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INTRODUCTION

In an experiment which is designed to con^jare specific treatments,

varieties, or methods, one may wish to decide which population means are

actually equal, and which are unequal. In the various fields of agriculture,

industry, and physical or biological science, one often is confronted with

such problems; therefore it becomes important to have test procedures vDhich

have certain desirable properties. It often is also desirable to know how

convenient it is to use the suggested test procedures.

In the early 1920' s the British statistician R, A, Fisher introduced a

statistical technique for analyzing experiments called the analysis of variance,

In general, the analysis of variance cpnpares possible sources of variation .

in the experimental units with an appropriate measure of random sampling

error, and leads to decisions to accept or to reject appropriate statistical

hypotheses regarding population parameters. The F-test commonly is used to

make these decisions. In other words, this is a statistical technique for

analyzing measurements depending on several kinds of effects operating simul-

taneously, to decide which kinds of effects are important, and to estimate

these effects.

Before an analysis of variance can be conducted, it is essential to

know the properties of the observed values, i,e,, the nature and distributions"

of the observed values. If r observations x^^, X2, . . ., Xj., assumed to be

on r random variables, are linear combinations of m unknown effects 0(1,

e< 2> • • •> Otm P^^^ errors, € ]^, €2, . . ., € j., one usually can express

X in the form of a mathematical model such as:

3Ci = o<3^ + e<2 + . . . + tffj^ + € i (i = 1, , , „ r)



The o< 's are more or less idealized formulations of some aspects or the

observations which underly the phenomena of interest to the investigators.

If the ^o( .J measure the unknown effects in some desciribable vray they can

be defined as parameters . A model is called a fixed-effects model if all

these o< . are unknown constants. A model in which all 0^ ^ are random

variables, except one which is used to represent the "general mean" the

model is called a random-effects model. One other model called a mixed-

effects model is a combination of the fixed and random models in which at

least one effect is I'andora and at least one is a fixed effect. 'Fixed effects'

means that the treatments involved are the only treatments in the experiment

in which investigators are interested in the amount of effects, 'Random

effects' means the treatments are chosen randomly or systematically from a

large group of treatments and the investigator is interested not only in

those particular treatments but also in the whole group of treatments,

A multiple comparison test is applied to fixed-effects because it only

concerns testing differences among various treatment means involved in the

experiment; and this implies fixed effects nirith their corresponding means,

A one way classification for a fixed-effects model refers to the ef-

fects of inequalities among the true means of several (univariate) treat-

ments,
^j_, ;i2, . . ., /ijj. It is assumed that the k treatments have a com-

mon variance, (J^*", and that independent random samples of equal size r

were taken from the k populations. This can be expressed in the mathe-

matical model:



where

2
€^ are NID(o, (T ),

ji. = population mean

^ = (;ii - ;i) = fixed effect for the ith treatment.

The null hypothesis which the F-test rejects or accepts at a stated level

of significance (= 0< ) is /

"

"o • ;^1 " ;^2 = • . . = ;ilc

or equivalently

Hq : Ti = for all i = 1, . . ., k

If the F-test rejects the null hypothesis there remains the problem of

deciding which treatment means, are different from each other.

One problem in statistical testing is the determination of the proba-

bility of rejecting the null hypothesis when it is true. This probability

is called the probability of a Type I error. The other sort of error possible

is the acceptance of the null hypothesis when it is false. One must also

determine the probability of this error which is called the probability of

a. Type II error. These probabilities can be determined easily when specific

alternative hypotheses are involved. These probabilities become difficult

to compute, however, when one is interested in equality or inequality of

several treatments as considered for example in tests of all two con?)arisons.



This report deals vdth various procedures designed to make realistic

con5)arisons among treatment means. These procedures have been based on

somewhat different approaches because several logical points of view are

possible regarding the relative importance of the two kinds of errors. V/hat

balance should one strike between the probabilities of Type I and Type II

errors? Some multiple conparison procedures described in the literature are

very cautious about Type I errors. Others try to sacrifice some of this

caution in favor of lower probabilities of !i^e II errors. Other procedures,

however, are intermediate testing procedures because they tend to balance

excessive Type I and Type II errors.

The purpose of this report is to discuss various properties of each

of several procedures separately, illustrating their application with an

example, and discussing some of their differences. The Monte Carlo technique

was used to compute power, the probability of not committing a Type II error,

and protection, the probability of not committing a Type I error, for three

test procedures; Fisher's LSD, the multiple-t test, and Duncan's new multiple

range test. These are probably the most widely used multiple comparison

procedures in experimental statistics.

GENERAL DISCUSSION

Before the properties and application of various tests are considered,

it is helpful to discuss some of the general problems and some of the concepts

related to Type I and Type II errors which are involved in multiple conparison

test procedures.



The Multiple Decision Problem

For. some experiments, it is not only necessary to determine equalities

among means; but also, if inequalities exist to determine the magnitude of

the inequalities. For a two-mean exan^jle the following decisions besides

equality are possible:

-^2 < ^1 •

For three means (n » 3)

H < P3 <?2

;^3 < ^2 < ;^i

^L < ^2 ' /3

;^2 < .^1 = >^3 .

;^3 < ^1 = >^

;^i = ;^ <;^3

/I - >^3 < ^



n, < lu } but ji^ cannot be ranked relative to

/I °^J^2 /

Ut ^ u^ , but Up cannot be ranked relative to

/^l °^>^3

Up ^ Pq , but jju cannot be ranked relative to

jiy ^ jju. f but u- cannot be ranked relative to

fi ^ ji.^, but ^ cannot be ranked relative to
'

^o ^ ^2 » but^ cannot be ranked relative to

A total of 19 possible decisions, including Pi = Jio ""
Z^'?*

^^" ^® made.

These 19 possible decisions are well explained and illustrated by Duncan

(1) with his geometric method. In the case of three-mean comparisons he

is able to represent all decisions in a two-dimensional sample space,

Diincan shows properties of symmetry in con^sarisons among three means. As

the number of treatment means increases, the number of decisions increases

very rapidly, complicating the decision processes considerably. In the

general case with n means there are n 1 decisions of the form, u, < Up,

• * • < /n' ^^"^ ^^ '/^ • "decisions of the form Pn " )^ 4. J^-i <. )i] < ., ^ n

with one pair of means, equal (n-2)n!/31 decisions of the form /t = /p »



n < U| , . , <^ , with three eqxial means (n-2)n! decisions of the form

Ji-j_
= )i2 and )i2 = /i^ but ^^ < ^ <^, < . . . <.}^^, with two overlapping

pairs of equal means etc.

In making comparison among a set of means, two factors must be kept

in mind: l) Con^jarisons can be made on a per treatment basis or 2) on a

group basis, i.e ., some treatment means are grouped together. Hence it is

very important that the procedural method be determined prior to running an

experiment. Attempting to group treatments after an experiment has been

performed might distort the probability statements one yrishes to make from

the experiment.

Protection Levels Against Type I Error

Several multiple con5)arison tests take different points of view toward

committing Type I and Type II errors, and this again essentially is the reason

for differences among the tests which have been proposed. The probability

of a Type I error is called o4, i.e ., for a two mean comparison

o( = Pr £ decision (;i^ ¥ P2^l Pi " ^2!

The o( also is called a significance level when two or more means are compared.

The protection level is then defined as the probability of not committing a

Type I error. In the Student-Newman-Keuls test protection level is kept at

the same level, namely, (l - o< ) for the two-mean, three-mean, , ..., n-mean

comparison. On the other hand, Duncan, Tukey, and Scheff'e, among others be-

lieve that the multiple-t test has too low a protection to be a satisfactory

multiple con5)arison test, Duncan (1) taking an intermediate position, sug-

gested the use of special protection levels. The special protection levels



involve degrees of freedom and are given as

where

T-r.-T^r^

T'j- (i-c()

e< = significance level

p = number of means in the subset.

It is called "a p mean protection level and is the minimum probability of

finding no wrong significant differences among p observed means." Duncan

said, "first it should be noted that if a symmtric test with optimim power

functions were constructed subject only to a restriction on the value JKp*

the higher order protection levels would almost invariably be too low to be

satisfactory. •••• The four-mean protection level of this multiple normal-

deviate test, as it may be termed, will be seen later to be only ?*r = 19»1%»

That is, the minimum probability of finding no wrong significant differences

between the four means is only 19,1%, This is too low to be satisfactory.

The three-mean protection levels in the same test have the value y*-^ - 87.8^,

which is also too low. On the other hand, it does not necessarily follow

that all of the high order protection levels should be raised to the value

7» 2 o^ "^^^ two-mean protection level as some writers have implicitly assumed.

Any increases in the latter levels must necessarily be made at the expense

of losses in power and it is most important that the levels be raised no

more than is absolutely necessary, • • • " This reasoning is developed with

an experimental example (l).



Some of these numerical levels are shoimi below: '

Multiple-t test (U) Duncan's NMRT

P = 3 87.8je 90.25^

P » U 79.7^ 85.7^

Power of a Test

The power of a test is the probability of rejecting H when H is

false, i,e ..

Power = 1 - ^,
^

where p = probability of a Type 11 error.

In studying the power of multiple comparison tests one is confronted

with the difficulty pointed out by Duncan that none of the conparisons,

even when two means are involved, is a two-decision procedure. The power

function applied in this problem is Neyman and Pearson's (12), which how-

ever is defined as a power function strictly based on a two-decision concept.

liVhen two means are corapared, three decisions are possible: >ii = Pp ,

^1 ^ ^2* ^^^ y^2 ^ P^l* ^ order to avoid making separate decisions for

the two inequalities, one tests the null hypothesis against the alternative

H"^ H' ^^® *®^* ^°^ ^ 6^"^®" ^ le'^el, is two-sided to account for the

two inequality statements. The power is the probability of the decision

expressed as a function of the true difference d = ;i-|^ -^Xg. A power function

for this case is illustrated by the dotted line in Fig. 1.

Duncan (l) criticized this procedure. He reasoned that, "by pooling

the probability of the two decisions {r^:^</x^) and {jx^ <yi^) for any given
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value of the true difference, it combines the probability of the correct

decision (that u-, or iio is the higher means as the truth may be), with the

probability of the most incorrect decision (that u-, >^ when in fact ^ >

ji^, or ^2 ^ J^i:
^^^^ i^ fact ii, ^ ji^), A function which combines

probabilities of serious errors in this way, is of no value in measuring

desirable or undesirable properties,"

To overcome this difficulty, Duncan (l) suggested that a three-decision

test concerning two means can be changed to a joint application of two

two-decision tests which would be tested by the hypotheses, ^-, ^ ^2

against the alternative jx^ < jx-,, and ji^ £ Pi against the alternative

^-i < ^, Therefore, in a two-mean comparison two Neyman-Pearson power

functions are required for obtaining the power of a test. The power curve

by this concept is illustrated by the sigmoid and reverse-sigmoid curves

respectively in Fig, 1 where o( for each one is 1 o(

^'^^/'r}^

Fig. 1, Power Function for o<Q-Level Symmetric Test
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From his reasoning for the three-decision case, Duncan generalized

to the case of n means. The number of power fimctions for n means is

n(n-l)/2. However, Duncan also commented that instead of using all the

power functions involved this number can be reduced because of symmetrical

properties established in making comparison of the means. If this condition

exists, only one of the n(n-l)/2 power functions need be investigated in

order to investigate them all.

An increase in o( will generally result in an increase in the power

and consequently a decrease in ^ when the sample size is fixed. The

selection of a particular test procedure depends upon the nature of the

consequences of the decisions, i,e,, whether one would rather tolerate a

relatively high Type I error or a relatively high Type II error,

FISHER'S LSD TEST

In 1935 Fisher (5) proposed a very simple test procedure, later called

the Least Significant Difference (or LSD) test, which has been widely used

in experimental statistics. This test procedure is just a repeated use of

Student's t-test for two mean comparisons after H has been rejected, A

quantity

I5D = s- fT t . ^ ,

is computed, where

-A
Error Mean Square j.. . ^ ,= the standard error of a

n
mean^
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n = Niiniber of observations for the mean

t of
a theOi -level significance value of t with f

degrees of freedom,

f = the niunber of degrees of freedom for the Error Mean

Square in the analysis of variance,

Fisher suggested that this LSD be compared vdth all differences between

pairs of sample means. If the difference between any pair of means is

greater than the value of LSD, it can be said that u. and ji^ are dif-

ferent means. The number of such con5)arisons among n treatment means is

Co = "(" - 1) .

n 2 ^

The following example is based on Keuls' (8) cabbage experiment,

A suitable area was divided into 39 plots, grouped into 3 blocks of 13 plots

each. In each block the 13 varieties to be investigated were planted in a

randomized block design, Keuls stated, "The purpose was to learn which

variety would give the highest gross yield per head of cabbage and which the

lowest, in other words to find approximately the order of the varieties ac-

cording to gross yield per cabbage," However, this report will use Keuls'

example as illustrating the application of all the test procedures to be

discussed. Table 1 shows the coded data and the means for each variety.
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Table 1. Keuls' (8) Cabbage Experiment. Coded Gross Weights

• • • 1

Variety ; Block A ; Block B ; Block C
•

', Average ]\
Rank

1 89 i;6 33 176.0 1
2 -5 -21 111.3 11
3 -25 -16 -26 97.7 13
h 22 7 -3 128.7 8

5 8 6 -12 120.7 10
6 31 10 -5 132.0 5
7 5U 15 -U IU.7 1;

8 -8 -20 -30 100.7 12

9 31 7 -5 131.0 6
10 26 lii -27 12U.3 9
11 • 67 29 2 152.7 2

12 65 21 6 150.7 3
13 23 7 -3 129.0 7

In this example the null hypothesis would be that there are no variety

effects on the size of the cabbage heads. Table 2 shows the results of the

analysis of variance applied to Keuls' data.

Table 2. Analysis of Variance for Table 1. (X= .05

Source of : : Mean Square :

Variations t D/F ; Sample
j

Expected t F

Varieties 12 1392.8 (t^ + 0>2$2l^ 11.21*

Blocks 2 UiO.75 (^2+l3(J-2_ ^^^^^^

Error 2li 12li.29 (^^

The obseirwed F-ratio for varieties is found to be significant so the null

hypothesis is rejected. Keuls concluded that it was improbable that the

variety observed means form a random sample from one and the same normal

population. The next problem is to find all significant differences among

variety means by the LSD procedure, v
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LSD = 2.06U |/l2U.29 (2/3) = 18.8 , '

,

where

Table 3 is constructed as an ordered array by listing all the variety

means in rank order. All the differences between means have been computed.

The differences which are less than LSD = 18.8 are underlined.

Table 3. Fisher's LSD Analysis of Keuls' Cabbage Data. o( = ,o5

Var 3 • 8 • 2 ' 5 5
-Lo

:

k
•

•

13 • 9 '
• •
• •

6
''

•
•

7 •

•
•

12 ;

•

11 • 1
•
•

yar
, 97.7 ioo.7 111.3 120.7 12U.3

iaean "
"

128.7 129.0 131.0 132.0 liil.7 150.7 152.7 176.0

3 3.0 13.6 23.0 26.6 31.0 31.3 33.3 3U.3 hh,0 53.0 55.0 78.3
- ID. 6 20.0 23.6 28.0 28.3 30.3 31.3 itl.O 5o.o 52.0 75.3

'i. 9M 13.0 17.U 17.7 19.7 20.7 30.U 39.ii Ul.U 6U.7
> 3.6 B.O 8.3 10.3 11.3 21.0 30.0 32.0 S^.3
10

k
13

li.ii U.7 6.7 7.7 17.1i 26.ii 28.U 51.7
0.3 2.3 3.3 13.0 22.0 2U.0 ii7.3

2.0 3.0 12.7 21.7 •23.7 ii7.0
9
6

7
12
11

i.b 10.7 19.7 21.7 ii5.0

9.7 18.7 20.7 Ui.O
9.0 11.0 3i;.3

2.0 25.3

23.3
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The hypotheses, ji^ = ^^ ifriiich are accepted, ^= .05 are therefore

h' n ^ ' >^10 ^= ^9

= K = J'U = -^10

.

= /^5 f"^- H = >^11

. = ^8 " h = Hz
= -^10 = ^10 = -^13

= -^13 = ^ >^9 = >^10

y^' H H-- Fi = h.^

^h' f"^ ' ^9 > >^10= ^Xi

= ^^6 = ^10 h.1 ' A2
" h = ^12

= ^9 ' A3
'

and all other remaining hypotheses, /i^ =/i- are rejected,

MULTIPLE-t TEST

A test procedure very similar to the LSD test is the multiple-t. It

does not require an F-test before applying the LSD procedure to all hypotheses

of the form /^ =;ij» ^or all i, J. The multiple-t test will, in general,

have lower probability of Type II error than the LSD test because even though

the F-test leads to acceptance of the null hypothesis, the maltiple-t test

may detect differences among means.

This test could be applied to Keuls' cabbage exanple from the preceding

section; but because F for varieties was significant, the results of this

test are exactly the same as the LSD test.
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LIlffTATIONS OF LSD AND MULTIPLE-t TESTS

The LSD and multiple-t test procedures only test hypotheses P± ~ P-\>

i and j, 1 to n. However, in some experimental situations it is useful to

make comparisons, not only of two-mean groups but also three-mean groups,

, , ., and n-mean groups. Other forms of decisions also may be desired,

such as certain linear combinations of treatment means. In addition the

LSD and multiple-t tests make the probability of committing Type I errors

somewhat greater than the specified significance level. Therefore several

investigators (l, lU, 17) have proposed other test procedures. These are

usually of two kinds: multiple range tests and multiple-F tests. ^

MULTIPLE RANGE TESTS

The Student-Newman-Keuls Test

This multiple range test differs from the multiple-t test in that the

protection level for a group of n means is fixed at (l - o( ) for all p - mean

comparisons, p = 2, . , ., n. Student (l6) first suggested using the quan-

tity q = w/s, to determine differences among treatment means where w is

the range in a sample of n observations from a normal population with

2 9standard deviation, (J^ , and s is an independent estimate of (T" • Later

Newman (11) modified Student's idea presenting a table which was con?)uted

by quadrature from Pearson's (12) approximate probability law of the

studentized range, Keuls (8) developed these ideas further. The Student-

Newman-Keuls test is called a multiple range test because the over-all pro-

cedure involves the repeated use of range tests on the p-mean groups, p = 2,

, . ,, n. This method is summarized by the following rule: The difference
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between any two means in a set of n means is significant provided the

range of each and every subset Tirtiich contains the given two means is

significant in an o( -level range test. Federer (U) lists the steps for

following this rule:

.
'Step (I) Subdivide the treatment means into biological, physical,

or sociological groups. Natural groupsings as prescribed

by the choice of the particular set of treatments have

meaning; it is doubtful if a ranked set of means from

two or more natural groups has any practical significance.

Step (II) Choose a significance level, 0< , which usually will be

the 5 or 1 per cent level.

Step (III) Compute the standard error of a treatment mean, s- , and

the values W^ = q ^ , n^x ,
W^_^ = ^ e< , n-1 ^x ' * * '*

^ = q C< ,3^x » ^"d Wg = q ^ ^2^- = t
o( ,f r^s- = LSD.

Rank the treatment means from highest to lowest x ,

\-l' • • •» ^2 * % •

Step (IV) Compare the range of n treatments, x - x^ with the
n X

calculated W^ • If x^ - x-j^ is less than W , the process

stops, and the n-means are asserted to belong to a non-.

heterogeneous group. If x • % ^ W subdivide the

means into two groups of n-1 means each, 5c to x and

^n-1
*° % ^^ state that x^ is different from jL . Then,

con5)are the range x, - x, and x ^ -'x, with W ,.n t n-1 1 n-1

If either range is less than W^ ^ the means in the group

are said to belong to a single group. If either range

exceeds W^_^ the n-1 means are divided into two groups
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of n-2 means each and conpared with W p* "^he process

continues until a subset of means is obtained which does

not exceed the calculated value Wj^, The process stops

whenever the actual range of the subset is less than the

calciilated range. No subset of means is compared if the

subset is included in a larger subset which is less than

the calculated range W^^,"

where

n ss 5onax - 5anin a range
" Sx Standard deviation

As an example, consider Keuls' cabbage data. For the thirteen variety-

means, twelve W. values are needed, namely,

s- = W iikilZ =
}j U1.U3 = 6.ii37 with 2k degrees of freedom

= .05

¥„:, 13 = 5.18 (6.1i37) = 33.3

- W^ ^ 12 = 5.10 (6.U37) = 32.8

W^ , 11 = 5.01 (6.U37) = 32.2

\= lo' ^'^^ (6.U37) = 31.7

\= 9 = ^'^1 (6.U37) = 31.0

... \^Q = li.68 (6.1i37) = 30.1 .
. :

'^

\= 7 " ^'^^ (6.a37) = 29.2

W^^ ^ = U.37 (6.B7) =28.1

\^ ^ = h.n (6.1i37) = 26.8

A» li
=• 3.90 (6.1i37) = 25.1

^-3 - 3.53 (6.1i37) = 22.7 and

"^n = 2 = 2.92 (6.1;37) - 18.8 « Isd.
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The thirteen variety means, in order of size, are:
,

Var. 3 8 2 5 10 h 13 9 6 7 12 11
Mean 97TT ioo77 iiT3 120.7 I2ir3' I28T7 129.0 131.0 ij27o mrrr i5o77 i5?r7 IT^To

The first step requires con5)aring the ^^ with the range between the

largest and smallest mean until the observed value does not exceed the

calculated value:

5cj_ - Xj = 176.0 - 97.7 = 78.3 > W^^ = 33.3 V

xj^ - X8 = 176.0 - 100.7 = 75.3 > W^^g = 32.8

''.'.
i. ^ - % = 152.7 - 97.7 = 55.0 > W^^g = ^2.8

. X3_ - xg » 176.0 - 111.3 = 63.0 >^l^ii = 32.2

Xj^2 • % " 1^0*7 - 97.7 = 53.0 >W^^^ = 32.2

Xj^^ - Xg » 152.7 - 100.7 = 52.0 >^^^i » 32.2

5Ej^2 - ^2 = 1^0'7 - 111»3 = 39.U > W^^ = 31.0

£j^2 -%= 150.7 - 120.7 = 30.0 <W^Q = 30.1

The comparisons continue in this way. The result of comparisons of ranges

between variety means leads to acceptance of the following hypotheses of

the form u^ u^.
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/^2= >P3 -^U' ^11 ^7= -^9

= A 3
;^i2 = >^10

= >^5
3

/^13 . ' >^11

' J's /^5 = ^6 = -^12

' J'Q
=

;^7 = ;^13

' ^ 3
/^8 >^8' >^io

= ;^io
S

^9 ;^' /^lo

' ^13
S

/^lO =
y^^ll

>^3 = >^5
3

/^12 - >>^12

- ^8 =
/^3 = ;^i3

-- h.0 H" /7 -^10= /^ll

Ph' ^5
s

>^9 = >^^12

- >^6
s

;^io = /^.13

= /^7
a

/^n y'^ll" >^12

= /9
=

/^12 = /^I3

= /^O
s /^ ;^12= >^13

and all other remaining hypotheses u^ = iXi are rejected.

From this example it can be noticed that this test accepts equalities of

variety means for wider ranges of sample means than do the LSD and multiple-t

tests,

Duncan's New Multiple Range Test

Duncan (1) has proposed a test called the new multiple range test

(NliRT), He claims that this test is an optimum procedure. This procedure

is intended to be a compromise between the Student-Newman-Keuls test and the

multiple-t test, Duncan attempts to strike an optimum combination of
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probabilities of Type I and II errors by introducing protection levels

Tnhich vary with degrees of freedom. The values of his so-called shortest

significant range, denoted as R , is smaller than the values used in any

other range test except the LSD or raultiple-t provided all the conditions

are the same. If the difference between any two means exceeds the cor-

responding R. , it is declared to be significant and Hq( Uj_ = u^ ) is

rejected with one exception. The exception is that no difference between

two means can be declared significant if the means concerned are contained

in any subset between means in the ordered array which have a non-significant

range. For example, consider five treatment means, x, , X2, Xo, Xi , and x^j,

and assume these means are in order of size. Then if it is found that

x^ - Xq^ < R^, H ( Jij. = n^) is accepted; and no other differences among

means between x, and xt can be considered significant, even though some

difference might exceed the appropriate R , In other words, it is not

possible to make decisions such as

if ^0^ /^l
~ )^^^ ^^ been accepted and the sample means are in rank

order from xl to x^,

Duncan's shortest significant reinges are computed as follows;

R a 8- q* ,

, , .

P X oC,P

where

S- " the standard error.
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q* = the tabvilar value (l) of Duncan's special signi-

ficant studentized ranges with the 0( -level of

significance and p the nun±>er of means in the

subset.

The shortest significant range, which is R« = s- q-«- is the
*= X o( ,2

same value as W „ for Student-Newman-Keuls' test, which is the LSD,
n=2

In the case of n means, the desired number of shortest significant

ranges is (n-1). These R values increase at a somewhat slower rate than

\'i. in the Student-Newman-Keuls' test. Duncan's shortest significant ranges

are computed so that the protection level for a group of n means is not

fixed at (l- 0( ), as for any subset of means in Student-Neymian-Keuls'

test, but is (l-o( ) , where p e 2, 3 . . ., n. It is Duncan's

belief that this protection against Type I errors is adequate, and his NIET

maintains better power against Type II errors than does the Student-Newman-

Keuls' test.

The data from Keuls' experiment are used to illustrate the calculations

for Duncan' s NMRT.

The standard error for the mean is

s-= ^ 12U.29/3 = 6.U37

with twenty-four degrees of freedom. The calculated least significant

ranges are computed as follows:

R3^3 = 3.1i3 (6.U37) » 22,1

R^2 = 3.U1 (6.U37) =- 22,0

Rll =» 3.I1O (6.U37) = 21,9
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R = 3.38 (6.U37) = 21.8
10

R9 = 3.37 (6.U37) = 21.7

Rq = 3.3U (6.U37) = 21.5

Ry - 3.31 (6.a37) => 21.3

R^ = 3.28 (6.U37) = 21.1

"s.

R^ = 3.22 (6.U37) = 20.7
"

Rj^ = 3.15 (6.U37) = 20.3

R- = 3.07 (6.U37) = 19.8

R^ = 2.92 (6.U37) = 18.8 = LSD . .

The result of using this test leads to acceptance of the follovring

hypotheses u. = 11. concerning variety means:
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h' n
^ h-- ^9 . y^6 = >13

'
)'h

= .^10 /^7= ^9

' = ^5 '
= n^ = >^10

= n i's" ^6 = y^ll

" /8 = h " /12

•^
>^9 " >^9 = >^13

= >^10 " Ao /'9= /^lO

' /13 VA3 .

= A2
/3= .^8 H" f^l = A3

A ' ;^5 " h Ao ° /l3

= H " /lO /ll = A2
' ^7 = A2

and all other remaining hypotheses, ]^± - p^- are rejected.

Tukey's Test Based on Allowances

,
Several multiple comparison procedures have been introduced by J, W.

Tukey (17). However, this report deals with only one of his procedures based,

on "allowances". When there are only two treatments, an "allowance" is

the same as the LSD = ts-lfT". However, when there are more than two treat-

ments, the test based on allowances becomes a multiple range test and an

"allowance" is equal to the value of W^^^^ obtained in the Student-Newman-

Keuls' multiple range test. This value is called an hsd (honestly significant

difference) and if two means (or groups of means) differ by more than hsd

thqr are said to differ significantly. This procedure may also be used for

finding confidence interval for the difference between any two means.

In his paper Tukey (17) discussed the experimenter's desire to examine
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all contrasts between treatment means j not only simple coiiparisons, i.e. ,

differences between pairs of treatment means. His error rate is on a per

experiment basis rather than on a per decision basis for these comparisons.

He felt that it would be impractical to set an (X -level significance test

for each of the comparisons because the accumulated total errors over all

comparisons among the n treatments would be too high. This is the objection

to the LSD test most often found in the literature.

The value of hsd is 33.3 for testing differences between variety means

in Keuls' cabbage experiment. There are a fewer number of rejections of the

hypothesis ji^ = n^ for Tukey's procedure than for ary other test so far

discussed.

In 1953> 5!ukey (l8) proposed another multiple range test procedure

with a less conservative attitude towards Type I error than in his previous

test. In this procedure the significant ranges are midway between the ones

required by the test based on allowances and those by the Student-Newman-

Keuls* test,

MULTIPLB-F TESTS

The fflultiple-F test consists of the combined use of range tests and

results of significant F tests. Duncan's (2) multiple con5)arison test and

Scheffe's (13) test are generally recognized as representative of this

procedure.
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Duncan's Multiple Comparison Test

Duncan (2) proposed a multiple comparison test in 1951, vrhtch he des-

cribed as a "Multiple-F Test". It was a compromise between two rules.

These he defined as: "Rule 1 is the difference between any two means in

a set of n means is significant provided the variance of each and every

subset which contains the given means is significant according to an o(

TV T

-level F test where o(n = '^ - T-n > where y^ = (1 - o( r , and p is the

number of means in the subset concerned. Rule 2 is any comparison of the

form 0=5* k. x. is significantly different from zero provided the

varisince of each and every subset which contains all of the means involved

in c is significant according to an CK -level F testj and provided, also,

that c differs significantly from zero according to an Of -level t-test,

where c =Z._ i\ ^±) and k^, k2, . . ., k^ is any set of arbitrary con-

stants such that S. , k. =0." Rule 1 is similar to the method described
•^x=l 1

for Fisher's (5) LSD test except that Duncan used an o< -level instead of

an 0< -level. IHincan's compromise should be interpreted so that as many

significant differences as possible are found by Rule 1.

Rule 2 is then used to test any comparisons within subsets of means

already found to contain significant differences by Rule 1,

Duncan's (2) multiple conparison test can be summarized in the following

four steps:

Step 1 List treatment means ranked in order, e,g,.

x^ < X2 < , . .<Xn ,
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step 2 Determine significant ranges from

I

R = s- q „ ,
P X ^ o( ;p,f '

where

s- = estimated standard error of a mean

q , = the tabular value (li) with cX -level significance. These

values are different from q* _ for the range test.
0( JP>1

p = the number of means in a subset

f = degrees of freedom associated with s- .

Step 3 Determine a set of least significant sums of squares and of

the sumes of squares among certain combinations of means

ss_, = 1/2 r' ^
.Pp.

These values are compared with sums of squares among means.

For example if there are three means: x^., X2, and x^, con^jute

the s\ims of squares

SS' - . = Xn + Xo + X= 7.2.7.^.-^. (^ + 5E2 + X3)

1,2,3
- n -^ ^2

and con5)are with 1/2 R = ss ,

Step k This step is used only in certain cases when the sample range

for all means in the group is less than R»p, and the observed

sum of squares among means is larger than the computed sum of

squares for the number in the group. The n-1 degrees of freedom
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are partitioned into single degree of freedom contrasts.

The comparison or comparisons contributing to the signi-

ficant sum of squares are segregated as in Step 3. This

i§ n^et\)l yfhen tef^Un^; the fflgnlflcencf of a eowparieon in-

volving (groups of iioans.

The first step is conducted ordinarily as a range test. In order to

con^jute the significant range for n means in Step 1, Duncan uses the relation

Dvmcan (3) recently published a new procedure. It is called the

Minimum Average-Weight-Risk Analysis, and is based on Bayes' theorem and

some recent ideas of Lehmann (9), This new procedure is similar in concept

of the multiple-t test, Duncan is still conducting research on this problem.

Scheffe's Test

In 19^3, Henry Scheffe (13) introduced a test procedure based on linear

contrasts which include a wide variety of treatment comparisons. This test

procedure may be described as an F-test analogue of Tukey's (l8) test based

on allowances. This multiple comparison test is defined by Scheffe as:

"A kind of simultaneous interval estimation and multiple significance test.

For testing the hypothesis

"o- n^/'a = • • • =A-

a contrast among the parameters jx^, ^, . . ., ji , is defined to be a

linear function of the ^'s: :£^ c^ = 0. This statement is similar to

Rule 2 in Duncan's multiple comparison test because both are linear combinations
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of the means,

Scheffe (ll;) stated the follovdng theorem; "The probability is (l-C<)

that the values of all contrasts simultaneously satisfy the inequalities

where ^ = ^_^ ""l H >

<^ = 2 c. 5c (unbiased estimate of-5^),
/ i=»l 1 J-

(J^%
= variance of -^

S = ]} (n - 1) F^ ~~7"
,

»n-l = degrees of freedom for parameters, and

f = degrees of freedom for the error variance.

In the general case for ajiy linear functions, i.e., no restriction on

^c^, the same confidence interval is used as in the above case, and the

same probability statement is applicable, but the value of S becomes

where q is generally the number of means,

Scheffe himself admitted this method is undesirable for contrasts

of the type p± = }^^ because it gives rather wide intervals compared to

other methods. Therefore, this test is capable of accepting the null

hypothesis \i
f^^

= /ij) too often.

A careful study of Scheffe' s test will show that it is built similar

to Tukey's test with allowances, which also is based on confidence intervals.
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GRAPHICAL COMPARISON OF TEST PROCEDURES

The purpose of shovrLng Fig. 2 is to summarize schematically the com-

parison of the results of various test procedures applied to the Keuls'

cabbage experiment. Here only five procedures are compared namely:

Tueky's test, Duncan's new multiple range test, Student-Newman-Keuls ' test,

LSD test, and multiple t-test. Among these tests Tukey' s test and S-N-K

test are much alike in that they accept more equalities among variety means

than the three other tests, Tukey' s test is the only one that decalres

Variety 1 equal to Varieties 11 and 12, The LSD test and Duncan's NMRT

detect differences and accept equality among the means in reasonably the

same way except for a little disagreement in the middle of the range of
.

variety means,

EMPIRICAL STUDY OF MULTIPLE COMPARISON TESTS

Results of Monte Carlo Study

The purpose of this part of the study is to attain a practical evaluation

of three of the multiple comparison test procediires described above. Spec-

ifically, interest is focused on determining the power and the protection

level of three test procedures j namely, Fisher's LSD, multiple-t and Dun-

can's new multiple range test. In this study, the power and the protection

level were determined separately by using different combinations of means

with different variances.

In order to conduct this study the following three stages were required:
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Stage 1 Random samples of size n = 10 were dra-vm from populations

with known means and variances. The population means ranged

from 5.0 to 13.0 and their variances were either U or 16,

Stage 2 Step 1 was repeated 100 to 500 times depending on the number

of decisions desired for chosen sets of means and variance.

An analysis of variance, F-test, and Duncan's shortest sig-

nificant difference for each set was obtained. The specific

combination of means and variances are shown in Tables k and 5.

A high-speed computer was used draw samples and to perform com-

putations for Stage 1 and 2,

Stage 3 All the differences betvreen means were computed, and these dif-

ferences were compared to corresponding values of LSD and the

Duncan's Rp-s;-s. The results are illustrated by an example,

given in analysis of data.

For the first situation in Table 5, a set of means: 5,5,5,7,7 vrith

variance equal to h was used. The total number of decisions made was ii600,

since

( 27" ^^^"^^ " 10 decisions for each of U60 sets of samples.
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Fig, 2. The variety means within a bracket are asserted to be not hetero-

geneous, and means not bracketed together are asserted to be dif-

ferent.



i.ne---:»^-

33

Analysis of Data

Case N( 5,5, 6,6, 7,7, 8,8, 9,9jU)

^.05,9,90 = l-98j F= 6.70*

Rp* = 1.69, 1.77, 1.83, 1.87, 1.90, 1.93, 1.95, 1.98, 1.99
Isd

Ordered Array of Means12563U789 10
r:2o jj^ FiBo 53J 5:bf tjb kjz or ht^h 9792

1 1.68 1.98 2.96 3.27 3.38 1.72
2 1.78 2.76 3.07 3.18 U.52
5 1.38 2.36 2.67 2.78 U.12
3 1.28 1.9U 2.05 2.39
u ... 1.29 1.70 3.0U
7 l.liO 2.76
8 1.76
9 1.3U

10 .

DECISIONS

Hq LSD NMRT MT Ho

/i2=P9

FLSD

R

NMRT

R

MT

R

Ho LSD NMRT MT •

n=P2 FrFS I'd

;^i=B F2=P10 R R R YTFi R R R

;ii=;iii R R R P3=Fh FTH R R R

;^i=>^5 h^F^ FTF9 R R R

}'r}'6 ^'tH Fr?10 R R R

?1=F7 R R R ?yYi F6=F7
;il=;i8 R R R F3=F8 F6=FQ R R R

;^i=;^9
R R R ?3'=?9 R R F6=F9 R R R

;ii=;iio R R R FyFio R R R F6=Fl0 R R R

}^=F3 FlrF^ j^ry'Q

}i^=)xi^ R R Fh=H )'r?9 - .-: 4

/^2=/^5 FlrFl Fr?io R R
• -- '-

.^

>^=;i6
FIrFQ FQ=F9 ' '•'i^

F2=F7 R R R
^iTi"? FQ=no

i

;^2=/^8 R R R
Fh'-J'io

R R R
P9=}^10

NO. CORRECT EQUALITIES ^-^-S NO CORRECT INEQUALITIES 21-18-21
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Table U. Smnmary of protection levels for indicated sampling situations,
as obtained by Monte Carlo studies. All samples were of size
n=10 from each population.

: : ^Correct Decisions
• Number of : When Equality True

Experimental Situation : Decisions : FLSD : Mt : NLRT

N(5,5,5,7,7; h) I8ii0 97 97 98
N(5,5,5.5,5.5,6,6,6.5,6.5,

7,7; h) i5oo 96 96 97
N(5,5,5,5,5,5,7,7,7,7j U) 7035 95 95 98
N(5,5,6,6,7,7,8,8,9,9j h) i5oo 9h 9k 96
N(5,5,5,5,5. 5,5.5,5.5,5.5,6,

6,6,6,6.5,6.5,6.5,6.5,7,
7,7,7; U) 1500 9h 9h 98

N(5, 5, 7, 7, 9,9,11, 11, 13, 13; U) i5oo 96 96 96
N(5,5,5,7,7; 16) 1128 98 92 92
N(5,5,5.5,5.5,6,6,6.5,6.5,

7,7; 16) 1370 98 95 97
N(5,5,5,5,5,5,7,7,7,7; 16) 2100 97 9k 9U
N(5,5,6,6,7,7,8,8,9,9; 16) 500 93 92 95
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Table 5. Suimary of powers for indicated sampling situations, as obtaiiiedby Monte Carlo studies. All samples were of size n=10 from each
population.

Experimental Situation

N(5,5,5,7,7,j h)
N(5,5,5.5,5. 5,6,6,6.5,6.5,

N(5,5,5,5,5,5,7,7;7;7j h)
,^&5,6,6, 7,7,8,8,9,9; h)

6,6,6,6,6,S,6.5y6.S,6.S,

,^ 7,7,7,7; U)

N(5,5.5,6,6.5,7.7.5,8,8.5i

N(5,6,7,8,9; ii)

N(5,7,9,ll,13; li)

N(5,5,7,7,9,9,ll,ll,13,13; \x)
N(5,5,5,7,7; 16)
N(5,5,5.5,5.5,6,6,6.5,6.5,

7,7; 16)

mM^?'?'^'^'I'7,7,7; 16)
N 5,5,6,6,7,7,8,8,9,9; 16)
N(5,6,7,8,9; 16)
N(5,7,9,ll,13; 16)

Number of
Decisions

2760

8000

^Correct Decisions
If Inequality True
FLSD : Mt : NMRT

51 55

25 25

53

12000 18 22 16
80ii0 % 58 U9

12000 5U 5Ii ii9

15

8910 liS li8 kk
7030 52 52 51
3960 83 83 83
12000 83 83 81
1692 11; 19 17

10960 3 9 5
2U00 11 21 13
liOOO 20 2U 18
ii5io 16 22 18
3850 Ik Ik Ik
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Y/ithin this set of 10 comparisons there are h equalities and 6 inequalities

so that total equalities = li x ]460 = I81i0 and total inequalities = 6 x hSO =

2760.

The protection levels (Table h) and powers (Table 5) are computed in

the following way, as for example was done for N(5, 5, 7, 7, 9, 9, n,

H* 13, 13; i;). A total of 300 sets were used, hence

total number of decisions = hS x 300 = 13500

total number of true equalities = l5oO

total number of true inequalities = 12000

The folloYdng are the numbers of incorrect decisions among the l500

decisions possible on equalities:

ISD MT NMRT /

Total No. 6U 62 61;

Percentage: 6U/l$00 = U.27 62/l500 = ii.l3 6U/l500 = li.27

Therefore, the per cent of correct decisions for the situation is 96 per cent,

to the nearest whole per cent.

The numbers of correct decisions for inequalities are

LSD
. .

MT . NMRT

Total No.: 99li3 9765 99I43

% = Total N0./13500 82.86 81.37 82.86

Comments on the Empirical Results

From Table (h) and Table (5) the multiple-t test has power superiority

as predicted over the other two tests. Fisher- s LSD test has a power advantage,

in most situations, over Duncan's NMRT. For the Type I error, the multiple-t
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test gives a slightly higher percentage of errors than the other two tests,

which is not serious. For Fisher's LSD test and Duncan's NMIT, the pro-

babilities of committing Type I errors are variable from one situation to

another.

Empirically, therefore, the multiple-t test has better power than either

of the other tests, and is simpler and more convenient to apply. If one fears

that its Type I error rate is too high—^which is not confirmed herein—one can

use Fisher's LSD and maintain (l-o^) protection against Type I errors on

the n-mean decisions.
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This report is an attempt to compare and contrast various multiple

comparison tests developed by statisticians and mathematicians since 1927.

Not only are the test procedures illustrated, but also a discussion of the

procedures, emphasizing their individual advantages and limitations, has

been attempted.

Whenever a statistical experiment is conducted -which is intended to

compare treatment effects of various sorts, the experimenter hopes to deter-

mine which treatments are equal and which are unequal, on the average with

respect to the measurement taken. Essentially, the experiment would decide

whether or not the samples came from the same population. Usually the popu-

lation parameter of most interest is the mean. If the treatment means are

different from one another, it is of interest to know which means differ,

and what are the magnitudes of these differences. These questions can be

answered by some of the methods of multiple con^sarison.

A discussion of the concept of multiple decisions, protection level '^

against Type I error, and power of a test precedes the descriptions of the

various testing procedures.

The following test procedures are discussed: Fisher's LSD test, the

multiple-t test, the Student-Newman-Ke\d.s' test, Duncan's new multiple range

test, Tukey' s test based on allowances, Duncan's multiple comparison test,

and Scheffe's test. These test procedures were felt to be representative

in their method of attacking the problem of multiple comparisons. They dif-

fer from each other primarily in the relative importance assumed for errors

of the first and second kinds. The underlying assumptions are usually nor-

mality and homogeneity of variance.

Some results of some Monte Carlo studies of three multiple conparison



test procedures are reported. The three test procedures considered were:

Fisher's LSD test, the multiple-t test and Duncan's new multiple range test.

These tests were conpared for protection against Type I error, and with

respect to their powers against Type II error for a number of known sampling

situations in which differences among the population means were known to

exist. Most discussions in the literature seem to overenphasize avoidance

of Type I error, when, in fact, most experiments are conducted after an at-

tenpt has been made to create real differences*

It was found that:

a) No test, even Wisher's LSD, had poor protection against the sort

of Type I error studied,

b) The powers of the three tests studied generally were in the order;

Multiple-t Fisher's LSD Duncan's NMRT.

The latter conclusion only verifies Duncan's own statements but also the

conclusion a) seems to be contraiy to the fears usually expressed in the

literature.


