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Abstract
Modern techniques for simulating granular matter can produce excellent quality simulations,

but usually involve a great enough performance cost to render them ineffective for real time appli-

cations. This leaves something to be desired for low-cost systems and interactive simulations which

are more forgiving to inaccurate simulations, but much more strict in regards to the performance

of the simulation itself. What follows is a proposal for a method of simulating granular matter

that could potentially support millions of particles and several types for each particle while main-

taining acceptable frame rates on consumer level hardware. By leveraging the power of consumer

level graphics cards, effective data representation, and a model built around Cellular Automata a

simulation can be run in real time.
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Chapter 1

Introduction

Granular matter such as sand, grain, pollen, and gravel fill the world around us. They are particles

that are massive enough to be seen with the naked eye and hold many interesting properties that

make computer simulation a challenge. Dense granular matter like sand and dirt can be used to

form heaps, mounds, hills, dunes, and mountains. On the other hand pollen is light enough to be

cast in the air and be carried by air currents while behaving aesthetically similar to a gas. Despite

this visual similarity, granular matter behaves very differently from gases where temperature and

pressure play a much bigger role. While many of these materials will act as solids at rest, they be-

come more like liquid once set into motion. Liquid-like behavior often occurs when the maximum

angle of stability of a mound of material is exceeded and an avalanche occurs. During this event

everything between the maximum angle of stability and the angle of repose starts moving rapidly

downhill. Avalanche behavior differs from true liquid behavior as underneath the rapidly moving

upper layers remains the quasi-static particles that form the rest of the heap [1].

On top of these pseudo-state behaviors granular matter also expresses some properties of its

own. Arching is a phenomenon exclusive to granular matter where flow through a hopper will cease

as the particles form a stable archway and can cause problems for many automated systems [2].

Granular materials with particles of irregular size will often undergo a sort of segregation, similar

to the Brazil nut effect. Larger objects or more dense objects will tend to be nearer to each other

than they were when the motion began during violent and prolonged shaking [3]. While modeling
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and simulating various states of matter from liquids to gases can be done quite effectively, granular

material still largely stands out as a challenge to balance quality and computational performance.

Simulation of granular matter is a problem that has been approached using several different

methods over the last few decades. Most of these approaches start with a goal of achieving as

realistic of a simulation as possible [4; 5]. These simulations do well with approaching the goal of

realism and limiting computational complexity, but have yet to fully utilize some options for faster

computing. Other methods do focus on performance and even manage to maintain a representation

that is realistic, interactive, and similar to experimental observations [6]. It is possible that the

scope of simulations that can be run by those methods may be limited, but what can be done is

impressive for being efficiently streamlined and interactive.

Analyzed below is an implementation of a method that uses a Cellular Automata (CA) model

that is updated in parallel using a CUDA compatible GPU. The major benefit of such a system is

that it vastly increases performance with a moderate cost to simulation accuracy. This accuracy

may not hold up to numerical simulations like in [6], but will suffice in being visually appealing

and extensible. This sort of solution is useful for systems that might require many prototype

simulations to be done that need a high degree of variability or some capacity for interaction.

Approaching the problem in this way allowed me to simulate upwards of 1 million simulation

particles at approximately 105 frames per second (FPS). The speeds reported throughout this paper

will be based on the simulation system alone; the rendering system was never a focus and so it

utilizes few optimization techniques and was used simply to visually verify the simulation itself.

That being said, the rendering portion in its current state constitutes approximately 80% of the

per frame run time and the above simulation of 1 million cubes can be run at a about 13 FPS

with rendering enabled. While the simulation itself appears more rudimentary the granular matter

involved still responds to gravity and will still flow around objects and itself. Furthermore the

implementation outperforms many other solutions due in part to its simplicity and its leverage of

the underlying hardware, its own data representation, and its use of precomputation.

The rest of this paper first discusses related work in Chapter 2, and then describes my imple-

mentation in Chapter 3. Chapter 4 describes how I evaluated my system and presents the results.

Chapter 5 presents my conclusions and describes future work.
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Chapter 2

Related Work

2.1 Interactive Cellular Automata

Pla-Castells, Garcı́a-Fernández, and Martı́nez have already shown that models of Cellular Au-

tomata for simulating granular matter are viable for real time applications. Their methods give

them phenomenal performance and produce realistic heaps and sand piles. In addition their nu-

merical simulations hold up to other simulations and do not vary significantly from other exper-

imental results. The methods outlined by Pla-Castells et al. in [6] are developments upon their

previous work done in [7] which also expands further on the BCRM method for simulating realis-

tic sand piles [8]. Models described in [6] expand on their previous simulations by including two

modes of interactivity. One mode involves how a model of their system responds to an external

force being applied while the other concerns a model for pressure distribution at the base of the

system. These methods of interactivity cover a sizable spectrum of simulations such as those con-

cerning avalanches and sandpile stability, but do not address simulations where the positions of

discrete particles matter and may be difficult to predict with continuum mechanics. Simulations

that involve problems such as buried explosions, hopper flows (hour glass), integration of different

granular types, or some of the other simulations seen in [5] and [4] may benefit from a different

approach. I make no claims that my implementation can hold up to experimental observation and is

notably simplistic in comparison to other simulations. What it does show is how dry, incompress-
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ible sand (and potentially other material) can be simulated in a general fashion while maintaining

high frame rates that CA models have been shown to have.

2.2 The Discrete Element Method

One common numerical method is to use discrete particles as a model and rely on collision reso-

lution and the summation of acting forces on each particle to support the simulation. The Discrete

Element Method (DEM) is a great way to model oddly shaped or irregular granular materials and

even lends itself well to parallelization. The DEM is typically implemented in two dimensions to

keep collision resolution simpler. Expanding it to three dimensions increases the complexity and

the quantity of computation needed for resolving collisions. While this can be done it will usually

come with the cost of longer simulation times [9].

2.3 Granular Material as a Fluid

Another method that achieves good results includes the use of re-purposed or restructured fluid

solvers that add cohesion to liquid models. This sort of approach attempts to use continuum me-

chanics to model a mass of granular materials as a whole. A notable use of this method is from Zhu

and Bridson where they modeled a body of sand as a cloud of particles while accounting for inter-

nal friction and boundary friction. This coupled with their incompressibility assumption makes for

an excellent model of cohesive granular materials like mud or wet sand. With this method Zhu and

Bridson were able to get a performance of approximately 12 seconds per frame while simulating

433,479 particles on a 2 GHz G5 processor [4].

2.4 Continuum and DEM

A more recent approach to a granular material solver implemented a combination of characteristics

of the previous two methods. Narain, Golas, and Lin constructed a solution that treats a granular

material as a continuous fluid and couples it with large and compressible simulation particles to
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act as “clumps” of particles. These clumps can then be split or merged with surrounding particles

as needed [5]. The result of this method is an excellent representation of dry granular material that

can be blown around, scattered, and mixed while behaving in a realistic fashion. Performance of

the work of Narain et al. falls between 6 and 33 seconds per frame. The fastest simulation ran with

403,000 simulation particles (5.2 million render particles) computing at 6.1 seconds per frame.

This speed was achieved using a 3.33 GHz Intel Core i7 processor with 5.8 GB of RAM [5].
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Chapter 3

Implementation

A natural progression was made toward a CA model because maximizing performance was the

main goal, but that still leaves the number of operations that need to be done as a big problem.

Modern CPUs are good at complex calculations and even perform well at doing a lot of them.

However, this problem of simulating particles (or ‘cells’ in this case) is an N-body problem at its

core. While the calculations that each cell must perform tend to be no more complex than con-

textual comparisons with neighbors they are so numerous that the performance seen from Zhu and

Bridson and from Narain et al. is quite impressive. Trying to solve the problem with faster CPUs

becomes less realistic as the cost of better compute performance rapidly grows for diminishing

returns.

A great solution in many respects is to tackle the problem with more CPUs. By using cheaper

CPUs that perform most calculations at an acceptable rate and then having them all work together

on different parts of the problem the problem space itself can be reduced many fold. This approach

is analogous to what a GPU does and while a single CPU might be able to handle up to 8 threads,

a GPU can typically handle thousands. Breaking the problem up, distributing it to separate cores,

and doing other forms of maintenance for making sure things run smoothly is not free, but if the

problem is defined appropriately then this latency can be masked with a higher throughput. The

general idea of this is occupancy which is the ratio of active threads and maximum threads on

each multiprocessor. This value is expected to fluctuate during runtime, but it is ideal to maintain
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as high of an occupancy as possible during peak load on the GPU. The overall effect is that even

though the individual CPUs may not be particularly fast the throughput of large groups of threads

finishing simultaneously results in a more effective system.

The benefits from GPU computing can be great, but it can complicate the problem. A solution

for a single-threaded CPU, is slow, but is easy to grasp and to implement. Parallelizing a solution,

whether it is over a few threads in a CPU or thousands of them in a GPU, can still introduce

classic parallelization pitfalls like resource management and race conditions. It would be best to

avoid these where possible, but to mitigate potential problems I needed a simplistic algorithm that

would still lend itself well to parallelization. Additional benefits to a basic CA model include being

relatively easy to reason about and that simple rules that govern singular cells or even groups of

cells can lead to extraordinarily complex behavior. A typical example of this is the “Game of Life”

which is a two dimensional CA that only uses a few rules to determine if a cell lives or dies in

the next generation based on the living cells around it. The “Game of Life” CA (and even other,

simpler automata) have been proven to be capable of producing a universal Turing machine [10].

The core of this implementation requires that the CA model is updated and stepped as quickly

as possible; each ‘generation’ of the automata will represent a frame. To do this I used Nvidia’s

CUDA platform for mass parallelization and scalability. This was a preference based on experi-

ence; other implementations using different platforms or frameworks like OpenCL should perform

comparably. I leveraged the generous allowance of memory available on many of Nvidia’s GTX

line of graphics cards for precomputation. Bit-packing methods are used repeatedly to maintain as

much performance as possible. The end result is an implementation that operates on large numbers

of particles at speeds acceptable for interactive simulation while still having room to be further op-

timized and expanded to fit a broader spectrum of simulations. Many of the expansions discussed

were not implemented and officially analyzed because this research stands as a “worst-case” anal-

ysis to make evaluation simpler and more straightforward.
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3.1 CUDA and Cellular Automata

The decision to use CUDA was made from the beginning on the grounds that compatible methods

and models would benefit greatly from the large scale parallelization that it offers. The main

obstacle is that classical implementations for algorithms on a CPU tend to differ from their GPU

counterparts in a few substantial ways. GPU’s are incredibly efficient at doing similar operations

on large scales, but experience a sharp decrease in performance when many different operations

need to be done by several threads. The reason for this performance loss is that GPU’s step groups

of threads (a warp in CUDA) through the operations together. When a thread diverges then the rest

of the warp is stalled until that thread is stepped to a point of convergence and then the rest of the

warp will follow. Branching is typically fine if it can be guaranteed that an entire warp will follow

the same path, but the more that the threads in a warp diverge relative to each other the worse the

overall performance will be. This means that any sort of branching in an implementation is best

avoided or applied in cases that fit as many threads as possible to mitigate the overall effect.

Another issue that can severely impact CPU based implementations is that GPU’s are well

separated from the rest of the hardware in a system. Data and parameters that individual kernels

might need from the CPU side must be transferred at what is the slowest transfer rate involved

with GPU computing: from the host side to the device side [11]. The issue with data-transfer rates

is less of an issue overall than thread divergence, but can pose a real problem if CA results need

to be saved or retrieved for rendering. In many cases this can be mitigated while rendering by

using CUDA interoperability with graphics libraries like OpenGL. CUDA can work in this way by

sharing memory space on the graphics card so that buffer data rarely, if ever, needs to transferred to

the host computer. Saving a simulation may require a more involved approach and may required the

compression of data on the graphics side before being transferred in appropriately sized batches.

Granularity of the simulation could also be adjusted as each frame is generated as a function of the

previous frame, but may not require every frame when revisiting the simulation once it has been

recorded.

The goal of the research outlined in this paper was to implement a model of simulating granular

material that at least had potential to be interacted with at a reasonable frame rate. A reasonable
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frame rate being based on current interactive media where 60 frames per second (FPS) is ideal but

as low as 24 FPS is choppy yet tolerable. Pla-Castells et al. already showed with their work that

CA models had the capability of simulating granular material in real time [6]. What I set out to

do was use a CA model to create a more general simulation of granular material that could still be

viable for interactive simulations while being willing to sacrifice some degree of accuracy in the

simulation itself.

The basic CA model is easy to reason about and fits nicely into the lock step process that GPU

threads use. Zhu & Bridsons approach using continuum mechanics would also work well across

a GPU while avoiding the difficulties that accompany discrete particles in this type of simulation.

The main reasons that I went with the CA model instead are that it would be faster for me to

implement and the options for optimizing it were more clear to me. It may not always be possible

to completely remove the issue of thread divergence completely from the computation of a cells

resultant state. For most cases the CA can function normally and only the rules that govern updates

of specific cell states need to be re-factored and optimized. As will be discussed further into this

section the overall computational cost of computing cell rules is removed via precomputation and

will actually play little role in the frame-to-frame updates.

One of the many challenges to this work was actually designing rules for a single cell CA

(a ‘single cell CA’ being an automata that updates a single cell based on its direct neighbors)

that simulates sand. The rules for simulating gravity are straightforward enough to simply be

moving cells down each frame if a cell was not already occupying that space. Granular flow,

the motion that creates heaps would cause problems with race conditions as now cells could be

trying to move on top of each other. To solve this issue I used a block cell automata known

as a Margolus neighborhood as described by Toffoli and Margolus [12]. Essentially the cellular

automata is broken down into blocks or neighborhoods and each block is updated as an atomic

unit. Cells can then be represented as individuals and stored as such, but when they are updated

they are partitioned into grids containing 2x2x2 cells. Individual regions or neighborhoods can

then be denoted as having a specific state which encapsulates the cell states and positions in that

neighborhood. Using Margolus neighborhoods in this way I can isolate cells that affect each other

and update them as a collective group rather than individuals.
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(a) Start of simulation (b) 20 steps in (c) 50 steps in (d) 100 steps in

Figure 3.1: Simulation in 100 Steps
35x35x17 granular cells as they fall onto 863 solid cells that form a bowl. (a) Generation 0 - takes place in

a 35x35x35 grid. (b) Generation 20 - The bowl is still empty but granular cells are piling up around the
edges of the bowl and falling into it. Other granular states fall as if in a vacuum. The gaps here are caused

by the Margolus neighborhood updating, only the neighborhoods that consist of a granular cell above a void
cell will display any form of gravity. (c) Generation 50 - bowl is mostly filled. Gaps are closed because the

size of the grid does not line up with the Margolus neighborhood at this specific offset on this frame
causing cells on the interior to be updated but some cells on the edge have to wait until next frame to fall or
otherwise update. (d) Bowl is filled and now sand will continue to pile up into a mound that extends over

the bowl. The excess sand in this case will slough off onto the rest that will eventually bury the bowl itself.

For Margolus neighborhoods to work there needs to be an offset of the partition on each frame.

If the partition was left to divide the same cells into the same neighborhood then the entire system

will simply be divided into several static subsystems. In order to be effective the neighborhoods

must also share cells between each other. To prevent any anisotropy during simulation the partitions

will need to be offset by a single cell along each potential axis. For a 2 dimensional simulation this

would mean 4 different positions (vertical, horizontal, and both diagonals), but for a 3 dimensional

simulation the number of offsets increases to 8. The overall effect of this is that cells are allowed

to move over adjacent boundaries so that static subsystem division is avoided. The partitions now

follow an 8 step cycle which could be called a super frame that consists of 8 individual frames

computed all in the same way, but with different partition offsets. A ‘frame’ as it is used in the

implementation is one step in this 8 step cycle. Artifacts of this process can be seen in Figure 3.1,

specifically Figure 3.1b and Figure 3.1c. As the kernel scans it breaks the buffer of cells into a

partition of Margolus neighborhoods which often do not line up perfectly with edge boundaries at

some point in the cycle of 8 offsets.

One potential benefit of this Margolus neighborhood implementation is that it has removed

the need for a double buffer that many CA models use. Double buffering is a technique typically

used to prevent the update process from overwriting data from the previous generation that is
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still needed to compute the next generation and is common for single cell CA. The Margolus

neighborhood breaks the buffer into atomic partitions that can fit into faster cached memory and

updated as a whole. That is not to say that double buffering would not be beneficial as it could

allow the rendering and updating processes to be decoupled more and multiple buffers can be

added for expanded functionality.

The workload of updating the buffer is spread across the GPU itself. Each horizontal layer of

the partitioned buffer is assigned a block via the CUDA platform. For each of those layers 256

threads are used per block to compute the updates to the neighborhoods. The number of threads

was chosen based on attempts to keep the multiprocessor thread occupancy as high as possible.

CUDA operates by running active warps on a Streaming Multiprocessor (SM) and graphics cards

will usually have a few of these. Occupancy is the ratio of active warps on an SM and the maximum

number of warps that an SM can support. CUDA attempts to interleave warps to hide latency

wherever it can and Occupancy is an indirect way of measuring how effective it is. As such it

is desirable to maximize this Occupancy wherever possible. Fortunately CUDA provides a tool

specifically for calculating the Theoretical Occupancy that a kernel can maintain based on how

many resources are used. Resources are finite and refer to the threads per block, shared memory,

and number of registers that each multiprocessor can supply to the blocks they are running.

3.2 Data Representation

How data is represented in this system plays a large part in how it can be expanded upon while

minimizing the costs of doing so. Individual cells are represented by a single enumerated state.

The current implementation can support a total of 8 cell states. Only the 5 states ‘void’, ‘solid’,

‘liquid’, ‘gas’, and ‘granular’ are included in the system and only the 3 states void, solid, and

granular are actually being simulated. The void state is simply a representation of blank space and

is a default state. Solid states are immovable rigid bodies that do not update under any rules so that

they can act as barriers or form useful structures like bowls and hoppers. Liquid, gas, and granular

states are meant to represent their indicated states of matter, but only granular states are currently

implemented.
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The main buffer itself is an array of 32-bit integers that represent each cell. A neighborhood as

previously defined is a collection of 8 cells in a 2x2x2 configuration and is used as an intermediate

data structure with several convenience methods. Neighborhoods are constructed in threads as a

kernel scans across the buffer and is represented by an array of 8 integers. The neighborhood is

capable of converting to and from a 32-bit integer representation where the least significant 24 bits

are used as an array of 8 values with each value being represented with 3 bits and corresponding

to a single cell in the neighborhood.

In order to perform an actual update a ‘transition’ is computed. Transitions are represented by

a single integer where the 24 least significant bits are used to store the transition itself, allowing

for a compact set of 8 3-bit values. They are similar to how neighborhoods are stored, but actually

represent something else. These values are used in a lookup table where each index of the 8

cells in a neighborhood are used as indices to specific cells and the resulting values represent the

index to move the neighborhoods value at the original index to. Basically transitions encode which

cells need to be swapped from one generation to the next and their values can be retrieved using

only a few shifts and bitwise operations. When a transition is applied to a neighborhood it will

move values around the 2x2x2 structure of the neighborhood according to how the transition was

generated.

This method may seem a bit convoluted so why not just generate the actual result and update it

that way? While it is true that using transitions like this results in about 16 more accesses (half for

reading, half for writing) into the temporary neighborhood array it allows the program to expand.

For example, the system could have multiple concurrent buffers that map properties to specific

cells allowing several different types of granular matter to exist that behave slightly differently in

certain situations.

The global lookup table is a critical component of the entire system. As previously mentioned

neighborhoods represent a collection of 8 cells and can be converted to an integer that effectively

represents the state of the entire neighborhood. By making the global lookup table a mapping

between neighborhood states and their appropriate transitions an update can technically occur as

quickly as it would take to extract a value at an index in a large array followed by a few more reads

and writes.
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3.3 Precomputation and Memory

The first operation that occurs when the program is run is that the entire lookup table for neigh-

borhood transitions is precomputed. Only 3 states are actually simulated, but an effort was made

to have the lookup table allocate enough space to support 8 states. While generation time of the

permutations of this larger lookup table will vary based on the rules that are implemented, the effi-

ciency of using this will not differ greatly from a fully implemented rule set for 8 states including

complex interactions.

With 8 possible states for 8 cells there are 88 possible permutations of the neighborhood so

the lookup table will contain 16,777,216 elements. Using 32-bit integers as elements the result

is a lookup table that will consume 67.12 MB. Though realistically only 5 states are used at the

moment so only a 1.5 MB lookup table is necessary. Graphics cards with 1 GB to 2 GB of VRAM

are fairly common and Nvidia cards with this amount of VRAM can be cheap relative to the typical

cost of a computer. This 67.12 MB chunk of memory should not be cause for much concern as

performance here will be much more limited by the size of the buffer rather than the size of the

lookup table.

One caveat might be that CUDA has a built in termination time on kernels that is enabled by de-

fault. If a kernel runs for longer than 2 seconds it will be killed and the application will seize. This

may cause issues on slower systems if the kernels cannot complete the generation of the lookup

table in time. While there is currently no contingency for this in the implementation, the lookup

table generation can simply be spread across multiple kernel calls to avoid this. Alternatively the

time limit can be removed completely, but depending on how the program is used that may not

be a realistic expected action for users to perform. Rather than precomputation these values could

instead be memoized during run time, but precomputation prevents unexpected slow downs when

several values need to be computed at once. Memoization would also mean that more involved

update rules would directly impact performance. Alternatively the lookup table generation could

be offloaded onto a different program entirely. Such a system could allow for much larger and

more complex rules that get compiled and saved to system memory. When the simulation starts it

could then load the saved system memory from system memory to GPU memory and exchanging
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the cost of generating the lookup table with copying it and only generating it once.

Part of the reason only 24 bits of a 32 bit integer are used to represent a neighborhood is because

of the explosion in necessary resources that comes from storing more information. If only 1 bit

were added for each cell then it would fit perfectly in an integer so space could be maximized and

then up to 16 states could be supported. Unfortunately even adding one more state makes it clear

that this will not be possible. At the moment the lookup table requires every possible permutation

of the 8 cells in a neighborhood to guarantee full coverage. When another state is added then

this sort of lookup table will consume over 170 MB (98 permutations) of memory to simulate 9

states and 400 MB (108 permutations) for 10 states. This could potentially be optimized for space

by rotating the 2x2x2 cells around a specific axis in π
2

increments and using the smallest state

representation as the result. Using rotations to remove duplicate entries in that fashion would only

result in a 1
4

reduction to the overall size of the array; this optimization might make simulating up

to 10 states feasible, but returns diminish quickly.

To actually generate the lookup table itself CUDA is used to iterate over all 16,777,216 states.

The kernel constructs a grid of 4,096 blocks each encapsulating 256 threads. Each thread will

compute the transition of 16 states by starting with the state that the current index represents and

applying gravity and then flow rules before storing that transition in the lookup table. This way the

index of the lookup table is as much a part of the computation itself as the transition that is stored

there and is integral to the rapid retrieval of successive neighborhood states.
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Chapter 4

Evaluation
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Figure 4.1: FPS Performance Graphs Related to Simulation Size
Update performance and frame throughput. Successive simulations were set up to be similar using an

NxNxN2 granular blocks, 863 solid blocks, and the rest were left void. Updates occur without consideration
of the state of the individual cells. Graphs are scaled and not all data points are visible, but the trend is

clearly preserved. (a) The average frame rate of simulations of varying sizes over an unspecified amount of
time. Relatively inaccurate, but shows the 1

x trend. (b) Frame throughput of the first 10 seconds of running
the simulation after the lookup table has been generatied. Shows the same 1

x trend.
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4.1 Environment

Performance here is typically a measure of frame rate using frames per second (FPS). Seconds per

frame, the inverse, may be used at times to draw comparisons between the work done by Zhu and

Bridson and Narain et al. as well as demonstrate worst-case complexity. A frame here represents

a single update of the entire cell buffer at a single offset of the Margolus neighborhood partition.

Testing was done on a GTX GeForce 960M which has 4 GB of VRAM and 1096 MHz base

clock rate. The mobile graphics card itself also supports CUDA compute capability of 5.0 even

though the solution this paper uses was compiled with compute capability of 2.0. While this main-

tains the backwards compatibility of the solution it is possible that further performance increase

could be gained by utilizing a higher compute capability. I am not entirely familiar with the poten-

tial gains of doing this, but predict that it would be much less significant than tackling some of the

bigger issues of this solution.

Frame rate was computed in a few different ways, but for all values rendering was disabled.

First by averaging the time to update the previous 5 frames and letting a simulation run for a

lengthy but approximate amount of time. Next was a more rigid accounting of frame throughput

where the number of frames computed is counted and output after 10 seconds after the lookup

table is generated. This accounting was averaged across 5 trials for each of the 10 values used and

produces a graph very similar to the first method.

The actual program that I developed runs in the worst case on every update by updating every

neighborhood every frame which makes efficiency testing of the update method a bit easier. The

implementation makes no effort to reduce the number of updates that occur each frame. Intention-

ally avoiding this optimization allows me to establish a base line of performance for the system

itself that later optimizations can compare to and it makes the computational complexity of the

update a little more obvious. Avoiding update reduction is also convenient because the configu-

ration of the simulation itself will have less of an impact, if any, on performance. The simulation

configuration that can be seen in Figure 4.2a and Figure 3.1a was used for N cells involves a large

block of NxNxN
2

elements with a granular state falling around a floating rigid ‘bowl’ consisting

of 863 solid cells. There is a slight increase in performance when the entire system ‘settles’ or
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(a) Start of simulation (b) End of simulation

(c) Midway through the simulation from above (d) Midway through the simulation from below

Figure 4.2: Sample Simulation Environment
Shows a standard simulation that was used to benchmark the implementation. (a) The start of the

simulation is displayed after the lookup table has been generated. The NxNxN2 block of granular cells can
be seen floating above the 863 solid cells that form a bowl all in a NxNxN grid. For this simulation

N = 35. (b) This is the end state. The solid bowl is completely buried and has been filled to the brim and
more with granular cells. The granular cells continue to form a mound above the bowl while the rest rolls

off into the body of granular cells below that are contained by the simulation bounds. (c) A look from
above midway through the simulation. Here artifacts of the Margolus neighborhood can be seen around the
edges as the offset does not fall on neat boundaries for this grid size. It can also be seen how the granular

cells stack up around the edge of the bowl forming a sort of hopper. While this is not quite realistic, it does
display hopper-like behavior similar to dry and fine sand as particles in the middle of an hourglass fall

quickly and particles that can cling to the edges stay behind longer. (d) Same generation as (c) that shows
the view from below. Granular cells ‘fall’ as if they were in a total vacuum and are only affected by gravity

and an arbitrary flow rule. Here they display that they fall around the bowl, but over time will flow to
swallow the space underneath the bowl as would be expected of falling sand.

becomes static which I suspect is a slight benefit to caching that occurs.

4.2 Results

Figure 4.1a and Figure 4.1b show the frame rate and frame throughput that were gathered from

testing respectively. It can be seen that the graphing of frames per second express a clear 1
x

rela-

tionship. When this graph is inverted to show seconds per frame, as seen in Figure 4.3, a linear

relationship emerges between the time it takes to compute a frame and the number of cells being

updated.
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Figure 4.3: Frame Generation Time Related to Simulation Size

This linear complexity of the update is expected; once the lookup table is generated an update

to single cell becomes fairly straightforward. A 2x2x2 Margolus neighborhood of 8 32-bit integers

is constructed by retrieving the appropriate cells from the main buffer. The neighborhood is then

converted into an integer format by encoding each value as a 3-bit integer so that the state of the

entire neighborhood is represented as the least significant 24 bits in a 32-bit binary integer. The

encoding process entails a small series of bitwise operations and the indexing of an array of length

8 and should be a constant time operation. This encoded integer is then used as an index into

the lookup table where all of the possible state transitions have been precomputed. The result is

a transition that is then applied to the original 2x2x2 neighborhood and written back to the main

buffer to complete the update. For N neighborhoods this update maintains a linear time complexity.

The solution described here was constructed around the heavy use of a consumer level graphics

card to simulate a CA model of granular matter. A simple to implement and cheaply scaled update

method is used to simulate large numbers of simulated particles.

The actual rules used for progressing the simulation are precomputed in the lookup table. While

this makes rules harder to be reactive to contexts that are bigger than the Margolus neighborhood it

does mean that there are few consequences to more complicated update rules aside from additional

loading times at the start of a simulation. Additionally the system can be expanded to support up

to 8 states for the basic rules or even sacrificing a few states to support a larger neighborhood.
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The renderer used takes advantage of a few optimization techniques such as hardware instancing

and CUDA interoperability so that data is moved as little as possible, but does little in the way

of any culling. With only these basic optimizations about 1 million cells can be simulated at

approximately 105 FPS.

This implementation was meant to be a simplistic and scalable simulation of granular matter.

As such it performs well in those respects, but finds itself lacking in the accuracy of the simulation

itself. Overall the implementation performed better than expected and shows promise for being

useful as a potential boilerplate for expanding upon as an interactive granular simulator. Also of

note, Zhu and Bridson mention that their simulation costs are linearly proportional to the quantity

of simulated particles [4]. Should their method or derivative methods (like the work of Narain et

al.) be implemented in conjunction with a GPU the increase to performance may be on the order of

what is seen here. The work done here may be indicative of the sorts of benefits that their method

or derivative methods (like the work of Narain et al.) may see should they be implemented in

conjunction with a GPU.

At the moment the implementation may appear a bit crude, but visual techniques combining

shaders and 3D textures as well as marching cubes to smooth voxels could create a more appealing

visual. For large enough sizes this system may also start to struggle to find enough consecutive

memory for the main buffer. Simulating at sizes large enough would be quite slow as 125 million

cubes consumes over 550 MB of memory with the lookup table included and can still barely

maintain over 1 FPS.

The results here show that the performance benefits from using GPU’s to simulate granular

matter using a model of Cellular Automata can be large. Performance of this system is outlined in

terms of the update function alone. Rendering the results in real time or transferring the rendered

frames from GPU memory and saving them to a drive will have a large impact on overall perfor-

mance. This sort of approach may also be more appropriate for budget conscious systems. A high

level of performance can be obtained with a low cost to memory on a consumer level system.

The program itself is written specifically in CUDA and is therefore only compatible with

CUDA enabled Nvidia graphics cards. However, the methods described here could be imple-

mented for another framework that is a bit more robust such as OpenCL. There may be a bit of
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a performance loss in edge cases and where data transfer is concerned, but otherwise an OpenCL

program should perform about as well as a CUDA program [13; 14].
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Chapter 5

Conclusion

Simulating granular matter is costly in terms of computing power and can take a reasonable amount

of time to generate a complete simulation. This cost is a barrier to cheaper systems and interactive

simulations. By precomputing as much as possible and focusing on representing the data effi-

ciently it is possible to implement a solution that is fast, cheap to scale, and conceptually simple.

Coupling this simplicity with the brute power of a GPU results in an effective solution for inter-

active simulation in granular materials. Not only is the method proposed here effective on weaker

hardware, but it should scale linearly along with memory access times and cache sizes of more

expensive hardware with minimal modification. With the ability to simulate over 8 million cubes

this solution effectively handles the size of the problem and only stands to gain from optimization

and expansion.

5.1 Future Work

There are a few ways that this implementation could be further improved. At the moment the

system blindly updates all cells as it scans across the grid. This action is quick because of the mass

parallelization of the GPU, but could potentially be made faster with the use of some sort of spatial

data structure. For example an octree could be used to denote large regions of neighborhoods with

completely void states or states that do not change when updated so that updates occur only on
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the apparent moving parts of the simulation. Alternatively an octree could also be used to denote

large regions of similar or the same states in order to make updates of larger portions of the grid.

Leveraging the potential benefits of more recent compute capabilities for graphics cards and using

more effective GPU optimization techniques like shared memory and simplifying kernels may be

an effective method of optimization. It also stands to be shown how gases and liquids could also

be added and simulated. The lookup table for all 8 possible states is constructed and populated so

the implementation of rules for these states would have little to no impact on the performance of

the simulation overall.

An extension of this problem could be implemented by utilizing more of the remaining memory

space for auxiliary buffers. Only 8 states can be emulated with the current system, but it would

be possible to have multiple buffers that support different functions. In this way a vector map

could be used for combining continuum mechanics with Cellular Automata to produce a more

realistic simulation. Environmental effects like wind or heat could be implemented or a buffer

could support more specific elements of materials. An example of that might be boiling water

to steam or introducing liquid gallium to solid aluminum to produce a powdered or granulate

aluminum. While that may not be a perfect analogy of liquid metal embrittlement, other effects

like this could potentially be simulated. Alternatively the number of states that the lookup table

considers could be reduced in favor of expanding the Margolus neighborhood representation itself.

By doing this it may be possible to use a taller neighborhood (i.e. 2x2x3) in order to simulate

granular materials with either a greater angle of repose or more cohesive particles like wet sand,

mud, and snow.
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