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Chapter One:

Introduction: Historical Sketch

The accurate mathematical description of the progress of

infectious diseases in a population has been a long sought goal of the

medical community. Several factors have hampered this formulation

until the beginning of this century. Two major factors were a lack of

sufficient mathematics to describe the intrinsic properties of the

epidemic and secondly, imprecise biological explanations detailing the

behavior of how the disease was spread prevented an accurate

mathematical formulation of the epidemic. Medical researchers were

looking for a useful mathematical model which would describe and allow

estimation of such quantities as the course and duration of the

epidemic, and the rate of infection given the initial number of

infectives and susceptibility rates.

Early biomathematical researchers were concerned principally with

fitting curves to epidemic data and using this as a model to deduce

the laws that governed epidemics. Brownlee (1906) was the first to

publish a paper on the modern mathematical theory of epidemics. He

studied the fit of members of Pearson's system of frequency curves to

epidemic curves obtained from data of several outbreaks of diseases in

the late 19th century.
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Concurrently Hamer (1906) presented his classic paper which

contained the basic biological elements of an epidemic theory. This

has become the foundation for many of the present concepts of the

epidemiology of communicable diseases. Hamer assumed that the number

of new cases which developed from a given number of infectious cases

would be proportional to: (1) the number of existing infectious cases,

(2) the number of existing susceptibles , and (3) a constant which

depended on factors influencing contact rate between an infectious

person and a susceptible. Using these assumptions, Hamer formulated a

crude model of the epidemic curve for measles, and the periodic

recurance of epidemics.

The work of Ross (1911) and more importantly, Kermack and

McKendrick in a series of papers (1927, 1932, 1933, 1937, 1939)

developed a deterministic mathematical epidemic theory. Initial

development of their equations grew from Ross's work. They introduced

a greater degree of generality to their model than previous

researchers by describing in a series of differential equations the

rates of infectives, susceptibles, and the contact rate between the

two groups.

Unfortunately their differential equations did not have simple

solutions . Although they were able to achieve approximate integral

equations for comparison to survival curves in experimental mouse

epidemics, their results failed to describe actual epidemics for human

populations . The failure of these deterministic models to agree with

published epidemic data led to the consideration of stochastic

epidemic models where chance and variation were important

considerations

.
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In a deterministic model, for a given set of initial conditions

only one single sequence of events for the epidemic could occur. This

is clearly an unrealistic hypothesis since during each disease there

are many factors which can exert an influence to change the spread of

the disease. If the assumption that the effect of factors influencing

the spread of the disease is a random process, then probability

concepts may be included in the structure of the model.

In 1926 McKendrick published the first stochastic epidemic model.

His deterministic theory considered the number of new cases in a short

period of time to be proportional to the number of susceptibles and

infectious cases while his new stochastic theory proposed the

probability of a new case was proportional to the time inteirval.

McKendrick' s efforts attracted little attention when published and he

soon continued with Kermack to pursue the deterministic theory.

Similar stochastic models were not again considered seriously for

almost twenty years.

Although published posthumously (1976), the stochastic model Reed

and Frost used in 1928 illustrated the probabilistic nature of

epidemics. The model was used in lectures at Johns Hopkins University

to simulate epidemics as a teaching tool. The model predicted that

under specific conditions the expected niomber of cases occurring at

any stage would have a binomial distribution which depended upon the

number of susceptibles and infectives of the previous stage. This led

to the formulation of the chain-binomial theory of epidemics.
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Independently, Greenwood (1931) also proposed a stochastic model

which assumed that the distribution of the number of new cases was

independent of the number of present cases . Greenwood assumed a

constant infection probability for this model.

Developments in mathematical epidemiology continued through the

1940's and 1950's culminating in Kendall's (1956) paper in which he

solved the deterministic differential equations of Kermack and

McKendrick, and in Whittle's (1955) paper in which a stochastic

threshold theorem was proposed. This result proposed conditions which

allowed the calculation of the probability that an epidemic of

specific intensity may take place. The theory of chain-binomial models

was further enriched by the efforts of Greenwood (1946, 1949), Abbey

(1952), and Bailey (1953,1957).

In the 1960's, epidemiologists applied the now established and

accepted deterministic and stochastic theories of epidemics to

different outbreaks of disease with various degrees of success.

Various diseases such as measles, influenza, scarlet fever, and the

common cold were modeled using chain binomial methods.

As mathematics and statistics evolved and was applied to the

problem of epidemics, more questions were developed and solved. Bailey

(1968) and Gani (1969, 1971) developed Markov chain methods in chain

binomial models. Ludwig (1975) derived final size distributions for

epidemics with arbitrary time dependent infectiousness. Becker, in a

series of papers (1977,1980,1981), combined the approaches of Reed-

Frost and Greenwood into a general chain binomial model.
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The area of stochastic mathematical models for infectious

diseases is still very active with numerous open questions. Increased

concerns about the statistical aspects of infectious disease modeling

continue to attract the attention of researchers. New applications of

various other mathematical and statistical techniques to describe the

complex behaviors of diseases promise that this will remain a fertile

area for researchers to explore for some time.

This report will present several chain binomial model

formulations. These models will be fitted to a set of epidemic data

and the adequacy of these models to describe this data set will be

compared.



Chapter Two:

Theory of Chain Binomial Models

2.1 Epidemiological Ideas

The mathematical formulation of discrete time epidemic models

flows from attempts by several investigators to present models which

realistically describe the progress of a disease through a population.

The usual starting point in model building is the set of assumptions

about those factors which control the spread of a disease. These

assumptions should create a model which describes actual disease

patterns. The epidemic model is then useful as a predictive tool for

epidemiologists

.

Epidemiologists are concerned with estimating such quantities as

the maximum number of cases at the peak of the epidemic, the duration,

and total number of cases for the epidemic. The model should be

relatively simple mathematically, yet accurate in describing essential

features of the epidemic. Chain binomial models satisfy both these

criteria. These models have been useful in describing viral diseases

such as measles, chicken pox, influenza, and the common cold.

Modeling the spread of these diseases among individuals in a

population is a complex task. It is necessary to make several

mathematical and biological assumptions about the factors which

control the disease process. Mathematically, the population under

consideration is assumed to be closed and homogeneously mixed.
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The population consists of two classes of individuals. Those who

already have the disease are called infectives , and those capable of

receiving the disease are called susceptibles . The models assume that

all individuals have equal susceptibility, capability to transmit the

disease, and the ability to be removed from observation when the

transmitting period is over.

After one or more members of the population is infected, the

period of time during which the development of the disease is purely

internal to the infected person is called the latent or incubation

time period. In chain binomial models this latent period is assumed to

be constant. This discrete time unit is used in these models to chart

the progress of the disease.

The infectious period is the time during which the disease may be

transmitted to other members of the population. This time period is

contracted to a single point. The infected person may spread the

disease upon "adequate contact" to susceptibles in the population.

This adequate contact is the probability of contact at any time

between an infective and a susceptible sufficient to transmit the

infection. Denote this parameter p where 0<p-l-q<l, and q is

the probability of no contact with the infection.

After the disease shows its sjonptoms, the infected members are

removed (isolated) from the rest of the population until recovery. At

each time step, a new generation or set of cases following a binomial

distribution depending on the parameter p is presented.

The epidemic continues until at some stage there are no new cases

generated. An epidemic is defined as the transient outbreak of a

disease which is terminated when there are no new infectives.



2.2 Reed-Frost and Greenwood Models

Let N be the initial size of the population. The disease

process starts with I„ individuals (1 < I„ < N) becoming infected at

time t = 0. The remaining N - I^^ members of the population are

susceptibles . Let S denote the number of susceptibles , and I the

number of infectives just prior to time t. The recursive

relationships S = I . + S . for t = 0,1,..., and N = I„ + S„ hold.

The probability of new infectives during time (t, t+1) may be

viewed under two mutually exclusive assumptions:

(I) The probability of new infectives is dependent on the number

of infectives in the population at time t.

(II) The probability of new infectives is independent of the

number of infectives in the population at time t.

These assumptions parallel the development of chain binomial

models. In 1928, Lowell J. Reed and Wade H. Frost in lectures at Johns

Hopkins University developed the first chain binomial epidemic model

using assumption (I). Although Reed and Frost never published their

results , they used these models to help explain disease progress to

their students. Independently, in 1931, Major Greenwood published his

chain binomial model based on assumption (II). These two models have

been accepted by epidemiologists and other health researchers as

useful tools in describing the progress of viral diseases.



In the Reed- Frost model the probability of infection during time

(t, t+1) depends on the number of infectives present in the

population. The corresponding conditional probability of having I
^

individuals infected prior to time t+1 is expressed

^t^t+r ^+ii ^t- \' ^t= ^]
^t+i-

,^ ^t/t+i ^t^t+i
(i-q ) q

^'
5 < i
t+1- ^t+1

,^ ^t,^t+l ^t^t+1— (1-q ) q for i^^ ^ 0. (2.1)

The quantity 1-q is the probability of adequate contact with

at least one of the s susceptibles

.

In the Greenwood model, under the assumption of independence, the

conditional probability is

^f^t+r ^t+ii \- \' \- ^ti
=

t+1

, ^t+i, ^t+i
(p ) q

f . /t+1
, , t+1 ^ • ^ 1

t+1- ^t+i-
^

(2.2)

The relationship p + q = 1 holds, where p is the probability

of adequate contact. Notice that the Greenwood model is slightly

simpler mathematically as a result of the assumption of independence.
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2.3 Generalized Chain Binomial Model

Neils Becker (1981) combined the formulations of Reed-Frost and

Greenwood into a general chain binomial epidemic model. Using the same

notation as above with initial values I^ = a and Sq = k, then

^tSt+r ''' ^t+r ^ - '^i ^= ^' \' ^1

s
. s-x

(q^)" (l-q^)" " for X = 0,1 s. (2.3)

The advantage of these models is that it is possible to follow

the course of the disease through a population by following the

epidemic chain. Consider the chain of infectives specified by counting

the number of cases in each generation. The notation 1-3-2-0 is used

to denote the epidemic chain in a household consisting of a single

introductory case, three first generation cases, two second generation

cases , and no new cases in later generations

.

In the general chain binomial model, it is possible to write the

probability of any chain a-i.. -i„- . . . -i of infectives for times

t = 0,1, . . . as

„r . . , ^O' I ^t+1 ^t+1 ,„ ,,P a-iT-...-i ]- -:—-:—

;

:—

;

, n q. p. (2.4)12 ^r- r+1- t=0 ^t ^t

where i^ = a, s = k-i. -i_- . .
. -i for t = 1,2,...

Notice that if q. represents the probability that a susceptible

escapes infection when there are i infectives, the Reed-Frost model
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may be obtained from the general model by setting q. = q , and q. = q

for the Greenwood model.

For example, to calculate the probability of the chain 1-2-1-0

using the general chain binomial model for a household of five:

P[l-2-l] = P[S^= 2|Sq= 4,Iq- 1]P[S2- 1|S^= 2, I^-2]P[S3- 0|S2= 1,I2-1]

{'] 2 2 f?l 1 1 m= UJq^p^ [1) q2P2 lOj q^Pj

3 2
= 12q^p^q2P2 "^^^^ Pi "=

^""^i
' ^ =1,2,...

This expression may be converted to either the Reed-Frost or

Greenwood model formulation by the above transformations. For the

3 5above example, P[ 1-2-1] - 12p q (1+q) for the Reed- Frost model, and

3 4
12p q for the Greenwood model.

Direct calculation of the probabilities for either model is

possible by using (2.6) for the Reed-Frost model, and equation (2.7)

for the Greenwood model

.

Sq! k-1 i^ i^ ,., ^2^ i.s.

^l-2'---^k'\+l'

s^! fc-1 1.1.. .S„ I.S. ,

s^! .^, i. ^} s.
PTi - -i 1

= n J'^^ J n^'^ J ro 7^rtj.
• ij^J

i li I i Is I
P 'i (2.7)

It is possible to enumerate and calculate all possible chains and

their associated probabilities for small values for N. Tables 1 to 3

provide these summaries

.
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Table 1. Individual chains for households of three.

Introduction Chain Type

Single 1

1-1

1-1-1

1-2

Double 2

2-1

Frequency

Reed- Frost Greenwood

2
q

2pq

2p2q

1-q

q

p

Table 2. Individual chains for households of four.

Introduction Chain Type

Single 1

1-1

1-1-1

1-2

1-1-1-1

1-1-2

1-2-1

1-3

Frequency

Reed- Frost Greenwood

3pq 3pq

r 2 4
6p q

£ 2 4
6p q

, 2 3
3p q

, 2 2
3p q

c 3 3
6p q

,33
6p q

•3 3 2
3p q

- 3 2
3p q

\(l+q) o 3
3p q

3 3
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Table 2. Individual chains for households of four.

Introduction Chain Type Frequency

Reed-Frost Greenwood

Double 2

2-1

2-1-2

2-2

2pq-^(l+q)

2p^q^(l+q)

2 2
P (1+q)

2pq

2p q

Triple 3

3-1 1-q-

q

p

In addition to finding the probability of an individual chain, it

is also possible to determine the distribution of the total number of

cases in an epidemic for these models. The distribution is obtained by

adding together all the probabilities for the relevant chains. Tables

4 to 6 provide the relevant summaries.
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Table 3 . Individual chains for households of five

,

Introduction Chain Type Frequency

Reed- Frost Greenwood

Single 1

1-1

1-1-1

1-2

1-1-1-1

1-1-2

1-2-1

1-3

1-1-1-1-1

1-1-1-2

1-1-2-1

1-2-1-1

1-2-2

1-1-3

1-3-1

1-4

4pq

10 2 7
12p q

t 2 6
6p q

24p\^

12p q

12p\^l-Hq)

/ 3 4
4p q

24p\^

12p\^

12pV(l+q)

12pV(l+q)

6p\2(l+q)2

/ ^ 3
4p q

4 2
4p qCl+q+q )

4pq

10 2 7
12p q

^24
6p q

0/3 7
24p q

10 3 5
12p q

10 3 4
12p q

/ 3 2
4p q

o/ 4 6
24p q

10^5
12p q

10 ^ ^
12p q

10^3
12p q

6p q

/ ^ 3
4p q

, 4
4p q
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Table 3. Individual chains for households of five.

Introduction Chain Type Frequency

Reed- Frost Greenwood

Double 2 q''
q

2-1 3pq^l+q) 3pq

2-1-1 6p2q^l+q) t 2 4
6p q

2-2 3p2q^(l+q)2 •3 2 2
3p q

2-1-1-1 6pV(i+q) c 3 3
6p q

2-1-2 3p^q^(l+q)
- 3 2
3p q

2-2-1 3pV(l+q)^ -3 3
3p q

2-3 P^l+q)^ P^

Triple 3

3-1

3-1-1

3-2

2pq^(l+q+q^) 2pq2

2 3 2
2p^q^(l+q+q^) 2p2q

p2(l+q+q2) P^

Quadruple 4

4-1 1-q^

q

p
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Table 4. Total size of epidemic for households of three.

Introduction Total Cases Frequency

Reed- Frost Greenwood

Single 1

2

3

2pq

P (l+2q)

Double

1-q

q

p

Table 5. Total size of epidemic for households of four.

Single Introductory Case Frequencies

Cases

1

2

3

4

Reed-Frost

3
q

3pq

3p^q^l+2q)

p-^(l+3q+6q^+6q^)

Greenwood

3
q

3pq

2 2 2
3p^q^(l+2q^)

p-^(l+3q+3q^+6q-^)



Table 5. Total size of epidemic for households of four.

Double Introductory Case Frequencies

Cases Reed- Frost Greenwood

2 q q

3 2pq\l+q) 2pq^

4 p^(l+q)(l+q+2q^) p^(l+2q)

Triple Introductory Case Frequencies

Cases Reed- Frost Greenwood

3
3

q q

4 l-q3 p

17
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Table 6. Total size of epidemic for households of five.

Single Introductory Case Frequencies

Cases Reed-Frost

1
4

q

2 4pq

3 6p^q^(l+2q)

4 / 3
4p (l^(l+3q+6q^+6q^)

5 P^(l+^+q+10a^-h20a^+30aS36aV

Greenwood

4
q

4pq

2 4 3
6p^q^(l+2q-')

3 2 2 3 5
4p^q^(l+3q'^+3q^+6q^)

Cases

Double Introductory Case Frequencies

Reed-Frost Greenwood

2

3

4

5

3pq (1+q)

3p2q^(l+q)(l+q+2q2)

p (l+q)(l+2q+4q^+6q^+6q'^+6q^)

3pq

3p2q2(l+2q2)

p^(l+3q+3q^+6q^)

Cases

3

4

5

Triple Introductory Case Frequencies

Reed- Frost Greenwood

2pq^(l+q+q2)

p^(l+q+q2)(l+q+q2+2q^)

2pq'

P(l+2q)



19

These calculations are rather awkward and time consuming even for

small size populations. Recurrance relations have been determined for

both models

.

Let Pj. . denote the probability in a population of size N with

a introductory infections and j total number of cases (a < j < N)

.

Each stage follows a binomial distribution with k infectives and

N-a-k susceptibles at time t = 1 with probability for the Greenwood

model given by:

M k N-a-k ,_ ..
p q (2.8)

The probability of j-a new cases, including the k infected, to

have a total of j cases is then just , P„ . . The recurrance
•^ -^ k N-a,j -a

relationship can be expressed

^
^'^

fN-a] k N-a-k ^ , „ N-a ,_ „,

a^N,j"^f^ [kJP <! k^N-a,j-a ^^^" a^Na " ^ " <2.9)

In a similar manner for the Reed-Frost model

_ J'^ fN-al,. a.k a(N-a-k)„ , „ a(N-a),_ ^^.
a^N.j =

^f^ [ k J(^-^ ) ^ k^N-a.j-a ^^^^^
a^Na = ^ ^2. 10)

The Reed- Frost and Greenwood models require estimates of the

basic parameter q of the model. This is accomplished by using

maximum likelihood methods. It is also possible to test the fit of

these models to data by using the chi square goodness of fit test.

Examples of these methods will be presented in Chapter 3.
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2.4 Markov Formulation

A relatively new and promising analytical tool for chain binomial

models was developed by Gani and Jerwood (1971) . They reformulated

these models in terms of Markov chains . The Greenwood model may be

written as

^t^+1 = ^+ll^t = ^tl =
; rri—

1

y- P'" '^^V^''^ (2.11)

The model in (2.11) satisfies a univariate Markov chain for S ,

with t = 0,1,...

The Reed- Frost model may be rewritten as

^[^fl = \- \^l' ^t+1 = ^+ll ^ = \' \ = \^

^t- .^ „^t/t+l „^t^^t" ^t+1^ .„ T„.

t+l-^^t ^t+l-*-

The Reed- Frost model may then be described in terms of a

bivariate Markov chain for the pair of variables S and I .

To see the advantages of this formulation, consider the

mathematical results of this setting for chains terminating for the

first time at T = t when X = X .. . The interpretation of X is the

variable number of susceptibles in the epidemic. Let (X ) be a Markov

chain with finite state space and transition matrix

M = {m. . ) where < m. . < 1 for i ^ i

< m. . < 1 for i, i = 0, 1, . . . k.
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Define the elements of the transition matrix M for the Greenwood

model to be:

m.
ij -{^0&]

p'-^q^ for < j < i

for i < j < k
(2.16)

The (k+1) X (k+1) transition matrix M has the lower triangular

form:

1

P q

2pq

k-1
kp q

k] k-2 2

2j P q

k

q J

(2.17)

Let A be the vector of initial probabilities where the i th row

A. = [0, 0,..., 0, 1]. A. is the 1 x (k+1) row vector with 1 in the

2 k(i+l)st position. Define R - [1 , q, q , . . . , q ] ' to be the column

vector of diagonal elements from M, the transition probability matrix.

Define B = M - R. The probability of the epidemic stopping in state j

at time T = t given the epidemic started with X_ = i at time zero

,t-l.

may be expressed as

P[T = t, X^= X^_^= j|Xq - i] - {B

Summing equation (2.18) over < j < k yields

. . m. .

iJ JJ
(2.18)

P[T - t|X = i] = 2 P[T = t, X = X = j I X„ = i]

j=0
C L-J. U

k
= S [B^"-*-).. m..

IJ JJ

= A. 'B^'^R for 1 < t < ». (2.19)
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It is then possible to construct the probability generating

function (p.g.f.) of the epidemic termination time T. The p.g.f. is

CO

defined to be E 6^ P[T = t| X„ = i]

.

t=0
"

00

From (2.19), the p.g.f. is S 0^ A. 'B^ R and rewritten as
t=l ^

CO

s A. 'e^"-'"B^"-'-eR

t=i
^

= A. '(I - eB)"-'-eR for < e < 1 (2.20)

where I is the (k+1) x (k+1) identity matrix. The inverse in (2.20)

always exists since |eB| < 1.

Gani and Jerwood refer to the distribution in (2.19) as a Markov

geometric distribution because its structure resembles the ordinary

geometric distribution.

The expected length of the epidemic and its variance is found by

computing the derivatives of (2.20) and evaluating the resulting

expressions at 6 = 1.

The expected length of epidemic, denoted E[T] , is found to be

E[T] = Aj^ (I - B)"^ R. (2.21)

The variance, V[T] , is obtained from the well known formula

V[X] = E[X(X-1)] + E[X] - {E[X])^ (2.22)

Using (2.22), the expression for the variance is

V[T] = 2A^B(I-B)"^R +a:(I-B)"^R - {A: (I-B) "^R)^ . (2.23)
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Chapter Three:

Application of Chain Binomial Models to Epidemic Data

3.1 Epidemic Data

A classic data set in the area of mathematical epidemiology was

that presented by Heasman and Reid (1961) . They presented data on 45-

50 London households consisting of five people, two parents and three

children. 664 family epidemics of acute coryza (common cold) were

investigated over a two year period. The date of onset of illness and

the number of upper respiratory infections experienced by family

members were recorded on time charts for each family in days . By

examining these charts the progress of the disease could be described

in terms of the chains of infections as noted in Chapter Two. Table 7

presents data for single primary cases (one case to begin the home

epidemic)

.

Household data as presented in Table 7 provide the ideal

population for testing the adequacy of chain binomial models . It is

only for such small groups as households that the different possible

chains can be readily classified. Furthermore, many of the simplifying

underlying assumptions of the models presented are likely to be

satisfied within this type of population than in a general community

setting.

The usual chi square goodness of fit test may be used to test

model fit to the data. A comparison of actual versus expected
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frequencies under the hypothesized model is used to check model

adequacy.

Table 7. Heasman and Reid epidemic data.

Chain Observed Frequency

1-0 423

1-1-0 131

1-2-0 24

1-1-1-0 36

1-3-0 3

1-1-2-0 8

1-2-1-0 11

1-1-1-1-0 14

1-4

1-3-1

1-1-3 2

1-2-2 1

1-2-1-1 3

1-1-2-1 2

1-1-1-2 2

1-1-1-1-1 4

664
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3.2 The General Chain Binomial Model

The formulation of a general chain binomial model is very

attractive in the sense that this model combines the Reed- Frost and

Greenwood formulations. Additionally, maximum likelihood (ML)

estimates may be obtained for the q. , i = l,2,...,k-l where q.

denotes the probability of a given susceptible escaping infection when

exposed to the i th infective of any generation.

The log likelihood function is expressed as

k-1
-en L(q q ,) = S (x in q + (m -x ) in (1-q.)) + K, (3.1)

•'- ^' ^ !==]_ J J J J J

where m. denotes the total number of exposures to the j th infective,

x. denotes the total number of those escaping infection, and K is a

constant.

Computing partial derivatives of (3.1) with respect to the q.

,

setting the derivatives equal to zero, and solving, yield the ML

estimates

A X.

q. - L for j - 1,2 k-1. (3.2)
•^ m.

J

For the Heasman-Reid data, the likelihood function becomes:

T / N / '^n'^23,, 6 ,131 , 4,4 ,. .,L(q^, q^, q^) = (nq^) (4nq^p^) . .
.
(np^) (3.3)

J/ , ^ 3000, , ,397 70,, ,18 3 ,, ,,L(q^, q^, q^) = Kq^ (l-q^^) q2 (l-q2) 'i^ ^^'^^
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Values of m. and x. can easily be read from (3.4) as follows:

x^ = 3000 X2 -= 70 x^ = 3 (3.5)

m^ = 3397 m2 = 88 m^ = 3

.

The ML estimates from (3.5) and (3.2) are q,= .8831 (variance

A A

=.000155), q- = .7954 (variance - .0002451), and q- = 1.0. Using

these estimates with n = 664 in the general model allows the

calculation of expected frequencies for each of the chains (Table 8)

.

A

Since q~ is based on only three Bernoulli trials and several

chains occur with frequencies fewer than five, these chains are pooled

together to form one class. In this pooled case only q. and q„ are

estimated.

2
The chi square goodness of fit test yields a value of x " 9.573

with 5 df. This result is not significant at the 5% level. The general

chain binomial model does adequately describe the data.
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Table 8. Fitted General Model,

Chain

1-0

1-1-0

1-1-1-0

1-1-1-1-0

1-1-1-1-1

1-1-1-2

1-1-2

1-1-2-1

1-1-3

1-2

1-2-1

1-2-1-1

1-2-2

1-3

1-3-1

1-4

Expected
4

nq-L

4nq^p^

io 7 2
12nq^p^

0/7 3
24nq^p^

0/6 4
24nq^p^

n 5 4
12nq^p^

10^312nq^p^q2

10^3
12nq^p^P2

/ 3 4
4nq^p^

,222
6nq^p^q2

3 2
12nq^p^q2P2

2 3
12nq^p^q2P2

,222
6nq^p^P2

^nq^p^q^

4nq^p^P2

4
np-.

Observed

423

131

36

14

2

8

2

2

24

11

3

1

664

Fitted

403.83

147.26

45.61

10.66

1.41

0.79

6.15

1.58

0.34

26.86

12.22

1.62

1.77

3.74

0.00

0.12

663.96
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3.3 Greenwood Model

The likelihood function provided by the general chain

binomial model (3.4) may be transformed into the likelihood function

for the Greenwood model by substituting q. - q. The likelihood

function then becomes

^ , , „ 3000 ,. ,397 70 ,, ,18 3 ,^ ^,L (q) - K q (1-q) q (1-q) q (3.6)

, , , „ 3073 ,T ,415 ,, ^,L (q) = K q (1-q) . (3.7)

ML estimates for q are found in the usual manner from the log

A

likelihood function, q - .88102 with variance .0001579 was found.

Expected frequencies may then be found for each chain. Table 9

presents the summary for this model. Using the same number of classes

as in the generalized model case, the chi square statistic tests the

adequacy of the model fit to the data.

The chi square goodness of fit test yields a value of x = 16.147

with 6 df. This value is significant at the 5% level. Hence, the

Greenwood model does not adequately describe the data. The rejection

of this model in favor of other models calls into question the

assumption of a constant infection rate for this disease. By using

this technique of fitting different models with various assumptions

for the disease, researchers are able to test their assumptions about

disease factors. Various aspects of diseases which may not totally be

known can be discovered in this manner.
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Table 9. Fitted Greenwood Model.

Chain

1-0

1-1-0

1-1-1-0

1-1-1-1-0

1-1-1-1-1

1-1-1-2

1-1-2

1-1-2-1

1-1-3

1-2

1-2-1

1-2-1-1

1-2-2

1-3

Expected Observed Fitted
4

nq 423 400.01

4nq p 131 147.78

12nq'^p^ 36 46.48

24nq^p^ 14 11.06

o/ 6 4
24nq p 4 1.49

12nq^p^ 2 0.85

12nq^p^ 8 7.12

12nq p 2 0.96

/ 3 4
4nq p 2 0.36

t 2 4
6np q 24 33.98

12nq p 11 8.08

12nq^'^ 3 1.24

c 2 4
bnq p 1 0.62

/ 2 3
4nq p 3 3.47

4 41-3-1 4nq p 0.47

1-4 np

664

0.13

663.75



30

3.4 Reed-Frost Model

The transformation q. = q^ for i = 1,2,3 in the general chain

binomial model converts the general chain binomial model's likelihood

function (3.h) into the Reed- Frost likelihood function

, , , ^ 3000 ,T ,397 , 2,70 .^ ^2,18 ,33 ,^ „.
L (q) = K q (1-q) (q ) (1-q ) (q ) (3.8)

, , , ,, 3149 ,T ,415 ,T^ ,18 ,^ Qs
L (q) = K q (1-q) (1-Hq) . (3.9)

The ML estimate of q is obtained in the usual manner from the

log likelihood function. Computing the derivative of the log of the
.

likelihood function (3.9) with respect to q yields a quadratic

expression in q. Solving this resulting quadratic expression in q

A

yields the ML estimate q - .8838 with variance .0001547. Using this

estimate with n = 664 provides the expected frequencies of Table 10.

Chains with fewer than five observed frequencies were pooled.

2
The chi square goodness of fit test value of x = 9.127 with 6 df

was not significant at the 5% level. One may then conclude that the

Reed- Frost chain binomial model does adequately describe the data.



Table 10. Fitted Reed-Frost Model.
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Chain

1-0

Expected
4

nq

Observed

423

Fitted

405.12

1-1-0 4nq p 131 147.08

1-1-1-0 10 7 2
12nq p 36 45.31

1-1-1-1-0 0/7 3
24nq p 14 10.53

1-1-1-1-1 0/6 4
24nq p 1.38

1-1-1-2 10 5 4
12nq p 0.78

1-1-2 10 5 3
12nq p 5.96

1-1-2-1 12nqV(l+q) 1.67

1-1-3 / 3 4
4nq p 0.33

1-2 c 2 4
6np q 24 25.63

1-2-1 12nq%-^(l+q) 11 12.70

1-2-1-1 12nqV(l+q) 1.67

2 4 2
1-2-2 6nq p (1-l-q) 2.01

1-3 / ^ 34nq p 2.54

1-3-1 4nq p'^(l+q-(-q^) 1.14

1-4 np 0.12

664 663.97
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3.5 Modified Reed-Frost Model

One of the basic assumptions of the Reed-Frost model is that the

probability q of any given susceptible escaping infection by any

infected person is constant. Epidemiologically , this assumption may

not always be true. There are various social and genetic factors which

may have a substantial effect on this probability causing it to vary

from household to household. These factors, including age, nutrition,

sex, and hereditary immune system components, give support to a non-

constant probability q of escaping infection.

The easiest method of considering the variability of q is to

allow q to vary according to some known distribution. A reasonable

choice for this distribution is the beta distribution. The beta

distribution provides q with values between and 1 in addition to

allowing a great deal of flexibility in the shape the distribution may

assume. This accounts for some of the various factors which may effect

the values of q in households.

The Reed- Frost model may be expressed as

s I u,, > s-u
^t^+r ^' \^r -"

I
S^ = S, I^ = i] =

^;j
q"(l-q)=' (3.10)

and assumes q is the same for all members of a household but varies

between households. This is accomplished by the mixing distribution

1 , ,

dF(q) = q^'-^ (l-q)y"-^dq for < q < 1, x,y > (3.11)
B(x,y)

where

r(x) r(y)
B(x,y) -

p(^^y^
and r(x)=(x-l)!
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The required expectations can then be obtained by averaging the

frequencies for each chain type over the mixing distribution (3.11).

Since each of the chains of the Reed-Frost model involves linear

h k
expressions of the form q p where h + k = s, the expectations may be

found by

„r h k, f 1 h+x-1 ,1 ,k+y-l , .^ ,„,
E[q p ]

= q (1-q) ^ dq (3.12)
JQ B(x,y)

B(x+h, y+k)

B(x,y)

x(x+l). . .(x+h-l)y(y+l). . .(y+k-1)
_ (3.13)

(x+y) (x+y+1) . .
.
(x+y+h+k-1)

Bailey (1953) , Griffiths (1973) , and others have suggested that

the reparametrization

X 1

q = —;— and z = —;— , (3.14)^x + y x + y

is useful in allowing ML estimates to be found.

Further notation to simplify the expectation expressions for the

chains is defined by

n
z(n) = n (1 + iz), (3.15)

i=0

n
z (n) = n (q + iz), (3.16)
^ i=0

n
z (n) = n (p + iz). (3.17)
P i=0

Application of (3 . 15) - (3 . 17) allows the expected probabilites for

households of size five to be expressed (Table 11) in terms of the two

parameters q and z.
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Table 11. Expected Probabilities for Modified Reed-Frost Model,

Chain

1-0

Probabilities
4

nq

1-1-0 4nq p

1-1-1-0 12nq'^p^

1-1-1-1-0 0/7 3
24nq p

1-1-1-1-1 0/6 4
24nq p

1-1-1-2 12nq^p^

1-1-2 12nq^p^

1-1-2-1 12nqS^(l-l-q)

1-1-3

1-2

/ 3 4
4nq p

A 2 4
6np q

1-2-1 12nq'^p^(l+q)

1-2-1-1 12nq^p^(l+q)

Expected Value of Probability

Zq(3)/z(3)

4Zq(5) Zp(0)/z(6

12z (6)z (l)/z(8
q p '

24z (6)z (2)/z(9
q p '

24z (5)z (3)/z(9
q p '

12z (4)z (3)/z(8
q p '

12z (5)z (2)/z(8
q ' p " ^

12z^(3)Zp(3)(l+q+12z

4z^(2)Zp(3)/z(6

6z^(5)Zp(l)/z(7

12z^(4)Zp(2)(l+q+13z

12z (3)z 93)(l+q+12z
q P ^

/z(8)

/z(8)

/z(8)

1-2-2 6nq^p^(l-l-q)^ 6z (l)z (3) [76z^+(17+19q)z+(l+q)^]/z(7)

1-3 / ^ 3
4nq p 4z^(3)Zp(2)/z(6)

1-3-1 4nq p^d+q+q^) 4z (0)z (3) [ 38z^+(12+9q)z-(-(l+q) ^ ]/z(7)

1-4 np Zp(3)/z(3)
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The likelihood function may now be formed by taking the product

of the expected value of each of the chains raised to the power of its

observed frequency. Estimates for q and z may be found by iteratively

solving the derivatives of the likelihood function. The IMSL

subroutine ZXMWD was used with the log likelihood function

in L = C + 664 in q + 664 in(q+z) + 663 in(q+2z)

+ 661 in(q+3z) + 230 in(q+4z) + 217 in(q+5z)

+ 50 >Cn(q+6z) + 241 in p + 110 in(p+z)

+ 50 in(p+2z) + in[76z^ + (17+19q)z + (1+q^)] (3.18)

+ 14 in(p+3z) + 5 in(l+q+12z) + 11 in(l+q+13z)

- 664 in(l+z) - 664 in(l+2z) - 664 in(l+3z)

- 241 in(l+4z) - 241 in(H-5z) - 241 in(l+6z)

- 105 in(l+7z) - 80 in(H-8z) - 18 in(l+9z)

,

where C is a constant.

The estimates of q and z were found to be:

A A

q = .8887 z = .0222

Var(q) = .3433 x 10"'^ Var(z) = .1237 x 10''^

A A .

Gov (q,z) = .1900 X 10"^

Using these estimates of q and z, the expected frequencies for

the chains were calculated (Table 12)

.
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The goodness of fit test for this modified Reed-Frost model with

2

beta distribution yielded x =2.94 with 5 df. This value, when

compared to the tabled chi square value of 11.070 for 5% level of

significance, revealed an excellent fit of this model to the data. The

excellent fit of this modified model to the data implies the presence

of household to household variability for this disease. This aspect of

the disease may not have been determined from merely observing the

data.

The strategy for health researchers interested in using these

models is clear. They should try several of these chain binomial

models to see which of them "best" fits the epidemic data. Once the

"best" model fit has been determined, the researchers should examine

the model to determine what the epidemiological implications of the

model are . In this manner additional research information can be

obtained for the disease.
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Table 12. Fitted Modified Reed-Frost Model.

Chain Observed Fitted

1-0 423 420.81

1-1-0 131 133.55

1-1-1-0 36 40.01

1-1-1-1-0 14 10.42

1-1-1-1-1 4 1.81

1-1-1-2 2 1.09

1-1-2 8 6.11

1-1-2-1 2 2.41

1-1-3 2 0.53

1-2 24 23.15

1-2-1 11 13.34

1-2-1-1 3 2.41

1-2-2 1 3.21

1-3 3 2.84

1-3-1 2.18

1-4 0.24

664 664.11
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3.6 Conclusions

A comparison of the fit of the four chain binomial models

presented in this report reveals several observations. The overall

usefulness of this class of models can be seen in the similarity

of the estimates of the escape rate of infection q provided by all

the models

.

The best fit was achieved by the modified Reed-Frost model. This

model provided additional insight into the nature of the disease by

showing variabilty from household to household of the escape rate from

infection.

The worst fit was the Greenwood model. This lack of fit was not

surprising in light of the additional information about the disease

provided by the modified model. The Greenwood assumption of a constant

infection rate from household to household is clearly not true for

this disease.

This class of models provides insight into the difficult job of

modeling the progress of disease in households. Health researchers

require models which accurately describe the progress of diseases and

which provide reliable estimates of infection rate so that public

health policies may be determined to benefit the general public. Chain

binomial models satisfy these criteria.
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Chapter Four:

Summary

Chain binomial models provide an extremely useful mathematical

description of epidemic processes in small, household size groups.

These relatively simple yet versitile models allow health researchers

great flexibility in accurately modeling viral diseases. The models

can provide estimates for infection rates by application of well

known statistical procedures from the theory of maximum likelihood

estimation.

The adequacy of these models to describe epidemic data may be

tested by using chi square goodness of fit tests. By combining the fit

of the models with the estimates obtained from these models,

additional information concerning the underlying biological

assumptions of the disease may be discovered. Such additional insights

are extremely useful in man's war against disease.
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ABSTRACT

Four chain binomial models were discussed. The Reed-Frost,

modified Reed-Frost, Greenwood, and Becker generalized chain binomial

models were presented. Comparisons of these models to epidemiological

data were made. Parameter estimates for infection escape rate were

obtained by maximum likelihood methods. The adequacy of model fit to

data was judged by chi square goodness of fit tests.


