the lower FSK freq. 

        // Example for f_low = 15kHz, f_high = 35kHz and f_clk = 20MHz.   

        // -First find the number of clock pulses per each FSK freq period. 

        // 571 for f_high and 1333 for f_low 

        // The pulse should last for the whole period of f_high, 571 clk 

pulses. 

        // The pulse would have the same length when f_low is present, so for 

a 1333 

        // length reg, all (1333 out of 1333) samples would be high for 

f_high while 
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        // 571 out of 1333 would be high for f_low. 1333 vs 571 would be the 

values 

        // output from FilterSum that would be used to determine whether a 

One or Zero 

        // should be output.  The average, 952, is a good 1st order threshold 

value.            

      end 

endmodule // end MovingAvg 

 

 

Appendix B – MATLAB Code 

 Counter 

%% Counter operation is performed within the Testbed 

 

 One-Shot 

%% One-Shot operation is performed within the Testbed 

 

 Phase Frequency Detector 

function [ Up, Down, Reset] = PFD_Sim( f_ref, f_in ) 
%% PFD_check Summary of this function goes here 

  
%% Error Checks 

  
% Check length of the input waveforms.  Report error is lengths differ. 
if length(f_ref) ~= length(f_in) 
    msg = ['Error f_ref (', num2str(length(f_ref)), ') and f_in (' ... 
        , num2str(length(f_in)), ') are not the same length.']; 
    error(msg) 
end 

  
% End Error Checks 

  
%%  
[x, f_ref_PosEdge, z] = FindEdges(f_ref); 
[u, f_in_PosEdge, w] = FindEdges(f_in); 

  
% need to consider f_ref, f_in, Up, Down, Reset 

  
% Reset Changes: 
% -Check current value.  If High, set low. If low check for Up=Down=1 
% -Check Up and Down to see if it should be set high 
% When reset goes high, it should be high for 1 clock cycle. 
% Up and Down are set Low immediately if Reset is High 
Len_Waveform = length(f_ref); 
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Up    = zeros(1, Len_Waveform);  
Down  = zeros(1, Len_Waveform);  
Reset = zeros(1, Len_Waveform); 

  
%% Find pulses 
for ii = 2:Len_Waveform 
    % Reset 
    if(Reset(ii-1) == 1) 
        Up(ii) = 0; 
        Down(ii) = 0; 

         
        %added 
        Reset(ii) = 0; 
    else 
        Up(ii) = Up(ii-1); 
        Down(ii) = Down(ii-1); 
    end 
    % End Reset 

     
    % Up/Down Edges 
    if(f_ref_PosEdge(ii) == 1) 
        Up(ii) = 1; 
    else 
        %Up(ii) = Up(ii-1); 
    end 

     
    if(f_in_PosEdge(ii) == 1) 
        Down(ii) = 1; 
    else 
        %Down(ii) = Down(ii-1); 
    end 
    % End Up/Down Edges 

     
    % Recheck Reset 
    if(Up(ii) == 1 && Down(ii) == 1) 
        Reset(ii) = 1;         
    end 

     
end 

  
% Up Changes 
% if Up is currently High, keep it High 
% -if f_ref pos edge, set Up High 

  
% Down Changes 

  
%% Plots 

  
% [xUp, yUp] = stairs(Up); 
% [xDown, yDown] = stairs(Down); 
% [xReset, yReset] = stairs(Reset); 
%  
% hold on; figure(1); clf; 
% plot(xUp, yUp*.8, 'g'); hold on; 
%  
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%  
% plot(xDown, yDown, 'b'); hold on; 
%  
%  
% plot(xReset, yReset, 'rx'); hold on; 
%  
% axis([-1 (length(Up)+1) -0.1 1.1]); 

  
% End Plots 

  
% % Initialize output vectors 
% Up    = zeros(1, length(r_ref) +1); 
% Down  = zeros(1, length(r_ref) +1);   
% Reset = zeros(1, length(r_ref) +1); 
%  
% % RisingEdge_f_ref =  

  

 

 

 Phase Frequency Detector with Preprocessor 

 
%% Test PFD w/ preprocessor operation is performed within the Testbed and 

calling the PFD_Sim function. 

 

 Test Bed 

function [] = Testbed_DemodErrorAnalysis() 
% b=a; 
%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Riley Harrington 
% Kansas State University 
%%  
% Testbed to test error performance of BFSK demodulators 
% Testbed will call other modules to: 
% -create a bit stream with errors from 1-5% of the total 
% --bit stream shall simulate 10.7MHz +/- delta_f 
% -1-bit undersample the bit stream to "mix" it down to baseband 
% -pass the sampled waveform into the demodulators 
%% 

  
clear all; 
ClearCommandWindow = 0; 
if (ClearCommandWindow == 1) 
    clc; 
end 

  
%% Load Previous Data 
% Establish variables 
ErrorPercentAll    = []; 
CounterErrorNumAll = []; 
OneShotErrorNumAll = []; 
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PFDErrorNumAll     = []; 
PFD_c_ErrorNumAll  = []; 
TotalErrorNumAll   = []; 
FileName = 'D:\Google Drive\1A_Thesis\MATLAB_Files\DemodErrorData_3.mat'; 
load(FileName, 'ErrorPercentAll', 'TotalErrorNumAll', 

'CounterErrorNumAll',... 
     'OneShotErrorNumAll', 'PFDErrorNumAll', 'PFD_c_ErrorNumAll' ); 

  
%% Variables %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
plot_error = 0; 
display_vals = 0; 
Error_percent = 0; 
Max_error = 0.10; 
Min_error = 0.001; 
Impulse_noise_freq = 0; 
error_stream = []; 
Bit_Stream = []; 
Bit_Stream_Original = []; 
NumBits = 24; 

  

  
f1 = 10.69e6; %10.69MHz 
f2 = 10.71e6; %10.71MHz 
SampleFrequency = 75e3; %75kHz 

  
% expand waveform 
Resolution = 1000; 

  
%% Call modules %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% %%%% Add Loop here to run x error simulations? Or make this file a 
% function and call it from outside? 
error_tries = 0; 
stop = 0; 

  

  
% Bit Stream Generation 
% Call to adapted version of Charles Carlson's Frame_Sync code 
% Check if Error percent 
while(stop == 0) 
    [Error_percent, Impulse_noise_freq, error_stream, Bit_Stream, ... 
    Bit_Stream_Original ] = Frame_Sync_Sim_BitInput(  ); 
    %display(Error_percent); 
    error_tries = error_tries + 1; 
    if(Error_percent >= Min_error && Error_percent <= Max_error) 
        stop = 1; 
    end        

  
end 
% display(Error_percent); 
% Check percentage of error in waveform 
% Throw away if error is outside of specified min/max 

  
% Find the Matlab resolution of the data input 
SamplesPerBit = length(Bit_Stream_Original)/NumBits; 
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Bit_Stream_x = (NumBits/length(Bit_Stream)) : ... 
               (NumBits/length(Bit_Stream)):NumBits; 

  
%% 1-Bit sample IF BFSK %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% The original plan was to create a IF signal with high resolution that 
% would be undersampled just like what would happen on the FPGA, but the 
% size of the arrays needed was higher than my 32-bit version of MATLAB 
% woudld create.  Instead the baseband samples were created directly using 
% the known IF and fs frequencies. 

  
% a = Bit_Stream; 
% b = repmat(a, Resolution, 1); 
% c = reshape(b, 1, (length(b)*Resolution)); 
% figure(3); clf; plot(c); 
% c_len = length(c); 
% axis([0 c_len -0.1 1.1]); 

  
%% Generate Baseband BFSK samples based on IF BFSK %%%%%%%%%%%%%%%%%%%%%%%% 
% Edge detection is used to find the high and log bits in the input data. 
% That info will be used to find when the BFSK IF would be f1 or f2. The  
% baseband samples will be created using that information. 
% Bit_Stream start and end times appear to slide back and forth a bit to  
% fit the errors correctly.  Frame_Sync code performs that shifting. 
[ AllEdges, ~ , ~ ] = FindEdges( Bit_Stream ); 

  
% EdgeIndices provides the indices of each edge in AllEdges. 
EdgeIndices = find(AllEdges > 0.1); 
% PulseLengths provides the lengths of each pulse in AllEdges 
PulseLengths = [EdgeIndices length(AllEdges)] - [0 EdgeIndices]; 
% NumPulses provides the number of pulses in the input data. 
NumPulses = length(PulseLengths); 
% PulseSizes provides a scaled length relative to a single bit time, Tb. 
PulseSizes = PulseLengths/(length(Bit_Stream)/24); 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Create BFSK baseband pulses for PulseSizes lengths. 
% The UnderSample function provides the samples that would be recorded for 
% a given input frequency and sample frequency.  This assumes the input and 
% sample frequencies both start a T_0 at 0 degrees.  The output provides an 
% array of the samples and a ratio of the input to sample frequency.  The 
% middle output gives the whole number portion and the last output gives 
% the decimal remainder portion of the ratio.  Thw W and R values are not 
% needed in this script.  The output array provides a single complete 
% pattern based on the inputs.  A final output needs to be compiled using 
% this output. 
[ f1_Samples, ~, ~ ] = UnderSample( f1, SampleFrequency ); 
[ f2_Samples, ~, ~ ] = UnderSample( f2, SampleFrequency ); 
% f1_Samples = f1_Samples(1:75); 
% f2_Samples = f2_Samples(1:75); 
f2_clean = [1 0]; 
f3_Samples = RepeatArray(f2_clean, 38); 

  
% Compile baseband samples using for loop 
% Loop will determine the time that a IF frequency would be present and 
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% compile the appropriate baseband samples for that pulse then repeat for 
% rest of the pulses. 
% BaseBandPulse provides the 1-bit sampled output. 

  
% Initialize variables 
BaseBandPulse = []; 
PulseA = []; 
PulseB = []; 
a=0; 
b=0; 
for ii = 1:NumPulses 
    if(mod(ii,2) < 1) 
        Bits = f2_Samples; 
        Bits_clean = f2_Samples; 
        a=a+1; 
    else 
        Bits = f1_Samples; 
        Bits_clean = f3_Samples; 
        b=b+1; 
    end 

     
    whole = floor(PulseSizes(ii)); 
    fraction = mod(PulseSizes(ii), 1); 
    PulseA = repmat(Bits, 1, whole); 
    PulseAc = repmat(Bits_clean, 1, whole); 

     
    fraction_bits = fraction*length(f1_Samples); 
    rnd_bits = round(fraction_bits); 
    PulseB = Bits(1:rnd_bits); 
    PulseBc = Bits_clean(1:rnd_bits); 

     
    if(ii < 1.1) 
        BaseBandPulse = [PulseA PulseB]; 
        BaseBandClean = [PulseAc PulseBc]; 
    else 
        BaseBandPulse = [BaseBandPulse PulseA  PulseB]; 
        BaseBandClean = [BaseBandClean PulseAc PulseBc]; 
    end 
%     BaseBandPulse = [BaseBandPulse PulseA PulseB]; 
end 

  

  
%% Test Counter %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Get the edges of the BaseBand BFSK input 
[ BaseBandAllEdges , BaseBandRisingEdges, ~ ] = FindEdges( BaseBandPulse ); 

  
% An extra check because BaseBandAllEdges was an element too long once 
BaseBandAllEdges = BaseBandAllEdges(1:length(BaseBandRisingEdges)); 

  
% BaseBandIndices provides the indices of all the edgs locations 
BaseBandIndices = find(BaseBandRisingEdges > 0.1); 
% BaseBandPulseLengths provides the length of each pulse 
BaseBandPulseLengths = [BaseBandIndices length(BaseBandRisingEdges)] - [0 

BaseBandIndices]; 
% BaseBandIndices has one added since the last pulse is not accounted for 
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BaseBandIndices = [BaseBandIndices length(BaseBandRisingEdges)]; 
% CounterPulseInfo provies the lengths of the pulses at the location where 
% the pulse occurs. 
CounterPulseInfo = zeros(1, length(BaseBandRisingEdges)); 
CounterPulseInfo(BaseBandIndices) = BaseBandPulseLengths; 
% ReplaceZeros replaces all the zeros in the array with the value of the 
% element before it.  That operation is repeated until no zeros remain. 
% The OutputPlotArray can be used to plot the Counter demod output waveform 
% with no averaging 
[ CounterPlotArray ] = ReplaceZeros( CounterPulseInfo ); 

  
% Counter Averaging %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Average over 4 pulses 
len_BBPL = length(BaseBandPulseLengths+1); 
% BBPL_Avg2 provides the average over 2 elements of BaseBandPulseLengths 
BBPL_Avg2 = BaseBandPulseLengths(1:len_BBPL-1) + 

BaseBandPulseLengths(2:len_BBPL); 
% The last element gets cut off, so the first element is repeated and added 
% to the front of the array.  This is done is the later averages as well. 
BBPL_Avg2 = [ BBPL_Avg2(1)  BBPL_Avg2 ]; 
% BBPL_Avg4 provides the average over 2 elements of BBPL_Avg2. 
BBPL_Avg4 = BBPL_Avg2(1:len_BBPL-1) + BBPL_Avg2(2:len_BBPL); 
BBPL_Avg4 = [ BBPL_Avg4(1)  BBPL_Avg4 ]; 
% BBPL_Avg8 provides the average over 2 elements of BBPL_Avg4. 
BBPL_Avg8 = BBPL_Avg4(1:len_BBPL-1) + BBPL_Avg4(2:len_BBPL); 
BBPL_Avg8 = [ BBPL_Avg8(1) BBPL_Avg8 ]; 
Avg8_Output = zeros(1, length(BaseBandPulse)); 
Avg8_Output(BaseBandIndices) = BBPL_Avg8; 

  
% A threshold value was approximated between the low and high values on the 
% plot. 
Avg_Threshold = 30; 
% CounterPulseInfo does not maintain the spacing of the pulses, so the 
% array needs to be spaces properly again.  A new array needs to be created 
% that is the correct size.  BaseBandPulse is the correct size. 
Avg_Output = zeros(1, length(BaseBandPulse)); %CounterPulseInfo; 
% The elements at the Indices of BaseBandIndices will be repalces with the 
% elments of BBPL_Avg8. (BaseBandIndices and BBPL_Avg8 must be equal sizes) 
Avg_Output(BaseBandIndices) = BBPL_Avg8; 
% ReplaceZeros replaces all the zeros in the array with the value of the 
% element before it.  That operation is repeated until no zeros remain. 
% Avg_Output_NoZeros can be used to plot the averaged Counter value. 
[ Avg_Output_NoZeros ] = ReplaceZeros( Avg_Output ); 
% Counter_FinalOutput provides a binary output using the Avg_Threshold as 
% the value to determine what a 1 and 0 is. 
Counter_FinalOutput = (Avg_Output_NoZeros > Avg_Threshold)*... 
                       max(Avg_Output_NoZeros); 
% x values for plots 
BaseBandPulse_x = (NumBits/length(BaseBandPulse)) : ... 
                  (NumBits/length(BaseBandPulse)):NumBits; 
BBPL_x = (NumBits/length(BBPL_Avg2)):(NumBits/length(BBPL_Avg2)):NumBits; 

  
% Plot-able: 
% Averaged Counter Output array: plot(BaseBandPulse_x, CounterFinalOutput) 
% Times for Bit decisions:  
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%% Find Bit Decision Times 
% There is an offset at the beginning, so the decision times cannot be 
% set purely on Tb because the start time of the actual data will vary. 
% The edge of the first pulse will be detected and the bit decision times 
% will be set from that edge.  The size of the offset can vary, so an extra 
% sample time will be generated.  It will be cutoff later if it is not 
% needed. 
BitDecisionTimes = (EdgeIndices(1)+SamplesPerBit/2) : SamplesPerBit : ... 
                    SamplesPerBit*(NumBits+1); 
% There are two bits that are both zeros before the first pulse made by a 
% 1, so two samples that match the times of the preceeding zeros. 
Bit_InitialZeroTimes = [ (BitDecisionTimes(1)-SamplesPerBit*2)... 
                         (BitDecisionTimes(1)-SamplesPerBit*1) ]; 
% Zero times are added to the front of the BitDecisionTimes 
BitDecisionTimes = [Bit_InitialZeroTimes BitDecisionTimes]; 
% Only first 24 Decision times are used since there are 24 input data bits. 
BitDecisionTimes = BitDecisionTimes(1:24); 
% If the last BitTime goes past the alloted time, set it equal to a value 
% near the end.  (Not sure if this problem is fixed anyway) 
if( BitDecisionTimes(24) > length(Bit_Stream) ) 
    BitDecisionTimes(24) = length(Bit_Stream)-5; 
end 

  
%% Find Counter Bit Decision Times %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% Scale BitDecisionTimes from times that match Bit_Stream_Original to times 
% that match Counter_FinalOutput.  
% BitDecisionTimes has 3840 long because it comes from Frame_Sync and 
% Counter_FinalOutput is 1824 long because it is the result of 
% undersampling, so the samples times for Counter_FinalOutput need to be 
% scaled from 3840(max) to 1824(max). 
ScaledBitDecisionTimes = round(BitDecisionTimes/length(Bit_Stream_x)*... 
                               length(Counter_FinalOutput)); 

  
% The values of Counter_FinalOutput at the indices of 
% ScaledBitDecisionTimes are used as the final demodulated outputs from the 
% Counter demodulator. 
CounterBits_Out = Counter_FinalOutput(ScaledBitDecisionTimes)/... 
                                      max(Counter_FinalOutput); 

  

  
%% Test One-shot %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Start with BaseBandPulse but some of the counter arrays can be reused, 
% edge locations and edge 
% BaseBandRisingEdges will be used. 
% [ OneShot_Avg ] = MovingSum( BaseBandRisingEdges, 10 ); 
[ OneShot_Avg ] = MovingSum( BaseBandAllEdges, 10 ); 
[ OneShot_Avg2 ] = MovingSum( OneShot_Avg, 10 ); 
OneShot_Threshold = 75; 
OneShot_Out = OneShot_Avg2 < OneShot_Threshold; 
OneShotBits_Out = OneShot_Out(ScaledBitDecisionTimes); 

  

  

  
%% Test PFD 
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% Reference frequency will be 25kHz, half way between the baseband BRSK 
% frequencies, 15kHz and 35kHz.  The program has 76 samples per Tb though 
% there should be 75.  The timing of 25kHz makes it so there should be one 
% cycle every 3 MATLAB samples, so [1 0 0] will be repeated 608 times to 
% match the length of BaseBandPulse and create a reference frequency array 
% that can be used as an input to the PFD. 

  
f_ref_period = [1 0 0]; 
f_ref_repetition = floor(length(BaseBandPulse)/length(f_ref_period)); 
f_ref = repmat(f_ref_period, 1, f_ref_repetition); 
diff = length(BaseBandPulse) - length(f_ref); 
if(diff > 0) 
    f_ref = [f_ref zeros(1,diff)]; 
end 

  
PFD_Threshold = 2; 
[Up, Down, Reset] = PFD_Sim(f_ref, BaseBandPulse ); 
[ Up_Avg10 ] = MovingSum( Up, 10 ); 
[ Down_Avg10 ] = MovingSum( Down, 10 ); 
PFD_Out = (Up_Avg10-Down_Avg10) > PFD_Threshold; 
PFD_Bits_Out = PFD_Out(ScaledBitDecisionTimes); 

  
%% Test PFD w/ proprocessor 
% redo some operations for BaseBandPulse (now BaseBandClean) 
[Up_c, Down_c, Reset_c] = PFD_Sim(f_ref, BaseBandClean ); 
[ Up_c_Avg10 ] = MovingSum( Up_c, 10 ); 
[ Down_c_Avg10 ] = MovingSum( Down_c, 10 ); 
PFD_c_Out = (Up_c_Avg10-Down_c_Avg10) > PFD_Threshold; 
PFD_c_Bits_Out = PFD_c_Out(ScaledBitDecisionTimes); 

  
%% Analysis %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Need to record the error info and the output info for the demod with and 
% without the averaging.  Error info should include each of the parameters 
% just in case that data could be useful.  
% Input error percentage, number of errors in demodulated output, durations 
% of each error?, placement of each error?  Percent error for sure... 
OriginalBits = Bit_Stream_Original(BitDecisionTimes); 

  
% Find the errors added in the signal at bit decision times 
BitStreamBits = Bit_Stream(BitDecisionTimes); 

  
% Calculate Error %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
CounterErrorNum = sum(xor(OriginalBits, CounterBits_Out)); 
OneShotErrorNum = sum(xor(OriginalBits, OneShotBits_Out)); 
PFDErrorNum = sum(xor(OriginalBits, PFD_Bits_Out)); 
PFD_c_ErrorNum = sum(xor(OriginalBits, PFD_c_Bits_Out)); 
TotalErrorNum = sum(xor(OriginalBits, BitStreamBits)); 

  
%% Display Values 
if(display_vals == 1) 
    display(Error_percent); 
    % display(Impulse_noise_freq); 
    display(CounterErrorNum); 
    display(OneShotErrorNum); 
    display(PFDErrorNum); 
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    display(PFD_c_ErrorNum); 
    display(TotalErrorNum); 

  
end 

  
%% Save Variables %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% FileName = 'D:\Google Drive\1A_Thesis\MATLAB_Files\DemodErrorData_2.mat'; 
ErrorPercentAll    = [ErrorPercentAll    Error_percent   ]; 
CounterErrorNumAll = [CounterErrorNumAll CounterErrorNum ]; 
OneShotErrorNumAll = [OneShotErrorNumAll OneShotErrorNum ]; 
PFDErrorNumAll     = [PFDErrorNumAll     PFDErrorNum     ]; 
PFD_c_ErrorNumAll  = [PFD_c_ErrorNumAll  PFD_c_ErrorNum  ]; 
TotalErrorNumAll   = [TotalErrorNumAll   TotalErrorNum   ]; 

  
save(FileName, 'ErrorPercentAll', 'TotalErrorNumAll', 

'CounterErrorNumAll',... 
     'OneShotErrorNumAll', 'PFDErrorNumAll', 'PFD_c_ErrorNumAll' ); 

  
%% Plots 
%% Use the stair function for any plots in the paper ********************** 

  
if(plot_error == 1) 
% plot error stream, bit stream, and bit stream with errors 
    figure(1); clf;  hold on; 
    plot(Bit_Stream_x, Bit_Stream, 'b'); 
    plot(Bit_Stream_x, Bit_Stream_Original+1.1, 'r'); 
    plot(Bit_Stream_x, error_stream + 2.2); 
    plot_len1 = length(Bit_Stream); 
    plot(BitDecisionTimes/length(Bit_Stream_x)*24, ... 
         ones(1, length(BitDecisionTimes)), 'rx'); 
    axis([0 NumBits -0.1 3.3]); 

  
% plot baseband BFSK 
    figure(3); clf; hold on; 
    plot(BaseBandPulse_x, BaseBandPulse + 1.1, 'b'); 
    plot(Bit_Stream_x, Bit_Stream, 'b') 
    plot_len3 = length(BaseBandPulse); 
    axis([0 NumBits -0.1 2.2]); 

    
% plot Counter 
    figure(4); clf; hold on; 

    
    subplot(5,1,1); hold on; 
    plot(BBPL_x, BaseBandPulseLengths); 
    axis([0 NumBits -0.1 max(BaseBandPulseLengths+1)]); 

     
    subplot(5,1,2); hold on 
    plot(BBPL_x, BBPL_Avg2); 
    axis([0 NumBits -0.1 max(BBPL_Avg2+1)]); 

     
    subplot(5,1,3); hold on 
    plot(BBPL_x, BBPL_Avg4); 
    axis([0 NumBits -0.1 max(BBPL_Avg4+1)]); 

     
    subplot(5,1,4); hold on 
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    plot(BaseBandPulse_x, Avg8_Output); 
    axis([0 NumBits -0.1 max(BBPL_Avg8+1)]); 

        
    subplot(5,1,5); hold on 
    plot(BaseBandPulse_x, Avg_Output); 
    plot(BaseBandPulse_x, Avg_Output_NoZeros, 'g--'); 
    plot(BaseBandPulse_x, Counter_FinalOutput, 'r'); 
    plot(BitDecisionTimes/length(Bit_Stream_x)*24, ... 
        ones(1, length(BitDecisionTimes))*max(Counter_FinalOutput), 'ro'); 
    axis([0 NumBits -0.1 max(Avg_Output+2.1)]);     

  
% plot Counter Outline 
    figure(6); clf; hold on; 
    plot(BaseBandPulse_x, CounterPulseInfo, 'b'); 
    plot(BaseBandPulse_x, CounterPlotArray, 'r'); 
    plot(BitDecisionTimes/length(Bit_Stream_x)*24,... 
         ones(1, length(BitDecisionTimes))*max(CounterPlotArray), 'gx'); 
    axis([0 NumBits -0.1 (max(CounterPlotArray) + 1)]); 

    
% plot One-Shot 
    figure(7); clf; hold on; 
    subplot(2,1,1); 
    plot(BaseBandPulse_x, OneShot_Avg2, 'b'); 
    axis([0 NumBits (min(OneShot_Avg2) - 1) (max(OneShot_Avg2) + 1)]); 
    subplot(2,1,2); hold on; 
    plot(BaseBandPulse_x, OneShot_Out, 'b'); 
    plot(BitDecisionTimes/length(Bit_Stream_x)*24,... 
         ones(1, length(BitDecisionTimes)), 'gx'); 
%     plot(OneShotBits_Out 
    axis([0 NumBits -0.1 1.1]); 

  
% plot PFD 
    figure(8); clf; hold on;  
    subplot(3,1,1); hold on; 
    plot(BaseBandPulse_x, Up_Avg10 + (max(Down_Avg10)+1.1)); 
    plot(BaseBandPulse_x, Down_Avg10); 
    axis([0 NumBits -0.1 2*(max(Down_Avg10)+1.1)]); 
    subplot(3,1,2); hold on; 
    plot(BaseBandPulse_x, Up_Avg10-Down_Avg10); 
    axis([0 NumBits -1*(max(Down_Avg10)+1.1) (max(Down_Avg10)+1.1)]); 
    subplot(3,1,3); hold on; 
    plot(BaseBandPulse_x, PFD_Out, 'b'); 
    plot(BitDecisionTimes/length(Bit_Stream_x)*24,... 
         ones(1, length(BitDecisionTimes)), 'gx'); 
    axis([0 NumBits -0.1 1.1]); 

     
% plot PFD w/preprocessing 
    figure(9); clf; hold on; 
    plot(BaseBandPulse_x, BaseBandPulse + 2.2, 'b'); 
    plot(BaseBandPulse_x, BaseBandClean + 1.1, 'b'); 
    plot(Bit_Stream_x, Bit_Stream, 'b') 
    plot_len3 = length(BaseBandPulse); 
    axis([0 NumBits -0.1 3.3]); 

     
    figure(10); clf; hold on;  
    subplot(3,1,1); hold on; 
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    plot(BaseBandPulse_x, Up_c_Avg10 + (max(Down_c_Avg10)+1.1)); 
    plot(BaseBandPulse_x, Down_c_Avg10); 
    axis([0 NumBits -0.1 2*(max(Down_c_Avg10)+1.1)]); 
    subplot(3,1,2); hold on; 
    plot(BaseBandPulse_x, Up_c_Avg10-Down_c_Avg10); 
    axis([0 NumBits -1*(max(Down_c_Avg10)+1.1) (max(Down_c_Avg10)+1.1)]); 
    subplot(3,1,3); hold on; 
    plot(BaseBandPulse_x, PFD_c_Out, 'b'); 
    plot(BitDecisionTimes/length(Bit_Stream_x)*24,... 
         ones(1, length(BitDecisionTimes)), 'gx'); 
    axis([0 NumBits -0.1 1.1]); 

     
end 

  
% End Function 

End 

 

 Supporting Modules 
 

 Error Generation 

function [ Error_percent, Impulse_noise_freq , error_stream, Bit_Stream, 

Bit_Stream_Original  ] = Frame_Sync_Sim_BitInput(  ) 

  
%Charles Carlson 
%System to simulate Correlation Frame Sync Performance 
%Oct 7th 2014 
%Updated on October 28th, to have impulse noise only effect SW 
% clear all 
% 
% ** This version of the code was adapted to fit the needs for Riley 
% Harrington's FSK demodulator error testing. ** 

% Comments were added and some unneeded code was removed by Harrington 

% for this version. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%System Parameters 
Oversampling_ratio = 16;                       % 16 Samples per bit 
DataRate = 20000;                              % Datarate = 20k 
BitTime = 1/DataRate;                          % BitTime = 50us 
SamplingRate = Oversampling_ratio*DataRate;    % fs = 320k 
SampleTime = 1/SamplingRate;                   % Ts = 3.125us 
TotalBits = 24;                                % 24 Bits in each frame sent 
TotalTime = (TotalBits*BitTime);               % 24*50us = 1.2ms 
DataPoints = TotalTime/SampleTime;             % 1.2ms/3.125us = 384 
SNR_dB = 0;       % Only variable use is commented out 
Resolution = 10;  % number of Matlab points per sample 
% Number of MATLAB samples per bit = Oversampling_ratio*Resolution = 160 
% Min lenght of an "error" is the size of Resolution, 10. 
Max_Impulses = 5; % max number of noise impulses 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Number of simulations 
run = 1;         % Number of runs per simulation 
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Sync_array = zeros(1,run); % Used to record if noisy data synced correctly 
False_Sync_array = zeros(1,run); % Used to record if data synced when it 

shouldn't have 

  

  
%% For Loop executes code to simulate each "run"  
for run_index = 1:run 
    Synchronization = 0; %Indicates if received frame has synced 
    False_sync = 0;      %Indicates if frame synched at incorrect time 

     
    %Need Bit Stream to start at random time, can range from 0 to Bit_Time 
     %Finds random time to to start bit stream, so stream will not 
     %necessarily start at the beginning of the simulated bit time. BitTime 
     %is 50us, so the stream will start between 0us and 50us 
    data_start = rand(1)*BitTime; 
     %The start time needs to be coerced to the nearest resolution 
     %available. For initial to get set properly, the start time 
     %(data_start) would need to be divided by the SampleTime. 
     %To account for resolution, the result needs to be muliplied by the 
     %resolution (10). 
    initial = round(data_start/SampleTime * Resolution); 
     %Matlab is 1 indexed and the line above has the possibility of being a 
     %zero, so increase value by one 
    initial = initial+1; 

  
    %Setup time and data vectors 
     %Initialize vector to fit size of Matlab bits needed 
    Bit_Stream = zeros(1,Resolution*DataPoints); 
    i = 1; 
    k = 1; 
     % generate random vector that will be used for testing on this run 
    r_v = round(rand(1,8)); 
    %8 zero bits added on front 

  
    %% Frame Options 

     
    % Demods will be tested with Ethernet frame, so others frames were 
    % removed (saved at bottom of file) 
    % demods could just use a totally random vector as long as the input 
    % and output are known and compared. 

               
    %Ethernet 10101011 
    % Changing 8th bit to always be the same as 7th bit. 
    % With the shifting that happens, the 8th bit can be too narrow to 
    % effectivly detect which throws off the error check. 
    r_v(8) = r_v(7); 

     
     Frame_bits = [0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 1 r_v(1) r_v(2) r_v(3)... 
                   r_v(4) r_v(5) r_v(6) r_v(7) r_v(8)]; 

               
    Initial_Frame_bits = Frame_bits; 
    %Initial_Frame_bits = [0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0]; 

%used for correlation 
    %random_bits = round(rand(1,TotalBits-16)); 
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    %% Section for adding noise 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %Section for adding noise 
    %Add either impulse noise or gaussian, channel noise based on BFSK 

  
    %probability of bit error for BFSK  
%     SNR = 10.^(SNR_dB./10); 
%     Pe = 0.5*erfc(sqrt(SNR./2)); 
%     %only effect frame word 
%     for t = 9:16 
%         r = rand(1); 
%         if(r < Pe) 
%             Frame_bits(t) = -1*Frame_bits(t)+1; 
%         end 
%     end 
    %%%%%%%%%%%%%%Impulse noise section 
     % Determine (randomly) how many pulses will be generated. Up to 
     % Max_Impulses (5) 
    Impulse_noise_freq = round(rand(1)*Max_Impulses); %How many 
     % Determine (randomly) how long each pulse will be.  Up to a full 
     % BitTime (50us -> 16 samples per bit -> 160 Matlab bits)  
    Impulse_noise_duration = rand(1, Impulse_noise_freq)*BitTime; %How long 

is each one 
     % Determine (randomly) where the noise will occur 
     % The random position is multiplied by (TotalTime-8*BitTime) because 
     % the first 8 bits in the frame are all zeros.  The sync doesn't start 
     % until the next 8 bits, so the result is also offset by 8 BitTimes so 
     % the noise occurs in places where it means something. 
    Impulse_occurance = rand(1,Impulse_noise_freq)*(TotalTime-8*BitTime) + 

8*BitTime; %Where do they occur within SW 
%     Impulse_occurance = rand(1,Impulse_noise_freq)*(TotalTime-4*BitTime) + 

4*BitTime;  

     
     % Need to start and end the noise on an actual bit time, so this 
     % coerces the data to use the bit times nearest the random values. 
     % Each element needs to be rounded so matrix multiply is used here 
     % though I'm not sure it needs to be since the vector is being 
     % divided by a scalar. 
    Bit_Stream_occurance_index = 

round(Impulse_occurance./(SampleTime/Resolution)); 

     
     % in case the index computed is 0, change to 1 (because Matlab is 
     % 1-indexed. A zero here would cause an error 
    Bit_Stream_occurance_index(Bit_Stream_occurance_index == 0) = 1; 
     % As with other places, round this so it starts/ends on a bit time 
    Bit_Stream_length_index = 

round(Impulse_noise_duration./(SampleTime/Resolution)); 

  
    %% Check if noise impulse(s) will go past the end of the data.   
    % If so, move it back, so it occurs at the very end 
     % For each noise impulse 
     %   if the end point of the noise is past the end of the data 
     %     move the noise back so that it occurs on the end of the last bit 
     %   end 
     % end 
    for t = 1:Impulse_noise_freq 
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        if(Bit_Stream_occurance_index(t)+Bit_Stream_length_index(t) > 

Resolution*DataPoints) 
            Bit_Stream_length_index(t) = Resolution*DataPoints - 

Bit_Stream_occurance_index(t); 
        end 
    end 

     
    %% 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    % Stop variables are used to find the stop bits in the sync frame 
    % ^ I think?? 
    stop1 = 0; 
    stop2 = 0; 

     
    %Setup Bit Stream 
    % data start is close to starting at zero, so the end needs to happen 
    % at Time minus 1 
    % some of this could likely be done without loops 
    for Time_array = data_start:(SampleTime/Resolution):(TotalTime-

SampleTime/Resolution) 
        % if the array isn't past all the sync bits and into the actual 
        % data, set Bit_Stream to the initial bit (zero). 
        if(Time_array < (BitTime+data_start))  
            Bit_Stream(initial+i) = Frame_bits(1); 
        end 

         
        % Does this run for the last bit? 
        for k = 1:TotalBits-1 
            if(k < 24) % 24 could be replaced w/TotalBits variable? 
                % There are only 24 frame bits and that's hard coded, so I 
                % don't know what this does? 
                if(Time_array >= k*BitTime+data_start)  
                    Bit_Stream(initial+i) = Frame_bits(k+1); 
                end 
            end 
        end 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        %for testing results 
        if(Time_array >= 15*BitTime+data_start && stop1 == 0) 
                Correct_sync_start = (initial+i); 
                stop1 = 1; 
        end 
        if(Time_array >= 16*BitTime+data_start && stop2 == 0) 
                Correct_sync_stop = (initial+i); 
                stop2 = 1; 
        end 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        i = i + 1; 
    end 
    Bit_Stream = Bit_Stream(1:Resolution*DataPoints); 
    Time_array = 0:(SampleTime/Resolution):(TotalTime-

(SampleTime/Resolution)); 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %Add impulse noise 
    % adding a variable to save wavefrom w/o impulse noise 
    Bit_Stream_Original = Bit_Stream; 
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    for t = 1:Impulse_noise_freq 
        

Bit_Stream(Bit_Stream_occurance_index(t):Bit_Stream_occurance_index(t)+Bit_St

ream_length_index(t)) =... 
        -

1*Bit_Stream(Bit_Stream_occurance_index(t):Bit_Stream_occurance_index(t)+Bit_

Stream_length_index(t))+1; 
    end 

     
    % Sometimes the last bit in the array would be different for no good 
    % reason, so this will set the last bit equal to the 2nd to last bit 
    Bit_Stream_Original(length(Bit_Stream_Original)-1) = 

Bit_Stream_Original(length(Bit_Stream_Original)-1); 
    Bit_Stream(length(Bit_Stream_Original)) = 

Bit_Stream(length(Bit_Stream_Original)-1); 

  
end 
Failed_Sync_count = sum(Sync_array(1,:) == 0); 
False_Sync_count = sum(False_Sync_array); 

  

 
%% Changed code 
    %Changed line below to line above, so it made more sense to me 
    %initial = round(data_start/(SampleTime/Resolution)); 
%% 

  
error_stream = xor(Bit_Stream, Bit_Stream_Original); 
%display(Impulse_noise_freq); 
% Multiply by 2/3 because the error only occurs on the last 16 bits, and 
% never on the first 8 bits. 
Error_percent = sum(error_stream)/length(error_stream)*(2/3); 

 
end 

 

 

 Find Edges 

function [ AllEdges, Rising, Falling ] = FindEdges( Waveform ) 
%% FindEdges Summary of this function goes here 

   
% Find Edges 
Full = [Waveform 0] - [0 Waveform]; 
% Find Rising Edges 
Rising  = Full(1:(length(Full)-1)) > 0; 
% Find Falling Edges 
Falling = Full(1:(length(Full)-1)) < 0; 

  
%AllEdges = AllEdges(1:length(AllEdges)-1); 
AllEdges = Rising | Falling; 

  
end 
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 Subsampling 

function [ Samples_out, W, R ] = UnderSample( f_in, f_s ) 
%% 
% Riley Harrington 
% Kansas State University 

 

 
% If the input is constant for a period of time and the first sample is 
% acquired to give the first value (initial condition?), then the rest of 
% the sample values should be easy to simulate 

  
%% Test Values; Comment out when using file as function 
% f_s = 75e3; %75kHz % Sample Frequency 
% f_in = 10.71e6; % Input Frequency 

  
T_s = 1/f_s; % Sample Period 
T_in = 1/f_in; % Input Period 
DataPeriod = 1e-3; %0.1ms 

  
%% Pattern Info 
W = floor(f_in/f_s); 
R = mod((f_in/f_s), 1); 
 

SampleTimes = 0:T_s:DataPeriod; 
Samples = R:R:(length(SampleTimes)*R); 
Samples_R = mod(Samples, 1); 
IntStep1 = Samples_R>0.999; 
Samples_R_OnesRemoved = abs(Samples_R - IntStep1); 
Samples_R_OnesRemoved_Rounded = round(Samples_R_OnesRemoved); 
Samples_out = Samples_R_OnesRemoved_Rounded; 

 

 

 Replace Zeros 

function [ OutputArray ] = ReplaceZeros( InputArray ) 
%% 
% Riley Harrington 
% Kansas State University 
%% 

  
% InputArray = [1 0 0 0 0 0 0 0 5 0 0 0 1 2 0 0 0 7 0 3 3 3 0 0 1 0 0]; 
IntArray = InputArray; 

  
ArrayZerosIndices = find(IntArray < 0.1); 
ArrayZerosRemaining = length(ArrayZerosIndices); 

  
while(ArrayZerosRemaining > 0) 
    IntArray(ArrayZerosIndices) = IntArray(ArrayZerosIndices - 1); 

     
    % Update Loop Index 
    ArrayZerosIndices = find(IntArray < 0.1); 
    ArrayZerosRemaining = length(ArrayZerosIndices); 
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end 

  
OutputArray = IntArray; 

 
end 

 

 Repeat Elements 

function [ NewArray ] = RepeatElements( Array, N ) 
%% 
% Riley Harrington 
% Kansas State University 
%% 

%  Test Inputs  
% Array = [1 2 3 4 5]; 
% N = 4; 
% to repear whole array, used b = repmat(Array, 1, N); 

  
b = repmat(Array, N, 1); 
NewArray = reshape(b, 1, length(Array)*N); 
end 

 

 

  Averaging Filter 

function [ OutputArray ] = MovingSum( InputArray, N ) 
%%  
% Riley Harrington 
% Kansas State University 
%% 
% Function description 
%% 

  
%% Test Inputs 
% InputArray = [1 1 0 0 1 0 1 0 1 3 1 0 ]; 
% N = 4; 
%% 

  
TempArray = InputArray; 
for ii = 1:N 
    [TempArray] = MoveSum(InputArray, TempArray, ii); 

  
end 
% [OutputArray] = MoveSum(InputArray); 
OutputArray = TempArray; 

  
end 

  
function [OutputArray] = MoveSum(InputArray, TempArray, N) 

  
% Check Array length 
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if(length(InputArray) <= N) 
    OutputArray = []; 
else 
    NewArray    = InputArray( 1 : length(InputArray) - N ) + ... 
                  TempArray( (1+N) : length(TempArray) );  
    % Add the first element to the front, so the Input and Output arrays  
    % have the same length. 
    OutputArray = [NewArray(1:N) NewArray]; 
end 
end 

  

 


