
COMPUTER REDUCTION OF

BOOLEAN EXPRESSIONS

by

DAVID GORDON DUTRA

B. S. E. E., University of the Pacific

Stockton, California, 1962

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Electrical Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1965

Approved by:

Charles A. Ha I

i
jak

Major Professor

-if-

J-0

1

TABLE OF CONTENTS

INTRODUCTION . 1

TERMINOLOGY 2

COMMON TERMS '

. . 2

IMPLICATION 4

MULTIPLE INPUT-SINGLE OUTPUT SYSTEMS 5

COMPLETELY SPECIFIED FUNCTIONS . . . • 6

Prime Implicants 6

Calculation of Prime Implicants 9

irreducible Representations 10

INCOMPLETELY SPECIFIED FUNCTIONS 15

REVIEW AND EXAMPLE 17

MULTIPLE INPUT-MULTIPLE OUTPUT SYSTEMS 20

COMPLETELY SPECIFIED FUNCTIONS 20

Prime Origins 21

Calculation of Prime Origins 23

Minimal Irreducible Representations (MIR) ... 25

INCOMPLETELY SPECIFIED FUNCTIONS ... 27

MINIMALITY MEASURE 28

REVIEW AND EXAMPLE 29

SUMMARY 33

ACKNOWLEDGMENT 35

REFERENCES 36

I I

I NTRODUCT I ON

This paper reports on the work of R.W. House and T. Rado (4) on the

minimization of Boolean switching functions..

House and Rado have developed several algorithms for obtaining Irreduc-

ible representations for switching functions using a digital computer with a

binary format. Implicit in their work is the subtle difference between a

minimum function and an irreducible function. It will be seen that there are

no general criteria for a minimum function. The minimal property will de-

pend on the application.

Their approach is to develop a criterion of i rreducibi I i ty and then to

generate all irreducible representations of the given function. The user

may then choose the representation that is minimum for his particular appli-

cation.

There are two types of representations for logical switching functions.

One may work with the sum-of-products form (also known as disjunctive form,

normal form, or a! ternational form) or the product-of-sums form (conjunctive

form). One is the dual of the other. Ghazala (3) has shown that a simple

transformation will convert one to the other. Any algorithm which manipu-

lates the sum-of-products form will, with the help of the Ghazala transfor-

mation, manipulate the products-of-sums form.

It was therefore decided to concentrate on one of the two possible types

of representations. The sum-of-products form is used in the House-Rado al-

gorithms.

Industry, with the help of Bartee (2), has accepted three criteria to

determine the respective minimality between equivalent sum-of-products re-

presentations. First, the minimal expression is that expression which con-

tains the least occurrences of literals; second, the minimal expression is

the expression containing the least number of product terms; and third, the

minimal expression is the expression which requires the least number of

diodes in an AND-to-OR circuit configuration. With these in mind. House and

Rado have assigned a minimality measure to the irreducible representations,

that of a literal count, a term count, and a diode count.

The purpose of this report is to develop in a heuristic manner the

House-Rado algorithms, in almost every instance the House-Rado papers have

contained theorem statements, formal proofs, followed by detailed procedures,

These writings are mathematical rigorous and follow a trend of expert writing

to expert. However, rigor can hamper communication of a subjecti Without a

lengthy training period a reader is unable to glean the full significance of

this outstanding work.

The philosophy of this report is to sacrifice mathematical rigor for

orderly development in hope of providing insight to the underlying concepts.

To attain this end the next section puts the reader on firm ground as to

terminology used; the second section considers the case of multiple input-

single output systems; in the third section the case of multiple input-mul-

tiple output systems are discussed. In both the second and third sections

the subject of completely specified functions is developed and then extended

to the "don't care" or incompletely specified functions.

TERMINOLOGY

The terminology and definitions that follow are a meld of those used

by Bartee (1), Ghazala (3), Qu i ne (7), and Whitesitt (9). Only Boolean /''

functions of two-valued variables will be considered.

COMMON TERMS

Consider N independent variables

which may take on values or 1

.

The complement of a variable is written x and called a "barred variable",
n

A I i te ra

I

is a barred or unbarred variable.

The symbol + represents the logical sum (disjunction, inclusive union, in-

clusive OR)

.

The symbol • represents the logical product (conjunction, intersection, AND).

The • is implied when no symbol is used between literals.

A Boolean function is denoted by f., where i takes on different integer

values to symbolize different functions.

A term refers to a product of literals; X3 xj xq is a term.

A canonical term is a term contain ing all N variables (truth table product).

A function expressed in normal form is one expressed in sum-of-products form.

A normal canonical form is a function expressed in sum-of-products form where

each product is a canonical term. For N = 3, fo ~ ^2 ^1 ^0 "* ^2 ^l ^0 's a

normal canonical form. For every function there exists a single normal ca-

nonical form. As an example, consider the function f^ defined by the truth

table of Fig. 1

.

Input Output

1

1

1 1

1

1 1

1 1

1 1 1

1

1

1

Fig. 1. Truth table defining a Boolean
function w|th_a normal canonical
form fi = X2 xj xq + X2 xi xq
+ X2 Xi Xo .

One literal is said to oppose another literal if both literals are of the

same variable and one is barred and the other is unbarred; x opposes x ,

and X opposes x .

n ^^ n

Two terms oppose if the literals of those terms show opposition; X3 xj xq

and X3 X2 xi show one opposition, X3 xg and X5 X3 X2 xq show two oppositions,

The consensus of two terms exist if the terms show exactly one opposition.

The consensus is found by forming the product of the two terms and deleting

the two literals of the single opposition; the consensus of X3 X2 x^ and

X3 Xi Xq is X2 Xj Xq.

A term t^ is said to subsume a term t2 if all the literals of t2 are con-

tained in ti; X3 xi xq subsumes x^ xq and X5 xg subsumes xq.

IMPLICATION

There is one concept that is used extensively through out this report

that is worth amplifying. That is the concept of a partial equality termed

imp I i cat ion. To put this on familiar ground consider the switching circuit

of Fig. 2.

u
n

Ul

ft

^^

Fig. 2. A switching circuit to demonstrate
the concept of implication.

In Fig. 2 let u., i = 1, ..., n, and p be generic variables (represents

any switching function or variable) and q = 1 when the lamp is lit and q =

when the lamp is dark. A complete description of q would be V

u.
I

Suppose that the nature of all u., i = 1, ..., n, is unknown and it is

desired to express a relationship between p and q. It could be said that if

p = 1, then q = 1, or simply that if p then q. This is known to logicians

as material implication or simply imp I ication , i .e. , p imp I ies q. p being

equal to 1 implies that q is equal to 1 . Nothing is said about the converse

in this statement of Imp Meat ion I If q = 1, nothing is known about p, it may

equal 1 or 0.

Fig. 3 lists all possible values of p and q such that p implies q

(symbol ized: p -> q)

.

(ow P q
1.

2.

'^.— 1

1—fi-

4. 1 1

Fig. 3. Permissible values of

p and q for p -* q.

Note that for p -> q Row 3 cannot appear in the table of al I possible combi-

nations of p and q; p and q cannot simultaneously equal 1 or 0, respec-

tively. It may be said that p ^ q means that if p = 1 then q = 1 or

p + q = 1, pq = p, q + p = q, etc.

It follows then, that for any normal form of a function f each term of

f impi ies f, i .e. , for

f = n + • • • fM'

fl - f

M

Equality may be considered a double implication; that is, if f^ = f2,

then f 1
-* f2 and f2 "* f i •

MULTIPLE INPUT-SINGLE OUTPUT SYSTEMS

A multiple input-single output system is a logical switching network with

N inputs and a single output represented by the Boolean function

As noted in the Introduction, f wi i I be assumed to be in a normal form.

COMPLETELY SPECIFIED FUNCTIONS

A completely specified function is one in which an output value, 1 or

0, is defined for every possible value of the N input variables Xkj_i*

. .
. , Xq.

Prime Imp I i cants

If f is formed from its truth table representation without simplifica-

tion-, it will be in normal canonical form; f will be expressed as a sum of

its canonical implicants. By definition, each term will contain all N

variables, the maximum size of a term for a given system, and there will be

one term for each 1 -valued output of the system. This is a maximum normal

form of f. Each term is of maximum size and all possible disjoint terms

appear. It may be considered the maxitnum form for a sum of disjoint terms.

Canonical terms are disjoint in the sense that each one implies only a

single 1-valued output.

There are a finite number of unique implicants for any given system.

N
The maximum possible formed from N independent variables is 3 - 1 impli-

cants. Suppose that one of the non-canonical implicants, say t., is added

to the canonical form of f. By definition, t. will contain fewer literals

than any canonical impi leant. Also, t. will be implied by at least two of

the canonical terms. This is so because t. has at most N-1 literals and

must imply at least two 1-valued outputs of the system.

Therefore the presence of t. will cause the canonical terms that imply

t. to be redundant and they may be deleted. The resulting expression will

contain at least one fewer terms and a term with at least one fewer literals.

Suppose, instead of adding a single non-canonical implicant to the ca-

nonical form of f, that all non-canonical implicants were added and that all

terms that implied another were then deleted. The resulting representation

would be a sum, to represent the system, of terms containing the fewest

possible literals. These terms are called the prime imp I icants of f.

As an example, consider a system where N = 2 and f is defined by Fig. 4.

Ail possible implicants for N = 2 are listed in Fig. 5.

Input Output

Xl Xo f

1

1 1

1 1

1 1

Fig. 4. Truth table represen-
tation of a function f.

Input
. Possible implicants for a system of N = 2

Xl Xo Xl Xq Xl Xo XiXq XiXq XiXq XjXq

"o i

• 11010
5 6 7 8

Fig. 5. All possible implicants for a system of two variables.

By comparing the Columns of Fig. 5 to f of Fig. 4, it is seen that the

terms of Columns 1, 2, and 5 of Fig. 5 must be cast out as not implying f.

What remains are implicants of f and are tabulated in Fig. 6.

Input

1

1

1 1

Col umn

U 1 1

1 1

1 1

1 1

1 2 3 4

_ _
Xl Xo Xl Xo XiXq XlXo xixo

1 1
1 1

1 1 1 1

1 1

1

Column 1 2 3 4 5

Fig. 6. Implicants of the function defined in Fig. 4.

In Fig. 6 the implicants of Columns 3, 4, and 5 imply those of 1 and 2

and may therefore be deleted. The prime implicants of f are then those im-

plicants of Columns] and 2, xi and xo- These are the terms that imply f,

do not imply each other, and are sufficient to represent f as a sum.

f = Xl + Xq (1)

Equation (1) is the single irreducible representation of f. In general

this does not always happen. For N > 2 there will usually be more than one

irreducible representation of the system, i.e., some prime implicants may

imply sums of other prime implicants.

Consider the case of an fj expressed as the sum of its prime implicants,

fl = X2X1 + XjXq + X2X0 + ><2^l
"*" ^1^0 "*" ^2^0 ^2)

Notice in equation (2) that

X2X1 -* xixo + X2X0 (3)

xiXq ^ X2X1 + X2X0 (4)

X2X0 -* X2X1 + XjXq (5)

X2X1 -> XjXq + X2X0 (6)

XjXq -> X2X0 + X2X1 (7)

X2X0 ^ X2X1 + XjXq (8)

Any normal form of fj containing x^xq + X2X0 causes X2X1 to be redundant in

that representation, equation (3); any representation containing X2X1 + X2X0

will be redundant if x^xq is also present, equation (4). Similar statements

may be made using equations (5), (6), (7), and (8).

It is shown by House-Rado (5) that equation (2) has five equivalent

representations which contain fewer terms. They are:

fl = X2X0 + XjXq + X2X1

fl = X2X0 + XjXq + X2X1

fl = X2X0 + XiXq + X2X0 + XiXo (9)

^1 ~ X2X0 + X2X1 + X2X0 + X2X1

fl - XlXg + X2X1 + XjXq + X2X1

Note that the expressions of equation (9) are still sums of the prime

implicants of fi, but that in each case one or more prime implicants have

been deleted. These representations are the irreducible (i rredundant)

forms of fl, irreducible in the sense that if any term were deleted the re-

sulting function would cease to express fi.

It may now be stated that the minimization philosophy for single out-

put systems is first, find all the prime implicants of the system function,

which is in reality finding the terms that will express the system function

and have the fewest possible literals. And second, find all the irreducible

representations of the system as sums of prime implicants. Stated in other

words, to minimize a single Boolean function, one first minimizes the

literal count per term and then the term count.

Calculation of Prime Implicants

To proceed in the manner outlined would be a very lengthy process even

for a high speed digital computer. The value of the expression 3 - 1 in-

creases rapidly with N. For example when N = 8, .it would require investi-

gation of 6,560 implicants just to generate the prime implicants. Fortu-

nately Quine (7) has discovered an algorithm that will generate all the

prime implicants of a Boolean expression in an almost automaton manner.

The Quine algorithm may be developed in the following manner. Consider

a function

f = f, + . . . + f + . . . + f (10)^ m M

where each f , 1<_m<_M, is a Boolean term. It is desired to find all the

prime implicants of equation (10).

Any f that implies another f , 1<^m<_M, is, by definition, not a

prime implicant of f. So as a first step, all terms may be cast out that

imply other terms. These are easily found because the only way one Boolean

term can imply another is for the former to subsume the latter.

Now, any term that remains is either a prime implicant of f or it sub-

sumes some prime implicant that is not present. If there is a prime impli-

cant absent, say p, there must be terms x p and x p among the terms that

remain, because p=xp+xp. If these two were not present, p could

not imply f, but it must by definition. Therefore any prime implicant of f

that is not present in the original expression will appear as the consensus

of two terms that are present in the original expression.

The Quine algorithm may be stated as follows.

A Boolean function in normal form goes into a sum of its prime impli-

cants by alternating the following two equivalence transformations un-

til they are no longer applicable.

i) If a term subsumes another delete the former.

ii) Add to the resulting terms the consensus of two terms unless it

subsumes a term already present.

As an example consider

10

f = X2X1 + XjXq + X2X1X0 + X2X1X0 + X2X0 (11)

Apply i) to equation (11) and obtain

f = X2X1 + xiXq + X2X0 (12)

Apply i i) to equation (12) and obtain

f = X2X1 + XjXq + X2X0 + X2X0 t XjXq + X2X1 (13)

Apply i) and i i) to equation (13) and find that there is no change and that

f is expressed as a sum-of-prime imp I icants.

It is obvious that the Quine algorithm is easily implemented on a dig-

ital computer.

Logically the next step is to develop a procedure for finding all irre-

ducible representations of an expression. The procedure to be developed

will not be restricted to functions expressed as sums of prime impi icants.

In fact, it is not required that the function be a sum-of-terms. The pro-

cedure is valid for any expression that is a sum-of-f unctions, Rado (8).

Irreducible Representations

Consider a Boolean expression of the form

f = fo + • • • + f^ + • • • + f^.i (14)

where each f^, O^m^M-l, is a function of the N variables previously noted.

It is desired to find all the irreducible forms of equation (14). A

representation f is called irreducible if no proper subset of fg, ..., f,.

as a sum is a representation for f. (A proper subset is a subset that is

not all inclusi ve.

)

For simplicity begin with M = 4 and then extend this to the general

case. When M = 4,

f = fo + fi + f2 + fa (15)

Fig. 7 lists all the unrestricted combinations of fo, fi, f2, and i^ for

equation (15).

11

Row
~0~

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1

1

1

1

1

1

1

1 . 1

Fig. 7, All unrestricted combinations of function-

values for equation (15).

By unrestricted, it is meant that this is the case where all possible com-

binations are present. Obviously when this is the case, f is already irre-

ducible; there is no proper subset of fo, ..., f|y|_i that will represent f.

Therefore if f is reducible, there must be one or more rows of Fig, 7 that

are missing, i.e., some one or more of f must imply some other f or a sum^' ' m m

of them, 0<_m<_M-1. Suppose that in equation (15) fo "^ ^i
"• '^2 ^nd f2 ->

fo • ^3- This restriction would eliminate Rows* 2, 6, 8, and 9 as is shown

in Fiig. 8,

1

1 1

1

1 1

1

1 1

1

1 1

1 1

1 1 1

12

Row
~0~

1

*2

3

4

5
*6

7

*8

*9

10

11

12

13

14

15

Fig. 8. All possible combinations of function-
values for equation (15) when restricted
by the implications fo "*"

'''l
"*"

^z ^nd
f2 ^ fo + ^3-

Now, define a binary presence variable p associated with each f ,' ^m m'

where p = 1 when f_ is present in any representation of f and p = when

f is not present in that representation, 0<m<M-1.
m '^

' — —
Each included row except Row of Fig, 5 indicates a condition for

f = 1. Only a single 1 in a row is necessary to specify that f = 1. There-

fore each row indicates the sufficient-presence of fo, ••., f|y. to cause

f = 1 in any representation of f. From Row 1: the presence of f3 is re-

quired. Row 3: the presence of f2 or i^ is required. Row 4: the presence of

fj is required, etc. The list of sufficient conditions for any represen-

tation of equation (15) may be expressed in Boolean form as

13

P3 = 1

P2 + P3 = 1

Pi = 1

Pl + P3 = 1

Pi + P2 + P3 = 1

(16)

pO + P2 = 1

PO + P2 + P3 = 1

PO + Pl = 1

PO + Pl + P3 = 1

PO + Pl + P2 = 1

Note in equation (16) that no presence-sum is required for Row (15) of

Fig. 8. It is necessary tliat at least one of the f , 0<m<M-1, be present

for f not to equal for all values of the independent variables, a trivial

case that is ignored.

The necessary condition for any representation of f is that all the

sufficient conditions be simultaneously satisfied. If the Boolean product

of the left sides of equation (16) is taken, it will equal 1 for each re-

presentation of f. Let this product be called the presence function S.

S = P3 (p2 + P3) Pl (pi + P3)(pi + P2 + P3)(P0 + P2)(P0 + P2 + P3)(P0 + Pl^

'PO + Pl + PoHpo + Pl + P2) (17)

When S is expanded into a normal form, it is obvious that S = 1 when

any term is equal to 1 . A term is equal to 1 only when each literal has a

value of 1. Therefore each term of S will indicate a representation of the

given expression f. Each representation will consist of a sum of those f ,

m'
0<m<_M-l, associated with the presence variables p , 0<m<_M-1, of a term.

For instance if a term of S were PoP2Pit» a representation of the given ex-

pression f would be

f = U ^ h + U
If S is reduced so that each term contains the fewest possible liter-

als, it will indicate representations of f that are sums of the fewest

possible f , 0<m<M-1, and are then irreducible representations. S takes on

14

this form when it is expressed as a sum-of-prime implicants.

S = P0P1P3 + P1P2P3 (18)

is equation (17) expressed as a sum-of-prime implicants and the irreducible

representations of f are

f = fo + fi + fa
(19)

f = fl + f2 + f3

Note a fortunate occurrence. S contains no barred variables; there-

fore when the Quine algorithm is applied, consensus products are not possi-

ble and it is necessary only to delete subsuming terms to generate the prime

imp I i cants.

The next step is to develop a computer adaptable scheme for generating

the House-Rado presence function for the general case of M functions.

Consider what the presence function S, equation (17), really is. It

is a product-of-sums, where each sum is obtained from a non-zero row of

Fig. 8. Figure 8 is a table of values taken on by f of equation (14),

0<rn<M-1, as the set of independent variables, Xk,_,> •••> xo» range over all

possible values.

Let u. represent the binary equivalent of the decimal integer i, and

let f (u.) represent the substitution of u. for the independent variables
m I

^ I

X., ,
• • • xn in the function f .

N-1 " m

All the presence-sums of equation (16) will be generated by allowing i

to vary from to 2 - 1 in

A, = fo(u.)pc + • . • + f^_^(u.)pj^_,

m =

Each i wi I I generate a possibly non-unique presence-sum. This is to be ex-

pected because several values of the independent variable could map into the

same row of Fig. 8. Also, at least one, and probaoly several, values of i

will cause A. = corresponding to Row of Fig. 8. If it were not for

these zeros the presence function S could be formed directly as a product of

all A. , 0jii£2^ - 1.

Define a generalized Kronecher Delta as

15

1 '^ V = • • • = Vo,

" M-1 otherwise

where V|^_., ..., Vq are Boolean variables.

Non-zero presence-sums then become

M-1

B. = A [fo(u.), ..., f, ,(u.)] + E - f (u.)p ,
I

i-u,* '(yi-iiJ m = Omi ^m'

i = 0, 1, ..., 2*^ - 1 (22)

2^-1

S(po, ..., p^_^) = n B. (23)

i =

Notice that the A function in equation (22) excludes the two cases of

no interest, those corresponding to Rows and 15 of Fig. 8.

and finally the presence function

INCOMPLETELY SPECIFIED FUNCTIONS

Oftentimes the independent variables of a switching system are by the

nature of the system restricted from taking on a I I possible values. There

can be input combinations that never occur. Systems with this trait are

represented by switching functions referred to as incompletely specified

functions, House-Rado (6), or representations modulo don't cares, House-Rado

(4).

A representation modulo don't cares is a function

f - f(x ., ..., xq), mod D (24)

where mod D signifies that equation (24) is defined for all substitutions

u (f D. D is the set of truth table substitutions for which f is not speci-

fied and u is the generic notation for an N digit binary number representing

an independent variable substitution.

Consider as was done in equation (14) a representation of a sum-of-

functions, but now let it be a representation mod D.

f = f + . . . + f + . . . + f mod D (25)" m M-1

where each f , 0<m<_M-1, is a function of the N independent variables pre-

viously noted and D is the set of don't cares. It is desired to form all

irreducible representations mod D of f.

16

By definition a representation mod D is one that is defined for all in-

puts that are not a member of the don't care inputs, the set D. Therefore

an irreducible mod D representation of f, equation (25), is a mod D repre-

sentation which ceases to express f mod D when any f , 0<m<_M-1, is dropped.

Then the only difference between equations (14) and (25) is that in equation
N

(14) the independent variables are allowed to range over all 2 possibili-

ties and in equation (25) they are restricted to values not in the set D.

A table comparable to Fig. 8 for equation (25) would then be obtained if u

were allowed to vary over all u ^ D in equation (25).

Remembering that Fig. 8 was the basic element used in forming the

presence function equation (23), then exactly the same reasoning can be

used to formulate a presence function for mod D representations. The only

modification required in the development is that i in equations (20) , (22),

and (23) be restricted to values such that u. i D. Then equation (23) be-

comes ,. ,M-1

S(po, ..., p^_,) = n {A[fo(u), ..., f,^_,(u)] + j: ^m(u)p^} (26)

al I u 8? D m =

Equation (26) is the presence function for mod D representations.

Consider the consequence of allowing the set D in equation (26) to be

null. Equations (23) and (26) are then identical. A null set D indicates

that f is completely specified. Therefore equation (26) will indicate all

irreducible representation of any function, if a completely specified func-

tion is assumed to have a nu I I set of don't cares.

If equation (26) is to be applied to a function represented by a truth

table, one further simplification occurs. The A function in the product of

equation (25) causes a 1 to appear for any u such that f(u) - and if these

values of the independent variable were neglected, nothing would be lost.

So equation (26) may also be written as ., ,M-1

S(Po» ..-, P^,,) = n {A[fo(u), ..., f^_^(u)], + E
^m^^^Pm^ ^^^^

ailuef^l ' m=0
where al I u e f = 1 means that the product is taken over all values of the

input that causes an output of value 1.

When a mod D system is being designed, of ten a great savings in hard-

ware may be accomplished by assuming that some of the inputs contained in

the set D yield an output of value 1. This is easily seen by remembering

17

that the first step in constructing minimum representations of a system is

to express the system function as a sum-of-terms containing the fewest lit-

erals, these being the prime implicants. The greater the number of terms in

an original representation, the greater is the possibility that the Quine

algorithm will generate small terms. The chance of creating multiple con-

sensus products is increased. Therefore if the set D is assumed to yield

1-valued outputs there is a chance that the resulting set of prime impli-

cants will contain terms of fewer literals than would otherwise have

occurred. Of course, this procedure could create superflous prime impli-

cants and does in most cases. These, however, will be deleted as redundant

terms when the presence function is applied because the presence function

indicates representations with the minimum number of terms.

With the aid of the Quine algorithm, the House-Rado presence function

(equation [26] or [27]) will generate all min ima I- i i tera
I

, minimal-term

forms of a single-output switching system on a binary digital computer.

Also, the presence function alone may be used to generate all irreducible

representations of a sum of Boolean functions. This can be used to advan-

tage by persons testing large scale check-out systems, such as go-no-go

missile launch systems as noted by House-Rado (5) and Battel le (2).

REVIEW AND EXAMPLE

The general procedure for finding all irreducible, min imal -
I i teral

term, representations of a single-output switching system may be stated as

fol lows.

1) Generate the system prime implicants from the given representa-

tion, either functional or truth table, by using the Quine algorithm

with the assumption that all inputs of set D yield an output of value

1. Set D will be null for a completely specified function.

2) Find the prime implicants of the presence function, equation (26)

or (27), using the sum of the prime implicants found in 1) as f.

3) Create an irreducible representation from every prime imp I leant

found in 2).

The following example taken from House-Rado (6) demonstrates this pro-

cedure.

18

Figure 9 lists the specified outputs for all possible input combina-

tions and Fig. 10 lists the impossible inputs. That is. Fig. 10 defines the

set D. All irreducible mod D representations of the output f are to be •

found.

Input Output I nput
X3 X2 XO X3 X2 Xi xo

1

1

1

1 1

1

1 1

1 1

1 1

1 1 1

1 1

1 1

1 1 1

1

1 1

1 1

ifl. 10. The set D

1

1

1

1

1

Fig. 9. Specified Outputs.

From Fig. 9 and Fig. 10 the set of canonical terns are found to be

used to generate the prime implicants and are listed in Fig. 11.

Canonical Terms
_ _ _
X3 X2 Xl Xo

X3 X2 XI Xo

X3 X2 Xl xo

X3 X2 XI XQ

X3 X2 Xl xo

X3 X2 Xl xo

_ _
X3 X2 Xl XQ

X3 X2 Xl XQ

X3 X2 Xl XO

X3 X2 Xl XO

X3 X2 Xl XQ

Fig. 11. Terms to generate the prime implicants.

When the Quine algorithm is applied to the terms of Fig. 11 the prime

implicants are found and tabulated in Fig. 12.

19

f;

X3XI

X3XI

X3><2

X3X0

X2X1

XjXo

Fig. 12. Prime Implicants.

Figure 12 indicates that

f = fo + fi + f2 + f3 + ^4 + 1^5 (28)

as a sum-of-prime implicants. The presence function may now be applied to

equation (28). Each sum of equation (27) is tabulated in Fig. 13 using the

inputs that yield 1 -valued outputs as specified in Fig. 9.

Input u for f(u) = 1 Values of prime implicants f (u)
m

X3 X2 xi xo U h ^2 U U ^5 A

M-1

A + E f (u)p
m =

1 1 1 1 PO + Pit + P5
1

1
1 1 1 1 P2 + P3 + Pit + P5

1 1 1
1
1 1 P2 + Pit

1 1 U 1 1 Pi
1 1 1 1 0- 1 P3 + P5

Fig. 13. Sums in the presence function equation (27).

The product of the rightmost column of Fig. 13 is

S = (po + pi, + P5)(P2 + P3 + Pit + P5)(P2 + Pit) Pi (P3 + P5) (29)

Equation (29) expressed as a sum-of-prime implicants is

S = P0P1P2P3 + PlPitPs + PlPsPit + P1P2P5 (30)

Equation (30) indicates the four irreducible mod D representation of f as

P0P1P2P3

PlPitPs

PlP3P't

P1P2P5

Refer to Fig. 12 and find that:

f = fo + fi + f2 + f3

f = fi + f^ + fg

f = fi + f3 + f^

f = fl t f2 + fg

20

f = X3X1 + X3X1 + X3X2 + X3X0

f = X3X1 + X2X1 + XlXo

f = X3X1 + X3X0 + X2X1

f = X3X1 + X3X2 + XiXQ

MULTIPLE INPUT-MULTIPLE OUTPUT SYSTEMS

This section considers binary switching systems with N inputs and M

outputs according to House-Rado (1). A multiple input-multiple output

switching system will be represented by a system of functions

^*
M-1 ' •••'fri'*'*'0 (31)

where each f , 0<m<M-1, is a function of the N independent variables

^M_i' •••> ^ * ••'> ^0- Let there be M binary variables y , 0<rn<_M-1, such

that y^ = f^ for all m, 0<m<M-1, that is, y is the value of the mth outputmm ' m ^

of the switching system.

COMPLETELY SPECIFIED FUNCTIONS

As in the last section, begin with the completely specified system;
N

that is, for each of 2 possible input combinations every f . 0<m<M-l. of

equation (31) has a defined value, or 1

.

At first glance it might seem reasonable to construct minimal represen-

tations of the system S by considering each f of equation (31) separately
m r 7

and finding all irreducible representations of each. However, upon inves-

tigation of this procedure it will be found that it would neglect any

attempt at maximizing the number of implicants common to two or more f .

m'
0<m<M-1. Any implicant that is common to two or more of the functions of

the system S should be retained because a single, piece of hardware could be

used to implement that term no matter how many times it appeared. There-

fore, the procedure to be developed will find minimum-l i teral implicants of

the system S as a whole, saving those implicants that imply more than one

^m'
Ol'T'l'^-''- It will be seen that the end result of this procedure will

formulate at least three minimum representations of the system S, those re-

presentions having 1) a minimum number of unique terms, 2) a minimum number

21

of literals contained in all unique terms, and 3) the minimum number of

diodes required to construct the system in an AND-to-OR circuit configura-

tion.

Prime Origins

Begin by considering a seemingly trivial set of tautologies

f + y = 1 (32)m 'm

fo + yo = 1

Any manipulation done within the framework of equation (32) must necessarily

be a manipulation of the system S (equation [31]). The set of equations (32)

may be expressed more simply by

M-1

A = n (f + y) =
1 (33)

„ m 'm
m =

which is a House-Rado address-function.

Then it may be said that any representation of A~ for which A~ = 1 will

indicate a representation of the system S. This logic parallels that of the

formulation of the House-Rado presence function (equation [26]).

Upon carrying out the product indicated by equation (33) there will

exist three types of terms; i.e., A~ will be implied by three distinctive

implicants. They are: 1) terms containing a product of x and x literals

times a product of y literals; 2) terms containing only a product of x and

X literals; and 3) terms containing only the product of y literals. For

conciseness let each implicant be symbolized by PQ, where P is the generic

notation for a product of x and x literals and Q is the generic notation for

a product of y literals. A nu II Q or P w i I I be considered to be equal to

1 as in cases 2) or 3) respectively.

Any term of A , PQ, that implies that A" = 1 will imply the presence of

22

a term in the system S. Consider an imp! leant PQ, case 1). P implies that

A = 1 whenever Q=1. Q=lonlyif each y e Q is equal to 1 or that

y = for all m such that y e Q. When y = 0, f = by definition. P
m m mm

cannot imply a function that is equal to 0, so P must imply all those f of

the system S where m is such that y i Q. Therefore the P portion of an

implicant PQ of A appears in every f of the system S for which m is such

that y i that Q.
'm

It fol lows then for case 2) , a null Q, that an imp ! leant P of A will

appear In every f of equation (31). Case 3), that of a nu II P, can be

seen to be trivial . It wi I I appear only once in any A and Q wi I I contain

al I y , 0<m<_M-1; this may be interpreted as meaning that the null product

of X and x literals Implies no f , 0<m<M-1.
^ — m

Suppose that equation (33) is expressed as a sum-of-prime Implicants.

Each prime implicant will indicate a term of the system S that contains the

fewest possible literals. Notice that this process will not delete a term

common to several f , 0^m<_M-1, even if it is subsumed by an implicant common

to only one of those f . This is true because of the presence of them r T

portion of the A implicants. No implicant of A can subsume another un-

less the P and Q portions of the former subsume both the P and Q portions of

the latter.

Therefore, the prime implicants of A will contain P portions that im-

ply each f , 0<m<M-1, individually and P portions that imply groups of f ,

0<m<M-1, each with as few literals as possible. These P portions of the

prime implicants of A are then the set of all terms necessary to write all

representations of the system S using terms with the fewest possible lit-

erals. This set of terms is called the prime origins of the system S.

Prime origins are analogous to prime implicants of single-output systems.

As an example consider a switching system with two outputs and three

inputs represented by the system of functions

S:
^^1 = X2X0 + xixo + xixo

^^^^

fo = X2X0 + XiXq + X2X1

By equation (33)

23

a" = (X2X0 + XiXQ + XiXo + yi)(X2Xo + XjXq + X2X1 + Yq)

= X2Xoyo + XIXOYO + XIXOYO + ^2X071 + xiXoYi

+ X2Xiyi + X2X1X0 + X2X1X0 + X2X1X0 + x^xq

Using the Quine algorithm the prime implicants of A are found to be YiVo*

xaxiYo* xaxoYo, xaxivi, X2Xoyi, x2Xiyi, X2Xoyi, xixq, and xixq. The P

portions of these terms are, by definition, the prime origins of the system

S and are listed in Fig. 14.

Prime Origins
Imp! i cants of Imp 1 i cants of

X2X1 X2X1

X2X0 X2X0

X2X1 xixo

X2X0 XiXo

XiXo

XjXo

Fig. 14. Prime origins of equation (34).

Figure 14 lists those terms that are sufficient to represent the system

S with the properties that they are mi nimum-l iteral terms and that all terms

common to both fg and fi are included. All irreducible representations of

the system S are sums of these prime origins.

Calculation of Prime Origins

For a system S with many functions, the formation of the address-

function A using equation (33) can be a tedious process. When S is given

as a truth table representaiton there exists a very simple procedure for

forming A .

Suppose that A is to be represented directly in normal form. Again

let each term of A be noted generically as PQ. The nature of the function

A dictates that A = 1 for every possible independent variable combination;

it is a tautology. It is also known that each term of A~ has a particular

form. That is when the P portion of a term implies one or more f . 0<m<M-1.
m '

24

the portion of that term lacks al I y , m such that P implies f , and in-

cludes all other y , 0<m<M-1.
'm

Therefore A may be written in normal form directly from a truth table

representation of the system S. A is the sum of terms where every term

contains a P portion that is a canonical product of x and x literals and a

Q portion that is a product containing a y for every f that has a value of^ * m • m
for that canonical P, The sum must include a term formed from every row

of the truth table to insure that A is a tautology. The original expres-

sion for A , equation (33), includes a term,
yf._,

' ' ' Yo* representing

the occurrence of a null set of input variables. This term cannot contrib-

ute any products to the set of prime origins, but should be included for

reasons that will become clear in a future example.

Define

Qp = n9, (35)

where the product is taken over all m such that P does not imply f ; or

equi valently, if P is a canonical term the product is taken over all m

such that for P, f =0. A null Q will be considered equal to 1. The
m ^

address-function A then becomes .. ,

a" = E PQo + n y (36)

X m - U

where P is a canonical product of input literals and X indicates that the

summation shall include every possible P.

Consider the previous example whose system function S is represented by

the truth table of Fig. 15.

Input Output
X2 Xi xq fi fo

1

1

1 1

1

1 1

1 1

1 1 1

1 1

1

1

1 1

1 1

1

1 1

Fig. 15. Truth table representation of equation (34)

Apply equation (36) to Fig. 15 and obtain

25

A = X2X1X0 + XjXiXqYo + XjXiXqYi + XjXjXq + XjXjXq

+ x2XiXoyi + X2XiXoyiyo + xa^ixo + yiYo ^^^^

Apply the Quine algorithm to equation (37) and find that the prime impli-

cants of A~ are, as before, yiyo, X2XiyO' x2Xoyo, X2Xiyi, X2Xoyi, X2Xiyi,

xzXoYl* xiXq, and xiXq.

Notice that in equation (57) there appears a term x2XiXoyiyo that in-

dicates that X2X1X0 implies no f , 0<m<M-1. Terms of this type will also

appear when applying the Quine algorithm to A . The term y|^_.
• • • yo is

included in A so that it wi I I be subsumed by these superflous terms and

they may immediately be deleted. Another approach is to modify equation

(36) so that any term that contains al I y , 0<m<M-1, is deleted. It is then

necessary to modify the Quine algorithm to the same end.

Minimal Irreducible Representations (MIR)

Let w be the K digit binary representation for the integer m and K be

the smallest integer such that every m in the range 0<m<M-1 can be repre-

sented by w . Introduce the K binary variables a, , 0<k<K-1. Then there
' m _ k'

exists a canonical product of a and a literals, denoted A , such that

»/\ r1ifr=m, t-za\
A (w) = {- .. .

' (38)
m r otherwise

For example, if M = 5, then K = 3 and A^ = a2aiao, A3 = a2aiao, A2 = a2aiao,

A^ = a2aiao, and Aq = a2aiao.

For 0<m<M-1, A shall be interpreted as the address of the function f
m ^ m

and for any imp I leant P of f , a product of the form A P shal I be termed an
' ^ m ^ m

admissible product and symbolized generically by G. Therefore by equation

(38), an admissible product G, is a product such that

G(w) = A (w)P = {^ ^iJ "T' (39)
r m r otherwise

where P implies f , 0<m<M-1

.

^ m
Then a system of functions such as the systems S of equation (31) may

be represented by the set of all admissible products associated with it.

As an example, consider

26

f2 = X2X1X0 + XiXo + X2X0

S: fi = XiXg + X2X0 + x^Xq (40)

fo = xixo + X2X1

(41)

The system S of equation (40) can be expressed as

S: {aiaoX2XiXo, aiaoXiXQ, aiaoX2Xo, aiaoXiXQ,

aiaoX2Xo, aiagxixo, iiaoXiXQ, aiaoX2Xi}

which is the set of all admissible products.

Consider another type of House-Rado address-function

M-1 .

AO = I A f (42)-.mm
m =

or equivalently

aO = E G (43)

all G e S

which is the sum of all admissible products of S. By equation (39)

aO(w) = f (44)
m m

for every m, 0<rn<M-l.

Equation (42) expresses the system S of M functions in a single normal

form. Suppose that all irreducible representations of A° are found, then

each representation wi I I express the system S and each f , 0<fn<_M-l, of every

expression of S will necessarily be irreducible. Also consider allowing the

set G of a'' to be created from the set of prime origins of S. Then al I ir-

reducible representations of A° will indicate expressions of S that are of

minimum term count, minimum literal count, and minimum diode count. This

occurs because the set of prime origins consists of minimum- I i teral terms

and terms common to one or more f of S and the irreducible representations
m

of A° will indicate all combinations of sums of these terms representing S.

Let all these representations of S be called "Minimal Irreducible Represen-

tations" and abbreviated MIR.

The address-function A° is a sum of terms and therefore all irreducible

representations may be found by applying the House-Rado presence function of

equation (27). It is necessary to change the notation of equation (27) to

make it explicitly applicable to A*'.

Let there be a set R of H admissible products R. , 0<h<H-1, formed from

the set of all prime origins of the system S and let wu be a binary

27

substitution in any R., 0<h<H-l, where w is the address substitution and u

is the system S independent variable substitution.

Then u_i

aO = I a (45)

h = ^

and by equation (27) all MIR of the system S wi I I be indicated by the prime

imp I i cants of

S(po, ..., Pu i) = n{A[Ro(wu), ..., Ru , (wu)] + E R. (wu)p,} (46)

al I wu e A*^ = 1 h =

where all wu e A*^ = 1 indicates that the product is to range over all sub-

stitutions of wu such that A*' = 1 . Since A° = 1 occurs only when any f = 1
' ' m

0<rn<M-1, the product may equivalently be taken over all substitutions of wu

for which any f =1, 0<m<M-l

.

' m '

INCOMPLETELY SPECIFIED FUNCTIONS

The multiple-output problem is now modified to include don't cares.

Consider a system of functions

where each f* , 0<m<M-l, is a function of the independent variables x., ,..m ^
N-1

'

..., x^, ..., xq, which are not completely specified. .That is, for each m,

0<m<M-1, there is a set D* (perhaps null) of substitutions u, such that
m '

f* (u) is defined only for u id D* . Thus, the don't cares may be differentm m '

for each f* of S*. Denote by D* the class of sets D* , 0<m<M-l.m ' m'
Then a mod D* representation of the system S* is a representation of

equation (47) where each f* is a mod D* representation, 0<m<M-l: see
m m '^

equation (24). It also follows that an irreducible mod D* representation of

S* is a representation of equation (47) where each f* is an irreducible mod
m

D* representation,
m ^

It is desired to find all irreducible mod D* representations of the

system S* that are MIR. As noted earlier the best advantage of the don't

care inputs is obtained when they are assumed to cause outputs of value 1.

To attain this end create an auxiliary system

S: f|y|_^, ..., f^, ..,, fg (48)

of completely specified functions, by defining

28

f* (u) if u jf D^^ ,

f (u) = {,
"^

., n*"" (49)
m 1 I f u G D*

m

for all m of equation (47). Then equation (46) is applicable to the system

S* if the set R of admissible products' is formed from the prime origins of

the auxiliary system S. Once again, any superfluous term introduced by

equation (49) will be dropped as a redundancy when equation (46) is applied.

As before, the completely and incompletely specified systems may be

treated equivalently with the proper manipulation of the set of don't cares.

Henceforth all systems will be referred to as mod D*, where D* may be null.

MINIMALITY MEASURE

Let each MIR mod D* of the system S* be represented by the set R' of

prime origin admissible products, where R' is a subset of R found from a

prime imp Meant of equation (46). Let V be the set of the P portions

(product of X and x literals) of R*, where V* is a subset of the set of all

prime origins of S*, V. Denote by UV ' the set of unique products of V

.

That is, a single term P may imply several f* of S* and appear in V more

than once, so UV is the set V free of these duplications.

For each product P of V, denote by I (P) the number of literals in it

and let l'(P) = i (P) except when I (P) = 1, then I ' (P) = 0. Let N (V) be
m

the number of terms in V« that imply f and N' (V) = N (V) except when
m m m

N (V) = 1, then N' (V) = 0.m ' m
Associate with each V three integers T(V'), L(V'), and D(V'), term

count, literal count, and diode count, respectively. Previous definitions

yield:

T(V') = the number of elements of UV* (50)

the number of unique terms in V; next

L(V') = E I (P) (51)
al I P e UV

the number of literals in all unique terms of V; and

M-1
D(V) = E l» (P) + Z N' (V) (52)

al I P e UV m =
^

29

the number of diodes necessary to construct the representation V of S*

mod D* in a diode AND-to-OR circuit configuration.

Industry has accepted these three measures of minimality for binary

switching systems. The particular application of the system and available

hardware will dictate which of these three measures or combinations thereof

shall be minimized. Therefore a computer is programed to generate all MIR

mod D* of S* and calculate T(V'), L(V'), and D(V') for each, leaving the

final decision to the investigator,

REVIEW AND EXAMPLE

The general procedure for finding al I MIR of the system S* mod D*,

where D* can be null, may be stated as follows.

1) Create the auxiliary system S of equation (48) that is defined

by equation (49)

.

2) Form the address-function A~ for the auxiliary system found in

1) using equation (33) or equation (36),

3) Find the prime implicants of A~ using Quine's algorithm and

thereby find the set V of prime origins.

4) Discard the auxiliary system S and create the set R of prime

origin admissible products from the set V found in 3).

5) Form the address-function A° from equation (45) and find the

prime implicants of equation (46), where the product of equation (46)

shall range over all substitution of wu such that any f* =
1 and

m
thereby find all subsets R' of R representing all MIR of the system S*

mod D*.

6) Finally, calculate T(V'), L(V'), and D(V') by equations (50),
"

(51), and (52), respectively for each set R' found in 5),

The following real problem, taken from House-Rado (4), will demonstrate
this procedure.

Figure 16 lists the specified outputs for given input combinations for
the system S^^. All other input combinations not listed constitute the set
D*, In this problem all D*^, 0<m<_4, are the same.

30

Inputs

X3 X2 Xi Xo

Outputs

1

1

1 1

1

1

1

1 1

1

f\ f*3 f*2 f*l f*o

1 1

1

1 1

1

1 1

1

1 1

1 1

1

1 1

Fig. 16, Specified Outputs.

Using equation (49) tlie auxiliary system is defined in Fig. 17.

Inputs Outputs

1

1

1

•1
1

1

1 1

1
1

1

1

1 1

1

1 1

1 1

1 1

1 1

1 1

1
1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1

0. 1 1

1 1

1 1

1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

Fig. 17. Auxiliary System.

The address-function A is found using equation (36) and is shown in

Fig. 18. The function is the sum of the products corresponding to the rows

of Fig. 18. For example, the product corresponding to the first entry is

><3X2><l><oy2yiyo- ^ 's the sum of these terms.

31

* Te rms of A

X3 X2 Xl XO yit YS 72 Yl YO

- -

1
- -

1
- -

1 1
- -

1 .0 - -

1 1
- - - - -

1 1
- - ' - - -

1 1 1
- - - - -

- -

1
- -

1
- -

1 1
- -

1
-^ -

1 1
- - - - -

1 1
- - - - -

1 1 1
- - - - -

* A 1 in a given position means the variable
is not complemented and a means it is com-
plemented; and a - means the variable does
not appear.

Fig. 18. The address-function A .

* Prime Imp I icants
X3 X2 Xl XQ y^ 73 yz Yl Yo

1
-

1
- -

1
-

1 1
- -

1 1
- - - -

- -
1 1

-

- -
1

1
- -

- -

1
- -

-
1

- -

- -
1

-

- -

-
1

- -

-
1 1

- -

1
-.

1
- -

1
- - - _

-
1 - -

1
- 1 - -

- -

-
1

-
1

- r- - - -
-

1 1
- - - _ _, _

* See footnote to Fig. 18.

Fig. 19. The prime imp I icants of A~.

32

* Admissible Products
X3 X2 Xl XO 32 ai ao

1
-

1
-

1

1
-

1 1 1

1
-

1 1 1

1 1
- -

1

1 1
- -

1

- -
1 1 1

- -
1 •

1
-

1 1

-
1 1

1 1 1

1 1

-
1 1 1

- - -
1

-
1 1

-
1

-

-
1 1

-
1 1

1
-

1 1

1
-

1

1
- -

1 1

1
- -

-
1 1

-
1

1
1

-
1 1

1
-

1

1

1 1

- -
1

- -
1 1

- -
1

- -
1

- -

- -
1

- -
1 1

- -
1

- -
1

- -

Fig. 20,

* See footnote to Fig. 18.

The set R of prime origin admissible products,

33

The prime implicants of A are found by the Quine algorithm and listed

in Fig. 19. The P portions of these terms constitute the set V of prime

. origins.

The set R of prime origin admissible products is found from Fig. 19

and I isted in Fig. 20.

The sum of the terms of Fig. 20 constitutes the address-function A^.

Find ail irreducible representation of A^ as the prime implicants of equa-

tion (46), Thus obtain all the subsets R' of R and aM MIR of Fig. 17, For

this system there are 224 MIR.

One of these representations has a minimum D(V') of 42 diodes and is:

fo = X3X1X0 + X3X2 + X3X1X0 + X3X1X0

fi = X3X2X1X0 + X3X1X0 + X3X1X0 + X3X1X0

f2 = X3X2 + X3X1X0 + X3X1X0 + X3X1X0

^3 = X3X2X1X0 + X3X1X0 + X3X2 + X3X2X1X0

fit = X3X2 + X3X2X1X0 + X3Xi);o + X3X1X0

It is noted by House-Rado (4) that this problem has been studied by a

design engineer who relied solely upon his educated intuition. His repre-

sentation required 44 diodes; this is within 5 percent of the optimal

design.

SUMMARY

This report compi les the House-Rado algorithms for the reduction of

Boolean expressions on a binary digital computer. It may be divided into

two major sections. The first section deals with the subject of multiple
input-single output switching functions and develops the House-Rado presence
function, which is an algorithm for finding all irreducible representations
of any single-output switching system. Also Quine 's algorithm for finding
prime implicants is developed and ground work is laid for the second section.

The second section deals with the major portion of the House-Rado work,
that of multiple-output switching systems. The address-function A" is de-
veloped first; A~ is an algorithm for finding the prime origins of a system
of functions representing a multiple-output switching network. Next the
address function A" is developed; aO is an algorithm for finding all

34

irreducible representations of a system of functions. Finally the concept

of minimal irreducible representations (MIR) is developed by introducing the

prime origins found from A into the address-function A°.

In both sections these concepts are developed for completely specified

functions and then it is shown that with the proper manipulation of the

don't care inputs the incompletely specified functions can be handled equiv-

alently.

The report concludes with a real design problem whose solution demon-

strates the usefulness of these algorithms.

35

ACKNOWLEDGMENT

This author wishes to thank Dr. Charles A. Halijak for

his counsel and encouragement throughout the preparation of

this report.

36

REFERENCES

1. Bartee, T.C.
Computer Design of Multiple-Output Logical Networks.
IRE Trans, on Electronic Computers, Vol. EC-10, No. 1,

p. 21, March, 1961.

2. Battel le Memorial Institute.
The Formulation of Automatic Checkout Techniques.
ASD Tech. Documentary Rept. ASD-TDR-62-291 , AF Contract
No. 33 (616) - 7761. March, 1962.

3. Ghazala, M.J

.

Irredundant Disjunctive and Conjunctive Forms of a
Boolean Function. IBM Journal, p. 171. April, 1957.

4. House, R.W. and Rado, T.

On a Computer Program for Obtaining irreducible
Representations for Two-Level Multiple Input-Output
Logical Systems. J. ACM, Vol. 10, No, 1, p. 48.
January, 1961

.

5. House, R.W. and Rado, T.

Implementation of Logic. IRE Trans. On Military
Electronics, Vol. MIL-6, No. 3. July, 1962.

6. House, R.W. and Rado, T.
A Reduction Algorithm for Incompletely Specified
Functions. Unpublished.

7. Ouine, W.V.
On Core and Prime Implicants of Truth Functions.
American Mathematical Monthly, Vol. 66, p. 755.
November, 1959.

8. Rado, T.

Comments on the Presence Function of Gaza I g. IBM
Journal, p. 268. April, 1962.

9. Whitesitt, J.E.
Boolean Algebra and It's Applications. Massachusetts:
Add i son-West ley Company, Inc., 1961.

COMPUTER REDUCTION OF
BOOLEAN EXPRESSIONS

by

DAVID GORDON DUTRA

B. S. E. E., University of the Pacific
Stockton, California, 1962

AN ABSTRACT OF
A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Electrical Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1965

The purpose of this report is to compile in an orderly manner the work

of R.W. House and T. Redo on the reduction of Boolean switching functions,

jviathematica I rigor is de-emphasized to provide the reader with insight to

the underlying concepts.

The development begins by discussing single dependent variable Boolean

functions of a set of completely specified independent variables. The con-

cept of prime implicants is introduced and Quine's algorithm for finding

prime implicants is developed. Next, irreducible representations are intro-

duced and an algorithm is developed for finding all irreducible represen-

tations of a function. These concepts are then extended to incompletely

specified functions and it is shown that when irreducible representations

are sums of prime implicants they are minimal representations. This section

concludes with an example in order to unify these ideas.

The next section parallels the first with a discussion of systems of

functions representing multiple-output switching networks. The topic of

prime origins is introduced and an address function (A) algorithm is de-

veloped for calculating prime origins. This is followed by a second address-

function (A^) algorithm for calculating irreducible representations of a

systems of functions. Once again, it is shown that by introducing prime

origins into the address-function A° minimal irreducible representations of

the system result. There can be many of these irreducible representations,

on the order of several hundred, so a minimality measure is assigned to each

representation; these are literal count, term count, and diode count.

These ideas are then unified by presenting a real problem that House and

Rado solved on a digital computer. It is shown that there are 224 minimal

irreducible representations of this system; the diode-optimal representation

Is presented.

