
A COMPARATIVE STUDY OF NONLINEAR PROGRAMMING ROUTINES

ON THE MICROCOMPUTER VERSUS THE LARGE COMPUTER

by

Frank P. Hwang

B.S. , Kansas State University
Manhattan, Kansas 1931

A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Industrial Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1984

Approved by:

Maj or/Profe s sor

TABLE OF CONTENTS

page

ACKNOWLEDGEMENTS

CHAPTER 1 INTRODUCTION
1

1.1 HISTORY
]

1.2 ADVANTAGES OF MICRO/ PERSONAL COMPUTER OVER LARGE
COMPUTER 2

1.3 LANGUAGE AND COMPUTER USED IN STUDY i\

1 .4 THE OBJECTIVES OF THIS STUDY 5

1.5 WHAT HAS BEEN DONE IN THE MS THESIS 6

1 . 6 PREFACE TO THE REST OF THE THESIS 8

1.7 REFERENCES 10

CHAPTER 2 HOOKE AND JEEVES PATTERN SEARCH 12

2.1 INTRODUCTION 12

2.2 METHOD 12

2.2.1 ALGORITHM AND FLOWCHARTS 12

2.2.2 NUMERICAL EXAMPLE 16

2.3 COMPUTER PROGRAM DESCRIPTION . . .

,

23

2.3.1 DESCRIPTION OF SUBROUTINES 23

2.3.2 PROGRAM LIMITATIONS 23

2.3.3 TABLE OF PROGRAM SYMBOLS AND EXPLANATION 24

2.3.4 LISTING OF FORTRAN PROGRAM 26

2.3.5 DESCRIPTION OF OUTPUT 33

2.3.6 SUMMARY OF USER REQUIREMENTS 33

2.3.7 USER SUPPLIED SUBROUTINE 34

2.4 INPUT TO THE COMPUTER PROGRAM 35

2.4.1 CRT DISPLAY OF QUESTIONS 35

2.4.2 NOTES ABOUT THE INPUT 36

Ill

2.5 TEST PROBLEMS 37

2.5.1 TEST PROBLEM 1 : SIMPLE PRODUCTION SCHEDULING. 37

2.5.1.1 SUMMARY 37

2.5.1.2 COMPUTER PRINTOUT OF RESULTS 38

2.5.1.3 USER SUPPLIED SUBROUTINE 45

2.5.2 TEST PROBLEM 2 : PERSONNEL AND PRODUCTION
SCHEDULING 46

2.5.2.1 SUMMARY 46

2.5.2.2 DESCRIPTION OF TEST PROBLEM 2 48

2.5.2.3 COMPUTER PRINTOUT OF RESULTS 52

2.5.2.4 USER SUPPLIED SUBROUTINE 55

2.6 REFERENCES 56

CHAPTER 3 KSU - SEQUENTIAL UNCONSTRAINED MINIMIZATION TECHNIQUE
BASED ON HOOKE AND JEEVES PATTERN SEARCH METHOD
AND HEURISTIC PROGRAMMING 57

3.1 INTRODUCTION 57

3.2 KSU - SEQUENTIAL UNCONSTRAINED MINIMIZATION
TECHNIQUE (KSU-SUMT) 58

3.3 COMPUTATIONAL PROCEDURE 59

3.4 PROCEDURE FOR FINDING A FEASIBLE STARTING POINT
FROM THE INFEASIBLE INITIAL POINT 62

3.5 COMPUTATIONAL PROCEDURE FOR MINIMIZING P(X,R)

FUNCTION BY THE MODIFIED HOOKE AND JEEVES K

PATTERN SEARCH TECHNIQUE 65

3.6 PROCEDURE FOR MOVING AN INFEASIBLE POINT INTO THE
FEASIBLE OR NEAR-FEASIBLE REGION BOUNDED BY THE
INEQUALITY CONSTRAINTS 67

3.7 PROCEDURE FOR MOVING THE NEAR-FEASIBLE KTH SUB-OPTIMUM
POINT INTO THE FEASIBLE REGION 70

3.8 COMPUTER PROGRAM DESCRIPTION 72

3.8.1 DESCRIPTION OF SUBROUTINES 72

3.8.2 PROGRAM LIMITATIONS 72

IV

3.8.3 TABLE OF PROGRAM SYMBOLS AND EXPLANATION 73

3.8.4 LISTING OF FORTRAN PROGRAM 77

3.8.5 DESCRIPTION OF OUTPUT 94

3.8.6 SUMMARY OF USER REQUIREMENTS 96

3.8.7 USER SUPPLIED SUBROUTINES 97

3.9 INPUT TO THE COMPUTER PROGRAM 100

3.9.1 CRT DISPLAY OF QUESTIONS 100

3.9.2 NOTES ABOUT THE INPUT 101

3.10 TEST PROBLEMS 102

3.10.1 TEST PROBLEM 1 : NUMERIC EXAMPLE BY PAVIAN I . 102

3.10.1.1 SUMMARY 102

3.10.1.2 COMPUTER PRINTOUT OF RESULTS 104

3.10.1.3 USER SUPPLIED SUBROUTINES 1 06

3.10.2 TEST PROBLEM 2 : PROBLEM OF MAXIMIZING
SYSTEMS RELIABILITY 107

3.10.2.1 SUMMARY 107

3.10.2.2 DESCRIPTION OF THE PROBLEM 109

3.10.2.3 COMPUTER PRINTOUT OF RESULTS 111

3.10.2.4 USER SUPPLIED SUBROUTINES 115

3.11 REFERENCES 117

CHAPTER 4 RAC - SEQUENTIAL UNCONSTRAINED MINIMIZATION TECHNIQUE 1 1

8

4.1 INTRODUCTION 118

4.2 METHOD 118

4.2.1 MAJOR DIFFERENCES BETWEEN RAC-SUMT AND
KSU-SUMT 118

4.2.2 SUMMARY OF COMPUTATIONAL PROCEDURE 119

4.3 COMPUTER PROGRAM DESCRIPTION 1 23

4.3.1 DESCRIPTION OF SUBROUTINES 124

V

4.3.2 PROGRAM LIMITATIONS 1 28

4 .3 .3 LISTING CF FORTRAN PROGRAM 129

4.3.4 DESCRIPTION OF OUTPUT 170

4.3.5 SUMMARY OF USER REQUIREMENTS 171

4.3.6 USER-SUPPLIED SUBROUTINES 172

4.4 INPUT TO THE COMPUTER PROGRAM 177

4.4.1 CRT DISPLAY OF QUESTIONS 177

4.4.2 USER'S GUIDE TO THE CRT DISPLAY 179

4.5 TEST PROBLEMS 182

4.5.1 TEST PROBLEM 1 : NUMERIC EXAMPLE BY PAVIANI .. 132

4.5.1.1 SUMMARY 182

4.5.1.2 COMPUTER PRINTOUT OF RESULTS 1 83

4.5.1.3 USER SUPPLIED SUBROUTINES 186

4.5.2 TEST PROBLEM 2 : PROBLEM OF MAXIMIZING
SYSTEMS RELIABILITY 188

4.5.2.1 SUMMARY 183

4.5.2.2 COMPUTER PRINTOUT OF RESULTS 189

4.5.2.3 USER SUPPLIED SUBROUTINES 193

4.6 REFERQICES 196

CHAPTER 5 DISCUSSION OF LARGE COMPUTER VERSUS THE MICRO/PERSONAL
COMPUTER 1 97

5.1 CRITERIA USED IN COMPARING THE LARGE COMPUTER
VERSUS THE MICRO/ PERSONAL COMPUTER 197

5.2 REASONS FOR USING THE MICRO/PERSONAL COMPUTER
IN RESEARCH OR APPLICATION 204

5.3 EXPERIENCE ON THE MICRO/PERSONAL COMPUTER 206

5.4 ADVANTAGES AND DISADVANTAGES OF USING THE MICRO/
PERSONAL COMPUTER 212

5.5 FUTURE STUDY 213

5.6 REFERENCES 214

VI

ACKNOWLEDGEMENTS

I would like to thank by father, Dr. C.L. Hwang, who was by major

advisor, for continuous guidance and invaluable advice in planning the study

and preparing this thesis. I would also like to thank Dr. Stanley Lee for

his suggestions and Dr. Doris Grosh, Dr. Do Sup Chung and Dr. Frank Tillman

for serving on my advisory committee.

Finally, I wish to thank by parents, sisters, and friends for their

continuous encouragement.

CHAPTER 1

INTRODUCTION

1.1 HISTORY

The Hooke and Jeeves Pattern Search technique is used to find the local

minimum of a multivariable, unconstrained, nonlinear function. The

procedure is based en the direct search method proposed by R. Hooke and T.A.

Jeeves [9J. At Kansas State University, the method was programmed in

Fortran for the campus mainframe computer by S. Kumar [11] in 1969.

The sequential unconstrained minimization technique (SUMT) is used to

find a solution to a nonlinear programming problem with nonlinear inequality

and/or equality constraints. The basic scheme of this technique is that a

constrained minimization problem is transformed into a sequence of

unconstrained minimization problems which can be solved by any of the

available unconstrained minimization techniques. The SUMT technique was

originally proposed by C.W. Carroll [1,2] in 1959 and further developed by

A.V. Fiacco and G.P. McCormick [3,4,5,6,7] in 1964.

At KSU, a computer program was written which uses a modified Hooke and

Jeeves pattern search technique as the unconstrained minimization technique

for use in the SUMT method. This program was written in Fortran for the

large computer by K.C. Lai in 1970 as part of his master's thesis

[10,12,13].

Also at KSU, S.V. Gcpalakrishna wrote a computer program using a

conjugate gradient method as the unconstrained minimization technique for

use in the SUMT method in 1971 [8], However, the results obtained from the

program were not good so the program was never used.

In 1964, at the Research Analysis Corporation, a computer program was

written in Fortran by G.P. McCormick, VI. C. Mylander III, and A.V. Fiacco

using a second order gradient method to aetermine the direction 01 search

ana the Fibonacci Search method to determine the optimum step size. The

program was entitled "RAC Computer Program Implementing the Sequential

Unconstrained Minimization Technique for Nonlinear Programming" (RAC-SUMT)

and its share number is 3189 [14]. The program could not handle equality

constraints however. A later version of the program, version 4, written in

1971 was able to handle equality constraints and in addition, three more

methods were added to be used in determining the direction of search : a

conjugate gradient method, a first order gradient method, and a revised

version of the second oroer method used in version 1 [15]. The method used

to determine the optimum step size was also cnanged to the Golden Section

Method.

The first version of the RAC-SUMT computer program was checked and

modified by F.T. Hsu [16] so that it would run on the computer at KSU in

1969. Version 4 of the RAC-SUMT computer program had not yet been tried

here.

1.2 ADVANTAGES CF MICRO/PERSONAL COMPUTER OVER LARGE COMPUTER

There are a few major advantages which the micro/personal computer has

over the large computer which make it attractive to use. One of the major

advantages of the micro/personal computer over the large computer is the

easy accessibility of the micro/personal computer. One reason why the

microcomputer is easily accessible is because there is no need to have a

security number or computer funds to operate the micro/personal computer as

there is for the large computer. Another reason is that there is no need to

wait for a terminal or card punch to become available. A third reason is

that there is no restriction on the hours when the micro/personal computer

may be used as there is for the large computer. These reasons make the

micro/personal computer more easily accessible than the large computer.

Another major advantage of micro/personal computers over the large

computer is cost. The cost of a micro/personal computer is now at a price

where many middle and upper class families can purchase one. In addition to

the purchase price being low, the operating cost is also low because there

is no need for a staff of computer personnel to keep the micro/personal

computer running as there is for the large computer. There is also no

charge for using the micro/personal computer as there is for the large

computer.

A third reason for using micro/personal computers as opposed to large

computers is because of the adequate capability of available micros to

handle many types of problems, The capability of the micro/personal

computer has improved greatly over the last few years and many of the

limitations which once restricted the types of problems that could be solved

on a microcomputer no longer exist.

For example, although microcomputers were once limited to a maximum

memory size of 64K (North Star Horizon), now they can be expanded up to 640K

bytes (IBM PC). See Table 1.1 for a comparison of the features of the two

machines. The increase in memory size allows larger programs to be run on

the microcomputer and also increases the size of problems which the programs

can solve.

Table 1.1 Features of the North Star Horizon and IBM PC

North Sta r Horizon

CPU : Z80A, 8 bit

Memory : 64K (not expandable)

Operating system : CP/M, North Star DOS

Storage : 360K per 5 1/4 inch floppy disk

double si.ded, double density

IBM PC

CPU : 8088, 16 bit

Memory : t54K (expandable to 640K)

Operating System : PC-DOS

Storage : 360K per 5 1/4 - inch floppy disk

double si ded, double density

1.3 LANGUAGE AND COMPUTER USED IN STUD!

All of the programs used in this study were written in Fortran and

developed using a North Star Horizon II microcomputer which has a Z80A CPU.

The operating system used was the Lifeboat 2.21 A version of CP/M. The

source programs were written using Micro Pro's WordStar version 2.26 and

compiled with Microsoft's Fortran-80, 1 980 version for the North Star

microcomputer. The version of Fortran includes the American National

Standard Fortran language as described in ANSI document X3.9— 1966,

approved on March 7, 1 966, plus a number of language extensions and some

restrictions. Of these extensions, the ones which were used in the programs

were:

1. The literal form of Hollerith data (character string between

apostrophe characters) is permitted in place of the standard nH form.

2. Mixed mode expressions and assignments are allowed, and conversions

are done automatically.

1.4 THE OBJECTIVES OF THIS STUDY

The objectives of this study are as follows. First, a study was needed

to determine the feasibility or practicality of putting the nonlinear

programming programs into the microcomputer. When this study first started,

only a North Star Horizon microcomputer was available which was limited to

64K bytes of memory. Because of the limited memory of this microcomputer

and many others, it was not known whether the programs would fit into the

available memory. Also because of its slower speed it was not known whether

the programs would be practical to run on the microcomputer.

A second objective was to do a comparative study of the nonlinear

programming routines on the large computer versus the microcomputer in terms

of ease of use, accuracy of results, size of problem, and total time needed

to prepare and run a problem including the time needed to enter data into

the terminal, wait for results, etc.

A third objective concerned the checking of the programs. Over a

period of 12 years, the Hooke and Jeeves pattern search program, the KSU-

SUMT program and the RAC-SUMT program have been used for research at KSU.

Many students have made minor changes to the programs but there has been no

systematic checking of the logic of the changes made to the programs. In

this study, a third objective was to systematically check, modify, and

6

correct the complete programs including any modifications made to them.

A fourth objective is to prepare the programs and the complete

documentation of the programs so that they can be used for educational

purposes. Included in the documentation is the introduction of the theory

behind the techniques used in the programs, numerical examples to illustrate

the techniques, the description of the input to the program and how to use

the programs, the output from the programs, and a description of the

program. The preparation of the programs included making the programs as

readable and understandable as possible, restructuring the program if

necessary. An input routine also needed to be written for each program to

allow input to be entered from the keyboard in an interactive manner.

A fifth objective was to test version 4 of the RAC-SUMT program on the

microcomputer. Although version 1 of the RAC-SUMT program had been checked

and used at KSU, version 4 had not yet been checked or tested here.

1.5 WHAT HAS 3EEN DONE IN THE MS THESIS

The first objective of this study was to determine the feasibility or

practicality of putting the nonlinear programming routines into the micro-

computer. From the printout of the program run on the large computer, the

amount of cere used could give an indication of whether the program might

fit into the microcomputer. However, the exact size of core needed on the

microcomputer could not be known until it was actually compiled on the

microcomputer.

When the Hooke and Jeeves pattern search program and the KSU-SUMT

program were compiled, they both fit into the 37K bytes of available memory

but when the RAC-SUMT program was compilea, it exceeded the available memory

of the microcomputer. However, by placing the input routine into a separate

program, the main program fit into memory.

To determine whether the programs would be practical to run on the

microcomputer, the length of time it took to solve a problem had to be

determined. Originally, the Hooke and Jeeves pattern search program was

programmed using double precision arithmetic. However, test problem 2 which

had twenty variables was not finished even after one hour of execution time.

Thereafter, the Hooke ana Jeeves program and the KSU-SUMT and RAC-SUMT

programs were converted to single precision. All test problems solved by

the single precision version of the programs took less than four minutes

of execution time demonstrating that it was practical to solve small to

moderate size nonlinear programming problems on the microcomputer.

The second objective was to do a comparative study of the nonlinear

programming routines on the large computer versus the microcomputer in terms

of ease of use, accuracy of results, size of problem, and total time to

prepare and run a problem including the time needed to enter data into the

terminal, wait for results, and so forth. To accomplish this objective, a

set of criteria was chosen to be used in making the comparison. The set of

criteria used was similar to those used in comparing competing techniques on

the same computer. The test problems were then run on both the micro-

computer and the large computer, and finally, the results were compared.

The third objective was to systematically check, modify, and correct

the complete programs including any modifications made to them. In order

to accomplish this objective, first the methodology used in the programs had

to be understood. Then the details of the program were studied and final-

ly, any corrections or improvements needed were made to the programs.

Because of the usual difficulty in understanding programs written by other

people, the sections of code which were net fully clear were not changed. A

8

major change made to all three programs was uo add an input routine which

allowed input to be entered interactively from the terminal.

The fourth objective was lo prepare the programs and the complete

documentation of the programs so they could te used for educational

purposes. Much of the documentation was already written by the people who

wrote the original programs. It was necessary though to check and update

the documentation. Mere comments were added to the KSU-SUMT program to

make it easier to understand. In addition, the step numbers in the

algorithm, flowcharts and the program were matched up.

The fifth objective was to test version 4 of the RAC-SUMT program on

the microcomputer. When the main program along with the input routine was

entered into the microcomputer, it would not fit into the 37K bytes of

available memory of the North Star Horizon microcomputer. However, after

placing the input routine into a separate program, the main program would

finally fit into memory. A few test problems were then run to test out the

program.

1.6 PREFACE TO THE REST OF THE THESIS

In chapter two, the Hooke and Jeeves pattern search technique for

unconstrained minimization is presented along with a computer program for it

written in Fortran and documentation for the program.

Chapter three presents the KSU-SUMT computer program and the

methodology behind the program. The KSU-SUMT technique is implemented using

a combination of a modified Hooke and Jeeves pattern search and a heuristic

programming technique for moving infeasible points back into the feasible

region. A computer program written in Fortran is included along with

documentation for the program.

9

Chapter four presents the implementation of the SUMT algorithm using

the Golden Section method to determine the optimum step size and using one

of four gradient methods to determine the direction of search : a first

order gradient method, a conjugate gradient method, and two versions of a

second order gradient method. The computer program written in Fortran is

included along with documentation on how to use the program.

Chapter five presents a discussion of the large computer versus the

micro/personal computer in terms of nonlinear programming routines.

10

1.6 REFERENCES

1. Carrol, C. W., "An Operations Research Approach to the Economic
Optimization of a Kraft Pulping Process", Ph.D. Dissertion

, Institute of
Paper Chemistry, Appletown, Wise, 1959.

2. Carroll, C. W., "The Created Response Surface Technique for Optimizing
Nonlinear Restrained Systems", Operations Research . 9, 169-184, 1961.

3. Fiacco, A. V., and G. P. McCormick, "The Sequential Unconstrained
Minimization Technique for Nonlinear Programming : A Primal-Dual
Method", Management Sci.

T
10, 601-617, 1964.

4. Fiacco, A. V., and G. P. McCormick, "Computational Algorithm for the
Sequential Unconstrained Minimizatin Technique for Nonlinear
Programming", Management Sci., 10, 601-617, 1964.

5. Fiacco, A. V., and G. P. McCormick, "SUMT without parameters", Systems
Research Memorandum No. 121 , Technical Institute, Northwestern
University, Evanston, Illinois, 1965.

6. Fiacco, A. V., and G. P. McCormick, "Extension of SUMT for Nonlinear
Programming : Equality Constraints and Extrapolation", Management Sci.

T

12(11) : 816-329, 1966.

7. Fiacco, A. V., and G. P. McCormick, Nonlinear Programming j_ Sequential
Unconstrained Minimization Techniques . Wiley, New York, 1 968.

3. Krishna, 3. V., "Nonlinear Optimization by the Sequential Unconstrained
Minimization Technique Using Conjugate Gradients Methods", M.S. Report,

Department of Industrial Engineering, Kansas State University, 1971.

9. Hooke, R., and T. A. Jeeves, "Direct Search Solution of Numerical and

Statistical Problems". J. Assoc. Comp. Mach. , 8, p. 212, 1961.

10. Hwang, C. L., K. C. Lai, F. A. Tillman, and L. T. Fan, "Optimization of

System Reliability by the Sequential Unconstrained Minimization
Technique", IEEE Trans, on Reliability , vol. R-24., pp. 133-135.

11. Hwang, C. L., L. T. Fan, and S. Kumar, "Hooke and Jeeves Pattern
Search Solution to Optimal Production Planning Problems", Report No.

18 , Insititute of Systems Design and Optimization, Kansas State

University, 1969.

12. Lai, K. C, "Optimization of Industrial Management Systems by the
Sequential Unconstrained Minimization Technique", M.S. Report, Dept. of

Industrial Engineering, Kansas State University, 1970.

13. Tillman, F. A., C. L, Hwang, and W. Kuo, Optimization of Systems
Reliability . Marcel Dekker, New York, 1980.

11

14. McCormick, G. P., W. C. Mylander III, A. V. Fiacco, "Computer Program
Implementing the Sequential Unconstrained Minimization Technique for
Nonlinear Programming", Advanced Research Department Technical Paper
RAC-TP-151, Research Analysis Corporation, April 1965.

15. Kuester, J. L., and J. H. Mize, Optimization Techniques with Fortran
T

McGraw-Hill Book Company, New York, 1973.

16. Hsu, F. T., L. T. Fan, and C. L. Hwang, "Sequential Unconstrained
Minimization Technique (SUMT) for Optimal Production Planning", Report
No. 26 , Institute for Systems Design and Optimization, Kansas State
University, 1971.

12

CHAPTER 2

HOOKE AND JEEVES PATTERN SEARCH

2.1. INTRODUCTION

This program finds the local minimum of a multivariable, unconstrained,

nonlinear function :

Minimize F(x , * ..., x

J

The procedure is based on the direct search method proposed by Hooke

and Jeeves [23. No derivatives are required. The procedure assumes a

unimodal function; therefore, if more than one minimum exists or the shape

of the surface is unknown, several sets of starting values are recommended.

2.2. METHOD

2.2.1 ALGORITHM AND FLOWCHARTS

The direct search method of Hooke and Jeeves [2] is a sequential

search routine for minimizing a function f (x) of more than one variable

A = (x , x , ..., x) . The argument & is varied until the minimum of f (x)

is obtained. The search routine determines the sequence of values for x.

The successive values of x can be interpreted as points in an r-dimensional

space. The procedure consists of two types of moves: Exploratory and

Pattern . The descriptive flow diagram for the Hooke and Jeeves pattern

search is given in Figure 2.1.

A move is defined as the procedure of going from a given point to the

following point. A move is a success if the value of f (x) decreases (for

minimization); otherwise, it is a failure . The first type of move is an

exploratory move which is designed to explore the local behavior of the

objective function, f (xj . The success or failure of the exploratory moves

13

Start

Evaluate function at
initial base point

I _u
Start at base point

1
Make exploratory moves

Is
present

function value below
that at base

point ?

Yes

rSet new base point

Make pattern move 1

r

_N£L

Make exploratory moves

No

lfj(stop

Fig. 2.1. Descriptive flew diagram for Hooke and Jeeves pattern
search [2]

Ill

is utilized by combining it into a pattern which indicates a probable

direction for a successful move [2,3],

The exploratory move is performed as follows :

1. Introduce a starting point x. with a prescribed step length d. in

each of the independent variables x., i = 1, 2, . .., r.

2. Compute the objective function, f(x) where x = (x.. , x~, . .., x).

Repeat the following four steps for i = 1 to r. (see Figure 2.2)

3. Set x . , = x. where x . , holds the original value of x. before
old i old 3 i

a step size is taken in that dimension.

4. Take a step in the ith dimension by setting x. = x . , + d.

.

r J
- i old i

5. Compute f .(x) at the trial point £ where only x., the value at. the

ith dimension, has been changed.

6

.

Compare f . (xj with f (xj :

(i) If f.(xj < f (xj , then the move is a success so

set f (x) = f . (xj and return to step 3

.

i

(ii) If f.(x) 2 fte), set x. » x _ , - d. , compute f .
(x)

i l old i i

and see if f . (xj < f (x)
l

a) If f . (x) < f (&) then the move is a success so
l

set f(x) = f . (x) and repeat from step 3.—
l

b) If f.(x) 2 f(x) , then the move is a failure and

set x. = x _ , , its original value, and
i old

repeat from step 3.

The point x obtained at the end of the exploratory moves, which is

reached by repeating step 3 until i=r, is defined as a ba.se point. The

starting point introduced in step 1 cf the exploratory move is either a

starting base point or a point obtained by the pattern move.

15

f Start
J

For i =
'

to r

I Return
j

x . , = x.
oid 1

X. r X - . + d.
l old l

ConiDute f . (i)
l

No

x. = x ,. - d.
l old l

Compute f.00

Yes

f(*) = f.(*)

Fig. 2.2 Structured diagram for the exploratory moves procedure

16

The pattern move is designed to utilize the information acquired in

the exploratory moves, and executes the actual minimization of the function

by moving in the direction of the established pattern. The pattern move

is a simple step from the current base to the point

^ = ^
B

+ (x
B

- x
B
*) '

(1)

where x
R

is the preceding base point.

Following the pattern move a series of exploratory moves is conducted to

further improve the pattern. If the pattern move followed by the

exploratory moves brings no improvement, the pattern move is a failure.

Then we return to the last base which becomes a starting base and the

process is repeated.

If the exploratory moves from any starting base do not yield a point

which is better than this base, the lengths of all the steps are reduced

and the moves are repeated. Convergence is assumed when the step lengths,

d., have been reduced below predetermined limits.

2.2.2 NUMERICAL EXAMPLE

To illustrate the method a simple production scheduling problem will

be considered [33 • The function to be minimized is

f(x ,x) = 100(x -15)
2

+ 20(28 -x^ 2
+ 100(x -x^

2
+ 20(38 -x^) 2

(2)

To illustrate the procedure, contour lines for equal values of the

total cost given by equation (2) are shown in Fig. 2.3. Also presented in

the figure are the steps of the Kooke and Jeeves pattern search procedure

described in the preceding section. The numbers on the points indicate

the sequence in which they are selected. The number on each point also

IT

Production level a! first period, X.

Fig. 2.3 Hooke and Jeeves pattern search applied to

production scheduling problem involving two

decision variables

.

18

corresponds to the number of the function values computed frcm the beginning

of the procedure up to and including that point. Table 2.1 presents step by

step results of applying the Hooke and Jeeves pattern search method to the

two dimensional production scheduling problem.

The point, & (x x) = x (5,10), is the starting base. The step

2
length is d_ = (d,,dJ = (2,2). The new base x (7,10) is obtained by the

3 4
exploratory moves where x (7,12) and £ (7,8) are failures. Note that

f(x
2

) < ftx
1

) whereas f(x
3

) < f(x
2

) and f(x
4

) > f(x
2
).

5
Point x (9,10) is obtained by the pattern move based on equation (1)

* 1 2
where x^ = x and x„ = x .

5 7
From x the exploratory moves are performed again; x. (11,12) becomes

7 2
a base because f (x) < f(x_). Note that among these exploratory moves both

points x. and x are successes, that is, f (x) < f (x.) and f (x) < f (x°) .

g
Point x, (15,14) is reached by the pattern move according to equation

* 2 7
(1) where the last base point x is x. and the new base point x is x •

3 B

Point x, (17,16) is the result of the exploratory moves where moves

9 10 9 3
to z (17,14) and to x (17,16) are successes because f (x) < f (x) and

,, 10, ,
_. 9, „. £/ 1G , e . 7. 10 .

f(x.) < f (x_). Since f(x.) <i(i) r i oecomes a new base point. The

base points are denoted by B , B , 3 , ... on Fig. 2.3.

* 7 10
The following pattern move where x = x_ and x = x results in

11 13
point x (23,20) . Point z (21,20) is the result of the exploratory moves

12 12 11 14 14
following the pattern move, where & (f(x) > f(x)), x (f(x) >

fU.
13

)), and ji

15
(f(x

15
) > f(x

13
)) are fail-ares, and ^

13
(f (x

13
) < fCx

11
))

13
is a success. However, x is not accepted as a new base point because

f(x_) > f(x_). We have to return to the last base point x
u

,

which becomes a starting base and the process is restarted from it.

IP

Starting frcm base point x with the original step length d = (2,2)

,

18
the new base point x (17,18) is obtained by the exploratory moves where

16 17
i and j£ . are failures.

A pattern move along the direction of the line connecting x and

18 19
x_ leads to point x . Following this pattern move, the exploratory

21 22 20
moves are carried out where x , and & are failures and x (13,20) is a

20 20]

8

success; however, x is not accepted as a base because f(x) > f(x),

18
and we have to return to the last base & which becomes a starting base.

18 . 23
The exploratory moves from the starting base, x , to points [x

, 22, 24 25, 19, , 26, 10,

,

. . . .

,

(=x), x , £ (=x), ana x (=x)] are all failures. Therefore,

the step lengths are reduced from d = (2,2) to d = (1,1)

.

The procedure is continued until the limit of the step length, d =

(0.05,0.05), as the stopping criterion is satisfied. The optimal point

x(x =17.81, x =18.21) where the value of f(xj is 2960.74 required 100

calculations of the objective function. The step lengths at this optimal

point are d = (0.03125, 0.03125)

.

20

Table 2.1. Step by Step Results of Line Two-Dimensional
Production Scheduling Problem

n % d L f(x)
!

X.

]

f\(x) Comments

1 B
Q

i2,2) (5,10) 33,660 Starting base
point

2 (5,10) 33,660 (7,'!0) 24,940 Exp sue

3 (7,10) 24,940 (7,"12) 24,940 Exp fail

4 (7,10) 24,940 (7,!3) 25,900 Exp fail

2 E
1

(7,10) 24,940 f(x
2

) < f(x
1

)

5 (9,10) 18,140 Pattern

6 (9,10) 18,140 (11 ,10) 13,260 Exp sue

7 (11,10) 13,260 (11 ,12) 11,980 Exp sue

7 B
2

(11,12) 11,980 f(x
7

) < f(x
2

)

8
.

(15,14) 5,100 Pattern

9 (15,14) 5,100 (17 ,1*0 4,700 Exp sue

10 (17,14) 4,700 (17 ,16) 3,420 Exp sue

10 3
3

(17,16) 3,420 f(x
1 °) < f(x7)

11 (23,20) 3 ,300 Pattern

12 (23,20) 8,300 (25 ,20) 13,660 Exp fail

13- (23,20) 8,300 (21 ,20) 4,860 Exp sue

14 (21,20) 4,860 (21 ,22) 5,180 Exp fail

15 (21,20) 4,860 (21 ,18) 5,500 Exp fail

13 (21,20) 4,860 Pattern move
failure

.13 10

10 B- (17,16) 3,420

f(x^) > f(x
lJ

)

1

Return to x (=B2)

Starting base
point

16 (17,16) 3,420 (19,16) 4,300 Exp fail

21

^E

Table 2.1. Step by Step Results of the Two-Dimensional
Production Scheduling Problem

s

A f(x) f.(x) Comment:

17

18

13

19

20

21

22

20

18

23

24

25

26

13 B
4

27

28

29

27 B.
D

(17,16) 3,420

(17,16) 3,420

(17,18) 3,100

(17,20) 3,740

(17,20) 3,740

(19,20) 3,340

(19,20) 3,340

(19,20) 3,340

(17,18) 3,100

(17,13) 3,100

(17,18) 3,100

(17,18) 3,100

(17,18) 3,100

(17,18) 3,100

18 3^ (1,1) (17,13) 3,100

(17,18) 3,100

(18,13) 2,980

(18,18) 2,980

(18,18) 2,980

(15,16) 4,460 Exp fail

(17,18) 3,100 Exp sue

f(x
18

) < f(x
10

)

Pattern

(19,20) 3,340 Exp sue

(19,22) 4,300 Exp fail

(19,18) 3,340 Exp fail

f(x
20

) > f(x
18

)

Pattern move
failure -g

Return to x' (=B
)

Starting base

point

(19,18) 3,340 Exp fail

(15,13) 4,780 Exp fail

(17,20) 3,740 Exp fail

(17,16) 3,420 Exp fail

No better base

Exp failures

d(2,2)>(0.05,0.05)

Reduce d(2,2) to
d(1,1).

Starting base
point

(13,13) 2,980 Exp sue

(18,19) 3,020 Exp fail

(18,17) 3,180 Exp fail

fCx
27

) < ft*
18

)

22

Table 2.1. Step by Step Results of the Two-Dimensional
Production Scheduling Problem

n x
B

d x fU)
n

X f,(x) Comments

30 (19,18) 3,340 Pattern

31 (19,18) 3,340 (20,18) 4,180 Exp fail

32 (19,18) 3,340 (18,18) 2,930 Exp sue

33 (18,18) 2,980 (18,19) 3,020 Exp fail

34 (18,13) 2,980 (18,17) 3,180 Exp fail

32 (18,18) 2,980 f(x
32

) < fCx
27

)

Pattern move
failure

27
Return to x (=B_)

5

27 B
5

(18,18) 2,980 Starting base

point

35 (18,18) 2,980 (19,18) 3,340 Exp fail

36 (18,18) 2,980 (17,18) 3,100 Exp fail

37 (18,18) 2,980 (18,19) 3,020 Exp fail

33 (18,18) 2,980 (13,17) 3,180 Exp fail

27 (18,18) 2,980 No better base
Exp failure

d(1,1) > (.05, .05)

Reduce d(1 ,1) to

d(0.5,0.5)

27 3C (0.5,0.5) (18,18) 2,980 Starting base
5 point

39 (18,18) 2,980 (18.5, 18) 3,100 Exp fail
,

ao (18,18) 2,980 (17.5,18) 2,980 Exp fail

100 (17.31,18.21) 2,961 Optimal point

2.3 COMPUTER PROGRAM DESCRIPTION

2.3.1 DESCRIPTION OF SUBROUTINES

The program consists of a main program, a block data subroutine, an

exploratory moves subroutine, an input subroutine, and a user supplied

objective function subroutine.

The main program makes the pattern moves, checks the stopping criterion,

and reduces the step sizes. It calls on the INPUT subroutine to enter the

data needed and the EXPLOR subroutine to perform the searches. It also

prints out the intermediate and final solution.

The following subroutines are called by main :

BLOCK DATA INIT initializes the variables in the common block CONST.

EXPLOR performs the exploratory moves and also prints intermediate results.

INPUT reads in the data needed to solve the problem. This includes the

problem title, the number of variables, the initial point, the

initial step size, the stopping criterion and the printout option.

OEJFUN is a user supplied routine which defines the objective function.

2.3.2 PROGRAM LIMITATIONS

The program will presently handle up to 50 variables. To solve a

larger problem the following changes need to be made.

(1) The constant MAXVAR in the Block Data subroutine should be

increased.

(2) The dimensions of the arrays in the main program should be

increased to the value of MAXVAR.

REAL X(50), STEP(50), NEWBASC50), 0LDBASC50)

The FORMAT statements for printing out: results is set up to print a

maximum number of function evaluations of 6 digiLs.

24

2.3.3 TABLE CF PROGRAM SYMBOLS AND EXPLANATION

FORTRAN
Program
Symbol

TABLE 2.2 Program Symbols and Explanation

Explanation
Mathematical

Symbol

f .(x)
i

f(x)

f(x
B

)

ALPHA Acceleration factor for pattern move

BETA Reduction factor for step size

CONSOL The logical unit number of the CRT console.

COUNT The objective function counter

EXPCNT The 'COUNT 1 of the current best point found as a result
of an exploratory move

FTRIAL Function value at a trial point during exploratory moves

FX Function value at the current best point found from an
exploratory move

FXNB Function value at current base point

IPRINT Print option
IFRINT = prints optimal solution only

= 1 prints values before each step size reduction
= 2 prints all steps
= 3 prints all details

LASTBS The 'COUNT' of the last base point

MAXCUT Maximum number of step size reductions. This is used
as the stopping criterion.

MAXVAR Maximum number of variables which the program can handle.
(Presently MAXVAR = 50)

NEWBAS An array containing the current base point

NUMBAS Base point counter

NUMCUT Number of step size reductions performed

NUMFOR The ' COUNT ' of the point before the exploratory moves begin

NUMVAR Number of variables in the problem to be solved.

Nl Set equal to (NUMCUT + 1) and only used to identify the

point to be printed before a step size reduction

3

25

FORTRAN
Program
Symbol

TABLE 2.2 Program Symbols and Explanation

Explanation
Mathematical

Symbol

OLDBAS An array containing the previous base point
*B

OLDCNT The 'COUNT' of the previous successful point found during
the exploratory moves

PRINTR The logical unit number of the printer

STEP An array containing the current step size

STEPOP The step size option
STEPOP = uses computed values
STEPOP = 1 allows the user to specify own values

TITLE An array containing the title of the problem to be solved

TZER Tolerance cf zero. (Because of roundoff errors a number
which is supposed to be zero may appear on the printout
as a small finite number (eg. 1.0E-24). The program
checks for a a zero value within the tolerance interval
before printing.)

X An array containing the current values of the variables

XOLD Used to store the value of the ith dimension of X before a
steo size is taken in that dimension.

2b

2.3.4 LISTING OF FORTRAN PROGRAM

C HOOKE AND JEEVES PATTERN SEARCH

c

C THIS PROGRAM IS FOR FINDING THE LOCAL MINIMUM
C OF A MULTIVARIABLE, UNCONSTRAINED, NONLINEAR FUNCTION.
C THE PROCEDURE IS BASED ON THE DIRECT SEARCH METHOD
C PROPOSED EY HOOKE AND JEEVES.
C

C THE PROGRAM MODIFIED FOR THE MICROCOMPUTER IS WRITTEN BY
C FRANK HWANG, I.E, KSU, 1983.
C

C

BLOCK DATA INIT
REAL TZER
INTEGER CONSCL, PRINTR, MAXVAR, NUMVAR, IPRINT
COMMON /CONST/ TZER, CONSOL, PRINTR, MAXVAR, NUMVAR, IPRINT
DATA TZER /1.0E-08/
DATA CONSOL, PRINTR /1 ,2/

DATA MAXVAR /50/
END

PROGRAM HOOKE

EXTERNAL OBJFUN, IN IT

INTEGER CONSOL, PRINTR, MAXVAR, NUMVAR, IPRINT
INTEGER MAXCUT, NUMCUT, COUNT, NUNSAS, LASTBS, EXPCNT

REAL TZER, FX, FXNB, ALPHA, BETA
REAL X(50), STEP(50), NEWBASC50), OLDBASC50)

COMMON /CONST/ TZER, CONSOL, PRINTR, MAXVAR, NUMVAR, IPRINT

DATA ALPHA, BETA/1.0, 0.5/
DATA NUMCUT /0/
DATA COUNT, NUMBAS, LASTBS, EXPCNT /0, 0,1 ,0/

299 FORMAT ('0' ,8X, 'BEFORE EXPLORATORY MOVES' ,4X, ' PT' ,16,

1 4X, 'OBJFUN =',E14.6)

298 FORMAT ('

297 FORMAT CO
1 4X

295 FORMAT CO
1 4X

294 FORMAT ('

293 FORMAT ('

292 FORMAT CO
1

C

290 FORMAT CO

289 FORMAT (/

,8X,4E15.6)
,8X, 'AFTER EXPLORATORY MOVES ',4X,'PT',I6
'OBJFUN =',E14.6)

, 8X, ' AFTER PATTERN MOVE
'

, 1 0X, ' PT
'

, 16

,

'OBJFUN =', El 4.6)

,8X,4E15.6)
, 8X ,

' BASE POINT NUMBER ' , 15

)

,8X, 'FAILED PATTERN MOVE , RETURN ',

TO LAST BASE POINT')

,8X,'* FAILED EXPLORATORY MOVES, CHECK',

1 ' THE STEP SIZE')

0',8X, 'BEFORE STEP-SIZE REDUCTION # ',12,

1 / 15X,' FUNCTION COUNT = ',16,

27

2 / 15X, 'OBJFUN = ',E14.6)

288 FORMAT (« ',8X, 4E15.6)
286 FORMAT CO',11X,'* STEP SIZE REDUCED TO :

r

)

285 FORMAT (' ',8X, 4E14.5)
280 FORMAT (»O f ,//,15X, '** OPTIMAL RESULTS **' /

1 »0',8X, f T0TAL NUMBER OF FUNCTION CALCULATIONS = ',16/
2 '0',8X, 'OBJECTIVE FUNCTION = ',E15.6)

279 F0RMAT('0',11X,« VARIABLE ',6X,' OPTIMAL POINT' ,5X,

1 'FINAL STEPSIZE')
278 FORMAT (' »,13X, 13, 7X, E14.6, 4X, E14.5)

C

C

C ** READ IN INPUT FROM THE CRT CONSOLE **

C

CALL INPUT (MAXCUT, NEWBAS, STEP)

C

FXNB = OBJFUN (NEWBAS)
COUNT = COUNT + 1

C

C *# START AT BASE POINT **

C

1 DO 10 I=1,NUMVAR
X(I) = NEWBAS(I)

10 CONTINUE
FX = FXNB

C

C ** EXPLORATORY MOVES **

C

IF (IPRINT.GE.2) WRITE (PRINTR,299) LASTBS, FX
IF (IPRINT.GE.2) WRITE (PRINTR,298) (X(I) ,1=1 ,NUMVAR)
CALL EXPLOR (FX, X, STEP, LASTBS, EXPCNT, COUNT)

IF (IPRINT.GE.2) WRITE (PRINTR,297) EXPCNT, FX
IF (IPRINT.GE.2) WRITE (PRINTR,298) (X(I),I=1 ,NUMVAR)
IF (FX .GE. FXNB) GO TO 110

C

C **** WHILE EXPLORATORY MOVES MAKE PROGRESS ***

C ** SET NEW BASE POINT **

C

15 NUMBAS = NUMBAS + 1

IF (IPRINT.EQ.3) WRITE (PRINTR,293) NUMBAS
DO 20 I=1,NUMVAR

OLDBAS(I) = NEWBAS(I)
NEWBAS(I) = X(I)

20 CONTINUE
FXNB = FX
LAS'TBS = EXPCNT

C ** PATTERN MOVE **

DO 30 I=1,NUMVAR
X(I) = NEWBAS(I) + ALPHA * (NEWBAS(I) - OLDBAS(I))

30 CONTINUE
FX = OBJFUN(X)
COUNT = COUNT + 1

IF (ABS(FX) .LE. TZER) FX = 0.0

IF (IPRINT.GE.2) WRITE (PRINTR,295) COUNT, FX
IF (IPRINT.GE.2) WRITE (PRINTR,294) (X(I) ,1=1 ,NUMVAR)

C ** MAKE EXPLORATORY MOVES **

C

IF (IPRINT.GE.2) WRITE (PRINTR,299) COUNT, FX
IF (IPRINT.GE.2) WRITE (PRINTR,298) (X(I) ,1=1 ,NUMVAR)
CALL EXPLOR (FX, X, STEP, COUNT, EXPCNT, COUNT)

IF (IPRINT.GE.2) WRITE (PRINTR,297) EXPCNT, FX
IF (IPRINT.GE.2) WRITE (PRINTR,298) (X(I) ,1=1 ,NUMVAR)

C

IF (FX.LT.FXNB) GO TO 1

5

C ** END (* WHILE LOOP *) **

C

C ** PATTERN MOVE FAILED **

C

IF (IPRINT.GE.2) WRITE (PRINTR,292)
GO TO 1

C

C ** EXPLORATORY MOVE FAILED **

C ** CHECK THE STOPPING CRITERION **

C

110 IF (IPRINT.GE.2) WRITE (PRINTR, 290)
IF (NUMCUT.EQ.MAXCUT) GO TO 190

C

C ** STOPPING CRITERION NOT SATISFIED **

C ** PRINT OUT RESULTS BEFORE THE STEP SIZE REDUCTION **

N1 = NUMCUT + 1

WRITE (CONSOL,289) N1 , COUNT, FXNB
WRITE (CONSOL,288) (X(I), I=1,NUMVAR)

IF(IPRINT.EQ.I) WRITE(PRINTR,289) N1 , COUNT, FXNB
IFdPRINT.EQ.D WRITE (PRINTR, 288) (X(I), I=1,NUMVAR)

C

C ** REDUCE THE STEP SIZE **

C

DO 35 I=1,NUMVAR
STEP(I) = BETA * STEP(I)

35 CONTINUE
NUMCUT = NUMCUT + 1

WRITE (C0NSCL,286)
WRITE (C0NS0L,285) (STEP(I), I=1,NUMVAR)

IF (IPRINT.GE.1) WRITE (PRINTR, 286)
IF(IPRINT.GE.I) WRITEC PRINTR, 285) (STEP(I) ,1=1 ,NUMVAR)

GO TO 1

C

C

C ** OUTPUT THE OPTIMAL RESULTS **

C

190 WRITE (C0NS0L,280) COUNT, FXNB
WRITE (PRINTR, 280) COUNT, FXNB
WRITE (CCNS0L,279)
WRITE (PRINTR, 27 9)
WRITE (C0NS0L,278) (I, NEWBAS(I), STEP(I), I=1,NUMVAR)
WRITE (PRINTR, 278) (I, NEWBAS(I), STEP(I), I=1,NUMVAR)

C

STOP
END

29

SUBROUTINE EXPLCR (FX, X, STEP, NUMFOR, EXPCNT, COUNT)
C

INTEGER CONSOL, PRINTR, MAXVAR, NUMVAR, IPRINT
INTEGER COUNT, OLDCNT, NUMFOR, EXPCNT
REAL X(MAXVAR), XOLD, STEP(MAXVAR)
REAL FX, FTRIAL, TZER
COMMON /CONST/ TZER, CONSOL, PRINTR, MAXVAR, NUMVAR, I PR INT

C

IF (IPRINT. EQ. 3) WRITE (PRINTR, 200)
OLDCNT = NUMFOR

C

DO 90 1=1, NUMVAR
XOLD = X(I)

X(I) = XOLD + STEP(I)
FTRIAL = OBJFUN(X)
COUNT = COUNT + 1

IF (ABS(FTRIAL) .LE. TZER) FTRIAL =0.0
IFCIPRINT.EQ.3) WRITE (PRINTR, 199) I, COUNT, FTRIAL
IF(IPRINT. EQ. 3) WRITEC PRINTR, 198) (X(J) ,J=1 , NUMVAR)
IF (FTRIAL. LT.FX) GO TO 80

C

C ** EXPLORATORY MOVE FAILED IN POSITIVE DIRECTION **

C TRY MOVE IN OPPOSITE DIRECTION
C

X(I) = XOLD - STEP(I)
FTRIAL = OBJFUN(X)
COUNT = COUNT + 1

IF (ABS(FTRIAL) .LE. TZER) FTRIAL =0.0
IF (IPRINT. EQ. 3) WRITEC PRINTR, 199) I, COUNT, FTRIAL
IFCIPRINT.EQ.3) WRITEC PRINTR, 198) (X(J) ,J=1 , NUMVAR)
IF (FTRIAL. LT.FX) GO TO 80

C

C ** WHEN EXPLORATORY MOVE FAILS IN OPPOSITE DIRECTION **

C MOVE BACK TO ORIGINAL POINT
C

X(I) = XOLD
IF (I PRINT. EQ. 3) WRITE(PRINTR,199) I, OLDCNT, FX
IF (I PRINT. EQ. 3) WRITE (PRINTR, 198) (X(J) ,J=1 , NUMVAR)
GO TO 90

C

80 FX = FTRIAL
OLDCNT = COUNT

90 CONTINUE
C

c

c

EXPCNT = OLDCNT

200 FORMAT (' ',8X,3K'* ') //
1 « * ,8X,' EXPLORATORY MOVE IN :')

199 FORMAT (' • ,1 1X, ? X(,12, ') DIRECTION » ,3X,

1 'PT',16, 4X, 'OBJFUN =',E14.6)

198 FORMAT (' «,8X, 4E15.6)

RETURN
END

50

C

c

c

c

c

c

c

20

SUBROUTINE INPUT (MAXCUT, X, STEP)

THIS SUBROUTINE READS IN THE DATA NEEDED TO SOLVE
THE PROBLEM. THIS INCLUDES THE PROBLEM TITLE,
THE NUMBER OF VARIABLES, THE STARTING POINT,
THE STARTING STEP SIZES, THE STOPPING CRITERION,
AND THE PRINTOUT OPTION.

INTEGERS TITLE(58)
INTEGER CONSOL, PRINTR, MAXVAR, NUMVAR, IPRINT
INTEGER MAXCUT, STEPOP
REAL X(MAXVAR), STEP(MAXVAR) , TZER
COMMON /CONST/ TZER, CONSOL, PRINTR, MAXVAR, NUMVAR, IPRIN

r

WRITE (CONSOL, 199)
WRITE (PRINTR, 199)
WRITE (CONSOL, 198)

WRITE (PRINTR, 198)
WRITE (CONSOL, 197)
WRITE (PRINTR, 197)

WRITE (CONSOL, 196)
READ (CONSOL, 195) TITLE
WRITE (PRINTR, 194) TITLE
WRITE (CONSOL, 193)
READ (CONSOL, 192) NUMVAR

*CHECK THAT THE MAXIMUM NUMBER OF VARIABLES IS NOT EXCEEDED
IF (NUMVAR. LE. MAXVAR) GO TO 50

WRITE (CONSOL, 19D
WRITE (PRINTR, 191)
WRITE (CONSOL, 190)

WRITE (PRINTR, 190)

STOP

50

90

100

110

WRITE (PRINTR, 189)

WRITE (PRINTR, 188) NUMVAR
WRITE (CONSOL, 180)

DO 70 1=1, NUMVAR
WRITE (CONSOL, 179) I

READ (CONSOL, 173) X(I)

CONTINUE

WRITE (CONSOL, 177)
READ (CONSOL, 176) STEPOP
IF (STEPOP. EQ.1) GO TO 1C0

DO 90 1=1, NUMVAR
STEP(I) = 0.02 *

IF (ABS(STEP(I)
CONTINUE

GO TO 130

X(I)
^ ^

) .L.E. J.Z&R) STE?(I) = 0.01

DO 110 1=1, NUMVAR

WRITE (CONSOL, 175) I

READ (CONSOL, 174) STEP(I)

CONTINUE

51

130 WRITE (CONSOL,173)
WRITE (PRINTR,173)
DO 120 I=1,NUMVAR

WRITE (C0NS0L,172) I, X(I), I, STEP(I)
WRITE (PRIMTR,172) I,X(I), I, STEP(I)

120 CONTINUE

WRITE (C0NS0L,17D
READ (CONSOL,170) MAXCUT
IF (MAXCUT. EQ.O) MAXCUT = 3

WRITE (C0NS0L,169) MAXCUT
WRITE (PRINTR,169) MAXCUT
WRITE (C0NS0L,187)
READ (C0NS0L,186) I PRINT
IF (IPRINT.EQ.O) WRITE (PRINTR,185)
IF (IPRINT.EQ.1) WRITE (PRINTR,184)
IF (IPRINT.EQ.2) WRITE (PRINTR,183)
IF (I PRINT. EQ. 3) WRITE (PRINTR,182)
WRITE (C0NS0L,149)
WRITE (PRINTR,150)
IF (IPRINT.GE.1) WRITE (PRINTR,149)

199 FORMAT C0 f ,20X, 'HOOKE AND JEEVES PATTERN SEARCH ')

198 FORMAT ('0' ,8X, 'MINIMIZES AN UNCONSTRAINED, ',

1 'MULTIVARIABLE, NONLINEAR FUNCTION'

)

197 FORMAT C0',8X, 31C* '))

196 FORMAT CO', 'ENTER PROBLEM TITLE : ')

195 FORMAT (58A1)

194 FORMAT C0',15X,58A1)
193 FORMAT CO', 'NUMBER OF VARIABLES : ')

192 FORMAT (13)

191 FORMAT C0»,8X, '*** ERROR *** THE MAXIMUM NUMBER OF'

1 ' VARIABLES' /

2 ' ',8X, » THIS PROGRAM CM HANDLE IS 20')

190 FORMAT C0»,8X,'TO SOLVE A LARGER PROBLEM, THE',
1 » DIMENSIONS OF THE ARRAYS ' / ' ',8X,

1 'IN THE MAIN PROGRAM WILL HAVE TO BE MODIFIED' /)

189 FORMAT C0',8X,'*** INPUT DATA ECHO ***')

188 FORMAT CO' ,8X, 'NUMBER OF VARIABLES = ',12)

187 FORMAT CO' , 'PRINTOUT OPTION : ' /

1 5X, 'RETURN for printout of optimal solution only'/
2 5X, ' 1 for results before each step-size',
2 • cut SUGGESTED OPTION' /

2 5X, ' 2 for orintout of all steps' /

3 5X,' 3 for printout of all details' /

4 ' ', 'ENTER OPTION : ')

186 FORMAT (11)

185 FORMAT CO' ,8X, 'PRINT OPTION SELECTED PRINTOUT',
1 ' OF OPTIMAL SOLUTION ONLY')

184 FORMAT CO' ,8X, 'PRINT OPTION SELECTED RESULTS',
1 ' AT EACH STEP-SIZE CUT')

133 FORMAT CO ',8X, 'PRINT OPTION SELECTED PRINTOUT'

,

1 ' OF ALL STEPS')

oz

1 82 FORMAT (
' ' , 6X, ' PRINT OPTION

1 ' OF ALL DETAILS')
SELECTED PRINTOUT'

,

180

179

178

177

176

175
174

173
172

171

170
169

150

149
1

2

3

FORMAT CO
FORMAT ('

FORMAT (F15.0)
FORMAT ('0

5X
' STEP(I) = 0.02 * X(I)' /

5X
5X

FORMAT (11

FORMAT ('

FORMAT (F15.0)
FORMAT CO
FORMAT ('

FORMAT CO
i

5X

5X
FORMAT (12
FORMAT CO

,3X, 'ENTER THE INITIAL POINT
STARTING X(',I2,') = ')

.'STEP SIZE OPTIONS :
' /

'RETURN to use computed value

1

1 to specify own values ' /

'ENTER OPTION : ')

, 'STEP(',I2,') = ')

,15X, 'INITIAL POINT AND STEP SIZE'

)

,11X,»X(',I2,') = ',G14.6,
6X, 'STEP(',I2,') = ', G14.5)
,' THE MAXIMUM NUMBER OF STEP-SIZE',
REDUCTIONS :' /

•RETURN for default of 3 T /

'ENTER NUMBER : »)

,8X, 'THE MAXIMUM NUMBER OF STEP-SIZE',
REDUCTIONS = ',12 /

,8X, 'THE REDUCING FACTOR = 0.5 ')

FORMAT C0',8X,'**** END OF INPUT ECHO ****»//)

FORMAT C0',8X, 'IN THE FOLLOWING OUTPUT, THE VALUES'
' PRINTED ARE, RESPECTIVELY : '/

' ',12X,'THE FUNCTION COUNTER, THE FUNCTION VALUE'/
' ',12X,'AND THE DECISION VARIABLE VECTOR '//)

RETURN
END

35

2.3.5 DESCRIPTION OF OUTPUT :

The initial parameter values and the final solution are always

printed. Intermediate results are printed if the user specifies

IPRINT = 1,2, or 3 on the printout option.

Printout options include :

Only optimal solution
1 Results at each step-size reduction
2 Results at each step
3 All details

2.3.6 SUMMARY OF USER REQUIREMENTS

1. Create a file on disk that contains OBJFUN, the objective function

subroutine.

2. Determine the initial estimate of the optimal point to be used as

the starting point.

3. Determine the initial step size and the final step sizes. The program

asks for the initial step sizes and MAXCUT, the maximum number of

step size reductions. MAXCUT is determined as the number of tiroes the

the initial step size must be reduced by 1/2 to get the final step

size.

Note : The next two steps will vary depending on the particular

compiler used. The following applies if using Microsoft FORTRAN.

4. Compile the objective function subroutine using the F80 command.

F80 =B:objfile

where objfile is the name of the file which contains the objective

function subroutine.

5. Run the program using the L80 command as follows :

L80 B:B3SEARCH,B:objfile/G

34

where the B refers to drive B where the program and objective

function files are. The /G tells the computer to Go and execute

the program.

2.3.7 USER SUPPLIED SUBROUTINE

FUNCTION OBJFUN (X) is the user supplied subroutine in Fortran which

defines the objective function to be minimized. The function should be

defined in terms of the variable X(I), 1=1, N where N is the number of

variables. The subroutine should contain a declaration statement

REAL X(50)

An example of the subroutine is shown below for the function

2 2
Minimize f(x) = x. + x.x„ + x_ - 3x12 2 "2

Note that Fortran statements begin in column 7 or beyond.

FUNCTION G3JFUN (X)

REAL X(50)

OBJFUN = X(1)**2 + X(1)*X(2) + X(2)**2 - 3-*X(2)

RETURN
END

35

2.4 INPUT TO THE COMPUTER PROGRAM

2.4.1 CRT DISPLAY OF QUESTIONS

HOOKE AND JEEVES PATTERN SEARCH
USED TO MINIMIZE AN UNCONSTRAINED, MULTIVARIATE, NONLINEAR FUNCTION

ENTER PROBLEM TITLE :

NUMBER OF VARIABLES :

ENTER THE INITIAL POINT :

STARTING X(1) =

STARTING X(2) =

STEP SIZE OPTIONS :

RETURN to use computed value STEP(I) = 0.02 * X(I)

1 to specify own values
ENTER OPTION :

STEP(1) =

STEP(2) =

INITIAL POINT AND STEP SIZE ECHO

X(1) = 10.000 STEP(1) = 1.0000
X(2) = 10.000 STEP(2) = 1.0000

THE MAXIMUM NUMBER OF STEP-SIZE REDUCTIONS
RETURN for default of 3

ENTER NUMBER :

THE MAXIMUM NUMBER OF STEP-SIZE REDUCTIONS = 3

THE REDUCING FACTOR = 0.5

PRINTOUT OPTION :

RETURN for printout of optimal solution only
1 for results before each step-size cut — SUGGESTED
2 for printout of all steps
3 for printout of all details

ENTER OPTION :

**** END OF INPUT ECHO ****

56

2.4.2 NOTES ABOUT THE INPUT

Print options 2 and 3 produce a large amount of data and should

only be used for small problems (2 or 3 variables) . These two

options are mainly a teaching tool used for learning the details of

the method.

37

2.5 TEST PROBLEMS

2.5.1 TEST PROBLEM 1 : SIMPLE PRODUCTION SCHEDULING

2.5.1.1 SUMMARY

NUMBER OF VARIABLES : 2

FUNCTION :

Min F(x) = 100(xr l5)
2

+ 20(28^)

2
+ 100(x -x.,)

2
+ 20(38-:<r x

2
)

2

STARTING POINT : x- = 5.0 , x
2

= 10.0

INITIAL STEP SIZE : d = 2.0 , d = 2.0

MAXIMUM NUMBER OF STEP SIZE REDUCTION : 6

OPTIMAL POINT :

F(x) = 2960.74

x = 17.81

x
2

= 18.22

NUMBER OF FUNCTION EVALUATIONS : 100

MICROCOMPUTER LARGE COMPUTER
SINGLE DOUBLE SINGLE
PRECISION PRECISION PRECISION

EXECUTION TIME : 0.04 min. 1.57 min. 0.02 mm.

58

2.5.1.2 COMPUTER PRINTOUT OF RESULTS

HOOKE AND JEEVES PATTERN SEARCH

MINIMIZES AN UNCONSTRAINED, MULTIVARIATE, NONLINEAR FUNCTION

SIMPLE PRODUCTION SCHEDULING PROBLEM

*** INPUT DATA ECHO ***

NUMEER OF VARIABLES = 2

INITIAL POINT AND STEP SIZE
X(1) = 5.00000 STEP(1) = 2.0000
X(2) = 10.00000 3TEP(2) = 2.0C00

THE MAXIMUM NUMBER OF STEP-SIZE REDUCTIONS = 6

THE REDUCING FACTOR = 0.5

PRINT OPTION SELECTED PRINTOUT OF ALL DETAILS

**** END OF INPUT ECHO ****

IN THE FOLLOWING OUTPUT, THE VALUES PRINTED ARE, RESPECTIVELY
THE FUNCTION COUNTER, THE FUNCTION VALUE
AND THE DECISION VARIABLE VECTOR

EEFORE EXPLORATORY MOVES PT 1 03JFUN = .336600E+O5
.500000E+01 .100000E+02*******************************

EXPLORATORY MOVE IN

X(1) DIRECTION
.700000E+01
X(2) DIRECTION
.700000E+01
X(2) DIRECTION
.700000E+01
X(2) DIRECTION
.700000 E+01

PT 2

100000E+02
PT 3

120000E+02
PT 4

80000CE+01
PT 2

100C00E+02

AFTER EXPLORATORY MOVES PT
.700000E+01 .100000E+02

BASE POINT NUMBER 1

AFTER PATTERN MOVE PT

.900000E+01 .100000E+02

OBJFUN =

OBJFUN =

OBJFUN =

OBJFUN =

.249400E+05

.2494C0E+05

.259000E+C5

.249400E+05

OBJFUN = .2WC0E+05

OBJFUN = .181400E+05

59

BEFORE EXPLORATORY MOVES PT 5 OBJFUN = .181400E+05
.900000E+O1 .100C00E+02a******************************

EXPLORATORY MOVE IN :

X(1) DIRECTION PT 6

.110000E+02 .100000E+02
X(2) DIRECTION PT 7
.110000E+02 .1200Q0E+O2

AFTER EXPLORATORY MOVES PT
.110000E+O2 .120000E+02

BASE POINT NUMBER 2

AFTER PATTERN MOVE PT
.150000E+O2 .140000E+02

OBJFUN = .132600E+05

OBJFUN = .119800E+05

7 OBJFUN = .119800E+05

OBJFUN =

OBJFUN =

.510000E+04

.510000E+04BEFORE EXPLORATORY MOVES PT
.150000E+O2 .14C000E+02a******************************

EXPLORATORY MOVE IN :

X(1) DIRECTION PT 9

.170000E+O2 .140000E+02
X(2) DIRECTION PT 10

.170000E+02 .160000E+02

AFTER EXPLORATORY MOVES PT
. 170000E+O2 . 1 60000E+O2

BASE POINT NUMBER 3

AFTER PATTERN MOVE PT
.23C000E4O2 .20C000E+O2

OBJFUN =

03JFJN =

.470000E+04

.342000E+04

10 OBJFUN = .342000E+04

11 OBJFUN = .830000E+04

11 OBJFUN = .830C00E+C4BEFORE EXPLORATORY MOVES PT
.230000E+C2 .200000E+02

*ft***ft****S****ft*ft«**«****tt*S«X

EXPLORATORY MOVE IN :

X(1) DIRECTION PT 12
.250000E+02 .200000E+C2
X(1) DIRECTION PT 13

.210000E+O2 .200000E+O2
X(2) DIRECTION PT 14
.21 0000E+O2 .220000E+02
X(2) DIRECTION PT 15
.210000E+02 .18000CE+02
X(2) DIRECTION PT 13

.210000E+O2 .200000E+02

AFTER EXPLORATORY MOVES PT
.210000E+02 .200000E-tO2

OBJFUN =

OBJFUN =

OBJFUN =

OBJFUN =

OBJFUN =

.136600E+05

.486000E+04

.518000E+04

.550COOE+04

.486000E+04

13 OBJFUN = .48600CE+04

FAILED PATTERN MOVE , RETURN TO LAST BASE POINT

40

3EF0RE EXPLORATORY MOVES PT
.170000E+02 .160000E-^02*****************

EXPLORATORY MOVE IN :

X(1) DIRECTION PT 16

.19O000E+O2 .160000E+O2
X(1) DIRECTION PT 17

.1500O0E+O2 .160000E+02
X(1) DIRECTION PT 10
. 170000E+02 . 1 60000E+O2
X(2) DIRECTION PT 18

.170000E+02 .180000E+02

AFTER EXPLORATORY MOVES PT
.170000E+02 .180000E+02

BASE POINT NUMBER 4

AFTER PATTERN MOVE PT
.170000E+02 .200000E+02

BEFORE EXPLORATORY MOVES PT
.170000E+O2 .200000E+02*****************

EXPLORATORY MOVE IN :

X(1) DIRECTION PT 20
.190000E+02 .200000E+C2
X(2) DIRECTION PT 21

.190000E+02 .220000E+02
X(2) DIRECTION PT 22
.19O000E+O2 .18000CE+02
X(2) DIRECTION PT 20
.190000E+02 .20CQQ0E+02

AFTER EXPLORATORY MOVES PT
.190000E+02 ,200G00E+02

10 OBJFUN = .342000E+04

OBJFUN =

OBJFUN =

OBJFUN =

OBJFUN =

.430000E+04

.446000E+04

.342000E+04

.310000E+04

18 OBJFUN = .310OOOE+04

19 OBJFUN = .374000E+04

19 OBJFUN = .374000E+04

OBJFUN =

OBJFUN =

OBJFUN =

03JFUN =

.334000E+04

.430000E+04

.334000E+04

.3340C0E+04

20 OBJFUN = .334000E+04

FAILED PATTERN MOVE , RETURN TO LAST BASE POINT

18 OBJFUN = .310000E4O4BEFORE EXPLORATORY MOVES PT
.170000E+02 .180000E+02*******************************

EXPLORATORY MOVE IN •

X(1) DIRECTION PT 23 OBJFUN = .334000E+04
.190000E+O2 .180000E+O2
X(1) DIRECTION PT 24 OBJFUN = .478000E+04
.150000E+02 .18C000E+02
X(1) DIRECTION PT 18 OBJFUN = .310000E+04
.170C00E+02 .180000E+O2
X(2) DIRECTION PT 25 OBJFUN = .3740C0E+O4

.170000E+O2 .200000E+O2

X(2) DIRECTION PT 26 OBJFUN = .342000E+04

.170000E+02 .160000E+O2

41

X(2) DIRECTION PT 18 OBJFUN = .310000E+04
.17C000E+02 .180000E+O2

AFTER EXPLORATORY MOVES PT 18

.170000E+O2 .180000E+02
OBJFUN = .310000E+04

* FAILED EXPLORATORY MOVES, CHECK THE STEP SIZE

* STEP SIZE REDUCED TO :

.10000E+01 .1GOOOE+01

18 OBJFUN =BEFORE EXPLORATORY MOVES PT
.170000E+02 .180000E+O2

.310000E+04

EXPLORATORY MOVE IN :

X(1) DIRECTION PT 27
.18O000E+O2 .180000E4O2
X(2) DIRECTION PT 28
.180000E+02 .19O000E+O2
X(2) DIRECTION PT 29
.180000E+O2 .170000E4O2
X(2) DIRECTION PT 27

.180000E+O2 .180000E+02

AFTER EXPLORATORY MOVES PT
.1800C0E+02 .180000E+02

BASE POINT NUMBER 5

AFTER PATTERN MOVE PT
.190000E+02 .18000CE+O2

OBJFUN =

OBJFUN =

OBJFUN =

OBJFUN =

.298000E+04

.302000E+04

.313000E+04

.2980COE+04

27 OBJFUN = .298000E+04

30

30

OBJFUN = .3340QOE+04

BEFORE EXPLORATORY MOVES PT
.19C000E+O2 .180000E+O2***********************

OBJFUN = .334GOOE+04

EXPLORATORY MOVE IN :

X(1) DIRECTION PT 31

.200C00E+O2 .180000E+C2
X(1) DIRECTION PT 32
.180000E+02 .180000E+02
X(2) DIRECTION PT 33
.180000E+02 .190000E+02
X(2) DIRECTION PT 34
. 1 80000E->02 . 17C000E+02
X(2) DIRECTION PT 32
.180000E+O2 .180000E+02

AFTER EXPLORATORY MOVES PT
.180000E+02 .180000E+O2

OBJFUN =

OBJFUN =

OBJFUN =

OBJFUN =

OBJFUN =

.418000E+04

.298000E+04

.302C00E+04

.318000E+04

.298000E+04

32 OBJFUN = .298000E+04

FAILED PATTERN MOVE , RETURN TO LAST BASE POINT

BEFORE EXPLORATORY MOVES PT 27 OBJFUN =

.180000E+02 .180000E+02
.298000E+04

42

4 more pages of intervening printout is left out

EXPLORATORY MOVE IN
X(1) DIRECTION
.180000E+02
X(1) DIRECTION
.177500E+02
X(1) DIRECTION
.178750E+02
X(2) DIRECTION
.178750E-K)2

X(2) DIRECTION
.178750E+02
X(2) DIRECTION
.178750E+02

PT 75
182500E-KD2

PT 76
182500E+02

PT 67
182500E+02

PT 77
183750E+02

PT 78
181250E+02

PT 67
182500E+02

CBJFUN =

GBJFUN =

CBJFUN =

CBJFUN =

CBJFUN =

CBJFUN =

.296750E+04

.296250E+04

.296125E+04

.296312E+04

.296312E+04

.296125E+04

AFTER EXPLORATORY MOVES PT
.178750E+02 .182500E+02

67 CBJFUN = .296125E+04

* FAILED EXPLORATORY MOVES, CHECK TKE STEP SIZE

* STEP SIZE REDUCED TO :

.6250CE-01 .62500E-01

BEFORE EXPLORATORY MOVES PT
.178750E+02 .18250CE+02*****************

67 CBJFUN = .296125E+04

EXPLORATORY MOVE IN :

X(1) DIRECTION PT 79
.179375E+02 .18250CE+02
X(1) DIRECTION PT 80

.178125E+02 .182500E+02
X(2) DIRECTION PT 81

.178125E+02 .183125E402
X(2) DIRECTION PT 82

.178125E+02 .181875E+02

AFTER EXPLORATORY MOVES PT
.178125E-MD2 .181875E+02

EASE POINT NUMBER 10

AFTER PATTERN I-DVE PT
.177500E+C2 .181250E+02

CBJFUN =

CBJFUN =

CBJFUN =

CBJFUN =

.296344E+04

.296094E+04

.296203E+04

.296078E+04

82

83

83

CBJFUN .296078E+04

CBJFUN = .296187E+04

CBJFUN = .296187E+04BEFORE EXPLORATORY MOVES PT
.177500E+02 .181250E+02*******************************

EXPLORATORY MOVE IN :

X(1) DIRECTION PT 84 CBJFUN = .296156E+04

45

.178125E+02 .181250E+02
X(2) DIRECTION FT 85 OBJFUN = .296078E+04
.178125E+02 .181875E+02

AFTER EXPLORATORY MOVES PT 85 OBJFUN = .296078E+04
.178125E+02 .181875E+02

FAILED PATTERN MOVE , RETURN TO LAST BASE POINT

82 OBJFUN = .296078E+O4BEFORE EXPLORATORY MOVES PT
.178125E+02 .181875E+02********************* * *********

EXPLORATORY MOVE IN

X(1) DIRECTION
.178750E+02
X(1) DIRECTION
.177500E+02
X(1) DIRECTION
.178125E+02
X(2) DIRECTION
.178125E+02
X(2) DIRECTION
.178125E+02
X(2) DIRECTION
.178125E+02

PT 86

181875E+02
PT 87

181875E+02
PT 82

181875E+02
PT 88

182500E+02
PT 89

181250E+02
PT 82

181875E+02

AFTER EXPLORATORY MOVES PT
.178125E+02 .181875E+02

OBJFUN =

OBJFUN =

OBJFUN =

OBJFUN =

OBJFUN =

OBJFUN =

.296172E+04

.296172E+04

.296078E+04

.296094E+04

.296156E+04

.296078E+04

82 OBJFUN = .296078E+04

* FAILED EXPLORATORY MOVES, CHECK THE STEP SIZE

* STEP SIZE REDUCED TO :

.31250E-01 .31250E-01

BEFORE EXPLORATORY MOVES PT
.178125E+02 .181875E+02*****************

82 OBJFUN = ,296078E+04

EXPLORATORY MOVE IN :

X(1) DIRECTION PT 90
.178437E+02 .181875E+02
X(1) DIRECTION PT 91

. 17781 2E+02 .181875E+02
X(1) DIRECTION PT 82
.178125E+02 .181875E+02
X(2) DIRECTION PT 92
.178125E+02 .182187E402

AFTER EXPLORATORY MOVES PT
.178125E+02 .182187E+02

BASE POINT NUMBER 11

AFTER PATTERN MOVE PT
i178l25E+02 .182500E+02

OBJFUN =

OBJFUN =

OBJFUN =

OBJFUN =

.296102E+04

.296102E+04

.296078E+04

.296074E+04

92 OBJFUN = .296074E+04

93 OBJFUN = .296094E+04

44

BEFORE EXPLORATORY MOVES PT 93 OBJFUN = .296094E+04
.178125E+02 .182500E+02*******************************

EXPLORATORY MOVE IN :

X(1) DIRECTION PT 94
.178437E+02 .182500E+02
X(2) DIRECTION PT 95
.178437E+02 .182812E+02
X(2) DIRECTION PT 96

.178437E+02 .182187E+02

AFTER EXPLORATORY MOVES PT
.178437E+02 .182187E+02

OBJFUN = .296086E+C4

OBJFUN = .296113E+04

OBJFUN = .296082E+04

96 OBJFUN = .296082E+04

FAILED PATTERN MOVE , RETURN TO LAST BASE POINT

92 OBJFUN = ,296074E-^O4

BEFORE EXPLORATORY MOVES PT

.178125E+02 .182187E+02******************

EXPLORATORY MOVE IN •

X(1) DIRECTION PT 97 OBJFUN = .296082E+04
.178437E+02 .182187E+02

X(1) DIRECTION PT 98 OBJFUN = .296113E+04
. 17781 2E+02 .182187E+02

X(1) DIRECTION PT 92 OBJFUN = .296074E+04
.178125E+02 .182187E+02
X(2) DIRECTION PT 99 OBJFUN = .296094E+04
.178125E+02 • 182500E+02
X(2) DIRECTION PT 100 OBJFUN = .296078E+04
.178125E+02 .181875E+02
X(2) DIRECTION PT 92 OBJFUN = .296O74E+04
.178125E+02 .182187E+02

92 OBJFUN = .296074E+04

* FAILED EXPLORATORY MOVES, CHECK THE STEP SIZE

AFTER EXPLORATORY MOVES PT

.178125E+02 .182187E+02

** OPTIMAL RESULTS **

TOTAL NUMBER OF FUNCTION CALCULATIONS =

OBJECTIVE FUNCTION = .296074E+04

100

VARIABLE
1

2

OPTIMAL POINT
.178125E+02
.182187E+02

FINAL STEPSIZE
.31250E-01
.31250E-01

2.5.1.3 USER SUPPLIED SUBROUTINE

REAL FUNCTION CBJFUN (X)

C
C THE EXAMPLE PROBLEM TEST PROBLEM 1

C
REAL X(50)

OBJFUN = 100. *< X(l)-15.) **2 + 20. *(28.-XQ))**2

X + 100. *(X(2)-X(l))**2 + 20. *(38.-X(l)-X(2))**2

RETURN
END

46

2.5.2 TEST PROBLEM 2 : PERSONNEL AND PRODUCTION SCHEDULING - TEN STAGE

2.5.2.1 SUMMARY

NUMBER OF ' VARIABLES : : 20

FUNCTION :

Min F(x) =

10

t
n=1

S
n

where

S = [340. OW] + [64.3(W -W ,)
2

]

n n n n-1

-t- [0.2(P -5.67W)

2
+ 51 .2P - 281 .OW 1

n n n n

+ [0.0825(1 -320. 0)
2

]

n

STARTING POINT :

= (300,... ,300, 50, ...,50)

INITIAL STEP- SIZE :

— "

l'***' 10* 1
1 '

*
* *

' 20

= (6.0, ...,6.0, 1 .0,... ,1.0)

MAXIMUM NUMBER OF STEP SIZE REDUCTIONS : 3

OPTIMAL POINT :

F(x) = 241,516

x = (471.00, 444.00, 416.25, 381.75, 376.50,

364.50, 348.75, 359.25, 329.25, 272.25,

77.62, 74.25, 70.88, 67.75, 65.12,

62.75, 60.62, 59.00, 57.38, 56.12)

-final
= (d T •••' d

10'
d
11' '"' d

20

= (0.75,..., 0.75, 0.125,..., 0.125)

NUMBER OF FUNCTION EVALUATIONS : 1709

MICROCOMPUTER
SINGLE DOUBLE
PRECISION PRECISION

LARGE COMPUTER
SINGLE
PRECISION

EXECUTION TIME : 3.15 min. > 60 min. .02 min.

47

48

2.5.2.2 DESCRIPTION OF TEST PROBLEM 2

Numerical Example 2 : A Personnel and Production Scheduling Problem

The capability and practicality of the method is demonstrated by

obtaining an optimal solution to a well-known model of Holt, Modigliani,

Muth and Simon [1], This model which has been derived for their paint

factory scheduling problem considers the production and inventory system

with two independent variables in each planning period. The schematic

representation of the problem is shown in Fig. 2.4.

The two independent variables are the production rate and work force

level at each month. The problem is to determine the optimal production

rate ana work force level such that the total operating cost for the

planning horizon is minimized.

Let us define

n = a month in the planning horizon

N = the duration, in months

P = production rate at the n-th month

W = work force level in the n-th month
n

Q = sales rate at the n-th month
n

I = inventory level at the end of the n-th month
n

Inventory level at the end of each month is computed by using the recursive

relationship between sales, production and inventory as follows :

I = I „ + P - Q , n = 1, 2, ..., N
n n-1 n n

The model considers that the total operating cost consists of the

following four cost items.

1. Regular payroll cost = 340. 0W

2
2. Hiring and layoff cost = 64.3 (W - W „

)

n n-1

3. Overtime cost = 0.2 (?
n

- 5.67W
n

) + 51 .2P
n

- 281 .0W~
n

4. Inventory cost = 0.0825 (I - 320.0)

*s
z

*>

Z

:> z
O

z
fL

.>

^

49

co
c >

-M

fii

"S_> ?
- o

CVJ
>-•^

CM
ft ^_J*

; k

—~

I"- *w_;> >

o
— %̂

rV~ . •%.
<P

_

' ^

o

3

O
-—

'J
•/>

c

• r-i

u
—
O
-

-

c

r.

f-i

j
—
-

'—

=
S

M
•H

O
rH

r i

_

50

It is assumed that backlog of oraers or negative inventories are permitted.

The decision problem can now be stated as follows :

Choose the optimum values for production rate, P
, and workforce level,

W
, at each month of the planning horizon so that the total cost S11 n

which is given by

l}
n=1 n

is minimized. S is defined as
n

S = [340. 0W] + [64.3CW -W J
2

]

n n n n-1

+ [0.2CP -5.67W)" + 51. 2P - 281 ,0W 1

n n n n

+ [0.0825(1 -320. 0)
2

]

n

The numerical data for the ten-stage (20 dimensional) example follows

Q
1

= 430, Q
2

= 44?, Q, = 440, Q^ = 316, Q
5

= 397,

% = 375, O, = 292, QQ = 458, QQ = 400, Q1n = 350.

I
Q

= 263

W
Q

= 81

Table 2.3 shows the computational results of the example.

In the example, the starting point is selected arbitrarily at

A = (P , ..., P , W , ..., W) = (300, ...,300, 50, ...,50).

1709 calculations of the functional value are required for an optimal

solution which satisfies the stopping criterion, d = (1.0, ...,1.0).
stop

51

Table 2.3 Results of the Personnel and Production Scheduling Problem
(20 dimensions)

Month Sales Production Inventory Work Force
n Q

n
P
n

I
n

W
n

263.00 81.00

1 430 471.00 304.00 77.62

2 447 444.00 301.00 74.25

3 440 416.25 277.25 70.87

4 316 381.75 343.00 67.75

5 397 376.50 322.50 65.12

6 375 364.50 312.00 62.75

7 292 348.75 368.75 60.62

3 458 359.25 270.00 59.00

9 400 329.25 199.25 57.37

10 350 272.25 121.50 56.12

Total cost S - $241,516

52

2.5.2.3 COMPUTER PRINTOUT OF RESULTS

HOOKE AND JEEVES PATTERN SEARCH

MINIMIZES AN UNCONSTRAINED, MULTIVARIABLE, NONLINEAR FUNCTION

PRODUCTION SCHEDULING 10 STAGE

*** INPUT DATA ECHO ***

NUMBER OF VARIABLES = 20

INITIAL , POINT AND STEP SIZE
X(1) = 300. 0G0 STEPC 1) = 6.0000
X(2) = 300.000 STEP(2) = 6.0000
X(3) = 300.000 STEP(3) = 6.0000
X(4) = 300.000 STEP(4) = 6.0000
X(5) = 300.000 STEP(5) = 6.0000
X(6) = 300.000 STEP(6) = 6.0000
X(7)

- 300.000 STEP(7) = 6.00C0
X(8) - 300.000 STEP(8) = 6.0000
X(9) = 300.000 STEP(9) = 6.0000
X(10) = 300.000 STEP (10) = 6.0000
X(ll) = 50.0000 STEP(ll) = 1.00000
X(12) = 50.0000 STEP(12) = 1.00000
X(13) = 50.0000 STEP(13) = 1.00000
X(14) = 50.0000 STEP (14) = 1.00000

X(15) s 50.0000 STEP(15) = 1.00000
X(16) = 50.0000 STEP (16) = 1.00000
X(17) = 50.0000 STEP(17) = 1.00000
X(18) = 50.0000 STEP (18) = 1.00000
X(19) = 50.0000 STEP(19) = 1.00000
X(20) = 50.0000 STEP(20) = 1.00000

THE MAXIMUM NUMBER OF STEP-SIZE REDUCTIONS
THE REDUCING FACTOR = 0.5

= 3

PRINT OPTION SELECTED RESULTS AT EACH STEP-SIZE CUT

**** END OF INPUT ECHO ****

IN THE FOLLOWING OUTPUT, THE VALUES PRINTED ARE, RESPECTIVELY
THE FUNCTION COUNTER, THE FUNCTION VALUE
AND THE DECISION VARIABLE VECTOR

55

BEFORE STEP-SIZE REDUCTION # 1

FUNCTION COUNT = 671
OBJFUN = .241676E+06

.474000E+03

.372000E+03

.336000E+03

.710000E+C2

.610000E+02

.438000E+03

.360000E+03

.282000E+03

.680000E+02

.600000E+02

.420000E+03

.3480C0E+03

.780000E+02

.650000E+02

.590000E+02

.384000E+03

.360000E+03

.74G000E+02

.630000E+02

.580000E+02

* STEP SIZE REDUCED TO :

.30000E+01

.30000E+01

.30000E+01

.50000E+00

.50000E+00

.30000E+01

.30000E+01

.3C000E+01

.50000E+O0

.500C0E+00

.30000E+01

.30000E+01
•50000E+00
.50000E+00
.50000E+00

.30000E+01

.3G000E+01

.50000E+00

.50000E+00

.50000E+00

BEFORE STEP-SIZE REDUCTION
FUNCTION COUNT =

OBJFUN =

.468000E+03

.378000E+03

.333000E+03

.710000E-H)2

.615000E+02

2

897

.241571E+06
.444Q00E+03
.363000E+03
.276000E+03
.680000E+C2
.600000E+02

.417000E+G3

.351000E-K33

.775000E+02

.655000E+02

.585000E+02

.381000E+03

.360000E+03

.740000E+02

.635000E+02

.570000E+02

* STEP SIZE REDUCED TO :

.15000E+01

.15000E+01

.15000E+C1

.25000E+00

.25000E+00

.15000E+01

.15000E+01

.15000E+01

.25000E+00

.25000E+00

.15000E+01

.15000E+01

.25000E+00

.25000E+00

.25000E+C0

.15000E+01

.15000E+01

.25000E+00

.25000E+00

.25000E+00

BEFORE STEP-SIZE REDUCTION # 3

FUNCTION COUNT = 1201
OEJFUN = .241540E+06

.471C00E+03
,37650CE-K)3

.331500E+03

.710000E+02

.612500E+02

.442500E+03

.364500E+03

.274500E+03

.680000E4O2

.597500E+02

.417000E+03

.349500E-K)3

.777500E+02

.655000E+02

.582500S+02

.381000E+03

.360000E+03

.742500E+02

.632500E+02

.570000E+02

* STEP SIZE REDUCED TO :

.75C00E+00

.75000E+00

.75000E+00

.12500E+O0

.12500E+00

.750Q0E+00

.75000S+00

.75000E+00

.12500E-KJ0

.12500E+00

,75000E-r00

.75000E+00

.12500E+C0

.12500E+00

.12500E+00

.750C0E+00

.75000E+00

.125C0E+00

.12500E-H30

.125C0E+00

54

** OPTIMAL RESULTS **

TOTAL NUMBER OF FUNCTION CALCULATIONS = 1709

OBJECTIVE FUNCTION = .241516E+C6

VARIABLE OPTIMAL POINT FINAL STEPSIZE
1 .471000E+03 .75000E+00
2 .444000E+03 .75000E-KI0

3 .416250E+03 .75000E+00
4 .381750E+O3 .75000E+00
5 .3765G0E+C3 .75000E+00
6 .364500E-HB .75000E+00
7 .348750E+03 .75000E+00
3 .359250E+03 .75000E+00
9 .329250E+03 .75000E+00

10 .272250E+03 .75000E+00
11 .776250E+02 .12500E+00
12 .742500E-K32 .12500E+00

13 .708750E+02 .12500E+00
14 .677500E+02 .12500E+00
15 .651250E+02 .12500E+00
16 .627500E+02 .12500E+O0
17 .606250E+02 .1250CE+C0
18 .590000E+02 .12500E+00

19 .573750E+02 .12500E+00
20 .561250E+02 .125C0E+O0

55

2.5.2.4 USER SUPPLIED SUBROUTINE

FUNCTION OBJFUN (X)

C
C A PERSONNEL AND PRODUCTION SCHEDULING FRCBLEM 10 STAGES
C
C NSTAGE THE NUMBER OF STAGES (MONTHS IN THE PLANNING HORIZON)
C P(N) THE PRODUCTION RATE AT THE N-TH MONTH
C W(N) WORK FORCE LEVEL IN THE N-TH MONTH
C Q(N) SALE RATE AT THE N-TH MONTH
C I(N) INVENTORY LEVEL AT THE END OF THE N-TH MONTH
C S(N) OPERATING COSTS FOR THE N-TH MONTH
C TOTAL THE TOTAL OPERATING COSTS FOR PLANNING HORIZON
C

C

C

c

C

REAL X(50)

REAL P(25) f W(25), 1(25), Q(25)
REAL S(I1), TOTAL
INTEGER NSTAGE, J, K, N, Nl

DATA W(l) /81.0/
DATA Id) /263.0/
DATA Q(l) / 430.0/
DATA Q(2), Q(3), Q(4) , Q(5) / 447.0, 440.0, 316.0, 397.0 /

DATA Q(6), Q(7), Q(8) , Q(9) / 375.0, 292.0, 458.0, 400.0 /

DATA Q(10) / 350.0 /

NSTAGE = 10
DO 10 J = 1,NSTAGE

P(J) = X(J)

K = J + NSTAGE
V7(J+1) = X(K)

10 CONTINUE

TOTAL = 0.0

DO 50 N = 1, NSTAGE
Nl = N + 1

' KN1) = KN1-1) + P(N) - Q(N)

S(N) = 340.0 * W(N1) + 64.3 * (W(N1) - W(N1-1))**2

1 + 0.20 * (P(N) - 5.67 * W(N1))**2 + 51.2 * P(N)

2 - 281.0 * W(N1) + 0.0825 * (KN1) - 320.0)**2

TOTAL = TOTAL + S(N)
50 CONTINUE

OBJFUN = TOTAL

RETURN
END

56

2.6 REFERENCES

1. Holt, C.C., F. Modigliani, J.F. Muth and H.A. Simon, Planning
Production, Inventories, and Work Force , Prentice-Hall,
Englewood Cliffs, New Jersey, 1960.

2. Hooke, R., and T.A. Jeeves, "Direct Search Solution of Numerical and
Statistical Problems", J. Assoc. Comput. Mach. , vol. 3, p. 212, 1961.

3. Hwang, C.L., L.T. Fan, and S. Kumar, "Hooke and Jeeves Pattern Search
Solution to Optimal Production Planning Problems", Report No. 18,

Institute for Systems Design and Optimization, Kansas State University,

Manhattan, Kansas, 1969.

CHAPTER 3

KSU - SEQUENTIAL UNCONSTRAINED MINIMIZATION TECHNIQUE
BASED ON HOOKE AND JEEVES PATTERN SEARCH AND HEURISTIC PROGRAMMING

3.1 INTRODUCTION

The general nonlinear programming problem with nonlinear (and/or

linear) inequaltiy and/or equality constraints is to choose x. to

minimize f(x)

subject to

\

and

S^i) > 0, i = 1, 2,

h.(x) = 0, j = 1, 2,

m (3-D

, I

where x is an n-dimensional vector (x., x», x). A number of
1

' 2 ' ' n

techniques have been developed to solve this problem. Among them, a

technique which was originally proposed by Carroll [1,2] and further

developed by Fiacco ana McCormick [3,^,5,6,71 is introduced here.

This technique, known as the sequential unconstrained minimization

technique (SUMT), is considered one of the simplest and most efficient

methods for solving the problem given by equation (3.1). The basic scheme

of this technique is that a constrained minimization problem is transformed

into a sequence of unconstrained minimization problems which can be optimized

by any available techniques for solving unconstrained miminization.

The unconstrained minimization technique which is employed here is the

well-known Hooke and Jeeves pattern search technique [8,91 . For increasing

the efficiency of the method, some modifications have been made. Among

these modifications, a heuristic programming technique [10] is usee to

handle the inequality constraints of the problem given by equation (3.1).

5S

The method and its computational procedure is illustrated in detail in the

following sections of this chapter. The method has been presented in

[11,12,13].

3.2 KSU - SEQUENTIAL UNCONSTRAINED MINIMIZATION TECHNIQUE (KSU-SUMT)

The KSU-SUMT technique for solving the problem given by equation (3.1)

is based on the minimization of a function

r^ -1/2 A 2
P(£,r) = f(x) + r. I 1/g. (x) + r,

±/z
£ h

z
(x) (3.2)

K K i=1 1 K
j =]_]

over a strictly monotonic decreasing sequence (r }. The seauential

minimization of the unconstrained P function, P(x,r,), converges to the

solution of the original objective function, f(x), under certain

requirements. The essential requirement is the convexity of the P function.

The intuitive concept of the P function is described below:

Since the sequence (r. } is strictly monotonic decreasing, as r. -*

o

the third term of the P function, r h. (x), will approach to oo

unless h.(xj =0 for j = l,2,...,x. Thus, in the process of minimizing

the ? function, the equality constraints will be forced to zero.

m
The second term of the P function, r l/g.(x), approaches infinity

K i=l 1

as the value of & approaches one of the boundaries of the inequality

constraints, g. (x) 2 0. Hence, the value of x will tend to remain inside

the inequality-constrained feasible region.

The motivation behind this formulation of the P function is the

transformation of the original constrained problem into a sequence of

unconstrained minimization problems, (P(x,r)}.

The solution to the problem is to first define the P function as shewn

59

in equation (3.2). The search for the minimum P function value is started

at an arbitrary point which is inside the feasible region bounded by the

inequality constraints. After a minimum P function value is reached, the

value of r i- s reduced, and the search is repeated starting from the

previous minimum point of the P function. By employing a strictly monotonic

decreasing sequence {r. }, a monotonic decreasing sequence {P . (x.r,)}to M
k ' mm ' k

inside the feasible region bounced by the inequality constraints is obtained.

The equality constraints, h.(x) = for j = 1,2,...,/, will be satisfied

automatically by the nature of the formulation of the P function as r.
k

approaches zero as explained before.

m
When r.-»0, the second term of equation (3.2), r. T 1/g.(x) approaches

k k -%-j l

-1/2 r 2
zero, while the third term, r T h. (x), is forced to approach zero,

k
J = 1

J "

as aescribec before. In other woras, as r -*0, P(x,r,)-*f(x), where x is

the optimum point which yields the minimum P(&,r,) and is the optimum point

oi the problem given by equation (3.1). Further mathematical proof of the

convergence of the method can be seen in reference [3,^,5,6,71.

3.3 COMPUTATIONAL PROCEDURE

The computational procedure for KSU-SUMT based on Hocke and Jeeves

pattern search and heuristic programming is summarized below (see Fig. 3.1).0,00 0^
Step (1) Select a starting point x = (x„ , x_ , ..

. , x), the
c n

P
initial value of the penalty coefficient r, , the initial tolerance limit

k

of the violation to constraints, E , and the initial step sizes, d.
,

needed in the search process.

Step (2) Check if the initial point is feasible subject to the

inequality constraints. If it is, go to step 3; otherwise, go to step 2a.

(start)^^
1 . Select starting point and

initial values of r.
, B , d

60

2a. Select a feasible

starting point

3. Define P function :

P(jt,r
k

) = f + r
K
£l/g, + r

k
" 2£h '

*

4. Minimize P(i,r.) by Hooke and Jeeves Pattern Search.

4a. If a move goes out of the feasible region,

move back into near-feasible region.

6. Move into
feasible
region

8. Set

k = k + 1

r = r / C
k k-1

d= d° / k+1
-k

Fig. 3.1. Descriptive flow diagram for KSU-SUMT with modified
Hooke and Jeeves Pattern Search.

61

Step (2a) Locate a feasible starting point by minimizing the total

weight of violation, TGH, defined as

TGH =
2,0 2,0.

Z */(i
u

) Z h/(x
u

)

t«T u s*R
(3.3)

where T = {tig (x) < 0} and R = {s|h (x°) * 0}. Note that TGH includes
t s

—

only the violated constraints.

Step (3) Define the P function as [6,7]

P(x,r,) = f(x) + r. T 1/g,(x) + r
"V2 £V 2

U)
i<"

(3.4)

j

where g.(x) > 0, i = 1, 2, ..., m are inequality constraints, and h (x) = 0,

j = 1, 2, . .
.

, l
y
are equality constraints.

Step (4) Minimize the P function by Hooke and Jeeves pattern search

technique. After every move during the search check if the move went out

of the feasible region. If it did, go to step 4a; if it did not, continue

the search. When the minimum P function value is reached, go to step 5.

Step (4a) Move back to the near-feasible region and then return to

step 4. The near-feasible region is defined as the region where all points

in the region satisfy the following condition [10]

TGH < B

where B is the tolerance limit of violation which is sequentially decreased.

Step (5) Check if the P optimum point, x., obtained in step 4 is inside

the feasible region. If it is feasible, go to step 7; if it is near-feasible

or not feasible, go to step 6.

Step (6) Move tne P optimum point, x, from the infeasible region

into the feasible region along the direction toward the last optimum point,

then go to step 7.

62

Step (7) Check if a stopping criterion such as

f(x)
G(x,r,)

< a

is satisfied. If the criterion is satisfied, the P optimum point, x, is

also the solution to the original objective function, f(x); otherwise, go

to step 8. The dual value G(x,r) is defined as [6,7]

GCx.rj = f(i) - r
k £ 1/g.(x) r

k
"

I. h^Cx)

Step (6) Set k = k+1
; r^ - r

fc
-/C, where C is a constant greater

than 1; and a, = d /(k+1); and go back to step 3-

The following sections present the details of each step described

above. The basic Hooke and Jeeves pattern search technique is presented in

chapter 2.

3.4 PROCEDURE FOR FINDING A FEASIBLE STARTING POINT FROM THE INFEASIBLE
INITIAL POINT

The procedure for selecting a feasible starting point when the initial

point is out of the feasible region bounded by inequality constraints,

g.(x) 1 for i = 1,2,...,m, is based on Hooke and Jeeves pattern search

technique. For increasing the speed and efficiency of the process, some

modifications from the basic Hooke and Jeeves pattern search technique have

been made. *

Note that in the above description of the feasible region only the

inequality constraints are included. The violation to equality constraints

is not considered here but is taken into account in the SUMT formulation

automatically as explained in Section 3.2 [6,7].

The procedure is summarized below (refer to Figure 3.2).

C ENTER J

63

0. Start at the initial infeasible starting point

I
1. Define the weight of violation

TGH = { £[g (x)]
2

+ L [h (x)]
2

}

t
t s- s

for all g (x) < , h (x) $

1/2

I
2. Make exploratory moves to minimize TGH with step-sizes

twice the input step sizes. Exit when a feasible point

is found. The exploratory move point becomes the new base

point during the search.

Fig. 3.2 Descriptive flow diagram for locating a feasible starting point

64

Step (0) Start at the input initial point, x , which is out of the

feasible region bounded by the inequality constraints and needs to be moved

into the feasible region.

Step (1) Define the weight of violation, TGH, as

., 1/2

TGH = Z [g,&
u
>3 + E Ch(x

U
)]'

teT seR

w here T = (t|g
t
(x°) < 0} and R = {sjh^i) f 0}.

Step (2) Make an exploratory move to minimize the weight of violation.

Note, that TGH includes only the violated constraints. Also note that the

objective function to be minimized in this step is TGH. The point obtained

at the end of the exploratory moves is defined as the new base point.

For increasing the efficiency of the process, two modifications are

made here. First, the starting step-sizes used are twice the input starting

step-sizes. Second, after every successful move, the feasibility is

checked; whenever a move has reached a point which is inside the feasible

region bounced by inequality constraints, the process of selecting a

feasible starting point is terminated.

Step (3) Check if the exploratory moves have made any progress in

decreasing the value of TGH. If progress has been made, go to step 5;

otherwise, go to step 4.

Step (4) Decrease the step sizes and return to step 2.

Step (5) Hake a pattern move along the line connecting the two base

points to a new pattern move point x .

P

Step (6) Check if the value of TGH at a is less than that at £ .

P H

If it is, go to step 7, otherwise, return to step 2.

Step (7) Set £
fi

= v .

Step (8) Check if x is in t
<ne feasible region bounded by the

65

inequality constraints. If x
B

:lS feasible, set the step-sizes back to

the original step-sizes and exit this procedure. Otherwise, if x R
is

still infeasible, return to step 2.

3.5 COMPUTATIONAL PROCEDURE FOR MINIMIZING P(x,r,) FUNCTION BY THE
MODIFIED HOOKE AND JEEVES PATTERN SEARCH

K

The computational procedure for minimizing the P(_x,r,) function

is a modification of Hooke and Jeeves pattern search technique C 8 ,9 J -

The method is a sequential search routine for locating a point x. =

(x
, x_,, ..., x) which minimizes the function P(x,r,). The original Hooke

1 2 n
—

k

and Jeeves pattern search method is presented in chapter 2. The procedure

presented here is a modification of the technique so that it will handle

constraints. The procedure is performed as follows : (see Fig. 3.3)

Step (1) Make exploratory moves to minimize the P function. If an

exploratory move goes out of the feasible region, check if Y, the original

objective function has decreased. If it has, then move the infeasible

point back into the feasible region according to the procedure in Fig. 3.4.

Otherwise, if Y has not inproved, then either make a move in the opposite

direction or move back to the original point.

Step (2) Check if the exploratory moves have made progress in

decreasing the P function. If progress has been made, go to step 3;

otherwise, go to step 10.

Step (3) Set the new base point equal to the exploratory move point.

Step (4) Make a pattern move.

Step (5) Check if the pattern move point is feasible. If it is,

go to step 8; otherwise, go to step 6.

Step (6) Check if the Y value has improved from its previous best

value. If it has, go to step 7; otherwise, return to step 1.

66

i
c

>»tmpr>

i
1. Make exploratory moves to mimimize P(x,r

)
k'If a move goes out of the feasible region,

move back according to the procedure in Fig. 3.4

Yes
!

'

p^ Set new base point

4. Make pattern move

1 1 . Reduce the
step size

Move back into
feasible
(or near feasible)
region according
to fig. 3.4.

13. Make exploratory
moves in all

directions at
once

Set new base point

EXIn

Fig. 3.3 Descriptive flew diagram for minimizing P(x,r) function

67

Step (7) Move back into the feasible or near-feasible region

according to the procedure in Fig. 3.4.

Step (8) Check the pattern move point to see whether the P function

value has decreased. If it has, go to step 9; otherwise, return to step 1.

Step (9) Set the new base point equal to the pattern move point and

return to step 1

.

Step (10) Check if the maximum number of step size reductions have

been made. If it has, exit the procedure; otherwise, go to step 11.

Step (11) Reduce the step sizes.

Step (12) Check if the number of exploratory move failures is greater

than or equal to the maximum number of step size reductions. If it is, go

to step 13; otherwise, return to step 1.

Step (13) Reduce the R value, increase the step size, and increase the

maximum number of step size reductions by one. Make an exploratory move by

taking step size moves in all directions at once. If the move goes out of

the feasible region, check if Y, the original objective function value has

decreased. If it has, then move the infeasible point back into the feasible

or near-feasible region according to the procedure in Fig. 3.4. Otherwise,

make simultaneous exploratory moves in the opposite directions. Return to

step 1 after completing this step.

3.6 PROCEDURE FOR MOVING AN INFEASIBLE POINT INTO THE FEASIBLE OR NEAR-
FEASIBLE REGION BOUNDED BY INEQUALITY CONSTRAINTS

The procedure for moving an infeasible point into the feasible or the

near-feasible region bounded by the inequality constraints is based on a

simplified Hooke and Jeeves pattern search. Since the optimum will be

located at somewhere very close to the boundary of the set of constraints

for most of the constrained problems, the moving back procedure used here

\

ENTER /—

I

'

6S

0.

i , ______
Start at the infeasible point which

needs to be moved back into the near-feasible region.

Compute the weight of violation

TGH = £ Lg,(x)]
2

+ £ [h (x)]
;

i,
t

L
s

for all g (x) < , h /0
t s

1/2

Yes

6. Decrease the

tolerance limit

3

r-

EXIT

r

3. Make exploratory moves to minimize TGH

with step sizes half of the entered

step sizes.

3a. After every move, check if TGH _ B.

If it is, go to step 6 ; otherwise,

continue until exploratory moves have

been made in every dimension.

Fig. 3.4 Descriptive flow diagram for moving an infeasible point

back into the near-feasible region.

69

consists of small step-size exploratory moves only. Pattern moves are not

used.

The procedure is summarized below (refer to Fig. 3.4).

Step (0) Start at the infeasible point, x, which is to be moved into

the feasible or the near- feasible region bounded by inequaliy constraints.

Step (1) Compute the weight of violation, TGH, at x.

-, 1/2

TGH = Z c^u)]
2

+ Z Ch (x)]
2

t€T u s«R b

where T = {t|g,(x) < 0} and R = {s|h (*) i 0}.

Step (2) Check if x is in the near- feasible region defined as the

region where all the points in the region satisfy the following condition [10]

TGH 1 B

where 3 is the tolerance limit of violation. If TGH <. 3, go to step 6;

otherwise, go to step 3.

The starting tolerance limit, B , for the kth sub-optimum search is

defined as [11

]

n

B. = (0.5/n) Z ^K
i=1

1

wnere d. is the starting step-size for the ith dimension used in the kth
l

sub-optimum search; n is the number of dimensions in the problem. This

implies that the starting tolerance limit for the kth sub-optimum search

is set to be half of the average starting step-sizes. After an infeasible

point is moved back to the feasible or near-feasible region bounded by the

inequality constraints, the size of the tolerance limit is decreased.

Step (3) Make exploratory moves to minimize TGH using step sizes

which are half as large as the step sizes used before entering this routine.

Step (3a) After every move check if TGH < B. If it is, go to step 6;

otherwise, continue until exploratory moves have been made in every

70

dimension.

Step (4) Check if the exploratory moves have made progress in

decreasing the value of TGH. If progress has been made, return to step 3;

otherwise, go to step 5.

Step (5) Increase the step sizes used for finding a feasible point

and return to step 3.

Step (6) Reduce the tolerance limit, B, to 3/4 of its current value.

Set & to be the feasible or near feasible point found and exit the procedure,

3.7 PROCEDURE FOR MOVING THE NEAR-FEASIBLE kTH SUB-OPTIMUM POINT INTO THE
FEASIBLE REGION

After the kth sub-optimum has been reached, it is desirable to have

the optimum point in the feasible region subject to all the inequality

constraints.

If the optimal point for P(x,r) is in the near-feasible region but

not in the feasible region, it will be moved back into the feasible region

by the following procedure (refer to Figure 3.5).

Step (0) Start at the kth sub-optimum infeasible point, x, , wnich

is to be moved into the feasible region.

Step (1) Move x toward i the feasible (k-1)st sub-optimum point

C ,

using a step size which is equal to 1/3 of the distance between x.^ ana

X. Set the new point to be x^ •

Step (2) Check if x is feasible. If x is feasible, exit the

procedure; otherwise, go to step 3.

Step (3) If the pull back procedure has been repeated five times

without finding a feasible point, go to step 4; otherwise, repeat from

step 1

.

Step (4) Set *,0 = g^ and exit the procedure.

-
ENTER)

71

0. Start at the kth suboptimum infeasible point x
k

1. Move x,° toward x,° . , the feasible (k-1)st

suboptimum point using a small step size.

The new point becomes the kth suboptimum point x, .

No

Yes

-1

4. Set

o
= x

k-1

"C

r
EXIT

Yes

Fig. 3.5 Descriptive flow diagram for moving the near-feasible
kth suboptimum point into the feasible region.

72

3.8 COMPUTER PROGRAM DESCRIPTION

3.8.1 DESCRIPTION OF SUBROUTINES

The main program is supplemented with 7 subroutines : BACK, CKVIOL,

INPUT, PENAT, WEIGH, OBRES, OUTPUT.

SUBROUTINE BACK pulls the infeasible point back into the feasible or near-

feasible region. The procedure is presented in Section 3.6.

SUBROUTINE CKVIOL checks for violation to inequality constraints and also

updates the iteration count.

SUBROUTINE INPUT is used to enter data interactively from the terminal.

SUBROUTINE PENAT computes the penalty terms for SUMT formulation.

SUBROUTINE WEIGH computes the total weight of violation to the inequality

and equality constraints as defined by equation 3.3.

SUBROUTINE OBRES defines the objective function and constraints for the

problem to be solved. (User-defined)

.

SUBROUTINE OUTPUT prints out additional information desired by the user.

(User-defined)

.

3.8.2 PROGRAM LIMITATIONS

The program will presently handle a problem with 20 variables, 20

inequality constraints and 20 equality constraints. To solve a larger

problem, the dimensions of the arrays in the program must be changed. The

key to the changes fellows :

X, FX, EX, PX, CX, D, PD N dimensions

FG MG dimensions

Py mh dimensions

The program requires at least 22K bytes of memory.

73

3.8.3 TABLE CF PROGRAM SYMBOLS AND EXPLANATION

Table 3.1. Program Symbols and Explanation

Program
Symbols Explanation

Mathematical
Symbols

B tolerance limit of constraint violation

BX(I) previous base point in Hooke and Jeeves pattern search

D(I) step size in Hooke and Jeeves pattern search

EXPSUC Exploratory success flag. EXPSUC = TRUE when an
exploratory move succeeds in one cf the N dimensions ;

otherwise EXPSUC = FALSE.

FEAS a logical variable indicating whether the current point
is feasible or infeasible. FEAS = TRUE if the point
is feasible.

FG(J) (j)th inequality constraint value at point FX(I)

FH(K) (k)th equality constraint value at point FX(I)

FP P function value at point FX(I)

FRAC the fraction which is used to multiply the step
sizes by in routine BACK.

FX(I) the current base point during the exploratory moves

FY f function value at point FX(I)

FTGH the intermediate least value of TGH during the
pulling back procedure

G(J) (j)th inequality constraint value at point X(I)

H(K) (k)th equality constraint value at point X(I)

ICONS the logical unit number for console display

ICUT input option code for the starting step size values used
at each subproblem search. ICUT = means use Lnput D(I)

.

ICUT = 1 means use D(I)/K for kth stage,

IDIFF counts the number of consecutive exploratory move failures
plus infeasible pattern moves. When IDIFF = INCUT, then
simultaneous step size moves are made.

J

Table 3.1. Program Symbols and Explanation

Program
Symbols Explanation

Mathematical
Symbols

INCUT the maximum number of step size reductions for a fixed r.

It is used as a subproblem stopping criterion.

IPRINT the logical unit number for the printer.

ISIZE option for determining the starting step-size values
for each subproblem search. (User supplied)

ISKIP program control code, ISKIP *-l when MXBACK is

exceeded in routine BACK before a feasible point
is found.

ITER number of f function values computed within a subproblem

ITERB equal to MXBACK + ITER . It is used in routine BACK to
terminate the search for a feasible point.

ITMAX maximum number of f function values to be computed
for a subproblem. It is used as a subproblem
stopping criterion. (User-supplied)

MG number of inequality constriants

MCUT program control code, MCUT = 3 when exploratory moves
make progress in loop 101 of the main program.

MR" number of equality constraints

MAXP maximum number of subprcblems to be solved.
It is used as a final stopping criterion.

MXBACK The maximum number of iterations (function evaluations)
to be made in routine BACK.

MXFEAS The maximum number of iterations made in searching for
an initial feasible point before terminating the search.

N number of decision variables

NCBP It is also the number of times subroutine BACK is called.

NCCUT number of step size reductions made for a subproblem.

NOEXP number of successful exploratory moves made in the

feasible region.

NOIT total number of f function values computed since the

start of the program.

m

n

75

Table 3.1. Program Symbols and Explanation

Program
Symbols Explanation

Mathematical
Symbols

NOITB

NOFEAS

NOPAT

NOPULL

NSTM3E

OPTION

OX(I)

p

FB

PD(I)

PENA1

PENA2

PX(I)

PULL

R

RATIO

STGH

TGH

number of exploratory moves made in the infeasible region
(subroutine BACK)

.

number of exploratory and pattern moves made in the
feasible region

number of successful pattern moves made in a subproblem.

number of times the pulling back procedure is executed
in the process of moving the infeasible subproblem
optimum point into the feasible region.

number of stages (subproblems) computed

the option for using default values for input parameters
in routine INPUT. (User-supplied)

.

P optimum point of previous subproblem

P function value at point X(I)

initial tolerance limit of constraint violation

initial step size (User-supplied)

penalty value to inequality constraints

k-1

d°.

r
k I iy%

penalty value to equality constraints

pattern move point in Hooke and Jeeves pattern search

a fraction used to pull back the kth suboptimum point
into the feasible region

-1/2
Z*

penalty coefficient for SUMT formulation
(User supplied or computed by formula)

rk°

reducing factor for R from one subproblem to the next,
(ie. r^ = r

k-1
/C) (User supplied)

intermediate least value of TGH during search for a
feasible starting point

£ 1 + Eh.V q. V 1

1 "1 J

^

weight of violation to constraints (Zg,
2 + rh 2,1/2

76

Table 3.1. Program Symbols and Explanation

Program
Symbols Explanation

Mathematical
Symbols

THETA value of the final stopping criterion (user supplied)

.

TZER tolerance of zero. It is used in the INPUT routine
to make sure the computed step size values are not
too small.

X(I) a trial point during the exploratory moves

XB(NB) intermediate best point in pulling back procedure

XOLD the value of the ith dimension of X before a

step size is taken in that dimension, (subroutine BACK)

.

Y f function value at point X(I)

YSTOP computed value of the final
stopping criterion

~ r^k9; + r
*

-1/2
£*,

x.
i

x.
1

77

3.8.4 LISTING CF FORTRAN PROGRAM

PROGRAM KSUMT
C

C ** KSU SUMT PROGRAM **

c

C THIS PROGRAM- IS FOR OPTIMIZING A CONSTRAINED MINIMIZATION
C PROBLEM BY A COMBINATIONAL USE OF HCOKE AND JEEVES PATTERN SEARCH
C TECHNIQUE AND SUMT FORMULATION. WHEN THE SEARCH GETS OUT OF THE
C FEASIBLE REGION, IT WILL BE PULLED BACK BY A HEURISTIC PROGRAMMING
C TECHNIQUE EXECUTED BY THE SUBROUTINE BACK.
C THE METHOD EMPLOYS ..

C SEARCH TECHNIQUE HCOKE AND JEEVES
C SUMT FORMULATION FIACCO AND MCCORMICK
C PULL BACK TECHNIQUE . . . PAVIANI AND HIMMELBLAU
C THE ORIGINAL PROGRAM WAS
C WRITTEN BY : K. C. LAI , I.E. , KSU IN 1970
C THE PROGRAM MODIFIED FOR THE MICROCOMPUTER IS

C WRITTEN BY : FRANK HWANG , I.E. , KSU IN 1983
C

c

EXTERNAL OBRES, OUTPUT
C

LOGICAL EXPSUC, FEAS
C

INTEGER ICONS, ICUT, IDIFF, INCUT, IPRINT, ISIZE, ISKIP
INTEGER ITER, ITMAX, MG, MCUT, MH, MAXP, MXFEAS
INTEGER N, NOBP, NOCUT, NOEXP, NOFEAS, NOIT, NOITB, NOPAT
INTEGER NOPULL, NSTAGE

C

REAL X(20),FX(20),BX(20),PX(20),OX(20),PD(20),D(20)
REAL FG(20),FH(20)
REAL B, FP, FRAC, FY, FTGH, P, PB, PENA1 , PENA2, PULL
REAL R, RATIO, STGH, TGH, THETA, TOLR, XOLD, Y, YSTOP

C

COMMON /BLOGY/ ITMAX, MG, MH, N

COMMON /INOUT/ ICONS, IPRINT
C

DATA ICONS, IPRINT /1,2/
DATA MAX? /50/, MXFEAS /500/
DATA TOLR /1.0E-3/
DATA NOEXP, NOPAT, NOCUT, NOBP, NOFEAS, NOITB /0, 0,0, 0,0,0/
DATA ITER, NOIT, NSTAGE 70,0,1/

C

1C05 FORMAT (20X, 'INITIAL POINT' // 3X, 'Y = ',E11.4, ', P = ',

1 Ell .4, ', R = ',E11.4, «, RATIO = ', E11.4, /

2 3X, 'B = ', E11.4, ', INCUT = ', 14, ', THETA = ',

3 E11.4, ' .' /)
1006 FORMAT (10X, »X(

»
, 12, ') = ',E14.6, 5X, ' D(• , 12, ') = ' ,E1 4.6)

1007 FORMAT (/,38C *') /)

1008 FORMAT (/,4X, »** P OPTIMUM.. (',12, ')' /

1 3X, 'FY = «,E13.6, ', FP = ',E13.6, ', R= ',E11.4, 3X,

2 'ITER =',16 /

78

3 20X, 'N0IT= f ,I6, ', NOITB =',15, ', NOFEAS=',I5,
4 ', NOB? = ",15 /

5 20X, 'NOEXP = r ,I5, '
, NOPAT=',I5, ', NGCUT=', 15,' .' /

6 20X, 'YSTOP = ', E13.6, ' .' /)

1011 FORMAT (5X, / 5X, ' **CONSTRAINTS ..')

1012 FORMAT (10X, 'G(' ,12, ') = ',E14.6, ' ,')

1013 FORMAT (10X, »H('
,12, ') = ',£14. 6, ' ,')

1015 FORMAT (3X, ****** THE ABOVE RESULTS ARE THE FINAL OPTIMUM .')

1016 FORMAT (3X,'**NO. OF P OPTIMUM EXCEEDED ',15,' .')

1020 FORMAT (/,6X,'** FEASIBLE STARTING POINT FOUND .. ')

1023 FORMAT (/,' A FEASIBLE STARTING POINT CANNOT BE FOUND AFTER' ,

1 15, ' ITERATIONS' / IX, 'TRY A DIFFERENT STARTING ',

2 'POINT AND/OR STEP SIZES')
1025 FORMAT (2X, '** SUBPROBLEM SEARCH TERMINATED BECAUSE ',

* 'ITERATION MAXIMUM EXCEEDED **'/)

1027 FORMAT (3X, '** PROBLEM MAY BE TOO FLAT R VALUE REDUCED '

* 'AND INCUT VALUE INCREASED 1

)

1023 FORMAT (6X, 'EXPLORATORY MOVES TAKEN IN ALL DIRECTIONS ',

* 'AT ONCE FAILED'/)
1029 FORMAT (6X, 'EXPLORATORY MOVES TAKEN IN ALL DIRECTIONS ',

* 'AT ONCE SUCCESSFUL'/)
C
C
C *** READ IN PROBLEM NAME, DIMENSIONS, AND OTHER INPUT
C

1 CALL INPUT (R, RATIO, INCUT, THETA, ICUT, X, D)

C
B = 0.0

C
DO 4 1=1,

N

BX(I) = X(I)

FX(I) = X(I)

PD(I) = D(I)

OX(I) = X(I)

B = B + 0.5 * D(I)
4 CONTINUE

C
C **DECIDE THE STARTING VALUE OF TOLERANCE LIMIT FOR (G(J) <)

3 = B / N
PB = B
B = 2.0 * B
CALL CBRES (FX,FY,FG,FH)
CALL CXVIOL (FG,FEAS,ITER)
CALL WEIGH (FG,FH,STGH)

11 CALL PENAT (FG,FH, PENA1,PENA2)

C
C **COMPUTE AN INITIAL VALUE OF R WHEN INPUT R VALUE IS .IE. C

IF (R) 12,12,15
12 R = ABS (FY / (PENA1+FENA2))

IF (R.LE.TOLR) R=4.0
R = R/4.0

C
C * THE P-FUNCTION *

15 F? = FY + R*PENA1 + R**(-0.5) * PENA2

79

C*************** OUTPUT THE VALUES AT THE STARTED POINT **********

C
WRITE (IGONS,1007)
WRITE (ICONS,1005) FY,FP,R,RATTO,B, INCUT, THETA
WHITE (ICONS ,1006) (I, FX(I), I, D(I) , 1=1, N)

WRITE (ICONS, 1011)

IF (MG.GT.O) WRITE (ICONS,1012) (I, FG(I), I = 1,MG)

IF (MH.GT.O) WRITE (ICONS,1013) (I, FH(I) , I = 1,MH)
WRITE (IPRINT,1007)
WRITE (IPRINT,1005) FY, FP,R,RATIO,B, INCUT,THETA
WRITE (IPRINT,1006) (I, FX(I) , I, D(I) , 1=1, N)

WRITE (IPRINT,1011)
IF (MG.GT.O) WRITE (IPRINT,1012) (I, FG(I), I =1,MG)

IF (MH.GT.O) WRITE (IPRINT,1013) (I, FH(I) , I =1,MH).

C

C
CALL OUTPUT (FX,FY,FG,FH)

WRITE (IPRINT,1007)

C
C * WHEN A FEASIBLE POINT CANNOT BE FOUND AFTER KXFEAS ITERATIONS,
C * STOP THE PROGRAM AFTER PRINTING THE BEST POINT

IF (ITER.GT.MXFEAS) STOP
C
C * FIG. 1-2 *

C IS THE INITIAL POINT FEASIBLE ?

IF (FEAS) GO TO 50
C
C ** FIG. 2 **

C***************** FIND A FEASIBLE STARTING POINT ***************

C
C * FIG. 2-2 *

C **MAKE EXPLORATORY MOVES FOR FINDING A FEASIBLE STARTING POINT.
C

16 EXPSUC = .FALSE.

C
DO 28 1=1,

N

FX(I) = X(I) + 2.0 * D(I)

CALL OBRES (FX, FY, FG, FH)

CALL CKVIOL (FG, FEAS, ITER)

CALL WEIGH (FG,FH,TGH)
IF (FEAS) GO TO 44
IF (STGH-TGH) 20,20,26

20 FX(I) = X(I) - 2.0 * D(I)

CALL OBRES (FX,FY,FG,FH)
CALL CKVIOL (FG, FEAS, ITER)

CALL WEIGH (FG,FH,TGH)
IF (FEAS) GO TO 44
IF (STGH-TGH) 24,24,26

24 FX(I) = X(I)
GO TO 28

C
26 EXPSUC = .TRUE.

STGH = TGH
X(I) = FX(I)

28 CONTINUE

so

C * FIG. 2-3 *

C ** DID EXPLORATORY MOVES MAKE PROGRESS ?

IF (EXPSUC) GO TO 34
C

29 IF (ITER. LE. MXFEAS) GO TO 30
WRITE (ICONS ,1023) MXFEAS
WRITE (IPRINT,1023) MXFEAS
GO TO 11

C
C * FIG. 2-4 *

C ** CUT STEP-SIZES FOR FINDING A FEASIBLE STARTING POINT.
30 DO 32 1=1 ,N

D(I) = D(I) * 0.5
- 32 CONTINUE

GO TO 16
C
C * FIG. 2-5 *

C ** MAKE PATTERN MOVE FOR FINDING A FEASIBLE STARTING POINT.
34 DO 36 1=1,

N

PX(I) = FX(I) + (FX(I) - BX(I))

36 CONTINUE
C

CALL CBRES (PX,FY,FG,FH)
CALL CKVTOL (FG,FEAS, ITER)

CALL WEIGH (FG,FH,TGH)

C
C * FIG. 2-6 *

C ** DID PATTERN MOVE MAKE PROGRESS ?

IF (STGH-TGH) 16,16,40
C
C * FIG. 2-7 *

C ** THE PATTERN MOVE POINT BECOMES THE NEW BASE POINT
40 DO 42 1=1,

N

BX(I) = PX(I)

X(I) = PX(I)

FX(I) = PX(I)

42 CONTINUE
C
C * FIG. 2-3 *

C ** IS THE NEW BASE POINT FEASIBLE ?

IF (FEAS) GO TO 44
STGH=TGH
GO TO 16

C
44 DO 46 1=1,

N

D(I) = PD(I)

OX (I) = FX(I)
BX(I) = FX(I)

46 CONTINUE
ITER =

WRITE (I?RINT,1020)

GO TO 11

C * END OF PROCEDURE *

C FOR FINDING A FEASIBLE STARTING POINT

C*************************************^

81

C ** FIG. 3 **

C**************** MINIMIZING THE P-FUNCTION ***********************

C
50 IDIFF=0

MCUT=1
51 EXPSUC = .FALSE.

IDIFF IDIFF + 1

C
C * FIG. 3-1 *

C **MAKE EXPLORATORY MOVES FOR MINIMIZING THE P-FUNCTION
C

DO 101 1=1,

N

X(I) = FX(I) + D(I)

CALL CERES (X,Y,FG,FH)

CALL CKVIOL (FG, FEAS, ITER)

IF (FEAS) GO TO 62
IF (Y.GE.FY) GO TO 68

CALL BACK (X,D,Y,FG,FH, NOTTS, B, ISKIP,ITER)
NOBP = NOBP + 1

IF (ITER.GE.ITMAX) GO TO 140
C
C * ISKIP = 1 MEANS MXBACK WAS REACHED WHILE IN ROUTINE BACK
C SO THE POINT IS STILL INFEASIBLE

IF (ISKIP. BQ.l) GO TO 68
C

62 NOFEAS = NOFEAS + 1

CALL PENAT (PG,FH,PENAl r PENA2)

P = Y + R * PENAL + R**(-0.5) * PENA2
IF (P.LT.FP) GO TO 88

C
68 X(I) = FX(I) - D(I)

CALL CERES (X,Y,FG,FH)
CALL CKVIOL (FG,FEAS , ITER)

IF (FEAS) GO TO 80
IF (Y.GE.FY) GO TO 86

CALL BACK (X,D,Y,FG,FH,N0TTB,3, ISKIP, ITER)

NOBP = NOBP + 1

IF (ITER.GE.ITMAX) GO TO 140
IF (ISKIP. BQ.l) GO TO 86

C
80 NOFEAS = NOFEAS + 1

CALL PENAT (FG,FH,FENA1,PENA2)
P = Y + R * PENAl + R**(-0.5) * PENA2
IF (P.LT.FP) GO TO 88

C
86 X(I) = FX(I)

GO TO 101
C

88 EXPSUC = .TRUE.
FY=Y
FP=P
FX(I) = X(I)

C
101 CONTINUE

32

IF (ITER.GE.ITMAX) GO 10 140
C
C * FIG. 3-2 *

C ** DID THE EXPLORATORY MOVES MAKE PROGRESS ?
IF (EXPSUC) GO TO 111

C
C * FIG. 3-10 *

C ** IS STOPPING CRITERION SATISFIED ?

IF (NOCUT.GE. INCUT) GO TO 150
C
C
C * FIG. 3-11 *

C ** CUT STEP-SIZES FOR MINIMIZING THE P-FUNCTION
DO 105 1=1,

N

D(I) = 0.5 * D(I)
105 CONTINUE

C
NOCUT = NOCUT + 1

C
C * FIG. 3-12 *

IF (IDIFF.LT. INCUT) GO TO 51

IF (MCUT.EQ.3) GO TO 51
C
C
C * FIG. 3-13 *

C ** PROCEDURE FOR TAKING **

C********* A STEP SIZE IN ALL DIRECTIONS SIMULTANEOUSLY *******

C
WRITE (IPRINT,1027)
R = R / 2.0
CALL PENAT (PG,FH f ?2NA1,PENA2)
FP = FY + R * PENAl + R**(-0.5) * PENA2
INCUT = INCUT + 1

NOCUT=0
C

DO 109 1=1,

N

PD(I) = FD(I) * 4.0
D(I) = PD(I)

109 CONTINUE
C

IF (ICUT) 2109,2109,102
2109 DO 2110 1=1,

N

D(I) = D(I) / NSTA3E
2110 CONTINUE

C
102 DO 103 1=1,

N

X(I) = FX(I) + D(I)
103 CONTINUE

C
CALL CBRES (X fY,FG,FH)
CALL CKVIOL (FG,FEAS,ITER)

IF (FEAS) GO 10 1106
IF (Y.GT.FY) GO TO 1108

CALL BACK (X,D,Y,FG,FH,NOITB,B,ISKIP,ITER)

NOBP = NCBP + 1

83

IF (ITER.GE.ITMAX) GO TO 140
IF (ISKEP.EQ.l) GO TO 1108

C
1106 NOFEAS = NOFEAS + 1

CALL PENAT (FG,FH,PENA1,PENA2)
P = Y + R * PEMA1 + R**(-0.5) * PENA2
IF (P-FP) 1115,1108,1108

C
C * EXPLORATORY MOVE FAILED IN POSITIVE DIRECTIONS
C * MAKE MOVE IN OPPOSITE DIRECTIONS
1108 DO 1109 1=1,

N

X(I) = FX(I) - D(I)

1109 CONTINUE
C

CALL OBRES (X,Y,FG,FH)

CALL CKVIOL (FG, FEAS,ITER)
IF (FEAS) GO TO 1112
IF (Y.GT.FY) GO TO 1114

CALL BACK (X,D,Y,FG,FH,IOITB,B,ISKIP,ITER)
NCBP = MCBP + 1

IF (ITER.GE.ITMAX) GO TO 140
IF (ISKIP.EQ.l) GO TO 1114

C
1112 NOFEAS = NOFEAS + 1

CALL PENAT (FG,FH,PENA1,?ENA2)

P = Y + R * PENA1 + R**(-0.5) * PENA2
IF (P.LT.FP) GO TO 1115

C
C * EXPLORATORY MOVE FAILED IN OPPOSITE DIRECTION
C * FX(I) IS STILL THE BEST POINT FOUND SO FAR
1114 MCUT = 3

WRITE (IPRINT,1028)
GO TO 51

C
C ** EXPLORATORY MOVE MADE PROGRESS
1115 FP=P

FY=Y
C
C * SET NEW BASE POINT *

DO 1116 1=1,

N

FX(I) = X(I)
1116 CONTINUE

WRITE (IPRINT,1029)
GO TO 50

C
C END OF PROCEDURE
C************* FOR TAKING SIMULTANEOUS STEP SIZES ************

C
c
c
C *********** whem EXPLORATORY MOVES MADE PROGRESS *x************

C
111 NOEXP=NOEXP + 1

MCUT = 3

84

C * FIG. 3-3 & 3-4 *

C ** MAKE PATTERN MOVE FOR MINIMIZING THE P-FUNCTION
C ** AT© SET A NEW BASE POINT

DO 112 1=1,

N

PX(I) = FX(I) + (FX(I) - BX(I))

BX(I) = FX(I)

112 CONTINUE
C

CALL OBRES (PX,Y,FG,FH)
CALL CKVIOL (FG f FEAS f ITER)

C
C * FIG. 3-5 *

C ** IS PATTERN MOVE POINT FEASIBLE ?

IF (FEAS) GO TO 124
C
C * FIG. 3-6 *

C ** HAS THE OBJECTIVE FUNCTION IMPROVED ?

IF (Y.GT.FY) GO TO 51
C
C * FIG. 3-7 *

C ** MOVE BACK INTO THE FEASIBLE OR NEAR FEASIBLE REGION
CALL BACK (PX,D,Y, FG, FH,NOITB,B,ISKIP,ITER)
NCBP = NOBP + 1

C
IF (ITER.GE.ITMAX) GO TO 140
IF (ISKLP.EQ.i) GO TO 50

C
C * FIG. 3-8 *

C ** DID PATTERN MOVE MAKE PROGRESS ?

124 CALL PENAT (FG,FH,PENA1,PENA2)
P = Y + R * PENA1 + R**(-0.5) * PENA2
IF (P.GE.FP) GO TO 50

C
NOPAT = NCPAT + 1

NCFEAS = NOFEAS + 1

C
C * FIG. 3-9 *

C ** SET NEW BASE POINT
DO 129 1=1,

N

FX(I) = PX(I)

129 CONTINUE
C

FY=Y
FP=P
GO TO 50

C
C * END OF PROCEDURE *

C FOR MINIMIZING THE P-FUNCTION
£***************X***************^

c
c
C * BRANCH HERE WHEN ITMAX IS EXCEEDED

C
140 WRITE (IPRINT,1025)

C

85

C
C ** BRANCH HERE WHEN THE MAXIMUM NUMBER OF STEP SIZE
C ** REDUCTIONS HAVE BEEN MADE
C

150 CALL CBRES (FX,FY,PG,FH)

CALL CKVIOL (PG, FEAS, ITER)

C
C ** IS THE KTH SUB-OPTIMUM POINT FEASIBLE ?

160 IF (FEAS) GO TO 170

C
C
C ** FIG. 5 **

c*********** pull back THE INFEASIBLE STAGE-OPTIMUM **************

C INTO THE FEASIBLE REGION
C

161 NOPULLfO
PULL=0.63

C
C * FIG. 5-1 *

C ** MOVE THE KTH SUB-OPTIMUM TOWARD THE (K-l) ST SUB-CPTLMUM
162 DO 163 1=1,

N

FX(I) = PULL * (FX(I)-OX(I)) + CK(I>
163 CONTINUE

C
NOPULL = NOPULL + 1

CALL CBRES (FX rFY,FG f FH)

CALL CKVIOL (PG, FEAS, ITER)

NOITB = NOITB + 1

C
C * FIG. 5-2 *

C ** IS THE STAGE OPTIMUM POINT NOW FEASIBLE ?

IF (FEAS) GO TO 170
C

C * FIG. 5-3 *

IF (NOPULL.LT.5) GO TO 162
C
C * FIG. 5-4 *

C ** SET THE KTH SUB-OPTIMUM EQUAL TO THE (K-l) ST SUB-OPTIMUM POINT
165 DO 166 1=1,

N

FX(I) = OX(I)

166 CONTINUE
C

CALL CBRES (FX,FY,FG,FH)
CALL CKVIOL (FG, FEAS, ITER)

C
C * El© OF PROCEDURE *

C FOR PULLING BACK THE INFEASIBLE STAGE OPTIMUM POINT
£*****x********************^

C
c
c******** OUTPUT THE RESULTS AT THE KTH SUB-OPTIMUM POINT *********

C
170 CALL FENAT (FG,FH,PENA1,PENA2)

FP = FY + R * PENA1 + R**(-0,5) * PENA2
NOIT = NOIT + ITER

86

YSTOP = ABS(FY / (FY-R*PENAI + R**(-0.5) * PENA2))

YSTOP = ABS(YSTOP-1.0)

C
WRITE (ICONS, 1007)
WRITE (ICONS,1008) NSTA3E,FY,FP,R,ITER,NOIT,3roiTB,NOFEAS,NCBP,

1 NOEXP ,NOPAT ,NOCUT , YSTOP
WRITE (IPRINT,1008) NSTA3E,FY,EP,Rr ITER,NOIT,NOm fNOFEAS,NCBP,

1 NOEXP, NOPAT,NOCUT ,YSTOP
WRITE (ICONS,1G06) (I, FX(I) , I, D(I) , 1=1,N)

WRITE (IPRINT,1C06) (I, FX(I) , I, D(I) , 1=1, N)

WRITE (ICONS, 1011)
WRITE (IPRINT,1011)

IF (MG) 216,216,215
215 WRITE (ICONS, 1012) (J, FG(J) , J=1,MG)

WRITE (IPRINT,1012) (J, FG(J) , J=1,MG)

C
216 IF (MH) 218,218,217
217 WRITE (ICONS, 1013) (K, FH(K) , K=1,MH)

WRITE (IPRINT,1013) (K, FH(K) , K=1,MH)

C
C **OUTPUT ADDITIONAL INFORMATION DESIRED BY USER

218 CALL OUTPUT (FX,FY,FG,FH)
WRITE (IPRINT,1007)

C
C **CHECK IF THE FINAL STOPPING CRITERION IS SATISFIED

IF (YSTOP-THETA) 230,230,220
C
C **CRECX IF MAXP IS EXCEEDED

220 IF (NSTAGE-MAXP) 221,232,232
C
C **STORE THE LAST SUB-OPTIMUM POINT

221 DO 222 1=1,

N

D(I) = PD(I)

OX (I) = FX(I)

222 CONTINUE
C
c
C*********** SHIFT TO THE NEXT SUBPRCBLEM SEARCH *****************

R = R / RATIO
FP = FY + R * PENAl + R**(-0.5) * PENA2
NSTAGE = NSTAGE + 1

IF (NCBP.GT.G) INCUT = INCUT + 1

NCBP =

NOITB =

NCFEAS=0
ICEXP=0
I«)PAT=0
NOCUT=0
ITER=0
B=0.0

C
C **DECIDE THE INITIAL STEP-SIZES AND TOLERANCE LIMIT

IF (ICUT) 227,227,229
227 DO 228 1=1,

N

D(I) = PD(I) / NSTAGE

87

B = B + 0.5 * D(I)

228 CONTINUE
B = B / N
GO TO 50

C
229 B = PB

GO TO 50

C
230 WRITE (ICONS, 1015)

WRITE (IPRINT,1015)

GO TO 236
C

232 WRITE (ICONS, 1016) MAXP
WRITE (IPRINT,1016) MAXP

C
236 STOP

END
C
C
c
C ** FIG. 4 **

C****************** MOVE BACK PROCEDURE ***************************

C
SUBROUTINE BACK (X,D,Y,G,H,NOITB,B, ISKIP, ITER)

C
C THIS SUBROUTINE PULLS THE ^FEASIBLE POINT BACK INTO THE
C FEASIBLE OR NEAR-FEASIBLE REGION.
C
C **DEFINITION ..

C FEASIBLE .. ALL G(I) .GE.

C NEAR-FEASIBLE .. TGH .LE. B
C

LOGICAL EXPSUC, FEAS
LNTEGER*1 NB
INTEGER ISKIP, ITER, ITERB, ITMAX
INTEGER MG, MH, MXBACK, N, NOITB
REAL D(20) , G(20) , H(20) , X(20)
REAL B, FRAC, FTGH, TGH, XOLD, Y
COMMON /BLOGY/ ITMAX, MG, MH, N

C
C MXBACK IS THE MAXIMUM NUMBER OF ITERATIONS TO BE MADE BEFORE
C EXITING THIS ROUTINE. IF MXBACK IS EXCEEDED, A PREMATURE EXIT
C FROM THIS ROUTINE WILL BE MADE LEAVING THE POINT STILL
C DEFEASIBLE. THE VARIABLE ISKIP WILL BE SET TO 1 TO FLAG THIS
C CONDITION.
C

MXBACK = 4*N
ITERB = ITER + MXBACK
ISKIP =

FRAC = 0.5
C
C * FIG. 4-1 *

C ** COMPUTE THE WEIGHT OF VIOLATION
CALL WEIGH (G,H,TGH)

88

C * FIG. 4-2 *

C ** CHECK IF THE POINT IS IN THE NEAR-FEASIBLE REGION
4 IF (TGH.LE.B) GO TO 57

C
FTGH = TGH

C
C * FIG. 4-3 *

C **MAKE EXPLORATORY MOVES FOR MINIMIZING TGH
22 EXPSUC = .FALSE.

C
DO 38 NB=1,N

XOLD = X(NB)

X(NB) = XOLD - FRAC * D(NB)
CALL OBRES (X,Y,G,H)

CALL CKVIOL (G, FEAS, ITER)

CALL WEIGH (G,H,TGH)

IF (FEAS) GO TO 46
C

NOITB = NOITB + 1

IF (TGH-FTGH) 37,32,32
C

32 X(NB) = XOLD + FRAC * D(NB)
CALL OBRES (X,Y,G,H)

CALL CKVIOL (G, FEAS, ITER)

CALL WEIGH (G,H,TGH)

IF (FEAS) GO TO 46

C
NOITB = NOITB + 1

IF (TGH-FTGH) 37,36,36
C

36 X(NE) = XOLD
GO TO 38

C
37 EXPSUC = .TRUE.

FTGH=TGH
IF (TGH.LE.B) GO TO 46

C
38 CONTINUE

C
IF (ITER.GS.ITMAX) GO TO 60

C
C * FIG. 4-4 *

C ** DID EXPLORATORY MOVES MAKE PROGRESS ?

IF (EXPSUC) GO TO 22
C

42 IF (ITER - ITERB) 44,43,59
C
C * FIG. 4-5 *

C ** INCREASE STEP SIZES
43 FRAC = FRAC * 5.0

GO TO 22
C

44 FRAC = FRAC * 1.5

. GO TO 22

C

89

C ** REDUCE STEP SIZE TO HELP PREVENT EXPLORATORY MOVES BACK INTO
C ** DEFEASIBLE REGION

46 BO 50 1=1 ,N
D(I) = D(I) * 0.55

50 CONTINUE
C
C * FIG. 4-6 *

C **BECREASE THE VALUE OF B
57 IF (TGH .LT. 0.7*B) B = 0.75 * B

GO TO 60

C
C ** WHEN MXBACK IS EXCEEDED BEFORE A FEASIBLE POINT IS FOUND,
C SET ISKIP = 1 BEFORE LEAVIN3 THE SUBROUTINE
C

59 ISKIP = 1

C
60 RETURN

END
C
C

SUBROUTINE PENAT (G,H,PENA1,PENA2)
C
C THIS SUBROUTINE COMPUTES THE PENALTY TERMS FOR SUMT FORMULATION
C PENA1 FOR INEQUALITY CONSTRAINTS
C PENA2 FOR EQUALITY CONSTRAINTS
C
C

INTEGER TTMAX, MG, MH, N
REAL G(20) , H(20) , PENA1, PENA2
COMMON /BLCGY/ ITMAX, MS, MH, N

C
PENA1 =0.0
PENA2 =0.0

C
IF (MG) 5,5,1

1 DO 4 1=1,MG
IF (ABS(G(I)) .LE. 0.1E-8) G(I) = 0.1E-08
PENA1 = PENA1 + ABS (1.0 / G(I))

4 CONTINUE
C

5 IF (MH) 10,10,6
6 DO 9 K=1,MH

PENA2 = FENA2 + H(K)**2
9 CONTINUE

C
10 RETURN

END
C

C

90

SUBROUTINE WEIGH (G,H,TGH)
C
C THIS SUBROUTINE COMPUTES THE TOTAL WEIGHT OF VIOLATION
C TO THE INEQUALITY AND EQUALITY CONTRAINTS.
C

INTEGER*! I

INTEGER ITMAX, MG, MH, N
REAL G(20) , H(20) , TGH
COMMON /BLOGY/ ITMAX, MG, MH, N

C
TGH = 0.0
IF (MG.LE.O) GO TO 4

DO 3 1=1, MG
IF (G(I).GE.0.0) GO TO 3

TGH = TGH + G(I)**2
3 CONTINUE

C
4 IF (MH.LE.O) GO TO 8

DO 7 1=1,MH
IF (H(I) .EQ.0.0) GO TO 7

TGH = TGH + H(I)**2
7 CONTINUE

C
8 IF (TGH.LT.0.0) TGH =0.0

TGH = SQRT(TGH)
r

RETURN
END

C
C

SUBROUTINE CKVIOL (G, FEAS, ITER)
v^

C THIS SUBROUTINE CHECKS FOR ANY VIOLATION TO THE INEQUALITY
C CONSTRAINTS AD© ALSO UPDATES THE ITERATION COUNT. IT IS CALLED
C AFTER EACH CALL TO SUBROUTINE CBRES.
C

LOGICAL FEAS
INTBGER*1 I

INTEGER ITER, ITMAX, MG, MH, N
REAL G(20)

COMMON /BLOGY/ ITMAX, MG, MH, N
C

FEAS = .TRUE.

ITER = ITER + 1

C
IF (MG.EQ.0) GO TO 10

DC 9 1=1,MG
IF (G(I) .GE.0.0) GO TO 9

FEAS = .FALSE.
GO 1G 10

9 CONTINUE
C

10 RETURN
END

c
c

c
c

c

91

SUBROUTINE INPUT (P., PATIO, INCUT, THETA, ICUT, X, D)

LOGICAL NAME (50)

INTEGEP*1 I

INTEGER ICONS, ICUT, INCUT, IPRINT, ISIZE, ITMAX
INTEGER MG, MH, N, OPTION
REAL X(20) , D(20) , R, RATIO, THETA, TZER
COMMON /BLCGY/ ITMAX, MG, MH, N
COMMON /INOUT/ ICONS, IPRINT
DATA TZER /1.0E-5/

WRITE (ICONS, 199)

WRITE (IPRINT,199)
WRITE (ICONS, 198)

WRITE (IFRINT,198)
WRITE (ICONS, 197)

READ (ICONS, 196) NAME
WRITE (IPRINT,195) NAME

WRITE (ICONS, 194)
READ (ICONS, 193) N
WRITE (IPRINT,190) N

WRITE (ICONS, 189)

READ (ICONS ,193) MG
WRITE (IFRINT,188) MG

WRITE (ICONS, 187)

READ (ICONS,193) MH
WRITE (IFRINT,186) MH

WRITE (ICONS, 182)
DO 50 1=1,

N

WRITE (ICONS,177) I

READ (ICONS, 176) X(I)
50 CONTINUE

WRITE (ICONS, 175)
READ (ICONS, 174) ISIZE
IF (ISIZE. EQ.l) GO TO 80

C
DO 70 1=1,

N

D(I) = 0.02 * X(I)

IF (ABS(D(I) J.LE.TZER) D(I) = 0.01
70 CONTINUE

GO TO 100
C

80 WRITE (ICONS,171)
DO 90 1=1,

N

WRITE (ICONS, 17 3) I

READ (ICONS, 172) D(I)

90 CONTINUE
C

92

C DEFAULT VALUES OF THE INPUT PARAMETERS
C

100 ITMAX = ICO
ICUT =

R = 0.0
RATIO =4.0
INCUT = 4

THETA = 0.0001
C

WRITE (ICONS, 183)
WRITE (ICONS,184)
READ (ICONS, 185) OPTION
IF (OPTION. EQ.l) GO TO 130

WHITE (ICONS, 160)
WRITE (IPRINT,160)
WRITE (IPRINT,178) ITMAX
RETURN

C
130 WRITE (ICONS, 180)

READ (ICONS, 179) ITMAX
IF (ITMAX. LE.0) ITMAX = 100
WHITE (IPRINT,178) ITMAX

C
WRITE (ICONS, 167)
READ (ICONS,166) R

C
WRITE (ICONS, 165)
READ (ICCNS,166) RATIO
IF (RATIO .LT. 2.0) RATIO =4.0

C
WRITE (ICONS,164)
READ (ICONS,16 3) INCUT
IF (INCUT. LS.0) INCUT = 4

C
WRITE (ICONS,162)
READ (ICCNS,166) THETA
IF (THETA. LE. 0.0) THETA = 0.0001

C
C

199 FORMAT (/,3IX, 'KSU SUMT PROGRAM 1

)

198 FORMAT (/,I1X,30C* '))

197 FORMAT (/,9X, 'PROBLEM NAME : ')

196 FORMAT (50A1)

195 FORMAT (/,13X,50A1)
194 FORMAT (/,9X, 'NUMBER OF VARIABLES : ')

193 FORMAT (13)

192 FORMAT (II)

191 FORMAT (12)

190 FORMAT (/,21X, 'NO. OF X(I) ... ' ,4X, 13)

189 FORMAT (' ' ,8X,' NUMBER OF INEQUALITY CONSTRAINTS' ,

1 '
(G(X) >=) : ')

188 FORMAT (' ',20X,'NC. OF G(J) >= ... ',12)

187 FORMAT (' ',8X,' NUMBER OF EQUALITY CONSTRAINTS (H(X) =0)

186 FORMAT (' ',20X,'NO. OF H(J) =0 ... ',12)

C

95

C

C

185 FORMAT (13)

184 FORMAT (/,8X, 'TO USE ALL DEFAULT VALUES (ENTER 0) ' /

1 8X,'TO SPECIFY OWN VALUES (ENTER 1) : ')

183 FORMAT (' '
f5X, 'THE DEFAULT VALUES FOR THE FOLLOWING '

,

1 'PARAMETERS ARE SHOWN BELOW : * //
2 8X, 'ITMAX THE MAX. NO. OF ITERATIONS AT EACH '

,

3 'STAGE =100" /

4 8X, 'R PENALTY COEFFICIENT •
,

5 • = Y / SUM(1.0 /G(I)) ' /

6 8X, 'RATIO REDUCING FACTOR =4.0 ' /

7 8X, ' INCUT NUMBER OF OJT-DOWN STEP SIZE '

,

8 'OPERATIONS = 4 ' /

9 8X, 'THETA FINAL STOPPING CRITERION = 0.0001 ')

182 FORMAT (/,16X, 'ENTER THE INITIAL POINT :» //)

181 FORMAT (' ',8X,»X(',I2,') = ',G12.4)

180 FORMAT (' ' ,7X, 'MAX. NO. OF ITERATIONS AT EACH STAGE ' /

1 8X,» (PRESS RETURN FOR DEFAULT OF 100) ' /

2 8X, 'ITMAX = ')

179 FORMAT (15)

178 FORMAT (/,11X, 'MAX. NO. OF ITERATIONS AT EACH STAGE ... ' r I5)

177 FORMAT ('+',8X,» X(',I2 r
') = ')

176 FORMAT (F15.0)

175 FORMAT (' '
r 8X, 'WOULD YOU LIKE TO SPECIFY THE STEP-SIZE '

,

1 '(ENTER 1) ' / 5X,'OR USE COMFJTED VALUE ',

2 ' D(I) = 0.02 * X(I) (ENTER 2) : ')

174 FORMAT (ID
173 FORMAT (

« + ,8X, ! D(• ,12, ') = ')

172 FORMAT (F15.0)

171 FORMAT (5X, 1
')

167 FORMAT (' ' ,7X, 'R PENALTY COEFFICIENT FOR SUMT FORMULATION'
1 / 8X, 'PRESS RETURN TO USE A COMPUTED VALUE '

,

2 ' R = Y / SUM(1.0/G(I)) ' / 8X,"R = ')

166 FORMAT (F15.0)

165 FORMAT (' ' ,7X, 'RATIO REDUCING FACTOR FOR R FROM STAGE *,

1 'TO STAGE' / 8X, 'PRESS RETURN TO USE DEFAULT VALUE'

,

2 ' OF 4.0 '/ 8X, 'RATIO = ')

164 FORMAT (' ' ,7X f 'INCUT NUMBER OF CUT-DOWN STEP-SIZE '

,

1 'OPERATIONS IN 1 /20X, 'HOCKE AND JEEVES SEARCH TECHNIQUE'/
2 8X," PRESS RETURN FOR DEFAULT OF 4 ' /

3 8X, 'INCUT = ')

163 FORMAT (ID
162 FORMAT (' '7X, 'THETA FINAL STOPPING CRITERION * /

1 8X,' (SUGGESTED VALUES ARE : 0.01, 0.001, 0.0001, ',

2 '0.00001, 0.000001)
' /

3 8X, 'PRESS RETURN FOR DEFAULT VALUE OF 0.0001' /

4 8X, 'THETA = ')

16C FORMAT (/,9X, 'DEFAULT VALUES CHOSEN')

RETURN
END

94

3.8.5 DESCRIPTION OF OUTPUT

The program title is printed followed by the name of the problem to be

solved. Then the number of variables, inequality constraints and equality

constraints are printed. The specified maximum number of iterations at each

stage are printed last.

Following a row of asterisks the user supplied values of the parameters

are printed along with the starting point and values of the constraints an

the starting point. An explanation of the variables printed at the initial

point follows.

Y F function value at the initial point

? P function value at the initial point

R penalty coefficient for SUMT formulation (computed or user

supplied)

RATIO reducing factor for R; r
k+i

= r / ratio. (User-supplied)

B tolerance limit of constraint violation.

INCUT maximum number of step size reductions for a fixed r. This

is used as a subproblem stopping criterion. (User-supplied)

.

THETA final stopping criterion value. (User-supplied)

.

X(I) the starting point. (User-supplied)

.

D(I) the starting step size. (User-supplied)

.

G(I) the inequality constraint values at the starting point.

H(I) the equality constraint values at the starting point.

If the user supplied initial point was infeasible, the program will next

print a feasible starting point if one can be found. If the input starting

point was feasible, then the results at each of the subproblem optimum

points are printed.

The first line tells how many subproblem (P optimum) points have been

solved. The explanation of the varibles printed at each P optimum point

95

follows.

FY the F function value at the P optimum point.

FF the minimum P function value for the subproblem.

R the penalty coefficient for SUMT formulation used at the

subproblem.

ITER the number of F function values computed for the subproblem.

NOIT the total number of F function values computed since the start

of the program, (the cumulative ITER count)

.

NCITB the number of exploratory moves made in the infeasible region.

NOFEAS the number of exploratory and pattern moves made in the

feasible region.

NOB? number of times subroutine BACK is called.

NOEXP number of successful series of exploratory moves where a

series of exploratory moves occurs when step sizes have been

taken in all dimensions.

NOPAT number of successful pattern moves

NCCUT number of step size reductions for the subproblem. This may

be less than the maximum specified if the maximum number of

iterations is exceeded. It may also exceed the maximum

specified if a subproblem is considered too flat in that more

step size cuts are needed to get a more appropriate step

size.

YSTOP computed value of the final stopping criterion. This value

must be less than or equal to THETA to satisfy the final

stopping criterion.

X(I) the P optimum point for the subproblem

D(I) the final step size used before terminating the subproblem

96

search.

G(I) the inequality constraints at the P optimum point.

H(I) the equality constraint values at the P optimum point

In addition to the above values, a message is printed out if the subproblem

search was stopped because the maximum number of iterations was reached.

3.8.6 SUMMARY OF USER REQUIREMENTS

1. Create a file on disk that contains both subroutine PERES and subroutine

OUTPUT.

2. Choose a point to be used as the starting point. A feasible point

should be used if possible although the program will attempt to locate a

feasible point if one is not given.

3. Determine the initial step size and the final step size. Compute INCUT

as the number of times the initial step size must be reduced by 1/2 to get

the final step size.

Mote : The following steps will vary depending on the particular compiler

used. The following applies if using Microsoft Fortran-80 for the North

Star microcomputer.

4. Compile subroutine CERES and OUTPUT using the F80 command

F8C =B: filename

where filename is the name of the file containing the two subroutines and

the letter B is the disk drive where the file resides.

5. Run the program using the L3C command

L80 B:filename,B:KSUMT/G

Note : If several runs of the problem are to be made using different

starting points and/or parameter values for each run, then the following two

steps should be used instead of step 5.

97

6. Link edit the main program with the user supplied subroutines as follows

L80 B:filename,B:I<SUMT/N,B:KSUMT/E

Note the order of the user supplied filename and the main program KSUMT.

This order should not be reversed. The above statement link edits the two

files and creates an executable file with a filename of KSUMT.COM.

7. Run the program by simply typing the filename of the executable file

B:KSUMT

To run the program again for a different starting point or parameter, simply-

repeat either step 5 or step 7 depending on which was used previously.

3.8.7 USER-SUPPLIED SUBROUTINES

Both of the user-supplied subroutines must contain a declaration

statement :

REAL X(20) , G(20) , K(20)

The following problem is used to show how to code the user-supplied

subroutines.

2 3
Minimize f(x) = x + x - x x

-L ."• -L a-

subject to

2
g (x) = 8x + x - 15 2

4 3

1
+X

2
g (x) = 5x, + x^ - 20 2

iyx) = x
x

2
+ x

2

2
- 25 =

x. 2 , i=l,2
l

98

C3RES (X.Y.G.H)

This subroutine defines the objective function Y (to be minimized), the

inequality constraints (g..(x) ^ 0) , and the equality constraints (h . (x) =

0). The equations are defined in terms of x.. To transfer data from this

subroutine to subroutine OJTRJT, blank COMMON may be used.

The OBRES routine for the example problem is shewn below.

SUBROUTINE OBRES (X,Y,G,H)
C
C THIS ROUTINE DEFINES THE OBJECTIVE FUNCTION (TO BE MINIMIZED) AND
C THE CONSTRAINTS (>=0 AND =0)

.

C
REAL X(20) , G(20), H(20) , Y
COMMON VAL1

C
VAL1 = X(1)*X(2)
Y = X(l)**2 + X(2)**3 - VAL1

C
G(l) = 8.*X(1) + X(2)**2 - 15.
G(2) = 5.*X(1)**4 + X(2)**3 - 20.

G(3) = X(l)

G(4) = X(2)

G(5) = X(3)
C

C
H(l) = X(l)**2 + X(2)**2 - 25.

RETURN
END

OUTPUT (X^Y,G,EL

This subroutine is used to print out additional information desired by

the user. If there is nothing to print out, simply code the subroutine

name, the dimension statement, and a RETURN and END. This subroutine is

called after printing out the results at each subproblem optimum point. To

transfer data from subroutine OBRES to this routine, blank COMMON may be

used.

The user must provide the WRITE and FORMAT statements necessary to

99

print out the additional data cesired. The logical unit number for the

WRITE statement is a 1 for the CRT screen and a 2 for the printer. For

example, to display information on the CRT screen, the following statements

would be used

WRITE (1,99) INFO

99 FORMAT (2X,'INF0 =',I2)

The logical unit number is different for different compilers. Please

check the Fortran user manual for the proper values. The above values are

appropriate for Microsoft's Fortran-80 for the North Star microcomputer.

To illustrate the above for the example problem, VAL1 has been passed

into OUTPUT from subroutine CBRES using blank COMMON. VAL1 is then

displayed en the CRT screen. VAL2 is computed in the routine and sent to

the printer.

The OUTPUT routine for the example problem is shown below :

SUBROUTINE OUTPUT (X,Y,G,H)
C

C THIS SUBROUTINE PRINTS OUT ADDITIONAL INFORMATION
C DESIRED BY THE USER.
C

C

c

REAL X(20), G(20), K(20), Y

COMMON VAL1

WRITE (1,99) VAL1

VAL2 = G(1) + G(2)
WRITE (2,98) VAL2

99 FORMAT (5X, »VAL1 =',F9.2)

98 FORMAT (2X,'VAL2 =',F12.5)

RETURN
END

100

3.9 INPUT TO THE COMPUTER PROGRAM

3.9.1 CRT DISPLAY OF QUESTIONS

KSU SUMT PROGRAM******************************

PROBLEM NAME :

NUMBER OF VARIABLES :

NUMBER OF INEQUALITY CONSTRAINTS (G(X) >=) :

NUMBER OF EQUALITY CONSTRAINTS (H(X) =) :

ENTER THE INITIAL POINT :

X(1) =

X(2) =

X(*N) =

WOULD YOU LIKE TO SPECIFY THE STEP-SIZE (ENTER 1)

OR USE COMPUTED VALUE D(I) = 0.02 * X(I) (ENTER 2) : 1

D(1) =

D(2) =

DC N) =

THE DEFAULT VALUES FOR THE FOLLOWING PARAMETERS ARE SHOWN BELOW
ITMAX THE MAX. NO. OF ITERATIONS AT EACH STAGE 100
R PENALTY COEFFICIENT = Y / SUM(1.0 /G(I))

RATIO REDUCING FACTOR =4.0
INCUT NUMBER OF CUT-DOWN STEP SIZE OPERATIONS = 4

THETA FINAL STOPPING CRITERION = 0.0001

TO USE ALL DEFAULT VALUES (ENTER 0)

TO SPECIFY OWN VALUES (ENTER 1) : 1

MAX. NO. OF ITERATIONS AT EACH STAGE
(PRESS RETURN FOR DEFAULT OF 100)

ITMAX =

R PENALTY COEFFICIENT FOR SUMT FORMULATION
PRESS RETURN TO USE A COMPUTED VALUE R = Y / SUM(1.0/G(I))

R =

101

RATIO REDUCING FACTOR FOR R FROM STA3E TO ST^GE
PRESS RETURN TO USE DEFAULT VALUE OF 4.0
RATIO =

INCUT NUMBER OF CUT-DOWN STEP-SIZE OPERATIONS IN
HOOKE AND JEEVES SEARCH TECHNIQUE

PRESS RETURN FOR DEFAULT OF 4

INCUT =

THETA FINAL STOPPING CRITERION
(SUGGESTED VALUES ARE : 0.01, 0.001, 0.0001, 0.00001, 0.000001)

PRESS RETURN FOR DEFAULT VALUE OF 0.0001
THETA =

3.9.2 NOTES ABOUT THE INPUT

The maximum size problem that can be solved is 20 variables, 20

inequality constraints, and 20 equality constraints. To solve a larger

problem, the dimensions in the main program must be modified. For the key

to the changes, see section 3.8.2 PROGRAM LIMITATIONS.

3.10 TEST PROBLEMS

3.10.1 TEST PROBLEM 1 : NUMERIC EXAMPLE BY PAVIANI

3.10.1.1 SUMMARY

io;

NO. OF VARIABLES : 3

NO. OF CONSTRAINTS : 1 nonlinear equality constraint
1 linear equality constraint

3 bounds on independent variables

OBJECTIVE FUNCTION :

Minimize f(x) 1000 - x^ - 2x
2

2
- x

2
- x^

2
.

Xl x
3

CONSTRAINTS :

2 2
h (x) = x + x + 5

h
2
(x) = 8x + 14x

2
+

x. >
l
-

- 25 =

'x. - 56 =
o

i = 1,2,3

STARTING POINT : x, =2 i = 1,2,3

INITIAL STEP SIZE : d. = .05 i = 1,2,3

PARAMETERS : ITMAX = 200

r = 1..398 (computed value)

INCUT = 4

TKETA = .1000E-04

RESULTS : f(x) = *362.3

X
1

= 2.V9

x
2

= 3.35

x
3

= 4.14

h^x) = 0.06

h
2
(x) = 0.01

NO. OF K ITERATED : 4

NO. OF FUNCTION EVALUATIONS : 432

103

EXECUTION TIME

MICROCOMPUTER
SINGLE PRECISION

.42 min.

LARGE COMPUTER
DOUELE PRECISION

.02 min.

104

3.10.1.2 COMPUTER PRINTOUT OF RESULTS

KSU SUMT PROGRAM

TEST PROBLEM 1 : NUMERIC EXAMPLE BY PAVIANI

NO. OF X(I) ...
NO. OF G(J) >=

NO. OF H(J) =0

MAX. NO. OF ITERATIONS AT EACH STAGE 200

INITIAL POINT

Y = .9760E+03, P = .1124E+0^[, R = .1398E+01, RATI
B = .5000E-01, INCUT = 4, THETA = .1000E-04 .

X(1) = .20C000E+01 D(1) .500000E-01
X(2) = .200000E+01 D(2) .500000E-01
X(3) = .200000E+01 D(3) .500000E-01

**CONSTRAINTS . •

G(1) = .200000E+01 ,

G(2) = .200000E+01 ,

G(3) = .200000E+01 ,

H(1) = -.130000E+02 ,

H(2) = .200000E+01 ,

.4000E+01

** PROBLEM MAY BE TOO FLAT R VALUE REDUCED At© INCUT VALUE INCREASED

EXPLORATORY MOVES TAKEN IN ALL DIRECTIONS AT ONCE SUCCESSFUL

** P OPTIMUM. . (1)

FY = .962096E+03, FP = .964700E+03, R= .6991E+00 ITER =

NOIT = 188, NOITB = 0, NCFEAS = 177, NOBP
NOEXP = 21, NCPAT = 12, NOCUT = 5 .

YSTOP = .232732E-02 .

188

X(1) = .273750E+01 D(1) = .62500CE-02
X(2) = .350001E+00 D(2) = .625000E-02
X(3) = .420625E+01 D(3) = .625000E-02

**CONSTRAINTS • •

G(1) = .273750E+01 ,

G(2) = .350001E+00 ,

G(3) = .420625E+01 ,

H(1) = .308928E+00 ,

H(2) = .243748E+00 ,

105

** P OPTIMUM. . (2)

FY = .962247E+03, FP = .963002E+03, R =

NOIT = 251, NOITB = 0, NOFEAS =

NOEXP = 4, NQPAT = 1, NOCUT =
!

YSTOP = .491858E-03 .

X(1)
— .272500E+0I D(1) = .312500E-02

X(2) = .343751E+00 D(2) = .312500E-02
X(3) = .420625E+01 D(3) = .312500E-02

(STRATI

G(1)

ras • •

.272500E+01 ,

G(2) = .343751E+O0 ,

G(3) = .420625E+01 ,

H(1) = .236311E+00 ,

H(2) = .562477E-01 ,

.1748E+00 ITER = 63

59, NOBP =

5 .

** P OPTIMUM. . (3)

FY = .962292E+03, FP = .962515E+03, R= .4370E-01 ITER =

NOIT = 363, NOITB = 0, NOFEAS = 105, NOBP
NOEXP = 12, NOPAT = 6, NOCUT = 5 .

YSTOP = .931025E-04 .

112

X(1) = .277708E+01 D(1) = .208333E-02
X(2) = .335418E+00 D(2) = .208333E-02
X(3) = .415833E+01 D(3) = .208333E-02

**CONSTRAINTS • •

G(1) = .277708E+01 ,

G(2) = .335418E+00 ,

G(3) = .415833E+01 ,

H(1) = .116413E+00 ,

H(2) = .208244E-01 ,

** P OPTIMUM. . (4)

FY = .962339E+03, F? = .96241 0E+Q3, R= .1092E-01 ITER =

NOIT = 432, NOITB = 0, NOFEAS = 65, NOBP
NOEXP = 5, NOPAT = 2, NOCUT = 5 .

YSTOP = .786781E-05 .

69

X(1) = .278958E+01 D(1) = .156250E-02
X(2) = .335418E+00 D(2) = .156250E-02

X(3) = .41427 1E+01 B(3) = .156250E-02

106

**CONSTRAINTS ..

G(1) = .278953E+01 ,

G(2) = .335418E+00 ,

G(3) = .414271E+01 ,

H(1) = .562935E-01 ,

H(2) = .114517E-01 ,

***** the ABOVE RESULTS ME THE FINAL OPTIMUM .

3.10.1.3 USER SUPPLIED SUBROUTINES

SUBROUTINE OBRES (X,Y,G,H)

C
C TEST PROBLEM 1 : NUMERIC EXAMPLE BY PAVIANI
C

C

c

REAL X(20) , Y, G(20) , H(20)

REAL XI, X2 f X3

XI = X(l)

X2 = X(2)

X3 = X(3)

Y = 1000.0 - Xl**2 - 2.0*X2**2 - X3**2 - X1*X2 - X1*X3

H(l) = Xl**2 + X2**2 + X3**2 - 25.0

H(2) = 8.0 * XI + 14.0 * X2 + 7.0 * X3 - 56.0

G(l) = XI
G(2) = X2
G(3) = X3

RETURN
END

SUBROUTINE OUTPUT (X,Y,G,H)

REAL X(20), Y, G(20) , H(20)

RETURN
END

107

3.10.2 TEST PROBLEM 2

3.10.1.2 SUMMARY

NO. OF VARIABLES : 4

NO. OF CONSTRAINTS :

OBJECTIVE FUNCTION

MAXIMIZING SYSTEMS RELIABILITY

1 inequality constraint
4 upper bounds on independent variables
4 lower bounds on independent variables

Minimize f(x) = -1 + R
3
C(1-R-Xl-R^)]

+ (1-R
3

) {1 - R
2
[1 - (1-R^d-R^)]}'

CONSTRAINTS :

g^x) = C - (2K
1

R
1

ai

g.
+1
(x)= 1 -R.20

2K R z

g. c (x) = R. - R. . >
1+5 l i,mm -

l =

l =

+ K R
3

a
3

1,2,3,4

1,2,3,4

+ 2K
M
R^) >

where K = 100 K =

C = 800 a. =

R. • = 0.5
i,mm

100 K- = 200 K
4

= 150

0.6 i = 1,2,3,4

i = 1,2,3,4

STARTING POINT :

INITIAL STEP SIZE

R. =0.6 i = 1,2,3,4

d. = 0.05 i = 1,2,3,4

RESULTS

ITMAX =200

r = .4412E-02 (computed value)

INCUT = 4

THETA = .1000E-03

f(x) = 0.9955

R-, = 0.7923

R
2

= 0.9172

R
3

= 0.8068

R
4

= 0.7882

NO. OF K ITERATED : 6

NO. OF FUNCTION EVALUATIONS : 1048

10S

EXECUTION TIME

MICROCOMPUTER
SINGLE PRECISION

2.4 min.

LARGE COMPUTER
DOUELE PRECISION

.03 min.

109

3.10.2.2 DESCRIPTION OF THE PROBLEM

The problem of maximizing the reliability of the complex system given

in Fig. 3.3 which is subject to a single constraint can be stated as

follows [11,12,13]

Maximize the system reliability

R = 1 - Q
s s

= 1 - R
3
[(1 - R^ (1 - R

4
)]

2

- (1 - M(1 - R [1 - (1 - RJ (1 - R,)] }l

4

subject to

C = £c. < C (3.5)
s T i

R. > R. .

l
~~ i,min

where

C = K.R
a
i i = 1 ,2,3,4 (3.6)ill

The constraint given by eq. (3.5) can be interpreted as follows. C. can

represent the weight, cost, or volume of each unit or component of the

system, and the total weight, cost, or volume of the system must be less

than C. Each of these is a function of reliability that can be expressed by

eq. (3.6) where K. is a proportionality constant and a. the exponential

factor that relates C. and the reliability. That is, K. is the weight,

a
i

cost, or volume of the component when R = 1 and K.R. is the reduced cost,ill
weight, or volume when R. < 1. Usually a. is less than one. The following

i i

values are assigned to the constants K-, K 9 , K-,, and K^> the constraint C,

the exponential constant a and the minimum reliability for each component

R. • i
i = 1,2,3,4.

i,min' '

K
1

= 100, K
2

= 100, K
3

= 200, K 4 = 150,

C = 800, a
i

= 0.6, Ri)[nin
= 0.5 i = 1,2,3,4.

110

IN

—— 1 —

—

2 —p"

^^ '

4 '

m* 3 v

\. 4

2 —

^

I
I

r

1

1 1 1

• CUT

Figure 3.3 A schematic diagram of a complex system.

Ill

3.10.2.3 COMPUTER PRINTOUT CF RESULTS

KSU SUMT PROGRAM

TEST ERC8LEM 2 : MAXIMIZING SYSTEMS RELIABILITY

NO. OF X(I) ...

NO. OF G(J) >=
NO. OF H(J) =0

4

9

MAX. NO. OF ITERATIONS AT EACH STi£E ... 200

INITIAL POINT

Y = -.8S62E+00, P = -.6647E+0C), R = .4431E-02, RATIO = .4000E+01
B = .5G00E-01, INCUT = 4, THETA = .1000E-03 .

X(1) = .600000E+00 D(1) .5000C0E-01
X(2) = .60G000E+00 D(2) .500000E-01

X(3) = .600000E+00 D(3) .500000E-01
X(4) = .600000E+00 D(4) .500000E-01

**CONSTRAINTS . •

G(1) = .137580E+03 ,

G(2) = .400000E+00 ,

G(3) = .400000E+00 ,

G(4) = .400000E+00 ,

G(5) = .400000E+00 ,

G(6) = .100000E-K10 ,

G(7) = .10000CE+00 ,

G(8) = .100000E+00 ,

G(9) = .lCOOOOE+OO ,

COST = 662.42

** P OPTIMUM. . (I)

FY = -.987505E+QG, FP = -.841031E+00, R = .4431E-02 ITER =

NOIT = 124, NOITB = 6, NOFEAS = 107, NCB?
NOEXP = 10, NOPAT = 2, NCCUT = 4 .

YSTOP = .129168E-f00 .

124
1

X(1) =

X(2) =

X(3) =

X(4) =

.7775C0E+00

.817187E+00

.787969E+00

.777656E+00

D(1) =

D(2) =

D(3) =

D(4) =

.171875E-02

.171875E-02

.17187 5E-02

.171875E-02

112

**CCNSTRAINTS
G(1) =

G(2) =

G(3) =

G(4) =

G(5) =

G(6) =

G(7) =

G(8) =

G(9) =

.195078E+02

.222500E+00

.182813E+00

.212031E+00

.222344E+00

.277500E+00

.317187E+00

.287969E+00

.277656E+00

COST = 780.49

*********************** ******** * * * *

** P OPTIMUM. . (2)

FY = -.993208E+00, FP = -.953826E+00, R = .11G8E-02 ITER =

NOIT = 224, NOITB = 5, NOFEAS = 87 , NCBP
NOEXP = 6, NOPAT = 0, NOCUT = 5 .

YSTOP = .381396E-01 .

100
1

X(1) =

X(2) =

X(3) =

X(4) =

**CONSTRAINTS
G(1) =

G(2) =

G(3) =

G(4) =

G(5) =

G(6) =

G(7) =

G(8) =

G(9) =

.806797E+00

.866250E+00

.809531E+00

.788906E+00

.427661E+01

.193203E+00

.133750E+00

.190469E+00

.2I10S4E+00

.3G6797E+00

.366250E+00

.309531E+00

.288906E+00

D(1) =

D(2) =

D(3) =

D(4) =

.42%'87E-03

.429687E-03

.429687E-03

.429687E-03

COST = 795.72

** SUBPROBLEM SEARCH TERMINATED BECAUSE ITERATION MAXIMUM EXCEEDED **

** ? OPTIMUM. . (3)

FY = -.993752E+00, FP = -.983683E+00, R = .2769E-03 ITER =

NOIT = 427, NOITB = 164, NOFEAS = 25, NCBP
2 .

203
14

NOEXP = 1, NOPAT = 0, NCCUT =

YSTOP = .100304E-01 .

X(1)
— .817297E+00 D(1) s .319257E-05

X(2) = .866250E+00 D(2) = .319257E-05

X(3) = .820031E+00 D(3) = .319257E-05

X(4) = .7389G6E+00 D(4) = .319257E-05

113

**CCNSTRAINTS • •

G(1) = .153S25E+01 ,

G(2) = .182703E+00 ,

G(3) = .133750E+C0 ,

G(4) = .179969E+00 ,

G(5) = .211094E+00 ,

G(6) = .317297E+00 ,

G(7) = .36625CE+00 ,

G(8) = .320031E+00 ,

G(9) = .288906E+00 ,

COST = 798.46

** PROBLEM MAY BE TOO FLAT R VALUE REDUCED AND INCUT VALUE INCREASED

EXPLORATORY MOVES TAKEN IN ALL DIRECTIONS AT ONCE SUCCESSFUL

** SUBPROBLEM SEARCH TERMINATED BECAUSE ITERATION MAXIMUM EXCEEDED **

** P OPTIMUM. . (4)

FY = -.995522E+00, FP = -.993988E+00, R = .3461E-04 ITER =

NOIT = 631, NOITB = 22, NOFEAS = 164, NOBP =

NOEXP = 14, NCPAT = 10, NOCUT =
.

YSTOP = .153822E-02 .

204
12

X(1) = .792833E+00 D(1) = .761217E-03
X(2) = .917194E+00 D(2) = .761217E-03

X(3) = .806850E+00 D(3) = .761217E-03
X(4) = .738186E+00 D(4) = .761217E-03

ISTRAINTS • *

G(1) = .201355E+00 t

G(2) = .207167E-HD0 t

G(3) = .328061E-01 t

G(4) = .193150E+00 t

G(5) = .211814E+00 r

G(6) = .292833E+00 t

G(7) = .417194E+00 r

G(8) = .306850E+00 r

G(9) = .288186E+00 r

COST = 799.80

X* SUBPROBLEM SEARCH TERMINATED BECAUSE ITERATION MAXIMUM EXCEEDED **

** P OPTIMUM. . (5)

FY = -.995522E+00, FP = -.995138E+00, R = .8653E-G5 ITER =

NOIT = 838, NOITB = 181, NOFEAS = 9, NOBP =

NOEXP = 1, NOPAT = 0, NOCUT = 1 .

207
9

114

YSTOP = .384986E-03 •

X(1) = .792833E+00 D(1) = .167468E-03
X(2) = .917194E+00 D(2) = .167468E-03
X(3) = .806850E+00 D(3) = .167468E-03
X(4) = .788186E+00 D(4) = .167468E-03

*CCNSTRAINTS • •

G(1) = .201355E+00 ,

G(2) = .207167E+00 ,

G(3) = .828061E-01 ,

G(4) = .193150E+00 ,

G(5) = .211814E+00 ,

G(6) = .292833E+00 ,

G(7) = .417194E+00 ,

G(8) = .306850E+00 ,

G(9) = .288186E+00 ,

COST = 799.80

** SUBPRCELEM SEARCH TERMINATED BECAUSE ITERATION MAXIMUM EXCEEDED **

** P OPTIMUM. . (6)

FY = -.995522E+00, FP = -.995426E+00, R = .2163E-05 ITER =

NOIT = 1048, NOITB = 180, NOFEAS = 14, NCBP
NCEXP = 2, NOPAT = 0, NOCUT = .

YSTOP = .962615E-04 .

210
10

X(1) = .792833E+00 D(1) = .153512E-03
X(2) = .917194E+00 D(2) = .153512E-03

X(3) = .806850E+00 D(3) = .153512E-03
X(4) = .788186E+C0 D(4) = .153512E-03

[STRAINTS • »

G(1) = .201355E+00 ,

G(2) = .207167E-K)0 ,

G(3) = .828061E-01 ,

G(4) = .193150E+00 ,

G(5) = .211814E+00 ,

G(6) = .292833E+00 ,

G(7) = .417194E+C0 ,

G(8) = .306850E+00 ,

G(9) = .288186E+00 ,

CCST = 799.80

***************************** *********

***** the £BCVE RESULTS ARE THE FINAL OPTIMUM

115

3.10.2.4 USER SUPPLIED SUBROUTINES

SUBROUTINE CBRES (X,Y,G,H)
C
C TEST PROBLEM 2 MAXIMIZING SYSTEMS RELIABILITY
C

c
c

c
c

REAL X(20) , Y, G(20) , H(20)

REAL C, COST
REAL Rl, P2 f R3, R4
REAL Kl, K2 r K3, K4
REAL Al, A2, A3, A4
REAL RMIN1, FMIN2, RMIN3, RMIN4

COMMON COST
DATA C /800.0/
DATA Kl, K2, K3, K4 / 100.0, 100.0, 200.0, 150.0 /

DATA Al, A2, A3, A4 / 0.6, 0.6, 0.6, 0.6/
DATA RMIN1, RMIN2, RMIN3, RMJN4 / 0.5, 0.5, 0.5, 0.5 /

Rl = X(l)

R2 = X(2)

R3 = X(3)

R4 = X(4)

Y= -1.0+ R3*((l.-Rl)*(l.-R4))**2

+ (1.-R3) * (1. - R2*(l. - (l.-Rl)*(l.-R4)))**2

COST = 2*K1*R1**A1 + 2*K2*R2**A2
+ K3*R3**A3 + 2*K4*R4**A4

G(l) = C - COST
G(2) = 1.0 - Rl
G(3) = 1.0 - R2
G(4) = 1.0 - R3

G(5) = 1.0 - R4

G(6) = Rl - RMIN1
G(7) = R2 - RMIN2
G(8) = R3 - RMIN3
G(9) = R4 - RMIN4

RETURN
END

SUBROUTINE OUTPUT (X,Y,G,H)

INTEGER ICONS, IPRINT
REAL X(20), Y, G(20) , H(20)

COMMON COST
COMMON /INCUT/ ICONS, IPRINT

WRITE (ICONS, 199) COST

116

WRITE (IFRINT,199) COST
199 FORMAT (/, 6X,'COST =',F9.2)

RETURN
END

117

3.11 REFERENCES

1. Carrol, C W. f "An Operations Research Approach to the Economic
Optimization of a Kraft Pulping Process", Ph.D, Dissertion . Institute
of Paper Chemistry, Appletown, Wise., 1959.

2. Carroll, C W., "The Created Response Surface Technique for Optimizing
Nonlinear Restrained Systems", Operations Research , 9, 169-184, 1961.

3. Fiacco, A. V., and G. P. McCormick, "The Sequential Unconstrained
Minimization Technique for Nonlinear Programming : A Primal-Dual
Method", Management Sci., 10, 360-366, 1964.

4. Fiacco, A. V., and G. P. McCormick, "Computational Algorithm for the
Sequential Unconstrained Minimizatin Technique for Nonlinear
Programming", Management S^L, 10, 601-617, 1964.

5. Fiacco, A. V., and G. P. McCormick, "SUMT without parameters", Systems
Research Memorandum No. 121, Technical Institute, Northwestern
University, Evanston, Illinois, 1965.

6. Fiacco, A. V., and G. P. McCormick, "Extension of SUMT for Nonlinear
Programming : Equality Constraints and Extrapolation", Management Sci.,

12 (11) : 816-829, 1966.

7. Fiacco, A. V., and G. P. McCormick, Nonlinear Programming j_ Sequential
Unconstrained Minimization Techniques, Wiley, New York, 1968.

8. Hooke, R., and T. A. Jeeves, "Direct Search Solution of Numerical and
Statistical Problems", J. Assoc. Comp. Mach., 8, p. 212, 1961.

9. Hwang, C. L., L. T. Fan, and S. Kumar, "Hooke and Jeeves Pattern
Search Solution to Optimal Production Planning Problems", Report No.

13_, Insititute of Systems Design and Optimization, Kansas State
University, 1969.

10. Paviari, D. A,, and D. M. Himmelblau, "Constrained Nonlinear
Optimization by Heuristic Programming", AICHE meeting in New Orleans,
March, 1969,

11. Lai, K. C, "Optimization of Industrial Management Systems by the
Sequential Unconstrained Minimization Technique", M.S. Report, Dept.

of Industrial Engineering, Kansas State University, 1970.

12. Hwang, C. L., K. C. Lai, F. A. Tillman, and L. T. Fan, "Optimization
of System Reliability by the Sequential Unconstrained Minimization
Technique", IEEE Trans, en Reliability, vol. R-24., pp. 133-135.,

June 1975.

13. Tillman, F. A., C. L. Hwang, and W. Kuo, Optimization of Systems
Reliability, Marcel Dekker, New York, 1980.

118

CHAPTER 4

RAC - SEQUENTIAL UNCONSTRAINED MINIMIZATION TECHNIQUE

4.1 INTRODUCTION

The general nonlinear programming problem with nonlinear (and/or

linear) inequality and/or equality constraints is to choose x to

minimize f(x)

subject to

g.(x) > , i=1 ,2,...,m

and

h.(x) = , j=1 ,2, ,£

where x is an n-aimensional vector (x* .x„.....x). A number of techniques
1

' 2 n

have been developed to solve this problem. The method presented here is the

sequential unconstrained minimization technique (SUMT) as implemented by

Fiacco and McCormick [1,2,3,4,5]. The basic SUMT algorithm was introduced

in Chapter 3.

The major differences between the RAC-SUMT and the KSU-SUMT computer

program is described below.

4.2 METHOD

4.2.1 MAJOR DIFFERENCES BETWEEN RAC-SUMT AND KSU-SUMT COMPUTER PROGRAM

Although both the RAC-SUMT and KSU-SUMT computer programs use the basic

SUMT algorithm, there are a few major differences in the implementation of

the algorithm. The first major difference is in the formulation of the P-

functicn. The KSU-SUMT formulation of the P-functicn is

m £

P(x,r
) = f(x) + rk t 1/gt (x)

+ rk

"1/2 .£h 2
(x)

k K i=1 1 K
J=1 J

119

The RAC-SUMT formulation of the P-function is [6]

P(x.r
k

) = f(x) - r
k ^U hM*rk

- ^V (x)

Whereas the KSU-SUMT program uses2l/g.(x) as the added barrier for
i

1

inequality constraints, the RAC-SUMT program uses -L^ng(x). In addition,

-1/2
1

instead of using r as the penalty factor for the equality constraints,

the term r is usee.

A second major difference between the two programs is in the method

used to minimize the P-function. Whereas the KSU-SUMT program uses the

Hooke and Jeeves pattern search technique to minimize the P-function, the

RAC-SUMT program uses one of four methods : two versions of a second order

gradient method, a first order gradient method, or a conjugate gradient

method. The four methods are actually only used to determine the search

direction; the Golden Section method determines the step size.

A third difference is the use of extrapolation in the RAC-SUMT program

to speed up convergence to the optimum point. The extrapolation is carried

out using the previous two or three suboptimum points. The new point

computed by extrapolation is then used as a starting point for the next

subproblem search.

The details of the unconstrained minimization techniques and the

extrapolation technique are explained in [53. In the next section, a summary

of the basic logic of the method is presented.

^.2.2 SUMMARY OF COMPUTATIONAL PROCEDURE

The computational procedure for RAC-SUMT is summarized below (see Fig.

4.1).

120

Start

1 . Select Starting point
and initial value of r

2. Compute and print out numeric and analytic

partial derivatives at starting point

No

3a. Move starting point
into feasible region

4. Define P- function
2

P(x,r) = f(x) - r EXg.Cx) + £h U)/r

1
5. Minimize P(x,r)

The search direction is determined using either :

a 2nd order gradient method

a 1st order gradient method (steepest descent)

or a conjugate gradient method (modified Fletcher-Powell)

The step size is determined using the Golden Section Method

Yes
-*/ Stop

8. Extrapolate through the last 2 or 3 suboptimum points

to get starting point for next subproblem search.

Fig. 4.1 Descriptive flow diagram for RAC-SUMT method

121

Step (1) Select a starting point x° = (x x
2> ...,x) and the initial

value of the penalty coefficient r.

Step (2) If the user requests it, print out the values of both the

numeric and analytic first and second partial derivatives at the starting

point. This enables the user to check the user-supplied analytic

derivatives by comparing them with the computed numeric derivatives.

Step (3) Check if the initial point is feasible subject to the

inequality constraints. If it is, go to step 4; otherwise, go to step 3a.

Step (3a) Locate a feasible point by minimizing the negative of the

sum of the violated inequality constraints.

Step (4) Define the P function as

m h
P(x,r) = f(x) - p £j&ng.(x) + r

" £ h (x)
K k

i = 1
1 K i=1 J

where g (x) > 0, i = 1,2,...,m, are inequality constraints and h.(x) = 0,

j = 1 ,2, ...,£, are equality constraints.

Step (5) Minimize the P function for the current value r . The
k

direction of search is obtained by using either a second order gradient,

method, a first oraer gradient method (Steepest descent) or a conjugate

gradient method (modified Fletcher-Powell); the method is chosen by the

user. The step size is determined using the Golden Section method.

Step (6) Check if the final convergence has been obtained. If it has,

then stop; otherwise, go to step 7. The criteria for determining

convergence is one of the following :

G - f(x) l ft—
n < O

or
m

r ElnMx)
j = 1

J
<e

where G is the dual value, G = f(x) + (2/r) £h2 (x)

j=1

- m» r - n« r

122

Step (7) Reduce the r value, r^ = r
k _-|

/c > where C is a constant

greater than 1.

Step (8) Extrapolate through the last two or three suboptimum points

to get the starting point for the next subproblem search. Then return to

step 5.

123

4.3 computer program description

The- RAC-SUMT computer program is actually two programs : a READIN

program and a RACSUMT program. The READIN program is used to input the data

and the RACSUMT program dees the computations to get the solution. The

reason why two separate programs are used instead of one is that both

programs could not fit into the computer memory at the same time.

The microcomputer used was a North Star Horizon II which has 64K bytes

of memory but only 37K bytes of it is available for the program and data;

the other 27K is reserved for the operating system and other functions. The

software used was Microsoft's Fortran-80 for the Northstar microcomputer

which was run under the CP/M (version 2.26) operating system.

Using Microsoft's North Star Fortran compiler, the size of the READIN

program was 14K bytes while the size of the RACSUMT program depended on the

size of the problem : 32K bytes was needed for test problem 1 (N=3, M=2)

while 34K bytes was needed for test problem 2 (N=4, M=9). Therefore, both

programs will not fit into memory at the same time. But since the READIN

program is needed only to input the data, it can be removed from the

computer's memory once it is through executing ana the RACSUMT program can

then be brought into memory. This process is done automatically with a CALL

FCHAIN statement which loads the RACSUMT program into memory and begins to

execute it. This statement is the last statement in the READIN program.

The only problem with the above procedure is that when the RACSUMT

program is lcaaed into memory, the aata from the READIN program is lost. In

order to save the data, the READIN program must store the data on cisk and

the RACSUMT program must then read the data back from disk. This is what is

done in the two programs.

IF the FORTRAN compiler does not nave a program chaining statement

(CALL FCHAIN ('filename', drive)), it is still possible to run the program.

124

Simply remove the statement CALL FCHAIN ('RACSUMT COM', 2) from the READIN

program and add a step 6 which is simply to type

3: RACSUMT

which loads and executes the RACSUMT program manually. This step is

performed after the READIN program is finished executing, which occurs when

a STOP and then an A> is displayed on the CRT screen.

4.3.1 DESCRIPTION OF SUBROUTINES

The READIN program consists of a main program which allows the user to

interactively enter the data needed for the RACSUMT program.

The RACSUMT program consists of a main program, two control subroutines

(BODY,FEAS), sixteen special purpose subroutines (CONVRG, EVALU, GRAD,

INPUT, INVERS, OPT, OUTPUT, PEVALU, REJECT, RHOCOM, SECORD, STORE, XMOVE,

DIFF1, DIFF2, CHCKER) and three user supplied subroutines (RESTNT, GRAD1,

MATRIX). Input is coordinated by the READIN program and subroutine INPUT.

Output is from the main program and subroutines BODY, CHECKER, CONVRG, FEA3,

INVERS, OFT, OUTPUT. The relationship among the subroutines is shown in

Fig. 4.2 ana Fig. 4.3.

The description of each subroutine follows.

SUBROUTINE BODY coordinates all subroutines.

SUBROUTINE CHCKER is used to check the correctness of the user-supplied

first and second partial derivatives by printing the values of both the

user-supplied analytic derivatives and the computed numeric derivatives.

SUBROUTINE CONVRG (N1) checks for convergence to the subproblem.

SUBROUTINE DIFF1 (IN) computes numeric first derivatives by central

difference.

125

n
cc
o

r~

c -t->

o T3

•-*

+J U1

u +J .—

i

ai QJ c X c
x: x: Cj r-t •H

a -t-j *J -+- »a O
c t. CL
Tl xj •~i~ CJ -M

^ a > CI OH
V a -. C c

4-J m *J o ~.

3 —

i

ai u u -fcj

a. c is CJ L.

s — .—

•

-•—

t

"O rfl

a 1_ <n -O c -*-»

D a. > a •n Ul

"t" ^ '

:>

L-iuj

l 1

I
z

cc

3
a
&.

ja

tl

-a

a
a.

tfl

i

aj

Ul

3

Ul

11

-J
<n

u

T3
C

CO

LU

\

3
a.

XJ
o

UU

\

a

a
.a

DQ
1

lj_ o
. u_ I #

a 5

U_ — CT>

q ct:

I

>- o L. a
-1-1 x a T3
•-* ^-*- 3
-—

.

-- a
-d —

i

x:
XJ LJ ui

r-« x .-.

Ul -a

<Ti *-> 01 ->-•

ai c ji X
M- ,"(--t

a a o
Jl 3. Q.
01 »•

c t3i m 01
• *H C r-H i

—

•

s -. -O X!
i. -t~t -* .—

01 k_ in Ul

-U IB m ro

01 -KJ 01 01

XJ Ul *+- **-

xj

LU

l—T a"

LU

LU

L it

IT-

CD

UJ

CO

CJ O J=
o> *+- u

L.
+J 15

•*-< C 01

-. J

I

01 o
j-j a. s
'a ai

,—. en —
a c x:
a. — o
m -u w.

U k_ O-
—j -a _o

li in ui

•Ji

-a OJ

C Ul >
TJ HI u -—.

> XI -^-•

u -! — -u

r-t -fcJ >
1_ "15 _ii T3 •H
01 > U 01 i_

s .-. 01 _ ds

3 l_ .r; — -a
c 01 u CL

"O r: u
*J a 1j ••H

3 u -»j in -»->

a r-t i >
-4-J XJ i_ F—

I

-u >» ai 01 fD

c r-l Ul Ul c:
• -< tl 3 Zj o

ill
! 5 i

L-J

uj
r-
o

01

u s
c 'S<

01 B
CT .-.

JI L. —

i

_L ,—

1

CO 3 —J
u 3 > "J c
Oj C X r-«

x: m* c a O
LJ -1- u

01

*-< LCL

Tr; u L.

0)
-

—

1

01 "J

X3 Ol i;

Ul J i- ;;

|_ i^ -i-t

u JX ^* »->-

'J x: c
_^ 3 c aJ
_ ji u rQ

r

01

en ct>

a: — rx:

LU —

Ul

m
x

3
O

cn

- 3 mO Q ! a. 3

CC —" CC C TJ

CD CD CJ >

L_ _

126

Method Chosen

Second order
gradient

.

GRAD
r

Compute
VP(x,r)

SECOND

Compute
P"(x, r)

the matrix of

second partials

INVERS
•

compute search
direction -..

S-^-CP"] Vp
by solving set

of simultaneous
linear equations
[P"]s = \7P

by Crcut method

OPT
f

min P(x + 9s, r)

e
using Golden
section method

x -•- x + Gs

Conjugate
gradient

GRAD

Compute
VP(x,r)

Compute H, the
approximation of

the inverse of 2nd

partial derivatives

compute search
direction
S « H\7F(x,r)

-

OPT

min P (x + 9s, r)

9

using Golden
section method

•

r

x .«- x + 9-s

1

1

(
RETURN

A
i

to BODY

Steepest
descent

GRAD

Compute search
direction

S <- VP(x,r)

OPT

min P(x +9s, r)

6
using Golden
section method

1

x «- x + 9s

'

f

(RETURN
J

to BODY

\2
RETURN

to BODY

Fig. 4.3 Descriptive flow diagram for minimizing P(x, r) function

in XMOVE subroutine

127

SUBROUTINE DIFF2 (IN) computes numeric second partial derivatives by

central difference.

SUBROUTINE EVALU evaluates the P-function, the dual value G, and the

constraints.

SUBROUTINE FEAS determines the feasibility of the starting point; if it is

not feasible, a feasible point is sought; if no feasible point is possible,

an error message is printed.

SUBROUTINE FINAL (N2) checks for final convergence to the optimum point.

SUBROUTINE GRAD (IS) computes the gradient of the P-function.

SUBROUTINE INPUT reads in the input data which was saved on disk by the

READIN program.

SUBROUTINE INVERS (NSME) solves the set of equations to determine the search

direction.

SUBROUTINE OPT performs a one dimensional search for the optimal step size

using the Golden Section method.

SUBROUTINE OUTPUT (K) prints cut the results at each suboptimum point.

SUBROUTINE PEVALU computes the P-function value and dual value using the

previously computed values of f(x) and g(x).

SUBROUTINE REJECT returns stored values to their normal loca Lions.

SUBROUTINE RHOCOM computes an initial value of r.

SUBROUTINE SECORD (IS) computes second partial derivatives of the P-

function.

SUBROUTINE STORE stores the values of the current point.

SUBROUTINE XMOVE determines the search direction and then calls OPT to find

the step size. The user has the option of specifying which method to use to

compute the search direction (two versions of a second order gradient

method, the steepest descent method, or a modified Fletcher- Powell method).

128

SUBROUTINE RESTMT (I,VAL) specifies the objective function and constraints

(user supplied).

SUBROUTINE GRAD1 (I) specifies the first partial derivatives of the

objective function and constraints (user supplied).

SUBROUTINE MATRIX (J,L) specifies the second partial derivatives of the

objective function and constraints (user supplied).

4.3.2 PROGRAM LIMITATIONS

The program will presently handle a problem with 20 variables and 40

constraints (inequality + equality). To solve a larger problem, the

dimensions of the arrays in the program must be changed. The key to the

changes are as follows :

X, DEL, A, X1, X2, X3, DELX, BELXO,

XR1, XR2, PGRAD, DIAG, SIG, XXX, YY, DELL N dimensions

RJ, RJ1 M + MZ dimensions

The READIN program requires 1 4K bytes of memory and the RACSUMT program

requires at least 32K bytes of memory. The smallest problems require 32K

bytes; larger problems like test problem 2 (4 variables, 9 constraints)

require 34K bytes; larger problems will require even more memory. Note that

even though a microcomputer may have 64K bytes of memory, usually only 30-

40 K bytes cf it may actually be used for the program; the rest is taken up

by the operating system or reserved for special purposes. Thus, the North

Star Horizon microcomputer with 64X bytes cf memory has only 37K bytes

available for the program and will not be able to solve a problem very much

larger than test problem 2.

129

4.3.3 LISTING OF FORTRAN PROGRAM

PROGRAM RSUMT
C

C ** RAC SUMT PROGRAM VERSION 4 **

c

C THIS PROGRAM IS FOR OPTIMIZING THE GENERAL NONLINEAR
C PROGRAMMING PROBLEM WITH NONLINEAR (AND/OR LINEAR) INEQUALITY
C AND/OR EQUALITY CONSTRAINTS.
C

C THE METHOD EMPLOYS :

C SUMT FORMULATION FIACCO AND MCCORMICK
C SEARCH TECHNIQUE THE USER HAS THE OPTION OF
C SPECIFYING WHICH OF THE FOLLOWING METHODS TO USE
C TO DETERMINE THE DIRECTION OF SEARCH.
C CONJUGATE GRADIENT METHOD
C FIRST ORDER GRADIENT METHOD
C SECOND ORDER GRADIENT METHOD
C THE OPTIMUM STEP SIZE IS DETERMINED USING THE

C GOLDEN SECTION METHOD.
C

C THE PROGRAM IS WRITTEN BY :

C W.C. MYLANDER , R. L. HOLMES AND G. P. MCCORMICK
C RESEARCH ANALYSIS CORPORATION, MCLEAN, VA. , 1971.
C

C

c

EXTERNAL RESTNT, GRAD1 , MATRIX
C

INTEGER CONSCL, PRINTR
COMMON /SHARE/ X(20), DEL(20), A(20,20), N,M,MN,NP1 ,NM1

COMMON /EQAL/ H, H1 , MZ

COMMON /OPTN S/ NT1 , NT2 , NT3 , NT4 , NT5 , NT6 , NT? , NT8 , NT9 , NT1

COMMON /VALUE/ F,G,P0,RSIGMA,RJ(20) ,RHO
COMMON /CRST/ DELXC20) ,DELX0(20) ,RHOIN, RATIO, EPSI,THETAO,

1 RSIG1, G1, XK20), X2(20), X3C20), XR2(20), XRK20), PR1

,

2 ?R2, PI, F1, RJU40), DOTT, PGRADC20), DIAG(20),

3 PREV3, ADELX, NTCTR, NUMINI, NPHASE, NSATIS
COMMON /EXPCPT/ NEXOP1 , NEX0P2, XEP1 , XEP2
COMMON /DEYC/ CONSOL, PRINTR, NP

C

DATA CONSOL, PRINTR /1,2/
DATA XEP1, XEP2 / 0.0001, 0.0/

C

c

CALL INPUT

NTCTR =

NP1 = N+1

NM1 = N-1

C* * CALL TIMEC
NPHASE = 4

150

JUST TO GET AN INITIAL PRINTOUT
CALL EVALU
PO = 0.0
G=0.0
H=0.0
RSIGMA =0.0
CALL OUTPUT (2)

CALL STORE
IF (NEX0P1.GT.1)
IF (NEX0P1.EQ.3)
IF (NEX0P1.EQ.5)
CALL FEAS

CALL CHCKER
STOP 01072
STOP 01104

NPHASE = 5 INDICATES NO FEASIBLE POINT WAS FOUND
GO TO (30,30,30,30,40), NPHASE

30 NPHASE = 2

NTCTRrO
CALL BODY

189

18?

186
181

180

WRITE (PRINTR,181)
WRITE (PRINTR,189) F
WRITE (PRINTR,187)
WRITE (PRINTR,186) (I, X(I), 1=1, N)
WRITE (PRINTR,180)

FORMAT (//,2X,19HFINAL VALUE OF F = ,1PE15.6)
FORMAT (//,2X,14HFINAL X VALUES)

FORMAT (1X, 3(2X,2HX(, 12, 3H) = ,1PE14.6))

FORMAT (//,1X,38C* '))

FORMAT (' 1 '

,

T
'

)

40 STOP
END

C

c

C

c

SUBROUTINE BODY

BODY COORDINATES THE FLOW AMONG THE SUBROUTINES THAT ACTUALLY DO
THE CALCULATIONS REQUIRED BY THE VARIOUS PARTS OF THE ALGORITHM.

INTEGER CON SOL, PRINTS
COMMON /SHARE/ X(20), DEL(20), A(20,20), N,M,MN,NP1 ,NM1

COMMON /OPTNS/ NT1 , NT2 , NT3 , NT4 , NT5 , NT6 , NT? , NTS , NT9 , NT1

COMMON /VALUE/ F , G, PO , RSIGMA, RJ (20) , RHO
COMMON /CRST/ DELX(20) ,DELX0(20) ,RHOIN, RATIO, EPSI,THETAO,

1 RSIG1, G1, XK20), X2(20), X3(20), XR2(20), XR1(20), PR1
,

2 PR2, P1, F1, RJK40), DOTT, PGRAD(20), DIAGC20),

3 PREV3, ADELX, NTCTR, NUMINI, NPHASE, NSATIS
COMMON /CON PAR/ NF1 , NF2, NF3

COMMON /DEVC/ CONSCL, PRINTR, NP

NF2=2

151

NF3=2
MN=0
NUMINI=0

C OPTION OF GETTING INITIAL RHO
CALL RHOCOM
CALL EVALU

10 CALL XMOVE
GO TO (30,20), NT3

C

c* * 20 call timec
20 call output (1)

go to 40

C

C* * 30 CALL TCHECK
30 CONTINUE

C

C IN FEASIBILITY PHASE, 4 MEANS FEASIBILITY ACHIEVED
40 GO TO (50,50,50,200), NSATIS

C

50 CALL CONVRG (N1)

GO TO (60,10,125), Nl

C

C MINIMUM ACHIEVED IF N1 = 1

60 GO TO (70,80), NT3

C

C* * 70 CALL TIMEC
70 CALL OUTPUTO)

C

C NUMBER OF MINIMA ACHIEVED INCREASED BY 1

80 NUMINI = NUMINI + 1

MN =

GO TO (190,90,90), NPHASE
C

C* 90 CALL ESTIM
C

C FINAL MIGHT HAVE BEEN CALLED BY ESTIM
C CONVERGED IF N2 = 1

C* GO TO (100,110,120), NT4
C

C NT4=1 FINAL CONVERGENCE ON ORDER ESTIMATES
C NT4=2 CONVERGE CN FIRST ORDER ESTIMATES
C NT4=3 CONVERGE ON SECOND ORDER ESTIMATES

90 CALL FINAL (NF1)

GO TO (130,140), NF1

110 GO TO (130,140), NF2
120 GO TO (130,140), MF3
125 NPHASE = 5

130 RETURN
n

140 RHO = RHO / RATIO
C

C USING PREVIOUSLY COMPUTED VALUES FOR F, AND RJ

C P IS RECOMPUTED WITH THE NEW VALUE OF RHO.

CALL PEVALU

132

CC A VECTOR IS LEFT IN DELX(I) BY ESTIM
IF (NUMINI-2) 10,150,150

150 GO TO (10,160,160), NT7
160 CALL GRAD(2)

CALL OPT
GO TO (180,170), NT3

170 WRITE (FRINTR,210)
210 FORMAT (//,2X,30HMOVED ON EXTRAPOLATION VECTOR)

CALL OUTPUT (1)

180 GO TO 50
r

C DUAL VALUE GREATER THAN MEANS NO FEASISLE POINT EXISTS
190 IF (G) 90,90,200

C

C

200 RETURN
END

SUBROUTINE CHCKER
C

C CHCKER COMPUTES AND LIST THE FIRST PARTIAL DERIVATIVES USING GRAD1
C AND THEN USING NUMERICAL DIFFERENCING (DIFF1). IF REQUESTED, THE
C SECOND PARTIAL DERIVATIVES ARE COMPUTED AND LISTED USING MATRIX
C AND DIFF2.

C

INTEGER CON SOL, PRINTR
COMMON /SHARE/ X(20), DEL(20), A(20,20), N,M,MN,NP1 ,NM1

COMMON /EQAL/ H, H1 , MZ

COMMON /EXPORT/ MEX0P1 , NEX0P2, XEP1 , XEP2
COMMON /DEVC/ CONSOL, PRINTR, NP

C

MMZ = 1 + M + M2

DO 5 J=1,N
DEL(J) = 1.2345678

5 CONTINUE
r
*->

DO 10 1=1, MMZ
IN = 1-1

IF (IN) 170,170,180
170 WRITE (PRINTR, 1)

GO TO 190
C

180 WRITE (PRINTR, 2) IN

190 CALL GRAD1 (IN)

WRITE (PRINTR, 3)
WRITE (PRINTR, 4) (J, DEL(J), J=1,N)

CALL DIFF1 (IN)

WRITE (PRINTR, 6)
WRITE (PRINTR, 4) (J, DEL(J), J=1,N)

10 CONTINUE
r>

C SOMETIMES FIRST DERIVATIVES ARE TO BE CHECKED

IF (NEX0P1.LT. 4) GO TO 160

133

DO 150 1=1, MMZ

IN = 1-1

IF (IN) 200,200,210
200 WRITE (PRINTR,1)

GO TO 220
C

210 WRITE (PRINTR,2) IN

220 IT = 2

DO 30 K=1,N
DO 30 J=1,N

A(K,J) = 0.0

30 CONTINUE
C

c

u

c

CALL MATRIX (IN, IT)

IF (IT.EQ.1) GO TO 150
DO 50 K=2,N

KM1 = K-1

DO 40 J=1,KM1
IF (A(K,J).EQ.0.0) GO TO 40

NEX0P1 = 5

WRITE (PRINTRJ) K,J
GO TO 60

40 CONTINUE
50 CONTINUE

60

70
80

90
c

110

WRITE (PRINTR,9)
DO 90 K=1,N

DO 70 J=K,N
IF (A(K,J).NE.0.0) GO TO 80

CONTINUE
WRITE (PRINTR,8) (K, J, A(K,J), J=1,N)

CONTINUE

DO 110 K=1,N
DO 110 J=1,N

A(K,J) = 0.0

CONTINUE

WRITE (PRINTR,11)
CALL DIFF2 (IN)

DO 140 K=1,N
DO 120 J=K,N

IF (A(K,J).NE.0.0) GO TO 130
120 CONTINUE

GO TO 140

130 WRITE (PRINTR,8) (K, J, A(K,J), J=1,N)
1 40 CONTINUE
1 50 CONTINUE

160 CONTINUE

1 FORMAT (//, 2X, 38HVALUES OF OBJECTIVE FUNCTION PARTIALS)

2 FORMAT (/, 2X, 29HVALUES OF CONSTRAINT NUMBER ,12)

3 FORMAT (/, 2X, 25HANALYTICAL FIRST PARTIALS)

154

4 FORMAT OX, 3(2X,4HDEL(, 12, 3H) = ,£14.7))

6 FORMAT (/, 2X, 24HNUMERICAL FIRST PARTIALS)

7 FORMAT (/, 2X, 2HA(, 12, 1H, ,12, 10H) .NE. 0.0)

8 FORMAT (IX, 3(2X, 2HA(, 12, 1H, ,12, 4H) = ,E12.6))

9 FORMAT (/, 2X, 26HANALYTICAL SECOND PARTIALS)

11 FORMAT (/, 2X, 25HNUMERICAL SECOND PARTIALS)

RETURN
END

SUBROUTINE CCNVRG (N1)

C

C AFTER EACH ITERATION OF THE ALGORITHM TO LOCATE THE MINIMUM OF THE
C PENALTY FUNCTION, CONVRG DETERMINES IF THE CURRENT POINT IS CLOSE
C ENOUGH TO THE POINT GIVING THE MINIMUM VALUE OF THE P FUNCTION.
C N1 SET EQUAL TO 1 IF MINIMUM HAS BEEN FOUND.
C N1 SET EQUAL TO 2 IF MINIMUM HAS MOT BEEN FOUND (AND TIME IS NOT UP)

C N1 SET EQUAL TO 3 OTHERWISE.
C

INTEGER CONSCL, PRINTR
COMMON /SHARE/ X(20), DEL(20), A(20,20), N,M,MN,NP1 ,NM1

COMMON /OPTNS/ NT1 , NT2 , NT3 , NT4 , NT5 , NT6 , NT7 , NT8 , NT9 , NT1

COMMON /VALUE/ F,G, P0,RSIGMA,RJ(20) ,RHO

COMMON /CRST/ DELX(20) ,DELXO(20),RHOIN, RATIO, EPSI,THETAO,

1 RSIG1, G1, XK20), X2C20), X3(20), XR2(20), XRK20), PR1
,

2 PR2, P1, F1, RJK40), DOTT, PGRADC20), DIAG(20),

3 PREV3, ADELX, NTCTR, NUMINI, NPHASE, NSATIS

COMMON /EXPORT/ NEX0P1 , NEX0P2, XEP1 , XEP2
COMMON /TSW/ NSWW
COMMON /DEVC/ CONSCL, PRINTR, NP

C

N1=2
IF (NT8.LE.1) Q1=P0
NT8=2
IF (MN.LE.1) Q1=?0

C

GO TO (10,20,30), NT9

10 IF (A3S(D0TT).LT.EPSI) GO TO 70

CO TO 40

C

20 IF (A3S(DOTT).LT.(P1-P0)/5.0) GO TO 70
GO TO 40

C

30 IF (ADELX. LT.EPSI) GO TO 70
C

40 GO TO (50,60), NSWW
50 IF (MN.LE.1) RETURN

r

IF (P0+XEP2 .LT. Q1) GO TO 75
GO TO 70

C

60 WRITE (PRINTR, 90)

N1 =3

135

C

C FOUND THE MINIMUM TO THE SUBPROBLEM
RETURN

C

c

70 N1 =1

75 Q1 = PO

90 FORMAT (///, 10X, 37H**** TIME LIMIT. CALLING EXIT FROM
,

1 13HC0NVRG *****
)

RETURN •

END

SUBROUTINE DIFF2 (IN)

C

C DIFF2 COMPUTES THE SECOND DERIVATIVES BY NUMERICAL DIFFERENCING
C

COMMON /SHARE/ X(20) ,DEL(20) ,A(20,20) , N,M,MN,NP1 ,NM1

COMMON /EXPOPT/ NEX0P1 , NEX0P2, XEP1 , XEP2
COMMON /STIRX/ XSTR(20), XSSS(20), DDLL(20)

C

DO 10 J=1,N
XSSS(J) = X(J)

10 CONTINUE
C

c

DO 50 J=1,N
IF (J.EQ.1) GO TO 20

JM1 = J-1

X(JM1) = XSSSCJM1)

20 X(J) = XSSS(J) + XEP1
CALL GRAD1 (IN)

DO 30 I =1,N
DDLL(I) = DEL(I)

30 CONTINUE
X(J) = XSSS(J) - XEP1

CALL GRAD1 (IN)

DO 40 I=J,N
A(J,I) = (DDLL(I)-DEL(I)) / (2.0*XEP1)

40 CONTINUE
50 CONTINUE

X(N) = XSSS(N)

RETURN
END

SUBROUTINE DIFF1 (IN)

C

C DIFF1 COMPUTES THE FIRST DERIVATIVES BY NUMERICAL DIFFERENCING.
C USER CAN CALL FOR DIFFERENCING OF SELECTED FUNCTIONS.

C

136

COMMON /SHARE/ X(20) ,DEL(20) ,A(20,20) , N,M,MN,NP1 ,NM1
COMMON /EXPOPT/ NEXOP1 , NEX0P2, XEP1 , XEP2
COMMON /STIRX/ XSTRC20), XSSS(20), DDLL(20)

DO 10 J=1,N
XSTR(J) = X(J)

10 CONTINUE
c

DO 30 J=1 ,N

IF (J.EQ.1) GO TO 20
JM1=J-1
X(JM1) = XSTR(JM1)

c

20 X(J) = XSTR(J) + XEP1

CALL RESTNT (IN,ZZ2)
X(J) = XSTR(J) - XEP1
CALL RESTNT (IN.ZZ1)
DEL(J) = (ZZ2-ZZ1) / (2.0

30 CONTINUE
C

r
X(N) = XSTR(N)

u

RETURN
END

XEP1)

SUBROUTINE EVALU
C

C IN THE NORMAL PHASE EVALU CALLS THE USER-SUPPLIED ROUTINES TO
C EVALUATE THE OBJECTIVE FUNCTION AND THE CCNTRAINT FUNCTIONS
C AT THE CURRENT POINT. IN THE FEASIBILITY PHASE THIS ROUTINE
C PUTS THE NEGATIVE SUM OF THE VIOLATED CONSTRAINTS IN LOCATION F.

C

INTEGER CON SOL, PRINTR
COMMON /SHARE/ X(20), DEL(20), A(20,20), N,M,MN,NP1 ,NM1

COMMON /EQAL/ H, H1 , MZ

COMMON /OPTN S/ NT1 , NT2 , NT3 ,NW , NT5 , NT6 , NT? , NTS , NT9 , NT1

COMMON /VALUE/ F , G , PO , RSIGMA, RJ (20) , RHO
COMMON /CRST/ DELX(2G) ,DELX0(20) ,RHOIN, RATIO, EPSI,THETAO,

1 RSIG1, G1, X1(20), X2C20), X3(20), XR2(20), XRK20), PR1
,

2 PR2, P1, F1, RJ1(40), DOTT, PGRAD(2C), DIAG(20),

3 PREV3, ADELX, NTCTR, NUMINI, NPHASE, NSATIS
C

H = 0.0
RSIGMA =0.0
F = 0.0
NSATIS = 2

C

C NPHASE DETERMINES THE PHASE OF PROGRAM
C 1 PROBLEM IN FEASIBILITY PHASE

C 2 PROBLEM IN REGULAR PHASE
C 3 PROBLEM IN GUESS PHASE

C i\ EVALUATE ALL FUNCTIONS REGARDLESS OF PHASE

157

GO TO (10,100,190,200), NPHASE
C

C ** FEASIBILITY PHASE
10 GO TO (20,40), NT2

C

C NON-NEGATIVES INCLUDED

20 DO 30 1=1,

N

IF (X(I).LE.0.0) GO TO 260
RSIGMA = RSIGMA - RHO * ALOG (X(I))

30 CONTINUE
C

40 IF (M.EQ.O) GO TO 90

C

DO 80 J=1,M
CALL RESTNT (J, RJ(J))

IF (RJ1(J).LE.0.C) GO TO 50
IF (RJ(J).GT.0.0) GO TO 60

C VIOLATION OF A PREVIOUSLY SATISFIED CONSTRAINT
GO TO 260

C

r
50 IF (RJ(J).GT.0.0) GO TO 70

ALL VIOLATED CONSTRAINTS ADDED INTO OBJECTIVE FUNCTION
F = F - RJ(J)

GO TO 80

C

60 RSIGMA = RSIGMA - RHO * ALOG (RJ(J))

GO TO 80

C

C INDICATES SATISFACTION OF CONSTRAINT (1 OR MORE)

70 NSATIS = 1

RSIGMA = RSIGMA - RHO * ALOG(RJ(J))

C

80 CONTINUE
C

90 CONTINUE
C EQUALITIES NOT COMPJTED IN FEASIBILITY PHASE

?0 = F + RSIGMA
G = F - RHO * FLOAT(M)
IF (NT2.EQ.1) G = G - RHO * FLOAT(N)
RETURN

C

C REGULAR PHASE
100 GO TO (110,130), NT2

C

C NON NEGATIVITIES INCLUDED
110 DO 120 1=1,

N

IF (XCD.LE.0.0) GO TO 260
RSIGMA = RSIGMA - RHO * AL0G(X(I))

120 CONTINUE
C

130 IF (M.EQ.O) GO TO 150
DC 140 J=1,M

CALL RESTNT (J, RJ(J))

IF (RJ(J).LE.O.O) GO TO 260

133

RSIGMA = RSIGMA - RHO * ALCG(RJ(J))

c

140 CONTINUE

c

-

EVALUATE AND ADD IN EQUALITY CONSTRAINTS
150 CONTINUE

CALL RESTNT (0,F)

IF (MZ) 180,180,160
160 DO 170 1=1, MZ

J=I+M
CALL RESTNT (J, RJ(J))

c ADD INTO THIRD TERM OF P FUNCTION
H = H + (RJ(J))**2

170 CONTINUE
H = H / RHO

c

180 PO = RSIGMA + H

PO = F + PO

G = 2.0 * H - RHO * FLOAT(M)
G = G + F

IF (NT2.EQ.1) G = G - RHO * FLOAT(N)
C DUAL VALUE

RETURN
C

C GUESS PHASE NOT YET CODED
1 90 RETURN

C

C STRAIGHT FUNCTION EVALUATION (MAIN + FEASIBLE ONLY)

200 CONTINUE
IF (M.EQ.O) GO TO 220
DO 210 1=1, M

CALL RESTNT (I, RJ(I))

21 CONTINUE
C

220 CALL RESTNT (0,F)

C EQUALITY CONSTRAINTS
IF (MZ) 250,250,230

230 DO 240 1=1, MZ
KZ = M + I

CALL RESTNT (XZ, RJ(KZ))

240 CONTINUE
C

250 RETURN
C

C CONSTRAINTS VIOLATED NOT SO BEFORE
260 NSATIS = 3

PO = 10.0E35
C

RETURN
END

159

SUBROUTINE FEAS
C

C FEAS DETERMINES WHETHER THE STARTING POINT IS FEASIBLE,
C IF IT IS NOT, FEAS LOOKS FOR A FEASIBLE ONE.

C IF NONE EXISTS, A MESSAGE IS PRINTED AND CONTROL RETURNS
C TO MAIN.

C

INTEGER CONSCL, PRINTR
COMMON /SHARE/ X(20), DEL(20), A(20,20), N,M,MN,NP1 ,NM1

COMMON /OPTNS/ NT1 ,NT2,NT3,NT4,NT5,NT6,NT7,NT8,NT9,NT10
COMMON /VALUE/ F,G, P0,RSIGMA,RJ(20) ,RHO
COMMON /CRST/ DELX(20) ,DELX0(20) ,RHOIN, RATIO, EPSI,THETAO,

1 RSIG1, G1, XK20), X2(20), X3(20), XR2(20), XRK20), PR1
,

2 PR2, P1, F1, RJ1C40), DOTT, PGRADC20), DIAG(20),

3 PREV3, ADELX, NTCTR, NUMINI, NPHASE, NSATIS
COMMON /DEVC/ CONSOL, PRINTR, NP

C

NPHASE = 1

GO TO (10,50), NT2

10 NFIX =1

DO 30 1=1, N

IF (X(I)) 20,20,30
20 NFIX = 2

X(I) = 1.0E-05

30 CONTINUE
C

GO TO (50,40), NFIX
c

40 NPHASE = 4

CALL EVALU
NPHASE = 1

WRITE (PRINTR, 130)

130 FORMAT (//, 2X, 43HMADE VARIABLES WHICH VIOLATED NON-NEGATIVE
1 30HC0NSTRAINTS SLIGHTLY POSITIVE)

CALL OUTPUT (2)

50 IF (M) 90,90,60

60 DO 70 1=1,

M

IF (RJ(I)) 100,100,70
70 CONTINUE

IF (NPHASE. EQ.1) GO TO 90
C

C* * 80 CALL TIMEC
80 WRITE (PRINTR, 140)

140 FORMAT (//,2X,38HTHE FEASIBLE STARTING POINT AND VALUES)

G = 0.0
CALL RESTNT(0,F)
CALL OUTPUT (2)

r

90 RETURN
C

100 CALL BODY
IF (NPHASE. EQ. 5) RETURN

140

DO 110 1=1, M
IF (RJ(I)) 120,120,110

110 CONTINUE
GO TO 80

C

120 WRITE (PRINTR, 150)

150 FORMAT (/////,2X, 43HTHI3 PROBLEM POSSESSES NO FEASIBLE STARTING,
1 7H POINT. / 2X, 36HWILL LOOK FOR DATA TO NEXT PR03LEM.)

C

C TO INDICATE TO MAIN TO START ON NEXT PROBLEM
N PHASE = 5

GO TO 90
C

END

SUBROUTINE FINAL (N2)

C

C FINAL CONTAINS THE TESTS USED TO DETERMINE WHETHER A POINT
C SATISFIES THE FINAL CONVERGENCE CRITERION CHOSEN TO DETERMINE
C IF THE NLP PROBLEM HAS BEEN SOLVED.
C N2 SET EQUAL TO 1 IF CONERGEN CE CRITERION IS SATISFIED.
C N2 SET EQUAL TO 2 OTHERWISE.

C

INTEGER CONSOL, PRINTR
COMMON /SHARE/ X(20), DEL(20), A(20,20), N,M,MN,NP1 ,NM1

COMMON /OPTNS/ NT1 ,NT2,NT3,NT4,NT5,NT6,NT7,NT8,NT9,NT10
COMMON /VALUE/ F,G, PO,RSIGMA, RJ(20) ,RHO

COMMON /CRST/ DELX(20) ,DELX0(20) ,RHOIN, RATIO, EPSI,THETAO,

1 RSIG1, G1, XK20), X2(20), X3(20), XR2(20), XRK20), PR1
,

2 PR2, P1, F1, RJK40), DOTT, PGRAD(20), DIAGC20),

3 PREV3, ADELX, NTCTR, NUMINI, N PHASE, NSATE•o

COMMON /DEVC/ CONSOL, PRINTR, NP

GO TO (10,20,30), NT5

10 EPSIL = ABS(F/G-1.0)

IF (EPSIL-TKETAO) 50.50,70
C

20 IF (ABS(RSIGMA) - THETAO) 50,50,70
C

30 IF (NUMINI-1) 50, no, 40

40 PEST = PR1 - (PR1-P0) / (1.0 - 1.0 / SQRT(RATIO))

EPSIL = AB3 (PEST/G-1.0)
IF (EPSIL-THETAO) 50,70,70

50 N2 = 1

GO TO 80

C

70 N2=2

80 RETURN
END

141

SUBROUTINE GRAD (IS)

C

C GRAD COMPUTES THE GRADIENT OF THE PENALTY FUNCTION AND THE
C OUTER PRODUCT FACTORS OF THE MATRIX OF SECOND PARTIALS OF P.

C IF (IS=1) ACCUM. MATRIX OF 2ND PARTIALS
C IF (IS=2) DON'T
C

INTEGER CON SOL, PRINTR
COMMON /SHARE/ X(20), DEL(20), A(20,20), N,M,MN,NP1 ,NM1

COMMON /EQAL/ H, H1 , MZ

COMMON /OPTN S/ NT1 , NT2 , NT3 , NT4 , NT5 , NT6 , NT7 , NT8 , NT9 , NT1

COMMON /VALUE/ F,G,P0,RSIGMA,RJ(20) ,RHO

COMMON /CRST/ DELXC20) ,DELX0(20) ,RHOIN, RATIO, EPSI,THETAO,
1 RSIG1, G1, XI (20), X2(20), X3(20), XR2(20), XR1(20), PR1

,

2 PR2, P1, F1, RJK40), DOTT, PGRADC20), DIAG(20),

3 PREV3, ADELX, NTCTR, NUMINI, NPHASE, NSATIS
COMMON /DEVC/ CONSOL, PRINTR, NP

GO TO (10,30), IS

C

C

10 DO 20 1=1,

N

DO 20 J=1,I
A(I,J) = 0.0

20 CONTINUE
C

30 DO 40 1=1,

N

DELXO(I) = 0.0
40 CONTINUE

C

C THIS SECTION WORKS CORRECTLY IN FEASIBILITY PHASE AS WELL AS
C NORMAL PHASE
C

GO TO (50,30), NT2

C

50 DO 70 1=1,

N

DELXO(I) = - RHO / X(I)
GO TO (60,70), IS

60 A(I,J) = (-DELXO(I) / X(I))

70 CONTINUE
C

80 CONTINUE
IF (M.LE.O) GO TO 180

DO 170 K=1,M
CALL GRADKK)
IF (RJ(K).GT.0.0) GO TO 110

C

C ALL VIOLATED CONSTRAINT GRADS ADDED TO OBJECTIVE FUNCTION
DO 100 1=1,

N

IF (DEL(I)) 90,100,90
90 DELXO(I) = DELXO(I) - DEL(I)

1 CO CONTINUE
GO TO 170

C

110 TT = RHO / RJ(K)
DO 160 1=1,

N

142

IF (DEL(I)) 120,160,120
C IF DEL(I) = 3 SKIP ALL TOE FOLLOWING COMPUTATION
C INVOLVING * BY DEL(I)

120 T = TT * DEL(I)
DELXO(I) = DELXC(I) - T
GO TO (130,160), IS

130 T = T / RJ(K)
DO 150 JJ=1,I

IF (DEL(JJ)) 140,150,140
140 A(I,JJ) = A(I,JJ) + T * DEL(JJ)
150 CONTINUE
160 CONTINUE

c

c

170 CONTINUE

EQUALITY CHANGES FOR GRAD
180 IF (MZ.LE.O) GO TO 250

c

GO TO (250,190,250), NPHASE

190 RQ = 2.0 / RHO
DO 240 J=1,MZ

K = M + J

CALL GRAD 1(K)

TT = RQ * RJ(K)
DO 230 1=1,

N

IF (DEL(I).EQ.O.O) GO TO 230
DELXO(I) = DELXO(I) + DEL(I) * TT
GO TO (200,230), IS

200 T = RQ * DEL(I)
DO 220 JJ=1,I

IF (DEL(JJ)) 210, 220, 210
210 A(I,JJ) = A(I,JJ) + T * DEL(JJ)
220 CONTINUE
230 CONTINUE
240 CONTINUE

c

250 GO TO (260,280), IS
C

260 DO 270 1=1,

N

DIAG(I) = A(I,I)
270 CONTINUE

C

280 GO TO (290,330,290), NPHASE
C LEAVES NEGATIVE GRADIENT IN DELP

290 DO 300 1=1,

N

DELXO(I) = - DELXO(I)
300 CONTINUE

C

310 ADELX = 0.0
DO 320 1=1,

N

ADELX = ADELX + DELX0(I)**2
320 CONTINUE

C

ADELX = SQRT(ADELX)
RETURN

143

330 CALL GRADKO)
DO 340 1=1,

N

DELXO(I) = - DELXO(I) - DEL(I)
340 CONTINUE

C

C LEAVES THE NEGATIVE GRADIENT OF P IN DELXO
GO TO 310

C

END

SUBROUTINE INPUT

INTEGER CONSOL, PRINTR
COMMON /SHARE/ X(20), DEL(20), A(20,20), N,M,MN,NP1 ,NM1

COMMON /EQAL/ H, H1 , MZ

COMMON /OPTNS/ NT1 , NT2 , NT3 , NT4 , NT5 , NT6 , NT7 , NT8 , NT9 , NT1

COMMON /VALUE/ F,G,P0,RSIGMA,RJ(20) ,RHO

COMMON /CRST/ DELXC20) ,DELX0(20) ,RHOIN, RATIO, EPSI,THETA0,
1 RSIG1, G1, XK20), X2(20), X3(20), XR2(20), XRK20), PR1

,

2 PR2, P1, F1, RJK40), DOTT, PGRAD(20), DIAG(20),
3 PREV3, ADELX, NTCTR, NUMINI, NPHASE, NSATIS

COMMON /EXPOPT/ NEX0P1 , NEX0P2, XEP1 , XEP2
COMMON /DEVC/ CONSOL, PRINTR, NP

CALL OPEN (6,' OPTIONS DAT' ,2)

READ (6) N,M,MZ
READ (6) (X(I), 1=1, N)

READ (6) RHOIN, RATIO, EPSI, THETAO
READ (6

)

NT1 , NT2 , NT3 , NT4 , NTS , NT6 , NT7 , NTS , NT9 , NT1

READ (6) NEX0P1, NEX0P2
ENDFILE 6

RETURN
END

144

SUBROUTINE INVERS (NSME)
C

C INVERS SOLVES THE SET OF EQUATION FOR THE MOVE-VECTOR USING
C THE CROUT PROCEDURE. IF THE MATRIX IS NOT POSITIVE DEFINITE,
C A DIFFERENT METHOD IS USED.

C PERFORMING A L-U DECOMPOSITION OF THE MATRIX A, TAKING ADVANTAGE
C OF THE SYMMETRY OF THE A MATRIX.
C IF A NON- POSITIVE PIVOT CANDIDATE IS GENERATED, THEN MCCORMICK'S
C PROCEDURE IS USED (SEE PP. 167-168 IN FIACCO AND MCCORMICK).

C IF NSME =1 WORKING WITH A NEW A MATRIX
C IF NSME =2 USING PREVIOUS A MATRIX, BUT HAVE A NEW RIGHT-HAND SIDE.

C NINV IS THE NUMBER OF NON-POSITIVE PIVOT CANDIDATES GENERATED.
C

INTEGER CON SOL, PRINTR
DIMENSION B(20)
COMMON /SHARE/ X(20) , DEL(20), A(20,20), N,M,MN,NP1 ,NM1

COMMON /OPTNS/ NT1 ,NT2,NT3,NT4,NT5,NT6,NT?,NT8,NT9,NT1
COMMON /CRST/ DELX(20) ,DELX0(20) ,RHOIN, RATIO, EPSI,THETAO,

1 RSIG1, G1, XK20), X2(20), X3(20), XR2(20), XR1(20), PR1
,

2 PR2, P1, F1, RJU40), DOTT, PGRAD(20). DIAG(20),

3 PREV3, ADELX, NTCTR, NUMINI, N PHASE, NSATIS
COMMON /EXPORT/ NEXOP1 , NEX0P2, XEP1 , XEP2
COMMON /DEVC/ CCNSOL, PRINTR, NP

GO TO (20,170), NSME

20 NINVrO
if (a(i,d) no, 30, 50

30 NINV=1

GO TO 70
C

^0 NINV=1

50 A(1,1) = 1.0 / A(1,1)
DO 60 1=2,

N

A(1,I) = A(1,I) * A(1,1)

6G CONTINUE
C

70 DO 160 J=2,N
JM1=J-1
T=0.0
DO QO 1=1, JM1

IF (Ad, J)) 80,90,80
80 T = T + A(J,I) * A(I,J)

90 CONTINUE
C

A(J,J) = A(J,J) - T

IF (A(J,J)) 110,100,120
100 NINV = NINV + 1

GO TO 170

C

110 NINV = NINV + 1

120 A(J,J) = 1.0 / A(J,J)

IF (J.EQ.N) GO TO 170

JP1 = J+1

DO 150 L=JP1,N

145

1=0.0
DO 140 1=1, JM1

IF (A(I,J)) 130,140,130
130 T = T + A(L,I) * A(I,J)
140 CONTINUE

ACL, J) = A(L,J) - T
A(J,L) = ACL, J) * A(J,J)

1 50 CONTINUE
160 CONTINUE

C

170 CONTINUE
C

C

IF (NINV) 180,180,290

180 BCD = BCD * A(1,1)
DO 210 J=2,N

T = 0.0
JM1=J-1
DO 200 1=1, JM1

IF (A(J,I)) 190,200,190
190 T = T + A(J,I) * B(I)

200 CONTINUE
B(J) = (B(J)-T) * A(J,J)

21 CONTINUE
DO 240 1=1, NM1

NMK=N-I
DO 230 J=1,I

L = NP1 - J

IF (A(NMK,L)) 220,230,220
220 B(NMK) = B(NMK) - A(NMK,L) * B(L)

230 CONTINUE
240 CONTINUE

C

250 GO TO (280,260), NT3

260 WRITE (PRINTR,430)
430 FORMAT (/,2X, 12FJ)EL P VECTOR)

WRITE (PRINTR,420) (I, DELXO(I), 1=1, N)

420 FORMAT (/, 3(2X,4HDEL(, 12, 3H) = , E15.8))

270 WRITE (PRINTR,440)
440 FORMAT (/, 2X, 24HSEC0ND ORDER MOVE VECTOR

WRITE (PRINTR,420) (I» DELX(I), 1=1, N)

280 RETURN
C

C COMPUTE ORTHOGONAL MOVE
290 CONTINUE

DO 350 11=1,

N

I = N - II + 1

IF (A(I,I)) 310,300,320
300 B(I) = 0.0

GO TO 350
Vy

310 B(I) = 1.0

GO TO 330
C

320 BCD = 0.0

146

330

340
350

C

c

360

370
c

380

390
c

400
C

410

C

IP1 = 1+1

IF (IP1.GT.N) GO TO 350
DO 340 J=IP1,N

B(I) = B(I) - A(I,J) * B(J)
CONTINUE

CONTINUE
GO TO 360

CHECK MAYBE DO DIFF FOR P.S.D.
ZC2 = 0.0
DO 370 1=1,

N

ZC2 = ZC2 + DELXO(I) * BCD
CONTINUE

IF (ZC2) ^80,400,400
DO 390 1=1,

N

BCD = - BCD
CONTINUE

IF (NEX0P2.NE.2) GO TO 250

DO 410 K=1,N
B(K) = B(K) + DELXO(K)

CONTINUE
GO TO 250

END

SUBROUTINE OPT
C

C OPT LOOKS FOR A MINIMUM ALONG THE SEARCH VECTOR USING THE
C GOLDEN SECTION SEARCH METHOD.
C

INTEGER CONSOL, PRINTR
COMMON /SHARE/ X(20), DEL(20), A(20,20), N,M,MN,NP1 ,NM1

COMMON /VALUE/ F,G, P0,RSIGMA,RJ(20) ,RHO

COMMON /CRST/ DELX(20) ,DELX0(20) ,RHOIN, RATIO, EPSI,THETAO,
1 RSIG1, G1, XK20), X2(20), X3(20), XR2(20), XRK20), PR1

,

2 PR2, P1, F1, RJK40), DOTT, PGRAD(20), DIAGC20),

3 PREV3, ADELX, NTCTR, NUMINI, NPHASE, NSATIS
COMMON /DEVC/ CONSCL, PRINTR, NP

KSW=1

N405=1
P31=P0
ISW=1

DOTT=0.0
DO 10 J=1,N

DOTT = DOTT + DELX(J) * DELXO(J)

1 CONTINUE

GO TO 40

20 DO 30 1=1,

N

14;

DELX(I) = - DELX(I)

30 CONTINUE
C

40 CONTINUE
N404 =

MN=MN+1
C MN IS NOW NUMBER OF POINTS AFTER MINIMUM ACHIEVED

NTCTR = NTCTR + 1

DO 50 1=1,

N

X2(I) = X(I)

50 CONTINUE
C

PX1=P0
N401=0

60 N401 = N401 + 1

DO 70 1=1,

N

X(I) = X2(I) + DELX(I)
70 CONTINUE

C

CALL EVALU
C

C 1 MEANS SATISFIED A CONSTRAINT NOT PREVIOUSLY SATISFIED.
C 2 MEANS NO CHANGE
C 3 MEANS VIOLATION
C IF POINT IS NOT FEASIBLE GIVE IT AN ARBITRARILY HIGH VALUE.

C

GO TO (540,90,80), NSATIS
80 PX2 = 10.0E35

PO = 10.0E35
GO TO 100

C

90 CONTINUE
?Y2 = PO

IF (PX1-PX2) 100,100,150
100 IF (N401-2) 130,110,110
110 DO 120 1=1,

N

X1(I) = X(I)
1 20 CONTINUE

C

P1 = PX2
GO TO 430

C

C ONLY ONE POINT SO FAR COMPUTED
130 DO 140 1=1,

N

X3(D = X2(I)
1 40 CONTINUE

C

PREV3=PX1
GO TO 180

C

150 DO 160 1=1,

N

X3(D = X2(I)

X2(I) = X(I)
DELX(I) = 1.61803399 * DELX(I)

160 CONTINUE

148

PREV3 = PX1

PX1 = PX2
GO TO 60

C

C THE GOLDEN SECTION SEARCH METHOD.
C

C B VECTOR GOES TO X1(I)
170 P0=1 .0E36

N404 = N404 + 1

180 DO 190 1=1, N

XKI) = X(I)
1 90 CONTINUE

C

P1 = PO

DO 200 1=1, N

XCI) = 0.38196601 * (X1(I)-X3(I)) + X3(I)
X2(I) = X(I)

2C0 CONTINUE

CALL EVALU

GO TO (540,270,210), NSATIi

210 IF (N404.LT.30) GO TO 170
C

C IT IS POSSIBLE NO FEASIBLE POINT EXISTS, IF NOT, TRY MOVING ON
C DELXO. IF IT IS NOT POSSIBLE TO MOE ON DELXO THEN WE MUST BE
C AT A SOLUTION OF THE NLP PROBLEM.
C

IF (N404.GT.100) GO TO 240

220 DO 230 1=1,

N

IF (ABS(ABS(X3(D/X1(I)) - 1 .0) .GT. 1 .OE-07) GO TO 170
230 CONTINUE

C

240 GO TO (250,260), N405
250 N405=2

C

C TRY TO MOVE ON GRADIENT
NTCTR = NTCTR - 1

MN = MN - 1

GO TO 20
C

260 WRITE (PRLNTR,580)
580 FORMAT (//, 2X, 42H0PT CAN'T FIND A FEASIBLE POINT THAT GIVES

1 ,33H A LOWER VALUE OF THE P-FUNCTICN)

C* * CALL TIMEC
CALL OUTPUT (1)

CALL REJECT
STOP 22042

C

270 CONTINUE
N404 =

PX1 = PO

DO 280 1=1,

N

149

X(I) = 0.33196601 * (X1(I)-X2(I)) + X2(I)
280 CONTINUE

C

CALL EVALU
GO TO (540,290,220), NSATIS

C

290 PX2 = PO

N401 = 1

300 N401 = N401 + 1

IF (N401-25) 340,310,310
310 KSW=2

C

IF (N401-40) 320,460,460
320 DO 330 1=1,

N

IF (ABS(X2(I)/X(I)-1.0).GE.1.0E-7) GO TO 340

330 CONTINUE
GO TO 460

C

340 IF (ABS(PX1/PX2-1.0) .LE. 1 .OE-7) GO TO 460
IF (PX1-PX2) 350,460,400

C

C THROW AWAY RIGHT PART
350 DO 360 1=1,

N

XKI) = X(I)

360 CONTINUE

C

P1 = PX2
DO 370 1=1,

N

C POINT XP1 BECOMES XP2 TEMPORARILY IN X STORAGE
X(I) = 0.38196601 * (X1(I)-X3(I)) + X3(I)

370 CONTINUE
C

CALL EVALU
GO TO (540,380,170), NSATIS

C

380 CONTINUE
PX2 = PX1

C

C SWITCH VECTORS TO PROPER POSITION
PX1=PO
DO 390 1=1, N

XX = X2(I)

X2(I) = X(I)

X(I) = XX

390 CONTINUE
GO TO 300

C

C LEFT SIDE TOSSED AWAY
C CHANGES FOR NCNUNIMODAL FUNCTION. GO TO THROW AWAY RIGHT
C LN CASE INITIAL VALUE LESS THAN FEASIBLE POINT.

400 IF (PREV3-PX2) 350,350,410
410 DO 420 1=1, N

X3(I) = X2U)
X2(I) = X(I)

420 CONTINUE

150

PREV3=PX1
PXUPX2

430 DO 440 1=1,

N

X(I) = 6.38196601 * (X1(I)-X2(I)) + X2(I)
440 CONTINUE

C

CALL EVALU
GO TO (540,450,170), NSATIS

C

450 CONTINUE
PX2=P0
GO TO 3 CO

C

C THE INTERIOR POINTS NOW GIVE EQUAL VALUE FOR P. COMPUTE MIDPOINT,
460 DO 470 1=1,

N

DELXO(I) = X(I)
X(I) = (DELXO(I) + X2(I)) * 0.5

470 CONTINUE
C

CALL EVALU
GO TO (480,490), K3W

C

480 IF (ABS(F0/PX1-1.0) .GT.1.0E-07) GO TO 520
490 GO TO (500,510), ISW

500 IF (P0.LT.P3D GO TO 510
ISW=2

C IF P-FUNCTION DIDN'T GO DOWN, TRY NEGATIVE VECTOR.
GO TO 20

C

510 RETURN
C

520 DO 530 1=1,

N

X(I) = DELXO(I)

530 CONTINUE
GO TO 350

C

C WE ARE NOW LN FEASIBILITY PHASE
540 DO 550 1=1, M

IF (RJ(I)) 560,560,550
550 CONTINUE

C

NSATIS = 4

RETURN
C

C PROBLEM HAS BECOME FEASIBLE
C P - FUNCTION CHANGES IF A CONSTRAINT BECOMES FEASIBLE

560 MN=0
DO 570 1=1, M

RJKI) = RJ(I)

570 CONTINUE
C

RETURN
END

151

SUBROUTINE OUTPUT (K)

C

C OUTPUT PRINTS OUT INFORMATION ON THE RESULTS OF EACH ITERATION
C

INTEGER CON SOL, PRINTR
COMMON /SHARE/ X(20), DEL(20), A(20,20), N,M,MN,NP1 ,NM1

COMMON /EQAL/ H, H1 , MZ
COMMON /OPTN S/ NT1 , NT2 , NT3 , NT4 , NT5 , NT6 , NT7 , NT8 , NT9 , NT1

COMMON /VALUE/ F,G,P0,RSIGMA,RJ(20) ,RHO
COMMON /CRST/ DELX(20) ,DELXO(20) ,RHOIN, RATIO, EPSI,THETAO,

1 RSIG1, G1, XK20), X2(20), X3(20), XR2(20), XR1(20), PR1

,

2 PR2, P1, F1, RJ1(40), DOTT, PGRAD(20), DIAG(20),

3 PREV3, ADELX, NTCTR, NUMINI, NPHASE, NSATIS
COMMON /DEVC/ CON SOL, PRINTR, MP

C

NZ = M + MZ

GO TO (10,20), K

C

10 WRITE (PRINTR, 1) NTCTR
WRITE (PRINTR, 2) RHO, RSIGMA

20 WRITE (PRINTR, 3) F,P0,G
WRITE (PRINTR, 4)

WRITE (PRINTR, 5) (J, X(J), J=1,N)

WRITE (PRLNTR,6)

GO TO (30,40), NT2

C

30 WRITE (PRINTR, 8) (I, RJ(I), 1=1, NZ)

GO TO 50
C

40 WRITE (PRINTR, 3) (I, RJ(I), 1=1, NZ)

C

1 FORMAT (///, 8X, 18H *** POINT NUMBER ,15, 3H ***)

2 FORMAT (/, 2X, 6HRH0 = ,E14.7, 4X, 9HRSIGMA = ,E14.7)

3 FORMAT (/, 2X, 3HF =,E14.7, 4X, 3HP =,E14.7, 4X, 3HG =,E14.7)
4 FORMAT (/, 2X, 18HVALUES OF X VECTOR)

5 FORMAT (1X, 3(2X,2HX(, 12, 3H) =,E14.7))

6 FORMAT (/, 2X, 25HVALUES OF THE CONSTRAINTS)

8 FORMAT (1X, 3(3X, 2HG(, 12, 3H) = ,E14.7))

C

50 RETURN
END

SUBROUTINE PEVALU
C

C PEVALU COMPUTES THE VALUE OF THE PENALTY FUNCTION AND THE VALUE
C OF THE DUAL USING PREVIOUSLY COMPUTED VALUES FOR F AND RJ.

C

INTEGER CONSOL, PRINTR
COMMON /SHARE/ X(20), DEL(20), A(20,20), N,M,MN,NP1 ,NM1

COMMON /EQAL/ H, H1 , MZ

COMMON /OPTNS/ NT1 , NT2 , NT3 , NT4 , NT5 , NT6 , NT7 , NTS , NT9 , NT1

COMMON /VALUE/ F,G, PO, RSIGMA, RJ(20) ,RHO

COMMON /CRST/ DELXC20) ,DELX0(20) ,RHOLN, RATIO, EPSI,THETAO,

152

1 RSIG1, G1, XI (20), X2(20), X3C20), XR2(20), XRK20), PR1
,

2 PR2, P1, F1, RJU40), DOTT, PGRAD(20), DIAG(20),
3 PREV3, ADELX, NTCTR, NUMINI, NPHASE, NSATIS

COMMON /DEVC/ CONSOL, PRINTR, NP
C

H=0.0
RSIGMA=0.0

C NONNEGS IF INCLUDED ARE ADDED TO P— ARE POSITIVE IN ALL PHASES
GO TO (10,30), NT2

C

10 DO 20 1=1,

N

RSIGMA = RSIGMA - RKO*ALOG(X(I))
20 CONTINUE

C

30 GO TO (40,50,150), NPHASE
C

C OBJECTIVE FUNCTION - SIGMA VIOLATED CONSTRAINTS
40 F = 0.0
50 IF (M) 100,100,60
60 DO 90 J=1,M

IF CRJ(J)) 80,80,70
70 RSIGMA = RSIGMA - RHO*ALOG(RJ(J))

GO TO 90
C

80 F = F - RJ(J)

90 CONTINUE
C

C EQUALITIES NOT ADDED IN FEASIBILITY PHASE

100 CONTINUE

IF (MZ) 140,140,110
110 GO TO (140,120,150), NPHASE

C

120 DO 130 1=1, MZ

K=M+I
H = H + RJ(K)**2

130 CONTINUE
H = H / RHO

C

140 HS = H + RSIGMA
PO = F + HS
HMS = 2.0 * H - RHC*FLOAT(M)

G = F + HMS
IF (NT2.EQ.1) G = G - RHO*FLOAT(N)

C

150 RETURN
END

155

SUBROUTINE REJECT
C

C REJECT RETURNS THE STORED VALUES OF THE OBJECTIVE FUNCTION, THE
C CONSTRAINT FUNCTION AND THE PENALTY FUNCTION TO THEIR NORMAL
C LOCATION.
C

INTEGER CON SOL, PRINTR
COMMON /SHARE/ X(20), DEL(20), A(20,20), N,M,MN,NP1 ,NM1

COMMON /EQAL/ H, H1 , MZ
COMMON /VALUE/ F,G, PO,RSIGMA, RJ(20) ,RHO
COMMON /CRST/ DELXC20) ,DELX0(20) ,RHOIN, RATIO, EPSI,THETAO,

1 RSIG1, G1, XK20), X2(20), X3(20), XR2(20), XRK20), PR1
,

2 PR2, P1, F1, RJK40), DOTT, PGRADC20), DIAG(20),

3 PREV3, ADELX, NTCTR, NUMINI, NPHASE, NSATIS
COMMON /DEVC/ CONSOL, PRINTR, NP

C

DO 10 1=1,

N

X(I) = X1(I)
1 CONTINUE

C

c

MMZ=M+MZ
DO 20 J=1,MMZ

RJ(J) = RJKJ)
20 CONTINUE

P0=P1

RSIGMA = RSIG1

G=G1

F=F1

H=H1

RETURN
END

154

SUBROUTINE RHOCOM
C

C RHOCOM COMPUTES THE INITIAL R VALUE IF DESIRED
C

INTEGER CON SOL, PRINTR
COMMON /SHARE/ X(20), DEL(20), A(20,20), N,M,MN,NP1 ,NM1
COMMON /OPTUS/ NT1 , NT2 , NT3 , NT4 , NT5 , NT6 , NT? , NTS , NT9 , NT1
COMMON /VALUE/ F,G, P0,RSIGMA,RJ(20) ,RHO
COMMON /CRST/ DELX(20) ,DELX0(20) , RHOIN, RATIO, EPSI,THETAO,

1 RSIG1, G1, XK20), X2(20), X3(20), XR2(20), XRK20), PR1
,

2 PR2, P1, F1, RJK40), DOTT, PGRAD(20), DIAG(20),
3 PREV3, ADELX, NTCTR, NUMINI, NFHASE, NSATIS

COMMON /DEVC/ CONSOL, PRINTR, NP
C

GO TO (110,50,10,190), NT1

10 RHO = RHOIN
20 IF (RHO) 30,30,40
30 RHO = 1 .0

40 RETURN
C

50 NPAR1 = 1

60 RHO = 1.0
C NT1=2 MEANS RHO WHICH MINIMIZES GRADIENT MAGNITUDE

CALL GRAD (2)

DO 70 1=1,

N

PGRAD(I) = DELXO(I)
70 CONTINUE

RHO =2.0
CALL GRAD (2)

DO 80 1=1,

N

DELXO(I) = DELXO(I) - PGRAD(I)

PGRAD(I) = PGRAD(I) - DELXO(I)
80 CONTINUE

C

GO TO (90,130), NPAR1

90 D0T1 =0.0
D0T2 =0.0
DO 100 1=1,

N

D0T1 = D0T1 + DELXO(I) * FGRAD(I)
D0T2 = D0T2 + DELX0(I)**2

100 CONTINUE
RHO = ABS(D0T1/D0T2)
GO TO 20

C

C NT1=3 MEANS COMPUTE RHO SO AS TO MINIMIZE DELP (/DDP/1.) DEL

110 MPAR2 = 1

120 NPAR1 = 2

GO TO 60
130 RHO = 1.0

C ASSUME SIGMA TERM IS CONSIDERABLE GREATER THAN F TERM
CALL SECORD (2)

DO 140 1=1,

N

DELX(I) = PGRAD(I)

1 40 CONTINUE
CALL INVERS (1)

lo5

DO 150 1=1, N
X1(I) = DELX(I)
DELX(I) = DELXO(I)

1 50 CONTINUE
CALL SECORD (2)

CALL INVERS (1)

DO 160 1=1,

N

XR2CI) = DELX(I)

160 CONTINUE
GO TO (170,200), NPAR2

170 DOT1 = 0.0
D0T2 = 0.0
DO 180 1=1,

N

DOT1 = DOT1 + PGRAD(I) * X1(I)

DOT2 = D0T2 + DELXO(I) * XR2(I)
1 80 CONTINUE

RHO = SQRT(ABSCD0T1/D0T2))

GO TO 20
C

C RHO MINIMIZES 2ND ORDER MOVE

190 NPAR2 = 2

GO TO 120
C

200 DOT1 =0.0
DOT2 =0.0
DO 210 1=1, N

DOT1 = X1(I)**2 + DOT1

DOT2 = X1(I)*XR2(I) + DOT2
21 CONTINUE

RHO = ABS(D0T1/D0T2)
GO TO 20

END

SUBROUTINE SECORD CIS)

C

C SECORD EVALUATES THE MATRIX OF SECOND PARTIALS OF THE PENALTY
C FUNCTION.
C (1) MEANS DON'T COMPUTE GRADIENT OUTER PRODUCT (IN SECORD).
C

INTEGER CON SOL, PRINTR
COMMON /SHARE/ X(20), DELC20), A(20,20), N,M,MN,NP1 ,NM1

COMMON /EQAL/ H, H1 , MZ
COMMON /OPTN S/ MT1 , NT2 , NT3 , NT4 , NT5 , NT6 , NT7 , NT8 , NT9 , NT1

COMMON /VALUE/ F,G,P0,RSIGMA,RJ(2O) ,RHO
COMMON /CRST/ DELXC20) ,DELX0(20) ,RHCIN, RATIO, E?SI,THETAO,

1 RSIG1, G1, X1(20), X2(20), X3(20), XR2(20), XRK20), PR1
,

2 FR2, P1, F1, RJK40), DOTT, PGRAD(20), DIAG(20),

3 PREV3, ADELX, NTCTR, NUMINI, NPHASE, NSATIS
COMMON /DEVC/ CONSOL, PRINTR, NP

DO 10 1=1,

N

DO 10 J=1,N

156

A(I,J) = 0.0
10 CONTINUE

c

GO TO (230,20), IS
c

c GRADIENT TERM NOT PREVIOUSLY COMPUTED.
20 DO 30 1=1,

N

DO 30 J=1,I
A(I,J) = 0.0

c

30 CONTINUE

GO TO (40,60), NT2
c

40 DO 50 1=1,

N

A(I,I) = RHO / X(I)**2
50 CONTINUE

c

60 CONTINUE
IF (M.LE.O) GO TO 130
DO 120 IN=1,M

IF (RJ(IN)) 120,120,70
70 CALL GRADKIN)

TT = RHO / RJ(IN)**2
DO 110 1=1,

N

IF (DEL(D) 80,110,80
80 T = TT * DEL(I)

DO 100 J=1,I
IF (DEL(J)) 90,100,90

90 A(I,J) = A(I,J) + T * DEL(J)

1 00 CONTINUE
110 CONTINUE
1 20 CONTINUE

C EQUALITY CONSTRAINTS
130 IF (MZ) 210,210,140
140 GO TO (210,150,230), NPHASE

C

150 RQ = 2.0 / RHO
DO 200 JJ=1,MZ

IN = M + JJ

CALL GRAD1 (IN)

DO 190 1=1,

N

IF (DEL(D) 160,190,160
160 T = RQ * DEL(I)

DO 180 J=1,I
IF (DEL(J)) 170,180,170

170 A(I,J) = A(I,J) + T*DEL(J)

180 CONTINUE
190 CONTINUE
200 CONTINUE

C

210 DO 220 1=1,

N

DIAG(I) = A(I,I)
A(I,I) = 0.0

220 CONTINUE

157

C

C READY NCW FOR MATRIX OF 2ND PARTIALS OF RESTRAINTS
230 GO TO (240,510,520), NT10

C

240 IF (M.LE.O) GO TO 340
DO 330 IN=1,M

LORN = 2

C CONSTRAINT ASSUMED NONLLNEAR
CALL MATRIX (IN, LORN)
IF (L0RN.LT.2) GO TO 330
IF (RJ(IN).GT.0.0) GO TO 230
DO 261 1=2,

N

IM1 = I - 1

DO 260 J=1,IM1
IF (A(J,D) 250,260,250

250 A(I,J) = A(I,J) + A(J,I)
A(J,I) = 0.0

260 CONTINUE
261

C

CONTINUE

DO 270 1=1,

N

DIAG(I) = DIAG(I) - A(I,I)
A(I,I) = 0.0

270 CONTINUE
GO TO 330

c

280 T = - RHO / RJ(IN)
DO 301 1=2,

N

IM1 =1-1
DO 300 J=1,IM1

IF (A(J,D) 290,300,290
290 A(I,J) = A(I,J) + T*A(J,I)

A(J,I) = 0.0
300 CONTINUE
301 CONTINUE

DO 320 1=1,

N

IF (A(I,I)) 310,320,310
310 DIAG(I) = DIAG(I) + T*A(I,I)

A(I,I) = 0.0
320 CONTINUE

C

330 CONTINUE

340 CONTINUE
GO TO (520,350,520), NPHASE

c

C

350 IF (MZ.EQ.O) GO TO 420

EQUALITY SECOND PARTIALS HERE
IF (NT10.GE.2) GO TO 420

DO 410 11=1, MZ

IN = M + II
L0RN=2
CALL MATRIX (IN, LORN)
IF (L0RN.LT.2) GO TO 410

T = 2.0 * RJ(IN) / RHO

15S

C

DO 380 1=2,

N

IM1 = 1-1

DO 370 J=1,IM1
IF (A(J,I)) 360,370,360

360 A(I,J) = A(I,J) + T*A(J,I)
A(J,I) = 0.0

370 CONTINUE
380 CONTINUE

DO 400 1=1 ,N

IF (A(I,I)) 390,400,390
390 DIAG(I) = DIAG(I) + T*A(I,I)

A(I,I)=0.0
400 CONTINUE

C

410 CONTINUE
C

C GET MATRIX OF 2ND PARTIALS OF OBJECTIVE FUNCTION
420 LLL=2

CALL MATRIX (0,LLL)

IF (LLL.LT.2) GO TO 490
DO 441 1=2,

N

IM1=I-1
DO 440 J=1,IM1

IF (A(J,D) 430,440,430
430 A(I,J) = A(I,J) + A(J,I)
440 CONTINUE
441 CONTINUE

C

DO 470 1=1,

N

IF (A(I,D) 450,460,450
450 A(I,I) = DIAG(I) + A(I,I)

GO TO 470
C

460 A(I,I) = DIAG(I)
470 CONTINUE
480 RETURN

C

490 DO 501 1=1,

N

A(I,I) = DIAG(I)
DO 500 J=I,N

Ad, J) = A(J,I)

500 CONTINUE
501 CONTINUE

GO TO 480
C

510 GO TO (520,350,350), NPHASE
520 DO 531 1=2,

N

IMUI-1
DO 530 J=1,IM1

A(J,I) = A(I,J)

530 CONTINUE

531 CONTINUE
DO 540 1=1,

N

A(I,I) = DIAG(I)

159

540 CONTINUE
GO TO 480

END

SUBROUTINE STORE
C

C STORE STORES THE VALUES OF THE CURRENT POINT AND THE
C ASSOCIATED VALUES OF THE FUNCTION IN A TEMPORARY AREA.
C

INTEGER CON SOL, PRINTR
COMMON /SHARE/ X(20), DEL(20), A(20,20), N,M,MN,NP1 ,NM1

COMMON /EQAL/ H, H1 , MZ
COMMON /VALUE/ F,G, P0,RSIGMA,RJ(20) ,RHO
COMMON /CRST/ DELX(20) ,DELX0(20) , RHOIN, RATIO, EPSI,THETAO,

1 RSIG1, G1, XK20), X2C20), X3(20), XR2(20), XRK20), PR1
,

2 PR2, P1, F1, RJK40), DOTT, PGRAD(20), DIAGC20),

3 PREV3, ADELX, NTCTR, NUMINI, NPHASE, NSATIS
COMMON /DEVC/ CONSOL, PRINTR, NP

C

c

DO 10 1=1,

N

X1(I) = X(I)
1 CONTINUE

MMZ = M + MZ

DO 20 J=1,MMZ
RJKJ) = RJ(J)

20 CONTINUE

P1=P0
F1=F
G1=G
RSIG1 rRSIGMA
H1rH

RETURN
END

160

SUBROUTINE XMOVE
C

C XMOVE DETERMINES THE VECTOR ALONG WHICH THE SEARCH FOR A MINIMUM
C IS USING OPT.
C NEXOP2 DETERMINES HOW MOVE IS TO BE MADE
C 1 USE MODIFIED NEWTON RAPHSCN METHOD.
C 2 USE MODIFIED NEWTON RAPHSON METHOD, EUT ADD DELXO TO
C ORTHOGONAL MOVE VECTOR IF HESSIAN IS INDEFINITE.
C 3 USE STEEPEST DESCENT METHOD.
C 4 USE MCCORMICK'S MODIFICATION OF THE FLETCHER- POWELL METHOD.
C

INTEGER CONSOL, PRINTR
COMMON /SHARE/ X(20), DEL(20), A(20,20), N,M,MN,NP1 ,NM1

COMMON /CRST/ DELX(20) ,DELX0(20) ,RHOIN, RATIO, EPSI,THETAO,
1 RSIG1, G1, XK20), X2(20), X3(20), XR2(20), XR1(20), PR1

,

2 PR2, P1, FT, RJ1(40), DOTT, PGRAD(2C), DIAG(20),

3 PREV3, ADELX, NTCTR, NUMINI, NPHASE, NSATIS
COMMON /EXPORT/ NEX0P1 , NEX0P2, XEP1 , XEP2
COMMON /XVE/ SIGC20), YY(20), XXX(20), DELLC20)
COMMON /DEVC/ CONSOL, PRINTR, NP

C

GO TO (10,10,180,30), NEXCP2
C

C NEWTON-RAPHSON WITH WHATEVER METHOD IS IN INVERSE
10 CALL GRADO)

C ONE (1) MEANS ACCUMULATE MATRIX OF SECOND PARTIAL DERIVATIVES
CALL SECORDO)
DO 20 1=1,

N

DELX(I) = DELXO(I)
20 CONTINUE

CALL INVERSC1)
C IF A NONPOSITIVE PIVOT IS ENCOUNTERED IN INVERSE, AN ATTEMPT
C IS MADE TO COMPUTE A VECTOR HAVING A POSITIVE DOT PRODUCT
C WITH A NEGATIVE EIGENVECTOR AND THE NEGATIVE OF DEL P.

CALL STORE
CALL OPT
RETURN

ri

30 CALL GRAD (2)

C MN IS NO. OF MOVES FOR THIS VALUE OF RHO
IF (MN.NE.O) GO TO 70

40 IREP=0
IT=0

C SET INITIAL GUESS INVERSE MATRIX OF SECOND PARTIAL DERIVATIVES
C USE PARTIAL INVERSE IF KNOWN

DO 50 1=1,

N

DO 50 J=1,N
A(I,J) = 0.0

50 CONTINUE
r

DO 60 1=1,

N

A(I,I) = 1.0

60 CONTINUE
C

161

70 DO 80 1=1,

N

DELX(I) = DELXO(I)
80 CONTINUE

C

IF (IREP.GT.N) GO TO MO

IF (IT.EQ.O) GO TO 130

C

DO 90 1=1,

N

SIG(I) = X(I) - XXX(I)
YY(I) = DELL(I) -DELXO(I)

90 CONTINUE
C

C NEGATIVE GRADIENT STORED AND COMPUTED. COMPUTE HY.

DO 101 1=1, N

DELX(I) =0.0
DO 100 J=1,N

DELX(I) = DELX(I) + A(I,J)*YY(J)
100 CONTINUE
101 CONTINUE

C

C COMPUTE Y(SIG-HY) - 1

ZCON=0.0
DO 110 1=1,

N

ZCCN = ZCON + YY(I) * (SIG(I) - DELX(I))

1 1 CONTINUE
C

IF (ZCON. EQ. 0.0) GO TO 130
'IREP = IREP + 1

ZC = 1.0 / ZCON
C

C UPDATE H MATRIX USING MCC FORMULA WHEN SCALAR NOT EQUAL TO ZERO
DO 121 1=1, N

T1 = ZC * (SIG(I) - DELX(I))

DO 120 J=i,N
A(I,J) = A(I,J) + T1 * (-DELX(J)+SIG(J))

A(J,I) = A(I,J)
1 20 CONTINUE
1 21 CONTINUE

C

C STORE CURRENT POINT AND CURRENT GRADIENT (MEG)

130 DC 140 1=1,

N

XXX(I) = X(I)
DELL(I) = DELXO(I)

1 40 CONTINUE
C

c

DO 151 1=1.

N

DELX(I) = 0.0
DO 150 J=1,N

DELX(I) = DELX(I) + A(I,J) * DELXO(J)
1 50 CONTINUE
151 CONTINUE

ZC1 = 0.0
DO 160 1=1,

N

ZC1 = DELX(I)**2 + ZC1

162

160 CONTINUE
C

ZC1 = SQRTCZC1)
DO 170 1=1,

N

DELX(I) = DELX(I) / ZC1

170 CONTINUE
C

CALL STORE
CALL OPT
IT = IT + 1

RETURN
C

180 CONTINUE
C

C STEEPEST DESCENT
CALL GRAD(2)
DO 190 1=1,

N

DELX(I) = DELXO(I)
1 90 CONTINUE

C

CALL STORE
CALL OPT

C

RETURN
END

163

PROGRAM READIN
C

C ** RAC SUMT INPUT PROGRAM **

c

C THIS INPUT PROGRAM IS USED TO ENTER ALL DATA NEEDED EY THE
C MAIN PROGRAM. IT ALLOWS INPUT TO BE ENTERED FROM THE KEYBOARD
C IN AN INTERACTIVE MANNER.
C

C THE PROGRAM IS WRITTEN BY : FRANK HWANG, I.E., KSU, 1983.
C

c

c

LOGICAL NAME (60)
INTEGER OPTION, CONSOL, PRINTR
REAL X(20)

C

DATA CONSOL, PRINTR /1,2/
DATA NT1 , NT2 , NT3 , NT4 , NT5 / 3,1,1,1,2/
DATA NT6,NT7,NT8,NT9,NT10 /1, 1,1, 1,1/

C

WRITE (CONSOL, 199)
WRITE (PRINTR, 199)

WRITE (CONSOL, 197)
READ (CONSOL, 196) NAME
WRITE (PRINTR, 195) NAME

C

WRITE (CONSOL, 194)
READ (CONSOL, 193) N

C

WRITE (CONSOL, 189)
READ (CONSOL, 193) M
WRITE (CONSOL, 187)
READ (CONSOL, 193) MZ

WRITE (CONSOL, 185) N, M, MZ

WRITE (PRINTR, 185) N, M, MZ

C

WRITE (CONSOL, 182)

DO 50 1=1,

N

WRITE (CONSOL, 181) I

READ (CONSOL, 180) X(I)

50 CONTINUE
C

C * ECHO CHECK INITIAL POINT
WRITE (CONSOL, 178) (I, X(I), 1=1, N)

C

C * DEFAULT VALUES OF THE PARAMETERS
C

RHO = 1.0

RHOIN = RHO
RATIO =4.0
EPSI = 0.1 E-4

THETAO = 0.1 E-2

164

NT1 =3

NT2=1

NT3=1

NT4=1
NT5=2
NT6=1

NT7=1

NT8=1

NT9=1

NT10=1

NEX0P1 = 1

NEX0P2 = 1

WRITE (CCNSOL,175)
60 WRITE (C0NS0L,174)

READ (CONSOL,173) OPTION
IF (OPTION. LE.O) GO TO 70

GO TO (1,2,3,4,5,6,7,8,9,10), OPTION

1 WRITE (CONSCL,170)
READ (C0NS0L,169) NT1

IF (NT1.NE.3) GO TO 21

WRITE (CONSOL,168)
READ (CONSOL,167) RHOIN
IF (R.LE.O.O) RHOIN = 1.0

21 IF (NT1.LE.0) NT1 = 3

IF (OPTION. NE. 99) GO TO 60

2 WRITE (CONSOL,160)
READ (C0NS0L,167) RATIO
IF (RATIO. LE. 1.0) RATIO =4.0
IF (OPTION. NE. 99) GO TO 60

3 WRITE (CONSOL,159)
READ (C0NS0L,167) EPSI
IF (EPSI. LE. 0.0) EPSI = 0.1E-4
IF (OPTION. NE. 99) GO TO 60

4 WRITE (CONSOL,158)
READ (C0NS0L,167) THETAO
IF (THETAO. LE.O) THETAO = 0.1 E-2
IF (OPTION. NE. 99) GO TO 60

5 WRITE (CONSOL,155)
READ (CONSOL,154) NT2
IF ((NT2.LE.0).OR.(NT2.GT.2)) NT2=1

IF (OPTION. NE. 99) GO TO 60

6 WRITE (CONSOL,150)

READ (CONSOL,154) NT5
IF ((MT5.LE.0).0R.(NT5.GT.2)) NT5 = 2

IF (OPTION. NE. 99) GO TO 60

165

7 WRITE (CONSOL,149)
READ (CONSOL,154) MT9
IF ((NT9.LE.O).OR.(NT9.GT.3)) NT9 = 1

IF (OPTION. NE. 99) GO TO 60
C

8 WRITE (CONSOL,147)
READ (C0NS0L,154) NTT
IF ((NT7.LE.0).0R.(NT7.GT.3)) NT7 = 1

IF (OPTION. NE. 99) GO TO 60
C

9 WRITE (CONSOL,145)
READ (CONSOL,154) NEXOP1
IF ((NEXOP1.LE.0).OR.(NEXOP1.GT.5)) NEXOP1 = 1

IF (OPTION. NE. 99) GO TO 60
C

10 WRITE (C0NSCL,144)
READ (C0NS0L,154) NEX0P2
IF ((NEX0P1.LE.0).0R.(NEX0P2.GT.4)) NEX0P2 = 1

C

C * ECHO CHECK OPTIONS CHOSEN
70 WRITE (CONSOL,143)

WRITE (PRINTR,143)
C

75 GO TO (76,77,78), NT1

76 WRITE (C0NS0L,109)
WRITE (PRINTR,109)
GO TO 79

C

77 WRITE (C0NSCL,108)
WRITE (PRINTR,108)
GO TO 79

r

78 WRITE (CONSOL,110) RHOIN
WRITE (FRINTR,110) RHOIN

C

79 WRITE (C0NS0L,140) RATIO, EPSI, THETAO
WRITE (PRINTR,140) RATIO, EPSI, THETAO

C

GO TO (80,31), NT2
80 WRITE (CONSOL,138)

WRITE (PRINTR,138)
GO TO 82

C

81 WRITE (CONSOL,137)
WRITE (PRINTR,137)

C

82 GO TO (83,84), NT5

83 WRITE (CONSOL,135)
WRITE (PRINTR,135)
GO TO 85

C

84 WRITE (CONSOL,134)
WRITE (PRINTR,134)

166

85
86

87

88

89
90

91

92

93
94

GO

95

96

97

98

GO

GO

TO (86,87,88)
WRITE (CONSOL
WRITE (PRINTR
GO TO 89

WRITE (CONSOL
WRITE (PRINTR
GO TO 89

WRITE
WRITE

(CONSOL
(PRINTR

TO (90,91,92)
WRITE (CONSOL
WRITE (PRINTR
GO TO 93

WRITE (CONSOL
WRITE (PRINTR
GO TO 93

WRITE
WRITE

(CONSOL
(PRINTR

TO (94,95,96
WRITE (CONSOL
WRITE (PRINTR
GO TO 99

WRITE (CONSOL
WRITE (PRINTR
GO TO 99

WRITE (CONSOL
WRITE (PRINTR
GO TO 99

WRITE (CONSOL
WRITE (PRINTR
GO TO 99

WRITE (CONSOL
WRITE (PRINTR

99 GO TO (100,101,1

100 WRITE (CONSOL
WRITE (PRINTR
GO TO 105

101 WRITE (CONSOL
WRITE (PRINTR
GO TO 105

NT9

132)

132)

131)

131)

130)

130)

NT?

128)

128)

12?)

127)

126)

126)

97,98), NEXOP1

125)
125)

124)

124)

123)

123)

122)

122)

121)

121)

2,103), NEX0P2

119)

119)

118)

118)

167

102 WRITE (CONSCL,117)
WRITE (PRINTR,! 17)

GO TO 105

103 WRITE (C0NS0L,116)
WRITE (PRINTR,! 16)

105 CALL OPEN (6, 'OPTIONS DAT' ,2)

WRITE (6) N,M,MZ
WRITE (6) (X(I), 1=1, N)

WRITE (6) RHOIN, RATIO, EPSI, THETAO
WRITE (6) NT1 , NT2 , NT3 , NT4 , NT5 , NT6 , NT? , NT8 , NT9 , NT1

WRITE (6) NEX0F1,NEX0P2
ENDFILE 6

CALL FCHAIN ORACSUMT COM' ,2)

199 FORMAT (//,20X, 'RAC-SUMT VERSION 4.1V)
197 FORMAT (' ' ,5X,' PROBLEM NAME : ')

196 FORMAT (60A1)

195 FORMAT ('0' ,12X,60A1

)

194 FORMAT ('0* ,5X, 'NUMBER OF VARIABLES :
')

193 FORMAT (12)

189 FORMAT (' ' ,5X, 'NUMBER OF INEQUALITY CONSTRAINTS'

,

1 ' (G(X) >=) : ')

187 FORMAT (' ',5X, 'NUMBER OF EQUALITY CONSTRAINTS',
1 ' (H(X) =) : ')

185 FORMAT CO',' N =',13, 4X, »M =',13, 4X, 'MZ =',I3)

182 FORMAT C0',15X,' ENTER THE INITIAL POINT : V)
181 FORMAT (' ',5X, ' X(',I2,') = ')

180 FORMAT (G15.4)

178 FORMAT (1X,3(2X, 'X(
'
,12, ') =',E14.7))

175 FORMAT (/,8X, 'The default values for the

1 ' parameters follow : '/

1 5X,'1) R = 1.0 '/

2 5X,'2) C = 4.0 '/

3 5X,'3) EPSI = 0.1E-4'/
4 5X,'4) THETA = 0.1E-2V
5 5X, '5) Constraint option include X(I) >= constraints'/
6 5X,'6) Final convergence criterion : RSIGMA < THETA '/

7 5X, '7) Subproblem convergence criterion #1: DELP < EPSI'/
8 5X,'8) No extrapolation'/

9 5X,'9) No checking for derivatives'/
1 5X,'10) Unconstrained minimization technique : Second order',
1 ' gradient method'/
2 5X,' press RETURN to use all default values'/

3 5X,

'

Enter option number (1,2,..., 10) to change one or more',
3 ' options')

174 FORMAT (/,5X, 'ENTER option number (RETURN if finished) : ')

173 FORMAT (12)

168

170 FORMAT
1

1

1

2
2

I

169
168

167

165
164

160

158

155

154
150

1

2
i

1

2

1

2
2

3

FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT

1

1

2

159 FORMAT

FORMAT

FORMAT

FORMAT
FORMAT

1

2

3

1 49 FORMAT
1

2

3

4

1 47 FORMAT
1

j

4

1 45 FORMAT

2

2

3

3
4

4

5

5

o

C/.5X,
5X,

5X,

5X,

5X,

5X,

(ID
C/,5X,
(G15.7

C/,5X,

(12)

C/,5X,
'to
5X,

5X,

C/,5X,
5X,

5X,

C/.5X,
5X,
5X,

C/.5X,
5X,

5X,

5X,

(ID
(/,5X,

5X,

5X,

5X,

C/,5X,
5X,

5X,

5X,

5X,

C/,5X,
5X,

5X,

5X,

5X,

(/,5X,
5X,

5X,

5X,

5X,

5X,

5X,

1) R — penally factor '/

(RETURN for R = 1.0) '/

1 R computed by formula 1 '

,

1 (see User''s guide)'/
2 R computed by formula 2',

' (see User''s guide)'/
3 specify own value of RV

R option code = ')

1) R = ')

ENTER option number (RETURN if finished) : ')

2) C — Reducing factor for R from stage '

,

stage '/

(RETURN for C = 4.0) '/

C = '
)

3) EPSI subproblem stopping value '/

(RETURN for EPSI = 0.1 E-4)'/

EPSI = '
)

4) THETA final stopping value '/

(RETURN for THETA = 0.1 E-2) '/

THETA = '
)

5) Constraint option '/

1 include X(I) >= constraints'/
2 do not include X(I) >= 0',

' constraints'/
ENTER option : ')

6) Final convergence criterion '/

1 ABS[F(X)/G] - 1 < THETA '/

2 RSIGMA < THETA '/

Final convergence criterion •- '

)

7) Subproblem convergence criterion'/
1 see User''s guide'/
2 see User' 's guide'/

3 gradient of P < EPSI'/
Subproblem convergence criterion = ')

Extrapolation option'/
1 No extrapolation'/
2 Extrapolate through last 2 minima'/

3 Extrapolate through last 3 minima'/
Extrapolation option = ')

9) Key for checking derivatives

8;

i /

1 Do not check derivatives '/

2 Solve problem after checking',
' first derivatives'/

3 Check first derviatives but '

,

'do not solve problem'/
4 Solve problem after checking ',

'1st and 2nd derivatives'/

5 Check 1st and 2nd derivatives but

'do not solve problem'/
Key = ')

169

144 FORMAT (/,5X, f 10) Unconstrained minimization technique used'/
1 5X, ' 1 2nd order gradient method'/
2 5X, ' 2 same as 1 with modification'/
3 5X,' 3 Steepest descent method'/
4 5X, ' 4 Modified Fletcher - Powell method'/
5 5X,' Method = ')

143 FORMAT C/,2X, 'OPTIONS SELECTED')
140 FORMAT (2X,' 2) C =' ,E1 1 .4 / 2X, '3) EPSI =' ,E1 1 .4 /

1 2X, '4) TH'ETA =',E11.4)

138 FORMAT (2X,'5) CONSTRAINT OPTION INCLUDE X(I) >= '

,

1 'CONSTRAINTS')

137 FORMAT (2X, '5) CONSTRAINT OPTION DO NOT INCLUDE X(I) >= C,
2 ' CONSTRAINTS')

135 FORMAT (2X,'6) FINAL CONVERGENCE CRITERION ',

1 'ABS[F(X)/G] - 1 < TKETA')

134 FORMAT (2X,'6) FINAL CONVERGENCE CRITERION ',

2 'RSIGMA < THETA')

132 FORMAT (2X, '7) SUBPROBLEM CONVERGENCE CRITERION #1 ')

131 FORMAT (2X,'7) SUBPROBLEM CONVERGENCE CRITERION #2 ')

130 FORMAT (2X, '7) SUBPROELEM CONVERGENCE CRITERION #3 ')

128 FORMAT (2X,'8) NO EXTRAPOLATION')
127 FORMAT (2X, '8) EXTRAPOLATE THROUGH LAST 2 MINIMA')
126 FORMAT (2X,'8) EXTRAPOLATE THROUGH LAST 3 MINIMA')

125 FORMAT (2X, '9) NO CHECKING FOR DERIVATIVES')
124 FORMAT (2X,'9) SOLVE PROBLEM AFTER CHECKING FIRST DERIVATIVES')
123 FORMAT (2X,'9) CHECK FIRST DERIVATIVES BUT DO NOT SOLVE',

1 ' PROBLEM')
122 FORMAT (2X, '9) SOLVE PROBLEM AFTER CHECKING 1ST AND 2ND ',

1 ' DERIVATIVES'

)

121 FORMAT (2X, '9) CHECK 1ST AND 2ND DERIVATIVES ',

2 'BUT DO NOT SOLVE PROBLEM')

119 FORMAT (2X,'10) UNCONSTRAINED MINIMIZATION TECHNIQUE — '.

1 '2ND ORDER GRADIENT METHOD')
118 FORMAT (2X, '10) UNCONSTRAINED MINIMIZATION TECHNIQUE ~ ',

2 'MODIFIED 2ND ORDER GRADIENT METHOD')

117 FORMAT (2X, '10) UNCONSTRAINED MINIMIZATION TECHNIQUE — ',

3 'STEEPEST DESCENT METHOD')
116 FORMAT (2X,'10) UNCONSTRAINED MINIMIZATION TECHNIQUE — ',

4 'MODIFIED FLETCHER - POWELL METHOD ')

110 FORMAT (2X, '1) R =',E11.4, 5X, '(USER SPECIFIED)')

109 FORMAT (2X,'1) R TO BE COMPUTED BY FORMULA 1')

108 FORMAT (2X,'1) R TO BE COMPUTED BY FORMULA 2')

STOP
END

170

4.3.4 DESCRIPTION OF OUTPUT

The program title is printed followed by the name of the problem to be

solved. Then the dimensions of the problem are printed where

N = the number of decision variables, M = the number of inequality

constraints, and MZ = the number of equality constraints.

A list of options selected is next printed out. The options printed

are :

1) R — penalty factor

2) C — reducing factor

3) EPSI — subproblem stopping value

4) THETA — final stopping value

5) Constraint option

6) Final convergence criterion

7) Subproblem convergence criterion

8) Extrapolation option

9) Key for checking derivatives

10) Unconstrained minimization technique chosen.

Following the list of options, the objective function value F is

printed. Note that although the variables P and G are printed, they will

always show a value of zero because they have not been computed. After the

value of F, the initial point is printed followed by the values of the

constraints at the initial point. Then the values of the user supplied

analaytic and the computed numeric derivatives at the starting point are

printed if the user specified it on option 9 (Key for checking derivatives).

After printing the derivatives, the program checks if the initial point

is feasible and if necessary, it attempts to locate a feasible point. The

feasible starting point is then printed along with the values of the

objective function and constraints at the feasible starting point.

171

At eacn suboptimum point, the following results are printed. First the

iteration counter identified as "Point Number" is printed. Then the value

of r (RHO) and the value of the penalty term (RSIGHA) is printed where

RSIGMA = - r £#n[g.(x)] + r " L h- (*)• The next line contains the
i

1
J

J

objective function value F, the P-function value P, and the dual value G at

the suboptimum point. The values of the decision variable x is then printed

followed by the values of the constraints.

At the optimum point, the value of the objective function F and the

decision variable x are printed.

4.3.5 SUMMARY OF USER REQUIREMENTS

1. Create a file on disk that contains subroutines RESTNT, GF.AD1 and MATRIX.

(see the following section for a description of how to code these routines.)

2. Make an estimate of the optimum point which is to be used as the

starting point for the search.

NOTE : The following steps will vary depending on the particular compiler

used. The following applies if using Microsoft FORTRAN-80.

3. Compile subroutines RESTNT, GRAD1 , AND MATRIX using the F80 command.

F80 =B:filename

where the letter B refers to the disk drive where the file resides and the

filename is the name of the file containing the three subroutines.

4. Link edit the main program with the user supplied subroutines as

follows:

L80 B: filename, B:RACSUMT/N,B:RACSUMT/E

Note that the user defined filename precedes the main program RACSUMT.

172

5. Run the program by typing

B: READIN

READIN is the input program that allows one to interactively enter the data

needed to solve the problem. After the data is entered, READIN saves the

data on the disk before chaining to the main program RACSUMT. RACSUMT then

reads the data back from the disk and proceeds to solve the problem.

To resolve the problem with different input values, simply repeat step

5.

4.3.6 USER-SUPPLIED SUBROUTINES

Each user-supplied subroutine must contain the COMMON card :

COMMON /SHARE/ X(20), DEL(20), A(20,20), N,M,MN,NP1 ,NM1

The user may use blank COMMON to transfer data between his subroutines.

In the subroutines, the parameter I and J identify which constraint is

needed. For example, in RESTNT when 1=0, the value of the objective

function is needed; when 1 = 1, constraint g^(x) is needed; when 1=2, gp(x)

is needed, etc.

The following problem is used to show how to code the user supplied

subroutines.

2 3
Minimize f(x) = x + x - x x

subject to

g (x) = 8x + x
2

2
- 15 2

gjx) = 5x„
4

+ x
3

- 20 >
1

,

h^x) = x.,

2
+ x

2

2
- 25 =

x . > 0, 1=1,2

175

RESTNT (I,VAL)

This subroutine defines the objective function (to be minimized), the

inequality constraints (20), and the equality constraints (=0). The

variable VAL must be assigned the equation of the objective function or

constraint depending on the value of I.

When 1=0, this routine must set VAL = f(x).

When 1=1,..., m, this routine must set VAL = gT
(x).

When I=m+1 ,...,m+j2, this routine must set VAL = h (x). Note that the

equality constraints follow all inequality constraints.

The non-negativity constraints do not have to be coded if option 5 on

the CRT display is set to 1. The variable x is located in the labeled

COMMON region named SHARE.

The RESTNT routine for the example problem is shown below.

SUBROUTINE RESTNT (I, VAL)
C

C THIS ROUTINE DEFINES THE OBJECTIVE FUNCTION (TO BE MINIMIZED) AND
C THE CONSTRAINTS (>=0 AND =0)

C

COMMON /SHARE/ X(20), DEL(20), A(20,20), N,M,MN,NP1 ,NM1

C

IF (I.GT.O) GO TO 50
C

C * THE OBJECTIVE FUNCTION TO BE MINIMIZED
VAL = X(1)**2 + X(2)**3 - X(1)*X(2)
RETURN

C

C *** THE INEQUALITY AND EQUALITY CONSTRAINTS ***

50 GO TO (1,2, 3),

I

C

C * THE 1ST INEQUALITY CONSTRAINT GKX) >=

1 VAL = 8.*X(1) + X(2)**2 - 15.

RETURN
C

C * THE 2ND INEQUALITY CONSTRAINT G2(X) >=

2 VAL = 5.*X(1)**4 + X(2)**3 - 20.

RETURN
C

C * THE EQUALITY CONSTRAINT H1(X) =

3 VAL = X(1)**2 + X(2)**2 - 25.
RETURN

END

174

GRADl(I)

This subroutine defines the gradient of the objective function and

constraints. When 1=0, the gradient of the objective function is needed and

when I>0, the gradient of the Ith constraint is needed. The values of the

gradient are placed in the array DEL(J) where DEL(J) is the Jth partial

derivative of the Ith constraint.

For 1=0, this routine must set DZL(J) = 9f(x)/3x -j-1 n

For 1 = 1, ...,m, this routine must set DEL(J) = 3g_/3x ., j = 1,...,n.

For I = m+1 ,...,m+4, this routine must set DEL(J) = 3h (x)/3x., j = 1,...,n.

X and DEL are in the COMMON region SHARE. DEL is not initialized to

zero before entering GRAD1 so all elements of DEL must be assigned a value,

including the zero elements.

The GRAD1 routine for the example problem is shown below.

SUBROUTINE GRADKI)
C

C THIS ROUTINE DEFINES THE GRADIENT OF THE OBJECTIVE FUNCTION AND

C CONSTRAINTS
C

COMMON /SHARE/ X(20), DEL (20), AC 20 ,20), N,M,MN,NP:! ,NM1

C

IF (I.GT.0) GO TO 50
C

C * THE GRADIENT OF THE 03JECTIVE FUNCTION
DEL(1) = 2.*X(1) - X(2)

DEL(2) = 3.*X(2) - X(1)

RETURN
C

C * THE GRADIENT OF THE CONSTRAINTS
C

50 GO TO (1,2, 3),

I

C

C * THE GRADIENT OF GKX) >=

1 DEL(I) = 8.0

DEL(2) = 2.*X(2)
RETURN

C

C * THE GRADIENT OF G2(X) >=

2 DELC1) = 20.*X(1)**3
DEL(2) = 3.*X(2)**2
RETURN

175

* THE GRADIENT OF H1(X) =

DEL(l) = 2.*X(1)
DEL(2) = 2.*X(2)
RETURN

END

MATRIX (J
T
L)

This subroutine supplies the upper triangle and diagonal elements of

the MATRIX of second partial derivatives of f, g. or h .. The lower triangle

elements of A, the array of second partial derivatives, must not be

disturbed. The upper triangle and diagonal elements of A are all

initialized to zero before being passed into MATRIX so only the nonzero

elements of A need to be provided.

2
When J=0, this routine must set A(K,I) = 3 f(x)/3x 3x for K = 1,...,n;

C\ I

1 -K , • . • , n

.

o
When J = 1,...,m, this routine must set A(K,I) = 3"g (x)/ 3x„ 3x T for

J K. J.

K = 1,...,n; I = K,...,n.

2
When J=m+1 ,...,m+»| this routine must set A(K,I) = 3 h (x)/3x 3x for

J ' K I

u=i,...,nj i=K,...,n.

X and A are located in the COMMON region SHARE.

The MATRIX routine for the example problem is shown below.

SUBROUTINE MATRIX (J,L)
C

C THIS SUBROUTINE SUPPLIES THE UPPER TRIANGLE AND DIAGONAL ELEMENTS
C OF THE MATRIX OF SECOND PARTIAL DERIVATIVES.
C ONLY THE NONZERO ELEMENTS NEED TO BE PROVIDED.
C

COMMON /SHARE/ X(20), DELC20), A(2C,20), N,M,MN,NP1 ,NM1

C

IF (J.GT.O) GO TO 50
C

C ** THE SECOND PARTIALS OF THE OBJECTIVE FUNCTION
A(1,1) = 2.

A(1,2) = -1.

A(2,2) = 3.

RETURN

176

C ** THE SECOND PARTLALS OF THE CONSTRAINTS **

50 GO TO (1,2, 3),

J

C

C * THE 2ND PARTIALS OF G1(X)
1 A(2,2) = 2.

RETURN
C

C * THE 2ND PARTIALS OF G2(X)
2 AC 1 , 1) = 60.*X(1)**2

A(2,2) = 6.*X(2)
RETURN

C

C * THE 2ND PARTIALS OF HKX)
3 AC 1 , 1) = 2.

A(2,2) = 2.

RETURN
END

177

4.4 INPUT TO THE COMPUTER PROGRAM

4.4.1 CRT DISPLAY OF QUESTIONS

RAC-SUMT VERSION 4.1

PROBLEM NAME :

NUMBER OF VARIABLES :

NUMBER OF INEQUALITY CONSTRAINTS (G(X) >=) :

NUMBER OF EQUALITY CONSTRAINTS (H(X) =) :

ENTER THE INITIAL POINT

X(1) =

X(2) =

xc'n) =

THE DEFAULT VALUES FOR THE PARAMETERS FOLLOW :

1) R = 1.0
2) C = 4.0

3) EPSI = 0.1E-4
4) THETA = 0.1 E-2

5) CONSTRAINT OPTION INCLUDE X(I) >= CONSTRAINTS
6) FINAL CONVERGENCE CRITERION : RSIGMA < THETA
7) SUBPROBLEM CONVERGENCE CRITERION #1 : DEL? < EPSI
8) NO EXTRAPOLATION

9) NO CHECKING FOR DERIVATIVES
10) UNCONSTRAINED MINIMIZATION TECHNIQUE : SECOND ORDER GRADIENT METHOD

PRESS RETURN TO USE ALL DEFAULT VALUES
ENTER OPTION NUMBER (1,2,..., 10) TO CHANGE ONE OR MORE OPTIONS

ENTER OPTION NUMBER (RETURN IF FINISHED) : 1

1) R — PENALTY FACTOR
(RETURN FOR R = 1 .0)

1 R COMPUTED BY FORMULA 1 (SEE USER'S GUIDE)
2 R COMPUTED BY FORMULA 1 (SEE USER'S GUIDE)

3 SPECIFY OWN VALUE OF R

R OPTION CODE =

ENTER OPTION NUMBER (RETURN IF FINISHED) : 2

178

2) C — REDUCING FACTOR FOR R FROM STAGE TO STAGE
(RETURN FOR C = 4.0)

C =

ENTER OPTION NUMBER (RETURN IF FINISHED) : 3

3) EPSI SUBPROBLEM STOPPING VALUE
(RETURN FOR EPSI = 0.1 E-4)

EPSI =

ENTER OPTION NUMBER (RETURN IF FINISHED) : 4

4) THETA FINAL STOPPING VALUE
(RETURN FOR THETA = 0.1 E-2)

THETA =

ENTER OPTION NUMBER (RETURN IF FINISHED) : 5

5) CONSTRAINT OPTION
1 INCLUDE X(I) >= CONSTRAINTS
2 DO NOT INCLUDE X(I) >= CONSTRAINTS

ENTER OPTION :

ENTER OPTION NUMBER (RETURN IF FINISHED) : 6

6) FINAL CONVERGENCE CRITERION
1 ABS[F(X)/G] - 1 < THETA
2 RSIGMA < THETA

FINAL CONVERGENCE CRITERION =

ENTER OPTION NUMBER (RETURN IF FINISHED) : 7

7) SUBPROBLEM CONVERGENCE CRITERION
1 SEE USER'S GUIDE
2 SEE USER'S GUIDE
3 GRADIENT OF P < EPSI

SUBPROBLEM CONVERGENCE CRITERION =

ENTER OPTION NUMBER (RETURN IF FINISHED) : 8

8) EXTRAPOLATION OPTION
1 NO EXTRAPOLATION
2 EXTRAPOLATE THROUGH LAST 2 MLNIMA

3 EXTRAPOLATE THROUGH LAST 3 MINIMA
EXTRAPOLATION OPTION =

ENTER OPTION NUMBER (RETURN IF FINISHED) : 9

9) KEY FOR CHECKING DERIVATIVES
1 DO NOT CHECK DERIVATIVES
2 SOLVE PROBLEM AFTER CHECKING FIRST DERIVATIVES

3 CHECK FIRST DERIVATIVES BUT DO NOT SOLVE PROBLEM

4 SOLVE PROBLEM AFTER CHECKING 1ST AND 2ND DERIVATIVES

5 CHECK 1ST AND 2ND DERIVATIVES BUT DO NOT SOLVE PROBLEM

KEY =

179

ENTER OPTION NUMBER (RETURN IF FINISHED) : 10

10) UNCONSTRAINED MINIMIZATION TECHNIQUE USED
1 2ND ORDER GRADIENT METHOD
2 SAME AS 1 WITH MODIFICATION

3 STEEPEST DESCENT METHOD
4 MODIFIED FLETCHER - POWELL METHOD

METHOD =

4.4.2 USER'S GUIDE TO THE CRT DISPLAY

1) R — PENALTY FACTOR
(RETURN FOR R = 1.0)

1 The value of r is made by finding an approximation solution

min{7[P(x°,r) [V^PCx^r)] VP(x°,r)]} which is a good approx-

imation only when x° is close to the boundary of a constraint

or when V f(x) = and when there are no equality
constraints.

2 The value of r is made by finding the r that minimizes the
magnitude of the gradient at x (ie. min jVP(x°,r)i). This
can only be used if there are no equality constraints.

3 Specify own value of r. Several values of r may have to be
tried to get the best solution to the problem. Possible
values that may be tried are 10000, 1000, 100, 10, 1 , 0.1,

0.01, 0.001.

2) C — REDUCING FACTOR FOR R FROM STAGE TO STAGE
(RETURN FOR C = 4.0)

The parameter C (>0) is used to compute consecutive values of r;

r, , = r, /C. The value of C is usually chosen as 4.0 or 16.0.

3) EPSI SUBPR0BLEM STOPPING VALUE
(RETURN FOR EPSI = 0.1 E-4)

EPSI is the tolerance used to decide when the subproblem minimum has
been reached. (see 7. SUBPRC3LEM CONVERGENCE CRITERION).

4) THETA FINAL STOPPING VALUE
(RETURN FOR THETA = 0.1 E-2)

THETA is the tolerance used to decide if the solution to the problem
has been reached. Suggested values of THETA are 0.01, 0.001, 0.0001,
0.C0001.

180

5) CONSTRAINT OPTION
1 INCLUDE X(I) >= CONSTRAINTS
2 DO NOT INCLUDE X(I) >= C CONSTRAINTS

ENTER OPTION :

This option is set equal to 1 if the non-negativity constraints are to
be included in the problem; otherwise, the option is set to 2.

6) FINAL CONVERGENCE CRITERION

1 Quit when G - F(x)
< e

where G is the dual value. This criterion says quit when the
relative difference between the dual value and function value is less than a

specified tolerance (THETA).

m

Quit when r [in g .(x) < 6
j=1 J

This criterion says quit when the penalty term for inequality
constraints is less than a tolerance .

The final convergence criterion is used to determine when the
problem has been solved.

7) SUB PROBLEM CONVERGENCE CRITERION

1 Quit when VPt
Cx

1
,r)v x

Quit when

3 Quit when V p(x > r)

_1
nP(x\r) < 6

7X
P(*V) < P(x

l_1
) - PCx

1
)

3) EXTRAPOLATION OPTION
1 NO EXTRAPOLATION
2 EXTRAPOLATE THROUGH THE LAST 2 SUBPROBLEM MINIMA

3 EXTRAPOLATE THROUGH THE LAST 3 SUBPROBLEM MINIMA
(Normally set to 1)

If option 2 or 3 sre used, the program will use the previous two or

three subproblem points to extrapolate to the final solution. The new point
will then be usee as a starting point for the next subprobiem search.
Options 2 or 3 are used to try to speed up convergence to the optimum
point.

9) KEY FOR CHECKING DERIVATIVES
1 DO NOT CHECK DERIVATIVES.
2 SOLVE PROBLEM AFTER CHECKING FIRST DERIVATIVES.

3 CHECK FIRST DERIVATIVES BUT DO NOT SOLVE PROBLEM.

4 SOLVE PROBLEM AFTER CHECKING 1ST AND 2ND DERVIATIVES.

5 CHECK 1ST AND 2ND DERIVATIVES BUT DO NOT SOLVE PRCELEM.

181

Cptions 2-5 may be used if the problem has complex derivatives. The
checking consists of printing out the values of the user-defined analytic
derivatives and the numeric derivatives (computed by numeric differencing).
If the two values are not similar in magnitude, then an error may be
suspected in the user defined derivatives.

10) UNCONSTRAINED MINIMIZATION TECHNIQUE USED
1 A second order gradient method is used to minimize the

unconstrained P-function. This method requires first and second derivatives
of the objective function and constraints.

2 Same as 1, except that when an "orthogonal move" is made because
of an indefinite Hessian matrix, -VP is added to the orthogonal move
vector.

3 The steepest descent method, a first order gradient method, is
used to minimized the P-function. Only first derivatives are required.

4 McCormick's modification of the Fletcher-Powell method is used to
minimize the P-function. This method needs first derivatives.

182

4.5.1 TEST PROBLEMS

4.5.1 TEST PROBLEM 1 : NUMERIC EXAMPLE BY PAVIANI

4.5.1.1 SUMMARY

No. of variables : 3

No. of constraints : 1 nonlinear equality constraint

1 linear equality constraint

3 bounds on independent variables

Objective function :

2 2 2
Minimize f(x) r 1000 - x„ - 2x_ - x. - x y - x,x-,

1 d $ I d \ j

Constraints :

O O ^

Mx) = x + x + x - 25 =

h (x) = 8x + 14x + 7x - 56 =

x. > , 1=1,2,3

Starting point : x.=2, 1=1,2,3
i

Parameters : r = 1 .0 , C = 4.0

EPSI = 1C~
2

, TKETA = 10" 5

Unconstrained minimization technique used : modified Fletcher-Powell method

Results : f(x) = 961.74

x
1

= 3.368

X
2

= 0.231

X
3

= 3.639

h (x) = 0.0C06

h
2
(x) = 0.0002

No. of function evaluations : 38

Execution time : 1.2 min,

133

4.5.1.2 COMPUTER PRINTOUT OF RESULTS

RAC-SUMT VERSION 4.1

TEST PROBLEM 1

N=3 M = MZ = 2

OPTIONS SELECTED
1) R = .1000E+01 (USER SPECIFIED)
2) C = .4000E+01

3) EPSI = .10COE-01
4) THETA = .1000E-04
5) CONSTRAINT OPTION INCLUDE X(I) >= CONSTRAINTS
6) FINAL CONVERGENCE CRITERION ABS[F(X)/G] - 1 < TKETA
7) SUEPROBLEM CONVERGENCE CRITERION #1

8) EXTRAPOLATE THROUGH LAST 2 MINIMA
9) SOLVE PROBLEM AFTER CHECKING 1ST AND 2ND DERIVATIVES
10) UNCONSTRAINED MINIMIZATION TECHNIQUE — MODIFIED FLETCHER - POWELL METHOD

F = .976000CE+03 P = .OOOCOOOE+01 G = .OOOOOOOE+01

VALUES OF X VECTOR
X(1) = .2000000E+01 X(2) = .2000000E+01 X(3) = .2000000E+01

VALUES OF THE CONSTRAINTS
G(1) = -.1300000E+02 G(2) = .2000000E-r01 G(

VALUES OF OBJECTIVE FUNCTION PARTIALS

ANALYTICAL FIRST PARTIALS
DEL(1) = -.8000000E+01 DEL(2) = -.1C00C00E+02 DEL(3) = -.6000000E+01

NUMERICAL FIRST PARTIALS
DELC 1) = -.7934570E+01 DEL(2) = -.9765625E+01 DEL(3) = -.6103516E+01

VALUES OF CONSTRAINT NUMBER 1

ANALYTICAL FIRST PARTIALS
DELC 1) = .4C00000E+01 DELC 2) = .4000000E+01 DELC 3) = .4000000E+01

NUMERICAL FIRST PARTIALS
DELC 1) = .3995895E+01 DELC 2) = .3995895E+01 DELC 3) = .3995895E+C1

VALUES OF CONSTRAINT NUMBER 2

ANALYTICAL FIRST PARTIALS
DELC 1) = .800C000E+01 TELC 2) = .14000C0E+02 DELC 3) = .7000000E+01

NUMERICAL FIRST PARTIALS
DELC 1) = .8010864E+01 DELC 2) = .1399994E+C2 DELC 3) = .698O896E+01

184

VALUES OF OBJECTIVE FUNCTION PARTIALS

ANALYTICAL SECOND PARTIALS
A(1, 1) = -.200000E+01 A(1, 2) = -

A(2, 1) = .OOOOOOE+01 AC 2, 2) = -

AC 3. D = .OOOOOOE+01 AC 3, 2) =

NUMERICAL SECOND PARTIALS
AC 1, 1) = -.200033E+01
AC 2, 1) = .OOOOOOE+01

.OOOOOOE+01AC

2,

3,) =

AC

AC

AC

1,

2,

3,

2)

2)

2)

.10000OE+01

.400000E+01

.OOOOOOE+01

.100136E+01

.399590E+01

.OOOOOOE+01

AC 1, 3) = -.100000E+01
AC 2, 3) = .OOOOOOE+01
AC 3, 3) = -.200000E+01

AC 1, 3)

AC 2, 3)

AC 3, 3)

.100136E+01
.OOOOOOE+01
.199795E+01

VALUES OF CONSTRAINT NUMBER 1

ANALYTICAL SECOND PARTIALS
AC 1, 1) = .200000E+01 AC 1,2)
AC 2, 1) = .OOOOOOE+01 AC 2, 2)

AC 3, D = .OOOOOCE+01 AC 3, 2)

NUMERICAL SECOND PARTIALS
AC

AC

AC

1,

2,

5,

1) = .199914E+01
1) = .OOOOOOE+01

1) = .OOOOOOE+01

AC

AC

AC

1,

2,

5,

2)

2)

2)

.OOOOOOE+01

.200000E+01

.OOOOOOE+01

.OOOOOOE+01

.199914E+01

.OOOOOOE+01

AC 1, 3)

AC 2, 3)

AC 3, 3)

AC 1, 3)
AC 2, 3)

AC 3, 3)

.OOOOOOE+01

.OOOOOOE+01

.200000E+01

.OOOOOOE+01
,OOOOOOE+01

.199914E+01

VALUES OF CONSTRAINT NUMBER

ANALYTICAL SECOND PARTIALS
AC 1, 1) = .OOOOOOE+01 AC 1, 2) = .OOOOOOE+01 AC 1, 3) = .OOOOOOE+01

AC 2, 1) = .OOOOOOE+01 AC 2, 2) = .OOOCOOE+01 AC 2, 3) = .OOOOOOE+01

AC 3, D = .OOOOOOE+01 AC 3, 2) = .OOOOOOE+01 AC 3, 3) = .OOOOOOE+01

NUMERICAL SECOND PARTIALS

*** POINT NUMBER 8 ***

RHO = .1 OOOOOOE+01 RSIGMA = -.1010660E+01

F = .9610892E+03 ? = .9603866E+03 G = .9587054E+O3

VALUES OF X VECTOR
XC 1) = .3395841 E+01 X(2) = .2170724E+00 X(3) = .3727081 E+01

VALUES OF THE CONSTRAINTS
G(1) = .4699898E+00 GC 2) = .2953072E+00 GC

*** POINT NUMBER 14 ***

RHO = .2500000E+00 RSIGMA = -.2567300E+00

F = .9615558E+03 P = .9613916E+03 G = .9609908E+03

18S

VALUES OF X VECTOR
X(1) = .3374081 E+01 X(2) = .2235025E+00 X(3) = .3702933E+01

VALUES OF THE CONSTRAINTS
G(1) = .1 46091 5E+00 G(2) = .4221725E-01 G(

*** POINT NUMBER 16 ***

RHO = .6250000E-01 RSIGMA = -.6339629E-01

F = .9615630E+03 P = .96 18 439 E+03 G = . 9620641 E+03

VALUES OF X VECTOR
X(1) = .33771 04E+01 X(2) = .2206620E+00 X(3) = .3700392E+01

VALUES OF THE CONSTRAINTS
G(1) = .1464233E+00 G(2) = .8842468E-02 G(

*** POINT NUMBER 25 ***

RHO = .1562500E-01 RSIGMA = -.1645939E-01

F = .9617327E+03 P = .9617232E+03 G = .9616998E+03

VALUES OF X VECTOR
X(1) = .3367842E+01 X(2) = .2307426E+00 X(3) = .363981 2E+01

VALUES OF THE CONSTRAINTS
G(1) = .1031494E-01 G(2) = .1315796E-02 G(

*** POINT NUMEER 27 ***

RHO = .3906250E-02 RSIGMA = -.41 13468E-02

F = .96 17391 E+03 P = .9617462E+03 G = .9617496E+03

VALUES OF X VECTOR
X(1) = .3367891E+01 X(2) = .2306973E+00 X(3) = .3689177E+01

VALUES OF THE CONSTRAINTS
G(1) = .5933762E-02 G(2) = -.2863652E-02 G(

*** POINT NUMBER 38 ***

RHO = .9765625E-03 RSIGMA = -.1030822E-02

1S6

F = .9617449E+03 P = .9617443E+03 G = .9617427E+C3

VALUES CF X VECTOR
X(1) = .3367628E+01 X(2) = .2313299E+00 X(3) = .3688648E+01

VALUES OF THE CONSTRAINTS
G(1) = .5550385E-03 G(2) = .1792908E-03 G(

#***********#****#*#***###*#*###***###

FINAL VALUE OF F = 9.&17MM9E+02

FINAL X VALUES
X(1) = 3.367628E+00 X(2) = 2.313299E-01 X(3) = 3.688643E+00

4.5.1 .3 USER SUPPLIED SUBROUTINES

SUBROUTINE RESTNT (I,VAL)
C

C ** TEST PROBLEM 1 - PAVIANI **

C

C

C

COMMON /SHARE/ X(20) ,DEL(20) , A(20,20), N,M,MN,MP1 ,NM1

IF (I.GT.O) GO TO 10

VAL = 1000.0 - X(1)**2 - 2.0*X(2)**2 - X(3)**2 - X(1)*X(2)

1 -X(1)*X(3)
RETURN

C

10 GO TO (1,2), I

C

1 VAL = X(1)**2 + X(2)**2 + X(3)**2 - 25.0
RETURN

C

2 VAL = 8.0*X(1) + 14.0*X(2) + 7.0*X(3) - 56.0

RETURN

C

c

c

c

c

END

SUBROUTINE GRAD1 (I)

COMMON /SHARE/ X(20) ,DEL(20) , A(20,20), N,M,MN,NP1 ,NM1

IF (I.GT.O) GO TO 10

137

C

C

c

c

DELC1) = - 2.0*X(1) - X(2) - X(3)
DEL(2) = - 4.0*X(2) - X(1)
DEL(3) = - 2.0*X(3) - X(1)
RETURN

c

10 GO TO (1,2), I

c

1 DELC1) = 2.0 * X(1)

DEL(2) = 2.0 * X(2)

DEL(3) = 2.0 * X(3)
RETURN

c

2 DEL(1) = 3.C
DEL(2) = 14.0

DEL(3) = 7.0
RETURN

END

SUBROUTINE MATRIX (J,L)

COMMON /SHARE/ X(20) ,DEL(20) , A(20,20), N,M,MN,NP1 ,NM1

IF (J.GT.O) GO TO 10

A(1,1) = -2.0

A(1,2) = -1.0
A(1,3) = -1.0

c

A(2,2) = -4.0
A(2,3) = 0.0

c

A(3,3) = -2.0

RETJRN
c

10 GO TO (1,2), J

c

1 A(1,1) = 2.0
A(2,2) = 2.0
A(3,3) = 2.0

2 RETURN
c

END

188

4.5.2 TEST PROBLEM 2 : PROBLEM OF MAXIMIZING SYSTEM RELIABLITY

4.5.2.1 SUMMARY

No. of variables : 4

No. of constraints : 9

Objective function :

Minimize f(x) = -1 + RJ(1-RJ(1-R.,)]
2

+ (1-RJ{1 - R _[1-(1-RJ(1-R ,,)] }

2

3 1 4 5 2 14
Constraints :

g^x) = C - (2K
1

R
1

a
i + 2K

2
RJ?2 + n«3 + 2^^) >

g. ,(x) = 1 - R, > 0, 1=1,2,3,4
i+

1

j.

g _(x) = R. - R. . > 0, 1=1,2,3,4
i+5 l i,mm ' ' ' '

where K^IOO, K
2
=100, K^=200, K

4
=150

0=800

*r°' 6
'

R
i,min=

- 5 ' W A3^

Starting point : R.=0.6, i=1 ,2,3,4
i

Parameters : r= .03578 , C=4.0

EPSI=10"
5

, TKETA=10"
5

Unconstrained minimization technique used : Steepest descent method

Results : f(x) = 0.9999985

R
1

= 0.9970

R
2

= 0.9996

R^ = 0.6622

R^ = 0.6368

No. of function evaluations : 38

Execution time : 3.0 min.

189

4.5.2.2 COMPUTER PRINTOUT OF RESULTS

RAC-SUMT VERSION 4.1

TEST PROBLEM 2

N = 4 M = 9 MZ =

OPTIONS SELECTED
1

)

R TO BE COMPUTED BY FORMULA 2

2) C = .4000E+01

3) EPSI = .1000E-04
4) THETA = .1000E-04
5) CONSTRAINT OPTION DO NOT INCLUDE X(I) >= CONSTRAINTS
6) FINAL CONVERGENCE CRITERION RSIGMA < THETA

7) SUBPROBLEM CONVERGENCE CRITERION #1

8) NO EXTRAPOLATION
9) NO CHECKING FOR DERIVATIVES
10) UNCONSTRAINED MINIMIZATION TECHNIQUE — STEEPEST DESCENT METHOD

F = -.8862336E+00 P = .0000000E+01 G = .0000000E+01

VALUES OF X VECTOR
X(1) = .6O0C0OOE+C0 X(2) = .6000000E+00 X(3) = .6CCOOOOE-1-OO

X(4) = .6000000E+00 X(

VALUES OF THE CONSTRAINTS
G(1) = .1375800E+03 G(2) =

G(4) = .4000000E+O0 G(5) =

G(7) = .1000000E+00 G(8) =

.4000000E+00 G(3)

.4000CQ0E+00 G(6)

.10000C0E+00 G(9)

.4000000E+00

.1000000E+O0

.100000OE+00

*** POINT NUMBER 6 ***

RHO = .3577597E-01 RSIGMA = .2573350E+00

F = -.9748093E+00 P = -.7174743E+00 G = -.1296793E+01

VALUES OF X VECTOR
X(1) = .7356728E+00 X(2) = .7904098E+00 X(3) = .7320C88E+00
X(4) = .6883459E+O0 X(

VALUES OF THE CONSTRAINTS
G(1) = .5433C93E+02 G(2) = .2643272E+00 G(3) = .2095902E+00
G(4) = .2679912E+00 G(5) = .31 16541 E+00 G(6) = .2356728E+00
G(7) = .2904098E+00 G(8) = .2320088E+00 G(9) = .l883459E-rCO

« PCLNT NUMBER 16 *

RHO = .8 943993 E-02 RSIGMA = .7195718E-01

190

F = -.9896287E+00 P = -.9176715E+00 G = -.1070125E+01

VALUES OF X VECTOR
X(1) = .8135905E+00 X(2) = .8868126E+00 X(3) = .7150513E+00
X(4) = .6810546E+00 X(

VALUES OF THE CONSTRAINTS
G(1) = .3539966E+02 G(2) = .1864095E+00 G(3) = .1131874E+00
G(4) = .2849487E+00 G(5) = .3189454E+O0 G(6) = .3135905E+00
G(7) = .3868126E+00 G(8) = .2150513E+00 G(9) = .1810546E+00

*** POINT NUMBER 22 ***

RHO = .2235998E-02 RSIGMA = .2150956E-01

F = -.9973105E+00 P = -.9758009E+00 G = -.1017434E+01

VALUES OF X VECTOR
X(1) = .9130118E+00 X(2) = .9494833E+00 X(3) = .6719643E+00
X(4) = .6503463E+00 X(

VALUES OF THE CONSTRAINTS
G(1) = .27451 35E+02 G(2) = .8698821 E-01 G(3) = .5051672E-01
G(4) r .3280357E+O0 G(5) = .3496537E+C0 G(6) r .41301 18E+00
G(7) = .4494833E+00 G(8) = .1719643E+00 G(9) = .1 50346 3E+00

« POINT NUMBER 28 *

RHO = .5589995E-03 RSIGMA = .6239673E-C2

F = -.99931 14E+00 P = -.9930718E+O0 G = -.1004342E+01

VALUES OF X VECTOR
X(1) = .9586948E+00 X(2) = .9743827E+00 X(3) = .6640598E+00
X(4) = .6392964E+00 X(

VALUES OF THE CONSTRAINTS
G(1) = .222721 6E+02 G(2) = .4130524E-01 G(3) = .2561730E-01
G(4) = .3359402E+O0 G(5) = .3607036E+00 G(6) = .45S6948E+00
G(7) = .4743827E+00 G(8) = .1640598E+00 G(9) = .1392964E+00

*** POINT NUMBER 32 ***

RHO = .1397499E-03 RSIGMA = .1788709E-02

F = -.9998465E+GO P = -.998C577E+00 G = -.1001104E+01

191

VALUES OF X VECTOR
X(1) = .9815737E+00 X(2) = .9874529E+00 X(3) = .6623129E+00
X(4) = .6368516E+00 X(

VALUES OF THE CONSTRAINTS
G(1) = .1868634E+02 G(2) = .1842630E-01 G(3) = .1254714E-01
G(4) = .3376871E-MDO G(5) = .3631482E+00 G(6) = .4815737E+00
G(7) = .4874529E+00 G(8) = .1623129E+00 G(9) = .1368518E+00

*** POINT NUMBER 34 ***

RHO = .34937 i47E-04 RSIGMA = .49421 07E-03

F = -.9999571 E+OO P = -.9994630E+00 G = -.10C0272E+01

VALUES OF X VECTOR
X(1) = .9896193E+00 X(2) = .9937997E+CO X(3) = .6622716E+00
X(4) = .63681 53E+00 X(

VALUES OF THE CONSTRAINTS
G(1) = .1696405E+02 G(2) = .1038069E-01 G(3) = .6200314E-02
G(4) = .3377284E+O0 G(5) = .3631847E+O0 G(6) = .4896193E+00
G(7) = .4937997E+00 G(8) = .1622716E+00 G(9) = .13681 53E+00

*** POINT NUMBER 36 ***

RHO = .8734368E-05 RSIGMA = .1390110E-03

F = -.9999923E+00 P = -.9998533E+00 G = -.1000071 E+01

VALUES OF X VECTOR
X(1) = .9953239E+00 X(2) = .9975349E+00 X(3) = .6622406E+00
X(4) = .63681 52E+00 X(

VALUES OF THE CONSTRAINTS
G(1) = .1583319E+02 G(2) = .4676104E-02 G(3) = .2465069E-02
G(4) = .3377594E+00 G(5) = .3631848E+00 G(6) = .4953239E+G0
G(7) = .49753M9E+00 G(8) = .1622406E+00 G(9) = .1368152E+00

*** POINT NUMBER 37 ***

RHO = .2183592E-05 RSIGMA = .3681667E-04

F = -.9999965E+00 P = -.9999597E+00 G = -.1000016E+01

VALUES OF X VECTOR
X(1) = .9962229E+00 X(2) = .9987994E+00 X(3) = .662241 8E+00

X(4) = .6368173E+O0 X(

192

VALUES OF THE CONSTRAINTS
G(1) = .1 55721 4E+02 G(2) =

C-(4) = .3377582E+OC G(5) =

G(7) = .4987994E+00 G(8) =

•3777087E-02 G(3)

.3631822E+O0 G(6)

.1 62241 8E+00 G(9)

.1200557E-02
• 4962229E+00
.1368178E+00

*** POINT NUMBER 38 ***

RHO = .5458980E-06 RSIGMA = .9961238E-05

F = -.9999985E+O0 P = -.9999885E+00 G = -.10G0003E+01

VALUES CF X VECTOR
X(1) = .9969606E+C0 X(2) = .9996238E+00 X(3) = .6622428E+00
X(4) = .636823 1E+00 X(

VALUES OF THE CONSTRAINTS
G(1) = J538367E+02 G(2) =

G(4) = .3377572E+00 G(5) =

G(7) = .4996238E+00 G(8) =

.3039360E-02 G(3) = .3761649E-03
• 3631769E+O0 G(6) = .4969606E+00
.1622428E+00 G(9) = .1 36823 1E+00

FINAL VALUE OF F = -9.999985E-01

FINAL X VALUES
X(1) = 9.969606E-01 X(2) = 9.996238E-01 X(3) = 6.622428E-01
X(4) = 6.368231E-01 X(

195

4.5.2.3 USER SUPPLIED SUBROUTINES

SUBROUTINE RESTNT (I, VAL)
C

C THE RELIABILITY PROBLEM
C

REAL R1, R2, R3, R4, Q1 , Q2, 03, 04, PART2
REAL C, K1, K2, K3, K4, A1 , A2, A3, A4, RMIN
COMMON /SHARE/ X(20) , DEL(20), A(20,20), N,M,MN,NP1 ,NM1

COMMON /CONST/ C, K1 , K2, K3, K4, A1 , A2, A3, A4, RMIN
DATA C, K1, K2, K3, K4 /800.0, 100.0, 100.0, 200.0, 150.0/
DATA A1, A2, A3, A4, RMIN / .60, .60, .60, .60, .50/

C

R1 = X(1)
R2 = X(2)

R3 = X(3)

R4 = X(4)

Q1 = 1.0 - R1

Q2 = 1 .0 - R2

Q3 = 1 .0 - R3

Q4 = 1.0 - R4
PART2 = 1.0 - R2*(1.0 - Q1*Q4)

C

IF (I.GT.O) GO TO 100
C

C * THE OBJECTIVE FUNCTION TO BE MINIMIZED
VAL = - 1.0 + R3*(Q1*Q4)**2 + Q3*PART2**2
RETURN

C

C * THE INEQUALITY CONSTRAINTS (G(I) >=)

100 GO TO (1,2,3,4,5,6,7,3,9), I

C

1 COST = 2*K1*R1**A1 + 2*K2*R2**A2 + K3*R3**A3 + 2*K4*R4**A4
VAL = C - COST
RETURN

2 VAL = 1 .0

RETURN
- R1

3 VAL = 1.0
RETURN

- R2

4 VAL = 1 .0

RETURN
- R3

5 VAL = 1 .0

RETURN
- R4

6 VAL = R1 -

RETURN
RMIN

7 VAL = R2 -

RETURN
RMIN

8 VAL = R3 -

RETURN
RMIN

9 VAL = R4 -

RETURN
RMIN

END

SUBROUTINE GRADKI)

194

50

REAL R1, R2, R3, R4, Q1 , Q2, Q3, Q4, PART2
REAL C, K1, K2, K3, K4, A1 , A2, A3, A4, RMIN
COMMON /SHARE/ X(20), DEL(20), A(20,20), N,M,MN,NP1 ,NM1

COMMON /CONST/ C, K1

,

K2, K3, K4, A1 , A2, A3, A4, RMIN

R1 = X(1)
R2 = X(2)

R3 = X(3)
R4 = X(4)

Q1 = 1.0 - R1

Q2 = 1 .0 - R2

03 = 1 .0 - R3

Q4 = 1.0 - R4
PART2 = 1.0 - R2*(1.0 - Q1*Q4)

* SET DEL TO ZERO BEFORE FILLING IN THE NONZERO ELEMENTS
DO 50 INDEX =1,4

DEL(INDEX) =0.0
CONTINUE

IF (I.GT.O) GO TO 100

* THE GRADIENT OF THE OBJECTIVE FUNCTION
DELC1)

DEL(2)
DEL(3)

DEL(4)
RETURN

2.0 *R3*Q1*Q4*(-Q4) + 2.0 *Q3*PART2*(-R2)*Q4
-2.0 *Q3*PART2*(1.0 - Q1*Q4)

(Q1*Q4)**2 - PART2**2
2.0 *R3*Q1*Q4*(-Q1) + 2.0 *Q3*PART2*(-R2)*Q1

* THE GRADIENT OF THE CONSTRAINTS
;00 GO TO (1,2,3,4,5,6,7,8,9), I

1 DELC1)
DEL(2)
DEL(3)
DEL(4)
RETURN
DELC1)
RETURN
DEL(2)
RETURN
DEL(3)
RETURN
DEL(4)
RETURN
DELC1)
RETURN
DELC2)
RETURN
DEL(3)
RETURN

DEL(4)
RETURN
END

- 2.0*K1*A1 * R1**(A1-1)
- 2.0*K2*A2 * R2**(A2-1)
- K3*A3 * R3**(A3-1)
- 2.0*Kn*A4 * R4**(A4-1)

= -1.0

= -1 .0

= -1.0

= -1 .0

= 1.0

= 1.0

= 1.0

= 1.0

195

SUBROUTINE MATRIX (J,L)

REAL R1, R2, R3, R4, Q1, Q2, Q3, Q4, PART2
REAL C, K1, K2, K3, K4, A1 , A2, A3, A4, RMIN
COMMON /SHARE/ X(20)

,

DEL(20), A(20,20), N,M,MN,NP1 ,NM1

COMMON /CONST/ C, K1

,

K2, K3, K4, A1 , A2, A3, A4, RMIN

R1 = X(1)

R2 = X(2)

R3 = X(3)
R4 = X(4)

Q1 = 1.0 - R1

Q2 = 1.0 - R2

Q3 = 1.0 - R3

Q4 = 1 .0 - R4

PART2 = 1.0 - R2*(1.0 - Q1 *Q4)

IF (J.GT.O) GO TO 100

* THE SECOND PARTIALS OF THE OBJECTIVE FUNCTION
A(1,1) = 2*R3*Q4*Q4 + 2*Q3*(R2**2)*(Q4**2)
A(1,2) = - 2*Q3*Q4*PART2 + 2*Q3*R2*Q4*(1 .0 - Q1*Q4)

A(1,3) = - 2*Q1*(Q4**2) + 2*R2*Q4*PART2
AC 1,4) = 2*R3*Q1*Q4 + 2*R3*Q1*Q4

1 + 2*Q3*(R2**2) *Q4*Q1 + 2*Q3*R2*PART2

A(2,2)
A(2,3)

AC2,4)
A(3,4)
A(4,4)
RETURN

2*Q3*(1.0 - Q1*Q4)**2
2*PART2*(1.0 - Q1*Q4)

2*Q3*C1.0 - Q1*Q4)*R2*Q1 + 2*Q3*PART2*Q1
- 2*Q1*Q4*Q1 + 2*PART2*R2*Q1
2*R3*(Q1**2) + 2*Q3*(R2**2)*CQ1**2)

* THE SECOND PARTIALS OF THE CONSTRAINTS
100 GO TO (1,2,2,2,2,2,2,2,2), J

A(1,1)
A(2,2)
A(3,3)

AC4,4)
RETURN

- 2.0*K1*A1*(A1-1) * R1**CA1-2)
- 2.0*K2*A2*(A2-1) * R2**(A2-2)
- K3*A3*CA3-1) * R3**(A3-2)
- 2.0*K4*A4*CA4-1) * R4**CA4-2)

END

196

4.6 REFERENCES

1. Fiacco, A. V., and G. P. McCormick, "The Sequential Unconstrained
Minimization Technique for Nonlinear Programming : A Primal-Dual
Method", Management Sci.

f
10, 360-366, 1964.

2. Fiacco, A. V., and G. P. McCormick, "Computational Algorithm for the
Sequential Unconstrained Minimizatin Technique for Nonlinear
Programming", Management Sci.

f 10, 601-617, 1964.

3. Fiacco, A. V., and G. P. McCormick, "SUMT without parameters", Systems
Research Memorandum No. 121

f
Technical Institute, Northwestern

University, Evanston, Illinois, 1965.

4. Fiacco, A. V., and G. P. McCormick, "Extension of SUMT for Nonlinear
Programming : Equality Constraints and Extrapolation", Management Sci.

T

12 (11) : 816-829, 1966.

5. Fiacco, A, V., and G. P. McCormick, Nonlinear Programming jj. Sequential
Unconstrained Minimization Techniques , Wiley, New York, 1 968.

6. Kuester, J. L. and J. H. Mize, Optimization Techniques with Fortran .

McGraw-Hill Book Company, 1973.

197

5.1 CRITERIA USED IN COMPARING THE MICRO/ PERSONAL COMPUTER VERSUS
THE LARGE COMPUTER

Many of the criteria used in evaluating competing techniques [1] on the

same computer can also be used in evaluating the micro/personal computer

against the large computer. The criteria which are used in this study are:

1

.

Time required in a series of tests

(Preparation time, queue time, and execution time)

2. Size of the problem

(number of variables, number of inequality constraints, number of

equality constraints)

3. Accuracy of the solution with respect to the optimal vector x and

* * '*

/or with respect to f(x), h(x), g(x).

4. Simplicity of use

1 . Time required in a series of tests

The total time required to solve a problem on the large computer

includes preparation time, the queue time which is the time which has to be

spent waiting in a queue for either a terminal or for other people's jobs to

finish executing, and execution time. Of these times, the queue time can

take up a significantly large proportion of the overall time needed to solve

a problem. This is because each time the program has to be run, there is

some queue time involved and because the program usually does not run the

first time because of errors, there will be an accumulation of queue times.

However, when using a micro/personal computer there is no queue time so

often the same problem can be solved faster on a micro/personal computer

than on the large computer.

198

2. Size of the problem

The size of the problem which can be solved on each of the programs is

shown below :

The Hooke and Jeeves pattern search

Large : 50 variables

Micro : 50 variables

KSU-SUMT

Large : 20 variables

20 inequality constraints

20 equality constraints

Micro : 20 variables

20 inequality constraints

20 equality constraints

RAC-SUMT

Large : 20 variables

20 inequality constraints

20 equality constraints

Micro : 20 variables

20 inequality constraints

20 equality constraints

On each of the three programs, the dimensions of the micro computer was

set equal to the dimensions of the programs written for the large computer.

However, for the RAC-SUMT program, although the main program fits into the

37K bytes of usable computer memory of the North Star computer, the user

supplied subroutines may not fit into the memory. This is because the main

program uses 28X bytes of memory which leaves only 9K bytes fcr the user

199

supplied subroutines. In the RAC-SUMT program, three user supplied

subroutines are required : RESTNT, GRAD, MATRIX. The RESTNT subroutine

which supplies the objective function and the constraints may not be very

large but the GRAD subroutine and the MATRIX subroutine which supply the

first and second partial derivatives of the objective function and

constraints can get quite large. Therefore the user supplied subroutines

can easily exceed the 9K bytes.

3. Accuracy of the solution

The results of the test problems run on the large computer and the

microcomputer are shown below :

The Hocke and Jeeves pattern search

Test problem 1 :

Large : f(x) = 2960.74

Micro : f(x) = 2960.74

Test problem 2 :

Large : f(x*) = 241,516

Micro : f(x) = 241,516

KSU-SUMT

Test problem 1

Large : f(x*) = 962.50

§1
(x*) = 2.73

B
2(x*)

= .352

g
3
(x*) = 4.17

200

Micro

*

h
2
(x)

f(x) =

*
(x)

g~(x)

*

g
3
Cx)

lyx*)
*

hp(x)

.01

.005

962.34

2.79

.335

4.14

.06

.01

Test problem 2

Large f(x) =

x
g/x

)
=

#

gp(x) :

g
3
(x*) =

g
4
(x) =

g
5
(**) =

*

g^(x) =

g-7
(x)

,(x)

.9946

.0454

.1773

.1203

.1775

.2170

.3222

.3797

.3225

.2830

Micro : f(x) =

*
(x) =

g
2
(x

W
) =

g
4
(x)

=

g5
< x*> =

g
6
(x*) =

.9955

.201

.207

.828

.193

.212

.293

201

g
?
(x*) = .417

g8
(x*) = .307

g
9
(x*) = .288

RAC-SUMT

Test problem 2

Large : f(x*) = .999994

9067g/x) = .

g
2
(x*) = .0036

g (x*) = .0042

g
4
(x*) = .1206

g (x*) = .4267
5

g
6
(x*) = .4964

g (x*) = .4958

gg(x*) = .3794

g
9
(x*) = .0733

Micro : f(x) = .999998

gl
(x*) = 15.38

g
2
(x*) = .00304

g
3
(x*) = .00376

g
4
(x*) = .3378

g
5
(x*) = .3632

g
6
(x*) = .4970

g (x*) = .4996

g
8

(x
*) = .1622

a n(x*) = .1368
°9

202

The above results of the problem run on the micro/personal computer and

the large computer are essentially the same. In the Hooke and Jeeves

pattern search problems, the objective function values were identical when

run on the micro/personal computer and the large computer. The objective

function for the test problems run by the KSU-SUMT and RAC-SUMT were nearly

identical for the micro/personal computer as compared to the large computer.

The results for RAC-SUMT test problem 1 was not shown because the version of

RAC-SUMT on the large computer could not handle equality constraints. Mote

that in nonlinear programming problems the objective function may not be

unimodal, so that there may be several points which give the same value of

the objective function. This is probably why there are differences in the

values of the constraints for the KSU-SUMT and RAC-SUMT test problems

although the objective functions are nearly identical.

An
#
exact comparison of the results from the micro/personal computer and

the large computer is also not valid because the programs stored on the

micro/personal computer and the ones stored in the large computer are net

identical. The programs stored in the large computer are an older version

although for the Hocke and Jeeves pattern search and the KSU-SUMT program,

they are essentially the same. Only in the RAC-SUMT program were any major

changes made in the newer version but most of the changes were in terms of

adding new features to the program while the basic method of the program

remained unchanged. These results indicate that the micro/personal computer

can produce solutions which are as good as those produced by the large

computer.

4. Simplicity of use

For the large computer some job control language (JCL) statements are

needed to run the programs whereas for the micro/personal computer a few

203

operating systems commands are needed to invoke the Fortran compiler and the

linkage editor in order to run the program. The commands needed to run the

micro/personal computer are usually easier to learn and remember than the

corresponding JCL neeeded to run the programs on the large computer. To

illustrate the complexity of the JCL for the large computer, the JCL

statements needed to run the RAC-SUMT program is shown below.

// EXEC FORTGCLG
/7F0RT.SYSIN DD *

the user supplied subroutines go here

//LKED.LIB DD DSN=DSBN7.HWANG.0RFILES,DISP=SHR
//LKED.SYSIN DD *

INCLUDE LIB(RACSUMT)
ENTRY MAIN

//GO.SYSIN DD *

the user supplied data cards go here
/*

The more simple operating systems commands needed to run the RAC-SUMT

program are as follow :

The following command is used to compile the user supplied subroutines.

F80 =B: filename

The following command is used to link edit the compiled user supplied

subroutines with the compiled RAC-SUMT program and create a executable file.

L80 B: filename, B:RACSUMT/N, 8: RACSUMT/E

The following command is used to begin execution of the RAC-SUMT program:

B:READIN

As shown above, it is much easier to remember the commands needed for

the microcomputer than it is to remember or even understand the JCL

statements needed for the large computer.

204

5.2 REASONS FOR USING THE MICRO/ PERSONAL COMPUTER IN RESEARCH OR
APPLICATIONS

One of the reasons for using a micro/personal computer is the easy

accessibility to the micro/personal computer. There is no need to have a

security number to use the micro/personal computer as there is for using the

large computer. No computer funds are needed to run a program as for the

large computer. There is also no restriction on the hours of use as for the

large computer.

A second reason for using the micro/personal computer is the low

operating cost of the micro/personal computer. The only cost for operating

the micro/personal computer is the electricity cost for running the

computer, the cost of paper for printing out results and the cost of mini

disks for storing the programs. On the other hand, the operating cost for

the large computer can be expensive as one or more operators are needed to

keep the computer running, to mount tapes or disks when requested, and to

dispatch computer printouts to users, among other tasks. In addition, an

accountant is needed to keep track of the accounts of the various computer

users. Systems programmers are also needed to maintain the system programs

in good running order. All of these people are needed to keep the large

computer working properly and to meet the needs of the various users of the

large computer system. Their services can be quite expensive.

A third reason for using the micro/personal computer is the adequate

capacity of the micro to handle the problems to be solved. Most often the

complete capacity of a large computer is not needed when the problem to be

solved is only moderately large. For many problems, the micro/personal

computer has enough capacity to be able to handle them. For example, the

Hocke and Jeeves pattern search program and the KSU-SUMT program require

:o5

only 22K and 32K bytes of memory so they can easily fit into the available

computer memory of a 64K microcomputer. The RAC-SUMT program requires more

memory than what is available but with some modifications, it also can run

on the micro/personal computer.

206

5.3 EXPERIENCE ON MICRO/PERSONAL COMPUTER

One of the attractive features of the micro/personal computer

is the ability to make changes to the program easily and

quietly. This is a feature of the word processing software that

is available to create and edit programs- The word processing

software locates particular statements quickly and allows

additions, deletions, and replacements to be made very easily.

For instance, to change a variable name throughout the program,

only one command needs to be issued and all changes will be

made. The word processing software used in creating the program

was MicroPro's Wordstar. Having also used IBM's virtual machine

system product editor {also known as XEDIT) on the large

computer, my experience has been that the word processor on the

microcomputer is just as sophisticated as that for the large

computer.

One type of problem which was encountered when using the

Fortran compiler was determining where an error occurred when an

error message appeared. Although a line number indicating where

the error occurred is supposed to be given, sometimes no line

number was present. And when the line number is present, it

often is Dff by one or two lines. Also, when an error occurs in

a subroutine, the line number is given in reference to the start

of the subroutine, whereas the word processing editor which was

used numbered all lines with respect to the start of the

program. There were therefore some adjustments needed to

determine the location of the error in the subroutine. In

207

addition to the line number where an error occurred, the last 20

characters scanned at the time the error was detected is given.

Thesa 20 characters are often misleading because the error is

usually not in the 20 characters but a line or two before or

after the statement which contained the 20 characters.

Another type of problem which was encountered when using the

Fortran compiler was caused by the compiler not checking for all

types of syntax errors. Cne of the syntax errors no- checked

for -was incorrectly using single precision built-in functions

like ABS, ALOG, and SQRT when the double precision functions

DABS, DLOG, and DSQRT should have been used. Another type of

error not checked for was the matching of parameters in the

subroutine in number, type, and length with the parameters

expected by the calling program. When these types of errors

occurred, the results of calculations done by the program was

often totally incorrect and many times error messages would

appear during execution which were nonsensical like a message of

'Error Argument to CCS too large* when the COS function was

never used in the program.

These types of errors were some of the most difficult to

debug and hopefully newer versions of the compiler will check

for these additional types of errors. One of the reasons for

the problems with the Fortran compiler is probably because the

Fortran compiler is still in the developing stage and because it

is a first version, we can expect errors to be present.

Probably many of the errors will be taken care of in newer

208

versions of the software.

Gae of the disadvantages of the microcomputer compared to the

large computer is the limited memory capacity of the

microcomputer. Although most microcomputers now on the market

contain 64K bytes of memory, usually only 30-40K bytes are

available for the program; the remainder of the memory is taken

up by the operating system or reserved for special purposes.

Thus, the size of the program which can fit into the

microcomputer is limited to 30-40K bytes on many 64K byte

microcomputers. For the North Star Horizon microcomputer used

in this study which was running under the CP/M operating system,

37K bytes of the 64K bytes were avaialable for the program.

Both the Hooke and Jeeves pattern search program and the KSD-

SOttT computer program were able to fit into the 37K bytes of

available memory of the North Star Horizon microcomputer.

However, the RAC-SUMT program was larger than the 37K bytes and

thus would not fit into memory. To get around this problem, the

original program was divided into two separate programs and only

one of the programs was loaded at a time into memory. The RAC-

SUI5T program was able to run on the microcomputer in this way.

The size of the problem that can be solved by the RAC-SUHT

program though is still limited. whereas the PAC-SUMT program

was dimensioned to solve a problem with 20 variables, 20

ineguaiity coastraints and 20 eguality constraints, there is not

enough memory to run a problem that large. This is because

although the two separate parts of the FAC-SUMT program each fit

209

into the computer memory, the user supplied routines must also

fit into memory with the second part. The largest test problem

used {4 variables, 9 inequality constraints) took up nearly all

the available memory once it was loaded into the computer memory

with the main program. Thus, a problem much larger than this

will not fit into the North Star microcomputer.

Although the RAC-SUtlT program is restricted by the 64K bytes

of computer memory, the trend now is xoward microcomputers with

at lsast 128K bytes of main memory. With so much memory, the

RAC—SUMT program along with the user-supplied subroutines will

easily fit into the available aemory. There will also be no

need to divide the original program into two separate programs.

Another disadvantage of the micro/personal computer compared

to the large computer is the slower execution speed of the

micro/personal computer. The execution time of the test

problems run on both the micro and the large computer showed

that the micro was at least an order of magnitude slower than

the large computer. In all test problems solved in this study,

the micro/personal computer took less than four minutes to solve

whils the large computer solved all problems in less than five

seconds. These problems were all solved using the single

precision version of the programs. When the same problems were

solved using double precision, the execution time on the

micro/personal computer more than doubled. For example, test

problem 2 solved by Hooke and Jeeves pattern search program took

only 3 minut.es using single precision but with double precision,

210

it was still not finished after one hour of computation time.

The reason why the double precision version of the program

took so much longer is that the calculation done in the program

had to be carried out by software routines rather than hardware.

At the time the Fortran software was purchased, there was

hardware available to handle double precision, however, the

Fortran software to take advantage of the special hardware was

not yet available. As it becomes available, double precision

will become less prohibitive to do on the micro/personal

computer, but for now, if double precision results are needed,

it will probably have to be done on the large computer.

However, for problems solved by single precision, the slower

execution time as compared to the large computer was not

significant in that execution time is only a small fraction of

the overall time needed to solve a problem. Much more time is

spent preparing data for the computer, entering the data into

the computer, correcting mistakes in the data and waiting for

results. For a micro/personal computer, the big savings in time

is in not having to wait for a terminal or card punch to become

available, waiting for turnaround time, and then waiting for the

results to be printed. These savings in wait times are repeated

every time the program has to be run because of errors in the

data or changes made to the parameters in the program- So

although the execution time of the i»icr o/personai computer may

be slower than for the large computer, the overall time needed

to solve a problem will probably be less because of not having

211

to wait for devices to become available.

Thus, from my experience on the micro/personal computer, I

have found that on the plus side, the word processing

capabilities on the micro/personal computer make program

modification and correction a much easier task than before.

Also on the plus side is the savings in time by not having to

wait for a terminal to be free or waiting for the computer to

process your job. On the negative side, the Fortran software

for the micro/computer was not as developed as for the large

computer, although this will probably be improved as newer

versions come out. Another argument on the negative side is

that the memory capacity of most micro/personal computers with

fc4K bytes of memory was not enough for the RAC-SOMT program,

although this is also being corrected as newer micro/personal

computers are coming out with more and more memory.

212

5.4 ADVANTAGES AND DISADVANTAGES OF USING THE MICEO/PEP.SONAL

COMPUTER

The advantages of using a micro/personal computer include

easy accessibility, low operating cost, adeguate aemory capacity

to run the programs, no waiting for devices to become available,

and results which are comparable to those for the large

computer.

Disadvantages of using the micro/personal computer include

the slower processing speed which makes programs using double

precision arithmetic too slow to run on the micro. The slower

processing speed though was not significant when running

programs using single precision. Another disadvantage is the

limited memory of the 64K microcomputer which restricts the size

of problems that the RAC-SDHT program could solve. This

limitation though is being overcome with the larger memory

capacity of the newer micro/personal computers which allow

memory expansion up to 512K bytes-

A third disadvantage is the problem encountered with a

Fortran compiler which is still in the developing stage. The

initial version of the Fortran compiler can be expected to still

have errars in it and as was found out, it does noz have all the

features or error checking capabilities of the Fortran compiler

for the large computer. We can expect that the Fortran software

will improve as newer versions of it come out-

213

5.5 FUTURE STUDY

An interesting area of research would be to determine whether graphics

could be used on the microcomputer to help in searching for a solution to

the nonlinear programming problem.

214

5.6 REFERENCES

1. Crcwder, H. P., R. S. Dembo, and J. M. Mulvey,

"Reporting Computational Experiments in Mathematical Programming",
Mathematical Programming , 15, pp. 316-329, 1978.

A COMPARATIVE STUDY OF NONLINEAR PROGRAMMING ROUTINES

ON THE MICROCOMPUTER VERSUS THE LARGE COMPUTER

by

Frank P. Hwang

B.S., Kansas State University
Manhattan, Kansas 1981

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Industrial Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1984

ABSTRACT

With the microcomputer becoming ever more popular and affordable, a study

was needed to determine the practicality and feasibility of putting nonlinear

programming routines on the microcomputer.

The nonlinear programming programs under study were the Hooke and Jeeves

Pattern Search, and two Sequential Unconstrained Minimization Techniques

(SUMT), the KSU-SUMT program developed at KSU and the RAC-SUMT program

developed at the Research Analysis Corporation, McClean, VA.

It was found from this study that the nonlinear programming programs

would fit into the available memory of a 6UK microcomputer. The size of

problem that could be solved by the Hooke and Jeeves pattern search and the

KSU-SUMT program was the same as for the large computer. However, for the

RAC-SUMT program, a 64K microcomputer did not have enough memory to solve as

large a problem.

In comparing the large computer versus the microcomputer for the non-

linear programming routines, it was found that the microcomputer compared

favorably to the large computer in terms of ease of use, accuracy, and total

time to run a problem. The operating system commands needed to run a Fortran

program was somewhat easier to learn and remember for the microcomputer than

for the large computer. The results of the test problems run on the microcom-

puter and large computer were nearly identical indicating that the accuracy of

the results by the microcomputer were very good. In terms of total time

needed to run a program which includes time needed to enter data into the

terminal, wait for results and execution time, the microcomputer and large

computer took about the same amount of time.

