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ABSTRACT 

Agricultural fields contribute phosphorus (P) to water bodies, which can degrade water 

quality. The P index (PI) is a tool to assess the risk of P-loss from agricultural fields. However, 

due to limited measured data, P indices have not been rigorously evaluated. The Agricultural 

Policy/Environmental Extender (APEX) model could be used to generate P-loss datasets for P 

index evaluation and revision. The objectives of the study were to i) determine effects of APEX 

calibration practices on P-loss estimates from diverse management systems, ii) determine 

fertilizer and poultry litter management effects on P-loss, iii) evaluate and update the Kansas PI 

using P-loss simulated by APEX and iv) determine appropriate adsorption isotherms with 

advection-dispersion equation with column leaching experiment. Runoff data from field studies 

in Franklin and Crawford counties were used to calibrate and validate APEX. Poultry litter and 

inorganic fertilizer application timing, rate, method, and soil test P concentration effects on P 

loss were analyzed using location-specific models. A column leaching laboratory study was also 

conducted to test the adsorption isotherms. Location-specific model satisfactorily simulated 

runoff, total P (TP) and dissolved P (DP) loss meeting minimum model performance criteria for 

2/3 of the tests whereas management-specific models only met the criteria in 1/3 of the tests. 

Applying manure or fertilizer during late fall resulted in relatively lower TP loss compared to 

spring applications before planting. The Kansas-PI rating and the APEX simulated P-loss were 

correlated with r2 of 0.40 (p<0.001). Adjusting the weighting factors for Prate, soil test P, and 

erosion improved the correlation (r2 = 0.46; p<0.001. Using a component PI structure and 

determining the weighting factors by multiple linear regression substantially improved the 

correlation between the PI and TP loss (r2 = 0.69; p<0.001). In the P-leaching experiment, both 



  

the linear and nonlinear adsorption isotherms did not fit the experimental data. A multi-

reactional advection-dispersion model that better describes all the P processes and 

complexities in soils should be included in the future. These procedures can provide a roadmap 

for others interested P transport in soils and using computer models in evaluation, and 

modifying their PI. 
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THESIS STATEMENT 

 

Decreasing phosphorus (P) loss from agricultural fields is an important environmental 

and agricultural priority. When P enters surface water, it promotes algal growth and leads to 

eutrophication, which is a major cause of water quality degradation in the US (U.S 

Environmental Protection Agency, 2002; Sharpley and Wang, 2014). High P concentrations can 

also promote toxin production from harmful algal blooms (HAB) (Hudnell, 2010). In 2011, there 

were 34 reports of human or animal illness from HABs in Kansas, resulting in two people being 

hospitalized and five animal deaths (KDHE, 2012). Agricultural fields are an important source of 

P enrichment to water bodies. Excess P application from nitrogen-based manure management 

has resulted in P accumulation in many agricultural soils. High soil erosion and runoff, especially 

when coincident with high soil test P or high P applications, results in excessive P loss to surface 

water. Although environmentally significant P losses may not have an immediate impact on 

agricultural production, permitting excessive P loss from agriculture is the unwise management 

of a limited natural resource.  Furthermore, failure to control P export from agriculture may 

promote the creation of regulations that restrict P fertilizer use.  It is in the best interest of 

agriculture and environmental protection to reduce P loss from agricultural fields. 

Reduction of P loss from agricultural production requires accurate estimates of how 

management practices impact P loss relative to soils, landscape position, slope, and hydrology.  

By understanding these complex relationships, producers, and land managers can identify 

locations in a watershed that are sources of P loss and they can determine the benefits of 

alternative management strategies for reducing P loss. Simplified models, such as the P index, 
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can be used for estimating the impact of management practices and soil properties on P loss 

(Lemunyon and Gilbert, 1993). However, there are concerns about the accuracy of P indices in 

ranking the risk of P loss from different management practices and many components of P 

indices have not been justified or validated, (Drewry et al. 2011; Nelson and Shober, 2012; 

Sharpley et al. 2012). Consequently, questions have been raised about the effectiveness of P-

indices in improving water quality (Environmental Protection Agency, 2010; Sharpley et al. 

2012).  Processed-based computer models are alternative method of estimating P loss from 

fields with different management.  Nevertheless, these models are very difficult to use (Saleh et 

al. 2011) and have not been adequately tested (Nelson and Shober, 2012). Although tools have 

been developed, these tools do not currently produce results with the desired level of 

confidence. Therefore, current methods to estimate agricultural management practice effects 

on P loss must be improved. Improved phosphorus management tools will assist researchers 

and conservationists to better estimates P loss, identify critical source areas of P export, and 

target conservation practices more effectively and efficiently, thus addressing water quality 

concerns associated with agricultural fields. 
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Chapter 1. Impact of Agricultural Phosphorus (P) Loss to Water 
Resources and Methods of Improving P loss Estimation:  A Literature 

Review 

1.1 Eutrophication 

Contamination of surface waters with nutrient losses from agricultural fields is a major 

threat to drinking water, recreational resources, and aquatic ecosystems. Nutrient enrichment 

of water resources can accelerate biological productivity, promote algal growth and 

eutrophication, and lead to general water quality degradation (Carpenter et al. 1998; U.S 

Environmental Protection Agency, 2002; Sharpley and Wang 2014). Eutrophication propelled by 

P loading to freshwater is widespread in the U.S. (Dale et al. 2011) with substantial amounts of 

P exported from agricultural fields (Dubrovsky et al. 2010). Although nitrogen and carbon also 

control the growth of aquatic biota, most of the freshwater eutrophication around the world 

are accelerated by P inputs (Schindler 1977, Sharpley et al. 1995). Therefore, P is often a 

limiting element and control of P loss from agricultural fields is essential to reduce 

eutrophication.  

Phosphorus is an essential element for plant growth but excessive P inputs accelerate 

the biological productivity of surface waters resulting eutrophication (Sharpley et al. 2003). 

High P loading to surface water can promote toxin production from harmful algal blooms 

(HABs) (Hudnell, 2010; Paerl, 2008) and poses a serious health hazard to human and animals 

(Burkholder and Glasgow 1997). For instance, excess P has been linked with the outbreaks of 

the dinoflagellate Pfiesteriapiscidida in Chesapeake Bay tributaries and eastern United States 

(Sharpley et al. 2003) and neurological damage to people has been linked to these toxic algae 

(Burkholder and Glasgow, 1997). In addition, P entering to streams, lakes and reservoirs 
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increases the drinking water treatments cost and can also incur billions of dollars in cost every 

year from lost recreation, and tourism-based economy (Dodds et. al. 2008; Graham et al. 2010; 

Smith et al. 2015). Therefore, decreasing P loss from agricultural fields is an important 

environmental and agricultural priority (Sharpley et al. 2001) and improving methods to 

estimate P loss may play a significant role in limiting P input to water bodies and controlling 

consequences associated with eutrophication.  

1.2 Factors affecting P loss 

Spatial variability in soil nutrient concentrations, water holding capacity, topsoil depth, 

soil hydrology, crop growth, weather conditions, and management practices are important 

factors affecting P losses. Of these, management practices play a vital role in reducing P loss 

from agricultural fields. Therefore, quantifying impacts of management practices on soil P 

content, distribution (chemical forms), and losses (both runoff and leaching) is important as 

soils are a major source of P losses (McDowell et al. 2003). Tillage practices, methods, rate, the 

timing of fertilizer and manure application are important management factors that may 

influence the agricultural P loss in runoff. Furthermore, nitrogen-based manure management 

practices and P application above crop requirement has forced development of new 

management options to subdue environmental concerns (Vadas et al. 2012).  

Research has shown that controlling both the source and transport mechanisms are 

important to reduce P loss in agricultural runoff. Critical source areas are defined as the 

intersection between large P sources and high transport capacities. For instance, sources of P 

such as high soil test P levels and manure or fertilizer applications are not an environmental risk 

unless they are transported to sensitive water bodies through leaching, runoff, or erosion.  
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Therefore, ideal management practices should target the control of P sources (e.g. minimize P 

build up in soils) and reduce the potential for transport (e.g. reduce surface runoff and erosion) 

within the critical source areas (Sharpley et al. 2003).  

Studies have revealed that minimizing P application rates and incorporating or injecting 

manure or fertilizers into soils decreases the risk of P loss (Eghball and Power, 1999; Little et al. 

2005; Zeimen et al. 2006; Sweeney et al. 2012). So by manipulating management practices, the 

risk of P loss can be minimized. Understanding the water quality impacts of current 

management practices as well as potential effects of using alternative management practices to 

reduce P loss are important for defining agronomic recommendations and environmental 

policies. Therefore, it is important to accurately assess effects of management practices on soil 

P content and P loss to water bodies.  

1.3 Methods to estimate management effects on phosphorus loss from 
agricultural fields 

Effects of management practices on P loss from agricultural fields can be estimated 

through three different ways: by measured data from field studies, with the phosphorus index 

(PI), and by using process-based computer models.  

Measurement of P loss with field studies is the most accurate reflection of field 

conditions and climate complexity. Field studies also provide valuable information about 

natural variability and illustrate local conditions (Veith et al. 2008). However, comprehensive 

data collection in complex landscapes and with wide varieties of management practices is time-

consuming, expensive, and impractical for field studies. For instance, if we have to test effects 

of 20 different management combinations with different tillage, fertilizer/manure application 
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rates and soil tests phosphorus (STP) level on P loss, it will make the field study so complex that 

it becomes impractical. It is also very difficult to find soils with varying degree of STP in one 

particular location. In addition, field studies are limited with weather scenarios. Weather, 

especially rainfall is plays a vital role in P loss in runoff from agricultural fields.  

The second method to estimate P loss from agricultural fields is with the PI. The PI has 

source factors (soil test P, P application rates, methods, timings and P source) and transport 

factors (soil erosion by water, irrigation erosion, soil runoff class, and field’s distance to surface 

water bodies). Each source and transport factor in PI is assigned a rating value and weighting 

factor based on its relative contribution to total P loss (Lemunyon and Gilbert 1993; Sonez et al. 

2009). The Kansas PI is based on the multiplicative formulation and total P loss rating is 

calculated by multiplying the summed transport factors with the summed source factors (Sonez 

et al. 2009). The PI is easy to use, user-friendly and can also assess location specific P loss 

contributing factors (Sharpley et al. 2011). The disadvantages the PI is that it only predicts 

relative assessment of risk and neither quantifies an amount of P lost nor simulates soil P 

dynamics over time. It is also not easily adjusted towards short-term time scale or expanded 

beyond the edge of the field. Hence, provides only one option for producers, if the ratings are 

high producers are required to reduce or stop applying P applications. Therefore, additional 

information is still required on use, impacts and evaluation of P indices to reduce P loss from 

agricultural fields (Nelson and Shober, 2012). In addition, the Natural Resources Conservation 

Service (NRCS) mandated that the P-index tool must be calibrated to standardize the P loss risk 

categories across regional, state and watershed boundaries (USDA-NRCS, 2012). Thus, there is a 

need to evaluate and update the Kansas PI, so it can be used as a tool to accurately estimate P 
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loss, recommend alternative BMPs, and minimize P loss from agricultural fields to water 

resources.  

The third method to estimate P loss from agricultural fields is by using process-based 

computer models. The process-based computer models are designed to simulate effects of 

management practices (e.g. tillage, fertilizer application, and cropping systems) on many 

different natural processes occurring in fields; such as crop growth, evapotranspiration, 

infiltration, runoff, leaching, erosion, nutrient cycling etc. Therefore, computer models help to 

assess the impact of management practices on P loss and have emerged as key tools to analyze 

wide range of management practices (Gassman et al. 2007; Yin et al. 2009; Gassman et al. 2010; 

Wang et al. 2012; Santhi et al. 2014; Francesconi et al. 2015).  

The advantages of using computer models are that they are relatively more feasible 

than measurement of P loss over large geographic areas to identify critical source area and 

assess the impact of BMPs (Gburek and Sharpley et al. 1998; Green et al. 2006; Wang et al. 

2008; Mudgal et al. 2010; Tuppad et al. 2010; Nelson and Shober, 2012).  Computer models are 

not restricted to treatment comparisons and weather scenarios. Further, computer models help 

to extend the application of field studies data. For instance, field studies runoff data can be 

used to calibrate and validate a model such as the APEX. The fully calibrated and validated 

model then could then be used to test the impact of different BMPs on P loss and develop the 

BMPs database. Such a database could be further used to evaluate and standardize P-indices as 

mandated by the United States Department of Agriculture-Natural Resources Conservation 

Service (NRCS) nutrient management policy instruction 590 (USDA-NRCS, 2011a).  
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The disadvantages of using computer models are that they require field studies data to 

calibrate and validate models before using them. Furthermore, computer models have complex 

subroutines and hence require rigorous training to understand the subroutines or even operate 

the model software (Saleh et al. 2011). In addition, it is difficult to design a computer model to 

accurately represent all the processes influencing P loss in a landscape. A fully mechanistic 

model would describe all the processes with physically and chemically based mathematical 

expressions. This makes a very complex model. Most models use simplifying relationships in 

place of these processes based expressions. The simplifications introduce error.   

In spite of the disadvantages process-based computer models have been widely used to 

assess the impact of management practices on P loss and develop BMPs (Plotkin et al. 2013; 

Francesconi et al. 2014). For instance, the APEX model has been used in the Conservation 

Effects Assessment Project (CEAP) to assess the benefits of USDA conservation program at the 

national level (Mausbach and Dedrick, 2004; Wang et al. 2009). It has also been promoted for 

use with limited data for calibration or even without calibration Gassman et al. 2010). However, 

models must be tested (calibrated and validated) adequately before simulating BMPs and must 

be robust enough to accurately simulate water quality parameters of interest (example P loss). 

Moreover, using the simulation model data to evaluate PI requires accurate P loss estimation 

for unknown scenarios and computer models must be rigorously validated (Nelson and Shober 

et al. 2012). Therefore, further testing and scrutiny of the APEX model’s robustness and 

accuracy in simulating P loss with a wide range of management practices are necessary before 

using the data for PI evaluation.    
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1.4 Phosphorus loss pathways from agricultural fields  

Phosphorus loss from agricultural fields is a complex process and depends on both the 

source (P application rate, soil test P, application timings etc.) and transport factors (erosion, 

runoff, distance to water bodies etc.) (Sharpley et al. 2001). P sorption kinetics, soil properties, 

and management practices also play vital role in P loss from agricultural fields (Johnes and 

Hodgkinson, 1998). The primary processes of P loss from agricultural fields occur through three 

different ways; sediment bound P loss with soil erosion, DP loss in surface water runoff and DP 

loss in leachate through soil profile ( Sharpley et al. 1985a; Heathwaite and Dils, 2000). The P 

accumulation on the soil surface due to over application of inorganic fertilizer or manure 

increases the risk of P loss in sediment, surface runoff, and leaching. Therefore, P loss from 

agricultural fields depends on soil physio-chemical properties, management practices, erosion, 

surface runoff, and leaching loss and it is necessary to apply remedial measures targeting all the 

P loss pathways to minimize the overall P loss. Brief descriptions of how different factors affect 

these pathways of P loss are listed below.  

 Management practices  1.4.1

Management practices such as tillage, methods of application, application rate and 

timing of fertilizer and manure are important factors that influence soil P content, P distribution 

(chemical forms), and losses in runoff, sediment and leaching (Bhandari et al. 2011; McDowell 

et al. 2003). Studies have indicated P accumulation, P stratification and elevated loss to water 

resources especially when manure and fertilizer P was applied above crop requirements (Stone 

et al. 2001; Gachter et al. 2004). Phosphorus accumulation in surface layer increase the risk of P 

loss with eroded soil particles while in soil profile increase the risk of P loss to surface or sub-
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surface pathways by decreasing the P sorption capacity of the soils (Sharpley et al. 1984, Sims 

et al. 1998; Sharpley et al. 2004; Glaesner et al. 2011).   

The interaction between top 3-5 cm (1-2 inch) surface soil and rainfall or irrigation water 

is crucial to release P from soils (Sharpley, 1985a). The detachment of soil particles as an 

interaction of the soil types, weather and landscape position resulted in sediment bound P loss. 

The sediment bound P is a dominant mechanism of P loss in tilled agricultural systems (Sharpley 

et al. 2001). The erosion removes finer-sized soil particles first that has higher soil P content 

increasing the P enrichment ratio in water (Haygrath and Sharpley, 2002). The release of P from 

manure, fertilizers, plant and materials, resulted in DP loss in runoff and is a dominant 

mechanism in no-till systems (Sharpley et al. 2001).  

Therefore, ideal management practices should target the control of P sources (e.g. 

minimize P build up in soils) and reduce the potential for transport (e.g. reduce surface runoff 

and erosion) within the critical source areas (Sharpley et al. 2003). Thus, by manipulating 

management practices (crop rotation, application rates, methods etc.) risk of P loss can be 

minimized.  

 Soil chemical properties 1.4.2

Soil chemical properties are important factors that determine the P loss. Depending on 

parent materials, soil type and management practices total P in topsoil (0-15 cm) ranges from 

50-3000 mg Kg-1 (Foth and Ellis, 1997). Phosphorus in mineral soils (50-75%) is inorganic in 

nature. In acidic soils, P is associated with Aluminum (Al) and Iron (Fe) and in alkaline, 

calcareous soils with calcium (Ca). Primary minerals, secondary minerals (formed by 
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precipitation of P with Al, Ca and Fe), P adsorbed in the surface of clay minerals, Fe, and Al oxy-

hydroxides or carbonates are the major source of inorganic P in soils. The dissolved P in soil 

solution present as primary (PO4
3-) or secondary (HPO4

2-, H2PO-
4) orthophosphates is in dynamic 

equilibrium with inorganic and organic forms of P but may vary with relative concentrations as 

a functions of soil pH. At lower pH (4-5.5) H2PO-
4 and at pH > 8 HPO4

2- is the dominant ortho-

phosphate species (Sims and Pierzynski, 2005). Therefore, presence of Al, Ca, Fe, clay minerals, 

soil types, parent materials, weathering and soil pH are major soil chemical properties that 

determine the P availability and loss in agricultural systems. 

In addition, the P sorption kinetics; the reversible fast adsorption and irreversible slow 

desorption process occur simultaneously in soils and affect the concentration of P in solution 

and solid phase (McGechan and Lewis, 2002). Phosphorus adsorption and desorption 

parameters in soils are also key to determine the vertical P movement and leaching loss. 

Phosphorus loading could be problematic in areas with low P adsorption capacities of soils to 

retain soluble P (Sims et al. 1998; Sharpley et al. 2004; Glaesner et al. 2011). Phosphorus 

accumulated and saturated in soil is also susceptible to P leaching loss and can be released 

through desorption. Thus, P adsorption and desorption process is a key to determine the P loss 

in surface runoff, sediment and leaching loss (Sims and Pierzynski, 2005). Therefore, 

understanding this basic P chemistry and interactions in soils would be helpful to determine the 

limitations of different soils and manage P loss more efficiently.   
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 Other soil related factors 1.4.3

P movement in soil also depends on soil mineralogy, presence of macrospores, root 

channels, spatial variability in soil nutrient concentrations, water holding capacity, top soil 

depth, soil hydrology, crop growth, and weather conditions etc. Soil inherent variability, specific 

nature of P release, dominant form of P on soils, texture, aggregate diffusion, organic matter 

content, and degree of interaction between soil and water, and P sorption capacities are also 

important factors that determine P loss (Sharpley 1983; 1999). Dominant form of phosphorus 

(P) on soils, and degree of interaction between soil and water are important parameters that 

determine P loss from soils (Sharpley 1983; 1999). Therefore, besides management practices 

and basic soil P chemistry all these factors need to be considered with the basic concept of soil 

P chemistry in computer models to realistically simulate field conditions in long term P loss 

studies to reflect more realistic field conditions.  

1.5 APEX model brief description 

The APEX model was developed to address the gaps that existed to simulate key 

landscape processes in a farm or small watershed scale (Gassman et al. 2010). Climate, 

hydrology, erosion, management practices, nutrient cycling, crop growth, carbon cycling, 

pesticide fate, soil temperature, plant environmental control, subarea/routing and economics 

are the major components of the APEX model (Gassman et al. 2010; Wang et al. 2009; Williams 

and Izaurralde, 2006; Williams et al. 2012; Wang et al.2011). The main input data required for 

driving the APEX model simulations were weather, watershed characteristics, and management 

practices. Based on those input and components, the model simulates daily water flux, plant 

growth (including grain yield), nutrient cycling, soil erosion, and nutrient loss (Williams and 
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Izaurralde, 2006; Williams et al. 2012). The APEX model can simulate wide range of 

management practices such as tillage, buffer strips, terraces, grass waterways, rotational 

grazing scenarios, land application of manure or poultry litter etc. (Gassman et al. 2010; Yin et 

al. 2009).  

A computer model must simulate crop growth, runoff, and sediment loss as minimum 

requirements in order to estimate field-scale P loss. A brief description on how the daily crop 

growth, runoff volume, sediment, and P loss were described below based on Williams et al. 

(2012). Besides, the different options available in the APEX for some of the key runoff, 

sediment, and nutrient loss processes were listed in Appendix A. 

 Crop growth 1.5.1

The APEX model is capable of simulating growth for approximately 100 different and for 

both annual and perennial crops (Williams et al. 2012; Gassman et al. 2010). A single model is 

used in the APEX to simulate all the crops. The annual crops grow from planting date to 

harvesting date or until the potential heat units equal the accumulated heat units for the crops. 

Perennial crops may become dormant after frost but maintain their root system throughout the 

year and start growing when their base temperature was exceeded by average daily 

temperature (Williams et al. 2012). The model can simulate mixed cropping stands (up to 10 

crops) and the phonological development of the crop is based on daily heat unit accumulation. 

The daily increase in biomass can be estimated as follows based on the equation developed by 

Monteith, 1977). 

PIB = .001*PA*(RE-CP*X1)        [1] 



 

14 

 

PA = 0.5*SR*(1.0-exp(-0.65*LAI)       [2] 

RE = 100.*CO2/(CO2+exp(bc1-bc2*CO2)      [3] 

X1 = max (VPD-1.-.5)         [4] 

where PIB is potential increase in biomass in t ha-1.PA is intercepted photosynthetic 

active radiation in (MJ m-2 d-1), RE is the radiation use efficiency factor for converting energy to 

biomass in (kg ha-1)/(MJ m-2), CP is crop parameter relating RE and the vapor pressure deficit 

(VPD) in kPa, SR is solar radiation (MJ m-2 d-1), LAI is leaf area index, bc1 and bc2 are crop 

parameters determined from two input points on RE-CO2 curve (Stockle et al. 1992).   

 Runoff 1.5.2

In general surface runoff is generated when the rate of water application exceed the 

rate of infiltration. The infiltration rate is very high if the soil is dry but will decrease as the soil 

becomes wetter. Therefore, if the precipitation rate is higher than infiltration rate, surface 

runoff will occur. The SCS curve number method is commonly used to estimate surface runoff 

loss, which requires precipitation, water storage, curve number, and initial abstraction to 

estimate runoff volume. Hydrologic soil group, cover type, treatment, hydrologic conditions, 

and antecedent runoff condition are also important in determining runoff curve number.  

The runoff volume (Q) was calculated as 

Q =
(𝑃−𝐼𝑎)2

(𝑃−𝐼𝑎) +𝑆
           [5] 

Where, Q is runoff (in.), P is rainfall (in.), Ia is initial abstraction (in.), S is potential maximum 

retention after runoff begins (in.).  
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Initial abstraction (Ia) includes all losses (interception, evaporation, infiltration etc.) before the 

start of the surface runoff. The value of Ia can be approximated as 0.2S and the equation [5] 

become- 

Q =
(𝑃−0.2𝑆)2

(𝑃+0.8𝑆)
            [6] 

S is a function of the watershed soil and cover, conditions can be written as 

 S =
1000

𝐶𝑁
 − 10             [7]  

In addition, information about cover type, hydrologic condition, antecedent moisture condition 

(AMC) and hydrologic soil group (HSG) are required to determine curve number (SCS 1986).  

 Sediment loss  1.5.3

The Modified Universal Soil Loss for Small Watersheds (MUSS) equation was commonly used to 

estimate the sediment loss from field scale small watersheds as follows.  

MUSS sediment loss = R x K x LS x C x P x D tons ha-1 yr-1     [8] 

where, R is rainfall and runoff factor, K is soil erodibility factor, LS is slope length and steepness 

factor, C is cover and management factor, P is erosion control practice factor and D is the 

coarse fragment factor. The rainfall and runoff actor (R) in the equation 8 was estimated as 

follows 

R = 0.79*(Q*qp)0.65*WSA0.009         [9] 
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where Q is runoff volume (mm), qp is the peak runoff rate in mm h-1 and WSA is the watershed 

area in hectare (Williams et al. 2012).  

 Phosphorus loss and description of the P sub-routines   1.5.4

Soil phosphorus (P) in the APEX model is divided into organic and inorganic P pools. The 

organic P pool is further sub-divided into fresh organic and stable organic P pool. For P leaching 

the organic part of the P pools are ignored.  

The inorganic P pool is sub-divided into stable mineral P, active mineral P and labile P 

pools (Figure 1.1) and mineral P transferred among these pools. In the inorganic P pools, soil 

labile P is the major user input that initializes active and stable P-pools in the model and a 

contributor of dissolved P.  Labile P represents easily desorb-able P immediately available for 

plants or for runoff and leaching loss while active P represents less available not easily desorb-

able P that is in equilibrium with labile P (Sharpley et al. 1984).  Addition of fertilizer or 

inorganic P in the soil system disturbs the soil P equilibrium and two reactions occur 

simultaneously. First, a rapid reversible adsorption of P to surface sites and second, a slow 

reaction that converts P to a more strongly held non-labile form (Barrow et al. 1981; Javed and 

Rowell, 2002). Labile P pool can also became stable and move into a non-labile pool depending 

on time and soil characteristics (Barrow and Shaw 1979).  

The relative sizes of the labile P and active P pools at equilibrium is determined by the equation. 

Plabile = Pactive *PSP/ (1-PSP)         [10] 
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where PSP is the phosphorus sorption coefficient and is the fraction of applied fertilizer that 

remains labile after six months of incubation with multiple drying and wetting (Jones et al. 

1984). Plabile and Pactive is the P content in Kg ha-1. This mass of P (Kg ha-1) can be converted into 

mg P kg-1 soil by multiplying the Plabile and Pactive with {1/[(10*bulk density* depth(m) of soil 

layer]}. 

The labile P in the APEX model can be partitioned into solid and solution phase P. Based 

on the following equation the relationship between the labile P and active P is linear.  

kd = Qlabile/C           [11]                                                                                                                              

Where Qlabile  is the concentration of labile P in solid phase (mg kg-1), C is the concentration of P 

in solution phase (mg L-1) and kd is estimated as a function of clay content (Williams, 1995).The 

relationship between Qlabile and C is also linear with a slope of 1/kd. 

The rate of P transfers between labile and active P pools (P-sub routines) in the APEX is 

significant to determine the P loss in runoff and leaching. When the labile P pool becomes large 

then P moves from labile to active P pool to re-establish equilibrium (daily) and the mineral P 

flow rate (MPR) in kg ha-1 d-1 between labile and active P pools is given by the following 

equilibrium relationship – 

MPR = λ {Plabile – (Pactive *[PSP/ (1-PSP)])}       [12] 

where λ = 0.1 is both the sorption and desorption rate factor depending on the size of labile P 

pool. There have been a few different suggested values for λ.  Furthermore, some models 
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adjust λ depending on the direction of P flux. Therefore, equation [12] can also be rewritten to 

determine mineral flow rate (MPR) based on amount of labile P as-  

MPR = λf {Plabile – (Pactive *[PSP/ (1-PSP)])}; if Plabile > (Pactive *[PSP/ (1-PSP)])   [12a] 

and,  

MPR = λb {Plabile – (Pactive *[PSP/ (1-PSP)])}; if Plabile < (Pactive *[PSP/ (1-PSP)])   [12b] 

Where λf is the sorption rate factor and λb  is the desorption rate factor. 

Initially, Jones et al. (1984) suggested λf = 0.1 d-1 when P moves from labile to active P 

pool but there are concerns about this value. Vadas et al. (2006) indicated λf = 0.1 over-

predicted labile P especially at early incubated time and soils with higher clay where P transfer 

from labile to active P was higher. So, models that are using the EPIC P sub-routines (same are 

used in APEX) with the constant rate of λf = 0.1 would over-estimate dissolved P of 36 % for 

soils with higher clay content. However, they found that for long term simulations using λf = 0.1 

made no difference. 

Vadas et al. (2006) also reported that using the dynamic sorption rate factor predicted labile P 

better than the constant value of λf = 0.1. The dynamic sorption rate factor can be estimated as- 

λf = (A) (Time [days]B )          [13] 

Where A = 0.918e-4.603*PSP and B = - 0.238 Ln(A) - 1.126)      

Likewise, after labile P is used as plant uptake, lost to runoff or leaching, P from active 

pool transfer to labile P pool to simulate soil P buffering (Vadas et al. 2006) but at a slow rate. 
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Whenever Plabile is less than {Pactive *[PSP/ (1-PSP)]}, P moves from active to labile pool and is 

estimated by multiplying equation [12b] with desorption rate factor, λb = 0.1 (Jones et al. 1984). 

But Vadas et al. (2006) reported that using this desorption rate factor of λb = 0.1 greatly under-

estimated P transfer (desorption) from active to labile P. They also found that changing the λb 

to 0.6 or estimated as dynamic rate factor (range from 0.44 to 0.69) improved the prediction of 

P transfer from active to labile P with the later one predicting more accurately. Therefore, with 

the modified desorption rate factor (λb) of Vadas et al. (2006) equation [12b] can be written as- 

MPR = 0.6 {Plabile – (Pactive *[PSP/ (1-PSP)])} if Plabile < (Pactive *[PSP/ (1-PSP)])  [14]   

Further, the dynamic desorption rate factor can also be estimated to use instead of 0.6 

desorption rate factor as follows- 

Desorption rate factor (λb) = (Base) (Time [days]-0.29)  

where Base = -1.08 (PSP) + 0.79 

In addition, based on the APEX model’s theoretical document at equilibrium the stable P pool is 

four times greater than the active P pool.  

Pstable = 4*Pactive          [15] 

Pstable is in kg ha-1 (can be converted to mg kg-1 soil for each layer as Plabile). The flow rate 

between stable and active P pool in Kg ha-1 d-1 is determined with the following equation. 

ASPR = bo*(4* Pactive – Pstable)         [16]  
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where ASPR is the flow rate between active and stable mineral P pools and bo is the flow 

coefficient (d-1). The flow reverses when Pstable > 4* Pactive and is multiplied by 0.1 when ASPR is 

negative. Flow coefficient bo is determined as  

bo = exp(-1.77*PSP-7.05)         [17a] 

for non-calcareous soils and  

bo = 0.0076           [17b] 

for calcareous soils (Jones et al. 1984)  

Thus, based on the APEX theoretical documentation and literature, the rate coefficient 

(parameter 84) that regulates P flux between labile and active P-pool should be set as 0.1 in the 

APEX model and that was the value recommended in the original paper on phosphorus cycling 

and transport by Jones et al. (1984). Likewise, the rate coefficient that determines the P flux 

between active and stable P pool (parameter 85), should be set as 1.0 that is consistent with 

the original expression of the equation by Jones et al. (1984). However, differences in P flux 

between stable and active pools will likely have negligible impacts on P loss due to the very 

slow rates of transfer between these pools. 

In addition, labile P that initializes the active and stable P-pools estimated using a STP 

and a user-defined input (soil file) in APEX model. The PSP, that determines the relative sizes of 

the labile P and active P pools at equilibrium soil and calculated as a function of the chemical 

and physical properties of the soils and also a user-defined input (soil file) (Jones et al., 1984). 

The soluble P runoff coefficient (parameter 8) determines the P concentration in runoff as a 
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function of the P concentration in the soil.  And soluble phosphorus leaching (Kd) (parameter 

96) that defines a ratio of concentration of P in soil with concentration of P in water are the 

important parameters in the P-subroutines that affects overall for P loss simulations with the 

APEX model (Williams et al 2012).  

1.6  Steps in computer models/Modeling methods: 

The model set up, sensitivity analysis, calibration, and validation are the important steps 

before the process-based model can be used extensively. The first step in the model 

development starts with setting up an uncalibrated model using standard or default datasets 

and input parameter values. However, parameters can be redefined based on the information 

available and best professional judgment of the study sites (Baffaut et al. 2015).  

Sensitivity analysis is done to identify the most sensitive parameters, which can then be 

adjusted during the calibration process. Sensitivity analysis is not readily transferable and is 

essential to determine for each management practices (Griensven et al. 2006; Moriasi et al, 

2007). Therefore, sensitive parameters should be closely assessed to define its practical 

meaning and relationships with regard to the soils and management practices. Detail 

description and function of different model parameters in the model were discussed by 

Williams et al. (2012) and Steglich and Williams (2013). 

Model calibration is the process of selecting appropriate model options, adjusting 

influential model parameters and inputs within their reasonable ranges based on sensitivity 

analysis, experience, site information, literature and expert opinions. Model calibration is 

necessary to minimize the margin of error compared to observed data (Winchell et al. 2011). 
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Model calibration also provides greater accuracy in simulation data and serves as a reference to 

help other users with their calibration processes (Wang et al. 2012).  Model validation 

compares and evaluates the accuracy of model predictions with independently observed data 

(Wang et al. 2012). In general, model inputs are unchanged during validation. The purpose of 

the model validation is to make sure that the model is not over parameterized during the 

calibration process and yet capable of adequately simulating the impact of management 

practices as that of independent datasets. Overall, model calibration and validation help to 

increase the confidence in model predictions (Wang et al. 2009). Thus, a computer model must 

be calibrated and validated before extrapolating management practices implications to water 

quality and generate P loss datasets (Nelson and Shober et al. 2012).  

1.7 Phosphorus index (PI)             

The PI helps to identify site vulnerability and risk of P loss from agricultural fields by 

accounting for major source and transport factors that control P movement (Lemunyon and 

Gilbert, 1993). Research and extension efforts across the US have led to the creation of a 

unique PI in each state. Currently, 48 states in the US have adopted the PI as a P loss 

assessment tool and every state has their own PI based on the soil types, weather conditions, P 

loss pathways etc. (Sharpley et al. 2003).  

 Different Phosphorus Index formulations 1.7.1

Currently, there are three general structures of P-indices commonly used in the US; additive 

model, multiplicative model, and a component P index model.  
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The original phosphorus index (PIo) model formulation was additive and was developed 

based on 8 different possible P loss parameters (P fertilizer application rate, P fertilizer 

application method, organic P source application rate, organic P source application method, 

runoff, soil test P, soil erosion, and irrigation erosion) multiplied by their respective weighting 

factors (β) (equation 1) (Lemunyon and Gilbert, 1993).  


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The P loss parameters (S) used in the model were categorical values and ranged from 0 

(none) to 8 (very high). The weighting factors (β) ranged from 0.5 to 1.5. Each possible S was 

multiplied by the respective β and products summed to determine the final P index rating. The 

additive PI was simple and input values were easily obtainable. However, the drawback was 

that the categorical values for S and arbitrary values for β were not backed by any scientific 

research (Nelson and Shober et al. 2012).  

With the advancement in P loss research and understandings, scientists have modified 

and made changes to the PIo and develop different versions such as a multiplicative PI model 

(PIm). The PIm is divided into a group of source parameters (soil test P, P application rate, 

application methods etc.) and transport parameters (soil erosion, runoff class, distance from 

surface water body), and the sum of index values for source and transport are multiplied to give 

the final PI rating (equation 2) (Gburek et al. 2000).  
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where there are n and m number of source (I) and transport (J) factors respectively. βk is 

the weighting factor for kth source factor and λl is the weighting factor for the lth transport 

factor. Some of the categorical variables of the PIo such as P application rates, and erosion loss 

were changed into continuous variables in PIm. The PIm formulation better represents the P loss 

processes than the PIo but yet separating the source and transport parameters did not reflect 

the actual P loss processes as described in field P loss models (Bolster et al. 2012). 

The component model (PIc) is the further modification of the PIm.  Each individual 

parameter contributing to P loss was calculated as a product of both source and transport 

factors. The PIc better reflects the P transport pathways and mechanisms of P loss that occur in 

the field and are simulated in process-based P loss models (Nelson and Shober, 2012; Bolster et 

al. 2012).  

lk
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o JIPI 



11

          [15] 

where there are n and m number of source (I) and transport (J) factors respectively with 

βkl as the weighting factor for the interaction of the kth source factor (I) and lth transport factor 

(J). 

Readers are referred to the following sources for additional detail information on P-

Index structure and development;  Drewry et al. (2011); Gburek et al. (2000); Sharpley et al. 

(2009, 2011, 2012); Nelson and Shober (2012).  
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 The Kansas phosphorus index (KS-PI)  1.7.2

The KS-PI a multiplicative P risk assessment tool. The source and transport factors in KS-

PI are multiplied to determine the PI rating (Somez et al. 2009). The general form of the 

multiplicative KS-PI can be written as follows.  

KS-PI rating (risk) = P source factor x transport factor     [16] 

Or, KS-PI = (β1STP + β2P rate + β3AM) x (β4Ero + β5RO + β6DWB + β7IrrEro + β8IrrRO) [17] 

Where, STP = soil test P, Prate = P additions as organic or inorganic fertilizer, AM = 

application method and timing, Ero = erosion losses, RO = runoff risk, DWB = distance to a 

water body, IrrEro = irrigation erosion,  IrrRO = irrigation runoff. The β1-β 8 are the weighting 

factors (coefficients) that determine relative contribution to TP loss. The values of β1 to β8 used 

in the KS-PI are 1, 0.1, 1, 2, 1, 1, 1, and 1, respectively.  

Ideally, weighting factors should be obtained from long-term measured P loss data. For 

the P-index accuracy, the determination of weighting factor are critical and significant, but, due 

to limited scientific data, most of the PI weights have been based on the professional judgment 

of developers (Bolster et al. 2012).  Studies have reported improvement in P-index rating and P 

loss by adjusting the weighting factors. For instance, Sonmez et al. (2009) reported 

improvement in the correlation between KS-PI rating and measured P loss data by modifying 

weighting factors for STP and erosion. Nelson and Shober et al. (2012) indicated that use of 

improved weighting factors is one of the potential way to improve and evaluate the P indices. 

However, there is still a lack of standard procedure to determine PI weighting factors and 

further research is needed (Nelson and Parsons, 2012). Thus, this study will help to set a 

procedure to determine improved PI weighting factors to evaluate P indices.     
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In addition, the PI should accurately predict P loss risk due to changes in management 

practices. However, there are concerns about the use of P indices due to development disparity 

among P-indices across the country (Bennings and Wortmann, 2005; Osmond et al. 2006), 

poorly justified and arbitrary selection of some weighting factors (Drewry et. al. 2011; Nelson 

and Shober et al. 2012), and ineffectiveness in improving water quality (Environmental 

Protection Agency, 2010; Sharpley et al. 2012). Further, the Natural Resources Conservation 

Service (NRCS) released the nutrient management policy instruction (title 190 national part 

302), PI assessment criteria in 2012 and highlighted that the PI tool must be calibrated to 

standardize the P loss risk categories across regional, state and watershed boundaries (USDA-

NRCS, 2011b). Therefore, there is a need to evaluate and update Kansas PI to accurately 

estimate and minimize P loss from agricultural fields to water resources and also to meet the 

NRCS P index assessment criteria.  

1.8 Summary and research need: 

Reducing agricultural P loss to water bodies is a significant priority to protect surface water 

quality. The Kansas PI is a tool that helps producers to determine the risk and give options to 

minimize the risk of P loss from agricultural fields. Ideally, long-term measured P loss data are 

used to evaluate P-indices to reflect the actual field conditions and avoid experimental or 

climatic biases. However, due to limited P loss, runoff field studies data across the United 

States, process-based computer models such as the APEX have been proposed to extend the 

field studies, estimate management practices impact on P loss and develop P loss datasets 

needed to evaluate and update the P-indices. Further, the model should be tested (calibrated 

and validated) to determine its ability to adequately simulate P loss for a wide range of best 
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management practices (BMPs). Once calibrated and validated, the model can be used to 

generate management practices implication on P loss dataset for an unknown sequence of 

weather, varying degree of soil test P levels, and crop-management practices. Therefore, it is 

necessary to test the effectiveness of the APEX model to simulate P loss with a wide array of 

management practices. Thus, developing the management practices database to update and 

evaluate Kansas PI by taking advantage of the tested APEX model will provide an updated 

robust PI tool for future guidance to producers on BMPs to minimize agricultural P loss. 

 The hypotheses of this research were 

1. Calibrated and validated APEX model will accurately simulate P loss with constant 

management practices. 

2. Calibrated and validated APEX model will accurately simulate the P loss with changing 

management practices.   

3. High soil test P coupled with high P application rates result in greater TP loss in runoff. 

4. Nitrogen based turkey litter application does not increase the long-term annual average 

TP loss if P inputs are balanced over the entire rotation.  

5. Runoff TP loss will be linearly correlated with PI risk rating value.  

6. Revised multiplicative Kansas PI will be better correlated to TP loss.   

7. Component Kansas PI will be better correlated to TP loss than multiplicative Kansas PI  

 

1.9 The objectives of this research were to  

1. Determine the ability of APEX to accurately simulate runoff, sediment, total phosphorus 

(TP) and dissolved P (DP) losses with constant management practices. 
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2. Evaluate and assess the ability of APEX to simulate effects of changing management 

practices on runoff, sediment, TP and DP loss 

3. Determine the optimal timing, rate, and frequency for poultry litter applications in no-

till by surface broadcasting and conventional tillage to incorporate the litter in different 

cropping systems in Southeast Kansas. 

4. Assess the impact of inorganic P fertilizer application methods, application timings, and 

application rates on TP loss with different cropping systems in the East central Kansas.  

5. Evaluate, and update the Kansas PI using datasets generated with the calibrated and 

validated APEX model. 

6. Determine appropriate P adsorption isotherm with advection-dispersion equation using 

experimental data from column leaching experiment. 
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Figure 1.1. Inorganic phosphorus pools in APEX model (adopted from Williams et al. 2012) 
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Chapter 2. Simulation of Runoff, Sediment, and Phosphorus Loss Using 
the APEX Model under Varying Management Practices  

ABSTRACT 

Process-based models have been proposed as a tool to generate data required for P-index 

assessment and development.  Although models are commonly used to simulate phosphorus 

(P) loss from agriculture using management practices that are different from the calibration 

data, this use of models has not been fully tested. The objective of this study is to determine if 

the Agricultural Policy Environmental eXtender (APEX) model can accurately simulate runoff, 

sediment, total P (TP), and dissolved P (DP) loss from agricultural fields with management 

practices that are different from the calibration.  The APEX model was parameterized and 

calibrated with field-scale data from eight different management systems (management-

specific models) at two locations. The calibrated models were then validated with either the 

same management (tillage, nutrient source, rate etc.) used for calibration or with different 

management.  Location-specific models were also developed by calibrating APEX with data 

from all the management practices. The management-specific models resulted in satisfactory 

performance when used to simulate runoff, TP and DP within their respective management 

systems, with r2 > 0.50, Nash-Sutcliffe efficiency > 0.30, and bias within ±35% for runoff or ±60% 

for TP and DP. When applied outside the calibration management, the management-specific 

models only met the minimum performance criteria in 1/3 of the tests. The location specific 

models had better model performance when applied across all management systems than did 

the management-specific models. We recommend that models are applied within the 
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managements used for calibration and further suggest including as many management systems 

as possible in the calibration process.  

2.1 INTRODUCTION 

Agricultural Watersheds export substantial amounts of phosphorus (P) to water 

resources (Sharpley et al. 2003), which can accelerate biological productivity, promote algal 

growth and eutrophication, and lead to general water quality degradation (Carpenter et al. 

1998; U.S Environmental Protection Agency, 2002; Sharpley and Wang 2014). Changes in 

agricultural management can increase or decrease P loss, thereby influencing the associated 

water quality impairments.  Land managers need accurate information on the effects of 

management practices on P loss so they can choose practices that reduce P loss and protect 

water quality.  However, there is a general lack of data on P loss from the various and complex 

managements.  

Field studies can provide valuable data on the water quality impacts of agricultural 

management systems. These studies can reveal unknown and unforeseen treatment effects 

and interactions that occur within complex physical, chemical, and biological settings.  

However, some draw-backs of these studies include the limited number of treatment 

comparisons due to physical and economic constraints, limited duration of generally 3 to 5 

years, and results that are highly influenced by the weather patterns that occur during the 

study. 

Process-based computer models have the potential to provide data on management 

practice effects on water quality and can be used as tools to assess the impact of complex 

managements on P loss (Yin et al. 2009; Gassman et al. 2010; Wang et al. 2012). Models can 
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extend the application of data from field studies. Models are advantageous because they are 

not restricted to a limited number of treatment comparisons, duration, or weather scenarios. 

For instance, a database of estimated P losses from various management systems could be 

developed using a calibrated and validated process-based computer model.  The data could 

then be used to evaluate and update more simplified management tools used for conservation 

planning, such as phosphorus indices (Nelson and Shober, 2012). Disadvantages of using 

computer models include rigorous parametrization process that often requires assumptions for 

parameters that are difficult to measure, extensive data requirements, potential errors from 

simplifications in the mathematical descriptions of complex processes, and limited availability 

of field study data required to calibrate and validate models (Saleh et al. 2011).  

Despite these disadvantages computer models have been widely used to asses impacts 

of management practices on P loss (Plotkin et al. 2013; Francesconi et al. 2014) and to guide 

water resource policy, management, and regulation (Ford et al. 2015). For instance, the APEX 

model has been used in the Conservation Effects Assessment Project (CEAP) to assess the 

benefits of the USDA conservation program at a national level (Mausbach and Dedrick, 2004; 

Wang et al. 2009). Models have also been promoted for use with limited data for calibration or 

even without calibration (Gassman et al. 2010). However, models must be tested (calibrated 

and validated) over a wide range of management practices to assure that they are robust. 

Model testing decreases margins of error compared to the measured data and also helps to 

minimize uncertainties related to model parameters (Winchell et al. 2011; Wang et al. 2009). 

Therefore, testing model’s robustness with different management practices is needed before 

using it for assessing management practice effects on P loss.   
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Most models are validated with the same management practices as were used during 

calibration (Ramanaryan et al. 1997; Gassman et al. 2002; Williams et al. 2006; Yin et al. 2009; 

Gassman et al. 2010; Mudgal et al. 2010, Kumar et al. 2011; Wang et al. 2012; Senavirante et al. 

2013; Francesconi, 2014).  This could create issues if these models are applied to management 

practice scenarios not included in the calibration dataset. Although models have been used to 

simulate P loss from agriculture using management practices that are different from the 

management practices of the calibration data, studies evaluating this use of models are 

strikingly absent from published literature. Thus, some management specific and sensitive 

parameters may be ignored during the model testing if the model is calibrated and validated 

with a single set of management practices and then used to simulate water quality impacts of 

different and complex management practices.  This could produce inaccurate estimations and 

lead to faulty conclusions. This has significant impact if process based models are used to 

develop datasets for evaluation of P-indices as suggested by the NRCS P-index assessment 

criteria (USDA-NRCS, 2012).  

The primary objectives of this study were to determine if APEX can accurately simulate 

runoff, sediment , total P and dissolved P losses from management practices that are i) similar 

to the calibration data (i.e. constant management practices), and ii) different from the 

calibration data (i.e. changing management practices). Because APEX has not been calibrated 

and validated for P loss from cropland receiving poultry litter, a secondary objective of this 

study was to parameterize the APEX model and evaluate its ability to simulate the effects of 

poultry litter applications on P loss from small cropland watersheds. 
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2.2 MATERIALS AND METHODS 

Measured runoff and water quality data from two field-scale watershed studies were 

used to calibrate and validate the APEX model. The Franklin site was located in Franklin County, 

Kansas (38o 25’ N, 95o 7’ W). All soils on the site were Summit soil series (Summit fine, Smectitic, 

Thermic Oxyaquic  Vertic Argiudolls) in NRCS hydrologic soil group C, as confirmed by an on-site 

investigation (Donald Gastineau, unpublished data, 2013) with average slope of 4-7 %. The 

study site was terraced, thus creating 6 drainage areas ranging from 0.4 ha to 1.5 ha. The study 

was initiated in 1998 to investigate the effect of tillage and fertilizer application method on 

water quality for a soybean-grain sorghum rotation.  We used data from the 2001 to 2004 

cropping years with management systems listed in Table 1.1. Additional details of the site and 

data collection are described by Zeimen et al. (2006), Mankin et al. (2010), and Maski et al. 

(2008).  

The Crawford runoff study was located in Crawford County, Kansas (37o 30’ N, 94o 59’ 

W). The soil series was Parsons Silt loam (fine, mixed thermic Mollic Albaqualf), which is a 

claypan soil in NRCS hydrologic group D, as confirmed by an on-site investigation (Donald 

Gastineau, unpublished data, 2013). There were 10 adjacent small watersheds 133m by 31m 

(0.40 ha) in size with an approximate slope of 1%. Each watershed was separated on all sides by 

a soil berm to isolate runoff, with berms on the downslope end of the watershed angled toward 

a weir. The study was initiated in 1998 to investigate the effect of tillage fertilizer application 

method on water quality for a grain sorghum-soybean rotation. The site was then used to 

evaluate P loss from continuous grain sorghum amended with poultry litter in 2005-2007 and 

2011-2013. The site was planted to continuous soybean with no litter application from 2008-
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2010. The data used in this study were from 2011- 2013 in a continuous grain sorghum 

cropping system with management systems listed in Table 1.1. Additional details on site 

characteristics and data collection procedures are available in Sweeney et al. (2012) and 

Zeimen et al. (2006). 

Runoff at both sites was monitored from April through October or November.  Runoff 

was not monitored during the winter months due to complications associated with freezing 

temperatures.  Runoff volume was measured at each watershed outlet with a 90 degree v-

notch weir, instrumented with ISCO 6700 samplers (ISCO, Lincoln, Nebraska). Water quality 

data included runoff volume, sediment loss, total nitrogen (TN) loss, total P (TP) loss, and 

dissolved P (DP) loss based on flow-weighted composite samples for each runoff event, with 

some events including multiple days.  Because detailed hydrograph data were not available, 

event durations were defined based on the onsite precipitation records, where days with 

continuous precipitation were regarded as a single event. Measured data were reviewed for 

quality control and events with inexplicable data (i.e. runoff: rainfall ratio > 0.9) were omitted 

from the analysis. 

 APEX model and input data acquisition 2.2.1

The APEX model is a farm to small watershed scale, daily time-step, process-based 

model.  Primary inputs are geo-spatial characteristics of the watershed, physical and chemical 

properties of soils, agricultural management (or cultivation) practices, and daily weather data. 

Based on these inputs, the model simulates daily water flux, plant growth (including grain 

yield), nutrient cycling, soil erosion, and nutrient loss ( Wang et al. 2009; Williams and 

Izaurralde, 2006; Williams et al. 2012; Wang et al.2011). Watersheds can be divided into 
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multiple sub-areas that have similar soils, slopes, and management practices. APEX routes 

water, sediment and nutrients from one subarea to next and to the watershed outlet (Steglich 

and Williams et al. 2013).  

Different options are available in APEX, which allows users to select equations for 

simulation of major processes, such as erosion or potential evapotranspiration (Gassman et al. 

2010; Williams et al. 2012). The curve number is the primary method used to simulate runoff in 

APEX and infiltration is estimated as the difference between effective precipitation and surface 

runoff (Baffaut et al. 2013). Management related inputs include as land use, crop type, planting 

date, tillage processes and dates, fertilizer or manure application rates and dates, and 

harvesting date. The APEX model is written in Fortran with an open source code that is 

available from the model developers. APEX version 0806 compiled in August 2015 was used for 

this study. 

There are models that would better simulate hydrology, crop growth and P loss with 

extensive sub-routines such as Root Zone Water Quality Model (RZWQM), Decision Support 

System for Agrotechnology Transfer (DSSAT), annual phosphorus loss estimator (APLE), 

respectively. However, none of the models is perfect to simulate all the filed process together. 

The watersheds used in this study were very small ranging from approximately 0.40 - 1.50 

hectare in size with mostly a single subarea except in one.  Therefore, the APEX model was 

selected for this study because it has the capability to route water, sediment, nutrients, and 

pesticides between the subareas and has the most comprehensive routing capabilities available 

in current landscape models that better represents our watersheds (Srivastava et al. 2007; 

Gassman et al. 2010). 
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2.2.1.1 Weather file 

  Both sites had on-site, daily precipitation data collected during the months where runoff 

was monitored.  Precipitation data from nearby weather stations (National Climatic Data 

Center) were used to fill in winter precipitation, missing precipitation data during the growing 

season, and daily temperature data.  Long-term (25+ years) weather data from the nearby 

weather stations were also used to develop monthly weather files for the APEX model, 

including characteristics of monthly temperature, relative humidity and wind speed. Weather 

stations used to supplement on-site weather data were the Ottawa (38.6132°, -95.2808°) and 

Garnett (38.28, -95.2177) weather stations for the Franklin site and the Parsons (37.3677, -

95.2891) and Girard (37.508, -94.8391) weather stations for the Crawford site.  During the data 

collection periods, annual precipitation ranged from 617 to 1121 mm at Franklin and from 763 

to 1342 mm at Crawford. 

2.2.1.2 Development of site-specific soils data 

 The soil data inputs for the model were as follows (for each layer) the depth to bottom 

of the layer, soil texture, total nitrogen percentage, organic carbon percentage, and anion 

exchange extractable phosphorus, available water, hydraulic conductivity, and bulk density for 

each soil series.  Measurement of some sensitive soil inputs to the APEX model, such as 

available water, hydraulic conductivity, and bulk density is very difficult, time consuming, and 

expensive. Therefore, site-specific soil file was developed by combining data from the Natural 

Resource Conservation Service (NRCS) Soil Characterization database and measured on-site 

data.  

2.2.1.3 Frankin soil data 
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  Archived soil samples collected at 0-5 cm and 5-15 cm deep from each watershed in the 

year 2000 were analyzed for total carbon (TC), total nitrogen (TN), total P (TP), and Bray P 

(Appendix B). The anion exchangeable phosphorus (AEP) was determined using regression 

equation (Mallarino and Atta, 2005).  The soil phosphorous sorption coefficient (PSP) was back 

calculated as PSP = 1/ ([(total phosphorus - organic phosphorus)/ (5*labile Phosphorus)] + 4/5) 

(Nelson and Parsons, 2006).  

Three soil cores were collected down to 1m from each watershed in the fall of 2012 and 

segmented according to pedogenic horizons. The resulting soil samples were air dried ground 

and sieved to 2mm and analyzed for particle size (sand, silt and clay), total nitrogen (TN), and 

total carbon (TC) for each horizon (Appendix B). Although the soils of all watersheds were in 

within the Summit series, there were differences in horizon number and depth. Therefore, 

unique soil files were developed for each watershed. Measured soil characteristics were similar 

to those of pedon 09N0906 (User pedon ID S09KS20700) from the National Cooperative Soil 

Survey (NCSS) characterization database (Donald Gastineau, personal communication, 2013). 

Therefore, soil properties that were not measured (i.e. bulk density, field capacity, wilting point, 

and cation exchange capacity) were entered based on data from layers in pedon 09N0906 with 

corresponding depth, texture, and TC. Saturated hydraulic conductivity (k-sat) were estimated 

based on soil texture and bulk density using the Rosetta model 

(Http://www.Ars.Usda.Gov/News/Docs.Htm?Docid=8953).  

2.2.1.4 Crawford soil data 
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Soil samples were collected on spring 2011 before the initiation of the runoff study and 

were analyzed for TN, TC, TP, Bray P. The AEP and soil PSP was determined using the same 

procedure as for the Franklin site.  

Three soil cores were collected down to 1m from six watersheds in the spring of 2013 

and segmented according to pedogenic horizons. The resulting soil samples were air dried, 

ground and sieved to 2mm and analyzed for particle size (sand, silt and clay), TN, and TC for 

each horizon (Appendix B). The watershed profiles were similar enough that the lab data were 

averaged across to develop a single soil file.  Measured soil characteristics were similar to 

pedon 11N0042 (User pedon ID S2011KS021001) from the national cooperative soil survey 

(NCSS) characterization database (Donald Gastineau, personal communication, 2013). 

Therefore, soil properties that were not measured (i.e. bulk density, field capacity, wilting point, 

and cation exchange capacity) were entered based on data from layers in pedon 11N0042 with 

corresponding depth, texture, and TC. Measured saturated hydraulic conductivity (K-sat) values 

from representative Parsons Silt loam soils were obtained from the NRCS (Donald Gastineau, 

unpublished data, 2013).  

2.2.1.5 Management file 

  Site specific management data such as tillage, fertilization/poultry litter rates, 

application methods, date of planting, date of harvesting etc. were manually entered based on 

farm records following the APEX0806 operation file format to develop management file in each 

watersheds.  

2.2.1.6 Watershed characterization 
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  Each field was considered as a watershed and each watershed represents a single 

drainage area in both locations. The watersheds in the Franklin site were delineated using 

ArcAPEX interface and 2m digital elevation data 

(http://kansasgis.org/catalog/index.cfm?data_id=1921&show_cat=5).  The average upland 

slope (SLP), average upland slope length (SPLG), mainstream channel slope (CHS) and channel 

slope of routing reach (RCHS) were adjusted based on site characteristics and measured data 

(Keith A. Janssen, unpublished data, 2000). Watersheds in the Crawford site were defined using 

win-APEX and assessing each parameters based on the site information. At the Crawford site, 

2m digital elevation data were not available (at the time of the model set up) therefore, win-

APEX was used.  

Control and parameter file inputs 

The APEX control file defines the different equations used for specific processes in the 

model. The parameter file includes process threshold values, and equation coefficients. The 

control file and parameter file inputs were based on Conservation Effects Assessment Project 

(CEAP) cropland study (Wang et al. 2011). Some of the control, and model parameter inputs 

were redefined based on the site information and professional judgment of the sites (Baffaut et 

al. 2015). For additional description of the APEX model, model inputs, and nutrient sub-

routines, the reader is referred to Gassman et al. (2010), Wang et al. (2012), and Williams et al. 

(2012).  

 Data analysis and model evaluation  2.2.2

  Model estimates of runoff, sediment, total phosphorus (TP) and dissolved phosphorus 

(DP) from the daily watershed outlet (.DWS) file were compared to measured data for each 
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event. The coefficient of determination (r2), Nash-Sutcliff model efficiency (NSE) (Nash and 

Sutcliffe, 1970), and percentage bias (PBIAS) (Gupta et al. 1999) were used to evaluate model 

performance during calibration and validation. The NSE and p-bias were calculated as follows: 

NSE = 1-
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where obs

iY =ith observation, sim

iY = ith simulated value, obs

meanY  = mean of observed data and n = 

total number of observations.  

Researchers have considered different acceptable ranges for these statistics depending 

on the time scale of the measured data, type of measured data, and objective of the study. For 

instance Ramanarayan et al. (1997) considered r2 >0.5 and NSE >0.40 as satisfactory for surface 

water quality for monthly values with the APEX model. Chung et al. (2002) used r2 > 0.5 and NSE 

> 0.3 as satisfactory for monthly tile flow and NO3-N loss with EPIC model. Wang et al. (2008) 

indicated r2 > 0.5 and NSE > 0.4 as acceptable for monthly runoff and nutrient concentrations 

using the APEX model. Moriasi et al. (2007) suggested NSE > 0.5 with P-bias ±25% for 

streamflow, ±55% for sediment and ±70% for nitrogen and phosphorus for monthly values. 

They also indicated that NSE values can be relaxed for shorter time steps (daily events).  Yin et 

al. 2009 reported NSE for event based runoff and sediment between 0.41-0.84 and r2 between 

0.55 - 0.85. Mudgal et al. (2010) regarded r2 > 0.5 and NSE > 0.45 as threshold for satisfactory 
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calibration and validation with event data. Considering the variability in literature and the 

objectives of the current study, the threshold values for acceptable model performance 

statistics for runoff were set at 0.50, 0.30 and ±35% for r2, NSE, and P-bias respectively and for 

sediment, TP, and DP loss the threshold values were set at 0.50, 0.30 and ±60% for r2, NSE, and 

P-bias, respectively. 

 Management specific sensitivity analysis, model calibration and validation 2.2.3

 Sensitivity analysis is not readily transferable (Griensven et al. 2006) and is essential to 

determine which parameters need to be calibrated (Moriasi et al, 2007). In this study, manual 

sensitivity analysis was conducted by testing all the options in control and range of values in 

parameter files to identify sensitive parameters for each management. The sensitive 

parameters in the parameter file were divided into four categories based on the impact on 

runoff, sediment, TP and DP loss (Table 2.2). Identified sensitive parameters were assessed to 

define their practical meaning and relationships with regard to the soils and management in 

each watershed. Biological mixing efficiency (parameter 29), soluble phosphorus runoff 

coefficient (parameter 8), soil biological activity parameters coefficient adjusts microbial 

activity function in the top soil layer (parameter 69), and microbial decay rate coefficient 

(parameter 70) were the most important and critical parameters. Parameters that were 

sensitive and differ from one management to another are described in greater detail in 

Appendix B. 

Management-specific models were developed by independently calibrating APEX for 

each management system.  The models were manually calibrated by changing options in the 

control file and by adjusting sensitive parameter values identified in Table 2.2 that maximize 
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the model performance (maximize r2 and NSE and result in a p-bias nearest to 0). The inputs in 

the soil, management, or watershed files were not considered for calibration as those were 

carefully determined during model set up.  

To test objective i. management-specific models were validated by comparing model 

output to independently measured data from a watershed with management that was identical 

to the calibration data.  Validation was completed without changing the calibrated parameters, 

i.e. control and parameter values used during validation were identical to the calibrated values.  

To test objective ii. the management-specific models were used to simulate runoff, sediment, 

and nutrient loss from watersheds where the management practices were different from the 

management used for model calibration.  The model output was then compared to the 

measured data to assess model performance as previously described.  The same management 

data from two watersheds were combined together to evaluate model performance for the 

objective ii.  

 Location specific model development  2.2.4

A location-specific model was developed for each site by considering the same 20 

sensitive parameters identified during the management-specific calibration process (Table 2.2). 

The location specific calibration was completed by first identifying average parameter values 

for each location based on the management-specific models.  Second, highly sensitive model 

parameters were manually adjusted to maximize model performance criteria for data from all 

management systems at that location.  The location specific models were then validated for all 

management practices listed in table 2.3.  



 

51 

 

 Aggregated model performance assessment 2.2.5

Data from all management systems (watersheds) and locations were aggregated to 

assess overall model performance. For instance, event-based measured data from 3 watersheds 

at the  Franklin location and 4 watersheds at the Crawford location were compared to the 

event-based model estimates and used to compute the correlation coefficient, NSE and PBIAS 

for the entire dataset, thereby assessing model performance across management systems and 

locations. A similar process was followed for the validation datasets. The crop yields were also 

aggregated for all watersheds in each location and the model performance was evaluated with 

p-bias. 

2.3 RESULTS AND DISCUSSION 

 Crop yields 2.3.1

The model simulated yield for crops were in very good agreement with the measured 

data at both sites. The PBIAS for the calibrated model was -22% and validated model was -7 % 

for grain sorghum at Crawford location. Likewise, the aggregated p-bias for soybean and grain 

sorghum yield at the Franklin location was -5% and -2% with the calibrated and validated 

model.  

 Franklin Site  2.3.2

2.3.2.1 Runoff calibration and validation 

The runoff simulated loss with the uncalibrated model did not meet the model 

performance threshold criteria for NSE and r2 for any three managements but the p-bias criteria 

were met (Table 2.5). The calibration improved model performance statistics for runoff in all 

three managements exceeding the minimum performance criteria. Similarly, all the 
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managements were validated with statistics above acceptable threshold criteria for runoff. 

Other studies have reported similar statistics for runoff calibration and validation (Gassman et 

al. 2010; Kumar et al. 2011; Senaviratne et al. 2013; Francesconi et al. 2014). The overall model 

simulated runoff was 25 - 38 % and 23 - 32 % greater in no-till management practices (NTSA 

and NTDB) compared to CONV-T management for calibration and validation datasets 

respectively. The trend of simulated runoff loss was in good agreement with the measured loss 

(Zeimen et al. 2006). Potentially greater soil moisture and compaction in no-till may have 

resulted in greater runoff loss as compared with conventional tillage (Mickelson et al. 2001a; 

Myers et al. 1995).  

2.3.2.2 Sediment loss calibration and validation 

The uncalibrated model simulated sediment loss was 662 to 2038 % greater than 

measured data and did not meet the model performance threshold criteria (Table 2.5). 

Although sediment loss simulation was greatly improved after calibration, only the CONV-T 

management met all the model performance criteria. The NTSA management did not meet the 

criteria for r2 and the NTDB management practice did not meet criteria for either r2 or NSE.  

Similarly, the no-till management practices (NTSA and NTDB) did not meet the performance 

criteria for the validation while the CONV-T management met the criteria (Table 2.5). 

The poor calibration for the no-till management practices is likely a result of the low 

overall sediment loss from these management practices. The maximum measured sediment 

loss during a single event was 0.94, 0.24 and 0.52 Mg ha-1 with CONV-T, NTDB and NTSA 

management practices respectively during calibration. Likewise, the total measured sediment 

losses over the simulation period were 4.23, 1.93 and 2.95 Mg ha-1 and model simulated losses 
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were 3.98, 1.66 and 1.84 Mg ha-1 with CONV-T, NTDB and NTSA management practices 

respectively during the entire 4-yr study period. Though the model performance criteria for NSE 

and r2 were not meet with NTDB (watershed 7) management during calibration, the measured 

(1.93 Mg ha-1) and model simulated (1.66 Mg ha-1) sediment loss during the entire study were 

very similar. Further, the overall model simulated sediment loss was in agreement with the 

measured data with highest loss from CONV-T management followed by the NTDB and NTSA 

managements (Zeimen et al. 2006). The range of measured sediment loss was greater in CONV-

T (watersheds 5 and 6) management that passed calibration and validation criteria indicating 

the model performance may improve when used to simulate management practices with wider 

ranges of sediment loss. 

2.3.2.3 Phosphorus loss calibration and validation 

Overall, total P loss with the uncalibrated model did not meet the model performance 

criteria for r2, NSE and p-bias (Table 2.5). The calibration improved the model simulation in all 

three management practices and met the threshold criteria for r2, NSE and p-bias. Likewise, all 

the three management-specific models met the performance criteria for validation datasets 

that had the same management system as the calibration datasets (Table 5).   

The model simulated TP loss was greater with NTSA followed by NTDB and the lowest with 

CONV-T management practices for 2003 and 2004. These differences in TP loss with different 

management practices were similar to those of measured loss (Zeimen et al. 2006). Perhaps, 

the deep band application of P as in NTDB management and incorporation and mixing of P 

fertilizer with chisel/disk operation as in CONV-T management reduced P loss compared to the 

no-till surface application (NTSA) management practice. The management specific TP loss 
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followed the similar trends during validation.  Overall, the model simulated TP loss was under-

predicted during calibration and validation by 16 to 47%.  

None of the uncalibrated models met all performance criteria for simulation of DP loss 

(Table 2.5).  The uncalibrated model for NTSA (watershed 8) management met the threshold 

criteria for NSE and r2, however, this is of little consequence because the uncalibrated model 

did not pass threshold criteria for runoff. The model performance criteria for DP loss simulated 

by the calibrated NTSA model exceeded the threshold criteria for both calibration (watershed 8) 

and validation (watershed 4) datasets. For the NTDB management, the calibrated model NSE 

(0.34) and p-bias (+16%) passed the threshold criteria and r2 (0.48) was only slightly less than 

acceptable.  However, the DP simulation for NTDB model did not pass threshold criteria for 

validation.  Furthermore, the CONV-T management model did not meet the performance 

criteria for DP loss in either calibration or validation.  

The difficulty in calibration and validation of DP loss with CONV-T management might be 

due to very low measured DP loss with conventional tillage. The overall DP loss from CONV-T 

(watershed 6) management during the entire 4 year study period was approximately 5% (0.18 

Kg ha-1) of the measured total P loss (3.44 Kg ha-1). Likewise, measured DP loss was 28% of TP 

loss from NTDB (watershed 7) and 45% from NTSA (watershed 8) managements. The trends of 

DP loss were similar with 4%, 19% and 44% of the total measured TP loss with treatments 

CONV-T, NTDB, and NTSA (Watershed s 5, 2 and 4) respectively for the validation dataset.  So, if 

the measured DP loss is very low such as 4-5% of TP, as in CONV-T management it would be 

difficult for the model to simulate the loss according to our performance indicators. But if the 

DP loss is near 50% of the total P loss, the model can accurately simulate the loss as seen with 
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NTSA management practices. The overall model simulated DP loss was greater with NTSA (1.10 

kg ha-1 yr-1) followed by NTDB (0.36 kg ha-1 yr-1) and lowest with CONV-T (0.06 kg ha-1 yr-1) 

management during calibration and followed the similar trends during validation. The model 

simulated results were consistent with the measured data (Zeimen et al. 2006). 

 Crawford Site  2.3.3

2.3.3.1 Runoff calibration and validation 

The runoff loss with the uncalibrated model met the model performance threshold 

criteria for r2, NSE and p-bias (Table 5) in all managements.  Calibration improved the model 

performance for simulated runoff loss, exceeding the minimum threshold criteria for both 

calibration and validation datasets (Table 2.5).  

2.3.3.2 Sediment loss calibration and validation  

The uncalibrated model simulated sediment loss was approximately 662 to 2038 % 

greater than measured data and did not meet the minimum threshold criteria (Table 2.5). The 

sediment loss was greatly improved after calibration but only the model for FERTC 

management practices met the performance criteria. The p-bias for sediment loss was within 

the acceptable criteria for all managements. However, CONT, TLPC and TLNC management 

practices did not meet the criteria for either r2 or NSE. Overall, the sediment loss was under-

predicted during the calibration by 6 to 60 %. But the validated model over-predicted sediment 

loss by 48 to 200 % (Table 2.5) and none of the managements met the sediment loss 

performance criteria.  

The plausible reason for difficulty in model calibration and validation with sediment loss 

might be due to low slope (approximately 1%) resulting in very low measured sediment 
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transport. Several studies have indicated the similar difficulty in calibration and validation of 

the APEX model with sediment loss especially when the measured loss is very low (Kumar et 

al.2011; Mudgal et al.2012; Senavirante et al.2013) They also indicated the APEX model 

algorithms might need to be improved to address the low sediment loss. 

Although sediment calibration and validation was poor, the simulated sediment loss followed 

the observed trend of lower loss simulated from systems with no-till management (CONT) and 

higher from systems with conventional tillage management practices (FERTC, TLNC and TLPC). 

The trends were similar during validation. Therefore, despite the poor event-based model 

performance statistics, the model simulated average annual losses were very similar to the 

measured data and accurately reflected the difference between no-till and conventional tillage.  

2.3.3.3 Phosphorus loss calibration and validation  

Out of 4 management practices, only 2 models (FERTC and TLPC) met the performance 

criteria for TP loss without calibration. In models for the other 2 management practices (CONT 

and TLNC), the TP loss was over predicted by 62 to 196 % compared to measured loss (Table 

2.5). Management-specific models for all 4 management systems met the model performance 

threshold criteria except for r2 in CONT model during calibration (Table 2.5). Similarly, all 4 

management-specific models met the performance criteria (Table 2.5) for TP loss during 

validation.  

For DP loss, none of the uncalibrated models met performance criteria. Except for r2 of 

the model for CONT, all 4 management-specific calibrated models exceeded the performance 

criteria for DP loss (Table 2.5).  Likewise, all 4 management-specific calibrated models met the 

performance criteria for DP loss for validation within their respective management systems. 
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The overall average annual measured DP loss was higher with TLNC followed by FERTC, TLPC 

and CONT managements. As expected, the measured dissolved P loss was approximately 72% 

of the TP loss with TLNC treatment and lowest with FERTC (53%), a commercial fertilizer 

application treatment. The model simulated DP loss showed similar trends. 

 Aggregated model performance assessment  2.3.4

Performance of the management-specific models across managements and locations 

was assessed by combining observed and simulated data from all management systems at both 

locations for computation of aggregated statistics. The results showed that the uncalibrated 

models met the threshold criteria for runoff, but not for sediment, TP and DP loss (Figure 2.1). 

Nevertheless, as expected, the runoff, TP and DP loss simulated by the calibrated model 

exceeded the threshold criteria when data were aggregated from both sites (Figure 2.1). The 

sediment loss performance was greatly improved with NSE and p-bias meeting the threshold 

criteria, but did not pass the criteria for r2. Similarly, the aggregated runoff and TP loss 

simulated during the validation period exceeded the minimum threshold criteria. The NSE and 

p-bias for DP loss were above the minimum threshold but r2 was slightly lower than the 

minimum criteria. The p-bias for sediment loss met the model performance criteria but the r2 

and NSE did not (Figure 2.1). Therefore, aggregated model performance results indicate that, 

when calibrated for specific management practices, the APEX model is able to satisfactorily 

simulate runoff total P, and dissolved P loss across multiple locations and management 

practices.  However, the uncalibrated model could not satisfactorily simulate P loss.  Although 

calibration greatly improved simulation of sediment loss, APEX did not satisfactorily simulate 
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sediment loss, perhaps because of the relatively low loss from these management practices in 

the tested locations.  

 Testing the APEX model to simulate effects of changing management systems 2.3.5

Water quality models are often used to compare the impact of new or changing 

management systems on sediment and P loss.  However, in many cases the models are 

calibrated and validated within a single management system as has been previously described 

(Yin et al. 2009; Gassman et al. 2010; Senavirante et al. 2013; Francesconi, 2014).  This could 

result in errors if the calibration is management-specific.  Our second objective was to 

determine if APEX can simulate P loss from agricultural management systems that are different 

than the management used for model calibration.  This was tested by using the previously 

calibrated and validated management-specific models to simulate runoff, sediment, and P loss 

for validation data sets with contrasting management practices.  

2.3.5.1 Franklin site-testing Phosphorus (P) fertilizer placement and tillage 

The ability of the APEX model to simulate changes in P placement was determined by 

using a model calibrated and validated for surface applied P fertilizer (NTSA, watershed  8) to 

simulate P loss when the fertilizer is sub-surface applied  (NTDB, watersheds  2 and  7). The 

reverse was also tested. The model was successful at simulating a change from sub-surface to 

surface placement of P fertilizer, but not the reverse (Table 2.6). Using the NTSA model to 

simulate P loss from NTDB managements resulted in a low r2 for TP loss and values outside the 

thresholds for all DP performance criteria. Likewise, the ability of APEX to simulate effect of 

tillage and P placement was also tested using the model calibrated and validated for 

conventional tillage (CONV-T) to simulate P loss from no-till management systems (NTDB and 
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NTSA). The reverse was also tested. On both cases the simulated runoff, sediment, TP and DP 

loss did not pass the minimum threshold criteria (Table 2.6). Overall, sediment, TP and DP 

losses were under-predicted.  

The results indicated that when the tillage is similar, the model is capable of effectively 

simulating runoff, and TP. But if the tillage is changed, the APEX model was unable to accurately 

simulate sediment, TP or DP losses. Therefore, if the model is calibrated and validated with one 

management and used to simulate water quality impacts for different management practices 

(especially with a change in tillage) the resulting model estimates of P loss will not be 

quantitatively correct. Hence, this may lead to incorrect information and misguide policy 

makers when simulating long term water quality loss assessments for best management 

practices (BMPs). 

2.3.5.2 Crawford site-testing nutrient source, rate, and tillage  

The ability of the APEX model to simulate effects of different nutrient sources on P loss 

was tested by using a model calibrated with data from conventional tillage-P based poultry 

litter application (TLPC) system to simulate the P loss from conventional tillage-P based 

commercial fertilizer (FERTC) management. The runoff, TP and DP loss all met the model 

performance threshold criteria (Table 2.6) indicating the fully calibrated and validated APEX 

model is capable of simulating this change in fertilizer source with same tillage. However, the 

sediment loss did not pass the threshold criteria potentially due to low sediment loss as 

described earlier.   

The ability of the APEX model to simulate the effect of P application rate on P loss was 

also tested. The initial model was calibrated and validated with data from a conventionally tilled 
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system for which poultry litter was applied at a rate that satisfies nitrogen crop requirement 

(TLNC). The management-specific model was then used to simulate P loss when the application 

rate was reduced to meet the phosphorus crop requirement (TLPC) and when commercial 

fertilizer was applied at agronomic rates (FERTC). The results indicated that while performance 

criteria were met for runoff, this was not the case for sediment, TP or DP loss (Table 6).  

Likewise, the ability of the APEX model to simulate effects of changing nutrient source, rate and 

tillage was tested using a fully calibrated and validated CONT management model to simulate P 

loss from conventional tillage high P rate (TLNC), conventional tillage low P rate (TLPC) poultry 

applications, and  conventional tillage P rate commercial fertilizer application (FERTC) 

management systems. The runoff, TP and DP loss with P based nutrient applications (i.e. TLPC 

and FERTC) exceeded the model performance criteria but the sediment loss was over-predicted 

by 100 to 333 %.  Although the CONT management-specific model satisfactorily simulated P loss 

from systems that had low P (TLPC and FERTC), simulated TP and DP loss did not pass the 

threshold criteria when poultry litter was applied a the N-based rate (TLNC).  

The model performance statistics reflected that if only the nutrient source was different 

with same tillage and with low P rate like in TLPC and FERTC, the model was capable of 

simulating change in fertilizer source. The results indicated that if a model calibrated and 

validated for conventional tillage and high N-rate poultry litter application (TLNC) was used to 

simulate P loss from management systems with no-till and low P rates (such as CONT, FERTC 

and TLPC), the model did not pass the minimum threshold criteria. The effect of tillage was not 

sensitive in this location perhaps due to low slope (approximately 1%) and very low sediment 

loss. But if the change in P rate was large the model was unable to simulate the TP loss 
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accurately. Perhaps, there are some model parameters that are different for high and low P 

poultry litter application management practices such as soluble phosphorus runoff coefficient 

(Parameter- 8) that need to be examined closely when simulating TP and DP loss. 

Overall, the runoff, TP, and DP loss performance criteria for management-specific 

models applied outside the management used for calibration were met for only 1 management 

system at the Franklin location (out of 6) and 4 management systems at the Crawford location 

(out of 12) (Table 2.6). These results showed that management-specific models can accurately 

simulate effects of changing management on P loss < 30 % of the time. The results also 

reflected that APEX models perform better with smaller changes in management. For instance, 

a difference in P loss due to P placement in a no-till management practices (NTSA and NTBD) 

was well simulated at the Franklin location. Likewise, the effects of changing P source on P loss 

was accurately simulated with the management-specific models. This study also indicated that 

extra caution is required if the change in management includes extremely high or low P 

application rates, high soil test P level, and change in tillage systems. Therefore, scientists and 

policy makers need to be aware of this deficiency and over a 70% chance of failure to 

quantitatively predict effects of changing management systems on P loss when a computer 

model was calibrated and validated with one management system and used to simulate P loss 

with a different management system.   

 Location specific model  2.3.6

Because a management-specific calibrated and validated model failed to accurately 

simulate P loss >70 % of the time when applied to different management systems, a location 

specific model was developed by using data from multiple management systems for calibration 
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at each location (Franklin and Crawford). The method of selecting the model parameters and 

the final parameter values for the location-specific models are listed in Table 2.7. 

At Franklin, the simulated runoff and TP loss exceeded the threshold criteria for both 

calibration and validation datasets in all three management systems with a location-specific 

model (Table 8). The simulated sediment loss in CONV-T management also met the model 

performance criteria for both calibration and validation datasets. However, the DP loss was 

greatly over-predicted in CONV-T management system (Table 2.8). 

At Crawford, the location-specific model was successful at simulating runoff, TP and DP 

loss and met the performance criteria for all the management systems except CONT 

management, for which TP and DP simulated results did not meet the r2 requirements during 

calibration. Likewise, the model performance criteria for runoff, TP and DP loss for validation 

datasets were met for all the management practices. However, the sediment loss was over-

predicted (Table 2.8).  

 Simulation of 30 year long term runoff, sediment, TP and DP loss with a location 2.3.7

specific model  

The location-specific models were used to simulate 30-year average annual loss for 

runoff, sediment, TP and DP loss from each of the management systems at the respective 

locations. At Franklin, the simulations indicated that the conventional tillage system (CONV-T) 

resulted in greater runoff, sediment loss and TP loss compared to no-till management systems 

(NTDB and NTSA). But the DP loss was higher in no-till surface applied fertilizer management 

(Table 2.9).  The higher sediment loss in CONV-T might have also contributed in greater TP loss.  
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At Crawford, the location-specific model simulate similar runoff for all management practices, 

but greater sediment loss with conventional tillage management systems (FERTC, TLPC, and 

TLNC).  The TP loss was extremely high with N-based poultry litter management system (TLNC)  

followed by FERTC, TLPC and CONT. The DP loss follows the similar trend. The simulated results 

also indicated that a long term N based poultry litter application (that over applies P) with 

conventional tillage should not be recommended from water quality stand point.  The location 

specific model simulated average loss for base managements were in good agreement with the 

measured data in both locations and indicated that, if the model is properly calibrated and 

validated with multiple management practices, it is robust enough and can be used to simulate 

long term water quality impacts of multiple management systems.  

2.4 CONCLUSIONS 

The overall model performance evaluation indicated that management-specific APEX 

models can accurately simulate runoff, sediment, TP and DP loss within their respective 

management systems.  However, these models have limited ability to simulate P loss from 

management systems that differ from the management used for the calibration data. The 

findings of this study have significant implications because, so far, computer models calibrated 

and validated with one management system have been used to simulate water quality impacts 

of many different management systems. We caution model users against this practice. 

When the datasets from multiple management systems were used to calibrate APEX, results 

were greatly improved.  This illustrates that models calibrated across multiple management 

systems will be more robust and than those calibrated within a single management system.  
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Therefore, we encourage model users to include data from multiple management systems in 

the calibration process for water quality models like APEX. 

The APEX model parameters that were critical included biological mixing efficiency 

(P29), soluble P runoff coefficient (P8) and biological process parameters (P69, P70). These 

parameters may change based on management practices. The biological mixing processes in 

the model need to be improved and more information is needed to make better estimates of 

biological process parameter values.  Therefore, scientists and policy makers must exercise 

caution when using model-estimated P losses to evaluate or promote adoption of management 

practices if the model used to develop the estimates was not calibrated and validated for all 

management systems.  

2.5 FUTURE RESEAERCH NEED 

 The APEX model uses a simple linear approach to estimate P leaching from the top soil 

layer to the next layer based on P concentration in soil and solution. But, P sorption in 

soils is non‐linear and when P concentration in soil increases the relationship becomes 

non-linear. Thus, using a linear adsorption model to determine the solution P 

concentration in the soil will underestimate the solution P concentration. Consequently, 

the model will underestimate P flux to lower soil horizons and overestimate P 

concentration in surface soil horizon. Therefore, improving the P sub‐routines by 

accounting vertical P movement and using a nonlinear adsorption model would help to 

accurately predicting P loss.  

 The effect of biological mixing processes in the model need to be improved and more 

information is required to better estimate biological process parameters.  
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Table 2.1. Management practices and their abbreviations for watersheds at Franklin and Crawford locations 

Location 
Watershe

d 
Management 
Abbreviation Management practices† 

Number 
of events 

Modeling 
use 

Franklin 7 NTDB No-till; deep band fertilizer application, 
7.6-12.7 cm (3-5 inch) depth 

32 Calibration 

Franklin 8 NTSA No-till; surface applied fertilizer 33 Calibration 

Franklin 6 CONV-T Fertilizer incorporated; chisel-disk-field 
cultivate 

36 Calibration 

Franklin 2 NTDB No-till; deep band fertilizer application, 
7.6-12.7 cm (3-5 inch) depth 

36 Validation 

Franklin 4 NTSA No-till; surface applied fertilizer 34 Validation 
Franklin 5 CONV-T Fertilizer incorporated; chisel-disk-field 

cultivate 
34 Validation 

Crawford 102 FERTC Conventional tillage; commercial N and P 
fertilizers 

27 Calibration 

Crawford 103 CONT No-till; without fertilizer/turkey litter 
application 

27 Calibration 

Crawford 104 TLPC Conventional tillage; P based turkey litter 
+ commercial nitrogen  application 

27 Calibration 

Crawford 105 TLNC Conventional tillage; nitrogen based 
turkey litter 

27 Calibration 

Crawford 203 FERTC Conventional tillage; commercial N and P 
fertilizers 

27 Validation 

Crawford 205 CONT No-till; without fertilizer/turkey litter 
application 

26 Validation 

Crawford 204 TLPC Conventional tillage; P based turkey litter 
+ commercial nitrogen  application 

27 Validation 

Crawford 201 TLNC Conventional tillage; nitrogen based 
turkey litter 

27 Validation 

†Franklin location- management practices-nutrient source and rate 
NTDB, NTSA and CONV-T = Liquid urea ammonium nitrate + ammonium polyphosphate; 78 kg N ha

-1
 and 16 Kg P 

ha
-1 

 
Crawford location - management practices-nutrient source and rate 
TLNC = 7.5 Mg ha

-1
 turkey litter; 135 kg N ha

-1
 and approx. 180 P kg ha

-1
;  

TLPC= 1 Mg ha
-1

 turkey litter + Liquid urea ammonium nitrate; 135 kg N ha
-1

 and 24 Kg P ha
-1

 (crop removal rate) 
FERTC = Liquid urea ammonium nitrate + ammonium polyphosphate; 135 kg N ha

-1
 and 24 Kg P ha

-1 

Conventional tillage is Chisel (15 cm depth) followed by disk (5-10 cm depth) 
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Table 2.2. APEX model parameters tested during sensitivity analysis, calibration and their selected values at Franklin and Crawford locations 

Sensitive parameter† 
 

Range 
tested‡ 

Un-
calibrate
d values   

Calibrated values selected  

Franklin management practices Crawford management practices 

CONV-T NTDB NTSA FERTC CONT TLPC TLNC 

Parameters affecting runoff 
0.0-0.3 0.00 0.02 0.02 0.02 0.02 0.02 0.02 0.02 Runoff CN residue adjustment parameter P[15] 

     Soil evaporation plant cover factor P[17]                  0.0-0.5 0.10 0.00 0.10 0.15 0.20 0.15 0.20 0.20 
    Water stress weighing coefficient P[38]   0.0-1.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

   SCS CN index coefficient P[42]                                    0.3-2.5 1.00 2.50 2.50 2.50 2.50 2.50 2.50 2.50 
    Upper limit CN retention parameter P[44]                       1.0-2.0 1.50 2.00 2.00 2.00 2.00 2.00 2.00 2.00 

Parameters affecting sediment 
0.01-0.05 0.05 0.01 0.01 0.01 0.01 0.01 0.01 0.01 Sediment routing coefficient P[19] 

    RUSLE C-factor coefficient residue  factor P[46]     0.5-1.5 0.50 0.85 1.05 0.85 0.85 0.85 0.75 1.30 
RUSLE C-factor coefficient biomass factor P[47]  0.5-1.5 0.50 0.10 0.10 0.10 0.10 1.50 0.10 0.10 

Parameters affecting soil biological activity 
0.1-0.5 0.10 0.10 0.50 0.50 0.20 0.35 0.10 0.50 Biological mixing efficiency P[29]     

Maximum depth for biological mixing  P[31] 0.1-0.3 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 
Coefficient adjusts microbial activity P[69]   0.1-1.0 1.00 0.50 0.50 0.50 0.50 0.65 0.50 0.60 

  Microbial decay rate coefficient   P[70]    0.5-1.5 1.00 0.80 0.90 0.50 0.50 0.50 0.50 0.50 
Parameters affecting total and dissolved 

Phosphorus 
1.0-2.0 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50     Root growth soil strength P[2]                                      

Soluble phosphorus runoff coefficient P[8]  10.0-20.0 15.0 20.0 20.0 10.0 4.0
[a]

 5.0
[a]

 5.0
[a]

 20.0 
P upward movement by evaporation coefficient 

P[59] 1- 20.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
    Manure erosion equation coefficient P[62]    0.1-0.5 0.25 0.10 0.10 0.10 0.10 0.10 0.10 0.10 

Manure erosion exponent P[68] 
 0.1-1.0 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

   Standing dead fall rate coefficient P[76] 0.0001-0.1 0.01 0.001 0.001 0.001 0.001 0.001 0.001 0.001 
Coefficient. regulating P flux between labile and 

active pool P[84]     
0.0001-
0.001 0.0001 0.60

[a]
 0.001 0.001 0.001 0.001 0.001 0.001 

Coefficient regulating P flux between labile and 
active pool P[85] 

0.0001-
0.001 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Soluble Phosphorus Leaching KD value P[96] 1-15 1.00 5.00 15.00 5.00 15.00 15.00 15.00 15.00 

†CN, curve number;  SCS, Soil Conservation Service ; RUSLE,  Revised Universal Soil Loss Equation; KD, partition coefficient.  
‡The parameter ranges specified in the APEX user manual (Steglich and Williams, 2013). 
[a]

 Values outside user manual recommended range. 
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Table 2.3 Summary of the managements calibrated and validated  for objective 1 at Franklin and Crawford 
runoff study location   

location Management 

practice 

Watershed  used 

for calibration 

No of events Watershed  

used for 

validation 

No of events 

Franklin CONV-T  Watershed  6 32 Watershed  2 36 

Franklin NTDB  Watershed  7 33 Watershed  4 34 

Franklin NTSA  Watershed  8 36 Watershed  5 34 

Crawford FERTC Watershed  102 27 Watershed  203 27 

Crawford CONT Watershed  103 27 Watershed  205 26 

Crawford TLPC Watershed  104 27 Watershed  204 27 

Crawford TLNC Watershed  105 27 Watershed  201 27 
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Table 2.4 Summary of the managements tested for objective 2 at Franklin and Crawford runoff study site   

Site Management practice used to calibrate Management practice used to test 

Franklin NTDB (Watershed  7) NTSA (Watersheds 4 & 8) 

 NTDB (Watershed  7) CONV-T (Watersheds 5 & 6) 

 NTSA (Watershed  8) NTDB (Watersheds 2 & 7) 

 NTSA (Watershed  8) CONV-T (Watersheds 5 & 6) 

 CONV-T (Watershed  6) NTDB (Watersheds 2 & 7) 

 CONV-T (Watershed  6) NTSA (Watersheds 4 & 8) 

Crawford CONT ( Watershed  103) FERTC (Watersheds 102 & 203) 

 CONT ( Watershed  103) TLPC (Watersheds 104 & 204) 

 CONT ( Watershed  103) TLNC (Watersheds 105 & 201) 

 FERTC (Watersheds 102) CONT ( Watersheds  103 &205) 

 FERTC (Watersheds 102) TLPC (Watersheds 104 & 204) 

 FERTC (Watersheds 102) TLNC (Watersheds 105 & 201) 

 TLPC (Watersheds 104) FERTC (Watersheds 102 & 203) 

 TLPC (Watersheds 104) TLNC (Watersheds 105 & 201) 

 TLPC (Watersheds 104) CONT ( Watersheds  103 &205) 

 TLNC (Watersheds 105) CONT ( Watersheds  103 &205) 

 TLNC (Watersheds 105) FERTC (Watersheds 102 & 203) 

 TLNC (Watersheds 105) TLPC (Watersheds 104 & 204) 



 

74 

 

Table 2.5. Model performance statistics for runoff, sediment, and P loss simulated with APEX for uncalibrated models, management-specific 
calibrations, and validation within the management system used for calibration at Franklin and Crawford runoff study sites. (Bolded values indicate 
the model performance that did not meet the threshold criteria.) 

Forms of 
model 
tested 

Management† 
(Watersheds) 

Runoff  Sediment  Total Phosphorus Dissolved Phosphorus 

r
2
 NSE P-bias r

2
 NSE P-bias r

2
 NSE P-bias r

2
 NSE P-bias 

Franklin runoff study site 
Uncalibrate
d model   

CONV-T (Watershed  6)  0.39 -0.74 -18 0.33 -77 -662 0.30 -14.98 -243 0.00 -22.8 -135 
NTDB (Watershed 7) 0.40 0.01 20 0.21 -543 -1428 0.35 -54.91 -415 0.17 -0.30 70 
NTSA (Watershed  8) 0.36 0.05 17 0.30 -680 -2038 0.55 -28.86 -555 0.93 0.40 66 

Calibration CONV-T (Watershed  6) 0.83 0.72 2 0.66 0.61 17 0.55 0.44 44 0.11 -1.11 -36 
NTDB (Watershed 7) 0.77 0.58 34 0.40 -0.62 2 0.61 0.41 46 0.48 0.34 16 
NTSA (Watershed  8) 0.78 0.74 13 0.48 0.40 38 0.78 0.76 16 0.73 0.71 -33 

Validation CONV-T (Watershed  5) 0.75 0.70 16 0.60 0.46 28 0.58 0.48 38 0.32 -1.03 -36 
NTDB (Watershed  2) 0.59 0.45 35 0.42 0.32 49 0.50 0.36 43 0.34 -0.12 -52 
NTSA (Watershed  4) 0.78 0.74 14 0.24 -0.20 -49 0.70 0.56 -14 0.78 0.70 -46 

Crawford runoff study site     
Uncalibrate
d model 

FERTC (Watershed 102) 0.83 0.75 33 0.18 -13 -375 0.87 0.80 27 0.61 0.01 85 
CONT (Watershed  103) 0.65 0.57 1 0.08 -109 -966 0.71 -0.33 -67 0.37 -0.29 98 
TLPC (Watershed  104) 0.72 0.65 32 0.07 -33 -573 0.61 0.57 18 0.53 0.05 83 
TLNC (Watershed  105) 0.72 0.69 20 0.16 -109 -913 0.88 -5.29 -196 0.81 -0.89 -99 

Calibration FERTC (Watershed  102) 0.87 0.85 19 0.50 0.45 35 0.77 0.49 53 0.66 0.58 31 
CONT (Watershed  103) 0.78 0.68 -15 0.22 0.03 15 0.43 0.33 45 0.36 0.30 31 
TLPC (Watershed  104) 0.79 0.77 18 0.24 -0.34 3 0.61 0.36 53 0.57 0.41 40 
TLNC (Watershed  105) 0.82 0.80 1 0.30 -0.86 -6 0.74 0.43 -13 0.60 -0.60 -54 

Validation FERTC (Watershed  203) 0.73 0.60 -1 0.81 -9.22 -200 0.64 0.58 28 0.56 0.54 19 
CONT (Watershed  205) 0.85 0.81 22 0.28 -3.15 -82 0.67 0.44 55 0.51 0.35 56 
TLPC (Watershed  204) 0.65 0.63 12 0.17 -4.50 -80 0.57 0.43 44 0.50 0.42 37 
TLNC (Watershed  201) 0.77 0.76 -14 0.39 -1.73 -48 0.84 0.38 59 0.82 0.41 54 

†CONV-T = Fertilizer incorporated with chisel-disk-field cultivate, NTDB = No-till deep band fertilizer application, NTSA = No-till surface applied 
fertilizer. FERTC = Conventional tillage commercial N and P fertilizers, CONT = No-till---control without any fertilizer/poultry litter, TLPC = 
Conventional tillage-P based turkey litter + commercial N, TLNC = Conventional tillage-N based turkey litter.  
Model performance threshold criteria for Runoff loss = 0.50, 0.30, ±35 % for r

2
, NSE, and PBIAS respectively; Sediment, TP and DP loss = = 0.50, 

0.30, ±60 % for r
2
, NSE, and PBIAS respectively.  
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Table 2.6. Model performance statistics for runoff, sediment, and P loss simulated with calibrated and validated management specific APEX 
model to test changing management i.e. when applied to different management at Franklin and Crawford runoff study sites.  (Bolded values 
indicate the model performance that did not meet the threshold criteria.) 

Management 
used to 
calibrate† 

Management 
validated 

P/F/ 
‡ 

Runoff Sediment Total Phosphorus Dissolved Phosphorus 

r
2
 NSE P-bias r

2
 NSE P-bias r

2
 NSE P-bias r

2
 NSE P-bias 

Franklin runoff study site 
NTDB NTSA P 0.81 0.76 22 0.21 0.09 20 0.68 0.60 35 0.72 0.54 26 
NTDB CONV-T F 0.70 0.52 -13 0.63 0.17 -18 0.51 0.13 -7 0.21 -72.0 -462 
NTSA NTDB F 0.63 0.55 24 0.28 0.20 17 0.41 0.37 21 0.24 -1.84 -83 
NTSA CONV-T F 0.66 0.38 -24 0.62 -1.27 -70 0.50 -0.99 -53 0.16 -232 -846 

CONV-T NTDB F 0.62 0.18 -52 0.12 -0.30 91 0.36 -0.56 89 0.10 -0.39 -75 
CONV-T NTSA F      0.77 0.45 49 0.06 -0.31 97 0.64 -0.17 92 0.44 -0.01 87 

Crawford runoff study site 
CONT FERTC P 0.78 0.76 13 0.27 -3.12 -135 0.75 0.62 39 0.66 0.52 41 
CONT TLPC P 0.69 0.66 14 0.05 -5.71 -104 0.71 0.42 51 0.54 0.37 48 
CONT TLNC F 0.79 0.79 -2 0.48 -29 -333 0.53 0.03 -112 0.53 -0.36 -155 
FERTC CONT F 0.75 0.74 10 0.08 -0.05 67 0.36 0.25 48 0.38 0.34 33 
FERTC TLPC P 0.70 0.67 12 0.10 0.01 62 0.56 0.33 55 0.50 0.42 33 
FERTC TLNC F 0.80 0.80 -4 0.36 -3.68 -80 0.51 -0.11 -135 0.50 -1.05 -212 
TLPC FERTC P 0.79 0.77 11 0.36 0.04 -17 0.70 0.53 45 0.64 0.56 33 
TLPC TLNC F 0.81 0.81 -4 0.37 -4.59 -96 0.55 0.11 -116 0.53 -0.58 -182 
TLPC CONT F 0.75 0.75 11 0.08 -0.04 67 0.40 0.27 51 0.40 0.37 38 
TLNC CONT F 0.72 0.71 6 0.05 -0.09 70 0.44 -0.21 88 0.38 -0.08 87 
TLNC FERTC F 0.77 0.75 8 0.32 0.28 26 0.63 0.05 80 0.70 0.00 82 
TLNC TLPC F 0.70 0.67 13 0.15 -1.18 -38 0.51 0.07 78 0.94 -0.18 -108 

†NTDB = No-till deep band fertilizer application, CONV-T = Fertilizer incorporated with chisel-disk-field cultivate, NTSA = No-till surface applied 
fertilizer. FERTC = Conventional tillage commercial N and P fertilizers, CONT = No-till control without any fertilizers/poultry litter, TLPC = 
Conventional tillage-P based turkey litter + commercial N, TLNC = Conventional tillage-N based poultry litter. Bolded values indicate the model 
performance that did not pass the threshold criteria.  
‡ P = model threshold criteria met for runoff and TP loss; F = model threshold criteria did not met for both runoff and TP loss;  
The management specific calibrated and validated model failed approximately 70% of the time when applied to different management systems 
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Table 2.7. Model parameters and their selected values for a location specific model  developed at Franklin and 
Crawford runoff study sites 

Sensitive parameter† Range tested/ 
Average used‡ 

Values selected for a location specific model  

Franklin site Crawford site 

Parameters affecting runoff  
Average 0.02 0.02 P[15] Runoff CN residue adjustment parameter 

P[17] Soil evaporation plant cover factor                          0.0-0.5 0.05 0.20 
P[38] Water stress weighing coefficient                   Average 1.00 1.00 

P[42] SCS CN index coefficient                                Average 2.50 2.50 
P[44] Upper limit CN retention parameter                    Average 2.00 2.00 

Parameters affecting sediment 
Average 0.01 0.01 P[19] Sediment routing coefficient  

P[46] RUSLE C-factor coefficient residue factor 0.5-1.5 0.95 0.90 
P[47] RUSLE C-factor coefficient biomass factor 0.5-1.5 0.10 0.50 

Parameters affecting soil biological activity 
0.10-0.50 0.30 0.35  P[29] Biological mixing efficiency 

P[31] Maximum depth for biological mixing  Average 0.30 0.30 
P[69] Coefficient adjusts microbial activity 0.1-1.0 0.65 0.50  

  P[70] Microbial decay rate coefficient                        0.5-1.5 0.70 0.65  
Parameters affecting total and dissolved Phosphorus 

Average 1.50 1.50 P[2] Root growth soil strength                                     
P[8] Soluble phosphorus runoff coefficient  10.0-20.0 12.0 8.0 

P[59] P upward movement by evaporation coefficient Average 1.0 1.0 
P[62] Manure erosion equation coefficient Average 0.10 0.10 

P[68] Manure erosion exponent  Average 1.0 1.0 
P[76] Standing dead fall rate coefficient  Average 0.001 0.002 

P [84] Coefficient. regulating P flux between labile and active 
pool       Average 0.001 0.001 

P[96] Soluble phosphorus leaching KD value 1-15 5 10 

†CN, curve number;  SCS, Soil Conservation Service ; RUSLE,  Revised Universal Soil Loss Equation; KD, partition coefficient.  
‡The parameter values were selected either based on the parameter ranges specified in the APEX manual (Steglich and Williams, 
2013) or by averaging parameter values from management specific model in each location. Thus average means, the average 
taken from calibrated models in each location as specified in table 4 
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Table 2.8. Model performance statistics for runoff, sediment, and P loss simulated with location specific APEX model to test changing management 
i.e. when applied to different management at Franklin and Crawford runoff study sites.  (Bolded values indicate the model performance that did 
not meet the threshold criteria.) 

Model 
tested 

Management/ 
Watershed† 

P/
F 

Runoff  Sediment  Total Phosphorus Dissolved Phosphorus 

r
2
 NSE P-bias r

2
 NSE P-bias r

2
 NSE P-bias r

2
 NSE P-bias 

Franklin runoff study site      
Calibration CONV-T (Watershed  6) F 0.79 0.54 -15 0.66 0.32 -15 0.41 -0.02 -8 0.09 -145 -724 

NTDB (Watershed 7) P 0.78 0.59 34 0.35 0.02 68 0.66 0.37 52 0.50 -0.21 -20 
NTSA (Watershed  8) P 0.83 0.71 32 0.38 -0.10 83 0.80 0.60 48 0.74 0.67 5 

Validation CONV-T (Watershed  5) F 0.70 0.63 4 0.60 0.17 2 0.57 0.07 -8 0.32 -175 -659 
NTDB (Watershed  2) F 0.59 0.38 43 0.43 0.04 81 0.47 0.30 49 0.36 -1.02 -98 
NTSA (Watershed  4) P 0.82 0.70 30 0.12 0.03 58 0.71 0.68 28 0.75 0.74 -21 

Crawford runoff study site      
Calibration FERTC (Watershed  102) P 0.87 0.85 19 0.42 -0.78 -56 0.82 0.52 56 0.76 0.35 60 
 CONT (Watershed  103) P 0.78 0.66 -19 0.15 -0.46 -13 0.50 0.30 55 0.33 0.23 53 
 TLPC (Watershed  104) P 0.78 0.76 18 0.19 -4.61 -124 0.52 0.31 56 0.52 0.21 64 
 TLNC (Watershed  105) F 0.83 0.81 3 0.35 -19.3 -259 0.76 -7.56 -178 0.60 -15.0 -262 
Validation FERTC (Watershed  203) P 0.72 0.57 0 0.73 -70.2 -661 0.62 0.58 30 0.63 0.40 50 
 CONT (Watershed  205) F 0.76 0.71 25 0.16 -6.7 -121 0.63 0.23 66 0.45 0.13 71 
 TLPC (Watershed  204) P 0.63 0.60 11 0.18 -23.2 -299 0.57 0.40 49 0.47 0.21 64 
 TLNC (Watershed  201) P 0.78 0.77 -12 0.450 -32.6 -402 0.82 0.77 -1 0.84 0.80 -9 

†CONV-T = Fertilizer incorporated with chisel-disk-field cultivate, NTDB = No-till deep band fertilizer application, NTSA = No-till surface applied 
fertilizer. FERTC = Conventional tillage commercial N and P fertilizers, CONT = No-till---control without any fertilizers/poultry litter, TLPC = 
Conventional tillage-P based turkey litter + commercial N, TLNC = Conventional tillage-N based turkey litter. Bolded values indicate the model 
performance that did not pass the threshold criteria 
The location specific model developed using multiple management practices in each location passed approximately 65 % of the time when applied 
to different management practices  
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Table 2.9. Long term (30 years) model simulated average annual runoff, sediment, TP and DP loss for base 
managements with location specific  model  

Base management†  Runoff loss (mm) Sediment loss (Mg ha
-1

) Total P (Kg ha
-1

)  Dissolved P loss (Kg ha
-1

) 

Franklin runoff study site (Average of 30 year rotation) 

CONV-T 154 1.11 1.1 0.6 

NTDB 132 0.10 0.4 0.4 

NTSA 126 0.10 0.7 0.6 

Crawford runoff study site (Average of 30 year rotation) 

FERTC 195 2.20 1.6 1.1 

CONT 186 0.70 0.3 0.2 

TLPC 190 2.17 1.4 0.9 

TLNC 178 2.47 11.0 9.2 

†NTDB = No-till deep band fertilizer application, NTSA = No-till surface applied fertilizer, CONV-T = Fertilizer 

incorporated with chisel-disk-field cultivate. FERTC = Conventional tillage commercial N and P fertilizers, CONT = 

No-till---control without any fertilizers/poultry litter, TLPC = Conventional tillage-P based turkey litter + commercial 

N, TLNC = Conventional tillage-N based turkey litter. 
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Figure 2.1. Event-based linear regression of measured vs. simulated values with model performance statistics for 
APEX-simulated runoff, sediment loss, and TP loss for models that were uncalibrated, calibrated for specific 
management systems, and validated within the management systems used for calibration model with aggregated 
data from both sites. (a1) Uncalibrated runoff, (a2) Calibrated runoff (a3) Validated runoff; (b1) Uncalibrated 
sediment loss (b2) Calibrated sediment loss (b3) Validated sediment loss; (c1) Uncalibrated TP loss, (c2) Calibrated 
TP loss and (c3) Validated TP loss; (d1) Uncalibrated DP loss, (d2) Calibrated DP loss and (d3) Validated DP loss. 
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Chapter 3. Evaluation of Management Practices to Minimize 
Phosphorus Loss from Poultry Litter Application Using the APEX Model  

ABSTRACT 

Phosphorus (P) losses from agricultural fields play a significant role in surface water 

quality degradation. Applying P at the right time, right rate and at right frequency provide both 

economic and environmental benefits. However, management options need to be tested prior 

to recommendations. Simulation models offer an alternative method of field studies to 

evaluating the management practice performance and are not subject to the time, treatments, 

or weather constraints of field studies. The objective of the study was to determine the optimal 

timing, rate, and frequency for poultry litter applications in no-till by surface broadcasting and 

conventional tillage to incorporate the litter in different cropping systems, using the 

Agricultural Policy/Environmental Extender (APEX) model. The fully calibrated and validated 

APEX model was used to evaluate the effect of poultry litter application timing (spring vs. fall), 

frequencies (1 Mg ha-1every year, 2 Mg ha-1 every 2 year, or 4 Mg ha-1 every 4 year and 8 mg ha-

1 every 8 year in an 8-year rotation), cropping systems, and rates on P loss in no-till and 

incorporation with tillage. The model was used to simulate P loss for 100 different weather 

scenarios for each combination. Overall, applying poultry litter during late fall resulted in 

relatively lower total P loss compared to poultry litter applied during spring before planting. 

Poultry litter should be incorporated, especially if applied in the spring. When soil test P (STP) is 

below 100 mg kg-1 soil test P (STP) application of poultry litter in no-till resulted in 

approximately 50 % greater TP loss compared to when litter is incorporated by tillage. The 

results suggest that applying 4 Mg ha-1 every other year is the optimal litter rate and frequency 
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in an eight year P based cropping systems. The 4 Mg ha-1 yr-1 results in excessive P loss and 

should be avoided. Corn-winter wheat-soybean double cropping is the best cropping system for 

poultry litter applications as it reduced the runoff, sediment and TP loss compared to other 

cropping systems. The results can be used by producers in the region to help them minimize P 

loss to receiving waters when applying poultry litter. 

3.1 INTRODUCTION 

Reducing phosphorus (P) loss from agricultural fields is critical to maintaining water 

quality. Any management practices that reduce P loss in runoff help to protect water quality. 

Best management practices (BMPs) (also referred to as conservation practices) have been 

developed to reduce nutrient and sediment loss from agricultural fields and meet the goal of 

improving water quality (Richardson et al. 2008; Francesconi et al. 2015). For instance, the 

Conservation Effects Assessment Project (CEAP) was initiated by the United States Department 

of Agriculture, Natural Resources Conservation services (USDA-NRCS) to quantify the 

environmental benefits of current cropland BMPs at regional and national levels (Mausbach 

and Dedrick, 2004; Francesconi et al. 2015; Santhi et al. 2014). Best management practices such 

as conservation reserve program (CRP), conservation tillage with crop rotations and cover have 

also been promoted by USDA for decades to protect water resources and improve agricultural 

production (Richardson et al. 2008). 

The impact of best management practices on P loss from agricultural fields can be 

evaluated either by monitoring water quality in the field or by using process-based computer 

models (Senaviratne et al. 2013; Santhi et al. 2014; Francesconi et al 2015). Monitoring water 
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quality impacts in fields are time-consuming and labor intensive. The tasks become more 

cumbersome in large watersheds, multiple locations, with many treatments and are limited 

with treatment and weather scenarios. Because of such limitation with field studies, process-

based computer models can be used an alternative for evaluating BMPs (Gassman et al. 2010). 

Computer models also help to extend the application of field studies data and have emerged as 

key tools to analyze BMPs (Gassman et al. 2007), guide water resource policy, management and 

regulations (Ford et al. 2015) and design future BMPs more effectively (Santhi et al. 2014). 

Under the CEAP framework computer models were extensively used and were promoted to 

simulate BMPs. The Agricultural Policy/Environmental eXtender APEX model has been 

proposed as a tool for evaluating BMPs in CEAP watersheds (Gassman et. al. 2010). 

Several studies have indicated APEX’s ability to accurately simulate the best 

management practices on P loss (Gassman et al. 2010; Santhi et al. 2014; Francesconi et al. 

2015; Wang et al. 2009; Tuppad et al. 2010). However, none of them have been tested and 

were used to develop BMPs for poultry litter applications. Utilization of poultry litter as a 

nutrient source outside the production area reduces spatial concentration and risks to water 

quality (Liechty et al. 2009). But the impact of poultry litter in those areas which do not have a 

history of poultry application need to be assessed. Lack of adequate testing has also prompted 

controversy as producers feel they have been unfairly targeted (Sharpley et al. 2015) and are 

desperately looking for alternative BMPs. The field scale data to guide management decisions 

for poultry litter with water quality effects are rare (Harmel et al. 2009). Therefore, calibrated 

and validated computer model like APEX can be used to develop BMPs for poultry litter 

applications in such areas where poultry litter has not been applied.  
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Although Kansas is not a major poultry producer, due to increasing fertilizer price and 

easily transportable litter from neighboring states, poultry litter application in the southeast 

region of the state is on the rise. For instance, Herron et al. (2012) reported more than 100,000 

tons of poultry litter exported annually from Arkansas and Oklahoma with most of this going to 

Kansas and central Oklahoma. However, little information exists on BMP options to producers 

in the region with no poultry litter application history. To overcome the lack of information on 

the impact of poultry litter application in the region, Sweeney et al. (2012) conducted a field 

runoff study. However, due to space and logistic restriction, their treatment evaluations were 

limited. Nonetheless, producers are looking for wide range of options on application timings, 

rates, and frequencies for poultry litter applications with minimal potential environmental risk. 

Therefore, we evaluated the impact of multiple rates, application timings, soil test P levels, and 

frequencies of application using the APEX model to determine optimal timings, rates, and 

frequencies for poultry litter application in the region. Those management practices were also 

selected so that the datasets generated in this study could be used for the Kansas phosphorus 

index evaluation.    

The goal of the study was to assess the impact of poultry litter applications on TP loss 

and determine BMPs option for common cropping systems in the region. The objective of this 

study was to determine the optimal timing, rate, and frequency for poultry litter applications in 

no-till by surface broadcasting and conventional tillage to incorporate the litter in different 

cropping systems,. This was accomplished by using the APEX model calibrated and validated 

with field study data from poultry litter applications in southeast Kansas. 
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3.2 MATERIALS AND METHODS 

The fully calibrated and validated location specific model developed using multiple 

managements and watershed characteristics were used to analyze different management 

scenarios. The management practice scenarios analyzed with the APEX model were focused on 

STP, application timings, P application rate, and method of P application. Those management 

practices were selected based on the minimum criteria set by NRCS for state PI assessment of P 

loss risk from fields (USDA-NRCS, 2012). In addition, a wide variety of management practices 

evaluated in this study (using the APEX model) would provide information on poultry litter 

application and potential environmental risk. The poultry litter application, tillage, planting, and 

harvesting dates were approximated based on the commonly used timings in the region (Dan 

Sweeney, personal communication, 2015). The combinations of management practices 

analyzed were listed in Table 1. Additional details on site characteristics and data collection are 

available in Sweeney et al. (2012). 

The STP selected was 25, 50, 100, 200, and 400 mg kg-1 and was assumed to be for 0-

15cm depth. The five application timings selected were January 15th, April 1st June 5th and 

November 15th, October 15th. The source of nutrient used in Crawford site was poultry litter 

and the P application rate selected were 0 (control), 25, 50, 100, and 200 kg P ha-1. The method 

of application was either no-till surface broadcast or incorporated immediately with chisel, disk 

and field cultivate.  The nitrogen (N) rate (135 kg N ha-1) poultry litter application supply 

approximately 200 kg P ha-1. The remaining N in other P rate applications (118 kg N ha-1 for 1 

Mg ha-1 of poultry litter, 101 kg N ha-1 for 2 Mg ha-1 of poultry litter and 68 kg N ha-1 for 4 Mg 

ha-1 of poultry litter application) was applied with a commercial fertilizer. The cropping systems 
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used were continuous corn, corn-soybean, grain sorghum-soybean and corn-winter wheat- 

soybean double cropping. The poultry litter was applied every year in the continuous corn 

cropping system. However, in other 2-year rotations that had soybeans, the litter was applied 

only in the first year of rotation cycle.  

The model was run for 4 years of warm up (i.e., initial 4 year of model run was not used 

in the results) and for 1, 2, 4 or 8 years of rotation depending upon the management practices 

tested. The warmup period had the same management practices as that used in the rotation in 

each cropping system. During the warmup, inorganic fertilizer was applied on the P-based rate 

to avoid the P build up in soils. The additional nitrogen (N) fertilizer was applied to minimize the 

effect of N deficiency on crop yield.  

The APEX model was run for 100 different weather scenarios with the APEX weather 

generator. An automated ‘autoapex tool’ that was written in FORTRAN was used which 

automatically updates STP, and management practices file. The autoapex tool averages 100 

different weather scenarios to output annual maximum, minimum, mean, standard deviation 

and median values for runoff, sediment and TP loss for each management combination. The full 

data of these model runs for runoff, sediment, and TP loss were listed in the APPENDIX C1 - 

C12. 

The average annual TP loss with P-based application rate and frequency of application 

for poultry litter was also evaluated to determine the optimal rate and frequency of application 

i.e. whether applying small rate more frequently or a large rate less frequently will result in 

lower TP loss. In this management evaluation, the poultry litter was applied in an 8-year corn-
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soybean rotation so that over the 8-year period the sum of the poultry litter applied was same 

i.e. 8 Mg ha-1. The only difference was in frequency of application such as no P application 0 Mg 

ha-1 every year, 1 Mg ha-1 every year, 2 Mg ha-1 every other year, 4 Mg ha-1 every 4 year and 8 

Mg ha-1 every eight year (Table 2). In addition, the commonly used poultry litter application 

rates in the region were also evaluated to determine the optimal rate option for producers 

(Table 3).  

3.3 RESULTS AND DISCUSSION 

 Average annual TP loss with different cropping systems  3.3.1

The TP loss decreased substantially with corn-winter wheat-soybean double cropping 

compared to other cropping systems (Figure 3.1d). Perhaps, winter wheat might have acted as 

a cover crop increasing the nutrient recycling and decreasing the TP loss (Dabney et al. 2001; 

Singer et al. 2007). The average annual runoff loss decreased by approximately 35 % with corn-

winter wheat double cropping compared to other cropping systems. The average annual 

sediment loss was also reduced by 15-70% in no-till with corn-winter wheat soybean double 

cropping. Likewise, when the litter was incorporated the sediment loss was reduced 

approximately by 25% with the corn-winter wheat-soybean rotation compared to continuous 

corn and by 65% compared to grain sorghum-soybean cropping systems (APPENDIX C). These 

results are similar to what other researches have reported.  For example, Zuazo and 

Pleguezwelo (2009) in a field study found that continuous soil cover improved infiltration and 

decreased runoff.   Francesconi et al. (2015) reported similar benefits of reduced runoff, 

sediment, and nutrients loss in runoff with cover crops using the APEX model.   
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The TP loss with continuous corn was greater compared to other cropping systems due 

to the application of poultry litter every year (Figure 3.1). The average annual TP loss only in the 

poultry litter application year with corn-soybean, grain sorghum-soybean, and corn-winter 

wheat-soybean cropping systems was similar to continuous corn indicating that the poultry 

litter application resulted in a similar loss in the application year regardless of corn or grain 

sorghum crops. The average TP losses with other cropping systems were lower because poultry 

litter was not applied in the soybean (second) year. 

 Average annual TP loss with application timings 3.3.2

The average annual TP loss was greater with spring (January and April) compared to 

winter (October and November) applications in a corn-soybean cropping system (Figure 3.1). 

The trend of TP loss with timings was similar in other cropping systems.  The reduced TP loss 

during winter might be due to more time for the nutrients in the litter interact and be adsorbed 

to soil particles.  For instance, the inorganic P pool in the APEX model is divided into stable 

mineral P, active mineral P and labile P pools. Soil labile P is the major contributor of both 

dissolved and sediment P loss in runoff. Labile P represents easily desorb-able P immediately 

available for plants or for runoff and leaching loss while active P represents less available not 

easily desorb-able P that is in equilibrium with labile P (Sharpley et al. 1984).  Addition of 

fertilizer or organic P in the soil system disturbs the soil P equilibrium and two reactions occur 

simultaneously. First, a rapid reversible adsorption of P to surface sites and second, a slow 

reaction that converts P to a more strongly held non-labile form ( Javed and Rowell, 2002). 

Labile P pool can also became stable and move into a non-labile pool depending on time and 

soil characteristics (Barrow and Shaw 1979). Therefore, poultry litter applied during October 
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and November have more time to interact with soil particles and potentially some P might have 

moved to the active or stable P pool reducing the TP loss in runoff as the crop uptake, loss in 

runoff and leaching are minimal during winter.  

 Average annual TP loss with soil test P and P application rates 3.3.3

The average annual TP loss trended higher with increased soil test phosphorus (STP) and 

increased P application rates in all the cropping systems (Figures, 3.1 and 3.2). Both the 

application rates and STP are important factors that control P loss in runoff.  Similar to these 

model results, the linear relationships between application rates and STP to TP loss in runoff 

were reported by different studies. For instance, Schroeder et al. (2004) with a rainfall 

simulation study reported linear relationship between STP and P loss in runoff. Likewise, in a 

small plot study Tarkalson et al. (2004) reported linear relationship between broiler litter 

application and TP runoff in runoff.   

 Average annual TP loss with method of application 3.3.4

The average annual TP loss was higher in no till-surface broadcast compared to 

incorporation with a chisel, disk and field cultivator regardless of application timings. 

Incorporation by tillage was found  more effective in reducing TP loss during spring (January 

and April) compared to winter applications (October and November) (Figure 3.1). Likewise, 

tillage incorporation of poultry litter was found to be more effective in minimizing TP loss at 

lower STP and with high P application rates (Figure 3.2). Overall, in lower STP (25 ppm and 50 

ppm) the TP loss was reduced by approximately 40-50 % when poultry litter was incorporated 
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compared to no-till surface broadcast (Appendix C). Tarkalson et al. (2004) found similar results 

with approximately 80-90 % reduction in runoff TP loss when broiler litter was incorporated.  

The effectiveness of incorporation decrease with increase in STP and in some instances resulted 

in similar or, even more, TP loss than in the no-till surface broadcast (Figure 3.2). This is likely 

due to greater loss of sediment-bound P when poultry litter was incorporated (Allen and 

Mallarino, 2008). Though the average annual sediment loss across all cropping system with 

incorporation was only 0.75 Mg ha-1, it was approximately 800% greater than in no-till surface 

application (0.09 Mg ha-1) (APPENDIX C).Therefore, the higher sediment loss with incorporation 

would have increased TP loss substantially equaling or exceeding that from the no till-surface 

broadcast system.  The increased TP loss with high STP (>50 ppm) and higher application rates 

with incorporation indicated that even the incorporation might not be a viable method to 

reduce TP loss when STP is high and coincides with higher P application rates (Figure 3.2).   

 Average annual TP loss with a P-based poultry litter application 3.3.5

In the P-based application, 8 Mg ha-1 of poultry litter was applied over an 8-year time 

period so that the amount of P applied during the 8-year rotation was same. However, poultry 

litter was applied every year, every other year, every 4 year, or every 8 year to determine 

optimal frequency for P based management system.   

 Frequency of P-based poultry litter application and timing  3.3.6

The frequency of poultry litter application did not make a difference in the average 

annual TP loss, indicating that applying poultry litter in different rates but P based on the P 
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requirements of the crops over rotation years resulted in a similar average annual long-term TP 

loss (Figure 3.3).  

Overall, the March application resulted in slightly higher average annual TP loss 

compared to November application regardless of rates and frequencies (Figure 3.3). Perhaps, in 

the November application due to a decrease in rainfall or no rainfall at all, the available 

phosphorus in the poultry litter has more time to adsorb to the soil sites. However, in the 

March application, the phosphorus present in the poultry litter would have less time to interact 

with soil increasing the vulnerability to runoff loss. The 28-year long term average annual 

rainfall indicated drastic increase in rainfall with the start of March (Figure 3.4) Therefore, 

rainfall soon after poultry litter incorporation or surface broadcast in March might have 

resulted in greater average annual TP loss in runoff. Studies have reported a decline in P loss 

with an increase in time to a runoff with poultry litter in rainfall simulation studies (Westerman 

and Overcash 1980; Heathman et al. 1995; Sharpley, 1997) and field study (Sistani et al. 2009). 

 Method of application in a P based systems 3.3.7

  Overall, the no-till surface broadcast application of poultry litter resulted in higher 

average annual TP loss in both the March and November application compared with 

incorporation with tillage (Figure 3.3). It is because the poultry litter was mixed and 

incorporated into the soil during incorporation but the surface broadcast exposes the litter and 

increases the potential loss in runoff (Adeli et al, 2011).  Therefore, if poultry litter has to be 

applied during March then it should be incorporated to minimize TP loss. Researchers reported 
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similar results either in field or rain simulation studies (Sharpley, 1997; Pote et al. 2003; 

Tarkalson et al. 2004; Torbert et al. 2005; Shah et al. 2004).  

 Maximum TP loss in a P based systems 3.3.8

The average annual TP loss was little affected when poultry litter was applied at the P-

based (crop removal rate) rates regardless of the frequency of application. However, there was 

a large difference when comparing the maximum amount of TP loss from a higher rate of single 

application from the 8-year rotation to the loss from lower rates of multiple applications. For 

instance, the application of 8 Mg ha-1 during March in no-till resulted in approximately 29 kg ha-

1 of TP loss (Figure 3.5). The rainfall events that occurred immediately or within a short period 

of time after poultry litter was applied on March resulted in such loss. Studies have reported 

greatest TP loss in the first runoff events after fertilizer application (Kleinman and Sharpley 

2003; Vadas et al. 2007), even if the first runoff occurs a long time after fertilizer application 

(Schroder et al. 2004; Harmel et al. 2009). If the watershed is directly or indirectly connected to 

environmentally sensitive areas (water resources such as perennial streams, lakes, reservoirs 

etc.), this amount of TP loss in a single application year can trigger algae blooms. Therefore, 

weighing the unpredictability of the weather, 8 Mg ha-1 every eight years is a very risky scenario 

and should not be recommended even though the average annual TP loss for 100 weather 

scenarios had lower TP loss.  

The maximum TP loss from a single application in no-till was similar with 1 Mg ha-1 every 

year and 2 Mg ha-1 every other year in March. However, maximum TP loss increased by 40% for 

litter applications of 4 Mg ha-1 every 4 years and 80% for litter applications of 8 Mg ha-1  every 8 
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years (Figure 3.5). The maximum annual TP loss with a single application had a similar loss with 

1 Mg ha-1 yr -1, 2 ha-1 every 2 yr -1, and 4 Mg ha-1 every 4 yr -1 with a November application. 

However, the maximum TP loss increased by approximately 50% and 33 % in no-till surface 

broadcast and incorporation, respectively, when litter was applied at 8 Mg ha-1 every 8 years in 

November. The maximum TP loss was also increased by approximately 35% with both no-till 

surface broadcast and incorporation when litter was applied at 8 Mg ha-1 every 8 years in 

March compared to November (Figure 3.5). 

Overall poultry litter incorporation reduced the average annual TP loss by approximately 

half Kg ha-1 compared to no till-surface broadcast. Hence, based on the average annual TP loss 

(Figure 3.3) and maximum TP loss (Figure 3.5), 4 Mg ha-1 every 4 years and incorporating during 

November would be the best management practice for P-based poultry litter application from a 

practical (assuming producers would prefer to apply 4 Mg ha-1 at one time due to 

transportation cost) and environmental standpoint. 

 Total P loss with commonly used poultry application rates in the region 3.3.9

Due to transportation cost, producers prefer to apply more poultry litter at one time. 

Therefore, a more commonly used application rates in the region and its impact on P loss in 

runoff were evaluated (Table 3.3).  The 4 Mg ha-1 every year results in excessive P loss both in 

March and November application compared to 4 Mg ha-1 every other year and 4 Mg ha-1 every 4 

years (Figure 3.6). Hence, producers should not be applying 4 Mg ha-1 yr-1poultry litter in 

successive years. The higher TP loss with 4 Mg ha-1 every year is due to the more frequent 

application and the accumulation of P in the soil surface from exceeding the crop removal rate. 
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The effects of continuous poultry litter application and P accumulation in soils were reported by 

several studies. For instance, in a field study with a continuous poultry litter applications Sistani 

et al. (2004) and Mitchel and Tu, (2006) reported increased STP as poultry litter application 

rates have a linear relationship with soil test P accumulations (Cox and He Hendricks, 2000; 

Leytem and Sims, 2005). The increase in STP may exceed sorption capacity of surface soils 

(Liechty et al. 2009) that eventually increases the risk of P loss in runoff.  

Poultry litter incorporation reduced the TP loss by approximately 50% compared to no-

till management. Changing the poultry litter application rate from 4 Mg ha-1 every year to 4 Mg 

ha-1 every other year decreased the annual average TP loss by almost 50% in no-till 

management systems (Figure 3.6). Similarly, The TP loss with 4 Mg ha-1 every other year and 4 

Mg ha-1 every 4 years was similar when poultry litter was incorporated.  Therefore, from 

practical and economic standpoint applying 4 Mg ha-1 every other year is an acceptable 

management practice if the producer wants to apply poultry litter more frequently. But STP 

should be tested appropriately to monitor potential STP accumulation. If the soil test P 

increases to more than 50 mg kg-1 the management should be changed from 4 Mg ha-1 every 

other year to P-based application (4 Mg ha-1 every four years) to minimize TP loss. The 

recommendation supports similar findings by Harmel et al. (2011 and 2008) who recommended 

the application of 4.5 Mg ha-1 poultry litter every other year based on runoff water quality and 

economic returns from a long-term field study.  
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3.4 CONCLUSIONS 

Proper application and management of poultry litter are critical to minimizing TP loss 

and improve water quality degradation. The model simulated results showed poultry litter 

applied during late fall had lower TP loss compared to litter applied during spring. No till-

surface broadcast increased the TP loss in runoff compared to using tillage to incorporate 

poultry litter. The increase in STP and litter application rates increase the TP loss linearly both in 

no till-surface broadcast and incorporation with tillage. The model simulated results were 

consistent with rainfall simulations and field studies with poultry litter applications. However, 

model simulated results may vary with other soils, watersheds, and climates; thus, any 

computer simulation models should be calibrated and validated using the site-specific 

information before using for BMPs evaluation and recommendations. The results would be 

helpful for producers, planners, and policy makers in developing and guiding BMPs to minimize 

TP loss in via agricultural fields.  

3.5  RECOMMENDATIONS 

 4 Mg ha-1 every other year is an acceptable practice for poultry litter application in 

continuous corn, corn-soybean, grain sorghum-soybean and corn-winter wheat-soybean 

cropping systems. 

 Apply poultry litter in November or incorporate if applying in March. 

 Continuous poultry litter application builds soil test P (STP), so STP must be checked 

frequently. 
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 If the STP is greater than 50 mg kg-1 avoid poultry litter application or at minimum switch 

the management to 4 Mg ha-1 every 4-year (a P-based poultry litter application). 

 Use corn-winter wheat-soybean double cropping if you are applying poultry litter to 

maximize the benefits and reduce TP loss.  

 High application rate of 8 Mg ha-1 should be avoided from environmental prospective 

even if it is only every 8 years.  
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Table 3.1 Best management scenarios for poultry litter applications at Crawford study site 

Cropping systems Application 
timings 

Soil test P 
levels (ppm) 

Phosphorus 
application rates 
(Kg P ha

-1
) 

Application methods Total model 
runs 

 Continuous-Corn 

(C-C) 

April 1
st

         
October 15

th
 

November 15
th

 
January 15

th
  

5  

(25, 50, 100, 
200 and 400) 

5 

(0, 25, 50, 100, 
and 200)  

2 

i) i) No-till-Surface 
broadcast                          
ii) Surface broadcast and 
incorporated 

200 

Corn-Soybean 

(C-S) 

April 1
st

            
October 15

th
  

November 15
th

 
January 15

th
 

5 5 2 200 

Grain sorghum-
Soybean 

(GS-S) 

April 1
st

               
June 5

th
        

October 15
th

 
November 15

th
 

January 15
th

 

5 5 2 250 

Corn-Winter 
wheat-Soybean 

(C-WW-S) 

April 1
st              

October 15
th   

November 15
th

 
January 15

th
   

5 5 2 200 
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Table 3.2 hosphorus-based poultry litter application rates and treatments 

Treatments  Application 
rates 

Application 
frequency 

Sum over 8-
year rotation 

Application methods 

0x Annual P based 
application  

0 Mg ha
-1

  Once every year 0 Mg ha
-1

 i) No-till-Surface broadcast  
ii) Surface broadcast and 
incorporated 

1x Annual P-based 
application  

1 Mg ha
-1

  Once every year 8 Mg ha
-1

 ‘’ 

2x Annual P-based 
application  

2 Mg ha
-1

  Once every 2 
years 

8 Mg ha
-1

 ‘’ 

4x Annual P-based 
application 

4 Mg ha
-1

  Once every 4 
years 

8 Mg ha
-1

 ‘’ 

Nitrogen rate (8x P based) 
application 

8 Mg ha
-1

  Once every 8 
years 

8 Mg ha
-1

 ‘’ 
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Table 3.3. Common rates and frequency of poultry litter applications in Southeast Kansas 

Application rates  Application frequency Sum over 4-year rotation Application methods  

0 Mg ha yr
-1

 None 0 Mg ha yr
-1

 i) No-till-Surface broadcast  

ii)  surface broadcast and incorporated 

4 Mg ha yr
-1

 Once every year 16 Mg ha yr
-1

 ‘’ 

4 Mg ha yr
-1

 Once every 2 year 8 Mg ha yr
-1

 ‘’ 

4 Mg ha yr
-1

 Once every 4 year 4 Mg ha yr
-1

 ‘’ 
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Figure 3.1. The model simulated average annual total phosphorus (TP) loss for different cropping systems and 
timings with 25 mg kg

-1
 soil test phosphorus (STP).a) Continuous corn; b) Corn-soybean; c) Grain sorghum-soybean 

d) Corn-winter wheat -Soybean double cropping. NT = no-till surface broadcast; INC = fertilizer incorporated with 
tillage; JAN = January, APR = April application, OCT = October application and NOV = November application. 
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Figure 3.2.The model simulated average annual total phosphorus (TP) loss for different soil test phosphorus level 
and application rates.  NT is poultry litter surface broadcast in a no-till system; INC is poultry litter surface 
broadcast and incorporated with conventional tillage. 
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Figure 3.3. Average total phosphorus losses with P-based application rates over eight-year rotation at 25 mg Kg
-1

 
soil test phosphorus. MARCH means poultry litter applied on March 15

th
  before planting; NOVEMBER means 

poultry litter applied on November 15
th

 during late fall. 0/Mg/ha/yr was 0 Mg of poultry per hectare litter applied 
every year; 1 Mg/ha/yr was 1 Mg of poultry litter per hectare applied every year; 2 Mg/ha/yr was 2 Mg of poultry 
litter per hectare applied every other year; 4 Mg/ha/yr was 4 Mg of poultry litter per hectare applied every 4 year; 
8 Mg/ha/yr was 8 Mg of poultry litter per hectare applied every 8 year.
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Figure 3.4. Long-term (28 years) average annual monthly rainfall in the study site. The data were obtained from 
Parsons Weather Station. 
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Figure 3.5. Maximum total phosphorus losses with a single poultry litter application over eight-year rotation at 25 
mg kg

-1
 soil test phosphorus. . MARCH means poultry litter applied on March 15

th
  before planting; NOVEMBER 

means poultry litter applied on November 15
th

 during late fall. 0/Mg/ha/yr was 0 Mg of poultry per hectare litter 
applied every year; 1 Mg/ha/yr was 1 Mg of poultry litter per hectare applied every year; 2 Mg/ha/yr was 2 Mg of 
poultry litter per hectare applied every other year; 4 Mg/ha/yr was 4 Mg of poultry litter per hectare applied every 
4 year; 8 Mg/ha/yr was 8 Mg of poultry litter per hectare applied every 8 year.
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Figure 3.6. Average annual total phosphorus (TP) losses with commonly used poultry litter application rates in the 
region for 25 mg kg

-1
 soil test phosphorus. 
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Chapter 4. Evaluation of Management Practices Impacts on 
Phosphorus Loss with Inorganic Fertilizer Applications Using the APEX 

Model  

ABSTRACT 

 Mitigating phosphorus (P) loss from agricultural fields is a major challenge that scientists are 

facing to protect water resources. Selecting optimal rate, timings, cropping systems and 

methods of P application help to minimize P loss from agricultural fields. However, 

comprehensive field studies data on the environmental effect of such management implications 

are limited. Therefore, simulation models offer an alternative way to evaluating management 

practices performance on P loss in runoff. The objective of the study was to determine the 

optimal rates, methods, cropping systems and timings of inorganic fertilizer applications in East-

central Kansas using the Agricultural Policy/Environmental Extender (APEX) model. A fully 

calibrated and validated location specific APEX model was used to evaluate the effect of 

fertilizer rates (25, 50, and 75 kg ha-1 P), timing (January, April, November, and October), 

methods of application (no till-surface broadcast, incorporated with tillage and sub-surface 

application) and cropping systems (continuous corn, corn-soybean, grain sorghum-soybean and 

corn-winter wheat-soybean) on total P (TP) loss. The results showed that TP loss increased 

linearly with the increase in fertilizer rates and soil test phosphorus (STP). Fertilizer applied 

during late fall (mid of October or November) had lower average annual TP loss compared to 

spring (January, April) application before planting. No-till surface broadcast application resulted 

in greater TP loss followed by incorporation and sub-surface application. The effect of P 

application rates and STP was minimal when the fertilizer was subsurface applied. 
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Incorporation of fertilizers every year with greater slope resulted in higher TP loss. This is 

because incorporation increased erosion, thereby increasing sediment-bound P loss.  Therefore, 

incorporation of fertilizer would be a best management practice for soils with lower slopes, low 

STP, and low erosion, but would not be for soils with greater slopes, high STP or high erosion. 

Therefore, P application and incorporation with tillage should be discouraged if STP was greater 

than 50 mg kg-1.Corn-winter wheat-soybean double cropping is the best cropping system to 

minimize TP loss in runoff 

4.1 INTRODUCTION 

Phosphorus (P) losses from agricultural fields are a major source of surface water quality 

impairments, and often considered as limiting nutrient for algal growth and eutrophication in 

freshwater systems (Graham et al. 2010; Smith et al. 2015; Sharpley and Rekolainen, 1997). In 

recent years, increasing concern on water quality issues has pressured producers to minimize P 

loss from agricultural fields (Kimmell et al. 2001). Therefore, different best management 

practices (BMPs) have been promoted to minimize P loss from agricultural fields to meet water 

quality goals (Sharpley et al. 2011). For instance, the United States Department of Agriculture 

(USDA) for decades has promoted BMPs such as conservation reserve program (CRP), 

conservation tillage with crop rotations, and cover crops to protect water resources 

(Richardson et al. 2008).  

Phosphorus losses from agricultural fields depend mostly on transport factors like runoff 

and erosion and source factors such as soil test P, timing, method, and type of P applied 

(Sonmez et al. 2009). The differences in rainfall, slope, and antecedent moisture content and 
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their interactions also play a vital role on P loss in runoff (Kimmell et al. 2001). Assessment of P 

losses in runoff from agricultural fields is always difficult due to multiple factors that affect P 

fertilizers reaction in soils (Yuan et al. 2013).  However, optimizing management practices such 

as methods of P application, fertilizer application timings, tillage practices such as no-till or 

reduced tillage, and cropping systems may help to minimize loss from agricultural fields.  

Several studies have found that P application methods such as tillage practices, knife 

injection, sub-surface banding etc. affected P loss in runoff (Ruark et al. 2006; Zeimen et al. 

2006). Nevertheless, studies have also reported conflicting results on the role of tillage, and 

methods of fertilizer application on P loss in runoff. For instance, Withers et al. (2005) reported 

fertilizers that are surface broadcast in no-till systems and not incorporated increase potential P 

loss in runoff compared to conventional tillage, where fertilizer is incorporated. In contrast, 

others have indicated P loss from conventional tillage often exceeded TP losses in no-till 

possibly due to P carried to surface water via soil erosion (Cox and Hendricks, 2000 and 

Sharpley and Rekolainen, 1997). Studies have also indicated that minimum tillage helps to 

reduce P loss in runoff. For instance, P injected at 5 cm deep and subsurface band application of 

P fertilizers reduced P loss in runoff compared to no-till surface broadcast systems (Baker and 

Laflen, 1982; Kimmell et. al. 2001; Rehm et al. 2002; Fernandez et al. 2012).  

Fertilizer application timings may play a significant role in optimizing the P availability to 

crops and minimizing the loss in runoff. Several studies have quantified the effect of initial 

rainfall timing and the P application in runoff using rainfall simulation methods (Hart et al. 

2004; Shuman 2002; Franklin et al. 2006). These results indicated that if fertilizer applications 
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are avoided during the high rainfall period, the P loss in runoff could be minimized substantially. 

However, to our best knowledge, hardly few studies have evaluated the long-term effect of 

different timings and inorganic P fertilizer application in runoff at the field or watershed scales.  

 Likewise, the effects of one cropping systems with fertilizer application on P loss in 

runoff such as wheat-fallow rotations, corn-soybean rotation, and sorghum-soybean on P loss 

in runoff have been reported by different studies (Laflen and Tabatabai, 1984; Sharpley et al. 

1995; Kimmel et al. 2001). However, the effects of multiple cropping systems on P loss in runoff 

at the field or watershed scale are not common, and have not been extensively reported in 

literature.  

The interactions between effects of inorganic P fertilizer placement and incorporation 

on soil test P, rate and application methods, and application methods and different timings 

have not been studied and are very difficult to quantify in field scale runoff experiments or in 

rainfall simulation studies. Nevertheless, there is a need to quantify the risk of P loss with 

inorganic P fertilizers, different application methods, application timings, application rates, and 

cropping systems based on soils and site characteristics. In addition, due to increasing 

eutrophication concerns in east central Kansas, implementation of BMPs are significant to 

reduce non-point P sources from agricultural fields but are costly and time-consuming to test at 

field or watershed scales (Kimmell et al. 2001). Therefore, calibrated and validated computer 

models such as APEX could be used as an alternative to analyzing the effect of different 

management practices on P loss in runoff; extend the field study data and quantify the 
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interactions between application methods, rate, and timings to minimize P loss from 

agricultural fields in the region.  

The objective of the study was to assess the impact of P fertilizer application methods, 

application timings, and application rates on TP loss and develop BMPs for common cropping 

systems in the region. This was accomplished by using a calibrated and validated APEX model 

developed at south-central Kansas using a runoff study data. 

4.2 MATERIALS AND METHODS 

The fully calibrated and validated location specific model (developed in chapter 2) was 

used to simulate average annual TP loss in runoff.  The watershed 8 (W-8; slope 3.5%), and 

watershed 4 (W-4; slope 6.5%) were used to simulate TP loss with different management 

practices to evaluate and update KS-PI. The management practice scenarios analyzed with the 

APEX model were focused on STP, application timings, P application rate, and method of P 

application. Those management practices were selected based on the minimum criteria set by 

NRCS for state PI assessment of P loss risk from fields (USDA-NRCS, 2012). Therefore, the data 

generated in this study would be helpful to evaluate and update the Kansas Phosphorus index 

(KS-PI) and provide information on commercial fertilizer application and potential 

environmental risk. 

The fertilizer application, tillage, planting, and harvesting dates were approximated 

based on the commonly used timings in the region (Keith Jansen, personal communication, 

2013). The combinations of management practices analyzed for the study were listed in Tables 
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1. . Additional details on site characteristics and data collection are available in Zeimen et al. 

(2006).  

The STP selected was 25, 50, 100, 200, and 400 mg kg-1. The five application timings 

selected were January 15, April 1, June 5 (only for grain sorghum-soybean rotation), October 15 

and November 15. The source of nutrient was commercial fertilizer and P application rate was 

0, 25, 50, and 75 Kg P ha-1. The application methods were no-till surface broadcast, surface 

broadcast and incorporated immediately with chisel, disk and field cultivate, and deep band 

sub-surface application at 7.6-12.7cm depth in a no-till system. The cropping systems used 

were continuous corn, corn-soybean, grain sorghum-soybean and corn-winter wheat- soybean 

double cropping. Inorganic fertilizer was applied every year in the continuous corn cropping 

system. However, in other 2-year rotations that had soybeans, the fertilizer was applied only in 

the first year of rotation cycle to either corn or grain sorghum.  

The model was run for 4 years of warm up (results from initial 4 years were not used). 

The warmup period had the same management practices as that used in the rotation in each 

cropping system. During the warmup, inorganic fertilizer was applied on the P-based rate to 

avoid the P build up in soils. The additional nitrogen (N) fertilizer was applied to minimize the 

effect of N deficiency on crop yield.  

The APEX model was run for 100 different weather scenarios with the APEX weather 

generator. An automated ‘autoapex tool’ that was written in FORTRAN was used to 

automatically updates STP, and management practices file. The autoapex tool averages 100 

different weather scenarios to output annual maximum, minimum, mean, standard deviation, 
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and median values for runoff, sediment, and TP loss for each management combination. The 

full data of these model runs for runoff, sediment, and TP loss w listed in the APPENDIX D.   

4.3 RESULTS AND DISCUSSION 

 Average annual TP loss as affected by cropping systems 4.3.1

The average annual TP loss was greater with continuous corn (C-C) followed by corn-

soybean (C-S), grain sorghum-soybean (GS-S) and corn-winter wheat-soybean (C-WW-S) 

cropping systems in watershed 8 (Figure 4.1). Overall, the effectiveness of the cropping system 

in reducing TP loss decrease with higher STP and P application rates indicating that both high 

STP and P rates are detrimental from water quality perspective. The average annual TP loss 

trended similarly with greater loss in continuous corn followed by grain sorghum-soybean, 

corn-soybean, and corn-winter wheat-soybean cropping systems in watershed 4. However, the 

extent of loss was even higher possibly due to the greater slope (Appendix D). 

Interestingly, the runoff and sediment loss was higher in continuous corn and grain 

sorghum-soybean compared to other corn cropping systems (Appendix D). The higher sediment 

loss and sediment-bound phosphorus in continuous corn and grain sorghum-soybean cropping 

system might have contributed an increased TP loss in runoff as P loss in the form of sediment-

bound P in highly eroded areas (Seimens and Oschwald 1976). The plausible reason for higher 

sediment loss in continuous corn might be due to regular soil disturbance to incorporate 

fertilizers every year. Similarly, in grain sorghum-soybean cropping system higher sediment loss 

might be due to less ground cover during spring rains as sorghum was planted one and half 

month later in early June compared to corn planting ibn April.  
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The average annual runoff loss decreased by approximately 75 % and 85% with corn-

winter wheat double cropping in no-till and incorporated respectively compared to other 

cropping systems (Appendix D). The average annual sediment loss also reduced substantially in 

both no-till and  incorporated with winter wheat-soybean double cropping compared with 

other cropping systems (Appendix D). Zeimen et al. (2006) recommended that identifying 

methods to reduce runoff volume would also help to minimize nutrients loss. Our modeling 

results indicated that runoff loss was decreased substantially with the use of winter wheat in 

between corn and soybean cropping system. The C-WW-S double cropping not only reduced 

runoff but also minimized sediment and TP losses possibly acting as a cover crop. Therefore, 

including winter wheat in between corn and soybean can potentially be a best management 

practices (BMPs) to reduce the runoff, sediment, and TP losses in the region.  

The average annual runoff and sediment loss trended similarly with greater loss in 

continuous corn followed by grain sorghum-soybean, corn-soybean, and corn-winter wheat-

soybean cropping systems in watershed 4 which had greater slope (6.5%) (Appendix D).  

 Average annual TP loss as affected by timing of P application 4.3.2

The winter applications (October and November) reduced average annual TP loss 

compared to spring (January and April) applications regardless of cropping systems in 

watershed 8 (Figure 4.1). Yuan et al. (2013), reported similar results in three sub-watersheds 

study in a cotton production system in Mississippi delta. They found higher DP loss from two 

watersheds with fall fertilizer applications possibly due to high rainfall in the fall and winter in 
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the region. However, the TP was greater with spring applications potentially due to higher 

levels of sediment loss prior to planting in the spring.  

The reduced TP loss during winter might be due to availability of more time to interact 

and be adsorbed to soil particles.  This mechanism could also be described in relation to model 

P subroutines used in the APEX model. For instance, the inorganic P pool in the APEX model is 

divided into stable mineral P, active mineral P and labile P pools. Labile P represents easily 

desorb-able P immediately available for plants or for runoff and leaching loss while active P 

represents less available not easily desorb-able P that is in equilibrium with labile P (Sharpley et 

al. 1984).  The labile P pool can also became stable and move into a non-labile pool depending 

on time and soil characteristics (Barrow and Shaw 1979). Therefore, fertilizer applied during 

October and November had more time to interact with soil particles and potentially some P 

might have moved to the active or stable P pool reducing the TP loss in runoff as the crop 

uptake, loss in runoff and leaching are minimal during winter. The trend of TP loss was similar in 

watershed 4 with regard to application timings (Appendix D).  

In addition, the biological mixing efficiency (parameter 29) in the APEX model 

determines the redistribution of soil constituents because of the activity of the biota in soil (e.g. 

earthworms). Biological mixing is performed at the end of every calendar year and specifies the 

fraction of materials (residue, nutrients, pesticides etc.) within the tillage depth that are mixed 

uniformly throughout that tillage depth (Williams et al. 2012; Steglich and Williams, 2013). 

Therefore, due to biological mixing (set higher in no-till than incorporation in the model) if 

fertilizer is surface-apply in October or November it gets incorporated on Dec. 31. However, in 
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spring applications (January and March) remain on the surface for the whole 12 months. This is 

significant in no-till systems and might be another potential reason, why the model is 

consistently resulted in higher TP loss with spring (January, April, and June application 

compared to winter (October and November) applications (Figure 4.1). Thus, the biological 

mixing efficiency (parameter 29) needs to be fixed in the APEX model to more appropriately 

simulate the effect of timing on P loss in runoff. Overall, the timing effect on average annual TP 

loss was found similar in watershed 4 (Appendix D).  

 Average annual TP loss as affected by the method of P application 4.3.3

The average annual TP loss was the lowest with sub-surface application followed by 

incorporation and was the highest with no-till surface broadcast application. The sub-surface 

application (SSA) minimized average annual TP loss approximately by 20 to 56% compared to 

incorporation and by 20- 85% compared to no-till surface broadcast at lower STP in all cropping 

systems  (Appendix D). This might be due to reduced concentration of labile P on the surface 

soils with SSA methods, which also determines the P loss in sediment and runoff. For instance, 

the final labile P concentration in the surface 0-1 cm depth at the end of the simulation with 

SSA, incorporated with tillage, and no-till surface broadcast application were 362, 374, and 375 

mg kg-1 respectively. The results also indicated that any management practices that reduced the 

labile P on top soil layer helps to minimize the TP loss in runoff.  Similar to those results 

Fernandez and White (2012) in a field study reported reduced P values in the soil surface with 

deep band and sub-surface application due to continuous crop removal of P from the soil 

surface.  
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In general, no-till surface broadcast fertilizer resulted in greater annual runoff TP 

compared to fertilizer incorporation. However, the effect of P incorporation method was 

different for continuous corn in watershed 4 due to greater slope (Figure 4.2). The frequent soil 

disturbance every year from tillage to incorporate fertilizer and the greater slope (6.5%) 

resulted in higher sediment loss (Appendix D). Therefore, the greater TP loss with continuous 

corn in watershed 4 with incorporation may be due to contribution of sediment bound P loss.  

Nevertheless, the incorporation decreases average annual TP loss (< 100 mg kg-1 STP) compared 

to no-till in other cropping systems that were without tillage in the second year of the rotation 

(Appendix D).  The results indicated that if proper management practices are implemented such 

as no-till or including winter wheat in a cropping system to minimize soil disturbance, the TP 

loss could be controlled as shown in corn-winter wheat-soybean cropping system in both 

watersheds (Figure 4.3).  Thus, in fields that have greater slopes, soil disturbance with 

continuous tillage and incorporation should be avoided to minimize TP loss in runoff.     

The effectiveness of incorporation decreases with increase in STP and P rates and in 

some instances especially above 100 mg Kg-1 resulted in similar or, even more, TP loss than in 

the no-till surface broadcast (Appendix D). effectiveness of fertilizer incorporation was greater 

during spring (January and April) application compared to winter (October and November) 

applications. The spring incorporation reduced average annual TP loss by 17-49 % in low STP 

levels (25 and 50 mg kg-1) compared to the no-till surface broadcast application. The SSA further 

reduced average annual TP loss by approximately 20-65% compared to incorporation and 25-

80% compared to no-till when fertilizer was applied.  
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 Effect of P application rate and soil test phosphorus (STP) on average annual TP 4.3.4

loss 

The model-simulated results indicated that in both watersheds, the average annual TP 

loss in runoff increased with higher P fertilizer application rates (Figures 4.2 and 4.3). Yuan et al. 

(2013), reported similar results and indicated continuous application of P above crop 

requirements increases labile P and then soluble P loss in runoff. The effect of P application rate 

was greater in no-till as indicated by higher TP loss in runoff compared to incorporate and SSA. 

The effect of P application rate on P loss was minimal when fertilizer was subsurface applied 

(Figures 2 and 3; Appendix D). The lower loss with SSA method might due to increased 

adsorption of applied fertilizer P to soil exchange sites and minimum exposure at the top soil 

surface layer during rainfall events.  

In both watersheds, the increase in STP linearly increased the average annual TP loss in 

runoff (Figure 4.4). The linear TP loss in the runoff with increased STP agrees with the results 

reported by Pote et al. (1999). Incorporation minimized the average annual TP loss greatly in 

lower STP levels. For instance, at STP below 50 mg kg-1, incorporation reduced the TP loss 

substantially compared to no-till. However, above 100 mg kg-1 STP, the TP loss in runoff was 

similar or even greater with incorporation compared to no-till systems (Appendix D).  

The effectiveness of fertilizer application method decreased with increases in STP 

(Figure 4.4) which might be due to saturation of P adsorption sites in higher STP levels. An 

increase in STP had a greater effect on P loss (steeper slope in Figure 4.4) when the fertilizer 

was incorporated.  This is because incorporation increased erosion, thereby increasing 
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sediment-bound P loss.  It follows that although incorporation of fertilizer would be a best 

management practice for soils with lower slopes, low STP and low erosion, it would not be a 

BMP for soils with greater slopes, high STP or high erosion. Therefore, P application and 

incorporation with tillage should be discouraged if STP was greater than 50 mg Kg-1. 

The annual average TP loss as an effect of fertilizer application rates and STP trended 

similarly i.e. highest in the no-till surface broadcast and lowest in the SSA method in other 

cropping systems and watershed 4(Appendix D: Tables D1; D2; D3; D4; D13; D14; D15; D16). 

4.4 CONCLUSIONS 

Judicious fertilizer application and management is critical to minimize TP loss in runoff, 

and increase crop productivity. Overall, the model-simulated results showed P applied during 

winter (October and November) had lower TP loss compared to fertilizer applied during spring 

(April, January, June). The increase in STP and application rates increases the TP loss in runoff 

linearly. No till-surface broadcast resulted in higher TP loss in runoff followed by fertilizer 

incorporated with tillage and sub-surface application.  In general, fertilizer incorporation 

reduced TP loss in low STP soils. However, fertilizer incorporation by continuous tillage in high 

STP (>50 mg kg-1) soils and high P fertilizer rates should be discouraged especially in fields with 

greater slopes. The effect of P application rate was minimal when the fertilizer was sub-surface 

applied. These model-simulated results were consistent with reported field studies in the 

literature. However, model simulated results may vary with soils characteristics, watersheds, 

and climates; thus, any computer simulation models should be calibrated and validated using 

the site-specific information before using for BMPs evaluation and recommendations. The 
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results also illustrate how a properly calibrated and validated process-based computer models 

such as APEX can be used to extend field data by simulating BMPs for fertilizer applications.  

The results would be helpful for producers, planners, and policy makers in developing and 

guiding BMPs to minimize TP loss to water resources.  
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Table 4.1. Management scenarios tested for inorganic fertilizer applications at Franklin runoff study site 

Cropping 
systems 

Fertilizer 
Application 
timings 

Soil test P 
levels (ppm) 

Phosphorus 
application rates 
(Kg P)/ha 

Application methods Total 
model 
runs 

Continuous 
corn 

(C-C) 

April 1
st

     
October 15

th
 

November 
15

th
 January 

15
th

 

5 

(25, 50, 100, 
200 and 400) 

4 

(0, 25, 50, and 
75) 

2 

i) No-till-Surface broadcast                          
ii) Surface broadcast 
incorporated 

 

160 

Corn-soybean 

(C-S) 

April 1
st

        
October 15

th
  

November 
15

th
 January 

15
th

 

5 4 2 160 

Grain sorghum 
-soybean 

(GS-S) 

April 1
st

        
June 5

th
  

October 15
th

 
November 
15

th
 January 

15
th

 

5 

 

4 

 

2 

 

200 

Corn-winter 
wheat-
soybean 

(C-WW-S) 

April 1
st

  
October 15

th
  

November 
15

th
 January 

15
th

 

5 4 2  

 

160 
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Figure 4.1. Average annual TP loss (kg ha-1) with different cropping systems (25 mg kg
-1

 STP), watershed 8.  NT = 
no-till surface broadcast; INC = fertilizer incorporated with tillage; JAN = January, APR = April application, OCT = 
October application and NOV = November application. 
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Figure 4.2. Average annual TP loss with different fertilizer application rates and application methods in a 
continuous corn cropping system  a) Watershed 8- Continuous corn-fertilizer applied on April; b) Watershed 4- 
Continuous corn-fertilizer applied on April; c) Watershed 8- Continuous corn-fertilizer applied on October; d) 
Watershed 4- continuous corn -fertilizer applied on October   
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Figure 4.3. Average annual TP loss with different fertilizer application rates and application methods in a corn-
witner wheat-soybean cropping system. a) Watershed 8- Corn-winter wheat-soybean-fertilizer applied on April; b) 
Watershed 4- Corn-winter wheat-soybean-fertilizer applied on April; c) Watershed 8- Corn-winter wheat-soybean-
fertilizer applied on October; d) Watershed 4- Corn-winter wheat-soybean-fertilizer applied on October   
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Figure 4.4. Average annual TP loss with different STP and fertilizer application rates. NT = Fertilizer surface 
broadcast with no-till; INC = Fertilizer surface broadcast and then incorporated immediately with tillage; SSA = 
Fertilizer sub-surface application.   
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Chapter 5. Evaluation and Update of the Kansas Phosphorus Index 
Using Phosphorus Loss Estimates from the APEX Model 

ABSTRACT 

The phosphorus index (PI) is a commonly used tool to assess the risk of phosphorus (P) loss 

from agricultural fields. However, concerns have been raised about the effectiveness of P 

indices in limiting the P loss from agricultural fields and improving water quality. Due to limited 

or lack of measured P loss data, P indices have not been updated or evaluated rigorously. A 

process-based computer model such as the Agricultural Policy/Environmental Extender (APEX) 

can be used as an alternative to generating actual P loss datasets to evaluate and update the P 

indices. The objectives of the study were to evaluate and update the Kansas PI. Average annual 

runoff, sediment, and P losses were estimated for 2890 management scenarios, including 

watershed and management variables of soil series, slope, cropping system, tillage practice, soil 

test P concentration, P source, P application rate, P application timing, and P application 

method. Nonlinear regression was used to adjust the weighting factors in the Kansas PI and 

improve the correlation between the P loss risk ratings and estimated P loss. A new PI was 

developed based on the component PI structure proposed by Bolster et al. (2012) and selecting 

weighting factors for each component with multiple regression techniques. The KS-PI rating 

explained 40% of the variability in estimated average annual P loss (r2=0.40, p<0.001). The 

correlation was improved (r2=0.46) by adjusting weighting factors for P rate, soil test P, and 

erosion. Using the component index format substantially improved the correlation between 

average annual P loss and PI ratings (r2=0.69). The component PI could be further improved by 

refining methods for estimating cropping system impacts on runoff. Future PI evaluations 
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should use calculated weighting factors and focus on a component PI model that reflects the 

better P loss processes in fields.  

5.1 INTRODUCTION 

Agriculture is a major source of phosphorus (P) loss inciting algae blooms and 

eutrophication in freshwater systems of the United States (Dale et al. 2011; Hudnell et al. 

2010). Management practices influence the amount of P loss from agricultural fields. The 

reduction of P loss from agricultural fields requires accurate estimates of how management 

practices influence the P loss. The phosphorus index (PI) is an applied assessment tool that can 

be used to assess the risk of management practices on P loss, the vulnerability of agricultural 

fields for P loss and make recommendations to producers (Sharpley et al. 2012; Bolster et al. 

2012). Ideally, the PI should accurately predict P loss risk due to changes in management 

practices. However, there are concerns raised about the use of P indices due to development 

disparity among P-indices (PIs) across the country, poorly justified and arbitrary selection of 

weighting factors, and ineffectiveness in improving water quality goals (Bennings and 

Wortmann, 2005; Osmond et al. 2006; Sharpley et al. 2012; Drewry et. al. 2011; Nelson and 

Shober et al. 2012).  

The ultimate goal of the PI is to improve P management in agricultural fields (Nelson and 

Shober et al. 2012). Improved PIs will assist researchers and conservationists to better 

estimates the risk of P loss, identify critical source areas of P export, and target conservation 

practices more effectively and efficiently. Although, the continuous research, refinement, and 

improvement has expanded the PI as a tool for manure management, for best management 
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practice selection, and even as a policy and regulatory tool by federal and state agencies 

(DeLaune et al. 2007; Sharpley et al. 2009, 2012). Additional information is still required on use, 

impacts and evaluation of P indices to reduce P buildup in soils and P loss from agricultural 

fields (Nelson and Shober, 2012; Sharpley et al. 2012). In addition, the Natural Resources 

Conservation Service (NRCS) mandated that the P-index tool must be calibrated to standardize 

the P loss risk categories across regional, state and watershed boundaries (USDA-NRCS, 2012). 

Therefore, there is a need to evaluate and update the P indices to improve the PI accuracy in 

estimating agricultural management practice effects on P loss and to protect the water 

resources. 

 Kansas phosphorus index (KS-PI) 5.1.1

The KS-PI is a multiplicative assessment tool and is outlined in Appendix E, Figures E1.1. 

and E1.2. Each parameter that influences P loss is assigned a P loss rating. The three source and 

five transport parameters that are individually assigned a P loss rating are ultimately multiplied 

to determine the KS-PI rating, which can be written as follows (Somez et al. 2009).  

KS-PI rating (risk) = P source factor x transport factor     

 KS-PI = (β1STP + β2Prate + β3AM) x (β4Ero + β5RO + β6DWB + β7IrrEro + β8IrrRO) [1] 

where, STP = soil test phosphorus, Prate = P additions in the form of organic or inorganic 

fertilizer (kg ha-1), AM = application method and timing, Ero = soil erosion losses (ton ha-1), RO = 

soil runoff class, DWB = distance to a water body, IrrEro = irrigation Erosion, IrrRO = Irrigation 

Runoff (IrrRO) and β1 to β8 are weighting factors. 
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The STP is a categorical variable in KS-PI and is determined by Bray P1, Melich III, or Olson STP 

values. For instance, if the Bray/ Mehlich III STP is less than <25 mg kg-1 then the value of 1 is 

assigned in the KS-PI rating. For STP of 26-50, 51-75, 76-200 and>200 mg kg-1 the values of 2, 4, 

8 and 10 are assigned respectively. Similarly, for Olson STP <16, 17-31, 3-47, 48-62 and >62 mg 

kg-1 the values of 1, 2, 4, 8 and 10 are assigned respectively.  

The inorganic or organic P application rates are a continuous variable and are multiplied 

by 0.1 to obtain the KS-PI loss rating. The KS-PI is very sensitive to P rate. Similar to STP, AM is a 

categorical variable, with values of 0, 1, 2, 4 or 8 assigned based on either P is surface broadcast 

or incorporation in relation to month of application. For instance, if P is surface broadcast (not 

incorporated) and applied during the months of September through October or March through 

June, AM is assigned 8 and represents a greater risk of P loss due to the combined factors of 

timing and application methods. The soil erosion factor is calculated using the Revised Universal 

Soil Loss Equation (RUSLE2) and is multiplied by 2 to obtain the KS-PI loss rating. The RO factor 

is a categorical variable and ranges from 0 (very low) to 16 (very high).  The DWB factor is a 

categorical variable and ranges from 0 (field not in proximity to intermittent stream) to 16 (field 

immediately adjacent to perennial streams without buffer).The IrrEro and  IrrRO were also 

categorical variables and ranged from 0 (none) to 16 (very high) (Appendix E).  

Each source and transport parameter contributing to P loss in KS-PI is assigned a weight 

that determines its relative contribution to TP loss. The weighting factors in KS-PI (equation I) 

are 0.1 and 2.0 for β2 and β4 respectively and all other weighting factors are 1.0. In most P 

indices, the weighting factors have been assigned based on professional best judgement of the 
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developers instead of obtaining from measured P loss data (Bolster et al. 2012). For instance, 

the P rate is a continuous variable and higher rates yield higher P-index source factor value.  

However, the selection of weighting factor for P rate (β2 = 0.1) in KS-PI is not justifiable.  In 

addition, PI formulation itself should accurately reflect the processes governing the P loss. 

Nevertheless, separating the source and transport factors in multiplicative PI as that in KS-PI 

does not accurately represent the process-based P loss models (Bolster et al. 2012).  

 Development of a component phosphorus index (CPI) 5.1.2

The CPI calculates the P loss from each pathway as a product of source and transport 

parameter.  Multiplying each component of the KS-PI source by each transport parameter of 

the equation 1 results in an expanded computation of the KS-PI (equation 2) (Bolster et al. 

2012). The source parameters, STP, P application rates (fertilizer/poultry litter P), application 

method and timings, and runoff risk and erosion loss of transport factors were considered the 

dominant in our study sites. The parameters that govern the PI rating based on specific site 

conditions such as DWB, IrrEro and IrrRO were generally not reported as part of field level 

datasets and models have limited ability to simulate these factors (Nelson and Shober et al. 

2012). Therefore, multiplying the source and transport parameters that interact and affect P 

loss in runoff, assigning single weighting factor as λ for interaction terms and simplifying the 

equation 1, the CPI can be written as follows.  

CPI = λ1STP*Ero + λ2STP*RQ + λ3P rate*RQ + λ4AM*RQ      [2] 

For the P-index accuracy, the weights for each weighting factor are critical (Bolster et al. 

2012). Studies have reported improvement in correlations between P-index rating and P loss by 
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adjusting the weighting factors. For instance, Sonmez et al. (2009) reported improvement in the 

correlation between KS-PI rating and measured P loss data by modifying weights for erosion 

(Ero) and STP. Nelson and Shober et al. (2012) indicated that revising weighting factors is one of 

the potential improvements that can be made in the evaluation of P indices. Bolster et al. 

(2012) also proposed to use the output from process-based P loss model to evaluate and 

update the PI weighting factors.  However, there is still a lack of standard procedure to 

determine PI weighting factors and further research is needed (Nelson and Shober, 2012). Thus, 

this study will help to set a procedure to determine improved PI weighting factors to evaluate P 

indices.     

In addition, the PI uses erosion estimated with RUSLE2 and RUSLE2 estimated erosion 

using runoff from long-term average annual values. However, most of the measured runoff P 

loss data collected that can be used to evaluate PI were for short duration, highly dependent on 

weather and the PIs are not structurally designed to account future weather conditions.  

Therefore, using the short duration measured data may not reflect the natural weather 

variability and similar transport processes of P as that of PIs. This induces discrepancy and 

invalid comparison between measured data and PI values as P indices are not designed to 

predict annual losses (Nelson and Shober et al. 2012). So, the process based simulation models 

can be used as an alternative to generate long-term average annual TP loss datasets and 

evaluate the P-indices (Sharpley et al. 2012). However, very few studies have used model 

simulated TP loss to evaluate and update the P-indices. Moreover, models must be calibrated 

and validated adequately to generate P loss datasets required to evaluate the P indices (Nelson 

and Shober, 2012). Therefore, the overall goal of the study was to evaluate and update the 
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Kansas P-index with model simulated TP loss, taking advantage of the fully calibrated and 

validated Agricultural Policy/Environmental Extender APEX model.  

Furthermore, the improved PI would help to accurately estimate the potential risk and 

effectiveness of P management guidelines to reduce P loss from agricultural fields (Sharpley et 

al. 2012). Therefore, there is a need to evaluate and update the Kansas PI not only to improve 

estimation and minimize P loss from agricultural fields but also to meet the NRCS nutrient 

management policy instruction (title 190 national part 302), PI assessment criteria. The 

objectives of the study were i) to evaluate the KS-PI and ii) to update the KS-PI using the 

average annual TP loss estimated with the calibrated and validated APEX model.   

5.2 MATERIALS AND METHODS 

The fully calibrated and validated location specific models (developed in chapter 2) were 

used to simulate average annual TP loss in runoff.  The watershed 8 (W-8; slope 3.5%), and 

watershed 4 (W-4; slope 6.5%) at Franklin site and watershed 104 (approx. 1% slope) at 

Crawford site were used to simulate TP loss with different management practices to evaluate 

and update KS-PI. The management practice scenarios analyzed with the APEX model were 

focused on STP, application timings, P application rate, and method of P application. Those 

management practices were selected based on the minimum criteria set by NRCS for state PI 

assessment of P loss risk from fields (USDA-NRCS, 2012).  

At the Crawford site, the STP selected was 25, 50, 100, 200, and 400 mg kg-1. The 5 

application timings selected were January 15th, April 1st June 5th and November 15th, October 

15th. The source of P used at the Crawford site was poultry litter and the P application rate 
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selected were 0 (control), 25, 50, 100, and 200 kg P ha-1. The method of application was either 

no-till surface broadcast or incorporated immediately with chisel, disk and field cultivate.  In 

this site, nitrogen (N) rate poultry litter application supply approximately 200 kg P ha-1. The 

remaining N in other P rate applications was applied with a commercial fertilizer. The cropping 

systems used were continuous corn, corn-soybean, grain sorghum-soybean and corn-winter 

wheat- soybean double cropping.  

At Franklin site, the same five different level of STP, and 5 different application timings 

were used as in Crawford site. The source of P used was commercial fertilizer and P application 

rate was 0, 25, 50, and 75 Kg P ha-1. The application methods were no-till surface broadcast, 

surface broadcast and incorporated immediately with chisel, disk and field cultivate, and deep 

band sub-surface application at 7.6-12.7cm depth. The same 4 different cropping systems were 

used as in Crawford site.   

Poultry litter or inorganic fertilizer was applied every year in the continuous corn 

cropping system. However, in other 2-year rotations that had soybeans, the poultry litter or the 

fertilizer was applied only in the first year of rotation cycle. The model was run for 4 years of 

warm up. The warmup period had the same management practices as that used in the rotation 

in each cropping system. During the warmup, the poultry litter or inorganic fertilizer was 

applied on the P-based rate to avoid the P build up in soils. The additional nitrogen (N) fertilizer 

was applied to minimize the effect of N deficiency on crop yield.  

The APEX model was run for 100 different weather scenarios with the APEX weather 

generator. An automated ‘autoapex tool’ that was written in FORTRAN was used which 
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automatically updates STP, and management practices file. The autoapex tool averages 100 

different weather scenarios to output annual maximum, minimum, mean, standard deviation, 

and median values for runoff, sediment, and TP loss for each management combination.  

 Acquisition of other inputs for PI evaluation 5.2.1

The sediment loss inputs required for the KS-PI for each cropping system were 

determined using RUSLE2 (NRCS, 2012). The rotation builder in the RUSLE2 was customized to 

reflect the management practices as in the APEX model. Therefore, each management practices 

in the RUSLE2 consist of 6 years of crop rotation similar to the management practices in the 

APEX model. The estimated sediment loss for each management practices were listed in Table 

5.1. The brief description of RUSLE2 model was in Appendix E.  

The RO values of 16 were used for all soils in this study, which was determined from 

United States Department of Agriculture (USDA), Natural Resource Conservation Service (NRCS) 

official soil survey descriptions (USDA-NRCS, 2015). The model estimated TP loss were edge of 

the field data so, DWB were considered as immediately adjacent to perennial stream or surface 

water without effective buffer and a rating of 16 was assigned for all the watersheds. The 

watersheds used in the study had no irrigation, hence irrigation runoff and erosion were 

considered as negligible and zero values were used.  

 Procedure to evaluate Kansas multiplicative model (KS-PI) 5.2.2

The  APEX model simulated average annual TP loss data (n = 2890) from both locations 

and three watersheds were used to determine the improved weighting factors for 

multiplicative Kansas P index (KS-PI). The original weighting factors for the soil test P (STP), P 
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application rate (Prate), application method and timings (AM) and erosion (Ero) i.e. β1, β2, β3 and 

β4 of the  

KS-PI (equation 4) are 1, 0.1, 1 and 2.0 respectively. New weighting factors were adjusted by 

fitting the KS-PI (equations 9, 10 and 11) with SAS Proc nlin procedure (SAS Institute, 2015). The 

weighting factors were re-calculated because the current values of β1, β2, β3 and β4 were neither 

justifiable nor backed with scientific research. The input data used to calculate weighting 

factors were STP, Prate, AM and the RUSLE2 calculated erosion (Ero). 

i. Method 1: The weighting factors β2, and β4  were adjusted using the SAS proc nlin 

procedure. The β2, and β4 are the only weighting factors different than 1 that has been 

used current in the KS-PI. Therefore, this step intended to directly compare the KS-PI 

rating relationship with model simulated TP loss using the current and newly adjusted 

weighting factors. The model used to determine β1, and β2,  was 

 KS-PI = (STP + β2P rate + AM) x (β4Ero + 16 + 16 + 0 + 0)     [3] 

ii. Method 2: The weighting factors β1, β2, β3 and β4 were adjusted for all the variables using 

the SAS Proc nlin procedure. The model used to determine β1, β2, β3, and β4  was  

KS-PI = ((β1STP + β2P rate + β3AM) x (β4Ero + 16 + 16 + 0 + 0))/100    [4] 

The model were divided by 100 to scale up the weighting factors value to match the KS-PI 

rating. 

Using the new adjusted weighting factors the KS-PI rating for each P loss combination 

was recalculated and the results were compared. The P values were also estimated using SAS 

Proc corr procedure to determine the relationship of each KS-PI parameters.   
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 Procedure to evaluate component model (CPI) 5.2.3

The component model (CPI) outlined in equation 2 was evaluated using the estimated 

weighting factors λ1, λ 2, λ 3, and λ 4 (Table 2). The weighting factors were estimated using either 

the independent RUSLE2 or the model simulated APEX runoff using multiple regression Proc 

mixed procedure (SAS Institute, 2015) 

Ideally, the P index should be evaluated with independently derived runoff and 

sediment loss. Therefore, in this method RUSLE2 generated runoff and sediment loss were used 

to calculate weighting factors β1, β2, β3, and β4 (Table 2) and evaluate the CPI. The CPI (equation 

2) rating for 2890 management scenarios were estimated with the new weighting factors and 

compared with the APEX model simulated average annual TP loss. The model used to generate 

weighting factors was 

Average  TP loss = STP*Rsed + STP*RQ + Prate*RQ + AM*RQ    [5] 

where RQ is the RUSLE2 estimated runoff, the Rsed is RUSLE2 estimated erosion loss, STP is soil 

test P, Prate= P application rate, and AM is P application timing and method. 

In the second method, the APEX model simulated average annual runoff and RUSLE2 

estimated erosion loss data were used to calculate the weighting factors β1, β2, β3, and β4 (Table 

2). The CPI rating for all 2890 management scenarios were calculated using new weighting 

factors and compared with the APEX model simulated average annual TP loss. The runoff 

estimated with the RUSLE2 was insensitive to changes in cropping systems. Therefore, the APEX 

model simulated runoff was used instead of RUSLE2 because the APEX model was simulating 
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runoff well, was the only variable that passed every time and was sensitive to change in 

cropping systems. The model used to generate weighting factors was 

Average P loss = STP*Rsed + STP*AQ + Prate*AQ + AM*AQ     [6] 

where, AQ is the APEX model simulated average annual runoff and Rsed is the RUSLE2 

simulated average annual erosion loss.  

5.3 RESULTS AND DISCUSSION 

 Evaluation of KS-PI with model simulated TP loss (all watersheds; both locations) 5.3.1

The model simulated TP loss (all watersheds with both locations) and KS-PI ratings were 

significantly linearly correlated with an r2 value of 0.40 (p<0.001; Figure 5.1). The relationship 

indicated that if the KS-PI value is very low (0-75), low (76-150)  and medium (151-300) then 

average annual TP loss could range from 0.5-2.0 kg ha-1 yr-1. Likewise, if the KS-PI rating is 300-

400, the TP loss might be approximately 2.0-3.0 kg ha-1 yr-1 (Figure 5.1).  But based on the linear 

relationship, the KS-PI rating above 400 was too sporadic and would be unrealistic to 

legitimately estimate the amount of TP loss (Figure 5.1).  The cluster of data points falling below 

the fitted curve reflected that the model simulated TP loss was over-predicted by the KS-PI 

(Figure 5.1). Overall, at the Crawford site, the higher TP loss and  KS-PI rating resulted  from N 

rate poultry litter rate application treatments. Likewise, at the Franklin site, the higher TP loss 

was from watershed 4, a continuous corn cropping system that had relatively higher slope 

(6.5%), greater runoff,and sediment loss (Appendix E).   

Evaluation of KS-PI with model simulated TP loss by method of P application-all watersheds 
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The data from all three watersheds ( W-4, W-8 and Crawford site) were grouped 

together and evaluated by the method of application. The model simulated TP loss and KS-PI 

rating for the no-till surface broadcast application and fertilizer/poultry litter incorporated with 

conventional tillage were significantly correlated with r2 of 0.57 and 0.31 respectively (p<0.001; 

Figure 5.2a, 5.2b). Although both P application methods were significant, the greater r2  and 

correlation coefficient with no-till surface broadcast application method indicated that the KS-

PI tended to quantify the TP loss better with no-till application compared to incorporation with 

conventional tillage method. It might be due to an inability of the KS-PI to accurately account 

for the sediment-bound P loss with the incorporated method as the sediment loss is 

substantially greater with incorporation method compared to no-till (Appendix E). 

The method of application data were split, and also evaluated by watersheds. For the 

no-till surface broadcast, at Franklin, W- 8 and W-4 model simulated TP loss and PI ratings were 

significantly correlated with r2 of 0.56 and 0.50 respectively (p<0.001; Figure 5.2a). Similarly, at 

the Crawford site the model-simulated TP loss and PI ratings were significantly correlated with 

an r2 of 0.53 (p<0.001; Figure 2b). Likewise, for the incorporated fertilizer at Franklin W-8 and 

W-4, the model simulated TP loss and the PI rating was significantly correlated with r2 of 0.33 

and 0.39 respectively (p<0.001; Figure 5.2b). At Crawford, the model simulated TP loss and PI 

ratings for incorporated method were significantly correlated but with slightly lower r2 of 0.31 

(p<0.001; Figure 5.2b).  

Overall, the results indicated that the KS-PI rating corelated better when the TP loss was 

higher. For instance, the greater sediment and sediment-bound P loss due to the higher slope 
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(6.5 %) and incorporation method in Franklin W-4  resulted in higher TP loss and geater 

corealtion with an r2 of 0.39 compared with other watersheds (Figure 5.2b). Simialrly, the 

relatively greater TP loss with no-till surface braodcast application at the Franklin W-8 and the 

Crawford sites had resulted in better co-relation of KS-PI rating and model simualted TP loss 

comapred to Franklin W-4 (Figure 5.2a).   

 Effect of cropping systems on model simulated TP loss and KS-PI ratings 5.3.2

The continuous corn systems resulted in greater average annual TP loss followed by 

grain sorghum-soybean, corn-soybean and corn-winter wheat-soybean cropping systems 

regardless of STP levels. The greater TP loss with continuous corn might be due to the 

application of fertilizer or poultry litter every year.  Interesingly, the different amount of TP loss 

with cropping systems had approximately same KS-PI rating which reflected the insenitiveness 

of KS-PI with cropping systems (Figure 5.3.). For instance, the model simulated TP loss with GS-

S, C-S,  and C-WW-S cropping systems at 25 mg Kg-1 STP were approximately 4.0, 3.0, and 1.5  

Kg ha-1 yr-1, respectively. But the KS-PI ratings were approximatley same for all the cropping 

systems regardless of the total amount of TP loss (Figure 5.3.). The trends of TP loss and KS-PI 

rating with respect to cropping systems and STP were similar at watershed 4.  

Similar results were found in the Crawford site with the greatest loss from continuous 

corn and the lowest with corn-winter wheat-soybean. The extent of TP loss and relative KS-PI 

rating were also relatively higher in Crawford site compared to Franklin site watersheds (Figure 

5.3.). Overall, the greater TP loss in this site was because of higher P application rates with 

poultry litter. The lack of KS-PI sensitivity to changes in the cropping system was discernible in 
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this site as indicated by the large effect on the P loss with changing cropping system but a 

minor (or no effect) on the PI rating.   

For instance, the model simulated TP loss with GS-S, C-S,  and C-WW-S cropping systems 

at 25 mg Kg-1 STP were approximately 11.6, 8.3, and 5.4  Kg ha-1 yr-1, respectively. The higher 

runoff and sediment loss in GS-S and C-S compared to C-WW-S cropping system resulted in 

greater TP loss with the earlier ones. Nevertheless, the KS-PI rating was assigned approximately 

same for all the cropping systems (Figure 5.3). The TP loss and respective KS-PI ratings follow 

the similar trend with 100 mg kg-1 STP (Figure 5.3). Therefore, the comparisons illustrate that 

the KS-PI failed to account the impact of cropping systems on TP loss and adjust the PI ratings 

accordingly. 

Perhaps, the reduced runoff and sediment loss when switching from one cropping 

system to another had helped to lower the P-index ratings. In short-term, changing the 

cropping system from one to another may help to mitigate the TP loss and potentially lower the 

P-index values but it may not be the viable option for long-term. The results also indicated that 

intense cropping systems such as corn-winter wheat-soybean double cropping might reduce 

the runoff, sediment, and TP loss substantially. The impact of changing cropping system on the 

KS-PI should be accounted for the different RUSLE2 erosion rate.  However, the APEX model 

simulation results indicated that the different cropping systems also influenced the runoff from 

the soils.  The effect of cropping system on runoff is not reflected in the KS-PI because the 

runoff portion of the PI is strictly a function of soil properties (runoff class).   
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 Effect of application timings on model simulated TP loss and KS-PI values  5.3.3

The average annual TP loss was affected by the application timings. The results 

indicated that the average annual TP loss was different for January, April, October, and 

November application timings for each cropping systems (Figure 4). However, the November 

and January application, and April and October application resulted in approximately same KS-

PI rating for both corn-soybean and grain sorghum-soybean cropping systems (Figure 5.4). This 

is significant because the model simulated TP loss clearly indicated that the fall (October and 

November) application had relatively lower TP losses compared to the spring (January, April, 

June) application. The trend of TP loss and KS-PI rating were similar in Franklin W-4.  

Similar results were obtained at Crawford site with very high average annual TP loss in 

April application compared to October grain sorghum or corn-soybean but the KS-PI ratings 

were approximately similar (Figure 5.4.).  Therefore, the results indicated that there is a 

difference in annual TP loss with different application timings and methods but the differences 

were not reflected in the KS-PI ratings. One way to correct this might be separating the 

application timing and methods in KS-PI formulation with different index rating. 

 Effect of method of application on P loss and KS-PI ratings 5.3.4

Although the method of application is not a separate parameter of the KS-PI, the results 

indicated that the average annual TP loss decreased substantially with fertilizer or poultry litter 

incorporated compared to the surface broadcast application (Figure 5.5). The average annual 

TP loss and P-index rating were greater in April and October application compared to January 
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and November application regardless of method of application (Figure 5.5). The impact of sub-

surface fertilizer application  in reducing TP loss in runoff was more substantial (Appendix D).  

Interestingly, the TP loss was approximately same for both October and November 

application with no-till surface broadcast (Figure 5.5.). Nevertheless, the KS-PI assigned the 

different P-index rating, if fertilizer or poultry litter was applied in October instead of November 

and had different application methods. Similarly, the April application resulted in greater TP 

loss but the P-index rating was similar as that of October possibly due to the use of 

inappropriate weighting factor or incorrectly combining application methods and timings. 

Therefore, the weighting factor for application timing and method of the application need to be 

re-evaluated or should be separated as a different component to increase the KS-PI accuracy. 

This also strengthens the earlier conclusion to separate the P-index application timing and 

methods in the KS-PI formulation.  

In addition, the APEX model applies the biological mixing at the end of every year. 

Therefore, if poultry litter or inorganic fertilizer is surface-apply in November (or December 30) 

the inorganic fertilizer or poultry litter gets incorporated with biological mixing on December 

31. Hence, the no-till applications made on October and November in this study were 

incorporated at the end of the December based on how the model is structured.  However, 

applications in January, April and July remain on the surface for the whole 12, 8 and 6 months, 

respectively. Therefore, this needs to be fixed in the APEX model to make decisions on the 

effect of timing more accurately. 
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 Effect of P application rates on model simulated average annual TP loss and P 5.3.5

index ratings 

Phosphorus application rates and STP are important factors that control the risk of P 

loss in runoff (DeLaune et al. 2004; Sistani et al. 2010). The increase in the STP and P application 

rates increased the average annual TP loss in runoff and respective KS-PI ratings at Franklin W-8 

(Figure 5.6). Similar trends were found at the Crawford (Figure 5.6) and Franklin W-4 runoff 

study sites (Appendix E).  

The STP is a categorical variable in KS-PI. The difference in TP loss was substantial above 

100 mg kg-1 STP, but the P-index ratings were approximately the same for STP of 100 and 200 

mg kg-1 STP (Figure 6). The TP loss increased considerably when STP was 400 mg kg-1, however, 

the P-index ratings did not increase very much. For instance, the average annual TP loss with 

STP of 200 mg kg-1 and P applied at 200 kg P ha-1 applied during January at the Crawford site 

was 11.5 kg ha-1. With the increase in STP from 200 to 400 mg kg-1 the TP loss increased 

approximately by 23% (14.7 kg ha-1) but the P index only increased by 6% (Figure 5.6). Similar 

trends were found in Franklin site with an approximately 30% increase in TP loss when 

increasing STP from 200 (4.8 kg ha-1) to 400 (4.8 kg ha-1) mg kg-1. But, the PI rating increased 

only by 10%. Therefore, the KS-PI does not appear to be sensitive to differences in STP, if above 

200 mg kg-1and categorized all the fields with a same PI rating of 10.  

The consequences of failing to represent the STP appropriately in KS-PI would be that it 

would not stop building STP in soils and reflect the impact of STP on P loss in runoff accurately, 

especially for soils associated with concentration feeding operations (CAFOs) where the PI is 
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heavily used for nutrient management plans. Our APEX model-simulated average annual TP loss 

results showed a linear increase in TP loss in runoff with increasing STP. Several studies 

reported similar effects of STP on P loss in runoff (Cox and Hendricks 2000; Torbert et al. 2000; 

Davis et al. 2005). Therefore, the over-simplification of the effect of STP on runoff in the KS-PI 

should be corrected and can be simply done by changing the STP from categorical variable to 

continuous variable. 

 Evaluating Kansas multiplicative P Index (KS-PI) with new weighting factors  5.3.6

The adjusted new weighting factors β1, β2, β3 and β4  for soil test P (STP), P application 

rate (Prate), application method and timings (AM), and erosion (Ero), respectively  were 

adjusted by fitting equations 3 and 4 with  SAS proc nlin procedure to evaluate the KS-PI. The 

SAS output indicated that the effect of AM was negligible with very low β3 value. Thus, was not 

included in the computation of KS-PI rating. 

The results indicated that with the new weighting factors for STP (β1), P rate (β2), and Err 

(β4) the modified multiplicative Kanas P index rating slightly better correlated with the APEX 

simualted TP loss data with r2 = 0.46 (Figures 5.7 and 5.8) than the KS-PI of 0.40 (Figure5.1). 

Somnez et al. (2009) reported similar results using the field measured and rainfall simulated 

data to manually adjust the source and transport factors values of the KS-PI. They reported 

multiplying STP by 10, and decreasing erosion by half was the best combination to modify the 

KS-PI that resulted in the best r-value. The modification improved the correlation between the 

measured TP loss data and KS-PI slightly increasing r from 0.79 to 0.89. However, the procedure 

they used to modify the KS-PI is very difficult to follow as they did a rigorous manual 

adjustment of the weighting factors.   
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Interestingly, eliminating the weighting factor of STP (β1) (equation 4) and using only the 

β2, and β4 values in the modified Kansas multiplicative P index model resulted in a similar r2 

(0.46) (Figure 5.8). Therefore, either equation 3 or 4 can be used as the best-modified Kansas 

multiplicative P index (KS-PI) model.  

 Evaluating phosphorus index weighting factors of the component PI (CPI) 5.3.7

The KS-PI was also further evaluated as a component model to determine the 

potentiality of further improvement and to better represent the P loss process as indicated by 

Bolster et al. (2012). For this, the component model (CPI) outlined in equation eight (2) was 

evaluated by generating weighting factors (β1, β2, β3, and β4) using multiple regression (Table 

5.2; Figure 5.9). The weighting factors were generated in two different ways (Table 5.2). 

 Independently generated RUSLE2 runoff and erosion loss  5.3.8

The results indicated that the component P index (CPI) model simulated average annual 

TP loss correlation was improved greatly with an r2  of 0.69 compared to the multiplicative KS-PI 

(r2 = 0.40) when weighting factors were generated with independently calculated RUSLE2 

runoff and erosion loss (Figure 5.9a and Figure 5.1). Sonmez et al. (2009) reported similar 

results with improved PI accuracy with revised weighting factors using the Kansas multiplicative 

P index. In addition, Bolster et al. (2012) reported similar improvements with the calculated 

weighting factors using the APLE generated P loss with modified Pennsylvania PI. However, they 

selected the APLE input values randomly from uniform distribution within a certain range and 

assumed the parameters were uncorrelated. Then the APLE-generated data were used to 

determine the weighting factors. Thus, their procedure to determine the weighting factors was 
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different from ours. In our case, we used both the APEX-simulated and the independently 

calculated input (runoff and erosion) or the combination of both to determine the weighting 

factors.  

Bolster et al.(2012, 2014) using an APLE model (Vadas et al. 2009) estimated P loss 

values also reported similar improved PI accuracy results with component PI models of 

Pennsylvania and Kentucky. Estimating P loss for each pathway as the product of source and 

transport that better reflected the P loss processes in fields (Bolster et al. 2012) might have 

improved the CPI accuracy. 

 The APEX model simulated runoff and RUSLE2 estimated sediment loss 5.3.9

In this step, the weighting factors β1, β2, β3, and β4 were calculated using the APEX 

model simulated average annual runoff and RUSLE2 estimated erosion to estimate the CPI total 

P loss. The purpose of using the APEX-simulated runoff was to compare the impact of runoff on 

TP loss with CPI TP loss. The co-relation between the APEX model simulated TP loss and CPI 

rating improved with r2 of 0.86 compared to an r2 of 0.69 as determined by using RUSLE2 runoff 

and sediment loss.  The improvement indicated that the runoff loss is important and should be 

accurately estimated (Figures 5.8 and 5.9b).   

The results reflected the importance of using accurate runoff and sediment loss in the 

evaluation of P indices.  Ideally, independently estimated runoff and sediment loss should be 

used to calculate the weighting factors. The correlation results with CPI and using the APEX 

simulated runoff to calculate weighting factors indicated that if the independently estimated 

runoff correlated well with the model-simulated runoff, the TP loss estimation could be further 
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improved. Therefore, APEX model simulated runoff could be potentially used to cross check the 

independently determined runoff during the PI evaluation processes.  

 Practical implication of PI 5.3.10

The CPI would better correlate TP loss with P index ranking i.e., the risk of P loss as 

compared to KS-PI because it describes 69 % variability compared to 40 % with KS-PI. The 

imminent practical use of CPI could be in concentrated animal feeding operations (CAFOs) to 

assess the risk of P loss. For instance, CAFOs have to submit a nutrient management plan during 

the establishment year and in every 5 years to renew the operations. The PI is a part of the 

nutrient management plan that would guide the CAFOs to manage the P produced with 

manure. In addition, the PI can be adapted to a producer’s field to assess the risk of P loss and 

identify critical source areas where there is P loss concern. It also provides the assessment for 

best management practices on TP loss from agricultural fields so that producers can use the 

right management practices to minimize the P loss to water resources.   

The improvement in TP loss and PI rating with CPI compared to KS-PI was notable. For 

instance, let us take one management practices from Franklin runoff study, watershed 4 that 

had everything same except the STP. The management practice was continuous corn, and P was 

applied at 25 kg P ha-1 on October.  The STP level for the first case was 100 mg kg-1 and second 

case was 200 mg kg-1. The APEX model simulated TP loss was 5.24 and 9.0 kg ha-1, respectively 

for those two STP levels and the P index ratings for both cases were 715 with the multiplicative 

KS-PI. It indicated that the KS-PI failed to assess a difference in STP and rank the PI rating 

accordingly because the STP is used as a categorical variable in KS-PI and both the 100 and 200 

mg kg-1 had the same categorical value of 8. In contrast, the CPI rating for the same 
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management practices and STP resulted in 2.84 and 4.70 P index rating, which was more 

reasonable based on the relative increase in TP loss and PI rating.  

Therefore, the CPI would better correlate the PI rating with TP loss compared to the KS-

PI and that would have a substantial impact in both CAOFs and agricultural fields. For instance, 

with the KS-PI a producer’s field that does not have a high TP loss compared with another 

producer may get the same PI rating as illustrated above and unfairly penalized. However, with 

the CPI the relative increase in TP loss and PI rating are in good agreement therefore, a 

producer whose CAFOs or agricultural fields have less TP loss would end up with lower PI rating 

and will not be restricted or penalized. Thus, there would be substantial practical implications 

of using the CPI compared to KS-PI in ranking the P loss and managing P loss in both CAFOs and 

agricultural fields.  

5.4 CONCLUSIONS 

Overall, the Kansas multiplicative P index (KS-PI) rating co-related with the APEX  

simulated average annual TP loss with r2 of 0.40. The calculated weighting factors for STP, Prate 

and erosion improved the correlation between KS-PI and TP loss to an r2 of 0.46 (p<0.001). Each 

factor of KS-PI was multiplied to formulate the component P index (CPI) and the weighting 

factors for the interaction terms of the new CPI were calculated.  The linear relationship and 

correlation between the APEX simulated and CPI-estimated TP loss was greatly improved with 

r2 of 0.69. The better co-relation of CPI with the APEX-simulated TP loss supports the 

hypothesis that the CPI formulation better represents the interactions between processes 

controlling P loss and improves the P loss risk assessment compared to multiplicative Kansas P 

index (KS-PI).  
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The improvement in the CPI with different sets of the estimated weighting factors also 

indicated that proper estimation of these factors is significant in accurately determining the risk 

of P loss with PI. Therefore, using calibrated and validated model to generate the long-term TP 

loss dataset, estimating the weighting factors with multiple regression, and evaluating the PI 

using the estimated weighting factors could be a viable option where there is a lack of 

measured runoff and P loss dataset and this procedure could potentially be utilized to evaluate 

the P indices.  Thus, this study would be helpful to provide roadmap in development and testing 

the state and regional level PIs.  

5.5 RECOMMENDATIONS AND FUTURE RESEARCH NEED 

 The weighting factors are significant to determine the PI risk assessment. Therefore, in 

any future PIs evaluation the weighting factors should be calculated or analyzed as a 

first step using standard procedure as used in our study, which can be replicated.     

 The component P index (CPI) model resulted in greater improvement correlating the 

APEX simulated TP loss with CPI indicating that the component model reflects the P loss 

processes better in the fields, Therefore, component model should be used in any future 

PIs evaluation processes.   

 The independent runoff and erosion loss should be used to calculate the weighting 

factors to increase the PI risk assessment accuracy. Our results indicated that if the 

independently estimated runoff was correlated with the model-simulated runoff to 

estimate weighting factors it greatly improved the correlation of PI with the model 

simulated TP loss. Therefore, runoff loss used to calculate the weighting factors should 

be accurate to the site of PI assessment. A different process based computer model 
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such as SWAT can be used to simulate the independent set of runoff data and can be 

used in the weighting factors calculation. Developing a standard and an easy way to 

simulate independent data for runoff and erosion is needed.  

 Separating application timings and application methods to two different components of 

the KS-PI might improve the P estimation. Therefore, should be included as a separate 

term in the future PI risk assessment through a justifiable procedure. 

 More research is needed to include watersheds from central and western Kansas to 

widen the applicability of the KS-PI and CPI.  

 More research is also needed to investigate and incorporate the other components of 

the KS-PI which were negligible in our studies such as irrigation erosion, irrigation runoff 

etc.   
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Table 5.1. RUSLE2 estimated sediment loss by cropping systems and method of P applications  

Location/ 

Watershed† 

C-C-

NT 

C-C-

INC 

C-C-

SSA 

CS-NT CS-

INC 

CS-

SAA 

GS-S-

NT 

GS-S-

INC 

GS-S-

SSA 

C-WW-S- 

NT 

C-WW-S-

INC 

C-WW-S-

SSA 

Franklin W-4 0.98 4.2 1.9 1.7 5.4 2.4 2.0 5.9 1.7 0.93 1.2 1.2 

Franklin W-8 0.64 3.5 1.6 1.2 4.9 2.0 1.4 5.4 2.2 0.66 2.0 0.89 

CRAWFORD 0.43 2.0 - 0.62 2.7 - 0.83 3.0 - 0.47 2.5 - 

† C-C-NT = Continuous corn no-till; C-C-INC = Continuous corn  fertilizer incorporated; CS-NT = Corn-soybean no-till; CS-INC = Corn-soybean 
fertilizer incorporated;  GSS-NT = Grain sorghum-soybean no-till; GSS-INC = Grain sorghum-soybean fertilizer incorporated; CWS-NT = 
Corn-winter wheat-soybean no-till; CWS-INC = Corn-winter wheat soybean fertilizer incorporated; C-C-SSA = Continuous corn-subsurface 
application;  C-S-SAA = Corn-soybean-subsurface application;  GS-S-SSA = Grain sorghum-soybean-subsurface application;  C-WW-S-SSA = 
Corn-winter wheat-soybean-subsurface application.  
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Table 5.2. Weighting factors calculated using the independently estimated RUSLE2 runoff and sediment loss 
and with APEX model simulated runoff and RUSLE2 estimated erosion loss 

Index weights† CPI (RQ & Rsed)‡ CPI (AQ & Rsed)§ 

Intercept -0.015000 -0.6021 

β1 0.002307 0.000697 

β2 0.000048 0.000131 

β3 0.000074 0.000124 

β4 0.000593 0.002379 

†β1 = weighting factor for STP*Rsed; β2 = weighting factor for STP*RQ ; β3 = weighting factor for Prate*RQ; and 
β4 = weighting factor for AM*RQ for RUSLE2 estimated runoff and sediment loss  
or 
†β1 = weighting factor for STP*Rsed; β2 = weighting factor for STP*AQ ; β3 = weighting factor for Prate*AQ; and 
β4 = weighting factor for AM*AQ for APEX simulated runoff and sediment loss 
(STP = soil test P; RQ = RUSLE2 estimated runoff loss, Rsed = RUSLE2 estimated sediment loss; AQ =AAPEX 
model simulated runoff) 
‡CPI (RQ & Rsed) = Component phosphorus index weighting factors calcaulated using RUSLE2 runoff and 
sediment loss  
§CPI (AQ & Rsed) = Component phosphorus index weighting factors calcaulated using Apex simulated runoff 
and RUSLE sediment loss 
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Figure 5.1. The relationship between KS-PI and average annual TP loss (Franklin W-4 and W-8 and Crawford sites; 
n=2890) generated by location specific calibrated and validated APEX model. The β1 - β4  were weighting 
coefficients.
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Figure 5.2. The relationship between KS-PI and average annual TP loss (simulated by APEX) for no-till surface 
broadcast fertilizer and conventional tillage-incorporated fertilizer, all data in each site and by watersheds at both 
Franklin and Crawford locations. 
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Figure 5.3. Comparison of KS-PI values and average annual TP loss from watersheds with 25 or 100 mg kg
-1

 STP and 
P applied prior to corn or grain sorghum at 0 to 200 kg ha-1 in January (Jan) with P surface-broadcast with no-
tillage (NT) in continuous corn (C-C), corn-soybean (C-S), grain sorghum-soybean (GS-S) or Corn-winter wheat-
soybean (C-WW-S) cropping systems. 
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Figure 5.4. Comparison of KS-PI values and average annual TP loss from watersheds with 25 mg kg
-1

 STP and P 
applied prior to corn or grain sorghum at 0 to 200 kg ha-1 in October (Oct), November (Nov), January (Jan), or April 
(Apr), with P surface-broadcast with no-tillage (NT) in corn-soybean (C-S) or grain sorghum-soybean (GS-S) 
cropping systems. 
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Figure 5.5. Comparison of KS-PI values and average annual TP loss from fields with 25 mg kg
-1

 STP and P applied 
prior to corn at 0 to 200 kg ha-1 in October (Oct), November (Nov), January (Jan), or April (Apr), with P either 
surface-broadcast with no-tillage (NT) or incorporated with conventional tillage (INC) in corn-soybean cropping 
systems. 
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Figure 5.6. Comparison of KS-PI values and average annual TP loss with different STP, same application rates and 
timing in a no-till surface broadcast fertilizer/poultry litter application in a corn-soybean cropping system
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Figure 5.7. The relationship between KS-PI and average annual TP loss (all the watersheds -Franklin 4, 8 and 
Crawford site; n=2890) generated by location specific calibrated and validated APEX model. The KS-PI index ratings 
were determined using new weighting factors for STP, and erosion. The β1-β3 were weighting coefficients.  
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Figure 5.8. The relationship between KS-PI and average annual TP loss (all the watersheds -Franklin 4, 8 and 
Crawford site; n=2890) generated by location specific calibrated and validated APEX model. The KS-PI index ratings 
were determined using new weighting factors for STP, P application rates, and erosion loss. The β1-β4 were 
weighting coefficients. However, β3 was excluded because it was very low.  
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Figure 5.9. The APEX model simulated average annual (n = 2890) and component phosphorus index model (CPI) 
predicted TP loss. a) with independently estimated RUSLE2 runoff and erosion loss b) with APEX model simulated 
runoff and RUSLE2 erosion loss. The λ 1-λ4 were weighting coefficients.  
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Chapter 6. Phosphorus Transport in Soil: A soil Column Leaching 
Experiment 

ABSTRACT 

Phosphorus sub-routines used in the computer model should reflect the processes present in 

the fields. The mineral P model (3 pools -labile, active, and stable) with linear adsorption 

isotherm has been used in the APEX model to simulate P loss. However, using linear adsorption 

isotherm model in the APEX’s P sub-routine does not accurately simulate the P leaching from 

the top soil layer to the next especially when the soil P concentration is very high. The 

consequences of this would be over prediction of P on the top soil surface layer and in runoff 

giving incorrect model simulation. Therefore, there is a need to test the three P pool model in 

the APEX sub-routines with appropriate non-linear adsorption isotherm to better reflect the 

leaching and P processes in the fields. The goal of this study was to determine the appropriate 

adsorption isotherm and fit the 3-pool model with advection-dispersion equation using 

MATLAB.  Specific objectives were to i) determine appropriate adsorption isotherm (Linear, 

Langmuir, Freundlich) with advection-dispersion equation in predicting P movement in soil 

using MATLAB. ii) test and compare non-linear (Langmuir and Freundlich) adsorption isotherms 

with a different rate of P applications. Soil sample was collected from a P runoff study in south‐

east Kansas at 0-7.62 cm in no-till control (no fertilizer/poultry litter) management. The soil was 

air dried, ground, and wetted to an approximately 15% moisture using a 0.01M CaCl2 solution. 

The accurate moisture content of the wetted soil was determined by drying it in an oven at 

105oC temperature for 24 hours. Then after, the wetted soil was packed in a 10 cm long acrylic 

clear plastic column. The column was saturated for 16 hours using 0.01M CaCl2 solution with a 
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very slow flow rate of 0.85 mL hr-1. After 16 hours, the solution was switched to either 30 or 90 

mg kg-1 P solution and the flow rate of 4.32 or 6.25 mL hr-1. Leachate (1 mL for fast flow and 2 

mL for slow flow rate) was collected from the column with an auto-sampler. The collected 

samples was diluted as required and analyzed for ortho-phosphate. The breakthrough curves 

were fitted manually and with a numerical model in MATLAB to determine the appropriate P 

adsorption isotherm. Adsorption isotherm parameters was also determined with batch 

experiments. The experimental data did not fit well with both the linear and nonlinear 

(Langmuir and Freundlich) adsorption isotherms. It might be due to complexity of the P loss and 

transformation processes, P precipitation, iron reduction etc. that might have happened inside 

the column but was not reflected in the advection-dispersion numerical model. The adsorption 

isotherm parameters differ with the change in P application and flow rates. Selecting 

appropriate adsorption isotherm to use in the P sub-routines in the computer models would 

help to better estimate the P loss and management from agricultural fields.  

6.1 INTRODUCTION 

In recent years, computer models are used as an alternative to generating P loss 

datasets and evaluation of the P-indices (Sharpley et al. 2012; Nelson and Shober, 2012).  The 

computer models used in the process of modifying and improving P-indices must accurately 

predict P loss across a wide range of soil P, runoff, erosion, and field management conditions 

(Bolster et al. 2012). For this, the P sub-routines used in the computer models should accurately 

reflect the field condition and basic mechanisms of P reactions in soils.  However, most of the 

computer models only simulate P loss via erosion and surface runoff excluding vertical 

movement within the soil profile and P leaching loss (Sharpley, 2002; Nelson and Parson, 2005).  
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The sub-surface P losses can be high enough to cause environmental risk (Sims et al. 

1998, Heathwaite and Dils, 2000). Studies have indicated phosphorus (P) accumulation and 

potential P loss through leaching especially when manure and fertilizer P is applied above crop 

requirements (Stone et al. 2001; Gachter et al. 2004). Phosphorus accumulation in surface layer 

also increases the risk of P loss with eroded soil particles, increase the risk of P loss to the sub-

surface pathways and decrease the P sorption capacity of soils (Sharpley et al. 1984, Sims et al. 

1998; Sharpley et al. 2004; Glaesner et al. 2011). Thus, understanding the basic P chemistry in 

soils would be helpful to understand and incorporate the basic concept of P soil chemistry in 

computer models to simulate long-term P loss. This will also help to avoid an unrealistic 

predictions of excessive P transport in sediment and surface runoff and inaccurate prediction of 

P loss in the long term (Stone et al. 2001; Nelson and Parsons, 2006). 

  In addition, the current P-subroutine used in different hydrological models (SWAT, EPIC, 

and APEX) was developed back in 1980’s and thereafter, its parameters were neither refined 

nor improved  to include the advancements made in the area of P research (Vadas and White, 

2006; Nelson and Shober, 2012). Therefore, there is a need to oversee the chemical processes 

of P leaching used in mechanistic models and update the P sub-routines appropriately to 

strengthen the P loss predictability of computer models before using them to simulate long-

term P losses for BMPs evaluation.  

 Phosphorus adsorption and desorption in soils 6.1.1

The reversible fast adsorption and irreversible slow desorption process occur 

simultaneously in soils (McGechan and Lewis, 2002). The fast reversible adsorption reaction of 
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inorganic P at surface sites and slow release or desorption of P through the solid phase describe 

the overall reaction of inorganic P in soils (Barrow, 1981; Van Riemsdijk et al. 1984). Once, the P 

from soil solution is removed by plants, desorption reactions will occur and P adsorbed to 

surface sites move to the soil solution P pool (Van der Zee et al. 1987). Therefore, the P 

adsorption and desorption (interactions between P in solution and soil solid phases) 

parameters in soils affect the concentration of P in solution and solid phase and are key to 

determine the P loss in surface runoff, sediment and leaching loss (Sims and Pierzynski, 2005). 

The depletion of P in surface sites may be replenished by desorption of slow released P 

adsorbed to the solid phase but in a slow rate and in the long term (Barrow, 1981). Thus, such 

slow but long term desorption processes of P from soil solid phase is important and both 

adsorption and desorption should be considered in P sub-routines used in computer models to 

better predict P loss in runoff and leaching. Although, these relationships are difficult to define 

experimentally (due to slow desorption kinetics) but using an appropriate adsorption isotherm 

that defines the relationship between soil solution P and sorbed P helps to determine the total 

amount of P available for plant use, P loss in runoff or leaching loss (Koopmans et al. 2002). 

Therefore, understanding P adsorption and desorption mechanism in soils is important and 

there is a need to include a realistic adsorption-desorption isotherm in the P sub-routines of 

computer models to accurately simulate the P loss in runoff and leaching.  

The process of adsorption and desorption in soils can be described with non-linear 

equations relating the solid-phase (sorbed) P to dissolved P (solution) in soils (McGechan and 

Lewis, 2002) in which soil samples are equilibrated with different concentration of P for 
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different time steps. Freundlich and Langmuir are the two most commonly used nonlinear 

equations used in field-scale models that describe P leaching.  

The general form of Freundlich equation is  

S = (Kf) x (Cβ) [1]  

The general form of Langmuir equation is  

S = Smax x [ Kl C/(1+ KlC)] [2] 

Where S is the quantity of P sorbed (mg Kg-1), Kf is the Freundlich adsorption coefficient, C is the 

concentration of P in solution (mg L-1), β is fitting coefficients, Smax is the maximum amount of P 

adsorbed to the soil (mg Kg-1), and Kl is the Langmuir adsorption constant which describes the 

affinity of the soil for P, or adsorption strength. 

There are advantages and disadvantages of using these adsorption isotherm equations.  

The Freundlich equation fits the experimental data very well but the fitting parameters lack to 

correspond with the theoretical model of surface adsorption. Likewise, the advantage of 

Langmuir adsorption model is that it describes the theoretical maximum adsorption but may 

not fit the experimental data. Besides, determining the parameters for these equations in the 

lab are time, labor intensive and model parameters are soil specific since the soil chemical, and 

physical properties affect the P adsorption (Nelson and Parsons, 2006).  Hence, selecting an 

appropriate adsorption isotherm is critical to accurately represent the P adsorption-desorption 

mechanism and in areas where it requires accurate predictions to develop strict guidelines and 

restrict further P applications (Vadas et al. 2006).  
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 Phosphorus dynamics in the APEX model and P loss 6.1.2

Though, phosphorus is an immobile plant nutrient; downward movement of P through 

soil profile is slow, some recent studies have pointed the potential risk of P leaching in both clay 

loam, sandy and with high STP soils (Van Es et al. 2004; Nelson and Parsons, 2005). Excluding P 

leaching loss component in a process based model like APEX would inaccurately simulate the P 

loss especially for long terms model simulations. Phosphorus sub-routines used in the computer 

models should reflect all the soil P processes as that in field conditions and provide an accurate 

simulation of P distribution in both surface and sub-surface (Sims et al. 1998; Sharpley et al. 

2004; Glaesner et al. 2011). However, there are some concerns on the P subroutines used in 

the APEX model adopted from the EPIC P sub-routines and need further model modifications 

(Vadas et al. 2006). Therefore, an accurate representation of P leaching in a process-based 

model like the APEX is significant to simulate the P distribution in the surface soil and 

consequent loss in runoff. 

For instance, the results of our current work with the uncalibrated APEX model showed 

that the APEX model greatly over predicts P loss for poultry litter treatments. Perhaps, a 

primary factor contributing to the over‐prediction is the approach APEX uses to compute soil 

solution P concentration. Currently, the APEX model is using a simple linear approach to 

estimate P leaching from the top soil layer to the next layer based on P concentration in soil 

and solution. But, P sorption in soils is non‐linear and when P concentration in soil increases the 

relationship becomes non-linear (Koopmans et. al. 2002). Thus, using a linear adsorption model 

to determine the solution P concentration in the soil will underestimate the solution P 

concentration. Consequently, the model will underestimate P flux to lower soil horizons and 
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overestimate P concentration in surface soil horizon. This will result in overestimation of P loss 

with erosion and provide incorrect information to decision makers. This error is particularly 

important when simulating management practices with high P application, such as when 

nitrogen (N) rate poultry litter is applied.   

In addition, due to use of inappropriate adsorption isotherm and not accounting the P 

leaching loss, other parameters in the APEX model might have been unnecessarily over 

parametrized. For instance, parameter 29 is the biological mixing efficiency (due to biota such 

as earthworms) that redistributes the plant residue, soil, nutrients, pesticides etc. throughout 

the tillage depth 0.3m (user defined) at the end of the calendar year (December 31st). The 

biological mixing efficiency was very sensitive for runoff, sediment, and P losses and was set to 

0.5 for the no-till system in our study. The biological mixing efficiency of 0.5 means 50 % of the 

nutrients applied and crop residue was redistributed and mixed to the depth of 0.3. Such a high 

biological mixing efficiency due to soil biota is not realistic in most of the agricultural fields. 

Moreover, setting up such high (50%) biological mixing efficiency during the calibration process 

of the APEX model was perhaps compensating the error that was caused because of not 

accounting the P loss via leaching to the sub-surface layer and using the inappropriate 

adsorption isotherm in the model. Therefore, improving the P sub‐routines by accounting 

vertical P movement and using a nonlinear adsorption model is essential to accurately 

predicting P loss.  

In addition, some computer models such as Root Zone Water Quality Model (RZWQM) 

and DRAINMOD have no soil P sub-routines and simulate hydrology differently. Thus, the 

findings of this work will also lay out a foundation for future research to include P sub-routine 
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with the advection-dispersion equation with a possibility to be adapted to RZWQM and 

DRAINMOD models as their P subroutines.  The long-term goal of the project was to determine 

and understand the P-transport with advection-dispersion equation. The objective of the study 

was to determine appropriate P adsorption isotherm with advection-dispersion equation using 

experimental data from column leaching experiment.  

6.2 MATERIALS and METHODS 

  Governing equation used in the MATLAB  6.2.1

The proposed governing equation (advection-dispersion), discretization scheme, 

derivation of m-linear equations and the boundary conditions to fit the different adsorption-

isotherms are explained below.  

In the presence of steady-state, unit-gradient water flow, the advection-dispersion equation for 

reactive solutes used in this study was 
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where C is the solute concentration in the liquid phase [M L3], b is the bulk density [M L3],  

is the volumetric water content [L3 L3], S is the concentration of adsorbed solute [M M1], D is 

the effective dispersion coefficient [L2 T1], v is the average pore-water velocity [L T1], z is the 

space coordinate [L], and t is time [T].  By making use of the chain rule, this expression can be 

written in the form 
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Or 
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where the retardation factor R [-] is defined as 

C

S
R








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6.2.1.1 Adsorption isotherms 

Linear adsorption isotherm equation has been widely used but the process of 

adsorption and desorption in soils can be better described with non-linear equations relating 

the solid-phase (sorbed) P to dissolved P (solution) in soils (McGechan and Lewis, 2002) in 

which soil samples are equilibrated with different concentration of P for different time steps. 

Beside linear adsorption isotherm, Freundlich and Langmuir are the two most commonly used 

nonlinear equations used in field scale models that describe P leaching.  

The general form of Linear equation is  

CKS d                        [7] 

Where Kd is the distribution coefficient (m3 Kg-1) or slope of the adsorption isotherm. 

Differentiating this linear equation with respect to time  
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The retardation factor in this case is not a function of the solute concentration, so equation  [5] 

is a linear partial differential equation. 

For solutes that exhibit nonlinear, equilibrium sorption, the Freundlich and Langmuir isotherms 

are the two most commonly used adsorption isotherms.  The Freundlich isotherm is written as 
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The general form of Freundlich adsorption isotherm equation is  

S = Kf C
β                      [9] 

Where S is the quantity of P sorbed in mg kg-1, C is the concentration of P in solution in mg L-1, Kf  

is the Freundlich adsorption coefficient and β is fitting coefficients.  

Differentiating equation [7] with respect to time we get  
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Therefore, for the Freundlich adsorption isotherm the retardation factor in the governing 

(advection-dispersion) equation was  
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The general form of Langmuir adsorption isotherm equation is  

S = Smax [ Kl C/(1+ KlC)]                             [11] 

Where Smax is the maximum amount of P adsorbed to the soil (mg kg-1), C is the concentration 

of P in solution in mg L-1, and Kl is the Langmuir adsorption constant which describes the affinity 

of the soil for P, or adsorption strength. 

Differentiating equation [9] with respect to time and concentration we get 
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Therefore, for the Langmuir adsorption isotherm the retardation factor in the governing 

(advection-dispersion) equation was 
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It is evident from equation [10] and [13] that the retardation factor is a function of the solute 

concentration C for both the Freundlich and Langmuir isotherms.  Thus, for both of these 

isotherms, equation [5] is a non-linear partial differential equation. 

6.2.1.2 Difference approximations 

A numerical model with convection-dispersion equation was developed to test the adsorption 

isotherms in MATLAB. The linear adsorption isotherm with the numerical model was tested 

with analytical solution as described in the upcoming section. However, the non-linear 

adsorption isotherms were not tested due to lack of analytical solution. The information in this 

section was adapted from Dr. Klutenberg’s AGRON 915 class notes with permission (Dr. 

Klutenberg, personal communication, 2016). 

The backwards implicit approximation of equation [5] is obtained by using an O(t) backward 

difference approximation for the time derivative and O[(z)2)] central difference 

approximations for the first and second space derivatives.  When these two approximations are 

centered at the point ),( 1ni tz ,  
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Owing to the fact that this approximation is centered at ),( 1ni tz , the retardation factor is 

evaluated at time 1nt  and is therefore a function of 1nC .  This makes the backward implicit 

approximation nonlinear.  Explicit linearization of this approximation is achieved by simply 

evaluating R at the previous time step, i.e. at time nt .  Thus, the backwards implicit 

approximation with explicit linearization is 
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and it follows that 
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where ia  and ib  are defined as 
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The truncation error for the backwards implicit approximation also is of O[t + (z)2)]. 

To solve this problem with a steady state unit gradient situation the boundary conditions were 

set as follows 
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where it is understood that ),( tzC  represents flux concentrations rather than resident 

concentrations.  The solution of this problem was used to determine ),( tLC , the flux 

concentration at z = L.  The finite difference method cannot be used to obtain a solution for the 

entire semi-infinite domain  z0 .  Nevertheless, accurate values of ),( tLC  can be 

obtained if the numerical solution of equation [18] – [21] is obtained for a domain having a 

length substantially larger than L.  In other words, if x Ld was used to represent the length of 

this domain, accurate values of ),( tLC  can be obtained if Ld was chosen so that LL d . More 

specifically, it is necessary to use a value for Ld large enough that the effect of the boundary 

condition at z = Ld does not propagate back to depth z = L.  In practice, it is easiest to ensure this 

by choosing Ld large enough that the invading solute front does not arrive at depth z = Ld. 

 Therefore, for Dirichlet condition at z = 0 and a Neumann condition at z = Ld, the mesh used 

with m + 1 equally spaced nodes in the z direction.  The indexing for iz  is mi ,,2,1,0  , and 

the mesh is positioned so that the nodes ),( 0 ntz  lie on the line z = 0 and the nodes ),( nm tz  lie in 

the line z = Ld.  Thus, 00 z  and dLzm  , and  the node spacing in the z direction is 

mzzz m )( 0  or mLz d .  In the t direction, the mesh consists of N + 1 equally spaced 

nodes and the indexing for nt  is 1,,3,2,1  Nn  , where N is number of time steps.  The 

mesh is positioned so that the nodes ),( 1tzi  lie on the line t = 0 (i.e. 01 t ) and the nodes 
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),( 1Ni tz  correspond to the final time at which the solution is to be evaluated based on the 

node diagram (Figure 6.1).  

To formulate the backwards implicit approximation for this problem, with equation [16]  
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where 1

1


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n

mC  corresponds to the fictitious node ),( 11  nm tz  that lies outside the problem domain.  

For this approximation, satisfying the boundary conditions requires that a
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equations to be solved at each time step are 
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with the coefficients ia  and ib  from equation [17]. 

For the backwards implicit approximations, the retardation factor for linear, equilibrium 

sorption is 

mi
K

Rn

i ,,2,1;1 db 
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
     [24] 

whereas the retardation factors for the Freundlich and Langmuir isotherms are 
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The initial condition requires that 

miCi ,,2,1;01      [27] 

and a solution is obtained by evaluating equation [22] or [23] with the coefficients in equation 

[17] for Nn ,,3,2,1  . 

6.2.1.3 Analytical solution to test the linear adsorption model  

The problem defined by equations [16] to [19] was solved using alternative analytical solution 

replacing the boundary condition at z = L by 
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This will consider the solute transport in the semi-finite domain 0<z<∞, however it will provide 

a good approximation of solution to the original problem, considering L is large enough and the 

solute front will not reach the boundary. The solution of this problem is  
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The script to solve the above-mentioned conditions was written in MATLAB (Appendix F). The 

erfcx(x) function is available as a MATLAB’s built-in function erfcx. 

 Batch experiment 6.2.2

Soil samples were shaken for 24 hours with different P concentration, centrifuged and 

supernatant are analyzed for ortho-phosphate. The difference between the initial solution P 

concentration and the final represents the quantity of P adsorbed in soil. The procedure follows 

outline by Gratez and Nair (2009) which was based on Nair et al. (1984). The detail procedure of 

batch experiment was outlined in Appendix F. 

The maximum amount of P adsorbed (Smax) to the soil (mg kg-1), langmuir adsorption 

constant (Kl) which describes the affinity of the soil for P, the Freundlich adsorption coefficient 

(Kf
 ) and the fitting coefficient (β) were determined using excel spreadsheet developed by 

Bolster and Hornberger (2007). These parameters were used to initialize the breakthrough 

curve fitting in MATLAB. 

 Procedure for column leaching experiment  6.2.3

6.2.3.1 Soil sample preparation 

Soil from Crawford runoff study site, watershed 105 (control - without any fertilizer or 

manure applications) was collected on 03/10/2014 for the column leaching experiment. The 

bulk soil sample was collected across the watershed at 0-7.62 cm depth using hand-held soil 

probe. The soil samples were air-dried and ground to 2 mm sieve. The soil (one batch = 0.426 kg 

and was enough to pack two column) was weighted and approximately 68.0 mL (16 % moisture 

content target) of 0.01 M CaCl2 deionized water was added with the sprayer to moisten the soil. 
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The soil was spread on a plastic sheet uniformly, the 0.01 M CaCl2 deionized water was added 

slowly, and the soil was mixed thoroughly in each addition until all the targeted water was 

added. The weight of the 0.01M CaCl2 deionized water and the sprayer was measured 

frequently to make sure, only the desired amount was added. A sub-sample of few grams of the 

wet soil was then oven dried for 24 hours in 1050C temperature. The water content of the wet 

soil was calculated by the difference in dry and wet soil after 24 hours of oven dry.  The whole 

procedure of soil wetting was replicated four times as one batch of 0.426 kg soil was only used 

for one time due to limitation of the auto samplers. The pore space, volumetric water content, 

pore water velocity, flux, discharge, and pore volume that was used in the experiment was 

determined as follows. 

Pore space 
s

bf



1)(   [29] 

Where f= porosity, 
b = bulk density g cm-3, 

s = particle density g cm-3 and assumed to be 2.65. 

Assuming porosity (f) = volumetric water content (θ). 

The volumetric content water (θ) dimension less, is defined as follows 

w

bg




 1   [30] 

Where g = gravimetric water content, and calculated as difference between wet soil and oven 

dry soil (after 24 hours at 105oC) divided by the oven dry soil.  
w = density of water 

The volume of air in the column was calculated as  
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(a) = (f – θ)                                                                                                                                                 [31] 

So the volume of water required to fill the air space of the column was calculated as volume of 

column x volume of air (a) 

where volume of column is defined as 𝑣 = 𝜋𝑟2ℎ;  r the radius and h the height of the column 

Likewise, the flux (q) ms-1 was calculated as  

q = v x θ                 [32] 

where v = pore water velocity and θ = volumetric content water  

The discharge from the column (Q) was calculated as (Q) = q x A   

        

[33] 

Where q = flux and A = Area of the column and calculated as 𝐴 = 𝜋𝑟2 

Therefore, one pore volume of the column was defined as (PV) = (θ) x (v) 

where (θ) = (f) = volumetric water content and (v) = volume of the column 

 Procedure to pack the column (10 cm long acrylic clear plastic) and sample 6.2.4

collection 

The targeted bulk density was 1.40 for the soil leaching experiment. The column was 

packed in 2 cm increment. The mass of wet soil required to pack each 2 cm increment of 

column was calculated as  
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[(Desired bulk density) x (volume of the 2 cm length)] x  

[1 + (gravimetric water content g )]              [34] 

The amount of soil determined with equation 8 (approximately 15.60 g) for 2 cm 

increment was added into the column. The soil was then uniformly spread and gently 

compacted with a small knife. Finally, soil was compacted using the compactor that fits inside 

the column (Appendix F). The top of the compacted soil layer was disturbed gently with a small 

metal rod before adding same amount of weighted soil for second increment. The process was 

repeated for 5 times (10 cm height). The column was then closed with two plates in each ends 

and tubing were added as necessary.  

 Bromide breakthrough curve 6.2.5

The column was saturated for 16 hours using 0.01M CaCl2 solution with a very slow flow 

rate of 0.85 mL hr-1 and flushed with 1 mg kg-1 of potassium bromide (Kbr) for 3-pore volume 

(PV) (1 PV =23.06 ml). One (1) ml of effluent (sample) was collected in each collection tube 

using an auto sampler. After 3-PV the solution was switched to 10 mg kg-1 potassium bromide. 

The experiment was run for another 3-PV and 1 mL sample each was collected using the auto 

sampler. Three different pore water velocities of 0.21, 0.42, and 1.25 cm hr-1 were selected and 

each flow rate was replicated twice. The bromide concentration in the effluent was analyzed 

using the Lachat QuickChem 8500 (method, 10-135-21-2-B) and was fitted for breakthrough 

curve using MATLAB.  
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 Phosphorus breakthrough curve 6.2.6

The column was saturated for 16 hours using 0.01M CaCl2 solution with a very slow flow 

rate of 0.85 mL hr-1. After 16 hours, the solution was switched to either 30 or 90 mg kg-1 P 

solution.  Potassium phosphate monobasic (KH2PO4) was dissolved in 0.01M CaCl2 solution and 

used as a source of P in the experiment. Enough KH2PO4 solution was prepared in a single batch 

for the whole experiment. The P solution was bubbled with oxygen for approximately 3-5 

minutes before stored in a 140 ml syringe fitted with a tube and a male luer-lock to ensure 

airtight.  

The flow rate was then adjusted based on a slow flow rate (pore water velocity of 1.87 

cm hr-1) or fast flow rate (pore water velocity of 2.70 cm hr-1) (Table 1). The P solution in the 

column was passed from the bottom of the column upwards and the effluent was collected 

from the top of the column with an auto-sampler using capped plastic vials (Appendix F).  

Approximately 3-meter long tube (Tygon 0.3175 cm (1/8 inch) internal diameter) was 

fitted to collect 6 mL of effluent to avoid the atmospheric oxygen contact. Three samples (6 mL 

each) were taken to analyze for iron (Fe+2) reduction test throughout the experiment. The first 

was taken immediately after switching the solution, 2nd was taken after 3-PV and the third was 

taken at the end of the experiment. Iron reduction was measured using UV-spectrophotometer 

and the procedure used in this experiment was based on Greenberg, et al. (1992) with some 

modifications (APPENDIX F: Section 2). 

Several pore (24-30 PV for 30 mg kg-1 P and 9-12 PV for 90 mg kg-1 P) volume of solution 

was passed through the column to ensure the P breakthrough. The samples (2 mL in slow flow 
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rate and 1 mL in fast flow rate) were collected in 15 mL plastic vials using an auto-sampler. The 

auto sampler was timed in a way so that desired amount of sample was collected in each vial. 

The collected samples were refrigerated, diluted as needed using an auto diluter (Microlab 600 

series) and analyzed for ortho-phosphorus using Lachat quickchem 8500 (method, 10-115-01-1-

A). Each flow rate and P concentration were replicated twice. So eight columns were used for 

the entire experiment.  

The experimental data were fitted for P breakthrough curves using excel spreadsheet in 

two different ways. Firstly using the adsorption isotherm parameters determined with the 

batch experiment and secondly by manually adjusting the adsorption isotherm parameters so 

that the initial breakthrough of the numerical model fitted well with the experimental 

breakthrough data.   

6.3 RESULTS AND DISCUSSION 

 Batch experiment  6.3.1

The batch experiment data was fitted in the excel spreadsheet and the adsorption 

isotherm parameters were estimated (Figure 6.2a, and b). The estimated values Langmuir and 

Freundlich  were Smax = 198.5 mg kg-1; Kl = 0.178; Kf = 62.33; and β = 0.271. The linear 

adsorption distribution coefficient (kd = 2.4358) was estimated using the linear model in excel 

spreadsheet (Figure 6.3.). The adsorption isotherm parameters were used to initialize the 

MATLAB model run and compare the P break-through curves.   
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 Bromide breakthrough curve 6.3.2

The measured bromide break through curve data were fitted using analytical solution 

A1 of van Genuchten and Alves (1982). The bromide column leaching experimental data were 

used to determine dispersion coefficients D (Figures 6.4a, b, c, d, e, and f). The dispersion 

coefficients were then used to determine the dispersivity (λ) using equation [35] and assuming 

the relationship between pore water velocity and dispersion coefficient was linear (Horton and 

Jury, 1984). Therefore, the average value of λ (0.10) was used.  

D = λ Vn                [35] 

where v = pore water velocity.  

 Iron Reduction Analysis 6.3.3

Iron reduction was a common problem in saturated column study (Dr. Ganga 

Hettiarachchi, personal communication 2015) and was noticed during the course of this study 

(Appendix F). To overcome the problem we oxygenated the P solution that was used in this 

experiment using a pressurized oxygen tank (85% oxygen) and a regulator. The oxygenating of P 

solution helped to minimized iron reduction (Table 6.2. and Appendix F). Therefore, we 

recommend oxygenating the solution at least for 3-5 minutes before using it. Literally, once 

oxygenated the solution can be stored in an airtight syringe for more than 24 hours if it is 

airtight. The tubing and male luer-lock was used to ensure airtight. However, we found that 

oxygenating the solution every time when changing the syringe reduced iron reduction 

compared to the when it was oxygenated and stored. The results indicated that in the slow flow 

rate even after oxygenating there was presence of some reduced iron (Table 6. 2.).  



 

188 

 

 Phosphorus breakthrough curve and the adsorption isotherms comparison with 6.3.4

advection-dispersion model using MATLAB  

6.3.4.1 Use of analytical solution to test linear adsorption isotherms model 

The numerical model developed was tested with the analytical solution from equation 

[28] for the non-linear adsorption model. Results from the backward implicit approximation-

numerical model (open circles) and analytical solution (red lines) showed a very good 

agreement for both the flow rates and P concentrations (Figures, 6.5a, b, c, and d). However, 

the model with non-linear adsorption isotherms were not tested due to lack of analytical 

solution and were assumed to be working well based on the Peclet number (Pe) and Courant 

number (Cr) calculated during each model runs. The Pe number should be less than 2 and Cr 

number should be less than 1 for non-reactive solutes as recommended by Huyakorn and 

Pinder, (1983). The Pe and Cr were calculated using equation [36] and [37], and met those 

criteria’s throughout the study.  

2
D

zv
Pe


                  [36] 

1
z

tv
Cr




                 [37] 

where, z is space increment (cm), t is time increment (day), v is pore water velocity 

(cm day-1) and D is the dispersion coefficient.  

6.3.4.2 Breakthrough curve with adsorption isotherm parameters developed using batch 

experiment 
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After the numerical model was tested for both the non-linear and linear adsorption 

isotherms with analytical solution, Pe, and Cr, it was used to develop breakthrough curves using 

adsorption parameters estimated with batch experiment. The advection-dispersion backward 

implicit approximation model simulated results for linear adsorption isotherms indicated that 

the breakthrough occurs earlier than the experimental data (Figures 6.5a, b, c, and d). In 

contrast to this, the non-linear adsorption isotherms breakthrough lag behind the experimental 

data i.e. breakthrough occurs at higher number of pore volumes or took longer time. For 

instance, with both flow rates and the P concentrations (30 mg kg-1 or 90 mg kg-1 P) 

breakthrough lags behind or occurred at higher PV (Figures, 6.6a, b, c, and d; 6.7a, b, c, and d) 

indicating greater P sorption capacity of the soils. The, the measured data indicated that P 

breakthrough occurred soon after approximately at 10 PV and 5 PV with 30 mg kg-1 P and 90 mg 

kg-1 P, respectively (Figures, 6.8a, b; 6.9a, b; 6.10a, b;  and 6.11a, b). The plausible reason for 

this lag in breakthrough (increased adsorption capacity) of P with batch experiment might be 

due breakdown of soil particles because of continuous shaking and mixing for 24 hours 

exposing more accessible sorption sites (Barrow and Shaw, 1979; Ho et al. 1995).    

 In addition, because of greater turbulence in batch experiment and decrease in P 

concentration in solution over time, the rate of P sorption increases in batch experiment. In 

contrast, with column leaching experiment, the solution concentration increases overtime, 

which may increase rate of P sorption but the effect may be still less compared to the 

turbulence effect of batch experiment resulting higher P sorption capacity of soils (Ho et al. 

1995).  
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6.3.4.3 Sensitivity analysis and manual adjustment of adsorption isotherm parameters to fit 

the measured data 

The manual adjustment of adsorption isotherm parameters improved the breakthrough 

time between numerical model simulated breakthrough and experimental data. For instance, 

changing Smax from 198.5 to 1100 and Kl from 0.178 to 0.0015 for fast flow rate and 90 mg kg-1 P 

rate improved the fit by pushing forward the breakthrough time between model simulated and 

experimental data (Table 3; Figure 6.11a, b). Likewise, for Freundlich adsorption isotherm 

adjusting Kf from 62.33 to 4.30 and β from 0.271 to 0.91 for slow flow rate and 30 mg kg-1 P 

improved the P breakthrough timing (Figures, 6.8a, b). The different values selected for Kl, Kf 

and β were listed in table 6.3. 

Although the initial breakthrough timing was improved by adjusting adsorption 

isotherms parameters and minimized the time lag that occurred when using the batch 

experiment estimated adsorption isotherm parameters, still nor the linear neither the non-

linear adsorption isotherm (Langmuir or Freundlich) models fit the experimental data. In 

addition, the maximum concentrations of the ortho-pohsphate measured in the experimental 

data were slightly lower compared to the model simulated values. For instance, the maximum 

concentration with 30 mg kg-1 P with the experimental data was less than 25 and 80 mg L-1, 

respectively. However, the maximum concentration with model simulated data were 

approximately 30 and 90 mg L-1, respectively.   

The plausible reason for the lag in breakthrough and difference in maximum 

concentrations might be due to the inability of the numerical model to capture and process all 
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the P mechanisms that had happened inside the column. For instance, the numerical model did 

not explain the kinetic adsorption that may happen inside the column.  Likewise, , precipitation, 

rate of P transfers, hysteresis (between adsorption and desorption), diffusion of P in soil 

minerals etc. were not considered and explained by the numerical model. Moreover, iron 

reduction might have happened inside the column as indicated by the iron reduction test 

especially with the slow flow rates (Table 6.2.). The reducing conditions might have changed the 

sorption capacity of the soils resulting in some sporadic experimental data points.  

6.4 CONCLUSION: 

The P loss data from column leaching experiment was manually fitted with the results 

from a numerical advection-dispersion model in MATLAB. Overall, both the linear and nonlinear 

adsorption isotherms did not fit the experimental breakthrough data. During the initial stage of 

the P breakthrough, the langmuir adsorption isotherm model fitted the experimental data 

slightly better compared to the linear and freundlich adsorption isotherm. However, no 

adsorption isotherm models fit for the experimental data at the later stage. The adsorption 

isotherm parameters for linear and langmuir differ greatly with the change in P application and 

flow rates. Nevertheless, the parameters vary slightly for the freudlich adsorption isotherm 

indicating a possibility to develop a common set of parameter for different P rates and flow 

rates.  

The overall goal of the project was to determine P transport with the advection-

dispersion equation and understand the influence of the adsorption isotherm models using the 

P (breakthrough) leaching data. Once the appropriate adsorption isotherm was incorporated 
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with the P-subroutines, it will help two things; first the over parametrization of other 

parameters to compensate the P leaching to the sub-surface would be avoided and secondly 

the models would better estimate the P loss from agricultural fields and help in minimizing the 

loss to water resources. However, the results indicated that none of the adsorption isotherm 

model (linear and non-linear) tested fit the column leaching P data. It might be due to 

complexity of P chemistry in soils. The data collected in this study would be helpful to guide and 

extend the future research in testing and incorporating appropriate adsorption isotherms with 

the advection-dispersion equation. Therefore, future work should focus to explain all the 

complexities associated with P and processes that might have happened inside the column. 

Perhaps, a multi-reactional advection-dispersion model that better describes all the processes 

and complexities such as precipitation, diffusion of P in soil minerals, P transfer rates etc. as an 

additional sink term should be used in the future. 

6.5 Recommendation for future works. 

 Oxygenating the solution every time when changing the syringe reduced iron reduction 

compared to the when it was oxygenated once. In the slow flow rate even after 

oxygenating the effluent sample analysis indicated presence of some reduced iron. 

Therefore, oxygenating sample every time before changing the solution (syringe) might 

help to supply fresh oxygenated solution and overcome this problem.  

 Using curve-fitting approach in the MATLAB and incorporating multi-reactional 

advection dispersion equation would possibly help to better fit the experimental data 

with adsorption isotherms and should be the next step in the experiment.  
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Table 3.1. Physical parameters used in the column leaching experiment  

Flow Column 

length 

Targeted bulk 

Density (g cm
-3

) 

Water 

content 

(θ) 

Pore-water 

velocity 

(cm hr
-1

) 

Cross section 

area A (cm
2
) 

Flux (q) 

(cm hr
-1

) 

Discharge 

(ml hr
-1

) 

Slow (10 cm) 1.40 0.47 1.875 4.8891 0.8843 4.32321 

Fast (10 cm) 1.40 0.47 2.708 4.8891 1.2773 6.24463 
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Table 4.2. Iron reduction test; analysis of column leaching effluent collected during the experiment using UV-
Spectrophotometer. The first sample was collected immediately after switching to P solution, second sample 
was after 3-pore volume, and the third was taken at the end of the experiment. 

Column number P conc. 
mg kg

-1
 

Pore water velocity 
cm hr

-1
 

Sample collected after 
saturation at PV 

Fe
2+

 (mg L
-1

) 

1 30 1.875 0 <DL 

1 30 1.875 3 <DL 

1 30 1.875 25 1.15 

2 30 1.875 0 <DL 

2 30 1.875 3 3.17 

2 30 1.875 25 0.75 

3 30 2.708 0 2.86 

3 30 2.708 3 <DL 

3 30 2.708 12 0.35 

4 30 2.708 0 0.65 

4 30 2.708 3 <DL 

4 30 2.708 12 0.36 

5 90 1.875 0 <DL 

5 90 1.875 3 <DL 

5 90 1.875 25 1.86 

6 90 1.875 0 <DL 

6 90 1.875 3 <DL 

6 90 1.875 25 1.44 

7 90 2.708 0 <DL 

7 90 2.708 12 0.12 

8 90 2.708 0 <DL 

8 90 2.708 12 0.35 

Fe
2+

 detection limit = 0.01 mg kg
-1
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Table 5.3. Manual adjustment and sensitivity analysis of adsorption isotherm parameters 

Adsorption isotherm 

parameters 

Slow flow rate-30 

mg kg
-1

 P 

Fast flow rate- 30 

mg kg
-1

  P 

Slow flow rate- 90 

mg kg
-1

  P 

Fast flow rate- 90 

mg kg
-1

  P  

Maximum adsorption 

capacity of soil (Smax) 1100 2800 3225 1100 

Langmuir distribution or 

affinity coefficient (Kl)  0.00385 0.0016 0.0011 0.0015 

Freundlich distribution or 

partitioning coefficient (Kf) 5.10 5.70 4.70 5.40 

Empirical parameter (β) 0.91 0.90 0.92 0.88 

Kd is the distribution 

coefficient (Kd) 4.3 4.40 3.30 1.6 
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Figure 6.1. Node diagram for the advection dispersion equation for solute transport with Dirichlet boundary 
condition on the top and Neumann boundary conditions at both boundaries. (Source, Dr. Kluitenberg, AGRON 916, 
Lecture notes, 2013). 
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Figure 6.2. Batch experiment data fit with Langmuir and Freundlich adsortpion isotherm model using the excel 
spreadsheet developed by Bolster and Hornberger (2007).   
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Figure 6.3. Batch experiment data fit with Linear model using the excel spreadsheet.  All the data points were used 
in the model fit.   
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Figure 6.4. Estimation of dispersion coefficient (D = cm
2 

hr
-1

) using bromide breakthrough curve with data collected 
in a column leaching study. 

a) Slow pore water velocity (SPWV)(0.21 cm hr
-1

)-rep 1  b) SPWV-rep 2 
c) Medium pore water velocity (0.42 cm hr

-1
)-rep 1  d) MPWV-rep 2 

e) Fast pore water velocity (1.25 cm hr
-1

)-rep1  f) FPWV-rep 2  

b a 

c d 

e f 
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Figure 6.5. Linear adsorption isotherm with Kd = 2.4358 determined with batch experiment    

a) Slow flow rate (Pore water velocity = 1.875), 30 mg kg
-1

 P concentration    
b) Slow flow rate (Pore water velocity = 1.875),  90 mg kg

-1
 P concentration    

c) Fast flow rate (Pore water velocity = 2.708), 30 mg kg
-1

 P concentration    
d) Fast flow rate (Pore water velocity = 2.708), 90 mg kg

-1
 P concentration    

 

  

a 

c d 
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Figure 6.6. Langmuir adsorption isotherm with Smax = 198.5 and kl = 0.178, determined with batch experiment    

a) Slow flow rate (Pore water velocity = 1.875), 30 mg kg
-1

 P concentration    
b) Slow flow rate (Pore water velocity = 1.875),  90 mg kg

-1
 P concentration    

c) Fast flow rate (Pore water velocity = 2.708), 30 mg kg
-1

 P concentration    
d) Fast flow rate (Pore water velocity = 2.708), 90 mg kg

-1
 P concentration    

  

a b 

a b 

d c 
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Figure 6.7. Freundlich adsorption isotherm with Kf = 62.33 and kl = 0.271, determined with batch experiment    

a) Slow flow rate (Pore water velocity = 1.875), 30 mg kg
-1

 P concentration    
b) Slow flow rate (Pore water velocity = 1.875),  90 mg kg

-1
 P concentration    

c) Fast flow rate (Pore water velocity = 2.708), 30 mg kg
-1

 P concentration    
d) Fast flow rate (Pore water velocity = 2.708), 90 mg kg

-1
 P concentration    

  

a b 

a b 

d c 
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Figure 6.8. Fitting experimental data with linear and non-linear adsorption isotherm using advection-dispersion 
equation in MATLAB, slow flow rate 30 mg kg

-1
 P. a) Column 1 and b) Column 2 
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Figure 6.9. Fitting experimental data with linear and non-linear adsorption isotherm using advection-dispersion 
equation in MATLAB, slow flow rate 90 mg kg

-1
 P. a) Column 1 and b) Column 2 
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Figure 6.10. Fitting experimental data with linear and non-linear adsorption isotherm using advection-dispersion 
equation in MATLAB, fast flow rate 30 mg kg

-1
 P. a) Column 1 and b) Column 2  
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Figure 6.11. Fitting experimental data with linear and non-linear adsorption isotherm using advection-dispersion 
equation in MATLAB, fast flow rate 90 mg kg

-1
 P. a) Column 1 and b) Column 2 
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APPENDIX A. Map of the watersheds in the study sites  

 
 

  

 

Figure A1. Watersheds layout at the Franklin County runoff study site. NTSA = No-till fertilizer surface applied; 
NTDB = No-till fertilizers sub-surface application; CONV-T = Conventional tillage - fertilizer incorporated. The slope 
of the site ranged from approximately 3.5 to 7%.    
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Figure A2. Watersheds delineated using ARC-APEX at the Franklin County runoff study site.    
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Figure A3: Watersheds layout at the Crawford County runoff study with management practices. Watersheds with 
nitrogen based turkey litter-notill treatment were not used in this study. The slope of the site was approximately 
1%.   
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Table A: A.1  Key processes option available in the APEX model; the bold and italic was the one selected in our study 

Component  Methods to estimate 

Hydrology  Potential evapotranspiration Penman-Monteith  
Penman  
Priestly-Taylor  
Hargreaves   
Baier-Robertson 

Peak runoff rate Modified rational EQ stochastic peak rate estimate 
Modified rational EQ rigid peak rate estimate 

SCS TR55 peak rate estimate 
Options to SCS TR55 peak rate estimate 

a. Type I rainfall pattern 
b. Type 1A rainfall pattern 
c. Type 2 rainfall pattern  
d. Type 3 rainfall pattern 

Surface runoff CN estimate  of Q 
Green and Ampt estimate of Q, rainfall exponential distribution, peak rainfall rate 
G&A Q, rainfall exponential distribution, peak rainfall input 
G&A Q, rainfall uniformly distribution, peak rainfall input 
G&A Q, rainfall input at time interval DTHY 

Soil erosion  MUST- modified MUSLE theoretical based equation 
AOF- Onstad-Foster 
USLE- Universal soil loss equation 
MUSS small watershed MUSLE 
MUSLE Modified USLE 
MUSI Modified muscle with input parameters (see BUS(1)) 
RUSLE Revised universal soil loss equation 
RUSLE2 Modified RUSLE 

Nutrients  Enrichment ratio  Epic enrichment ration 
Gleams enrichment ratio 

Soluble P runoff estimate equation Soluble P runoff estimate using GLEAMS pesticide equation  
Langmuir equation 

N and P plant uptake concentration Smith curve 

S-curve 

APEX user manual, Steglich and Williams et al. (2013) 
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APPENDIX B. Additional information on model parameters, and soil 
characteristics 

Section 1: Description of Management Specific Sensitive Parameters  

Soluble Runoff Coefficient (P8)  

Parameter 8 (P8) determines the P concentration in runoff as a function of the P 

concentration in the soil (Williams et al 2012; Steglich and Williams 2013). The relationship 

between soil test P and P concentration in runoff could change with soil test P (Koopmans et al. 

2002). Therefore, P8 could be different for high and low P rate application management 

systems.  Increasing P8 in high P application managements decreases the dissolved P 

concentration in runoff. It suggests that for high P application the impact of soil test P on P loss 

can be decreased by increasing the value of P8. Thus, P8 should be considered as a parameter 

of interest especially in high soil test P, and poultry litter or manure application systems. It 

ranged from 4- 20 at Crawford and 10-20 at Franklin runoff study site (Table 2). 

Soil Evaporation- Plant Cover Factor (P17) 

Parameter 17 (P17) reduces the effect of plant cover as related to leaf area index (LAI) in 

regulating soil evaporation. The model computes evaporation from plants and soils separately 

(Ritchie, 1972). Soil evaporation depends on soil depth and water content.  The potential soil 

water evaporation is estimated as a function of potential evaporation and leaf area index (LAI). 

Leaf area index is the area of the plant leaves relative to the soil surface. The LAI is simulated as 

a function of heat units, crop stress and crop development stages which is initially very small or 

zero (Williams et al. Williams et al. 2012).  As, the LAI depends on type of crops grown, soil 
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fertility, water content etc. it can differ from one management to another. Lower P17 increases 

effectiveness of the plant cover factor related to LAI and reduce runoff. Increasing this number 

reduces the effectiveness and increases runoff, sediment and phosphorus loss.  

Biological Mixing Efficiency (P29) 

The model calibration procedure indicated that parameter 29 (P29) should be 0.50 for 

no till (NTSA/NTDB) and 0.10 for conventional tillage (CONV-T) managements at Franklin site. 

But was less sensitive and was 0.50 for all management practices at Crawford site (Table 2). 

Parameter 29 determines the redistribution of soil constituents as a result of the activity of the 

biota in soil (e.g. earthworms). Biological mixing is performed at the end of every calendar year 

and specifies the fraction of materials (residue, nutrients, pesticides etc.) within the tillage 

depth that are mixed uniformly throughout that tillage depth (Williams et al 2012; Steglich and 

Williams 2013). In general if the management system shifts from conventional to conservation 

and no till, the biological mixing increases. However, it may not be sensitive if the soil is 

frequently mixed with tillage operations (Arnold et al. 2012).Therefore, biological mixing could 

be different based on the tillage system.   

Coefficient adjusts microbial activity function in the top soil layer, parameter 69 (P69) and 

Microbial decay rate coefficient 

RUSLE C-factor Coefficient (P46) 

Parameter 46 (P46) is the coefficient in exponential residue function in residue factor. 

The crop residue factor (FRSD) calculates the crop management factor in APEX. FRSD is an 

exponential function of the above ground residue CVRS, where CVRS is the above ground 
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residue (t ha-1). The default value for P46 is 0.75 (Williams et al. 2012). This factor estimates 

the effectiveness of surface residue to reduce erosion. Higher P46 value indicates greater 

effectiveness of the residue to reduce erosion and may be affected by slope of the watershed, 

type of residues, and surface roughness etc. In general, the effectiveness of residue should be 

higher (higher P46) for higher slopes and vice-versa. Also, the type of residue and surface 

roughness of the field affect the erosion. For instance, if the residue cover does not make a full 

contact to the ground or perched above the soil due to depression or uneven surface, rill 

erosion may still occur beneath the residue. Therefore, based on the type of residue, evenness 

of the soil surface and slope of the watershed, parameter 46 can differ by management.  

RUSCLE C-factor Coefficient (P47) 

 Parameter 47 (P47) is a coefficient in exponential crop height function in biomass is one 

of the crop management factors in APEX. The growing biomass factor (FBIO) is an exponential 

function of the fraction ground cover by the growing crop (FGC) and crop height in m (CPHT).  

The FGC is calculated based on the standing live biomass of the crop in t ha-1. The default value 

for P46 is 0.1 (Williams et al. 2012).  Higher P47 value indicates greater effectiveness of the 

growing cover and crop height. Hence, decrease the overall sediment loss. The crop height and 

biomass not only depend on types of crops grown but also may be affected by soil water 

content, soil nutrients, soil texture, rooting depth, and organic matter etc. For instance, in a 

control (without any poultry litter/fertilizer application) system the crop growth and biomass 

may be substantially low due to nutrient deficiency compared to nitrogen rate poultry litter 

application management. Therefore, based on the type of crops grown, nutrients availability, 

organic matter content etc. parameter 46 and its effect on erosion may vary with management.  
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Coefficient Adjusts Microbial Activity Function in the Top Soil Layer (P69) and Microbial Decay 

Rate Coefficient (P70) 

The parameter 69 (P69) adjusts factors controlling biological processes (CS) in the top 

soil layer due to microbial activity. The value of P69 is directly proportional to the CS value. 

Likewise, parameter 70 (P70) adjusts soil water-temperature-oxygen equation and is also used 

to calculate the combined factor controlling biological processes (CS) (Williams et al 2012; 

Steglich and Williams 2013). An increase in P69 and P70 increases the CS and the rate of 

mineralization of residue thus mobilizes and increases the availability of nutrients for transport 

and nutrient loadings in runoff and lateral flow. Parameter P69 and P70 are vital in a system 

where there is no addition of external input (fertilizer/poultry litter) as in CONT management to 

maintain the natural processes and nutrient cycling. These parameters also affect runoff and 

sediment loss to some extent. Therefore, these parameters could differ based on management 

such as crop residues, fertilizer, poultry litter application rates etc. (Table 2). 

Coefficient regulating P flux between labile and active pool (parameter 84)  

In APEX, the rate of flow between the soluble and active pools is a user defined input 

and is the same for each transfer direction. Based on the literature and APEX theoretical 

documentation and in the original paper on phosphorus cycling and transport by Jones et al. 

(1984), it recommended to set as 0.1. This will enable to a more rate of P fixation when 

fertilizer is added, but slower release of phosphorus from the active pool for plant uptake or 

after P has been removed by runoff. It might differ with the management practices, the 
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sensitivity analysis indicated that it need to be increased (0.60) with conventional tillage when 

the inorganic fertilizer was applied.   

Soluble Phosphorus Leaching KD Value (P96) 

Parameter 96 (P96) is the phosphorus leaching kd value. It is a ratio of concentration of 

P in soil with concentration of P in water. Decreasing P (96) values in the model decreases the 

total P concentration in runoff by increasing the P leaching loss to soil profile and vice-versa. 

Parameter 96 is more important when P application exceeds the removal rate as in N rate 

poultry litter application and if there is a buildup of test P in soils. Therefore, P96 may differ by 

management practices and should be considered if the STP is high as in N rate applications and 

in tillage systems where P application is incorporated.  

Section 2: Regional Model Development  

The APEX model was parametrized, calibrated and validated using data from 2005-2008 

and from 2011-2013 collected from 2005- 2008 and 2011- 2013 in a continuous grain sorghum 

cropping system. The nitrogen (N) rate poultry litter application (TLN) management was tested 

in this study. Data from 2005-2008 were used for calibration and data from 2011-2013 were 

used for validation of the model.  

The Crawford runoff study was located in Crawford County, Kansas (37o 30’ N, 94o 59’ 

W). The soil series was Parsons Silt loam (fine, mixed thermic Mollic Albaqualf), which is a 

claypan soil in NRCS hydrologic group D, as confirmed by an on-site investigation (Donald 

Gastineau, unpublished data, 2013). There were 10 adjacent small watersheds 133m by 31m 
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(0.40 ha) in size with an approximate slope of 1%. Each watershed was separated on all sides by 

a soil berm to isolate runoff, with berms on the downslope end of the watershed angled toward 

a weir. The study was initiated in 1998 to investigate the effect of tillage fertilizer application 

method on water quality for a grain sorghum-soybean rotation. Poultry litter was applied from 

2005 and the cropping system was changed to continuous sorghum. Additional details on site 

characteristics and data collection are available in Sweeney et al. (2012) and Zeimen et al. 

(2006). 

Runoff was monitored from April through October or November.  Runoff was not 

monitored during the winter months due to complications associated with freezing 

temperatures.  Runoff data included runoff volume, sediment loss, total nitrogen (TN) loss, 

total P (TP) loss, and dissolved P (DP) loss for each runoff event, with some events including 

multiple days.  The data were summed together if there was onsite precipitation recorded 

continuously for more than one day and was regarded as a single event. Measured data were 

reviewed for quality control and events with inexplicable data (i.e. runoff: rainfall ratio > 0.9) 

were omitted from the analysis.  

The same procedure was used for sensitivity analysis, calibration and validation of the 

model with the TLN management as described in the chapter 2 materials and method section. 

There were 25 events for calibration and 26 events validation. The model parameters, range 

tested, uncalibrated and calibrated values selected were listed in Table A5. 

RESULTS AND DISCUSSION  
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The results indicated that except for runoff the uncalibrated model did not meet the 

model performance criteria for sediment, TP and DP loss. The sediment loss was extremely over 

predicted by approximately 3500 % (Table A6; Figure 1A). The calibration improved the model 

performance and the runoff, TP and DP loss met the model performance criteria. Although, the 

r2 and NSE did not meet the threshold criteria, the sediment loss was greatly improved as 

indicated by the p-bias (Table A6; Figure 1A). Similarly, the runoff, sediment, TP and DP loss all 

met the model performance criteria during validation. Overall, the results indicated that if 

properly calibrated the APEX model is capable of simulating runoff, TP and DP loss with similar 

management. 
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Table B: B.1 Archive soil (collected in 2000) analysis results before the initiation of the study at Franklin runoff study site 
Managements Depth (cm) Bray P (ppm) TP† (ppm) TN‡ (ppm) TN (%) TC§ (%) PSP¶  AEP# 

NTDB (Watershed 2) 0 - 5.1 20 482 1508 0.18 2.10 0.28 19.10 
5.1 - 15.24 17 421 1406 0.16 1.90 0.29 16.46 

NTSA (Watershed 4) 0 - 5.1 25 495 1498 0.20 2.22 0.31 23.50 
0 - 5.1- 15.24 10 431 1451 0.16 1.83 0.19 10.30 

CONV-T (Watershed 5) 0 - 5.1 19 415 1258 0.18 1.97 0.30 18.22 
0 - 5.1 - 15.24 13 427 1452 0.16 1.90 0.24 12.94 

CONV-T (Watershed 6) 0 - 5.1 21 385 1187 0.16 1.95 0.35 19.98 
0.05 - 15.24 11 465 1567 0.17 2.08 0.19 11.18 

NTDB (Watershed 7) 0 - 5.1 21 450.6 1493.9 0.19 2.06 0.31 19.98 
0 - 5.1 - 15.24 6 343.6 1201.2 0.14 1.67 0.18 6.78 

NTSA (Watershed 8) 0 - 5.1 27 484.1 1612.2 0.18 2.25 0.35 25.26 
0 - 5.1 - 15.24 11 366.9 1158.8 0.16 1.95 0.24 11.18 

†TP = Total Phosphorus 
 ‡TN = Total nitrogen 
 §TC = Total carbon 
 ¶ PSP = Phosphorous sorption coefficient  
#AEP

 
= Anion exchangeable Phosphorus (Labile P)  
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Table B: B2. Profile particle size analysis, total nitrogen and total carbon percentage at Franklin runoff study site   

Field/Watershed Depth to the 
bottom layer (cm) 

TN† % TC‡ % Sand % Silt % Clay % 

NTDB (Watershed 2)  5.1 0.18 2.10 11 49 40 
19 0.16 1.90 11 49 40 
43 0.13 1.05 6 40 54 
67 0.12 0.75 6 40 54 
90 0.10 0.49 6 42 52 

152 0.09 0.37 7 39 54 
NTSA (Watershed 4) 5.1 0.20 2.22 9 52 39 

16 0.16 1.83 9 52 39 
37 0.14 1.22 9 41 51 
68 0.10 0.74 8 40 53 

102 0.09 0.51 7 42 52 
133 0.09 0.45 7 41 52 

CONV-T (Watershed 5) 
 

5.1 0.18 1.97 10 49 41 
19 0.16 1.90 10 49 41 
44 0.12 0.95 8 37 55 
69 0.10 0.67 7 40 53 

105 0.09 0.44 7 40 53 
120 0.09 0.32 6 38 56 

CONV-T (Watershed 6) 
 

5.1 0.16 1.95 14 48 38 
20 0.17 2.08 10 48 42 
71 0.09 0.64 8 40 52 

120 0.07 0.49 6 42 52 
NTDB (Watershed 7) 

 
5.1 0.19 2.06 11 48 41 
16 0.14 1.67 11 48 41 
36 0.13 1.23 11 40 49 
75 0.10 0.72 8 40 52 

152 0.09 0.41 8 43 49 
NTSA (Watershed 8) 

 
5.1 0.18 2.25 12 56 32 
15 0.16 1.95 12 56 32 
34 0.15 1.87 12 50 38 
62 0.12 1.14 11 48 41 
99 0.09 0.69 10 49 41 

152 0.10 0.58 8 45 47 

†TP = Total Phosphorus 
 ‡TN = Total nitrogen 
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Table B: B3. Background soil analysis results before initiation of the study at Crawford runoff study site 

Managements Depth (cm) Bray P (ppm) TP† (ppm) TN‡ (ppm) TN (%) TC§ (%) PSP¶  AEP# 

FERTC  
(Watershed 102) 

0 - 7.6 8.8 435 1051 0.15 1.44 0.15 9.25 
7.6 - 20.3 7.4 296 727 0.12 1.18 0.20 8.03 

20.3 – 30.5 2.1 252 724 0.10 0.80 0.12 3.37 
CONT  

(Watershed 103) 
0 - 7.6 4.0 273 919 0.12 1.04 0.17 5.06 

7.6 - 20.3 3.4 225 636 0.10 0.90 0.18 4.52 
20.3 – 30.5 2.1 289 757 0.10 0.84 0.10 3.36 

TLP 
(Watershed 104) 

0 - 7.6 8.2 245 698 0.09 0.67 0.28 8.68 
7.6 - 20.3 2.7 252 540 0.09 0.68 0.12 3.85 

20.3 – 30.5 1.9 322 924 0.12 1.10 0.09 3.17 
TLNC 

 (Watershed 105) 
0 - 7.6 7.6 346 1027 0.12 1.21 0.19 8.15 

7.6 - 20.3 5.6 221 670 0.10 1.01 0.25 6.40 
20.3 – 30.5 1.8 220 706 0.09 0.74 0.14 3.08 

TLNC  
(Watershed 201) 

0 - 7.6 43.7 666 1102 0.13 1.26 0.30 39.96 
7.6 - 20.3 28.1 375 711 0.10 1.02 0.37 26.26 

20.3 – 30.5 1.9 308 739 0.10 0.78 0.08 3.17 
FERTC  

(Watershed 203) 
0 - 7.6 9.6 298 926 0.12 1.11 0.26 9.95 

7.6 - 20.3 7.0 210 619 0.10 0.89 0.30 7.69 
20.3 – 30.5 1.7 191 636 0.08 0.67 0.17 3.01 

TLPC  
(Watershed 204) 

0 - 7.6 16.6 399 872 0.11 1.12 0.25 16.11 
7.6 - 20.3 11.8 261 602 0.10 0.92 0.30 11.88 

20.3 – 30.5 1.8 170 739 0.09 0.75 0.29 3.12 
CONT  

(Watershed 205) 
0 - 7.6 7.6 370 760 0.10 0.93 0.15 8.19 

7.6 - 20.3 5.6 260 553 0.09 0.80 0.18 6.44 
20.3 – 30.5 1.8 190 720 0.09 0.71 0.20 3.11 

†TP = Total Phosphorus 
 ‡TN

2
 = Total nitrogen 

 §TC = Total carbon 
 ¶ PSP = Phosphorous sorption coefficient  
#AEP

 
= Anion exchangeable Phosphorus (Labile P).  

The PSP was estimated using PSP = 1/ ([(total phosphorus - organic phosphorus)/ (5*labile Phosphorus)] + 4/5) (Nelson 
and Parsons, 2006) and the AEP was estimated using regression equation (Mallarino and Atta, 2005).    
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Table B: B4. Profile particle size analysis, total nitrogen and total carbon percentage at Crawford runoff study site 

Field/Watershed Depth to the 
bottom layer (cm) 

TP† % TN‡ % Sand % Silt % Clay % 

FERTC (Watershed 102) 8 0.10 1.01 44 40 16 
 19 0.10 0.73 26 28 46 
 36 0.05 0.35 32 26 42 
 60 0.06 0.30 46 18 36 

TLNC (Watershed 105) 8 0.11 1.05 46 40 14 
 22 0.09 0.67 22 30 48 
 32 0.08 0.40 30 28 42 
 60 0.05 0.33 48 20 32 
 60 0.06 0.28 50 18 32 

FERTC Watershed 203) 8 0.08 0.80 48 38 14 
 19 0.11 0.75 26 28 46 
 31 0.08 0.46 26 30 44 
 60 0.07 0.37 36 28 36 

TLPC (Watershed 204) 8 0.09 0.81 48 38 14 
 20 0.11 0.95 22 28 50 
 32 0.08 0.52 22 30 48 
 60 0.06 0.32 34 30 36 

CONT (Watershed 205) 8 0.09 0.78 54 34 12 
 16 0.11 0.88 26 32 42 
 29 0.08 0.52 26 32 42 
 60 0.04 0.37 32 32 36 

Average of watersheds  
( 102, 105, 203, 204 and 

205)  

7 0.09 0.91 50 37 14 
19 0.10 0.78 26 29 46 
29 0.07 0.44 29 28 43 
60 0.06 0.33 41 24 35 

†TP = Total Phosphorus 
 ‡TN = Total nitrogen 
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Table B: B5. APEX model parameters tested during sensitivity analysis, calibration and their selected values at Crawford 
study sites for the regional model  

Sensitive parameters† Range tested‡ Un-calibrated 
values 

Calibrated values 
selected 

Parameters affecting runoff 
0.0-0.3 0.00 

0.02 
Runoff CN residue adjustment parameter P[15] 

     Soil evaporation plant cover factor P[17]                  0.0-0.5 0.10 0.01 
    Water stress weighing coefficient P[38]   0.0-1.0 1.00 1.0 

   SCS CN index coefficient P[42]                                    0.3-2.5 1.00 2.5 
    Upper limit CN retention parameter P[44]                       1.0-2.0 1.50  

Parameters affecting sediment 
0.01-0.05 0.05 

                              
2.0 Sediment routing coefficient P[19] 

    RUSLE C-factor coefficient residue  factor P[46]     0.5-1.5 0.50 1.40 
RUSLE C-factor coefficient biomass factor P[47]  0.5-1.5 0.50 0.10 

Parameters affecting soil biological activity 
0.1-0.5 0.10 

 
Biological mixing efficiency P[29]     0.50 

Maximum depth for biological mixing  P[31] 0.1-0.3 0.30 0.30 
Coefficient adjusts microbial activity P[69]   0.1-1.0 1.00 0.5 

  Microbial decay rate coefficient   P[70]    0.5-1.5 1.00 0.5 
Parameters affecting total and dissolved Phosphorus 

1.0-2.0 1.50 
                           

1.50     Root growth soil strength P[2]                                      
Soluble phosphorus runoff coefficient P[8]  10.0-20.0 15.0 10.0 

P upward movement by evaporation coefficient P[59] 1- 20.0 1.00 1.00 
    Manure erosion equation coefficient P[62]    0.1-0.5 0.25 0.10 

Manure erosion exponent P[68] 0.1-1.0 0.50 1.00 

   Standing dead fall rate coefficient P[76] 0.0001-0.1 0.01 0.001 
 0.0001-0.001 0.0001 0.001 

Coefficient. regulating P flux between labile and active 
pool P[84]     0.0001-0.001 0.0001 

                          
0.001 

Soluble Phosphorus Leaching KD value P[96] 1-15 1 5 

†CN, curve number;  SCS, Soil Conservation Service ; RUSLE,  Revised Universal Soil Loss Equation; KD, partition 
coefficient.  
‡The parameter ranges specified in the APEX manual (Steglich and Williams, 2013). 
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Table B: B6. Model performance statistics for same managements at Crawford runoff study site    

Forms of 
model tested 

Management† 
(Watersheds) 

Runoff Sediment Total Phosphorus Dissolved Phosphorus 

r
2
 NSE P-bias r

2
 NSE P-bias r

2
 NSE P-bias r

2
 NSE P-bias 

Uncalibrated 
model 

TLN (Watershed 101) 

0.93 0.75 -1.01 0.10 -20478‡ -8370 0.84 0.60 3 0.82 0.37 -8 
Calibration TLN (Watershed  101) 0.88 0.79 -18 0.17 -1.64 -19 0.97 0.94 21 0.97 0.96 15 
Validation TLN (Watershed  101) 0.74 0.70 24 0.60 0.49 53 0.90 0.86 -8 0.95 0.80 -24 
†TLN = No till; nitrogen rate poultry litter application. 
Model performance threshold criteria for Runoff loss = 0.50, 0.30, ±35 % for r

2
, NSE, and PBIAS respectively; Sediment, TP and DP loss = = 0.50, 0.30, ±60 % 

for r
2
, NSE, and PBIAS respectively.  

‡Bolded values indicate the model performance that did not meet the threshold criteria. 
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APPENDIX C. Full model runs results for total phosphorus, and sediment loss with poultry litter 
and different management practices, Crawford runoff study site 

 
Appendix C: C1.  Average annual total phosphorus loss with different soil test phosphorus, application rates, and timings in a continuous 
corn-corn rotation 

Phosphorus 
rates 

25 ppm 50 ppm 100 ppm 200 ppm 400 ppm 

INC
†
 NT

2
 ± % INC NT ± % INC NT ± % INC NT ± % INC NT ± % 

JANUARY APPLICATION 
0 1.3 1.4 8 2.0 1.8 -10 3.3 2.5 -30 6.0 4.0 -49 11.3 7.0 -62 
25 2.0 2.8 27 2.7 3.2 15 4.0 3.9 -3 6.7 5.4 -23 12.1 8.5 -42 
50 2.7 4.1 35 3.4 4.5 25 4.7 5.3 11 7.4 6.9 -8 12.8 10.0 -28 
100 4.1 7.1 42 4.8 7.5 36 6.2 8.4 26 8.9 10.0 11 14.4 13.2 -9 
200 7.1 13.7 48 7.8 14.2 45 9.2 15.1 39 12.0 16.8 29 17.5 20.1 13 
APRIL APPLICATION 
0 1.4 2.0 32 1.9 2.4 20 3.0 3.2 4 5.3 4.8 -11 9.8 7.9 -24 
25 1.8 2.3 20 2.4 2.7 9 3.6 3.4 -6 5.8 4.8 -23 10.4 7.6 -38 
50 2.3 3.2 28 2.9 3.6 20 4.1 4.3 6 6.4 5.8 -10 11.0 8.6 -27 
100 3.3 5.3 37 3.9 5.7 32 5.1 6.5 22 7.4 8.0 7 12.1 10.9 -10 
200 5.5 10.4 47 6.1 10.8 43 7.3 11.6 37 9.7 13.2 27 14.4 16.2 11 
OCTOBER APPLICATION 

0 1.2 1.4 10 1.9 1.8 -6 3.2 2.6 -23 5.8 4.2 -38 11.0 7.4 -49 
25 1.6 2.2 26 2.3 2.7 14 3.6 3.5 -3 6.4 5.3 -20 11.8 8.8 -34 
50 2.0 3.1 35 2.7 3.5 25 4.0 4.4 9 6.7 6.2 -8 12.2 9.8 -24 
100 2.7 4.9 45 3.4 5.4 37 4.7 6.3 25 7.5 8.1 8 13.0 11.8 -10 
200 4.1 8.7 53 4.8 9.2 48 6.1 10.1 39 8.9 12.0 26 14.5 15.8 9 
NOVEMBER APPLICATION 

0 1.3 1.4 7 1.9 1.7 -10 3.2 2.5 -30 5.9 4.0 -46 11.1 7.1 -58 
25 1.7 2.2 22 2.4 2.6 8 3.7 3.4 -10 6.4 5.0 -29 11.9 8.2 -44 
50 2.1 3.1 30 2.8 3.5 19 4.2 4.3 3 6.9 6.0 -16 12.4 9.3 -34 
100 3.0 4.9 39 3.7 5.4 32 5.0 6.2 19 7.8 7.9 2 13.3 11.3 -17 
200 4.7 9.1 48 5.4 9.5 44 6.7 10.4 35 9.5 12.2 22 15.1 15.7 4 

†INC= Poultry litter incorporated with chisel-disk-field cultivate;  NT = No till-Surface broadcast 
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Appendix C: C2. Average annual total phosphorus loss with different soil test phosphorus, application rates, and timings in a continuous corn-soybean 
rotation 

Phosphorus 
rates 

25 ppm 50 ppm 100 ppm 200 ppm 400 ppm 

INC† NT
2
 ± % INC NT ± % INC NT ± % INC NT ± % INC NT ± % 

JANUARY APPLICATION 
0 1.1 1.3 9 1.9 2.1 7 3.1 3.1 -2 5.5 5.0 -9 10.3 9.0 -14 
25 1.6 2.2 27 2.3 2.9 22 3.4 3.8 11 5.8 5.7 -1 10.4 9.5 -10 
50 2.0 3.1 36 2.6 3.8 30 3.8 4.7 19 6.1 6.6 7 10.8 10.4 -4 
100 2.7 4.8 44 3.3 5.5 40 4.5 6.5 30 6.9 8.4 18 11.5 12.2 5 
200 4.2 8.6 51 4.8 9.3 48 6.0 10.3 41 8.4 12.2 31 13.2 16.1 18 
APRIL APPLICATION 
0 1.3 1.3 -4 2.1 2.1 0 3.1 3.1 -1 5.1 5.1 -1 9.2 9.0 -2 
25 1.6 2.1 21 2.3 2.9 18 3.5 3.8 8 5.7 5.7 -1 10.3 9.1 -13 
50 2.0 2.9 31 2.7 3.7 27 3.8 4.6 17 6.1 6.5 6 10.6 9.5 -12 
100 2.8 4.7 41 3.4 5.4 36 4.6 6.4 28 6.9 8.3 17 11.5 10.5 -9 
200 4.3 8.5 49 5.0 9.3 46 6.2 10.3 40 8.6 12.2 30 13.3 12.5 -6 
OCTOBER APPLICATION 

0 1.3 1.2 -1 2.0 2.0 1 3.0 3.0 0 5.1 5.0 -1 9.1 9.0 -1 
25 1.3 1.8 24 2.1 2.5 17 3.2 3.4 7 5.4 5.3 -3 10.0 9.1 -10 
50 1.6 2.3 30 2.2 3.0 24 3.4 3.9 13 5.6 5.8 2 10.2 9.5 -7 
100 2.0 3.2 39 2.6 3.9 33 3.7 4.8 22 6.0 6.7 10 10.6 10.5 -1 
200 2.7 5.1 47 3.3 5.7 42 4.5 6.7 33 6.8 8.6 21 11.5 12.5 8 
NOVEMBER APPLICATION 

0 1.3 1.2 -1 2.0 2.0 0.52 3.0 3.0 0 5.0 5.0 -1 9.1 9.0 -1 
25 1.4 1.8 23 2.1 2.5 16.73 3.3 3.5 6 5.5 5.3 -4 10.1 9.1 -12 
50 1.7 2.4 29 2.3 3.0 23.66 3.5 4.0 13 5.8 5.8 1 10.3 9.6 -8 
100 2.1 3.4 38 2.7 4.1 32.67 3.9 5.0 22 6.2 6.9 10 10.8 10.7 -2 
200 3.0 5.6 47 3.6 6.2 42.11 4.8 7.2 33 7.2 9.1 21 11.9 13.0 8 

†INC= Poultry litter incorporated with chisel-disk-field cultivate;  NT = No till-Surface broadcast 
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Appendix C: C3. Average annual total phosphorus loss with different soil test phosphorus, application rates, and timings in a grain sorghum-
soybean rotation 

Phosphorus 
rates 

25 ppm 50 ppm 100 ppm 200 ppm 400 ppm 

INC† NT
2
  ± %  INC NT  ± %  INC NT  ± % INC NT  ± %  INC NT  ± %  

JANUARY APPLICATION   
0 1.6 1.5 -3 2.3 2.3 -1 3.7 3.7 -2 6.4 6.3 -2 11.9 11.6 -3 

25 1.8 2.6 30 2.7 3.4 22 4.3 4.7 10 7.5 7.4 -1 13.9 12.7 -10 
50 2.2 3.7 39 3.1 4.5 31 4.7 5.8 19 7.9 8.5 7 14.4 13.8 -4 

100 3.1 5.9 47 4.0 6.7 41 5.6 8.1 31 8.8 10.8 18 15.3 16.2 6 
200 4.9 10.7 54 5.8 11.5 50 7.4 12.9 43 10.6 15.6 32 17.1 21.1 19 

APRIL APPLICATION  

0 1.6 1.5 -5 2.4 2.3 -1 3.7 3.7 -2 6.4 6.3 -3 11.9 11.6 -3 

25 1.9 2.6 26 2.8 3.4 18 4.4 4.7 8 7.5 7.4 -2 13.9 12.7 -9 

50 2.4 3.7 35 3.2 4.5 27 4.8 5.8 17 8.0 8.5 5 14.4 13.9 -3 

100 3.4 6.1 45 4.2 6.7 37 5.8 8.1 28 9.0 10.8 16 15.4 16.5 6 

200 5.5 11.5 53 6.3 11.5 45 7.9 12.9 39 11.1 15.6 29 17.5 22.1 21 

JUNE APPLICATION 

0 1.6 1.5 -2 2.4 2.4 0 3.7 3.7 -1 6.4 6.3 -2 11.9 11.6 -2 

25 1.8 2.1 17 2.6 2.9 12 4.0 4.2 6 6.9 6.9 0 12.7 12.2 -4 

50 2.0 2.7 25 2.8 3.5 19 4.3 4.8 12 7.2 7.5 4 12.9 12.8 -1 

100 2.6 3.9 34 3.3 4.7 29 4.8 6.0 20 7.7 8.7 11 13.5 14.0 4 

200 3.8 6.6 42 4.6 7.4 38 6.1 8.8 31 9.0 11.5 22 14.8 16.8 12 

OCTOBER APPLICATION 

0 1.5 1.5 -3 2.3 2.3 -1 3.7 3.6 -2 6.4 6.3 -2 11.9 11.5 -3 

25 1.6 2.1 25 2.4 2.9 17 4.0 4.2 6 7.1 6.9 -4 13.5 12.2 -10 

50 1.8 2.7 33 2.6 3.5 24 4.2 4.8 12 7.4 7.5 1 13.7 12.8 -7 

100 2.3 3.8 41 3.1 4.6 34 4.7 6.0 22 7.8 8.7 10 14.2 14.1 -1 

200 3.1 6.2 49 4.0 7.0 43 5.6 8.3 33 8.7 11.1 21 15.1 16.6 9 

NOVEMBER APPLICATION 

0 1.5 1.5 -2 2.3 2.3 -1 3.7 3.6 -2 6.4 6.3 -2 11.9 11.5 -3 

25 1.6 2.1 24 2.5 2.9 16 4.1 4.3 5 7.3 6.9 -5 13.7 12.3 -11 

50 1.9 2.8 32 2.7 3.6 24 4.3 4.9 12 7.5 7.6 1 13.9 12.9 -8 

100 2.4 4.1 41 3.2 4.9 34 4.8 6.2 22 8.0 8.9 10 14.5 14.4 -1 

200 3.4 6.8 49 4.3 7.6 44 5.9 9.0 35 9.1 11.7 22 15.5 17.2 10 

†INC= Poultry litter incorporated with chisel-disk-field cultivate;  NT = No till-Surface broadcast 
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Appendix C: C4.  Average annual total phosphorus loss with different soil test phosphorus, application rates, and timings  in a continuous corn-
winter wheat-soybean rotation 
 

Phosphorus 
rates 

25 ppm 50 ppm 100 ppm 200 ppm 400 ppm 

INC† NT
2
 ± % INC NT ± % INC NT ± % INC NT ± % INC NT ± % 

JANUARY APPLICATION 
0 0.7 0.8 14 1.3 1.4 9 2.1 2.0 -3 3.7 3.3 -13 7.0 5.8 -20 
25 1.0 1.6 34 1.6 2.1 26 2.4 2.7 13 4.0 4.0 0 7.2 6.5 -11 
50 1.4 2.3 41 1.9 2.8 35 2.7 3.5 23 4.3 4.7 9 7.6 7.2 -4 
100 2.0 3.9 48 2.5 4.4 44 3.3 5.1 35 4.9 6.3 22 8.2 8.9 7 
200 3.3 7.2 55 3.8 7.8 52 4.6 8.4 46 6.2 9.7 36 9.5 12.3 22 
APRIL APPLICATION 
0 0.8 0.8 -4 1.4 1.4 0 2.0 2.0 -1 3.3 3.3 -1 6.0 5.8 -2 
25 1.1 1.5 26 1.6 2.0 21 2.4 2.7 10 4.0 3.9 -1 7.1 6.1 -16 
50 1.4 2.2 35 1.9 2.7 30 2.7 3.4 20 4.3 4.6 8 7.4 6.5 -13 
100 2.1 3.7 44 2.5 4.2 40 3.3 4.8 31 4.9 6.1 20 8.0 7.4 -9 
200 3.4 7.0 52 3.8 7.5 49 4.6 8.2 43 6.2 9.5 34 9.4 9.1 -4 
OCTOBER APPLICATION 

0 0.7 0.8 17 1.2 1.4 11 2.0 2.0 0 3.6 3.3 -10 6.8 5.8 -16 
25 0.9 1.2 30 1.3 1.7 22 2.1 2.4 10 3.7 3.6 -2 6.8 6.1 -12 
50 1.0 1.7 37 1.5 2.1 30 2.3 2.8 18 3.8 4.0 4 7.0 6.5 -7 
100 1.4 2.5 45 1.8 2.9 39 2.6 3.6 28 4.1 4.8 14 7.3 7.4 1 
200 3.6 4.1 13 4.2 4.5 7 5.5 5.2 -6 8.1 6.5 -25 13.2 9.1 -46 
NOVEMBER APPLICATION 

0 0.7 0.8 15 1.2 1.4 9 2.0 2.0 -2 3.7 3.3 -12 6.9 5.8 -19 
25 0.9 1.3 29 1.4 1.8 21 2.2 2.4 8 3.8 3.6 -4 7.0 6.1 -14 
50 1.1 1.7 36 1.6 2.2 29 2.4 2.8 16 4.0 4.1 3 7.2 6.6 -9 
100 1.5 2.6 44 1.9 3.1 38 2.7 3.7 27 4.3 5.0 14 7.5 7.5 0 
200 2.2 4.5 52 2.6 5.0 47 3.4 5.6 39 5.0 6.9 27 8.3 9.5 13 

†INC= Poultry litter incorporated with chisel-disk-field cultivate;  NT = No till-Surface broadcast 
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APPENDIX C:  C5. Average annual runoff loss with different soil test phosphorus, application rates, and timings in a 
continuous corn rotation 

Phosphorus 
application rates 
(Kg ha

-1
) 

25 ppm 50 ppm 100 ppm 200 ppm 400 ppm  

INC† NT INC NT INC NT INC NT INC NT 

JANUARY APPLICATION 
0 172 140 172 140 172 140 172 140 172 140 
25 172 142 172 142 172 142 172 142 172 142 
50 172 143 172 143 172 143 172 143 172 143 
100 172 144 172 144 172 144 172 144 172 144 
200 172 145 172 145 172 145 172 145 172 145 
APRIL APPLICATION 
0 156 143 156 143 156 143 156 143 156 143 
25 156 137 156 137 156 137 156 137 156 137 
50 156 137 156 137 156 137 156 137 156 137 
100 156 138 156 138 156 138 156 138 156 138 
200 156 139 156 139 156 139 156 139 156 139 
OCTOBER  APPLICATION 
0 165 143 165 143 165 143 165 143 165 143 
25 165 150 165 150 165 150 165 150 165 150 
50 165 151 165 151 165 151 165 151 165 151 
100 164 153 164 153 164 153 164 153 164 153 
200 163 155 163 155 163 155 163 155 163 155 
NOVEMBER  APPLICATION 

0 170 141 170 141 170 141 170 141 170 141 
25 170 145 170 145 170 145 170 145 170 145 
50 170 146 170 146 170 146 170 146 170 146 
100 169 148 169 148 169 148 169 148 169 148 
200 169 151 169 151 169 151 169 151 169 151 

†INC= Poultry litter incorporated with chisel-disk-field cultivate;  NT = No till-Surface broadcast 
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APPENDIX C:  C6. Average annual sediment loss with different soil test phosphorus, application rates, and timings in a 
continuous corn rotation 

Phosphorus 
application rates 
(Kg ha

-1
) 

25 ppm 50 ppm 100 ppm 200 ppm 400 ppm  

INC† NT INC NT INC NT INC NT INC NT 

JANUARY APPLICATION 
0 0.27 0.01 0.27 0.01 0.27 0.01 0.27 0.01 0.27 0.01 
25 0.58 0.02 0.58 0.02 0.58 0.02 0.58 0.02 0.58 0.02 
50 0.60 0.02 0.60 0.02 0.60 0.02 0.60 0.02 0.60 0.02 
100 0.63 0.02 0.63 0.02 0.63 0.02 0.63 0.02 0.63 0.02 
200 0.68 0.03 0.68 0.03 0.68 0.03 0.68 0.03 0.68 0.03 
APRIL APPLICATION 
0 0.47 0.03 0.47 0.03 0.47 0.03 0.47 0.03 0.47 0.03 
25 0.57 0.01 0.57 0.01 0.57 0.01 0.57 0.01 0.57 0.01 
50 0.59 0.01 0.59 0.01 0.59 0.01 0.59 0.01 0.59 0.01 
100 0.63 0.01 0.63 0.01 0.63 0.01 0.63 0.01 0.63 0.01 
200 0.70 0.02 0.70 0.02 0.70 0.02 0.70 0.02 0.70 0.02 
OCTOBER APPLICATION 
0 0.27 0.01 0.27 0.01 0.27 0.01 0.27 0.01 0.27 0.01 
25 0.62 0.04 0.62 0.04 0.62 0.04 0.62 0.04 0.62 0.04 
50 0.64 0.05 0.64 0.05 0.64 0.05 0.64 0.05 0.64 0.05 
100 0.69 0.07 0.69 0.07 0.69 0.07 0.69 0.07 0.69 0.07 
200 0.74 0.10 0.74 0.10 0.74 0.10 0.74 0.10 0.74 0.10 
NOVEMBER  APPLICATION 

0 0.27 0.01 0.27 0.01 0.27 0.01 0.27 0.01 0.27 0.01 
25 0.60 0.02 0.60 0.02 0.60 0.02 0.60 0.02 0.60 0.02 
50 0.62 0.03 0.62 0.03 0.62 0.03 0.62 0.03 0.62 0.03 
100 0.67 0.04 0.67 0.04 0.67 0.04 0.67 0.04 0.67 0.04 
200 0.73 0.06 0.73 0.06 0.73 0.06 0.73 0.06 0.73 0.06 

†INC= Poultry litter incorporated with chisel-disk-field cultivate;  NT = No till-Surface broadcast 
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APPENDIX C:  C7. Average annual runoff loss with different soil test phosphorus, application rates, and timings in a corn-
soybean rotation  

Phosphorus 
application rates 
(Kg ha

-1
) 

25 ppm 50 ppm 100 ppm 200 ppm 400 ppm  

INC† NT INC NT INC NT INC NT INC NT 

JANUARY APPLICATION 
0 151 144 151 144 151 144 151 144 151 144 
25 149 140 149 140 149 140 149 140 149 140 
50 148 140 148 140 148 140 148 140 148 140 
100 148 140 148 140 148 140 148 140 148 140 
200 149 141 149 141 149 141 149 141 149 141 
APRIL APPLICATION 
0 147 143 147 143 147 143 147 143 147 143 
25 144 139 144 139 144 139 144 139 144 139 
50 144 139 144 139 144 139 144 139 144 139 
100 144 140 144 140 144 140 144 140 144 140 
200 146 142 146 142 146 142 146 142 146 142 
OCTOBER APPLICATION 
0 146 144 146 144 146 144 146 144 146 144 
25 143 140 143 140 143 140 143 140 143 140 
50 143 140 143 140 143 140 143 140 143 140 
100 142 140 142 140 142 140 142 140 142 140 
200 143 141 143 141 143 141 143 141 143 141 
NOVEMBER APPLICATION 

0 149 144 149 144 149 144 149 144 149 144 
25 146 140 146 140 146 140 146 140 146 140 
50 146 140 146 140 146 140 146 140 146 140 
100 145 140 145 140 145 140 145 140 145 140 
200 146 141 146 141 146 141 146 141 146 141 

†INC= Poultry litter incorporated with chisel-disk-field cultivate;  NT = No till-Surface broadcast 
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APPENDIX C:  C8. Average annual sediment loss with different soil test phosphorus, application rates, and timings in a corn-
soybean rotation  

Phosphorus 
application rates 
(Kg ha

-1
) 

25 ppm 50 ppm 100 ppm 200 ppm 400 ppm  

INC† NT INC NT INC NT INC NT INC NT 

JANUARY APPLICATION 
0 0.23 0.02 0.23 0.02 0.23 0.02 0.23 0.02 0.23 0.02 
25 0.24 0.02 0.24 0.02 0.24 0.02 0.24 0.02 0.24 0.02 
50 0.24 0.02 0.24 0.02 0.24 0.02 0.24 0.02 0.24 0.02 
100 0.25 0.02 0.25 0.02 0.25 0.02 0.25 0.02 0.25 0.02 
200 0.27 0.03 0.27 0.03 0.27 0.03 0.27 0.03 0.27 0.03 
APRIL APPLICATION 
0 0.25 0.02 0.25 0.02 0.25 0.02 0.25 0.02 0.25 0.02 
25 0.25 0.02 0.25 0.02 0.25 0.02 0.25 0.02 0.25 0.02 
50 0.26 0.02 0.26 0.02 0.26 0.02 0.26 0.02 0.26 0.02 
100 0.28 0.02 0.28 0.02 0.28 0.02 0.28 0.02 0.28 0.02 
200 0.30 0.03 0.30 0.03 0.30 0.03 0.30 0.03 0.30 0.03 
OCTOBER  APPLICATION 
0 0.25 0.02 0.25 0.02 0.25 0.02 0.25 0.02 0.25 0.02 
25 0.21 0.02 0.21 0.02 0.21 0.02 0.21 0.02 0.21 0.02 
50 0.22 0.02 0.22 0.02 0.22 0.02 0.22 0.02 0.22 0.02 
100 0.24 0.03 0.24 0.03 0.24 0.03 0.24 0.03 0.24 0.03 
200 0.26 0.03 0.26 0.03 0.26 0.03 0.26 0.03 0.26 0.03 
NOVEMBER APPLICATION 

0 0.25 0.02 0.25 0.02 0.25 0.02 0.25 0.02 0.25 0.02 
25 0.22 0.02 0.22 0.02 0.22 0.02 0.22 0.02 0.22 0.02 
50 0.23 0.02 0.23 0.02 0.23 0.02 0.23 0.02 0.23 0.02 
100 0.25 0.02 0.25 0.02 0.25 0.02 0.25 0.02 0.25 0.02 
200 0.27 0.03 0.27 0.03 0.27 0.03 0.27 0.03 0.27 0.03 

†INC= Poultry litter incorporated with chisel-disk-field cultivate;  NT = No till-Surface broadcast 
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APPENDIX C: A9. Average annual runoff loss with different soil test phosphorus, application rates, and timings in a grain 
sorghum-soybean rotation 

Phosphorus 
application rates 
(Kg ha

-1
) 

25 ppm 50 ppm 100 ppm 200 ppm 400 ppm  

INC† NT INC NT INC NT INC NT INC NT 

JANUARY APPLICATION 
0 170 163 170 163 170 163 170 163 170 163 
25 183 163 183 163 183 163 183 163 183 163 
50 183 164 183 164 183 164 183 164 183 164 
100 183 164 183 164 183 164 183 164 183 164 
200 182 165 182 165 182 165 182 165 182 165 
APRIL APPLICATION 
0 170 163 170 163 170 163 170 163 170 163 
25 169 163 169 163 169 163 169 163 169 163 
50 169 164 169 164 169 164 169 164 169 164 
100 168 164 168 164 168 164 168 164 168 164 
200 167 165 167 165 167 165 167 165 167 165 
JUNE APPLICATION 
0 170 163 170 163 170 163 170 163 170 163 
25 169 163 169 163 169 163 169 163 169 163 
50 169 163 169 163 169 163 169 163 169 163 
100 169 163 169 163 169 163 169 163 169 163 
200 170 163 170 163 170 163 170 163 170 163 
OCTOBER APPLICATION 

0 170 163 170 163 170 163 170 163 170 163 
25 192 163 192 163 192 163 192 163 192 163 
50 192 164 192 164 192 164 192 164 192 164 
100 191 164 191 164 191 164 191 164 191 164 
200 189 165 189 165 189 165 189 165 189 165 
NOVEMBER  APPLICATION 
0 170 163 170 163 170 163 170 163 170 163 
25 192 163 192 163 192 163 192 163 192 163 
50 192 164 192 164 192 164 192 164 192 164 
100 191 164 191 164 191 164 191 164 191 164 
200 189 165 189 165 189 165 189 165 189 165 

†INC= Poultry litter incorporated with chisel-disk-field cultivate;  NT = No till-Surface broadcast 
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APPENDIX C: A10. Average annual sediment loss with different soil test phosphorus, application rates, and timings in a grain 
sorghum -soybean rotation 

Phosphorus 
application rates 
(Kg ha

-1
) 

25 ppm 50 ppm 100 ppm 200 ppm 400 ppm  

INC† NT INC NT INC NT INC NT INC NT 

JANUARY APPLICATION 
0 0.16 0.08 0.16 0.08 0.16 0.08 0.16 0.08 0.08 163 
25 0.91 0.09 0.91 0.09 0.91 0.09 0.91 0.09 0.09 163 
50 0.92 0.09 0.92 0.09 0.92 0.09 0.92 0.09 0.09 164 
100 0.95 0.10 0.95 0.10 0.95 0.10 0.95 0.10 0.10 164 
200 0.99 0.11 0.99 0.11 0.99 0.11 0.99 0.11 0.11 165 
APRIL APPLICATION 
0 0.16 0.08 0.16 0.08 0.16 0.08 0.16 0.08 0.08 163 
25 1.04 0.09 1.04 0.09 1.04 0.09 1.04 0.09 0.09 163 
50 1.07 0.09 1.07 0.09 1.07 0.09 1.07 0.09 0.09 164 
100 1.11 0.10 1.11 0.10 1.11 0.10 1.11 0.10 0.10 164 
200 1.16 0.13 1.16 0.13 1.16 0.13 1.16 0.13 0.13 165 
JUNE APPLICATION 
0 0.16 0.08 0.16 0.08 0.16 0.08 0.16 0.08 0.08 163 
25 0.73 0.08 0.73 0.08 0.73 0.08 0.73 0.08 0.08 163 
50 0.74 0.09 0.74 0.09 0.74 0.09 0.74 0.09 0.09 163 
100 0.76 0.09 0.76 0.09 0.76 0.09 0.76 0.09 0.09 163 
200 0.79 0.10 0.79 0.10 0.79 0.10 0.79 0.10 0.10 163 
OCTOBER APPLICATION 

0 0.16 0.08 0.16 0.08 0.16 0.08 0.16 0.08 0.08 163 
25 0.97 0.09 0.97 0.09 0.97 0.09 0.97 0.09 0.09 163 
50 1.00 0.10 1.00 0.10 1.00 0.10 1.00 0.10 0.10 164 
100 1.04 0.11 1.04 0.11 1.04 0.11 1.04 0.11 0.11 164 
200 1.10 0.15 1.10 0.15 1.10 0.15 1.10 0.15 0.15 165 
NOVEMBER APPLICATION 
0 0.16 0.08 0.16 0.08 0.16 0.08 0.16 0.08 0.08 163 
25 0.92 0.09 0.92 0.09 0.92 0.09 0.92 0.09 0.09 163 
50 0.95 0.09 0.95 0.09 0.95 0.09 0.95 0.09 0.09 164 
100 1.01 0.11 1.01 0.11 1.01 0.11 1.01 0.11 0.11 164 
200 1.09 0.13 1.09 0.13 1.09 0.13 1.09 0.13 0.13 165 

†INC= Poultry litter incorporated with chisel-disk-field cultivate;  NT = No till-Surface broadcast 
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APPENDIX C:  C11. Average annual runoff loss with different soil test phosphorus, application rates, and timings in a corn-
winter wheat-soybean rotation  

Phosphorus 
application rates 
(Kg ha

-1
) 

25 ppm 50 ppm 100 ppm 200 ppm 400 ppm  

INC† NT INC NT INC NT INC NT INC NT 

JANUARY APPLICATION 
0 96 92 96 92 96 92 96 92 96 92 
25 95 91 95 91 95 91 95 91 95 91 
50 95 91 95 91 95 91 95 91 95 91 
100 95 91 95 91 95 91 95 91 95 91 
200 94 91 94 91 94 91 94 91 94 91 
APRIL APPLICATION 
0 96 92 96 92 96 92 96 92 96 92 
25 95 91 95 91 95 91 95 91 95 91 
50 95 91 95 91 95 91 95 91 95 91 
100 95 91 95 91 95 91 95 91 95 91 
200 95 92 95 92 95 92 95 92 95 92 
OCTOBER APPLICATION 
0 91 92 91 92 91 92 91 92 91 92 
25 90 91 90 91 90 91 90 91 90 91 
50 89 91 89 91 89 91 89 91 89 91 
100 89 91 89 91 89 91 89 91 89 91 
200 88 91 88 91 88 91 88 91 88 91 
NOVEMBER APPLICATION 

0 94 92 94 92 94 92 94 92 94 92 
25 92 91 92 91 92 91 92 91 92 91 
50 92 91 92 91 92 91 92 91 92 91 
100 91 91 91 91 91 91 91 91 91 91 
200 91 91 91 91 91 91 91 91 91 91 

†INC= Poultry litter incorporated with chisel-disk-field cultivate;  NT = No till-Surface broadcast 
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APPENDIX C:  C12. Average annual sediment loss with different soil test phosphorus, application rates, and timings in a corn-
winter wheat-soybean rotation  

Phosphorus 
application rates 
(Kg ha

-1
) 

25 ppm 50 ppm 100 ppm 200 ppm 400 ppm  

INC† NT INC NT INC NT INC NT INC NT 

JANUARY APPLICATION 
0 0.10 0.01 0.10 0.01 0.10 0.01 0.10 0.01 0.10 0.01 
25 0.11 0.01 0.11 0.01 0.11 0.01 0.11 0.01 0.11 0.01 
50 0.11 0.01 0.11 0.01 0.11 0.01 0.11 0.01 0.11 0.01 
100 0.12 0.01 0.12 0.01 0.12 0.01 0.12 0.01 0.12 0.01 
200 0.13 0.01 0.13 0.01 0.13 0.01 0.13 0.01 0.13 0.01 
APRIL APPLICATION 
0 0.23 0.01 0.23 0.01 0.23 0.01 0.23 0.01 0.23 0.01 
25 0.14 0.01 0.14 0.01 0.14 0.01 0.14 0.01 0.14 0.01 
50 0.15 0.01 0.15 0.01 0.15 0.01 0.15 0.01 0.15 0.01 
100 0.16 0.01 0.16 0.01 0.16 0.01 0.16 0.01 0.16 0.01 
200 0.18 0.01 0.18 0.01 0.18 0.01 0.18 0.01 0.18 0.01 
OCTOBER APPLICATION 
0 0.09 0.01 0.09 0.01 0.09 0.01 0.09 0.01 0.09 0.01 
25 0.09 0.01 0.09 0.01 0.09 0.01 0.09 0.01 0.09 0.01 
50 0.10 0.01 0.10 0.01 0.10 0.01 0.10 0.01 0.10 0.01 
100 0.10 0.01 0.10 0.01 0.10 0.01 0.10 0.01 0.10 0.01 
200 0.31 0.01 0.31 0.01 0.31 0.01 0.31 0.01 0.31 0.01 
NOVEMBER APPLICATION 

0 0.09 0.01 0.09 0.01 0.09 0.01 0.09 0.01 0.09 0.01 
25 0.10 0.01 0.10 0.01 0.10 0.01 0.10 0.01 0.10 0.01 
50 0.10 0.01 0.10 0.01 0.10 0.01 0.10 0.01 0.10 0.01 
100 0.11 0.01 0.11 0.01 0.11 0.01 0.11 0.01 0.11 0.01 
200 0.12 0.01 0.12 0.01 0.12 0.01 0.12 0.01 0.12 0.01 

†INC= Poultry litter incorporated with chisel-disk-field cultivate;  NT = No till-Surface broadcast 
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APPENDIX D. Full model runs results for total phosphorus, and sediment loss with different 
management practices, Franklin runoff study site 

Watershed 8 
Appendix  D: D1.  Average annual total phosphorus loss with different soil test phosphorus, application rates, and timings in a continuous-corn rotation, watershed 8 

Phosphorus 
application 
rates (Kg ha-1) 

25 ppm 50 ppm 100 ppm 200 ppm 400 ppm 

INC† NT SSA 
           
± %‡ INC† NT SSA 

       
± % INC† NT SSA 

       
± % INC† NT SSA 

      
± % INC NT SSA 

         
± % 

JANUARY APPLICATION 
0 1.1 0.9 0.61 -12 1.6 1.2 0.9 -31 2.5 1.6 1.3 -55 4.5 2.5 2.2 -78 8.3 4.2 4.1 -96 
25 1.6 2.1 0.61 23 2.1 2.3 0.9 10 3.1 2.8 1.3 -11 5.0 3.7 2.2 -37 8.9 5.4 4.1 -64 
50 2.2 3.2 0.61 33 2.7 3.5 0.9 23 3.6 3.9 1.3 7 5.6 4.8 2.2 -16 9.4 6.5 4.1 -44 
75 2.7 4.3 0.61 38 3.2 4.6 0.9 30 4.2 5.0 1.3 17 6.1 5.9 2.2 -4 10.0 7.7 4.1 -30 
APRIL APPLICATION 

0 1.1 1.0 0.61 -10 1.6 1.2 0.8 -25 2.5 1.7 1.3 -47 4.3 2.6 2.1 -68 7.9 4.3 3.9 -84 
25 1.6 2.0 0.60 21 2.0 2.2 0.9 9 3.0 2.7 1.3 -10 4.8 3.6 2.2 -34 8.4 5.3 4.0 -59 
50 2.0 3.0 0.61 32 2.5 3.2 0.9 23 3.4 3.7 1.3 7 5.2 4.5 2.2 -15 8.9 6.3 4.0 -41 
75 2.5 4.0 0.62 37 3.0 4.2 0.9 30 3.9 4.7 1.3 17 5.7 5.5 2.2 -3 9.3 7.3 4.0 -29 
OCTOBER APPLICATION 
0 1.0 0.9 0.61 -16 1.5 1.1 0.8 -36 2.5 1.6 1.3 -59 4.4 2.4 2.2 -81 8.3 4.2 3.9 -97 
25 1.4 1.6 0.64 12 1.9 1.8 0.9 -4 2.9 2.3 1.4 -27 4.9 3.2 2.3 -53 8.9 5.0 4.1 -76 
50 1.7 2.2 0.67 23 2.2 2.5 0.9 10 3.2 2.9 1.4 -10 5.2 3.9 2.3 -35 9.2 5.7 4.2 -62 
75 2.1 2.9 0.70 29 2.6 3.1 0.9 18 3.6 3.6 1.4 1 5.6 4.5 2.3 -23 9.6 6.4 4.2 -51 
NOVEMBER APPLICATION 
0 1.0 0.9 0.62 -17 1.5 1.1 0.8 -36 2.5 1.6 1.3 -60 4.5 2.5 2.1 -82 8.4 4.2 3.9 -99 
25 1.4 1.6 0.65 13 1.9 1.9 0.9 -3 3.0 2.4 1.4 -26 5.0 3.3 2.3 -52 9.0 5.1 4.1 -77 
50 1.8 2.4 0.67 24 2.3 2.6 0.9 12 3.3 3.1 1.4 -8 5.3 4.0 2.3 -34 9.3 5.8 4.1 -61 
75 2.2 3.1 0.70 30 2.7 3.4 0.9 20 3.7 3.8 1.4 3 5.7 4.7 2.3 -21 9.7 6.5 4.2 -49 

†INC= Fertilizer incorporated with chisel-disk-field cultivate; NT = No till-surface broadcast; SSA = no till-sub-surface application. ‡ The percent differences in the table were 
calculated only for incorporation and no-till surface broadcast. 
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Appendix D: D2.  Average annual total phosphorus loss with different soil test phosphorus, application rates, and timings in a corn-soybean rotation, watershed 8 

Phosphorus 
application 
rates (Kg ha-1) 

25 ppm 50 ppm 100 ppm 200 ppm 400 ppm 

INC† NT SSA 
           
± %‡ INC† NT SSA 

       
± % INC† NT SSA 

       
± % INC† NT SSA 

      
± % INC NT SSA 

         
± % 

JANUARY APPLICATION 
0 0.6 0.6 0.6 -3 1.1 1.1 1.0 0 1.7 1.6 1.5 -9 3.1 2.6 2.6 -16 5.7 4.7 4.6 -21 
25 1.0 1.3 0.6 27 1.4 1.8 1.0 22 2.1 2.3 1.6 11 3.4 3.4 2.6 -1 6.0 5.4 4.8 -11 
50 1.3 2.0 0.6 36 1.7 2.5 1.0 32 2.4 3.0 1.6 21 3.7 4.1 2.7 9 6.4 6.1 4.8 -4 
75 1.6 2.8 0.7 41 2.0 3.2 1.1 37 2.7 3.7 1.6 28 4.0 4.8 2.7 16 6.7 6.8 4.8 2 
APRIL APPLICATION 

0 0.6 0.6 0.6 -7 1.1 1.1 1.0 -2 1.8 1.6 1.5 -9 3.1 2.6 2.6 -16 5.6 4.7 4.6 -20 
25 1.0 1.3 0.6 24 1.4 1.8 1.0 20 2.1 2.3 1.6 10 3.4 3.3 2.6 -1 6.0 5.4 4.8 -10 
50 1.3 2.0 0.7 34 1.7 2.5 1.0 30 2.4 3.0 1.6 20 3.7 4.0 2.7 9 6.3 6.1 4.8 -3 
75 1.6 2.7 0.7 39 2.0 3.1 1.1 36 2.7 3.7 1.6 27 4.0 4.7 2.7 15 6.6 6.8 4.8 3 
OCTOBER APPLICATION 
0 0.6 0.6 0.5 1 1.0 1.1 1.0 2 1.7 1.6 1.5 -7 3.0 2.6 2.6 -14 5.6 4.7 4.6 -19 
25 0.8 1.0 0.6 22 1.2 1.5 1.0 16 1.9 2.0 1.6 5 3.2 3.1 2.6 -5 5.8 5.1 4.8 -14 
50 1.1 1.5 0.7 29 1.4 1.9 1.1 24 2.1 2.4 1.6 13 3.4 3.5 2.7 2 6.0 5.5 4.8 -9 
75 1.3 1.9 0.7 34 1.6 2.3 1.1 29 2.3 2.8 1.6 19 3.6 3.9 2.7 7 6.2 6.0 4.8 -4 
NOVEMBER APPLICATION 
0 0.6 0.6 0.5 -1 1.1 1.1 1.0 0 1.7 1.6 1.5 -9 3.0 2.6 2.6 -16 5.7 4.7 4.6 -21 
25 0.9 1.1 0.6 22 1.3 1.5 1.0 16 2.0 2.1 1.6 5 3.3 3.1 2.6 -6 5.9 5.2 4.8 -14 
50 1.1 1.6 0.7 30 1.5 2.0 1.1 25 2.2 2.5 1.6 14 3.5 3.6 2.7 2 6.1 5.6 4.8 -9 
75 1.3 2.1 0.7 35 1.7 2.5 1.1 30 2.4 3.0 1.6 20 3.7 4.0 2.7 8 6.4 6.1 4.8 -4 

†INC= Fertilizer incorporated with chisel-disk-field cultivate; NT = No till-surface broadcast; SSA = no till-sub-surface application. ‡ The percent differences in the table were 
calculated only for incorporation and no-till surface broadcast. 
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Appendix D: D3.  Average annual total phosphorus loss with different soil test phosphorus, application rates, and timings in a grain sorghum-soybean rotation 

Phosphorus 
application 
rates (Kg ha-1) 

25 ppm 50 ppm 100 ppm 200 ppm 400 ppm 

INC† NT SSA 
           
± %‡ INC† NT SSA 

       
± % INC† NT SSA 

       
± % INC† NT SSA 

      
± % INC NT SSA 

         
± % 

JANUARY APPLICATION 
0 1.0 0.7 0.7 -37 1.7 1.2 1.2 -39 2.9 1.9 1.9 -51 5.3 3.3 3.3 -60 10.1 6.1 6.0 -66 
25 1.5 1.8 0.8 16 2.1 2.2 1.2 4 3.3 2.9 1.9 -14 5.7 4.3 3.3 -33 10.5 7.1 6.2 -49 
50 2.0 2.8 0.8 30 2.6 3.3 1.2 20 3.8 4.0 1.9 4 6.2 5.3 3.4 -16 11.0 8.1 6.2 -36 
75 2.4 3.8 0.8 37 3.1 4.3 1.2 29 4.3 5.0 2.0 14 6.7 6.4 3.4 -5 11.5 9.1 6.3 -26 
APRIL APPLICATION 

0 1.1 0.8 0.7 -51 1.9 1.2 1.2 -51 3.1 1.9 1.9 -64 5.7 3.3 3.3 -71 10.8 6.1 6.1 -77 
25 1.6 1.8 0.8 11 2.3 2.3 1.2 -1 3.6 2.9 1.9 -23 6.2 4.4 3.4 -40 11.3 7.2 6.3 -57 
50 2.1 2.9 0.8 27 2.8 3.4 1.2 17 4.1 4.0 1.9 -3 6.7 5.5 3.4 -22 11.8 8.3 6.3 -42 
75 2.6 4.0 0.8 35 3.3 4.4 1.3 26 4.6 5.0 2.0 8 7.1 6.5 3.4 -9 12.3 9.3 6.3 -31 
JUNE APPLICATION 
0 1.0 0.8 0.7 -25 1.5 1.2 1.2 -23 2.5 1.9 1.9 -29 4.4 3.3 3.3 -33 8.3 6.1 6.0 -36 
25 1.3 1.4 0.8 11 1.8 1.9 1.2 4 2.8 2.6 1.9 -8 4.7 4.0 3.3 -19 8.6 6.7 6.1 -27 
50 1.6 2.1 0.8 24 2.1 2.5 1.2 17 3.1 3.2 1.9 4 5.0 4.6 3.3 -9 8.9 7.4 6.1 -20 
75 1.9 2.7 0.8 32 2.4 3.2 1.2 24 3.4 3.9 1.9 13 5.3 5.2 3.3 -1 9.1 8.0 6.1 -14 
OCTOBER APPLICATION 
0 1.0 0.7 0.7 -33 1.6 1.2 1.2 -36 2.8 1.9 1.9 -48 5.2 3.3 3.3 -58 5.2 3.3 6.0 -58 
25 1.3 1.3 0.8 5 1.9 1.8 1.2 -7 3.1 2.5 1.9 -25 5.5 3.9 3.4 -41 5.5 3.9 6.2 -41 
50 1.6 1.9 0.8 19 2.2 2.4 1.2 7 3.4 3.1 2.0 -10 5.8 4.5 3.4 -29 5.8 4.5 6.3 -29 
75 1.9 2.5 0.9 26 2.5 3.0 1.3 16 3.7 3.7 2.0 0 6.1 5.1 3.4 -20 6.1 5.1 6.3 -20 
NOVEMBER APPLICATION 
0 1.0 0.7 0.7 -36 1.7 1.2 1.2 -38 2.9 1.9 1.9 -51 5.3 3.3 3.3 -60 10.1 6.1 6.0 -66 
25 1.3 1.4 0.8 6 2.0 1.9 1.2 -6 3.2 2.6 1.9 -24 5.6 3.9 3.4 -42 10.4 6.7 6.2 -55 
50 1.7 2.1 0.8 20 2.3 2.5 1.3 9 3.5 3.2 2.0 -9 5.9 4.6 3.4 -28 10.7 7.4 6.3 -45 
75 2.0 2.7 0.9 28 2.6 3.2 1.3 18 3.8 3.9 2.0 1 6.2 5.3 3.5 -18 11.0 8.0 6.3 -37 

†INC= Fertilizer incorporated with chisel-disk-field cultivate; NT = No till-surface broadcast; SSA = no till-sub-surface application. ‡ The percent differences in the table were 
calculated only for incorporation and no-till surface broadcast. 
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Appendix D: D4.  Average annual total phosphorus loss with different soil test phosphorus, application rates, and timings in a corn-winter wheat-soybean rotation 

Phosphorus 
application 
rates (Kg ha-1) 

25 ppm 50 ppm 100 ppm 200 ppm 400 ppm 

INC† NT SSA 
           
± %‡ INC† NT SSA 

       
± % INC† NT SSA 

       
± % INC† NT SSA 

      
± % INC NT SSA 

         
± % 

JANUARY APPLICATION 
0 0.2 0.2 0.2 13 0.5 0.6 0.5 13 0.8 0.8 0.8 2 1.4 1.3 1.3 -7 2.6 2.3 2.3 -13 
25 0.4 0.6 0.2 40 0.7 1.0 0.5 33 1.0 1.3 0.8 22 1.6 1.8 1.3 9 2.8 2.8 2.3 -2 
50 0.6 1.1 0.3 44 0.8 1.4 0.5 41 1.2 1.7 0.8 31 1.8 2.2 1.3 19 3.0 3.2 2.3 6 
75 0.8 1.6 0.3 47 1.0 1.9 0.5 45 1.3 2.1 0.8 37 1.9 2.6 1.3 25 3.2 3.6 2.3 12 
APRIL APPLICATION 

0 0.2 0.2 0.2 5 0.5 0.6 0.5 10 0.8 0.8 0.8 1 1.4 1.3 1.3 -7 2.6 2.3 2.3 -13 
25 0.4 0.7 0.2 37 0.7 1.0 0.5 32 1.0 1.3 0.8 22 1.6 1.8 1.3 10 2.8 2.8 2.3 -1 
50 0.7 1.2 0.3 44 0.9 1.5 0.5 41 1.2 1.7 0.8 32 1.8 2.2 1.3 20 3.0 3.3 2.3 8 
75 0.9 1.6 0.3 48 1.1 1.9 0.5 45 1.4 2.2 0.8 38 2.0 2.7 1.3 27 3.2 3.7 2.3 14 
OCTOBER APPLICATION 
0 0.1 0.2 0.2 22 0.5 0.6 0.5 17 0.8 0.8 0.8 7 1.3 1.3 1.3 -2 2.5 2.3 2.3 -8 
25 0.3 0.5 0.2 39 0.6 0.8 0.5 30 0.9 1.1 0.8 18 1.5 1.6 1.3 7 2.6 2.6 2.3 -2 
50 0.5 0.8 0.3 41 0.7 1.0 0.5 36 1.0 1.3 0.8 26 1.6 1.8 1.3 14 2.7 2.8 2.3 3 
75 0.6 1.0 0.3 44 0.8 1.3 0.6 40 1.1 1.5 0.8 31 1.7 2.0 1.3 19 2.8 3.1 2.4 7 
NOVEMBER APPLICATION 
0 0.2 0.2 0.2 17 0.5 0.6 0.5 14 0.8 0.8 0.8 3 1.4 1.3 1.3 -6 2.6 2.3 2.3 -12 
25 0.3 0.5 0.2 37 0.6 0.8 0.5 29 0.9 1.1 0.8 17 1.5 1.6 1.3 5 2.7 2.6 2.3 -5 
50 0.5 0.8 0.3 40 0.7 1.1 0.5 36 1.0 1.4 0.8 25 1.6 1.9 1.3 13 2.8 2.9 2.4 1 
75 0.6 1.1 0.3 44 0.8 1.4 0.6 40 1.1 1.6 0.8 30 1.8 2.1 1.3 18 3.0 3.2 2.4 6 

†INC= Fertilizer incorporated with chisel-disk-field cultivate; NT = No till-surface broadcast; SSA = no till-sub-surface application. ‡ The percent differences in the table were 
calculated only for incorporation and no-till surface broadcast. 
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Appendix D: D5.  Average annual runoff loss (mm) with different soil test phosphorus, application rates, and timings in a continuous corn 
rotation, watershed 8 

Phosphorus 
application 
rates (Kg ha-1) 

25 ppm 50 ppm 100 ppm 200 ppm 400 ppm 

INC† NT SSA INC NT SSA INC NT SSA INC NT SSA INC NT SSA 

JANUARY APPLICATION  
0 125 100 104 125 100 104 125 100 104 125 100 104 125 100 104 
25 126 102 104 126 102 104 126 102 104 126 102 104 126 102 104 
50 126 102 104 126 102 104 126 102 104 126 102 104 126 102 104 
75 126 102 104 126 102 104 126 102 104 126 102 104 126 102 104 
APRIL APPLICATION 
0 117 100 100 117 100 100 117 100 100 117 100 100 117 100 100 
25 118 101 103 118 101 103 118 101 103 118 101 103 118 101 103 
50 118 101 103 118 101 103 118 101 103 118 101 103 118 101 103 
75 118 101 103 118 101 103 118 101 103 118 101 103 118 101 103 
OCTOBER APPLICATION 
0 122 101 100 122 101 100 122 101 100 122 101 100 122 101 100 
25 122 104 104 122 104 104 122 104 104 122 104 104 122 104 104 
50 122 104 104 122 104 104 122 104 104 122 104 104 122 104 104 
75 122 104 104 122 104 104 122 104 104 122 104 104 122 104 104 
NOVEMBER APPLICATION 
0 126 101 99 126 101 99 126 101 99 126 101 99 126 101 99 
25 126 103 104 126 103 104 126 103 104 126 103 104 126 103 104 
50 126 103 104 126 103 104 126 103 104 126 103 104 126 103 104 
75 126 103 104 126 103 104 126 103 104 126 103 104 126 103 104 

†INC= Fertilizer incorporated with chisel-disk-field cultivate;  NT = No till-surface broadcast; SSA = no till-sub-surface application 
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Appendix D: D6.  Average annual sediment loss with different soil test phosphorus, application rates, and timings in a continuous corn rotation, watershed 8 

Phosphorus 
application 
rates (Kg ha-1) 

25 ppm 50 ppm 100 ppm 200 ppm 400 ppm 

INC† NT SSA INC NT SSA INC NT SSA INC NT SSA INC NT SSA 

JANUARY APPLICATION  
0 0.410 0.002 0.004 0.410 0.002 0.004 0.410 0.002 0.004 0.410 0.002 0.004 0.410 0.002 0.004 
25 0.414 0.003 0.004 0.414 0.003 0.004 0.414 0.003 0.004 0.414 0.003 0.004 0.414 0.003 0.004 
50 0.414 0.003 0.004 0.414 0.003 0.004 0.414 0.003 0.004 0.414 0.003 0.004 0.414 0.003 0.004 
75 0.414 0.003 0.004 0.414 0.003 0.004 0.414 0.003 0.004 0.414 0.003 0.004 0.414 0.003 0.004 
APRIL APPLICATION 
0 0.430 0.002 0.002 0.430 0.002 0.002 0.430 0.002 0.002 0.430 0.002 0.002 0.430 0.002 0.002 
25 0.437 0.002 0.004 0.437 0.002 0.004 0.437 0.002 0.004 0.437 0.002 0.004 0.437 0.002 0.004 
50 0.437 0.002 0.004 0.437 0.002 0.004 0.437 0.002 0.004 0.437 0.002 0.004 0.437 0.002 0.004 
75 0.437 0.002 0.004 0.437 0.002 0.004 0.437 0.002 0.004 0.437 0.002 0.004 0.437 0.002 0.004 
OCTOBER APPLICATION 
0 0.413 0.002 0.001 0.413 0.002 0.001 0.413 0.002 0.001 0.413 0.002 0.001 0.413 0.002 0.001 
25 0.445 0.004 0.004 0.445 0.004 0.004 0.445 0.004 0.004 0.445 0.004 0.004 0.445 0.004 0.004 
50 0.445 0.004 0.004 0.445 0.004 0.004 0.445 0.004 0.004 0.445 0.004 0.004 0.445 0.004 0.004 
75 0.445 0.004 0.004 0.445 0.004 0.004 0.445 0.004 0.004 0.445 0.004 0.004 0.445 0.004 0.004 
NOVEMBER APPLICATION 
0 0.406 0.002 0.001 0.406 0.002 0.001 0.406 0.002 0.001 0.406 0.002 0.001 0.406 0.002 0.001 
25 0.433 0.004 0.004 0.433 0.004 0.004 0.433 0.004 0.004 0.433 0.004 0.004 0.433 0.004 0.004 
50 0.433 0.004 0.004 0.433 0.004 0.004 0.433 0.004 0.004 0.433 0.004 0.004 0.433 0.004 0.004 
75 0.433 0.004 0.004 0.433 0.004 0.004 0.433 0.004 0.004 0.433 0.004 0.004 0.433 0.004 0.004 

†INC= Fertilizer incorporated with chisel-disk-field cultivate;  NT = No till-surface broadcast; SSA = no till-sub-surface application 
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Appendix D: D7.  Average annual runoff loss (mm) with different soil test phosphorus, application rates, and timings in a corn-soybean 
rotation, watershed 8 

Phosphorus 
application 
rates (Kg ha-1) 

25 ppm 50 ppm 100 ppm 200 ppm 400 ppm 

INC† NT SSA INC NT SSA INC NT SSA INC NT SSA INC NT SSA 

JANUARY APPLICATION  
0 117 111 111 117 111 111 117 111 111 117 111 111 117 111 111 
25 118 112 113 118 112 113 118 112 113 118 112 113 118 112 113 
50 118 112 113 118 112 113 118 112 113 118 112 113 118 112 113 
75 118 112 113 118 112 113 118 112 113 118 112 113 118 112 113 
APRIL APPLICATION 
0 116 111 111 116 111 111 116 111 111 116 111 111 116 111 111 
25 117 112 113 117 112 113 117 112 113 117 112 113 117 112 113 
50 117 112 113 117 112 113 117 112 113 117 112 113 117 112 113 
75 117 112 113 117 112 113 117 112 113 117 112 113 117 112 113 
OCTOBER APPLICATION 
0 114 111 111 114 111 111 114 111 111 114 111 111 114 111 111 
25 116 112 113 116 112 113 116 112 113 116 112 113 116 112 113 
50 116 112 113 116 112 113 116 112 113 116 112 113 116 112 113 
75 116 112 113 116 112 113 116 112 113 116 112 113 116 112 113 
NOVEMBER APPLICATION 
0 116 111 111 116 111 111 116 111 111 116 111 111 116 111 111 
25 117 112 113 117 112 113 117 112 113 117 112 113 117 112 113 
50 117 112 113 117 112 113 117 112 113 117 112 113 117 112 113 
75 117 112 113 117 112 113 117 112 113 117 112 113 117 112 113 

†INC= Fertilizer incorporated with chisel-disk-field cultivate;  NT = No till-surface broadcast; SSA = no till-sub-surface application 
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Appendix D: D8.  Average annual sediment loss with different soil test phosphorus, application rates, and timings in a corn-soybean  rotation, watershed 8 

Phosphorus 
application rates 
(Kg ha-1) 

25 ppm 50 ppm 100 ppm 200 ppm 400 ppm 

INC† NT SSA INC NT SSA INC NT SSA INC NT SSA INC NT SSA 

JANUARY APPLICATION  
0 0.094 0.004 0.005 0.094 0.004 0.005 0.094 0.004 0.005 0.094 0.004 0.005 0.094 0.004 0.005 
25 0.094 0.005 0.006 0.094 0.005 0.006 0.094 0.005 0.006 0.094 0.005 0.006 0.094 0.005 0.006 

50 0.094 0.005 0.006 0.094 0.005 0.006 0.094 0.005 0.006 0.094 0.005 0.006 0.094 0.005 0.006 

75 0.094 0.005 0.006 0.094 0.005 0.006 0.094 0.005 0.006 0.094 0.005 0.006 0.094 0.005 0.006 
APRIL APPLICATION 
0 0.109 0.004 0.005 0.109 0.004 0.005 0.109 0.004 0.005 0.109 0.004 0.005 0.109 0.004 0.005 
25 0.109 0.005 0.007 0.109 0.005 0.007 0.109 0.005 0.007 0.109 0.005 0.007 0.109 0.005 0.007 
50 0.109 0.005 0.007 0.109 0.005 0.007 0.109 0.005 0.007 0.109 0.005 0.007 0.109 0.005 0.007 
75 0.109 0.005 0.007 0.109 0.005 0.007 0.109 0.005 0.007 0.109 0.005 0.007 0.109 0.005 0.007 
OCTOBER APPLICATION 
0 0.086 0.004 0.004 0.086 0.004 0.004 0.086 0.004 0.004 0.086 0.004 0.004 0.086 0.004 0.004 
25 0.086 0.005 0.006 0.086 0.005 0.006 0.086 0.005 0.006 0.086 0.005 0.006 0.086 0.005 0.006 
50 0.086 0.005 0.006 0.086 0.005 0.006 0.086 0.005 0.006 0.086 0.005 0.006 0.086 0.005 0.006 
75 0.086 0.005 0.006 0.086 0.005 0.006 0.086 0.005 0.006 0.086 0.005 0.006 0.086 0.005 0.006 
NOVEMBER APPLICATION 
0 0.092 0.004 0.005 0.092 0.004 0.005 0.092 0.004 0.005 0.092 0.004 0.005 0.092 0.004 0.005 
25 0.092 0.005 0.006 0.092 0.005 0.006 0.092 0.005 0.006 0.092 0.005 0.006 0.092 0.005 0.006 
50 0.092 0.005 0.006 0.092 0.005 0.006 0.092 0.005 0.006 0.092 0.005 0.006 0.092 0.005 0.006 
75 0.092 0.005 0.006 0.092 0.005 0.006 0.092 0.005 0.006 0.092 0.005 0.006 0.092 0.005 0.006 

†INC= Fertilizer incorporated with chisel-disk-field cultivate;  NT = No till-surface broadcast; SSA = no till-sub-surface application 
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Appendix D: D9.  Average annual runoff loss (mm) with different soil test phosphorus, application rates, and timings in a grain sorghum- 
soybean rotation, watershed 8 

Phosphorus 
application 
rates (Kg ha-1) 

25 ppm 50 ppm 100 ppm 200 ppm 400 ppm 

INC† NT SSA INC NT SSA INC NT SSA INC NT SSA INC NT SSA 

JANUARY APPLICATION 
0 124 119 119 124 119 119 124 119 119 124 119 119 124 119 119 
25 124 119 120 124 119 120 124 119 120 124 119 120 124 119 120 
50 124 119 120 124 119 120 124 119 120 124 119 120 124 119 120 
75 124 119 120 124 119 120 124 119 120 124 119 120 124 119 120 
APRIL APPLICATION 
0 124 119 119 124 119 119 124 119 119 124 119 119 124 119 119 
25 124 119 120 124 119 120 124 119 120 124 119 120 124 119 120 
50 124 119 120 124 119 120 124 119 120 124 119 120 124 119 120 
75 124 119 120 124 119 120 124 119 120 124 119 120 124 119 120 
JUNE APPLICATION 
0 121 119 119 121 119 119 121 119 119 121 119 119 121 119 119 
25 121 119 119 121 119 119 121 119 119 121 119 119 121 119 119 
50 121 119 119 121 119 119 121 119 119 121 119 119 121 119 119 
75 121 119 119 121 119 119 121 119 119 121 119 119 121 119 119 
OCTOBER APPLICATION 
0 122 119 119 122 119 119 122 119 119 122 119 119 122 119 119 
25 122 119 120 122 119 120 122 119 120 122 119 120 122 119 120 
50 122 119 120 122 119 120 122 119 120 122 119 120 122 119 120 
75 122 119 120 122 119 120 122 119 120 122 119 120 122 119 120 
NOVEMBER APPLICATION 
0 124 119 119 124 119 119 124 119 119 124 119 119 124 119 119 
25 124 119 120 124 119 120 124 119 120 124 119 120 124 119 120 
50 124 119 120 124 119 120 124 119 120 124 119 120 124 119 120 
75 124 119 120 124 119 120 124 119 120 124 119 120 124 119 120 

†INC= Fertilizer incorporated with chisel-disk-field cultivate;  NT = No till-surface broadcast; SSA = no till-sub-surface application 
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Appendix D: D10.  Average annual sediment loss with different soil test phosphorus, application rates, and timings in a grain sorghum - soybean  rotation, 
watershed 8 

Phosphorus 
application rates 
(Kg ha-1) 

25 ppm 50 ppm 100 ppm 200 ppm 400 ppm 

INC† NT SSA INC NT SSA INC NT SSA INC NT SSA INC NT SSA 

JANUARY APPLICATION 
0 0.600 0.05 0.05 0.600 0.05 0.05 0.600 0.05 0.05 0.600 0.05 0.05 0.600 0.05 0.05 
25 0.600 0.05 0.07 0.600 0.05 0.07 0.600 0.05 0.07 0.600 0.05 0.07 0.600 0.05 0.07 

50 0.600 0.05 0.07 0.600 0.05 0.07 0.600 0.05 0.07 0.600 0.05 0.07 0.600 0.05 0.07 

75 0.600 0.05 0.07 0.600 0.05 0.07 0.600 0.05 0.07 0.600 0.05 0.07 0.600 0.05 0.07 
APRIL APPLICATION 
0 0.760 0.06 0.06 0.760 0.06 0.06 0.760 0.06 0.06 0.760 0.06 0.06 0.760 0.06 0.06 
25 0.760 0.06 0.08 0.760 0.06 0.08 0.760 0.06 0.08 0.760 0.06 0.08 0.760 0.06 0.08 
50 0.760 0.06 0.08 0.760 0.06 0.08 0.760 0.06 0.08 0.760 0.06 0.08 0.760 0.06 0.08 
75 0.760 0.06 0.08 0.760 0.06 0.08 0.760 0.06 0.08 0.760 0.06 0.08 0.760 0.06 0.08 
JUNE APPLICATION 
0 0.403 0.05 0.05 0.403 0.05 0.05 0.403 0.05 0.05 0.403 0.05 0.05 0.403 0.05 0.05 
25 0.403 0.05 0.06 0.403 0.05 0.06 0.403 0.05 0.06 0.403 0.05 0.06 0.403 0.05 0.06 
50 0.403 0.05 0.06 0.403 0.05 0.06 0.403 0.05 0.06 0.403 0.05 0.06 0.403 0.05 0.06 
75 0.403 0.05 0.06 0.403 0.05 0.06 0.403 0.05 0.06 0.403 0.05 0.06 0.403 0.05 0.06 
OCTOBER APPLICATION 
0 0.570 0.05 0.05 0.570 0.05 0.05 0.570 0.05 0.05 0.570 0.05 0.05 0.570 0.05 0.05 
25 0.570 0.05 0.07 0.570 0.05 0.07 0.570 0.05 0.07 0.570 0.05 0.07 0.570 0.05 0.07 
50 0.570 0.05 0.07 0.570 0.05 0.07 0.570 0.05 0.07 0.570 0.05 0.07 0.570 0.05 0.07 
75 0.570 0.05 0.07 0.570 0.05 0.07 0.570 0.05 0.07 0.570 0.05 0.07 0.570 0.05 0.07 
NOVEMBER APPLICATION 
0 0.586 0.05 0.05 0.586 0.05 0.05 0.586 0.05 0.05 0.586 0.05 0.05 0.586 0.05 0.05 
25 0.586 0.05 0.07 0.586 0.05 0.07 0.586 0.05 0.07 0.586 0.05 0.07 0.586 0.05 0.07 
50 0.586 0.05 0.07 0.586 0.05 0.07 0.586 0.05 0.07 0.586 0.05 0.07 0.586 0.05 0.07 
75 0.586 0.05 0.07 0.586 0.05 0.07 0.586 0.05 0.07 0.586 0.05 0.07 0.586 0.05 0.07 

†INC= Fertilizer incorporated with chisel-disk-field cultivate;  NT = No till-surface broadcast; SSA = no till-sub-surface application 
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Appendix D: D11.  Average annual runoff loss (mm) with different soil test phosphorus, application rates, and timings in a corn-winter wheat-
soybean rotation 

Phosphorus 
application 
rates (Kg ha-1) 

25 ppm 50 ppm 100 ppm 200 ppm 400 ppm 

INC† NT SSA INC NT SSA INC NT SSA INC NT SSA INC NT SSA 

JANUARY APPLICATION 
0 66 63 63 66 63 63 66 63 63 66 63 63 66 63 63 
25 66 64 64 66 64 64 66 64 64 66 64 64 66 64 64 
50 66 64 64 66 64 64 66 64 64 66 64 64 66 64 64 
75 66 64 64 66 64 64 66 64 64 66 64 64 66 64 64 
APRIL APPLICATION 
0 66 63 63 66 63 63 66 63 63 66 63 63 66 63 63 
25 67 64 64 67 64 64 67 64 64 67 64 64 67 64 64 
50 67 64 64 67 64 64 67 64 64 67 64 64 67 64 64 
75 67 64 64 67 64 64 67 64 64 67 64 64 67 64 64 
OCTOBER APPLICATION 
0 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 
25 63 64 64 63 64 64 63 64 64 63 64 64 63 64 64 
50 63 64 64 63 64 64 63 64 64 63 64 64 63 64 64 
75 63 64 64 63 64 64 63 64 64 63 64 64 63 64 64 
NOVEMBER APPLICATION 
0 65 63 63 65 63 63 65 63 63 65 63 63 65 63 63 
25 65 64 64 65 64 64 65 64 64 65 64 64 65 64 64 
50 65 64 64 65 64 64 65 64 64 65 64 64 65 64 64 
75 65 64 64 65 64 64 65 64 64 65 64 64 65 64 64 

†INC= Fertilizer incorporated with chisel-disk-field cultivate;  NT = No till-surface broadcast; SSA = no till-sub-surface application 
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Appendix D: D12.  Average annual sediment loss with different soil test phosphorus, application rates, and timings in a corn-winter wheat--soybean rotation, watershed 8 

Phosphorus 
application rates 
(Kg ha-1) 

25 ppm 50 ppm 100 ppm 200 ppm 400 ppm 

INC† NT SSA INC NT SSA INC NT SSA INC NT SSA INC NT SSA 

JANUARY APPLICATION  
JANUARY APPLICATION 
0 0.020 0.0003 0.051 0.020 0.0003 0.051 0.020 0.0003 0.051 0.020 0.0003 0.051 0.020 0.0003 0.051 
25 0.020 0.0003 0.066 0.020 0.0003 0.066 0.020 0.0003 0.066 0.020 0.0003 0.066 0.020 0.0003 0.066 

50 0.020 0.0003 0.066 0.020 0.0003 0.066 0.020 0.0003 0.066 0.020 0.0003 0.066 0.020 0.0003 0.066 

75 0.020 0.0003 0.066 0.020 0.0003 0.066 0.020 0.0003 0.066 0.020 0.0003 0.066 0.020 0.0003 0.066 
APRIL APPLICATION 
0 0.027 0.0004 0.057 0.027 0.0004 0.057 0.027 0.0004 0.057 0.027 0.0004 0.057 0.027 0.0004 0.057 
25 0.027 0.0004 0.076 0.027 0.0004 0.076 0.027 0.0004 0.076 0.027 0.0004 0.076 0.027 0.0004 0.076 
50 0.027 0.0004 0.076 0.027 0.0004 0.076 0.027 0.0004 0.076 0.027 0.0004 0.076 0.027 0.0004 0.076 
75 0.027 0.0004 0.076 0.027 0.0004 0.076 0.027 0.0004 0.076 0.027 0.0004 0.076 0.027 0.0004 0.076 
OCTOBER APPLICATION 
0 0.016 0.0004 0.051 0.016 0.0004 0.051 0.016 0.0004 0.051 0.016 0.0004 0.051 0.016 0.0004 0.051 
25 0.016 0.0004 0.065 0.016 0.0004 0.065 0.016 0.0004 0.065 0.016 0.0004 0.065 0.016 0.0004 0.065 
50 0.016 0.0004 0.065 0.016 0.0004 0.065 0.016 0.0004 0.065 0.016 0.0004 0.065 0.016 0.0004 0.065 
75 0.016 0.0004 0.065 0.016 0.0004 0.065 0.016 0.0004 0.065 0.016 0.0004 0.065 0.016 0.0004 0.065 
NOVEMBER APPLICATION  
0 0.018 0.0004 0.051 0.018 0.0004 0.051 0.018 0.0004 0.051 0.018 0.0004 0.051 0.018 0.0004 0.051 
25 0.018 0.0004 0.065 0.018 0.0004 0.065 0.018 0.0004 0.065 0.018 0.0004 0.065 0.018 0.0004 0.065 
50 0.018 0.0004 0.065 0.018 0.0004 0.065 0.018 0.0004 0.065 0.018 0.0004 0.065 0.018 0.0004 0.065 
75 0.018 0.0004 0.065 0.018 0.0004 0.065 0.018 0.0004 0.065 0.018 0.0004 0.065 0.018 0.0004 0.065 

†INC= Fertilizer incorporated with chisel-disk-field cultivate;  NT = No till-surface broadcast; SSA = no till-sub-surface application 
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Watershed 4 

Appendix  D: D13.  Average annual total phosphorus loss with different soil test phosphorus, application rates, and timings in a continuous-corn rotation, watershed 4 

Phosphorus 
application 
rates (Kg ha-1) 

25 ppm 50 ppm 100 ppm 200 ppm 400 ppm 

INC† NT SSA 
           
± %‡ INC† NT SSA 

       ± 
% INC† NT SSA 

       ± 
% INC† NT SSA 

      
± % INC NT SSA 

         
± % 

JANUARY APPLICATION 
0 2.2 0.9 0.71 -136 3.3 1.2 1.0 -180 5.4 1.6 1.5 -231 9.6 2.5 2.4 -279 18.1 4.4 4.4 -315 
25 3.1 2.0 0.71 -51 4.1 2.3 1.0 -82 6.3 2.7 1.5 -129 10.5 3.7 2.4 -187 19.0 5.5 4.4 -244 

50 3.9 3.1 0.71 -27 5.0 3.4 1.0 -50 7.1 3.8 1.5 -87 11.4 4.7 2.4 -140 19.8 6.6 4.4 -202 

75 4.8 4.2 0.71 -15 5.9 4.4 1.0 -33 8.0 4.9 1.5 -64 12.3 5.8 2.4 -111 20.7 7.7 4.4 -171 
APRIL APPLICATION 

0 1.8 1.0 0.64 -90 2.7 1.2 0.9 -125 4.4 1.6 1.3 -167 7.8 2.5 2.2 -208 14.5 4.3 4.0 -239 
25 2.7 1.9 0.69 -40 3.6 2.2 0.9 -65 5.2 2.6 1.4 -102 8.6 3.5 2.3 -149 15.4 5.2 4.2 -194 
50 3.5 2.9 0.72 -24 4.4 3.1 1.0 -42 6.1 3.5 1.4 -72 9.5 4.4 2.4 -115 16.3 6.2 4.2 -163 
75 

4.4 3.8 0.76 -15 5.2 4.0 1.0 -30 6.9 4.5 1.5 -55 10.3 5.3 2.4 -93 17.1 7.1 4.2 -140 
OCTOBER APPLICATION 
0 1.7 0.8 0.64 -108 2.7 1.1 0.9 -144 4.4 1.6 1.3 -183 7.9 2.5 2.3 -218 15.0 4.4 4.2 -244 
25 2.4 1.5 0.73 -57 3.4 1.8 1.0 -89 5.2 2.3 1.5 -131 9.0 3.2 2.5 -177 16.5 5.2 4.6 -217 
50 2.9 2.2 0.78 -35 3.9 2.4 1.0 -61 5.8 2.9 1.6 -98 9.5 3.9 2.6 -145 17.1 5.8 4.7 -192 
75 3.5 2.8 0.84 -23 4.4 3.1 1.1 -44 6.3 3.6 1.6 -78 10.1 4.5 2.7 -122 17.6 6.5 4.7 -171 
NOVEMBER APPLICATION 
0 1.8 0.8 0.64 -112 2.7 1.1 0.9 -148 4.5 1.6 1.3 -189 8.1 2.5 2.3 -226 15.2 4.3 4.1 -253 
25 2.5 1.6 0.72 -55 3.4 1.8 1.0 -85 5.3 2.3 1.5 -127 9.0 3.3 2.5 -175 16.4 5.2 4.5 -217 
50 3.1 2.3 0.78 -33 4.0 2.5 1.0 -58 5.9 3.0 1.5 -94 9.6 4.0 2.6 -141 17.0 5.9 4.6 -190 
75 3.7 3.0 0.83 -22 4.6 3.3 1.1 -42 6.5 3.7 1.6 -74 10.2 4.7 2.6 -118 17.6 6.6 4.6 -168 

†INC= Fertilizer incorporated with chisel-disk-field cultivate; NT = No till-surface broadcast; SSA = no till-sub-surface application. ‡ The percent differences in the table were calculated 
only for incorporation and no-till surface broadcast. 



 

252 

 

 

Appendix D: D14.  Average annual total phosphorus loss with different soil test phosphorus, application rates, and timings in a corn-soybean rotation, watershed 4 

Phosphorus 
application 
rates (Kg ha-1) 

25 ppm 50 ppm 100 ppm 200 ppm 400 ppm 

INC† NT SSA 
           
± %‡ INC† NT SSA 

       
± % INC† NT SSA 

       
± % INC† NT SSA 

      
± % INC NT SSA 

         
± % 

JANUARY APPLICATION 
0 0.7 0.6 0.6 -10 1.1 1.0 0.9 -11 1.8 1.5 1.5 -20 3.2 2.5 2.5 -28 6.0 4.5 4.5 -33 
25 1.0 1.3 0.7 21 1.4 1.7 1.0 14 2.1 2.2 1.5 2 3.5 3.2 2.5 -12 6.4 5.2 4.6 -23 
50 1.3 2.0 0.8 31 1.7 2.3 1.1 26 2.4 2.8 1.6 14 3.8 3.8 2.6 -1 6.7 5.8 4.6 -15 
75 1.7 2.6 0.8 37 2.0 3.0 1.1 32 2.7 3.5 1.6 21 4.1 4.5 2.6 7 7.0 6.5 4.7 -8 
APRIL APPLICATION 

0 0.7 0.6 0.6 -14 1.1 1.0 1.0 -13 1.8 1.5 1.5 -21 3.2 2.5 2.5 -27 6.0 4.5 4.5 -31 
25 1.1 1.3 0.7 18 1.5 1.7 1.0 13 2.1 2.2 1.5 0 3.5 3.1 2.5 -12 6.3 5.1 4.5 -23 
50 1.4 1.9 0.8 29 1.7 2.3 1.1 24 2.4 2.8 1.6 13 3.8 3.8 2.6 -1 6.6 5.8 4.6 -15 
75 1.7 2.6 0.8 36 2.0 2.9 1.1 31 2.7 3.4 1.6 20 4.1 4.4 2.6 7 6.9 6.4 4.6 -8 
OCTOBER APPLICATION 
0 0.6 0.6 0.6 -5 1.1 1.0 0.9 -8 1.8 1.5 1.4 -17 3.1 2.5 2.5 -24 5.8 4.5 4.5 -29 
25 0.9 1.0 0.7 15 1.3 1.4 1.0 8 2.0 1.9 1.5 -4 3.3 2.9 2.5 -15 6.0 4.9 4.6 -24 
50 1.1 1.4 0.8 25 1.5 1.8 1.1 18 2.1 2.3 1.6 6 3.5 3.3 2.6 -7 6.2 5.3 4.6 -19 
75 1.3 1.8 0.8 31 1.6 2.2 1.1 24 2.3 2.7 1.6 12 3.7 3.7 2.6 -1 6.4 5.6 4.7 -14 
NOVEMBER APPLICATION 
0 0.7 0.6 0.6 -8 1.1 1.0 0.9 -10 1.8 1.5 1.5 -19 3.2 2.5 2.5 -27 5.9 4.5 4.5 -31 
25 0.9 1.1 0.7 15 1.3 1.4 1.0 8 2.0 1.9 1.5 -4 3.4 2.9 2.5 -16 6.2 4.9 4.6 -26 
50 1.1 1.5 0.8 25 1.5 1.9 1.1 18 2.2 2.4 1.6 6 3.6 3.4 2.6 -8 6.4 5.3 4.6 -20 
75 1.4 2.0 0.8 31 1.1 1.0 1.1 -10 2.4 2.8 1.6 13 3.8 3.8 2.6 -1 6.6 5.8 4.7 -14 

†INC= Fertilizer incorporated with chisel-disk-field cultivate; NT = No till-surface broadcast; SSA = no till-sub-surface application. ‡ The percent differences in the table were 
calculated only for incorporation and no-till surface broadcast. 
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Appendix D: D15.  Average annual total phosphorus loss with different soil test phosphorus, application rates, and timings in a grain sorghum-soybean rotation, watershed 4 

Phosphorus 
application 
rates (Kg ha-1) 

25 ppm 50 ppm 100 ppm 200 ppm 400 ppm 

INC† NT SSA 
           
± %‡ INC† NT SSA 

       
± % INC† NT SSA 

       
± % 

INC
† NT SSA 

      
± % INC NT SSA 

         
± % 

JANUARY APPLICATION 
0 1.3 0.8 0.8 -69 1.3 0.8 0.8 -67 2.0 1.2 1.2 -68 2.9 2.0 1.9 -49 7.3 3.4 3.4 -112 
25 1.8 1.8 0.9 -1 1.6 1.4 0.8 -14 2.3 1.8 1.3 -31 3.2 2.6 2.0 -25 7.8 4.5 3.6 -74 
50 2.3 2.8 0.9 18 2.0 2.1 0.9 5 2.6 2.4 1.4 -12 3.5 3.2 2.0 -10 8.3 5.5 3.7 -50 

75 2.8 3.8 1.0 27 2.3 2.7 1.0 15 3.0 2.9 1.4 0 3.8 3.8 2.1 0 8.8 6.6 3.7 -34 
APRIL APPLICATION 

0 1.5 0.8 0.8 -86 2.1 1.2 1.2 -73 2.1 1.2 1.2 -72 3.5 1.9 1.9 -82 5.2 3.4 3.4 -54 
25 2.0 1.8 0.9 -8 2.6 2.2 1.3 -17 2.4 1.8 1.3 -35 3.8 2.5 2.0 -52 5.5 4.0 3.5 -38 
50 2.5 2.9 0.9 14 3.1 3.2 1.4 4 2.8 2.4 1.4 -16 4.1 3.1 2.1 -34 5.8 4.6 3.5 -26 
75 3.0 3.9 1.0 24 3.6 4.2 1.4 15 3.1 2.9 1.4 -5 4.4 3.7 2.2 -21 6.1 5.2 3.5 -17 
JUNE APPLICATION 
0 1.1 0.8 0.8 -42 1.8 1.2 1.2 -41 2.9 2.0 1.9 -49 5.2 3.4 3.4 -54 9.8 6.3 6.2 -57 
25 1.4 1.4 0.8 -2 2.1 1.9 1.2 -11 3.2 2.6 2.0 -25 5.5 4.0 3.5 -38 10.1 6.9 6.4 -47 
50 1.7 2.0 0.9 14 2.4 2.5 1.3 4 3.5 3.2 2.0 -10 5.8 4.6 3.5 -26 10.4 7.5 6.4 -39 
75 2.0 2.6 0.9 23 2.7 3.1 1.3 14 3.8 3.8 2.1 0 6.1 5.2 3.5 -17 10.7 8.1 6.5 -33 
OCTOBER APPLICATION 

0 1.1 0.8 0.8 -42 2.4 1.3 1.2 -88 3.6 1.9 1.9 -87 3.6 1.9 1.9 -86 3.6 1.9 3.3 -86 
25 1.4 1.4 0.8 -2 2.9 2.3 1.3 -24 4.1 2.9 2.0 -40 3.9 2.6 2.0 -52 3.9 2.6 3.5 -52 
50 1.7 2.0 0.9 14 3.4 3.3 1.4 0 4.6 3.9 2.1 -17 4.3 3.2 2.1 -32 4.3 3.2 3.6 -32 
75 2.0 2.6 0.9 23 3.9 4.4 1.4 12 5.1 4.9 2.2 -3 4.6 3.9 2.2 -19 4.6 3.9 3.7 -19 
NOVEMBER APPLICATION 
0 1.3 0.8 0.7 -63 1.8 1.2 1.2 -41 4.0 2.0 1.9 -102 6.7 3.4 3.4 -98 6.6 3.4 3.3 -81 
25 1.6 1.4 0.8 -15 2.1 1.9 1.2 -11 4.5 3.0 2.1 -49 7.2 4.4 3.6 -64 6.9 4.0 3.6 -64 
50 1.9 1.9 0.9 3 2.4 2.5 1.3 4 5.0 4.1 2.1 -23 7.6 5.4 3.6 -42 7.3 4.7 3.6 -51 
75 2.2 2.5 1.0 14 2.7 3.1 1.3 14 5.5 5.1 2.2 -8 8.1 6.4 3.7 -28 13.6 8.2 6.7 -60 

†INC= Fertilizer incorporated with chisel-disk-field cultivate; NT = No till-surface broadcast; SSA = no till-sub-surface application. ‡ The percent differences in the table were 
calculated only for incorporation and no-till surface broadcast. 
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Appendix D: D16.  Average annual total phosphorus loss with different soil test phosphorus, application rates, and timings in a corn-winter wheat-soybean rotation, watershed 
4 

Phosphorus 
application 
rates (Kg ha-1) 

25 ppm 50 ppm 100 ppm 200 ppm 400 ppm 

INC† NT SSA 
           
± %‡ INC† NT SSA 

       
± % INC† NT SSA 

       
± % INC† NT SSA 

      
± % INC NT SSA 

         
± % 

JANUARY APPLICATION 
0 0.3 0.3 0.3 0 0.5 0.5 0.5 0 0.9 0.8 0.8 -11 1.6 1.3 1.3 -20 3.0 2.4 2.3 -26 
25 0.5 0.7 0.3 30 0.7 1.0 0.5 25 1.1 1.2 0.8 12 1.8 1.8 1.3 -2 3.2 2.8 2.4 -14 
50 0.7 1.2 0.4 39 0.9 1.4 0.6 35 1.3 1.7 0.8 24 2.0 2.2 1.4 10 3.4 3.2 2.4 -5 
75 0.9 1.6 0.4 44 1.1 1.8 0.6 40 1.4 2.1 0.9 30 2.1 2.6 1.4 17 3.5 3.6 2.4 2 
APRIL APPLICATION 

0 0.3 0.3 0.3 -7 0.6 0.6 0.5 -3 0.9 0.8 0.8 -13 1.6 1.3 1.3 -21 3.0 2.4 2.3 -27 
25 0.5 0.8 0.3 28 0.8 1.0 0.5 24 1.1 1.3 0.8 12 1.8 1.8 1.3 -2 3.2 2.8 2.4 -14 
50 0.7 1.2 0.4 39 0.9 1.4 0.6 34 1.3 1.7 0.8 24 2.0 2.2 1.4 10 3.4 3.2 2.4 -4 
75 0.9 1.7 0.4 44 1.1 1.9 0.6 40 1.5 2.1 0.9 31 2.2 2.7 1.4 18 3.6 3.7 2.4 3 
OCTOBER APPLICATION 
0 0.2 0.3 0.2 11 0.5 0.5 0.5 6 0.8 0.8 0.8 -5 1.5 1.3 1.3 -14 2.8 2.4 2.3 -19 
25 0.4 0.6 0.3 28 0.6 0.8 0.5 21 0.9 1.0 0.8 9 1.6 1.6 1.3 -3 2.9 2.6 2.4 -13 
50 0.5 0.8 0.4 35 0.7 1.0 0.6 29 1.1 1.3 0.8 18 1.7 1.8 1.4 5 3.0 2.8 2.4 -7 
75 0.6 1.1 0.4 40 0.8 1.3 0.6 34 1.2 1.5 0.9 24 1.8 2.0 1.4 11 3.1 3.1 2.4 -2 
NOVEMBER APPLICATION 
0 0.3 0.3 0.2 6 0.5 0.5 0.5 2 0.9 0.8 0.8 -8 1.6 1.3 1.3 -17 2.9 2.4 2.3 -23 
25 0.4 0.6 0.3 27 0.6 0.8 0.5 20 1.0 1.1 0.8 8 1.7 1.6 1.3 -5 3.0 2.6 2.4 -16 
50 0.6 0.9 0.4 35 0.8 1.1 0.6 29 1.1 1.3 0.8 17 1.8 1.9 1.4 4 3.2 2.9 2.4 -9 
75 0.7 1.2 0.4 40 0.9 1.4 0.6 34 1.2 1.6 0.9 23 1.9 2.1 1.4 10 3.3 3.2 2.4 -4 

†INC= Fertilizer incorporated with chisel-disk-field cultivate; NT = No till-surface broadcast; SSA = no till-sub-surface application. ‡ The percent differences in the table were 
calculated only for incorporation and no-till surface broadcast. 
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Appendix D: D17.  Average annual runoff loss (mm) with different soil test phosphorus, application rates, and timings in a continuous corn 
rotation, watershed 4 

Phosphorus 
application 
rates (Kg ha-1) 

25 ppm 50 ppm 100 ppm 200 ppm 400 ppm 

INC† NT SSA INC NT SSA INC NT SSA INC NT SSA INC NT SSA 

JANUARY APPLICATION  
0 192 96 100 192 96 100 192 96 100 192 96 100 192 96 100 
25 190 97 100 190 97 100 190 97 100 190 97 100 190 97 100 
50 190 97 100 190 97 100 190 97 100 190 97 100 190 97 100 
75 190 97 100 190 97 100 190 97 100 190 97 100 190 97 100 
APRIL APPLICATION 
0 186 95 95 186 95 95 186 95 95 186 95 95 186 95 95 
25 184 96 98 184 96 98 184 96 98 184 96 98 184 96 98 
50 184 96 98 184 96 98 184 96 98 184 96 98 184 96 98 
75 184 96 98 184 96 98 184 96 98 184 96 98 184 96 98 
OCTOBER APPLICATION 
0 184 97 97 184 97 97 184 97 97 184 97 97 184 97 97 
25 183 100 101 183 100 101 183 100 101 183 100 101 183 100 101 
50 183 100 101 183 100 101 183 100 101 183 100 101 183 100 101 
75 183 100 101 183 100 101 183 100 101 183 100 101 183 100 101 
NOVEMBER APPLICATION 
0 190 96 96 190 96 96 190 96 96 190 96 96 190 96 96 
25 189 99 101 189 99 101 189 99 101 189 99 101 189 99 101 
50 189 99 101 189 99 101 189 99 101 189 99 101 189 99 101 
75 189 99 101 189 99 101 189 99 101 189 99 101 189 99 101 

†INC= Fertilizer incorporated with chisel-disk-field cultivate;  NT = No till-surface broadcast; SSA = no till-sub-surface application 
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Appendix D: D18.  Average annual sediment loss with different soil test phosphorus, application rates, and timings in a continuous corn rotation, watershed 4 

Phosphorus 
application rates 
(Kg ha-1) 

25 ppm 50 ppm 100 ppm 200 ppm 400 ppm 

INC† NT SSA INC NT SSA INC NT SSA INC NT SSA INC NT SSA 

JANUARY APPLICATION  
0 1.38 0.01 0.02 1.38 0.01 0.02 1.38 0.01 0.02 1.38 0.01 0.02 1.38 0.01 0.02 
25 1.39 0.01 0.02 1.39 0.01 0.02 1.39 0.01 0.02 1.39 0.01 0.02 1.39 0.01 0.02 
50 1.39 0.01 0.02 1.39 0.01 0.02 1.39 0.01 0.02 1.39 0.01 0.02 1.39 0.01 0.02 
75 1.39 0.01 0.02 1.39 0.01 0.02 1.39 0.01 0.02 1.39 0.01 0.02 1.39 0.01 0.02 
APRIL APPLICATION 
0 0.97 0.01 0.01 0.97 0.01 0.01 0.97 0.01 0.01 0.97 0.01 0.01 0.97 0.01 0.01 
25 1.00 0.01 0.01 1.00 0.01 0.01 1.00 0.01 0.01 1.00 0.01 0.01 1.00 0.01 0.01 
50 1.00 0.01 0.01 1.00 0.01 0.01 1.00 0.01 0.01 1.00 0.01 0.01 1.00 0.01 0.01 
75 1.00 0.01 0.01 1.00 0.01 0.01 1.00 0.01 0.01 1.00 0.01 0.01 1.00 0.01 0.01 
OCTOBER APPLICATION 
0 0.90 0.01 0.01 0.90 0.01 0.01 0.90 0.01 0.01 0.90 0.01 0.01 0.90 0.01 0.01 
25 1.07 0.02 0.03 1.07 0.02 0.03 1.07 0.02 0.03 1.07 0.02 0.03 1.07 0.02 0.03 
50 1.07 0.02 0.03 1.07 0.02 0.03 1.07 0.02 0.03 1.07 0.02 0.03 1.07 0.02 0.03 
75 1.07 0.02 0.03 1.07 0.02 0.03 1.07 0.02 0.03 1.07 0.02 0.03 1.07 0.02 0.03 
NOVEMBER APPLICATION 
0 0.93 0.01 0.01 0.93 0.01 0.01 0.93 0.01 0.01 0.93 0.01 0.01 0.93 0.01 0.01 
25 1.03 0.02 0.02 1.03 0.02 0.02 1.03 0.02 0.02 1.03 0.02 0.02 1.03 0.02 0.02 
50 1.03 0.02 0.02 1.03 0.02 0.02 1.03 0.02 0.02 1.03 0.02 0.02 1.03 0.02 0.02 
75 1.03 0.02 0.02 1.03 0.02 0.02 1.03 0.02 0.02 1.03 0.02 0.02 1.03 0.02 0.02 

†INC= Fertilizer incorporated with chisel-disk-field cultivate;  NT = No till-surface broadcast; SSA = no till-sub-surface application 
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Appendix D: 19.  Average annual runoff loss (mm) with different soil test phosphorus, application rates, and timings in a corn-soybean 
rotation, watershed 4 

Phosphorus 
application 
rates (Kg ha-1) 

25 ppm 50 ppm 100 ppm 200 ppm 400 ppm 

INC† NT SSA INC NT SSA INC NT SSA INC NT SSA INC NT SSA 

JANUARY APPLICATION  
0 109 104 104 109 104 104 109 104 104 109 104 104 109 104 104 
25 110 104 104 110 104 104 110 104 104 110 104 104 110 104 104 
50 110 104 104 110 104 104 110 104 104 110 104 104 110 104 104 
75 110 104 104 110 104 104 110 104 104 110 104 104 110 104 104 
APRIL APPLICAION 
0 108 104 104 108 104 104 108 104 104 108 104 104 108 104 104 
25 109 104 104 109 104 104 109 104 104 109 104 104 109 104 104 
50 109 104 104 109 104 104 109 104 104 109 104 104 109 104 104 
75 109 104 104 109 104 104 109 104 104 109 104 104 109 104 104 
OCTOBER APPLICATION 
0 106 104 104 106 104 104 106 104 104 106 104 104 106 104 104 
25 107 104 104 107 104 104 107 104 104 107 104 104 107 104 104 
50 107 104 104 107 104 104 107 104 104 107 104 104 107 104 104 
75 107 104 104 107 104 104 107 104 104 107 104 104 107 104 104 
NOVEMBER APPLICATION 
0 108 104 104 108 104 104 108 104 104 108 104 104 108 104 104 
25 109 104 104 109 104 104 109 104 104 109 104 104 109 104 104 
50 109 104 104 109 104 104 109 104 104 109 104 104 109 104 104 
75 109 104 104 109 104 104 109 104 104 109 104 104 109 104 104 

†INC= Fertilizer incorporated with chisel-disk-field cultivate;  NT = No till-surface broadcast; SSA = no till-sub-surface application 
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Appendix D: D20.  Average annual sediment loss with different soil test phosphorus, application rates, and timings in a corn-soybean  rotation, watershed 4 

Phosphorus 
application rates 
(Kg ha-1) 

25 ppm 50 ppm 100 ppm 200 ppm 400 ppm 

INC† NT SSA INC NT SSA INC NT SSA INC NT SSA INC NT SSA 

0 0.16 0.01 0.01 0.16 0.01 0.01 0.16 0.01 0.01 0.16 0.01 0.01 0.16 0.01 0.01 
25 0.16 0.01 0.01 0.16 0.01 0.01 0.16 0.01 0.01 0.16 0.01 0.01 0.16 0.01 0.01 

50 0.16 0.01 0.01 0.16 0.01 0.01 0.16 0.01 0.01 0.16 0.01 0.01 0.16 0.01 0.01 

75 0.16 0.01 0.01 0.16 0.01 0.01 0.16 0.01 0.01 0.16 0.01 0.01 0.16 0.01 0.01 
APRIL APPLICATION 
0 0.17 0.01 0.01 0.17 0.01 0.01 0.17 0.01 0.01 0.17 0.01 0.01 0.17 0.01 0.01 
25 0.18 0.01 0.01 0.18 0.01 0.01 0.18 0.01 0.01 0.18 0.01 0.01 0.18 0.01 0.01 
50 0.18 0.01 0.01 0.18 0.01 0.01 0.18 0.01 0.01 0.18 0.01 0.01 0.18 0.01 0.01 
75 0.18 0.01 0.01 0.18 0.01 0.01 0.18 0.01 0.01 0.18 0.01 0.01 0.18 0.01 0.01 
OCTOBER APPLICATION 
0 0.14 0.01 0.01 0.14 0.01 0.01 0.14 0.01 0.01 0.14 0.01 0.01 0.14 0.01 0.01 
25 0.14 0.01 0.01 0.14 0.01 0.01 0.14 0.01 0.01 0.14 0.01 0.01 0.14 0.01 0.01 
50 0.14 0.01 0.01 0.14 0.01 0.01 0.14 0.01 0.01 0.14 0.01 0.01 0.14 0.01 0.01 
75 0.14 0.01 0.01 0.14 0.01 0.01 0.14 0.01 0.01 0.14 0.01 0.01 0.14 0.01 0.01 
NOVEMBER APPLICTION 
0 0.15 0.01 0.01 0.15 0.01 0.01 0.15 0.01 0.01 0.15 0.01 0.01 0.15 0.01 0.01 
25 0.15 0.01 0.01 0.15 0.01 0.01 0.15 0.01 0.01 0.15 0.01 0.01 0.15 0.01 0.01 
50 0.15 0.01 0.01 0.15 0.01 0.01 0.15 0.01 0.01 0.15 0.01 0.01 0.15 0.01 0.01 
75 0.15 0.01 0.01 0.15 0.01 0.01 0.15 0.01 0.01 0.15 0.01 0.01 0.15 0.01 0.01 

†INC= Fertilizer incorporated with chisel-disk-field cultivate;  NT = No till-surface broadcast; SSA = no till-sub-surface application 
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Appendix D: D21.  Average annual runoff loss (mm) with different soil test phosphorus, application rates, and timings in a grain sorghum-
soybean rotation, watershed 4 

Phosphorus 
application 
rates (Kg ha-1) 

25 ppm 50 ppm 100 ppm 200 ppm 400 ppm 

INC† NT SSA INC NT SSA INC NT SSA INC NT SSA INC NT SSA 

JANUARY APPLICATION  
0 119 113 113 118 113 113 116 113 113 115 113 113 119 113 113 
25 119 113 114 118 113 114 119 113 114 115 113 114 119 113 114 
50 119 113 114 118 113 114 119 113 114 115 113 114 119 113 114 
75 119 113 114 118 113 114 119 113 114 115 113 114 119 113 114 
APRIL APPLICATION 
0 119 113 113 119 113 113 118 113 113 116 113 113 115 113 113 
25 119 113 114 119 113 114 118 113 114 116 113 114 115 113 114 
50 119 113 114 119 113 114 118 113 114 116 113 114 115 113 114 
75 119 113 114 119 113 114 118 113 114 116 113 114 115 113 114 
JUNE APPLICATION 
0 115 113 113 115 113 113 115 113 113 115 113 113 115 113 113 
25 115 113 113 115 113 113 115 113 113 115 113 113 115 113 113 
50 115 113 113 115 113 113 115 113 113 115 113 113 115 113 113 
75 115 113 113 115 113 113 115 113 113 115 113 113 115 113 113 
OCTOBER APPLICATION 
0 115 113 113 119 113 113 119 113 113 118 113 113 116 113 113 
25 115 113 113 119 113 113 119 113 113 118 113 113 116 113 113 
50 115 113 113 119 113 113 119 113 113 118 113 113 116 113 113 
75 115 113 113 119 113 113 119 113 113 118 113 113 116 113 113 
NOVEMBER APPLICATION  
0 116 113 113 115 113 113 119 113 113 119 113 113 118 113 113 
25 116 113 114 115 113 114 119 113 114 119 113 114 118 113 114 
50 116 113 114 115 113 114 119 113 114 119 113 114 118 113 114 
75 116 113 114 115 113 114 119 113 114 119 113 114 118 113 114 

†INC= Fertilizer incorporated with chisel-disk-field cultivate;  NT = No till-surface broadcast; SSA = no till-sub-surface application 
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Appendix D: D22.  Average annual sediment loss with different soil test phosphorus, application rates, and timings in a  grain sorghum-soybean rotation, 
watershed 4 

Phosphorus 
application rates 
(Kg ha-1) 

25 ppm 50 ppm 100 ppm 200 ppm 400 ppm 

INC† NT SSA INC NT SSA INC NT SSA INC NT SSA INC NT SSA 

JANUARY  APPLICATION 
0 0.97 0.10 0.10 0.94 0.10 0.10 0.91 0.10 0.10 0.64 0.10 0.10 1.20 0.11 0.11 
25 0.97 0.10 0.13 0.94 0.10 0.12 0.91 0.10 0.12 0.64 0.10 0.12 1.20 0.11 0.14 

50 0.97 0.10 0.13 0.94 0.10 0.12 0.91 0.10 0.12 0.64 0.10 0.12 1.20 0.11 0.14 

75 0.97 0.10 0.13 0.94 0.10 0.12 0.91 0.10 0.12 0.64 0.10 0.12 1.20 0.11 0.14 
APRIL APPLICATION 
0 1.20 0.11 0.11 0.97 0.10 0.10 0.94 0.10 0.10 0.91 0.10 0.10 0.64 0.10 0.10 
25 1.20 0.11 0.14 0.97 0.10 0.13 0.94 0.10 0.12 0.91 0.10 0.12 0.64 0.10 0.12 
50 1.20 0.11 0.14 0.97 0.10 0.13 0.94 0.10 0.12 0.91 0.10 0.12 0.64 0.10 0.12 
75 1.20 0.11 0.14 0.97 0.10 0.13 0.94 0.10 0.12 0.91 0.10 0.12 0.64 0.10 0.12 
JUNE APPLICATION 
0 0.64 0.10 0.10 0.64 0.10 0.10 0.64 0.10 0.10 0.64 0.10 0.10 0.64 0.10 0.10 
25 0.64 0.10 0.12 0.64 0.10 0.12 0.64 0.10 0.12 0.64 0.10 0.12 0.64 0.10 0.12 
50 0.64 0.10 0.12 0.64 0.10 0.12 0.64 0.10 0.12 0.64 0.10 0.12 0.64 0.10 0.12 
75 0.64 0.10 0.12 0.64 0.10 0.12 0.64 0.10 0.12 0.64 0.10 0.12 0.64 0.10 0.12 
OCTOBER APPLICATION 
0 0.64 0.10 0.10 1.20 0.11 0.11 0.97 0.10 0.10 0.94 0.10 0.10 0.91 0.10 0.10 
25 0.64 0.10 0.12 1.20 0.11 0.14 0.97 0.10 0.13 0.94 0.10 0.12 0.91 0.10 0.12 
50 0.64 0.10 0.12 1.20 0.11 0.14 0.97 0.10 0.13 0.94 0.10 0.12 0.91 0.10 0.12 
75 0.64 0.10 0.12 1.20 0.11 0.14 0.97 0.10 0.13 0.94 0.10 0.12 0.91 0.10 0.12 
NOVMBER APPLICATION  
0 0.91 0.10 0.10 0.64 0.10 0.10 1.20 0.11 0.11 0.97 0.10 0.10 0.94 0.10 0.10 
25 0.91 0.10 0.12 0.64 0.10 0.12 1.20 0.11 0.14 0.97 0.10 0.13 0.94 0.10 0.12 
50 0.91 0.10 0.12 0.64 0.10 0.12 1.20 0.11 0.14 0.97 0.10 0.13 0.94 0.10 0.12 
75 0.91 0.10 0.12 0.64 0.10 0.12 1.20 0.11 0.14 0.97 0.10 0.13 0.94 0.10 0.12 

†INC= Fertilizer incorporated with chisel-disk-field cultivate;  NT = No till-surface broadcast; SSA = no till-sub-surface application 
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Appendix D: D23.  Average annual runoff loss (mm) with different soil test phosphorus, application rates, and timings in a corn-winter wheat -
soybean rotation, watershed 4 

Phosphorus 
application 
rates (Kg ha-1) 

25 ppm 50 ppm 100 ppm 200 ppm 400 ppm 

INC† NT SSA INC NT SSA INC NT SSA INC NT SSA INC NT SSA 

JANUARY APPLICATION 
0 65 61 61 65 61 61 65 61 61 65 61 61 65 61 61 
25 65 61 62 65 61 62 65 61 62 65 61 62 65 61 62 
50 65 61 62 65 61 62 65 61 62 65 61 62 65 61 62 
75 65 61 62 65 61 62 65 61 62 65 61 62 65 61 62 
APRIL APPLICATION 
0 65 61 61 65 61 61 65 61 61 65 61 61 65 61 61 
25 65 61 62 65 61 62 65 61 62 65 61 62 65 61 62 
50 65 61 62 65 61 62 65 61 62 65 61 62 65 61 62 
75 65 61 62 65 61 62 65 61 62 65 61 62 65 61 62 
OCTOBER APPLICATION 
0 62 61 61 62 61 61 62 61 61 62 61 61 62 61 61 
25 62 61 62 62 61 62 62 61 62 62 61 62 62 61 62 
50 62 61 62 62 61 62 62 61 62 62 61 62 62 61 62 
75 62 61 62 62 61 62 62 61 62 62 61 62 62 61 62 
0 63 61 61 63 61 61 63 61 61 63 61 61 63 61 61 
NOVEMBER APPLICATION  
25 63 61 62 63 61 62 63 61 62 63 61 62 63 61 62 
50 63 61 62 63 61 62 63 61 62 63 61 62 63 61 62 
75 63 61 62 63 61 62 63 61 62 63 61 62 63 61 62 

†INC= Fertilizer incorporated with chisel-disk-field cultivate;  NT = No till-surface broadcast; SSA = no till-sub-surface application 
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Appendix D: D24.  Average annual sediment loss with different soil test phosphorus, application rates, and timings in a corn-winter wheat-soybean  rotation, 
watershed 4 

Phosphorus 
application rates 
(Kg ha-1) 

25 ppm 50 ppm 100 ppm 200 ppm 400 ppm 

INC† NT SSA INC NT SSA INC NT SSA INC NT SSA INC NT SSA 

JANUARY APPLICATION  
0 0.050 0.002 0.002 0.050 0.002 0.002 0.050 0.002 0.002 0.050 0.002 0.002 0.050 0.002 0.002 
25 0.050 0.002 0.003 0.050 0.002 0.003 0.050 0.002 0.003 0.050 0.002 0.003 0.050 0.002 0.003 

50 0.050 0.002 0.003 0.050 0.002 0.003 0.050 0.002 0.003 0.050 0.002 0.003 0.050 0.002 0.003 

75 0.050 0.002 0.003 0.050 0.002 0.003 0.050 0.002 0.003 0.050 0.002 0.003 0.050 0.002 0.003 
APRIL APPLICATION 
0 0.063 0.002 0.002 0.063 0.002 0.002 0.063 0.002 0.002 0.063 0.002 0.002 0.063 0.002 0.002 

25 0.063 0.002 0.003 0.063 0.002 0.003 0.063 0.002 0.003 0.063 0.002 0.003 0.063 0.002 0.003 
50 0.063 0.002 0.003 0.063 0.002 0.003 0.063 0.002 0.003 0.063 0.002 0.003 0.063 0.002 0.003 
75 0.063 0.002 0.003 0.063 0.002 0.003 0.063 0.002 0.003 0.063 0.002 0.003 0.063 0.002 0.003 
OCTOBER APPLICATION 
0 0.042 0.002 0.002 0.042 0.002 0.002 0.042 0.002 0.002 0.042 0.002 0.002 0.042 0.002 0.002 
25 0.042 0.002 0.003 0.042 0.002 0.003 0.042 0.002 0.003 0.042 0.002 0.003 0.042 0.002 0.003 
50 0.042 0.002 0.003 0.042 0.002 0.003 0.042 0.002 0.003 0.042 0.002 0.003 0.042 0.002 0.003 
75 0.042 0.002 0.003 0.042 0.002 0.003 0.042 0.002 0.003 0.042 0.002 0.003 0.042 0.002 0.003 
NOVEMBER APPLICATION 
0 0.046 0.002 0.002 0.046 0.002 0.002 0.046 0.002 0.002 0.046 0.002 0.002 0.046 0.002 0.002 
25 0.046 0.002 0.003 0.046 0.002 0.003 0.046 0.002 0.003 0.046 0.002 0.003 0.046 0.002 0.003 
50 0.046 0.002 0.003 0.046 0.002 0.003 0.046 0.002 0.003 0.046 0.002 0.003 0.046 0.002 0.003 
75 0.046 0.002 0.33 0.046 0.002 0.16 0.046 0.002 0.15 0.046 0.002 0.15 0.046 0.002 0.15 

†INC= Fertilizer incorporated with chisel-disk-field cultivate;  NT = No till-surface broadcast; SSA = no till-sub-surface application 
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APPENDIX E. Description of Kansas multiplicative model, phosphorus 
index ratings and average annual TP loss  

 

Figure E1.  Page 1 of the Kansas P index containing the categories and computation of the source factor.  Index values for soil test P, P 

fertilizer application method, and organic P source application method are selected from the categorical classification based on field 

characteristics.  Index values for P fertilizer application rate and Organic P application rate are computed as 0.1*(P application rate).  The 

total source value is the sum of the index values for all five source factors. Source: 
https://efotg.sc.egov.usda.gov/references/public/KS/phosphorusIndex2008.xls 
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Figure E2. Page 21 of the Kansas P index containing the categories and computation of the transport factor.  Index values for soil runoff 

classification, proximity of field to a waterbody, furrow irrigation erosion, and sprinkler system erosion are selected from the categorical 

classification based on field characteristics.  The index value for soil erosion is computed as 2*(soil erosion rate).  The total transport value is 

the sum of index values for all five transport factors. Source: https://efotg.sc.egov.usda.gov/references/public/KS/phosphorusIndex2008.xls 

 

https://efotg.sc.egov.usda.gov/references/public/KS/phosphorusIndex2008.xls
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Revised universal soil loss equation (RUSLE 2) 

The RUSLE model was used to estimate the sediment and runoff loss for management 

scenarios used to evaluate the KS-PI and CPI. The sediment loss with the RUSLE2 can be 

estimated as follows  

Sediment loss (tons ac-1 yr-1) = R x K x L x S x C x PE = 

where, R = Climate erodibility factor 

 K = Soil erodibility factor measured under a standard condition 

 L = Slope length  

S = Slope steepness  

 C = Cover management factor 

 P = Erosion control practices or support factor 

Climate erodibility (R) - It is also known as erosivity index and calculated from an annual 

summation of rainfall energy of a storm and its maximum 30 minute intensity. 

Soil erodibility factor (K) - It is the inherent susceptibility of soils to erosion. Soil texture, 

organic content, structural stability etc. affect the soil erodibility.  

Slope length and steepness factor (S and L) - In general longer slopes accumulate runoff from 

larger areas and steeper slopes produce higher overland flow velocities. Erosion is more 

sensitive to steepness than length. 

Cover management factor (C) - Cropping sequence, tillage, crop residue, and yield affect the 

cover management factor. In general, continuous row crops increase C factor while increase in 

yield, including small grains in rotation and higher residue decrease C factor. Likewise, tillage 
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operation such as no-till and ridge till decrease C factor while spring and fall tillage increase C 

factor.  

Erosion control practices or support factor (PE) - Different conservation practices such as 

terraces, contouring, strip cropping, etc may reduce soil loss and erosion control factor consider 

those practices.   

The more details on RUSLE2 and the model software can be found in USDA-ARS website 

http://www.ars.usda.gov/Research/docs.htm?docid=6010   

http://www.ars.usda.gov/Research/docs.htm?docid=6010
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Figure: E3. The RUSLE2 worksheet used to estimate sediment loss for different management practices.  

 

Figure: E4. The RUSLE2 worksheet used to estimate runoff loss for different management practices continuation of 

Figure E3.  
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FRANKLIN SITE - watershed 8 (W -8)  

Appendix E: E1. Total phosphorus loss (Kg ha
-1

) and P-index values in continuous corn rotation; phosphorus surface 
broadcast in a no-till system, Franklin W-8 

Soil test 
phosphorus 

Phosphorus 
application 

rates (Kg ha
-1

) 

January April October November 

TP 
loss 

PI values TP loss PI values TP loss PI values TP loss PI values 

25 0 0.9 100 1.0 166 0.9 166 0.9 100 

25 25 2.1 270 2.0 336 1.6 336 1.6 270 
25 50 3.2 440 3.0 507 2.2 507 2.4 440 
25 75 4.3 610 4.0 677 2.9 677 3.1 610 
50 0 1.2 133 1.2 200 1.1 200 1.1 133 
50 25 2.3 303 2.2 370 1.8 370 1.9 303 
50 50 3.5 473 3.2 540 2.5 540 2.6 473 
50 75 4.6 643 4.2 710 3.1 710 3.4 643 

100 0 1.6 333 1.7 399 1.6 399 1.6 333 
100 25 2.8 503 2.7 569 2.3 569 2.4 503 
100 50 3.9 673 3.7 739 2.9 739 3.1 673 
100 75 5.0 843 4.7 910 3.6 910 3.8 843 
200 0 2.5 333 2.6 399 2.4 399 2.5 333 
200 25 3.7 503 3.6 569 3.2 569 3.3 503 
200 50 4.8 673 4.5 739 3.9 739 4.0 673 

200 75 5.9 843 5.5 910 4.5 910 4.7 843 
400 0 4.2 399 4.3 466 4.2 466 4.2 399 
400 25 5.4 569 5.3 636 5.0 636 5.1 569 
400 50 6.5 739 6.3 806 5.7 806 5.8 739 
400 75 7.7 910 7.3 976 6.4 976 6.5 910 
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Appendix E: E2. Total phosphorus loss (Kg ha
-1

)and P-index values in corn-soybean rotation; phosphorus surface broadcast 
in a no-till system, Franklin W-8 

Soil test 
phosphorus 

Phosphorus 
application 
rates (Kg ha

-1
) 

January April October November 

TP 
loss 

PI values TP loss PI values TP loss PI values TP loss PI values 

25 0 0.6 103 0.6 172 0.6 172 0.6 103 

25 25 1.3 191 1.3 260 1.0 260 1.1 191 
25 50 2.0 279 2.0 348 1.5 348 1.6 279 
25 75 2.8 367 2.7 436 1.9 436 2.1 367 
50 0 1.1 138 1.1 206 1.1 206 1.1 138 
50 25 1.8 225 1.8 294 1.5 294 1.5 225 
50 50 2.5 313 2.5 382 1.9 382 2.0 313 
50 75 3.2 401 3.1 470 2.3 470 2.5 401 

100 0 1.6 344 1.6 413 1.6 413 1.6 344 
100 25 2.3 432 2.3 501 2.0 501 2.1 432 
100 50 3.0 520 3.0 589 2.4 589 2.5 520 
100 75 3.7 608 3.7 676 2.8 676 3.0 608 
200 0 2.6 344 2.6 413 2.6 413 2.6 344 
200 25 3.4 432 3.3 501 3.1 501 3.1 432 
200 50 4.1 520 4.0 589 3.5 589 3.6 520 

200 75 4.8 608 4.7 676 3.9 676 4.0 608 
400 0 4.7 413 4.7 482 4.7 482 4.7 413 
400 25 5.4 501 5.4 569 5.1 569 5.2 501 
400 50 6.1 589 6.1 657 5.5 657 5.6 589 
400 75 6.8 676 6.8 745 6.0 745 6.1 676 
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Appendix E: E3. Total phosphorus loss (Kg ha
-1

) and P-index values in corn winter wheat-soybean rotation; phosphorus 
surface broadcast in a no-till system, Franklin W-8 

Soil test 
phosphorus 

Phosphorus 
application 

rates (Kg ha
-1

) 

January April October November 

TP 
loss 

PI values TP loss PI values TP loss PI values TP loss PI values 

25 0 0.2 100 0.2 167 0.2 167 0.2 100 

25 25 0.6 185 0.7 252 0.5 252 0.5 185 
25 50 1.1 270 1.2 337 0.8 337 0.8 270 
25 75 1.6 355 1.6 422 1.0 422 1.1 355 
50 0 0.6 133 0.6 200 0.6 200 0.6 133 
50 25 1.0 218 1.0 285 0.8 285 0.8 218 
50 50 1.4 304 1.5 370 1.0 370 1.1 304 
50 75 1.9 389 1.9 455 1.3 455 1.4 389 

100 0 0.8 333 0.8 400 0.8 400 0.8 333 
100 25 1.3 418 1.3 485 1.1 485 1.1 418 
100 50 1.7 503 1.7 570 1.3 570 1.4 503 
100 75 2.1 589 2.2 655 1.5 655 1.6 589 
200 0 1.3 333 1.3 400 1.3 400 1.3 333 
200 25 1.8 418 1.8 485 1.6 485 1.6 418 
200 50 2.2 503 2.2 570 1.8 570 1.9 503 

200 75 2.6 589 2.7 655 2.0 655 2.1 589 
400 0 2.3 400 2.3 466 2.3 466 2.3 400 
400 25 2.8 485 2.8 552 2.6 552 2.6 485 
400 50 3.2 570 3.3 637 2.8 637 2.9 570 
400 75 3.6 655 3.7 722 3.1 722 3.2 655 
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Appendix E: E4. Total phosphorus loss (Kg ha
-1

)and P-index values in grain sorghum-soybean rotation with phosphorus surface 
broadcast and no-till system, Franklin W-8 

Soil test 
phosphorus 

Phosphorus 
application 

rates (Kg ha
-1

) 

January April June October November 

TP 
loss 

PI values TP 
loss 

PI values TP 
loss 

PI values TP 
loss 

PI values TP loss PI values 

25 0 0.7 104 0.8 174 0.8 174 0.7 174 0.7 104 

25 25 1.8 193 1.8 263 1.4 263 1.3 263 1.4 193 
25 50 2.8 282 2.9 352 2.1 352 1.9 352 2.1 282 
25 75 3.8 371 4.0 441 2.7 441 2.5 441 2.7 371 
50 0 1.2 139 1.2 209 1.2 209 1.2 209 1.2 139 
50 25 2.2 228 2.3 298 1.9 298 1.8 298 1.9 228 
50 50 3.3 317 3.4 387 2.5 387 2.4 387 2.5 317 
50 75 4.3 406 4.4 476 3.2 476 3.0 476 3.2 406 

100 0 1.9 348 1.9 418 1.9 418 1.9 418 1.9 348 
100 25 2.9 437 3.0 507 2.6 507 2.5 507 2.6 437 
100 50 4.0 526 4.1 595 3.2 595 3.1 595 3.2 526 
100 75 5.0 615 5.2 684 3.9 684 3.7 684 3.9 615 
200 0 3.3 348 3.3 418 3.3 418 3.3 418 3.3 348 
200 25 4.3 437 4.4 507 4.0 507 3.9 507 3.9 437 
200 50 5.3 526 5.5 595 4.6 595 4.5 595 4.6 526 

200 75 6.4 615 6.5 684 5.2 684 5.1 684 5.3 615 
400 0 6.1 418 6.1 487 6.1 487 6.1 487 6.1 418 
400 25 7.1 507 7.2 576 6.7 576 6.6 576 6.7 507 
400 50 8.1 595 8.3 665 7.4 665 7.2 665 7.4 595 

400 75 9.1 684 9.3 754 8.0 754 7.8 754 8.0 684 
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Appendix E: E5. Total phosphorus (Kg ha
-1

) loss and P-index values in continuous corn rotation;  phosphorus 
incorporated with tillage, Franklin W-8   

Soil test 
phosphorus 

Phosphorus 
application 

rates (Kg ha
-1

) 

January April October November 

TP loss PI values TP loss PI values TP loss PI values TP loss PI values 

25 0 0.6 117 0.6 195 0.6 195 0.6 117 

25 25 1.0 316 1.0 394 0.8 394 0.9 316 
25 50 1.3 516 1.3 594 1.1 594 1.1 516 
25 75 1.6 715 1.6 793 1.3 793 1.3 715 
50 0 1.1 156 1.1 234 1.0 234 1.1 156 
50 25 1.4 355 1.4 433 1.2 433 1.3 355 
50 50 1.7 555 1.7 633 1.4 633 1.5 555 
50 75 2.0 754 2.0 832 1.6 832 1.7 754 

100 0 1.7 390 1.8 468 1.7 468 1.7 390 
100 25 2.1 589 2.1 667 1.9 667 2.0 589 
100 50 2.4 789 2.4 867 2.1 867 2.2 789 
100 75 2.7 988 2.7 1066 2.3 1066 2.4 988 
200 0 3.1 390 3.1 468 3.0 468 3.0 390 
200 25 3.4 589 3.4 667 3.2 667 3.3 589 
200 50 3.7 789 3.7 867 3.4 867 3.5 789 

200 75 4.0 988 4.0 1066 3.6 1066 3.7 988 
400 0 5.7 468 5.6 546 5.6 546 5.7 468 
400 25 6.0 667 6.0 745 5.8 745 5.9 667 
400 50 6.4 867 6.3 945 6.0 945 6.1 867 
400 75 6.7 1066 6.6 1144 6.2 1144 6.4 1066 
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Appendix E: E6. Total phosphorus loss (Kg ha
-1

) and P-index values in corn-soybean rotation;  phosphorus incorporated 
with tillage, Franklin W-8   

Soil test 
phosphorus 

Phosphorus 
application 

rates (Kg ha
-1

) 

January April October November 

TP loss PI values TP loss PI values TP loss PI values TP loss PI values 

25 0 0.6 125 0.6 209 0.6 209 0.6 125 

25 25 1.0 232 1.0 316 0.8 316 0.9 232 
25 50 1.3 339 1.3 423 1.1 423 1.1 339 
25 75 1.6 446 1.6 529 1.3 529 1.3 446 
50 0 1.1 167 1.1 251 1.0 251 1.1 167 
50 25 1.4 274 1.4 358 1.2 358 1.3 274 
50 50 1.7 381 1.7 464 1.4 464 1.5 381 
50 75 2.0 488 2.0 571 1.6 571 1.7 488 

100 0 1.7 418 1.8 502 1.7 502 1.7 418 
100 25 2.1 525 2.1 608 1.9 608 2.0 525 
100 50 2.4 632 2.4 715 2.1 715 2.2 632 
100 75 2.7 738 2.7 822 2.3 822 2.4 738 
200 0 3.1 418 3.1 502 3.0 502 3.0 418 
200 25 3.4 525 3.4 608 3.2 608 3.3 525 
200 50 3.7 632 3.7 715 3.4 715 3.5 632 

200 75 4.0 738 4.0 822 3.6 822 3.7 738 
400 0 5.7 502 5.6 585 5.6 585 5.7 502 
400 25 6.0 608 6.0 692 5.8 692 5.9 608 
400 50 6.4 715 6.3 799 6.0 799 6.1 715 
400 75 6.7 822 6.6 906 6.2 906 6.4 822 
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Appendix E: E7. Total phosphorus loss (Kg ha
-1

) and P-index values in corn-winter wheat-soybean rotation;  phosphorus 
incorporated with tillage, Franklin W-8   

Soil test 
phosphorus 

Phosphorus 
application 

rates (Kg ha
-1

) 

January April October November 

TP loss PI values TP loss PI values TP loss PI values TP loss PI values 

25 0 0.2 108 0.2 180 0.1 180 0.2 108 

25 25 0.4 200 0.4 272 0.3 272 0.3 200 
25 50 0.6 292 0.7 364 0.5 364 0.5 292 
25 75 0.8 384 0.9 456 0.6 456 0.6 384 
50 0 0.5 144 0.5 216 0.5 216 0.5 144 
50 25 0.7 236 0.7 308 0.6 308 0.6 236 
50 50 0.8 328 0.9 400 0.7 400 0.7 328 
50 75 1.0 420 1.1 492 0.8 492 0.8 420 

100 0 0.8 360 0.8 432 0.8 432 0.8 360 
100 25 1.0 452 1.0 524 0.9 524 0.9 452 
100 50 1.2 544 1.2 616 1.0 616 1.0 544 
100 75 1.3 636 1.4 708 1.1 708 1.1 636 
200 0 1.4 360 1.4 432 1.3 432 1.4 360 
200 25 1.6 452 1.6 524 1.5 524 1.5 452 
200 50 1.8 544 1.8 616 1.6 616 1.6 544 

200 75 1.9 636 2.0 708 1.7 708 1.8 636 
400 0 2.6 432 2.6 504 2.5 504 2.6 432 
400 25 2.8 524 2.8 596 2.6 596 2.7 524 
400 50 3.0 616 3.0 688 2.7 688 2.8 616 
400 75 3.2 708 3.2 780 2.8 780 3.0 708 
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Appendix E: E8. Total phosphorus loss (Kg ha
-1

) and P-index values in grain sorghum-soybean rotation;  phosphorus incorporated with 
tillage, Franklin W-8   

Soil test 
phosphorus 

Phosphorus 
application 

rates (Kg ha
-1

) 

January April June October November 

TP loss PI 
values 

TP loss PI 
values 

TP 
loss 

PI 
values 

TP loss PI 
values 

TP loss PI 
values 

25 0 1.0 128 1.1 214 1.0 214 1.0 214 1.0 128 

25 25 1.5 238 1.6 323 1.3 323 1.3 323 1.3 238 
25 50 2.0 347 2.1 433 1.6 433 1.6 433 1.7 347 
25 75 2.4 456 2.6 542 1.9 542 1.9 542 2.0 456 
50 0 1.7 171 1.9 257 1.5 257 1.6 257 1.7 171 
50 25 2.1 281 2.3 366 1.8 366 1.9 366 2.0 281 
50 50 2.6 390 2.8 476 2.1 476 2.2 476 2.3 390 
50 75 3.1 499 3.3 585 2.4 585 2.5 585 2.6 499 

100 0 2.9 428 3.1 514 2.5 514 2.8 514 2.9 428 
100 25 3.3 537 3.6 623 2.8 623 3.1 623 3.2 537 
100 50 3.8 647 4.1 732 3.1 732 3.4 732 3.5 647 
100 75 4.3 756 4.6 842 3.4 842 3.7 842 3.8 756 
200 0 5.3 428 5.7 514 4.4 514 5.2 514 5.3 428 
200 25 5.7 537 6.2 623 4.7 623 5.5 623 5.6 537 
200 50 6.2 647 6.7 732 5.0 732 5.8 732 5.9 647 

200 75 6.7 756 7.1 842 5.3 842 6.1 842 6.2 756 
400 0 10.1 514 10.8 599 8.3 599 9.9 599 10.1 514 
400 25 10.5 623 11.3 709 8.6 709 10.2 709 10.4 623 
400 50 11.0 732 11.8 818 8.9 818 10.5 818 10.7 732 
400 75 11.5 842 12.3 927 9.1 927 10.8 927 11.0 842 
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FRANKLIN SITE watershed 4 (W -4)  

Appendix E: E9. Total phosphorus loss (Kg ha
-1

) and P-index values in continuous corn rotation; phosphorus surface 
broadcast in a no-till system, Franklin W-4 

Soil test 
phosphorus 

Phosphorus 
application 

rates (Kg ha
-1

) 

January April October November 

TP 
loss 

PI values TP loss PI values TP loss PI values TP loss PI values 

25 0 0.9 102 1.0 170 0.8 170 0.8 102 

25 25 2.0 275 1.9 343 1.5 343 1.6 275 
25 50 3.1 449 2.9 517 2.2 517 2.3 449 
25 75 4.2 622 3.8 690 2.8 690 3.0 622 
50 0 1.2 136 1.2 204 1.1 204 1.1 136 
50 25 2.3 309 2.2 377 1.8 377 1.8 309 
50 50 3.4 483 3.1 551 2.4 551 2.5 483 
50 75 4.4 656 4.0 724 3.1 724 3.3 656 

100 0 1.6 340 1.6 408 1.6 408 1.6 340 
100 25 2.7 513 2.6 581 2.3 581 2.3 513 
100 50 3.8 687 3.5 755 2.9 755 3.0 687 
100 75 4.9 860 4.5 928 3.6 928 3.7 860 
200 0 2.5 340 2.5 408 2.5 408 2.5 340 
200 25 3.7 513 3.5 581 3.2 581 3.3 513 
200 50 4.7 687 4.4 755 3.9 755 4.0 687 

200 75 5.8 860 5.3 928 4.5 928 4.7 860 
400 0 4.4 408 4.3 475 4.4 475 4.3 408 
400 25 5.5 581 5.2 649 5.2 649 5.2 581 
400 50 6.6 755 6.2 823 5.8 823 5.9 755 
400 75 7.7 928 7.1 996 6.5 996 6.6 928 
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Appendix E: E10. Total phosphorus loss (Kg ha
-1

) and P-index values in corn-soybean rotation; phosphorus surface 
broadcast in a no-till system, , Franklin W-4 

Soil test 
phosphorus 

Phosphorus 
application 

rates (Kg ha
-1

) 

January April October November 

TP loss PI values TP loss PI values TP loss PI values TP loss PI values 

25 0 0.6 106 0.6 177 0.6 177 0.6 106 

25 25 1.3 197 1.3 267 1.0 267 1.1 197 
25 50 2.0 287 1.9 358 1.4 358 1.5 287 
25 75 2.6 378 2.6 448 1.8 448 2.0 378 
50 0 1.0 142 1.0 212 1.0 212 1.0 142 
50 25 1.7 232 1.7 303 1.4 303 1.4 232 
50 50 2.3 322 2.3 393 1.8 393 1.9 322 
50 75 3.0 413 2.9 484 2.2 484 2.3 413 

100 0 1.5 354 1.5 425 1.5 425 1.5 354 
100 25 2.2 444 2.2 515 1.9 515 1.9 444 
100 50 2.8 535 2.8 606 2.3 606 2.4 535 
100 75 3.5 625 3.4 696 2.7 696 2.8 625 
200 0 2.5 354 2.5 425 2.5 425 2.5 354 
200 25 3.2 444 3.1 515 2.9 515 2.9 444 
200 50 3.8 535 3.8 606 3.3 606 3.4 535 

200 75 4.5 625 4.4 696 3.7 696 3.8 625 
400 0 4.5 425 4.5 496 4.5 496 4.5 425 
400 25 5.2 515 5.1 586 4.9 586 4.9 515 
400 50 5.8 606 5.8 676 5.3 676 5.3 606 
400 75 6.5 696 6.4 767 5.6 767 5.8 696 
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Appendix E: E11. Total phosphorus loss (Kg ha
-1

) and P-index values in corn winter wheat-soybean rotation; phosphorus 
surface broadcast in a no-till system,  Franklin W-4 

Soil test 
phosphorus 

Phosphorus 
application 

rates (Kg ha
-1

) 

January April October November 

TP loss PI values TP loss PI values TP loss PI values TP loss PI values 

25 0 0.3 102 0.3 169 0.3 169 0.3 102 

25 25 0.7 188 0.8 256 0.6 256 0.6 188 
25 50 1.2 275 1.2 342 0.8 342 0.9 275 
25 75 1.6 361 1.7 429 1.1 429 1.2 361 
50 0 0.5 135 0.6 203 0.5 203 0.5 135 
50 25 1.0 222 1.0 290 0.8 290 0.8 222 
50 50 1.4 308 1.4 376 1.0 376 1.1 308 
50 75 1.8 395 1.9 463 1.3 463 1.4 395 

100 0 0.8 339 0.8 406 0.8 406 0.8 339 
100 25 1.2 425 1.3 493 1.0 493 1.1 425 
100 50 1.7 512 1.7 579 1.3 579 1.3 512 
100 75 2.1 598 2.1 666 1.5 666 1.6 598 
200 0 1.3 339 1.3 406 1.3 406 1.3 339 
200 25 1.8 425 1.8 493 1.6 493 1.6 425 
200 50 2.2 512 2.2 579 1.8 579 1.9 512 

200 75 2.6 598 2.7 666 2.0 666 2.1 598 
400 0 2.4 406 2.4 474 2.4 474 2.4 406 
400 25 2.8 493 2.8 561 2.6 561 2.6 493 
400 50 3.2 579 3.2 647 2.8 647 2.9 579 
400 75 3.6 666 3.7 734 3.1 734 3.2 666 
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Appendix E: E12. Total phosphorus loss (Kg ha
-1

) and P-index values in grain sorghum-soybean rotation with phosphorus surface 
broadcast and no-till system, , Franklin W-4 

Soil test 
phosphorus 

Phosphorus 
application 

rates (Kg ha
-1

) 

January April June October November 

TP loss PI values TP loss PI values TP loss PI values TP loss PI 
values 

TP 
loss 

PI 
values 

25 0 0.8 108 0.8 180 0.8 180 0.8 180 0.8 108 

25 25 1.8 200 1.8 272 1.4 272 1.4 272 1.4 200 
25 50 2.8 292 2.9 364 2.0 364 1.9 364 2.1 292 
25 75 3.8 384 3.9 456 2.6 456 2.5 456 2.7 384 
50 0 1.2 144 1.3 216 1.2 216 1.2 216 1.2 144 
50 25 2.2 236 2.3 308 1.9 308 1.8 308 1.9 236 
50 50 3.2 328 3.3 400 2.5 400 2.4 400 2.5 328 
50 75 4.2 420 4.4 492 3.1 492 2.9 492 3.1 420 

100 0 1.9 360 2.0 432 2.0 432 1.9 432 1.9 360 
100 25 2.9 452 3.0 524 2.6 524 2.5 524 2.6 452 
100 50 3.9 544 4.1 616 3.2 616 3.1 616 3.2 544 
100 75 4.9 636 5.1 708 3.8 708 3.7 708 3.9 636 
200 0 3.4 360 3.4 432 3.4 432 3.4 432 3.4 360 
200 25 4.4 452 4.5 524 4.0 524 3.9 524 4.0 452 
200 50 5.4 544 5.5 616 4.6 616 4.5 616 4.7 544 

200 75 6.4 636 6.6 708 5.2 708 5.1 708 5.3 636 
400 0 6.2 432 6.3 504 6.3 504 6.2 504 6.2 432 
400 25 7.2 524 7.4 596 6.9 596 6.8 596 6.9 524 
400 50 8.2 616 8.4 688 7.5 688 7.4 688 7.5 616 
400 75 9.2 708 9.5 780 8.1 780 8.0 780 8.2 708 
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Appendix E: E13. Total phosphorus loss (Kg ha
-1

) and P-index values in continuous corn rotation;  phosphorus 
incorporated with tillage,, Franklin W-4 

Soil test 
phosphorus 

Phosphorus 
application 

rates (Kg ha
-1

) 

January April October November 

TP loss PI values TP loss PI values TP loss PI values TP loss PI values 

25 0 2.2 121 1.8 202 1.7 202 1.8 121 

25 25 3.1 328 2.7 408 2.4 408 2.5 328 
25 50 3.9 534 3.5 615 2.9 615 3.1 534 
25 75 4.8 741 4.4 821 3.5 821 3.7 741 
50 0 3.3 162 2.7 242 2.7 242 2.7 162 
50 25 4.1 368 3.6 449 3.4 449 3.4 368 
50 50 5.0 574 4.4 655 3.9 655 4.0 574 
50 75 5.9 781 5.2 862 4.4 862 4.6 781 

100 0 5.4 404 4.4 485 4.4 485 4.5 404 
100 25 6.3 610 5.2 691 5.2 691 5.3 610 
100 50 7.1 817 6.1 898 5.8 898 5.9 817 
100 75 8.0 1023 6.9 1104 6.3 1104 6.5 1023 
200 0 9.6 404 7.8 485 7.9 485 8.1 404 
200 25 10.5 610 8.6 691 9.0 691 9.0 610 
200 50 11.4 817 9.5 898 9.5 898 9.6 817 

200 75 12.3 1023 10.3 1104 10.1 1104 10.2 1023 
400 0 18.1 485 14.5 566 15.0 566 15.2 485 
400 25 19.0 691 15.4 772 16.5 772 16.4 691 
400 50 19.8 898 16.3 978 17.1 978 17.0 898 
400 75 20.7 1104 17.1 1185 17.6 1185 17.6 1104 
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Appendix E: E14. Total phosphorus loss (Kg ha
-1

) and P-index values in corn-soybean rotation;  phosphorus incorporated 
with tillage,  Franklin W-4   

Soil test 
phosphorus 

Phosphorus 
application 

rates (Kg ha
-1

) 

January April October November 

TP loss PI values TP loss PI values TP loss PI values TP loss PI values 

25 0 0.7 128 0.7 214 0.6 214 0.7 128 

25 25 1.0 238 1.1 323 0.9 323 0.9 238 
25 50 1.3 347 1.4 433 1.1 433 1.1 347 
25 75 1.7 456 1.7 542 1.3 542 1.4 456 
50 0 1.1 171 1.1 257 1.1 257 1.1 171 
50 25 1.4 281 1.5 366 1.3 366 1.3 281 
50 50 1.7 390 1.7 476 1.5 476 1.5 390 
50 75 2.0 499 2.0 585 1.6 585 1.7 499 

100 0 1.8 428 1.8 514 1.8 514 1.8 428 
100 25 2.1 537 2.1 623 2.0 623 2.0 537 
100 50 2.4 647 2.4 732 2.1 732 2.2 647 
100 75 2.7 756 2.7 842 2.3 842 2.4 756 
200 0 3.2 428 3.2 514 3.1 514 3.2 428 
200 25 3.5 537 3.5 623 3.3 623 3.4 537 
200 50 3.8 647 3.8 732 3.5 732 3.6 647 

200 75 4.1 756 4.1 842 3.7 842 3.8 756 
400 0 6.0 514 6.0 599 5.8 599 5.9 514 
400 25 6.4 623 6.3 709 6.0 709 6.2 623 
400 50 6.7 732 6.6 818 6.2 818 6.4 732 
400 75 7.0 842 6.9 927 6.4 927 6.6 842 
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Appendix E: E15. Total phosphorus loss (Kg ha
-1

) and P-index values in corn-winter wheat-soybean rotation;  
phosphorus incorporated with tillage, Franklin W-4  

Soil test 
phosphorus 

Phosphorus 
application 

rates (Kg ha
-1

) 

January April October November 

TP loss PI values TP loss PI values TP loss PI values TP loss PI values 

25 0 0.3 111 0.3 185 0.2 185 0.3 111 

25 25 0.5 206 0.5 280 0.4 280 0.4 206 
25 50 0.7 300 0.7 374 0.5 374 0.6 300 
25 75 0.9 395 0.9 469 0.6 469 0.7 395 
50 0 0.5 148 0.6 222 0.5 222 0.5 148 
50 25 0.7 243 0.8 317 0.6 317 0.6 243 
50 50 0.9 337 0.9 411 0.7 411 0.8 337 
50 75 1.1 432 1.1 506 0.8 506 0.9 432 

100 0 0.9 370 0.9 444 0.8 444 0.9 370 
100 25 1.1 465 1.1 539 0.9 539 1.0 465 
100 50 1.3 559 1.3 633 1.1 633 1.1 559 
100 75 1.4 654 1.5 728 1.2 728 1.2 654 
200 0 1.6 370 1.6 444 1.5 444 1.6 370 
200 25 1.8 465 1.8 539 1.6 539 1.7 465 
200 50 2.0 559 2.0 633 1.7 633 1.8 559 

200 75 2.1 654 2.2 728 1.8 728 1.9 654 
400 0 3.0 444 3.0 518 2.8 518 2.9 444 
400 25 3.2 539 3.2 613 2.9 613 3.0 539 
400 50 3.4 633 3.4 707 3.0 707 3.2 633 
400 75 3.5 728 3.6 802 3.1 802 3.3 728 



 

283 

 

Appendix E: E16. Total phosphorus loss (Kg ha
-1

) and P-index values in grain sorghum-soybean rotation;  phosphorus incorporated with 
tillage, Franklin W-4  

Soil test 
phosphorus 

Phosphorus 
application 

rates (Kg ha
-1

) 

January April June October November 

TP loss PI 
values 

TP loss PI 
values 

TP loss PI 
values 

TP loss PI 
values 

TP loss PI 
values 

25 0 1.3 131 1.5 219 1.1 219 1.3 219 1.3 131 

25 25 1.8 243 2.0 331 1.4 331 1.6 331 1.6 243 
25 50 2.3 355 2.5 443 1.7 443 1.9 443 2.0 355 
25 75 2.8 467 3.0 555 2.0 555 2.2 555 2.3 467 
50 0 2.1 175 2.4 263 1.8 263 2.0 263 2.1 175 
50 25 2.6 287 2.9 375 2.1 375 2.3 375 2.4 287 
50 50 3.1 399 3.4 487 2.4 487 2.6 487 2.8 399 
50 75 3.6 511 3.9 599 2.7 599 3.0 599 3.1 511 

100 0 3.6 438 4.0 526 2.9 526 3.5 526 3.6 438 
100 25 4.1 550 4.5 638 3.2 638 3.8 638 3.9 550 
100 50 4.6 662 5.0 749 3.5 749 4.1 749 4.3 662 
100 75 5.1 774 5.5 861 3.8 861 4.4 861 4.6 774 
200 0 6.7 438 7.3 526 5.2 526 6.5 526 6.6 438 
200 25 7.2 550 7.8 638 5.5 638 6.8 638 6.9 550 
200 50 7.6 662 8.3 749 5.8 749 7.1 749 7.3 662 

200 75 8.1 774 8.8 861 6.1 861 7.4 861 7.6 774 
400 0 12.8 526 13.9 613 9.8 613 12.4 613 12.6 526 
400 25 13.2 638 14.4 725 10.1 725 12.7 725 13.0 638 
400 50 13.7 749 14.9 837 10.4 837 13.0 837 13.3 749 
400 75 14.2 861 15.4 949 10.7 949 13.3 949 13.6 861 

 



 

284 

 

CRAWFORD SITE 

Appendix E: E17. Total phosphorus loss (Kg ha
-1

) and P-index values in continuous corn rotation; phosphorus surface broadcast in a no-
till system, Crawford site 

Soil test 
phosphorus 

Phosphorus 
application 

rates (Kg ha
-1

) 

January April October November 

TP 
loss 

PI values TP loss PI values TP loss PI values TP loss PI values 

25 0 1.4 98.6 2.0 164.3 1.4 164.3 1.4 98.6 
25 25 2.8 266.5 2.3 332.2 2.2 332.2 2.2 266.5 
25 50 4.1 434.4 3.2 500.1 3.1 500.1 3.1 434.4 
25 100 7.1 770.2 5.3 836.0 4.9 836.0 4.9 770.2 
25 200 13.7 1441.9 10.4 1507.6 8.7 1507.6 9.1 1441.9 
50 0 1.8 131.4 2.4 197.2 1.8 197.2 1.7 131.4 
50 25 3.2 299.4 2.7 365.1 2.7 365.1 2.6 299.4 
50 50 4.5 467.3 3.6 533.0 3.5 533.0 3.5 467.3 
50 100 7.5 803.1 5.7 868.8 5.4 868.8 5.4 803.1 
50 200 14.2 1474.8 10.8 1540.5 9.2 1540.5 9.5 1474.8 

100 0 2.5 328.6 3.2 394.3 2.6 394.3 2.5 328.6 
100 25 3.9 496.5 3.4 562.2 3.5 562.2 3.4 496.5 
100 50 5.3 664.4 4.3 730.1 4.4 730.1 4.3 664.4 
100 100 8.4 1000.3 6.5 1066.0 6.3 1066.0 6.2 1000.3 
100 200 15.1 1671.9 11.6 1737.6 10.1 1737.6 10.4 1671.9 

200 0 4.0 328.6 4.8 394.3 4.2 394.3 4.0 328.6 
200 25 5.4 496.5 4.8 562.2 5.3 562.2 5.0 496.5 
200 50 6.9 664.4 5.8 730.1 6.2 730.1 6.0 664.4 
200 100 10.0 1000.3 8.0 1066.0 8.1 1066.0 7.9 1000.3 
200 200 16.8 1671.9 13.2 1737.6 12.0 1737.6 12.2 1671.9 
400 0 7.0 394.3 7.9 460.0 7.4 460.0 7.1 394.3 
400 25 8.5 562.2 7.6 628.0 8.8 628.0 8.2 562.2 
400 50 10.0 730.1 8.6 795.9 9.8 795.9 9.3 730.1 
400 100 13.2 1066.0 10.9 1131.7 11.8 1131.7 11.3 1066.0 
400 200 20.1 1737.6 16.2 1803.4 15.8 1803.4 15.7 1737.6 
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Appendix E: E18. Total phosphorus loss (Kg ha
-1

) and P-index values in corn-soybean rotation; phosphorus surface broadcast in a 
no-till system, Crawford site 

Soil test 
phosphorus 

Phosphorus 
application 

rates (Kg ha
-1

) 

January April October November 

TP loss PI values TP loss PI values TP loss PI values TP loss PI 
values 

25 0 1.0 99.7 1.0 166.2 1.0 166.2 1.0 100 
25 25 1.9 184.6 1.7 251.1 1.5 251.1 1.5 185 
25 50 2.8 269.6 2.5 336.1 2.1 336.1 2.1 270 
25 100 4.6 439.4 3.9 505.9 3.1 505.9 3.2 439 
25 200 8.3 779.1 7.2 845.6 5.0 845.6 5.4 779 
50 0 1.8 133.0 1.8 199.4 1.8 199.4 1.8 133 
50 25 2.6 217.9 2.5 284.4 2.2 284.4 2.3 218 
50 50 3.5 302.8 3.2 369.3 2.7 369.3 2.8 303 
50 100 5.2 472.7 4.6 539.2 3.6 539.2 3.8 473 
50 200 9.0 812.4 7.9 878.9 5.6 878.9 6.0 812 

100 0 2.7 332.4 2.6 398.9 2.6 398.9 2.6 332 
100 25 3.4 417.3 3.3 483.8 3.0 483.8 3.1 417 
100 50 4.3 502.3 3.9 568.7 3.5 568.7 3.6 502 
100 100 6.0 672.1 5.4 738.6 4.4 738.6 4.6 672 
100 200 9.8 1011.8 8.7 1078.3 6.4 1078.3 6.8 1012 

200 0 4.3 332.4 4.3 398.9 4.3 398.9 4.3 332 
200 25 5.0 417.3 4.8 483.8 4.6 483.8 4.6 417 
200 50 5.9 502.3 5.5 568.7 5.1 568.7 5.1 502 
200 100 7.6 672.1 7.0 738.6 6.0 738.6 6.2 672 
200 200 11.4 1011.8 10.3 1078.3 8.0 1078.3 8.4 1012 
400 0 7.7 398.9 7.7 465.4 7.7 465.4 7.7 399 
400 25 8.2 483.8 7.9 550.3 7.8 550.3 7.8 484 
400 50 9.0 568.7 8.6 635.2 8.3 635.2 8.3 569 
400 100 10.8 738.6 10.1 805.1 9.2 805.1 9.3 739 
400 200 14.7 1078.3 13.6 1144.8 11.2 1144.8 11.7 1078 
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Appendix E: E19. Total phosphorus loss (Kg ha
-1

) and P-index values in corn-winter wheat-soybean rotation; phosphorus 
surface broadcast in a no-till system, Crawford site 

Soil test 
phosphorus 

Phosphorus 
application 

rates (Kg ha
-1

) 

January April October November 

TP loss PI values TP loss PI values TP loss PI values TP loss PI values 

25 0 0.5 99 1.4 168 0.5 165 1.4 168 
25 25 1.1 183 2.5 254 0.8 249 2.1 254 
25 50 1.7 267 3.7 340 1.2 333 2.7 340 
25 100 2.9 435 6.2 512 1.9 501 4.0 512 
25 200 5.4 772 11.8 856 3.1 838 6.7 856 
50 0 1.1 132 1.1 198 2.2 202 2.3 202 
50 25 1.7 216 1.6 282 3.4 288 2.8 288 
50 50 2.2 300 2.2 366 4.5 374 3.3 374 
50 100 3.4 468 3.3 534 7.0 546 4.3 546 
50 200 5.9 805 5.9 871 12.7 890 6.8 890 

100 0 1.6 329 2.2 135 3.4 337 3.4 404 
100 25 2.2 414 2.9 221 4.6 423 4.6 490 
100 50 2.7 498 3.6 307 5.8 509 5.8 576 
100 100 3.9 666 5.1 479 8.3 681 8.3 748 
100 200 6.4 1003 8.2 823 13.7 1025 14.0 1092 

200 0 2.6 329 3.4 404 3.4 337 5.8 337 
200 25 3.1 414 4.1 490 4.1 423 7.0 423 
200 50 3.7 498 4.7 576 4.8 509 8.3 509 
200 100 4.9 666 6.1 748 6.3 681 10.8 681 
200 200 7.4 1003 8.7 1092 9.4 1025 16.2 1025 
400 0 2.6 395 4.6 461 5.8 404 5.8 337 
400 25 3.1 479 4.9 545 6.5 490 6.5 423 
400 50 3.6 564 5.5 629 7.2 576 7.3 509 
400 100 4.8 732 6.6 798 8.5 748 8.8 681 
400 200 7.3 1069 9.3 1134 11.3 1092 11.9 1025 
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Appendix E: E20. Total phosphorus loss (Kg ha
-1

) and P-index values in grain sorghum-soybean rotation; phosphorus surface broadcast in a no-till 
system, Crawford site 

Soil test 
phosphorus 

Phosphorus 
application 

rates (Kg ha
-1

) 

January April June October November 

TP loss PI values TP loss PI values TP loss PI values TP loss PI values TP loss PI values 

25 0 1.4 101 1.4 168 1.5 168 1.4 168 1.4 101 
25 25 2.6 187 2.5 254 2.0 254 2.1 254 2.1 187 
25 50 3.8 273 3.7 340 2.5 340 2.7 340 2.8 273 
25 100 6.3 445 6.2 512 3.6 512 4.0 512 4.3 445 
25 200 11.6 789 11.8 856 6.0 856 6.7 856 7.4 789 
50 0 2.2 135 2.2 202 2.3 202 2.2 202 2.2 135 
50 25 3.4 221 3.4 288 2.8 288 2.9 288 2.9 221 
50 50 4.6 307 4.5 374 3.3 374 3.5 374 3.6 307 
50 100 7.1 479 7.0 546 4.3 546 4.8 546 5.1 479 
50 200 12.4 823 12.7 890 6.8 890 7.5 890 8.2 823 

100 0 3.4 337 3.4 404 3.5 404 3.4 404 3.4 337 
100 25 4.6 423 4.6 490 4.0 490 4.1 490 4.1 423 
100 50 5.8 509 5.8 576 4.5 576 4.7 576 4.8 509 
100 100 8.3 681 8.3 748 5.5 748 6.1 748 6.3 681 
100 200 13.7 1025 14.0 1092 8.0 1092 8.7 1092 9.4 1025 

200 0 5.8 337 5.8 404 5.8 404 5.8 404 5.8 337 
200 25 7.0 423 7.0 490 6.4 490 6.5 490 6.5 423 
200 50 8.3 509 8.2 576 6.9 576 7.2 576 7.3 509 
200 100 10.8 681 10.8 748 8.0 748 8.5 748 8.8 681 
200 200 16.2 1025 16.5 1092 10.4 1092 11.3 1092 11.9 1025 
400 0 10.6 404 10.6 471 10.6 471 10.6 471 10.6 404 
400 25 11.8 490 11.8 557 11.1 557 11.3 557 11.4 490 
400 50 13.1 576 13.0 643 11.7 643 12.0 643 12.1 576 
400 100 15.7 748 15.7 815 12.8 815 13.5 815 13.7 748 
400 200 21.2 1092 21.5 1159 15.3 1159 16.4 1159 17.0 1092 
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Appendix E: E21. Total phosphorus loss (Kg ha
-1

) and P-index values in continuous corn; phosphorus incorporation with 
tillage, Crawford site  

Soil test 
phosphorus 

Phosphorus 
application 

rates (Kg ha
-1

) 

January April October November 

TP 
loss 

PI values TP loss PI values TP loss PI values TP loss PI values 

25 0 1.3 108 1.4 180 1.2 108 1.3 108 
25 25 2.0 292 1.8 364 1.6 292 1.7 292 
25 50 2.7 476 2.3 548 2.0 476 2.1 476 
25 100 4.1 844 3.3 916 2.7 844 3.0 844 
25 200 7.1 1580 5.5 1652 4.1 1580 4.7 1580 
50 0 2.0 144 1.9 216 1.9 144 1.9 144 
50 25 2.7 328 2.4 400 2.3 328 2.4 328 
50 50 3.4 512 2.9 584 2.7 512 2.8 512 
50 100 4.8 880 3.9 952 3.4 880 3.7 880 
50 200 7.8 1616 6.1 1688 4.8 1616 5.4 1616 

100 0 3.3 360 3.0 432 3.2 360 3.2 360 
100 25 4.0 544 3.6 616 3.6 544 3.7 544 
100 50 4.7 728 4.1 800 4.0 728 4.2 728 
100 100 6.2 1096 5.1 1168 4.7 1096 5.0 1096 
100 200 9.2 1832 7.3 1904 6.1 1832 6.7 1832 

200 0 6.0 360 5.3 432 5.8 360 5.9 360 
200 25 6.7 544 5.8 616 6.4 544 6.4 544 
200 50 7.4 728 6.4 800 6.7 728 6.9 728 
200 100 8.9 1096 7.4 1168 7.5 1096 7.8 1096 
200 200 12.0 1832 9.7 1904 8.9 1832 9.5 1832 
400 0 11.3 432 9.8 504 11.0 432 11.1 432 
400 25 12.1 616 10.4 688 11.8 616 11.9 616 
400 50 12.8 800 11.0 872 12.2 800 12.4 800 
400 100 14.4 1168 12.1 1240 13.0 1168 13.3 1168 
400 200 17.5 1904 14.4 1976 14.5 1904 15.1 1904 
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Appendix E: E22. Total phosphorus loss (Kg ha
-1

) and P-index values in corn-soybean; phosphorus incorporation with 
tillage, Crawford site 

Soil test 
phosphorus 

Phosphorus 
application 

rates (Kg ha
-1

) 

January April October November 

TP loss PI values TP loss PI values TP loss PI values TP loss PI values 

25 0 0.9 112 1.0 187 0.9 112 0.9 112 
25 25 1.3 208 1.3 283 1.1 208 1.2 208 
25 50 1.8 303 1.7 378 1.4 303 1.5 303 
25 100 2.6 494 2.4 569 1.8 494 2.0 494 
25 200 4.1 877 3.7 951 2.6 877 2.9 877 
50 0 1.7 150 1.7 224 1.6 150 1.7 150 
50 25 2.0 245 2.0 320 1.8 245 1.9 245 
50 50 2.4 341 2.3 416 2.0 341 2.1 341 
50 100 3.1 532 2.9 607 2.4 532 2.5 532 
50 200 4.7 914 4.3 989 3.1 914 3.4 914 

100 0 2.8 374 2.7 449 2.7 374 2.7 374 
100 25 3.1 470 3.0 544 2.8 470 2.9 470 
100 50 3.4 565 3.3 640 3.0 565 3.1 565 
100 100 4.2 756 3.9 831 3.4 756 3.5 756 
100 200 5.7 1138 5.2 1213 4.1 1138 4.4 1138 

200 0 4.9 374 4.7 449 4.7 374 4.8 374 
200 25 5.1 470 4.8 544 4.8 470 4.9 470 
200 50 5.5 565 5.1 640 5.0 565 5.1 565 
200 100 6.2 756 5.8 831 5.4 756 5.6 756 
200 200 7.8 1138 7.2 1213 6.2 1138 6.5 1138 
400 0 9.1 449 8.6 524 8.9 449 9.0 449 
400 25 9.2 544 8.6 619 8.8 544 8.9 544 
400 50 9.5 640 8.9 715 9.0 640 9.2 640 
400 100 10.3 831 9.6 906 9.4 831 9.6 831 
400 200 11.9 1213 11.1 1288 10.2 1213 10.6 1213 
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Appendix E: E23.Total phosphorus loss (Kg ha
-1

) and P-index values in corn-winter wheat-soybean rotation;  
phosphorus incorporated with tillage, Crawford site   

Soil test 
phosphorus 

Phosphorus 
application 

rates (Kg ha
-1

) 

January April October November 

TP 
loss 

PI values TP 
loss 

PI values TP 
loss 

PI values TP 
loss 

PI 
values 

25 0 0.4 103 1.4 190 0.4 103 1.3 114 
25 25 0.7 191 1.9 287 0.5 191 1.5 211 
25 50 1.0 279 2.4 384 0.7 279 1.8 308 
25 100 1.5 455 3.4 578 1.0 455 2.3 502 
25 200 2.5 806 5.7 967 1.4 806 3.3 891 
50 0 1.0 138 1.0 206 2.2 228 2.2 228 
50 25 1.2 225 1.3 294 2.7 325 2.4 325 
50 50 1.4 313 1.5 382 3.2 422 2.7 422 
50 100 1.9 489 2.0 558 4.2 616 3.1 616 
50 200 2.8 841 3.0 910 6.5 1005 4.3 1005 

100 0 1.6 344 2.1 152 3.7 380 3.7 456 
100 25 1.8 432 2.4 249 4.2 477 4.2 553 
100 50 2.1 520 2.7 346 4.7 574 4.7 650 
100 100 2.5 696 3.3 540 5.7 768 5.7 844 
100 200 3.5 1047 4.4 929 7.8 1157 8.0 1233 

200 0 2.9 344 3.6 380 3.6 380 6.7 380 
200 25 3.1 432 3.9 477 3.9 477 7.2 477 
200 50 3.3 520 4.1 574 4.2 574 7.7 574 
200 100 3.8 696 4.6 768 4.8 768 8.8 768 
200 200 4.7 1047 5.7 1157 5.9 1157 10.9 1157 
400 0 12.8 456 5.4 482 6.6 380 6.7 380 
400 25 13.3 553 5.4 569 6.9 477 7.0 477 
400 50 13.9 650 5.7 657 7.2 574 7.3 574 
400 100 14.9 844 6.2 833 7.7 768 7.9 768 
400 200 17.1 1233 7.2 1185 8.7 1157 8.8 1157 
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Appendix E: E24. Total phosphorus loss (Kg ha
-1

) and P-index values in grain sorghum-soybean rotation with phosphorus surface 
broadcast and no-till system 

Soil test 
phosphorus 

Phosphorus 
application 

rates (Kg ha
-1

) 

January April June October November 

TP loss PI 
values 

TP loss PI 
values 

TP loss PI 
values 

TP loss PI 
values 

TP 
loss 

PI 
values 

25 0 1.3 114 1.4 190 1.4 190 1.3 114 1.3 114 
25 25 1.8 211 1.9 287 1.7 287 1.5 211 1.6 211 
25 50 2.3 308 2.4 384 1.9 384 1.8 308 1.9 308 
25 100 3.3 502 3.4 578 2.4 578 2.3 502 2.5 502 
25 200 5.4 891 5.7 967 3.5 967 3.3 891 3.6 891 
50 0 2.1 152 2.2 228 2.2 228 2.1 152 2.1 152 
50 25 2.6 249 2.7 325 2.4 325 2.3 249 2.4 249 
50 50 3.1 346 3.2 422 2.7 422 2.6 346 2.7 346 
50 100 4.1 540 4.2 616 3.1 616 3.1 540 3.3 540 
50 200 6.2 929 6.5 1005 4.3 1005 4.1 929 4.4 929 

100 0 3.7 380 3.7 456 3.5 456 3.6 380 3.6 380 
100 25 4.2 477 4.2 553 3.8 553 3.9 477 3.9 477 
100 50 4.7 574 4.7 650 4.0 650 4.1 574 4.2 574 
100 100 5.7 768 5.7 844 4.5 844 4.6 768 4.8 768 
100 200 7.8 1157 8.0 1233 5.6 1233 5.7 1157 5.9 1157 

200 0 6.7 380 6.6 456 6.1 456 6.6 380 6.7 380 
200 25 7.2 477 7.1 553 6.4 553 6.9 477 7.0 477 
200 50 7.7 574 7.7 650 6.6 650 7.2 574 7.3 574 
200 100 8.8 768 8.7 844 7.1 844 7.7 768 7.9 768 
200 200 10.9 1157 11.1 1233 8.3 1233 8.7 1157 8.8 1157 
400 0 12.8 456 12.5 532 11.4 532 12.7 456 12.8 456 
400 25 13.3 553 13.1 629 11.6 629 13.0 553 13.1 553 
400 50 13.9 650 13.6 726 11.9 726 13.2 650 13.4 650 
400 100 14.9 844 14.7 920 12.4 920 13.8 844 14.1 844 
400 200 17.1 1233 17.1 1309 13.6 1309 14.8 1233 14.6 1233 
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Figure E5. Average annual sediment loss by cropping system in Franklin runoff study site. C-C = Continuous corn; C-
S = Corn-soybean; C-WW-S = Corn-winter wheat-soybean and GS-S = Grain sorghum-soybean cropping system  
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Figure E6. Average annual sediment loss by cropping system in each location, Crawford runoff study site. C-C = 
Continuous corn; C-S = Corn-soybean; C-WW-S = Corn-winter wheat-soybean and GS-S = Grain sorghum-soybean 
cropping system   
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APPENDIX F. Extra information on chapter 6 

Section 1 - Procedure used for the batch experiment  

 Weigh 1 g of soil into each of twelve (12 centrifuge tubes (Oakridge polycarbonate 

tubes).  

 0.01 M/L calcium chloride electrolyte solution. For this dissolve 1.4701 g of calcium 

chloride dehydrate (CaCl2.2H2O) in 1 L of DI water. Store in the refrigerator until use.  

 Prepare 1 L of standard P concentrations (as outline below) in 0.01 M CaCl2 solution.  

 Add 25 ml of standard P solution (Appendix F: Table F1) to each tube. 

 Place on end to end shaker at low speed for 24 hours. 

 After 24 hours remove tubes from shaker, centrifuge at 10,000 RPM for 10 minutes and 

filter supernatant through a 0.45 μm filter. 

 Save filtrate in 15 ml vials at 5oC.  

 Analyze extracts on Lachate using 75.5 cm sample loop and standards from 0.025 to 2.0 

ppm P. (Note- all the samples at concentrations greater than 2 ppm (7 to 12 in the 

Appendix F: Table1) will need to be diluted for analysis.  

Standard P solutions: 

1. 1000 ppm P stock standard solution was used in 0.01 M CaCl2 to prepare the standards of 2 

mg kg-1, 1 mg kg-1, 0.5 mg kg-1, 0.2, 0.01 mg kg-1, 0 mg kg-1.  
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Section 2 -Procedure to analyze Ferrous Iron (Fe2+)  

Chemicals and Stock solution preparation 

0.015 M 1,10-o-phennanthroline regent 

1. Add 150 mL of deionized water to the 250 ml volumetric flask (VF). 

2. Add 0.75 g of 1,10-o-phenanthroline monohydrate to the flask. 

3. Heat the solution carefully to 80 °C to dissolve the o-phenanthroline. 

4. Once o-phenanthroline was dissolved, allow the solution to cool to room temperature. 

5. Bring the final volume to 250 mL mark with deionized water (DI).  

5M AOC 

1. Add 250 ml of DI Water in 500 ml VF. 

2. Add 192.5 g of AOC. 

3. Bring to final volume with DI water. 

4. 6M HCl 

1. Add 200 ml of DI water to 500 ml VF.  

2. Carefully add 250 mL of concentrated HCl to the flask. 

3. Slowly swirl to mix. 

4. Allow solution to cool. 
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5. Bring to 500 mL final volume with DI water. 

100 ppm iron (Prepare fresh daily) 

1. Add 50 ml of DI Water in 100 ml VF. 

2. Add 0.0702 g of Ferrous Ammonium Sulfate (FAS) and mix thoroughly. 

3. Bring to final volume with DI water. 

Prepare Ferrous Iron (Fe2+) standards by adding 100 mg Fe L-1 stock solution in 100 ml VF: 

 0.00 mg Fe L-1  = 0 mg Fe L-1 

0.30 mg Fe L-1  = 0.30 mg of 100 mg Fe L-1 

 0.75 mg Fe L-1  = 0.75 mg of 100 mg Fe L-1 

1.50 mg Fe L-1= 1.50 mg of 100 mg Fe L-1 

2.25 mg Fe L-1 = 2.25 mg of 100 mg Fe L-1 and  

3.50 mg Fe L-1  = 3.50 mg of 100 mg Fe L-1 

Sample bottle preparation 

 Seal the bottles with rubber stopper and aluminum seals. 

 Vacuum the bottles for 5 minutes and deoxygenate with helium gas for 2-3 minutes 

(200psi). 

 After deoxygenation, re-vacuum the bottles for another 5 minutes.  

Standard curve development 
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 Add 1 mL of 1, 10-phennanthroline regent to the deoxygenated 30 ml amber color 

bottles using 3ml syringe.  

 Add 6 ml of each Ferrous Iron (Fe2+) standards using the 3ml syringe.  

 Add 2ml of 5M Ammonium acetate with syringe and mix  

 Add 1 ml of 6M HCl to keep the pH between 3-5. (1 ml of 6M HCl was determined by 

testing standards with 4 replications in which 1 ml of 6M HCl was added and pH was 

measured. The average pH of those 4 replications was 4.62.   

 Measure the Fe2+ concentration using spectrophotometer.  

 Methods to analyze leachate samples: 

 Add 1 mL of 1, 10-phennanthroline regent to the 30 ml deoxygenated amber color 

bottles using 3 ml syringe.  

 Connect the sample loop to the column directly to collect approximately 8 ml of sample. 

 Transfer 6ml of the sample in a bottle containing 1 mL of 1,10-phennanthroline regent. 

Take the sample from  the end that is connected to the column.  

 Add 2ml of 5M Ammonium acetate with syringe and mix  

 Add 1 ml of 6M HCl to keep the pH between 3-5.  

 Using a spectrophotometer measure Ferrous Iron (Fe2+) Fe2+ concentration at λ= 

510nm.  
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Section 3- MATLAB script used to estimate coefficient of hydrodynamic dispersion  

 
% M-File script DispCoefEstimationRevised for determining dispersion 
% coefficient D and retardation factor R by fitting Solution A1 of van 
% Genuchten and Alves (1982) to data from a solute breakthrough experiment 
% with a step inlet condition. This script calls the function A1Func.m to 
% evaluate the analytical solution. 
% 
% In this script, Solution A1 of van Genuchten and Alves (1982) is fitted 
% to measured breakthrough curve data. The script uploads the measured data 
% from an Excel spreadsheet file. Times and relative solute concentrations 
% for the breakthrough curve are placed in the first and second columns, 
% respectively, of the spreadsheet file. 
% 
% This script was written by G.J. Kluitenberg on October 15, 2014. 
% ************************************************************************* 

  
% Clear MATLAB environment 
clear all; 
close all; 
clc; 

  
velocity = 'slow'; 
% velocity = 'medium'; 
% velocity = 'fast'; 

  
replicate = 'one'; 
% replicate = 'two'; 

  
% Read time and relative solute concentration data from Excel spreadsheet 
% file ExampleBreakthroughData.xls. Times [h] are assigned to the vector 
% XDATA and relative solution concentrations [-] are assigned to the 
% vector YDATA. 
switch velocity 
    case 'slow' 
        switch replicate 
            case 'one' 
                XDATA = xlsread('BhandariBromideBTCs',1,'a2..a70'); 
                YDATA = xlsread('BhandariBromideBTCs',1,'b2..b70'); 
            case 'two' 
                XDATA = xlsread('BhandariBromideBTCs',2,'a2..a70'); 
                YDATA = xlsread('BhandariBromideBTCs',2,'b2..b70'); 
        end 
    case 'medium' 
        switch replicate 
            case 'one' 
                XDATA = xlsread('BhandariBromideBTCs',3,'a2..a70'); 
                YDATA = xlsread('BhandariBromideBTCs',3,'b2..b70'); 
            case 'two' 
                XDATA = xlsread('BhandariBromideBTCs',4,'a2..a70'); 
                YDATA = xlsread('BhandariBromideBTCs',4,'b2..b70'); 
        end 
    case 'fast' 
        switch replicate 
            case 'one' 
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                XDATA = xlsread('BhandariBromideBTCs',5,'a2..a70'); 
                YDATA = xlsread('BhandariBromideBTCs',5,'b2..b70'); 
            case 'two' 
                XDATA = xlsread('BhandariBromideBTCs',6,'a2..a70'); 
                YDATA = xlsread('BhandariBromideBTCs',6,'b2..b70'); 
        end 
end 

  
% Assign values for fixed constants 
switch velocity            
case 'slow' 
    v = 0.208*(0.47/0.41);   % Average pore water velocity [cm/h] 
case 'medium' 
    v = 0.417*(0.47/0.41);   % Average pore water velocity [cm/h] 
case 'fast' 
    v = 1.25*(0.47/0.41);    % Average pore water velocity [cm/h] 
end 
z = 10;          % Depth at which concentration is evaluated [cm] 

  
% Put fixed constants in column vector P for passing to A1func 
P = [v; z]; 

  
% Initial estimates (i.e. guesses) for parameters to be estimated 
lambda = 1;      % Dispersivity [cm] 
D = lambda*v;    % Dispersion coefficient [cm^2/h] 
R = 10;           % Retardation factor [-] 

  
% Put initial parameter estimates in column vector XGUESS 
XGUESS = [D; R]; 

  
% Vectors with upper and lower bounds for parameters to be estimated 
UB = [100; 1.5]; 
LB = [0.001; 0.5]; 
% Use to adjust termination tolerances - Default values are 1.0e-6 
OPTIONS = optimset('TolFun',1.0e-6,'TolX',1.0e-6); 

  
% Perform curve-fitting. Estimated parameters are passed to vector X 
[X,resnorm,residual,exitflag,output] = lsqcurvefit(@A1Func, XGUESS, XDATA, 

YDATA, LB, UB, OPTIONS, P); 

  
% Calculate fitted curves using optimized values of parameters 
FITTEDYDATA = A1Func(X,XDATA,P); 
% Plot results 
hold on 
plot(XDATA,YDATA,'bo'); 
plot(XDATA,FITTEDYDATA,'r'); 
xlabel('Time [h]'); 
ylabel('Relative Concentration [--]'); 
Dlabel = ['D = ' num2str(X(1), '%10.4f') ' cm^2/h']; 
 h = text(55,0.5,Dlabel); 
Rlabel  = ['R = ' num2str(X(2), '%10.4f')]; 
h = text(30,0.4,Rlabel); 
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Section 4- The backwards implicit method to solve the advection-dispersion equation 

 

% M-File script Bhandari_Implicit that uses the backwards implicit method 
% to solve the advection-dispersion equation with initial condition 
% C(z,0)=0 and boundary conditions C(0,t)=C-sub-a and dC/dz=0. 
% 
% The value specified for Ld must be large enough that solute concentration 
% front does not reach depth z = Ld. Of course, if the value for Ld is 
% adjusted, the value for m must be adjusted accordingly. 

  
% Clear MATLAB Environment 
clear all; 
%close all; 
clc; 

  
isotherm = 'Linear'; 
% isotherm = 'Langmuir'; 
% isotherm = 'Freundlich'; 

  
% inletconc = 'small'; 
inletconc = 'large'; 

  
velocity = 'slow'; 
% velocity = 'fast'; 

  
soil = 'control'; 

 
m = 200; 
Ld = 100;         % Length of domain in z direction [cm] 
L = 10;           % Column length [cm] 
dz = Ld/m;        % Space increment [cm] 
dt = 0.1;         % Time increment [d] 

  
% Assign value for pore water velocity [cm/d] 
switch velocity            
case 'slow' 
    v = 45; 
case 'fast' 
    v = 65; 
end 

  
% Physical properties  
lambda =0.10;       % Dispersivity [cm] 
rhob = 1.4e6;     % Bulk density [mg/L] 
theta = 0.47;     % Volumetric water content [cm^3/cm^3] 
D = lambda*v;     % Dispersion coefficient [cm^2/d] 

  
% Constant for linear isotherm 
 Kd = 2.4358e-6;        % Distribution coefficient [L/mg]--batch exp 
% Kd = 0; 

  
% Constants for Langmuir isotherm 
switch soil            
case 'control' 
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     Smax = 198.5e-6;  % Total sorption capacity [mg/mg]--batch exp 
     k = 0.178;        % Distribution coeffient [L/mg]---batch exp 

 
end 

  
% Constants for Freundlich isotherm 
switch soil            
case 'control' 
    Kf = 62.33e-6;    % Distribution coefficient [L/mg]^beta_bath exp 
    beta = 0.271;     % Emperical fitting parameter [-]_batch exp 
end 

  
% Assign solute concentration at inlet [mg/L] 
switch inletconc            
case 'small' 
    Ca = 30; 
case 'large' 
    Ca = 90; 
end 

  
% Assign initial values for solute concentration [mg/L] 
switch isotherm            
case 'Linear' 
    C = zeros(m,1); 
case 'Langmuir' 
    C = zeros(m,1); 
case 'Freundlich' 
    C = 0.0001*ones(m,1); 
end 

  
% Create column vector of times used for plotting the breakthrough curve. 
% The elements of "btctimes" must be multiples of dt. 
switch velocity            
case 'slow' 
    tstep = 0.1;      % [d] 
    endtime =8;  % [d] 
    btctimes = (tstep:tstep:endtime)'; 
case 'fast' 
    %tstep = 0.5;    % [d] 
    tstep = 0.1; 
    endtime = 5;   % [d] 
    btctimes = (tstep:tstep:endtime)'; 
end 

  
% Calculate index number for the node at the column exit. The value 
% specified for L must be a multiple of dz. 
btcnode = L/dz; 

  
% Preallocate vector for saving results at the times in "btctimes" 
btcresults = NaN(length(btctimes),1); 

  
% Preallocate matrix for retardation factors at the times in "btctimes" 
retardation = NaN(m,length(btctimes)); 
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% Create square matrix A and column vector B with zero entries 
A = zeros(m); 
B = zeros(m,1); 

  
z = dz*(1:m)'; % Column vector of depths 
t = dt; % Set time for first pass through while loop 
M = 1; % Initialize counter 

  
% Begin stepping in time 
while (t-endtime) <= sqrt(eps) 

     
    switch isotherm            
    case 'Linear' 
    R = ones(m,1) + rhob*Kd/theta; 
    case 'Langmuir' 
    R = 1 + (rhob*k*Smax)./(theta*(1+k*C).^2); 
    case 'Freundlich' 
    R = 1 + (rhob*Kf*beta*C.^(beta-1))/theta; 
    end 

     
    % Calculate coefficients a-sub-i and b-sub-i 
    a = dt*D./(dz^2*R); 
    b = dt*v./(2*dz*R); 

     
    A(1,1) = 1 + 2*a(1); 
    A(1,2) = -(a(1)-b(1)); 
    B(1) = C(1) + (a(1)+b(1))*Ca; 

  
    for i = 2:m-1 
        A(i,i-1) = -(a(i)+b(i)); 
        A(i,i) = 1 + 2*a(i); 
        A(i,i+1) = -(a(i)-b(i)); 
        B(i) = C(i); 
    end 

        
    A(m,m-1) = -2*a(m); 
    A(m,m) = 1 + 2*a(m); 
    B(m) = C(m); 

  
    C = A\B; 

        
    % Commands executed at times specified in the vector "btctimes" 
    if any(abs(btctimes-t) <= sqrt(eps)) 
        % Write solute concentration at column exit to "btcresults" 
        btcresults(M) = C(btcnode); 
        % Write vector of retardation factors to "retardation" 
        retardation(:,M) = R; 
        % Increment counter 
        M = M + 1; 
    end 

  
    % Commands used to calculate concentration profile when t=endtime 
    if (endtime-t) <= sqrt(eps) 
        % Write solute concentrations to "results" 
        results = C; 
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        % Calculate exact concentration profile when t=endtime if the 
        % sorption isotherm is linear 
        if strcmp(isotherm,'Linear') 
            exact = czt2(R(1),D,v,Ca,z,t); 
        end 
    end 

     
    t = t + dt; % Increment time for next pass through while loop 
end 

  
% Use analytical solution to calculate approximation error if the sorption 
% isotherm is linear 
if strcmp(isotherm,'Linear') 
    btcexact = czt2(R(1),D,v,Ca,L,btctimes); 
    btcerror = btcresults - btcexact; 
end 

     
% Convert times in vector "btctimes" to pore volumes 
btcporevolumes = v*btctimes/L; 

  
% Calculate mesh-scale Peclet and Courant numbers for the case of a linear 
% sorption isotherm. 
if strcmp(isotherm,'Linear') 
    Pe = v*dz/D; 
    Cr = v*dt/(dz*R(1)); 
end 

  
%Plot flux concentration versus time 
figure(1) 
hold on 
plot(btctimes,btcresults,'bo'); 
if strcmp(isotherm,'Linear') 
plot(btctimes,btcexact,'r'); 
end 
xlabel('Time (d)'); 
ylabel('C (mg L^{-1})'); 

  
%Plot flux concentration versus pore volumes 
figure(2) 
hold on 
plot(btcporevolumes,btcresults,'bo'); 
if strcmp(isotherm,'Linear') 
    plot(btcporevolumes,btcexact,'r'); 
end 
xlabel('Pore volume'); 
ylabel('Concentration (mg L^{-1})'); 

  
% Plot flux concentration versus depth 
figure(3) 
hold on 
plot(results,z,'bo'); 
if strcmp(isotherm,'Linear') 
plot(exact,z,'r'); 
end 
set(gca,'YDir','reverse'); 
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xlabel('C (mg L^{-1})'); 
ylabel('Depth (cm)'); 

  
% Create matrix for export results 
output = [btcresults btctimes btcporevolumes]; 
xlswrite('FREUND_90mgP_FFR_test', output); 
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SECTION 5- ExtraTable and Figures 
 

Appendix F: Table F1. Table format used to collect batch experiment data  

Tube/Soil number P added (mg/L) Wt of soil (gram) Solution added (ml)/ Wt (g) 

Replication 1 

1 0 (check)   

2 0.001   

3 0.1   

4 0.2   

5 0.5   

6 2   

7 10   

8 20   

9 30   

10 40   

11 60   

12 100   

Replication 2 

1 0   

2 0.001   

3 0.1   

4 0.2   

5 0.5   

6 2   

7 10   

8 20   

9 30   

10 40   

11 60   

12 100   
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Figure: F1. Standard curve developed for iron reduction test using colometric method in UV-spectrophotometer    
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Figure F2. a) base, holder and a plunger (compacter) used to pack column b) demonstration of the compacter 
inserted inside the column 

a 

b 
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Figure F3. a) Column with end plates  b) demonstration of the column, syringe, tubing and other apparatus used 
for the study  

a 

b 

End plates of the column 
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Figure F4. a) techniques showing deoxygenation (with helium gas), and re-vacuum of bottles   b) Samples collected 
for reduced iron (Fe

2+
) analysis  

b 

a 
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Figure F5. a) Reduced iron test with a very slow flow rate  b) Samples collected in an auto sampler before 
oxygenation was started 

b 

a 

Samples collected showing possible iron reduction before oxygenation of P 

wsolution  

Iron reduction observed in a very slow flow rate (PWV =0.20 cm hr-1) and without oxygenation of P 

solution. The experiment was conducted in a separate column.  
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Figure F6. a) and b) lab settings with auto samplers collecting the leachate samples  

b 

a 

Clear samples collected after oxygenation of P solution in an auto sampler 


