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INTRODUCTION

Geometry, as its name Implies, began as a practical science

of measurement of land in ancient Egypt around 2000 B.C. It

consisted at first of isolated facts of observation and crude

rules for calculation until it came under the influence of Greek

thought after being introduced by Thales of Miletus (640-5^6

B.C.). Thales helped to raise the study of geometry by abstract-

ing the various elements from their material clothing. Geometry

really began to be a metrical science in the hands of Pythagoras

(about 580-500 B.C.) and his followers. Later (about 430 B.C.)

Hippocrates of Chios attempted with others to give a connected

and logical presentation of the science in a series of proposi-

tions based upon a few axioms and definitions. Thus by 300 B.C.,

the science of geometry had reached a well-advanced stage. It

remained for Euclid at this time, however, to collect all the

material which had already accumulated, and by adding the results

of his own tremendous research, to compile and publish his famous

work Elements . This book stood for many years as the model for

scientific writing and gave to Euclid a prestige so great that a

reputation of infallibility descended upon him which later became

a distinct hindrance to future investigations.

Euclid opens his book with a list of definitions of the

geometrical figures followed by a number of common notions

(also called axioms) and then five postulates. An axiom or

common notion was considered by Euclid as a proposition which Is

so self-evident that it needs no demonstration; a postulate as



a proposition which, though it may not be self-evident, cannot be

proved by any simpler proposition. The common notions, also

five in number, deal with equalities and inequalities of magni-

tudes and are regarded as assumptions acceptable to all sciences

and to all intelligent people. The five postulates, however, are

peculiar to the science of geometry, vxith the famous Fifth Postu-

1 te (also known as the Parallel Postulate) playing a major role

In what follows. The five postulates are:

1. A straight line may be drawn from any point to any other

point.

2. A finite straight line may be produced continously in a

straight line.

3. A circle may be described with any center and any radius.

k. All right angles are equal to one another.

5. If a straight line falling on two straight lines makes

the interior angles on the same side less than two right

angles, the two straight lines, if produced sufficiently,

meet on that side on which are the angles less than two

right angles.

Euclid's fifth postulate was attacked almost immediately

because It failed to satisfy the demands of Euclid's followers

as a proposition acceptable without proof and also because so

much was proved without using it. Indeed, in ^uclid's Elements

the first 26 theorems of 3ook 1 are proved without recourse to

this questionable postulate. (Thus, Euclid's reluctance to

introduce it himself until absolutely necessary provides a case

for calling him the first Non-Euclidean geometer.) This



discovery led to many futile attempts to prove the fifth postulate

from the other four. Even today many would-be geometry students

consider such a proof in quiet contradiction of a now well-estab-

lished fact that other logically consistent geometries exist

which admit the first four postulates but not the last. We can

also see now that although these attempted proofs were in vain,

they did cause a rigorous examination of the basis of geometry

in particular and mathematics in general.

Some of the men who attempted to prove the fifth postulate

and failed include Ptolemy, Proelus, Naseraddin, Wallis, and

Saccheri 1
. Of particular interest was the method of Gerolamo

Saccheri (1667-1733), an Italian Jesuit priest and Professor of

Mathematics at the University of Pavia in Milan. Being quite

impressed with the power of the rsductio ad absurdiim method of

proof and having complete faith in the truth of the Euclidean

Hypothesis, Saccheri discussed the contradictory assumptions with

a definite purpose In mind. He wanted not to establish their

logical possibility but to detect the logical contradictions

which he was persuaded must follow from them.

The fundamental figure that Saccheri us^d was the isosceles

birectangular quadrilateral ABCD as illustrated with

«£A = Jf B = a right angle and the sides AD and BC equal. Line

AB is called the base of the quadrilateral and DC is known as

the summit.

Harold E. Wolfe, Introduction to Non-Euclidear , Geometry
(New York: 1930), pp. 26-33.



By letting M and N represent the midpoints of A3 and DC, respect-

ively, it is obvious that ^ AMD & -ABCM.

This together with Zx DNM = A KNC implies:

(1) ^ADN^^BCN (2) MNJ.AB (3) MNi.DC.

Saccheri's plan required the investigation of three hypotheses

called appropriately the hypothesis of the right angle, the hypo-

thesis of the obtuse angle, and the hypothesis of the acute angle.

Ke hoped to reach contradictions with the latter two and thus to

prove by trichotomy the soundness of the hypothesis of the right

angle, which would lead him into Euclid's Parallel Postulate.

After studying the hypothesis of the acute angle and arriving

at a long sequence of propositions and corollaries which were to

become classical theorems in Hyperbolic Geometry, Saccheri weakly

concluded that the hypothesis leads to the absurdity that there

exist two straight lines which, when produced indefinitely, merge

into one straight line and have a common perpendicular at infinity,

Since he attempted a second proof later with no greater success,

it was evident that Saccheri was dubious himself about his con-

clusions. Indeed, had he suspected that he had not reached a

contradiction but had uncovered a new concept, the discovery of

Non-Euclidean Geometry would have been made almost a century



earlier than it was.

It is Saccheri's investigation of the hypothesis of the

obtuse angle which really interests us and which hopefully will

shed some light on this subject of Elliptic Geometry.

Saccheri disposed of the hypothesis of the obtuse angle by

reading too much into Euclid* s Second Postulate. Just as others

before him, Saccheri assumed this postulate implied that the

straight line was infinite. This in turn leads to a proof of

Proposition 16 (which states that the exterior angle of a triangle

is greater than either of the opposite and interior angles) from

Book 1 of Elements which is used to show that the hypothesis of

the obtuse angle implies the hypothesis of the right angle.

The crux of the contradiction, of course, lies in assuming

that the straight line is infinite in length under the hypothesis

of the obtuse angle. It was Riemann (1826-1866) who first realized

that these assumptions were incompatible and substituted for the

implication that the straight line is infinite the more general

idea that it is unbounded or endless. The difference between the

infinite and the unbounded he puts in the following words:

"In the extension of space construction to the infinitely

great, we must distinguish between unboundedne s

s

and infinite

extent ; the former belongs to the extent relations, the latter

to the measure relations. The unboundedness of space possesses

a greater empirical certainity than any external experience,

but its infinite extent by no means follows from this."

^Roberto Eonola, N< 3lldean Gec-etry (New York: 1955),
pp. 142.



Using this interpretation of Postulate Two, one can construct

geometrical systems with just as much logical basis as Euclidean

Geometry. In attempting to visualize the straight lines of these

systems, it will help to form an analogy with the great circles

of a sphere. As we know, these particular circles (and their

arcs) constitute the geodesies of the sphere. That is to say,

the shortest distance between any two points on a sphere is along

the arc of a great circle passing through those two points.

There are other properties which great circles on a sphere share

with straight lines on a plane, but there also exist distinct

differences. For example, these "lines" are endless, but not

infinite; two points, in general, determine a line, but they can

also be so situated so as to have an infinite number of "lines"

drawn through them. Also, we see that two "lines" always inter-

sect in two points and enclose a space. Finally, we must note

that however, convenient this analogy (or any analogy) might be,

one has to be careful In applying or carrying it too far. Rely-

ing too closely upon such an analogy will often lead researchers

astray in their work. For example, from the preceding representa-

tion of elliptic geometry, one might get the "idea" that all

lines in elliptic geometry are curved. In truth, however,

elliptic straight lines are just as "straight" as Euclidean

straight lines. We have only used curved lines as a graphic

picture of something we may otherwise have not been able to

visualize. Thus, in spite of some shortcomings, an analogy can

give many needed insights into our study.

With these reservations In mind, another form of



visualization of elliptic geometry can be constructed by consider-

ing a bundle of straight lines and planes through a point 0. If

we call a straight line of the bundle a s! polnt" in elliptic

space and a plane of the bundle a "line", we can easily see how

the following well-known theorems from Euclidean geometry can be

modified to represent something in the elliptic geometry.

3

El, Two lines through uniquely determine a plane

through 0.

"El." Two "points" uniquely determine a "line'*.

E2. Two planes through intersect always in a single

line through 0.

"E2." Two "lines" intersect always in a single "point".

E3. All the planes through perpendicular to a given

plane oi through pass through a fixed line a

through 0, which is orthogonal to every line through

lying in o< .

"E3." All the "lines" perpendicular to a given "line" <=<

pass through a fixed "point" A, which is orthogonal

to every "point" lying in o< .

Ihe analogy can be carried further, but we can easily see that

elliptic geometry can certainly be represented by the geometry

of a bundle of lines and planes.

Euclid^ Fifth Postulate, while under attack for previously

mentioned reasons, is also known to be quite unwieldy to work with,

as anyone who even reads it should agree. To alleviate matters

3d. M. Y. Sommervllle, The Elements of Mon-Euclidean
Geometry (London: 1914) , pp. 9*0.
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somewhat , there have been many substitute statements which are

essentially equivalent to the Fifth, but are also considerably

simpler in statement and comprehension.

One such substitute, and the most commonly used of all

statements of this class, is known as Playfair's Axiom after the

geometer by the same name. Playfair's Axiom is as follows:

Through a given point not on a given line can be drawn
one and only _ line which is parallel to the given line.

This axiom can readily be shown to be equivalent to the Fifth

Postulate; but more importantly, it also lends itself much more

easily as a characteristic postulate of a particular system than

does the Fifth. This can be seen by deleting the words "one and

only one** from Playfair's Axiom and substituting the phrase

"more than one" in their place. This new axiom wrill lead one

into the realm of Hyperbolic Geometry and is thus known as the

characteristic postulate of that theory.

Altering Playfair's Axiom in the opposite sense gives:

Through a given point not on a given line can be drawn
no line which is parallel to the given line.

This obviously will simplify into the Characteristic

Postulate of Elliptic Plane Geometry:

POSTULATE : Two straight lines always intersect one another ,

With this postulate and the previously mentioned assumption

that the straight line is not infinite, but just endless, we .

proceed to the development of Elliptic Plane Geometry.



PROPERTIES 0? LINES AND SURFACES

To expedite our Investigations we will proceed under tv«o

assumptions that help to free us from small technical details

in a great many proofs that follow. The first such assumption

will be that line segments are undirected. That is, segments

AB and BA are identical, since no direction is associated with

either of them. The second assumption will be the validity of

all theorems from Euclidean geometry that are not dependent upon

either the Parallel Postulate or the concept of an infinite line,

This will allow us to skip over much of Elliptic u-eometry which

is simply a repetition of Euclidean Geometry. The various con-

gruence theorems fall in this category and will play a major

role ^n the proof of some of our succeeding work.

With these ideas in mind, let A and B be any two points on

a civen line A . The perpendiculars at A and B to 1 must inter-

sect by reason of the Characteristic Postulate. Call this point

of intersection 0.

'

/>' (\ C B P

Since < 0A3 = <^C3A = right angle, we have OA-03. At make

«£ EOQ = <: AOB end produce OQ to cut the line X at P. Then

AB= BP and -£0PA is a right angle by congruent triangles AOB

and BOP.
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By repeation of this construction, we can show that if P is
.

a point en A3 produced through B such that AP= m - AB, the line

0? is perpendicular to I and equal to 0A and 03. The same holds

for points on AB produced through A such that BP 1- m • AB. In

all cases, in is a positive integer. Likewise let C be a point

on AB such that AB=m- AC. The perpendicular at C to ^ must pass

through the point 0, since if it net 0A at 0« , the above argument

shows that O'B must bo perpendicular to & and coincide with OB.

It follows that if P is any point on the line JL such that

AP - ^-.A3, where m and n are two positive integers, then OP is

perpendicular to the line and equal to CA and 03. The case when

the ratio A? : A3 is not rational is deduced from the above by

using a limiting process on the infinite decimal representation

of the irrational number.

Thus all points on the line are included in this argument,

so that the perpendiculars at all points of the line k. pass

through the same point. Now let I be another line and A*
,

B»

two points upon it such that. segment A3 = A'3'.

0'

X I

The perpendiculars at A' and 3* meet in a point 9
. Then

the triangles A03 and A'O'B' are congruent by virtue of having an

angle - side - angle identical in measure. Thus it follows that
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O'A* = OA, snd we have shown that the perpendiculars at all points fet

on any line meet at a point which is at a constant distance from

the line. The point at which they all meet is called the Pole

of the Line and the constant distance will be denoted by q. Thus

every ray emanating from the pole of the line is perpendicular to

the line.

Given any two points (A and B) in the plane, we can construct

at least one line which contains the points. Construct perpen-

diculars to the line at A and B. These perpendiculars meet at

the pole of the line containing A and 3.

Divide A3 into n equal parts and construct perpendiculars at the

division points. Any ti\Tc of the small triangles are congruent by

virtue of having an angle - side - angle combination which is

caual. Since this procedure is valid for any n, we arrive at

two very important conclusions s (1) the distance between any

two points is proportional to the angle formed at the pole of the

line containing these two points and (2) the measure of the area

of this figure is proportional to that same angle.

Next consider the figure OAB where is the cole of line

A3. Extend OA to 0', -..here q=0'A=OA, and then construct 0*B.
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I

Then, from the triangles OAB and O'AB, it follows that

^G'BA = ^TOBA = a right angle. Thus OB=BO , = q and they are

parts of the same Straight line. Also, AO' produced through 0*

must intersect AB at a point C since every ray from 1 is per-

pendicular to the line Jc . Thus CC will also be perpendicular

to A3. This shows that 0A0' produced returns to and the line

is closed or re-entrant and thus is finite and of length ^q.

It should be noted, however, that the line is still endless or

unbounded in our system.

Assuming for the moment then that and 0* are two dis-

tinct points, every line has two poles. Also, any two lines

intersect in two points and have a common perpendicular. The

figure that these two lines enclose is called a digon, or biangle,

each side of which has length 2q. The angle between the two

lines at their point (or points) of intersection is called the

angle of the digon. Such a simple figure is impossible to form

in the other spaces.

Another contradiction with the other systems is seen in

that two points qo not always determine a unique straight line.

For example, we see that through the two poles of a line an
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infinite number of lines can be drawn 9 just as through the two ends

of a diameter of a sphere an infinite number of great circles

can be drawn.

It should also now be clear why £ucl-.d B s proof of 1-16 is

not valid in this geometry. The proof of proposition 1-16, uses

an argument that depends upon producing a line an amount dependent

upon the "size" of the triangle. Thus, in light of our restricted

definition of the line, we can only conclude that the exterior

angle of a triangle is greater than either of the interior and

opposite angles only when the corresponding median is less than

q. If this median is equal to q, the exterior angle is equal to

the angle considered; if it is greater than q, the exterior angle

is less than the interior angle considered. Since 1-16 is in

turn essential to the proof of 1-27 (which states that if a

transversal cuts two straight lines and makes the alternate

angles equal, then the two straight lines are parallel), it is

now evident why in this geometry that theorem does not hold.

Of course, if 1-27 did hold, then by the construction

implied by that proposition there would exist at least one

parallel to a line through any point outside It. Obviously,

in "limited" regions of the plane, I-l6 does hold and various

theorems dependent upon it are true. The case given above when

the median of a triangle is less than q is such an example.

We should note that in stating the previous few remarks

v?he exterior angle of a triangle is greater than cither
of the opposite and Interior angles.
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we have assumed that the point is a different point from 0'

.

If the two points coincide, then the plane of this geometry has a

wholly different character. For example, the length of a straight

line is now 2q instead of 4c. Also, if two points ?, Q are

given on the plane along with any arbitrary straight line, we can

pass from P to Q by a path which does not leave the plane, and

yet does not cut the line. In other words, the plane is not

divided by its lines into two parts.

Imagine a set of three rectangular lines Oabc with Ob on

the line AM and Oc always cutting the fixed line A?. (Remember

that M* is the same point as M and that P* coincides with P. We

have emphasized this point by drawing curved dashed lines between

M and K 1 and between P and P* . However, these lines intersect

in only one point, A.)

As Tioves along AM extended (in the direction indicated by the

arrow Ob) it will eventually return to A. But now Oc, is turned

downwards and Oa, points to the left instead of to the right.

Thus the point c has moved in the plane PAM and come to the other
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side of the line AM as c, without actually crossing it.-3

A more concrete example of this peculiarity is given by what

is called a Leaf ( or Sheet , or Strip ) of Ifobius, which consists

of a band of paper twisted 180° and with its ends joined. A line

traced along the center of the band will return to its starting

point, but on the opposite surface of the sheet. 'Thus the two

sides of the sheet are continuously connected.

Obviously then, the essential difference between the two

planes is that in the one, the plane has the characteristics of

a two-sided surface, and in the other it has the characteristics

of a one-sided surface. The first plane is usually called the

spherical or double elliptic plane; the second is usually called

the elliptic or single elliptic plane. Although the geometries

which can be developed on both of these planes are referred to as

Hienann's (Non-Euclidean) Geometries, it se^ms likely that he had

only the double elliptic plane in mind as he did his work. The

single elliptic plane and its peculiar distinctions were first

brought to light by the German mathematician Felix Klein in his

publications during the I8?0's. (It was Klein who attached the

now usual nomenclature to the three geometries; the geometry of

Lobachewsky and 3olyai he called Hyperbolic , that of Riemann

'£11 iptic , and that of Euclid Parabolic . The names were suggested

by the fact that a straight line contains two infinitely distant

points under the Hypothesis of the Acute Angle, none under the

Hypothesis of the Obtuse Angle, and only one under the Hypothesis

^So-merville, £2. cit . , p. 91-
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of the Right Angle.)

In the brief outline of Elliptic Geometry presented here, we

are trying to restrict ourselves as much as possible to those pro-

perties common to both the single and double elliptic planes, with

occasional ventures into the particular characteristics of each if

the problem warrants it. Having looked at the distinguishing

traits of the line in each space , we turn to an investigation of

the simple figures common to both planes.

PROPERTIES 0? TRIANGLES AND QUADRILATERALS

The initial reaction would be to assume that the digon (or

biengle) mentioned earlier is the most basic figure involving

straight lines. We note, however, that thi- figure exists only in

the double elliptic plane. By design, the single elliptic plane's

property of having any two points unl: uely determining a single

line disallows the construction that the digon requires.

With this in mind we turn our attention to the triangle and

some of its more interesting properties under the hypotheses of

Elliptic Geometry.

DREMj In any triangle which has one of its angles a right

angle, each of the other two angles is less than, equal to, or

greater than a right angle if and only if the side opposite it

is less than, equal to, or greater than q, respectively.

PROOF J Let angle C in triangle ABC be a right angle. Let ?

be the pole of the side .'.G.
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Then P lies upon BC and PC r q. Construct ..?. Then -£PAC is a

right angle. Thus:

C3 > C? if and only if £BAC > <£ PAC = a right angle,

C3 = CP if and only if £ BAC = £ PAC ~ a right angle,

CB < CP if and only if *£BAC< -^ PAC = a right angle.

Therefore the theorem is proved.

Next consider any right-angled triangle ABC in which C is

the right angle.

THEOREM J In any right-angled triangle the sum of the angles is

greater than two right angles.

PROOF: If either of the legs of the right triangle is greater

than or equal to q, the sum of the angles is greater than two

right angles by the above theorem. If both sides are le~s than

c, draw EB perpendicular to the side BC, where D is the midpoint

of the hypotenuse.
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Let P be the pole of DE. Thus EP = o . Produce ED to F, so th

ED = D?. Construct A? and PP. Then the triangles ADF and D£8 ore

congruent by virtue of having a side - angle - side combination

equal In measure. Thus -£ AFD = <£ B53 * a right angle. Thus A, P,

and P are colinear. However, we know that £PAC > a right --r.~lc,

since CP>EP = q. But k. PAC = <£CAB*- £DAF- ^ CAB + «^DBE. Therefore,

the sum of the angles at A and 3 in the right-angled triangle ABC

is greater than a right angle in this case as well as in the others.

THEOREM: The sum of the angles of any triangle is greater than

two right angles.

PROOF: Let ABC be any triangle. If at least one of the angles

Is a right angle, then the theorem follows from the preceding

theorem. If two of the angles are obtuse, the theorem is obviously

true. Thus we need only consider the case when two of the

angles are acute. Let <£ABC and <£ACB be acute.

D' B D C

From A draw AD perpendicular to BC. Then D must lie on the

segment BC, for, if it did not, then altitude AD' would hsve

to be both greater than and less than q at the same time by

virtue of being the side of two right triangles with opposite

obtuse and acute angles respectively at the same time. Thus

from the previous theorem, ^ ABC *• «£. BAD > a right angle and
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<DAC + -^ACD > a right angle. Therefore, it follows that the sum

of the angles of the triangle ABC is greater than two right angles,

The amount by which the sum of the angles of a triangle

exceeds two right angles _s called the excess of the triangle.

-C OLLARY: The sum of the angles of every quadrilateral is

greater than four right angles.

- LOOF: Since any quadrilateral can "be divided into two triangles

by either diagonal, this corollary follows readily from the

previous theorem.

COROLLARY l The sum of the angles of an n-gon is greater than

(r.-2) times two right angles for n^3»

PROOF: The proof of this corollary is jy mathematical induction

on n, the number of sides of the :i-gon. Since the 3-gon is a

triangle, we have already proven this statement for n=3. Assume,

then, that the sum of the angles of a k-gon is greater than (k-2)

times two right angles. Now look at a (k+l)-gon. Pick any two

vertices such that the line segment constructed to connect these

two vertices lies within the polygon and such that it divides

the (k-hl)-slded figure into a triangle and a k-sided polygon.
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Then the sura of the angles of the (k + 1) -sided figure is equal to

the sum of the angles of the k-sided figure and the angles of the

triangle. However, since the sum of the angles of the k-sided

figure is greater than (k-2) times two right angles by the induc-

tion hypothesis and since the sum of the angles of the triangle

is greater than two right angles, we see that the sum of the

angles of the (k + l)-sided figure is greater than

(k-2)-?r * w •= (k-2 + 1) 1t = [jk + l)-2j"7r, where 7T represents two

right angles. Thus by mathematical induction the corollary holds

for all n > 3.

We can now generalize our definition of the excess of a

n-gon to be the sum of the angles of the polygon minus (n-2)TT .

A quadrilateral of particular interest is the birectangular,

isosceles quadrilateral known as Saccheri's Quadrilateral as

mentioned previously. The distinguishing features of this figure

can be summarized in one general theorem.

THEOREM: The line joining the midpoints of the base and the

summit of a Saccheri Quadrilateral is perpendicular to both of

them, and the summit angles are equal and obtuse.

PRCC? : The only question remaining to be answered is whether the

summit angles are obtuse. The proof of the remainder of the

theorem is given in the introduction of the paper. Therefore,

since the sum of the angles of every quadrilateral is greater

then four right angles, the equal summit angles must be obtuse

and the theorem holds. Incidentally, this proof shows that
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Elliptic Geometry does Indeed correspond to Ssccheri's work with

the Hypothesis of the Obtuse Angle.

Another quardilateral of interest is the trirectangular

quadrilateral also known as Lambert's Quadrilateral after the

German geometer J. H. Lambert (1729 - 1777). Like Saccheri

before him, he also came close to the discovery of Non-Euclidean

Geometry. He chose this particular quadrilateral as his funda-

m r.tal figure and proposed three hypotheses in which the fourth

angle was in turn a right, an obtuse, and an acute angle. The

similarity of his hypotheses and his work to that of Saccheri is

evidenced even further by the realization that the Saccheri

Quadrilateral can be constructed by adjoining two congruent

Lambert Quadrilaterals. That is, In the Saccheri Quadrilateral

ABCD below

A e 8

where E? is the line segment joining the midpoints of the base

and the summit, we can see two congruent Lambert Quadrilaterals,

AEFD and E3CF.

The interesting characteristics of a Lambert Quadrilateral

are given in the following theorem.

FHEOHEM: In a trirectangular quadrilateral (Lambert Quadrilateral)

the fourth angle is obtuse and each side adjacent to this angle

is smaller than the side onooslte.
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PROOF: Let A3CD be a Lambert Quadrilateral with right angles at

A, 3, and D.

.Since the sum of the angles of any quadrilateral exceeds four

right angles, then the angle at C must be obtuse.

Assume that one of the sides adjacent to this angle is

greater than the side opposite. Without loss of generality, we

can assume that BC>AD. Construct BE on EC such that BE=AD.

Then we have that £ADE = -£BED since ADEB would be a Saccheri

. u trilateral. However, <£ADE is less than a right angle, result-

ing in the sum of the angles of ADSB being less than four right

angles, an obvious contradiction. Next assume that BC=;AD. Then

-5: ADC = £BCD = a right angle since ABCD would again be a Saccheri

..-.. trilateral. We proved, however, that 4BCD is obtuse. This

second contradiction now allows us to conclude that BC is indeed

less than AD. In general terms, this means that a side adjacent

to the obtuse angle is smaller than the side opposite and the

tr.eorem is proved.

MEASUREMENTS IN THE ELLIPTIC PLANE

To complete our brief look at the properties of the simple

figures in the Elliptic plane, we shall investigate some of the

problems dealing with measurements of lengths of line segments,
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of angle measure, and of area.

Choose any two points (A and B) in the Elliptic Plane and

construct a line segment AB which connects them.

A d B

Construct AA'JLAB and 33'lAB. Lines AA' and BB» extended, inter-

sect in at least one point 0, the pole of the line A3. From our

previous work we know that the distance between two points

(A and B) is proportional to the angle formed at the pole of the

line containing these two points. That is to say, if we let d

denote the measure of line segment AB and let o< denote the measure

of the angle at the pole 0, then d ~ co{ where c is some constant.

For convenience we chose the unit of line such that q = -|p k and

the unit of angle such that a right angle measures \ . Now look

at the digon with angles of %.

From the above we had d = c °< . The distance d is now given by q

ar.d c^ is equal to a right angle. Thus q = c%. Now since the

unit of line was chosen such that q = k'^, we have that c=k.
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Therefore we arrive at the defining relationship given by d = ko(

where k =/£- q. Thus if the length of the segment of line included

between two rays from its pole is given by x, then the angle

between these rays will be given by -£" and conversely.

We should observe that two points have two distances, that

is, d and 4q-d, although these might be equal. We see also that

two lines have two angles, c< and 2tt - o( , (These second measures

in each case would be 2q-d and If- ex, , respectively in the Single

Elliptic Plane.)

Just as we have in the previous biangle that the distance

between A and E is proportional to the angle at the vertex, we

also have that the measure of the area of a biangle is propor-

tional to that same angle. Again by choosing a convenient unit

of measure so that a biangle with angle g has a unit of area

given by k
a

ir , we arrive at the following relationship between

the area of a biangle and the angle °< at its vertex:

A (Biangle) * 2k^

.

By looking at the digon with angles Znt , we note that the area

of the entire plane is given by:

A( Plane) -(2k A
) (2 7r) = 4^ka

.

(Once again we note that this result holds for the Double

Elliptic Plane only. The Single Elliptic Plane has a total area

one-half the previous value.) Obviously, then, the Elliptic Plane

has a limited, finite area. This result should not be too sur-

prising for it fits in nicely with the concept of a line of

finite length which we have previously discussed.

Ar. important theorem which we now have the tools to prove
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is as follows:

-;;: The area, of a triangle is proportional to its excess.

- [OOF: We will give a proof of this theorem for the Single

Elliptic Plane. A similar proof exists for the Double Plane where

all the values would be double what they are here.

As we have seen before, two lines enclose an area proportional

to the angle # between them. (Think of the lines as forming the

vertex for one-half a digon. Remember that full digons do not

exist in the Single Elliptic Plane.) This area is given by k o{ .

We also know that the area of the entire Single Elliptic Plane is

2k
a
?r . In the following figure, we mark the areas enclosed by

the triangle with angles o{ ft %

We note that the areas crossed off cover the area of the triangle

three times end the rest of the plane only once. For example,

le o( of the triangle forms one half -digon and its equal

verticsl c ngle forms a similar half-digon in the opposite direc-

tion. Thus the v otal area of the plane taken up by these two

-. lf-di --'.~ would be 2k* o< . Like results hold for angles S and H

.
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... have, therefore,

2k^>< + 2k
a
^ -t Zk\ = 2k

a
-7T -2A

where A represents the area of the triangle. Thus

2k 5 ( « + @ + tf )
= 2k

a
-n- + 2 A

or A~k a (* + $ + * -TT).

However, ( =< + G + * - 7Y ) is known as the excess of the triangle,

- defined earlier. Therefore the area of a triangle is indeed

proportional to the excess of the sum of its angles over two

right angles.

Two important corollaries follow from this theorem.

COROLLARY: Two triangles having the same excess have the same

area.

COROLLARY: The areas of two polygons are to each other as their

excesses.

The proof of the first corollary comes directly from the

relation A=k a
( o{ + § + * - r

tf) given in the previous proof.

The second corollary follows by the realization that any polygon

can be triangulated, and then the sums of the areas of the

triangles can be compared.

CONCLUSION

With the basic tools we have developed here, one is able to

extend the scope of the theory of Elliptic Geometry into areas
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such as trigonometry, ^ analytic geometry, 7 solid geometry, and

other familiar grounds that were once considered to be solely

within the realm of ordinary Euclidean Geometry. Such advanced

topics obviously cannot be covered adequately in the small amount

of space remaining.

Another phase of Elliptic Geometry (or for that matter, any

form of geometry) which could be studied in detail Is its consis-

tency. That is to say, we wish to be sure that the geometry

which we are developing will never lead us into a contradiction,

regardless of how far or in what direction we desire to continue

our study.

Most tests of this consistency have been tests of comparison.

That Is, an analogy is usually found which would represent the

system to be tested In some form within another better known
Q

system. For example, Carslaw sets up an analogy whereby Elliptic

Geometry is represented by a particular family of circles in the
*

Euclidean Plane. With this analogy developed fully, he then

reasons that no contradictions could possibly arise in Elliptic

Geometry, for if they did, then a contradiction would also exist

within a subsystem of Euclidean Geometry. This Justification of

the consistency of Elliptic Geometry could certainly be false,

since no one has ever proven that such could not happen within

Euclidean Geometry. However, we do accept his work since we are

6Wolfe, oj>. clt. , p. 185.
n
Henry Parker Manning, Non-Euclidean Geometry (Boston: 1901),

P. 69.

H. 5. Carslaw, The Elements of Non-Euclidean Plane Geometry
and Trigonometry (Londoni 1916), p. 1?1.
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as certain that Euclidean Geometry Is consistent as we can be

about any theory In existence today.

However, even If we oonclude that each of the three geome-

tries Is as consistent as either of the others, there still remains

the question of which geometry is really the "true" geometry.

This question has no place in geometry as a pure science, but

rather in geometry as an applied science. The answer, of course,

lies with the experimenter. The fallacy is, however, that the

researcher cannot make measurements of an exact enough nature to

give himself the answer. If he could, a simple measurement of

the sum of the angles of any triangle would tell us immediately

which geometry is "true"—if such a thing can be said.

The pivotal element in most applications which would have a

choice such as ours is convenience. Measurement of space is no

exception. We shall conclude this presentation of our subject

with a quotation by the French geometer Poincare:

"What then are we to think of the question: Is Euclidean

Geometry true? It has no meaning. We might as well ask if the

metric system is true, and if the old weights and measures are

false; if Cartesian coordinates are true and polar coordinates

false. One geometry cannot be more true then another; It can

only be more convenient. Now, Euclidean Geometry Is, and will

remain, the most convenient; first, because it is the simplest,

and it Is so not only because of our mental habits or because of

the kind of intuition that we have of Euclidean space; it is the

simplest in Itself, Just as a polynomial of the first degree is

simpler than a polnomial of the second degree; secondly, because



29

it sufficiently agrees with the properties of natural solids,

those bodies whioh we compare and measure by means of our senses. "9

9Ibld. t p. 3L?Jf.
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The purpose of this report was to make a basic study of

Elliptic Geometry. This study began with an introduction to

the historical development as initiated by Euclid's statement

of his five postulates and continued by the later work of

Saccheri and Lambert. It remained for Riemann (1826-1866),

however, to realize fully the area now known as Elliptic

Geometry. Indeed, it was Riemann who discovered that the

postulate dealing with extending a line made just as much

sense if we considered the line as being unbounded, but not

infinite. With this reservation in mind, the characteristic

postulate of Elliptic Plane Geometry was introduced:

Two straight lines always intersect one another .

By using this postulate in our development of the pro-

perties of lines and surfaces, it was found that straight

lines were re-entrant and that they had a constant finite

length. It was found that the total area of the plane was

dependent upon the assumption of one or two distinct poles

for every line (which led to Single and Double Elliptic

Geometry respectively), but in each case this still meant

that the plane had a constant finite area.

In the section on triangles and quadrilaterals it was

shown among other things that the sum of the angles of a tri-

angle was always greater than two right angles. The amount by

which this sum exceeded two right angles was called the excess

of the triangle and was shown to be proportional to the area

of the triangle. Similar results were noted for an n-gon.



Finally, the consistency of Elliptic Geometry and the

manner in which it could be used to describe the "true"

nature of space is discussed in the report.


