
PULSED LASER ANNEALING AND CHARACTERIZATION
OF GaAs SUBSTRATES

by

YANAN F. SHIEH

B.S., Shanghai University, 1984
Shanghai, P. R. China

A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Electrical and Computer Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1989

Approved by:

Major Professor



AllEDfl 30m,37

TABLE OF CONTENTS

LIST OF FIGURES i

LIST OF TABLES ii

ACKNOWLEDGMENTS iv

Chapter Page

I

.

INTRODUCTION 1

1.1 A Description of Gallium Arsenide 3

1.2 Annealing Characteristics of
Semiconductors 7

1.3 Characterization of Deep Levels in
Semi-insulating 11

II

.

EXPERIMENTAL 14

2.1 Annealing Performance on Ion Implanted
n-type GaAs 14

2.2 Measurements of the Electrical
Characteristics on n-type GaAs 18

2.3 Depth Profiling of Carriers by a Multiple
Etching Technique 24

2.4 Instrumentation and Implementation for
Profiling Process 27

2.5 Photo-Induced Transient Spectroscopy on
n-type Ion-Implanted GaAs 30

III. RESULTS AND DISCUSSION 43

3.1 Electrical Characteristics in Pulsed Laser
Annealed GaAs 43

3.2 Defect Levels and PITS Spectra on n-type
GaAs 48



Chapter Page

3.3 Comparison Between Pulsed Laser Annealing
and Furnace Annealing on n-type GaAs 58

IV. SUMMARY AND CONCLUSION 64

V. REFERENCES 67

APPENDIX A Remarks on the Measurements 70

APPENDIX B Calculation for Activation Energy
and Capture Cross Section 72

APPENDIX C Error Estimation of Activation
Energy and Capture Cross Section
in PITS Measurements 81

APPENDIX D Arrhenius Plots 83

APPENDIX E Programs 9 2



LIST OF FIGURES

Figure No. Figure Page

1.1 Crystal structures of GaAs and Si 4

1.2 Energy band structures of Si and GaAs .. 5

1.3 Implantation disorder due to light
ions and heavy ions 8

1.4 PITS system for characterization of
deep-level defects 13

2.1 A block diagram of pulsed laser
annealing 15

2.2 The distribution of temperature in FA .. 17

2.3 The Hall effect on a symmetrical
semiconductor 19

2.4 A flat sample of arbitrary shape 19

2.5 Hall measurements on a FA sample 20

2.6 Hall measurements on a PLA sample 20

2.7 A correction factor for determining
specific resistivity 23

2.8 Isoetch curve for gallium arsenide
using (H2S04

:H
202 :H

20) system 25

2.9 A block diagram of instrumentation for
depth profiling measurements 29

2.10 The energy band diagram with the thermal
and optical transition processes on a
defect level 31

2 . 11 Waveforms for a PITS scan 34

2.12 /P/ t 1 versus t
2
/t x 35

2.13 A block diagram of PITS system 37

2.14 The scanning-PITS temperature as a
function of time 42



Figure No. Figure Page

3.1 Carrier distributions of PLA
Se-GaAs (2.2 el2 cm-2) 48

3.2 PITS spectra of Si-GaAs (4.0 el2 cm-2)
at t^ = 0.3 ms and t2 = 2.4 ms 52

3.3 PITS spectra of Si-GaAs (6.0 el4 cm-2)
at t-j, = 0.3 ms and t2 = 2.4 ms 53

3.4 PITS spectra of Se-GaAs (2.2 el2 cm-2)
at t^ = 0.3 ms and t2 = 2.4 ms 54

3.5 PITS spectra of Si-GaAs at t 1
= 0.3 ms

and t 2
= 2.4 ms 55

3.6 PITS spectra of Se-GaAs with different
emission rates 56

3.7 Depth profiling of FA Se-GaAs 62

3.8 Depth profiling of FA Se-GaAs 63

D.l The Arrhenius plot of PLA (0.32 Jcm-2)
Si-GaAs (4.0 el2 cm-2) 84

D.2 The Arrhenius plot of PLA (0.32 Jcm-2)
Si-GaAs (2.0 el3 cm-2) 85

D.3 The Arrhenius plot of PLA (0.32 Jcm-2)
Si-GaAs (1.0 el4 cm-2) 86

D.4 The Arrhenius plot of PLA (0.32 Jcm-2)
Si-GaAs (6.0 el4 cm-2) 87

D.5 The Arrhenius plot of PLA (0.30 Jcm-2)
Se-GaAs (2.2 el2 cm-2) 88

D.6 The Arrhenius plot of FA Si-GaAs
(4.0 el2 cm-2) 89

D.7 The Arrhenius plot of FA Si-GaAs
(6.0 el4 cm-2) 90

D.8 The Arrhenius plot of FA Se-GaAs
(2.2 el2 cm-2) 91

li



LIST OF TABLES

Table No. Table Page

3.1a Electrical properties of PLA Se-GaAs
(2.2 el2 cm-2) with various
laser energies 45

3.1b Electrical properties of PLA GaAs
(0.32 Jcm-2) with different doses 45

3.2 Results of defect characterization 50

3.3 Characteristics in PLA and FA GaAs 59

in



ACKNOWLEDGMENTS

I wish to express my gratitude to my major professor,

Dr. Andrzej Rys, for his advice throughout the research.

My thanks also go to Dr. Richard Gallagher and Dr. Kenneth

Shultis for being on my committee.

I would like to thank the Department of Electrical

and Computer Engineering and my family for providing their

support during my graduate program.

I am also grateful to the people in Honeywell and

Motorola for their donation of the ion implanted GaAs

.

IV



I. INTRODUCTION

The benefits of using semi-insulating gallium

arsenide (GaAs) as a substrate material for high

performance devices over silicon have been recognized for

many years. Moreover, the development of GaAs ICs has

lagged behind that of Si ICs since the technology applied

on silicon is not very suitable on GaAs. With the great

progress in science, silicon ICs are no longer attractive

in those areas which demand high speed devices and IC

chips. Extensive research of GaAs has been focused on the

development of GaAs technology since the beginning of 70'

s

due to the high electron mobility, the high peak electron

velocity and the low intrinsic carrier concentration of

GaAs material. In recent years, GaAs digital integrated

circuits were widely used for high-speed acquisition of

very-wide-bandwidth pulsed, pseudo-random or continuous

stream data and its processing in real time in military,

biomedical research, and communication 1
. With these broad

applications, GaAs technology is becoming more and more

important for optimization of such devices. So far, there

has been great effort made in GaAs material processing,

such as the growth of GaAs semi-insulating substrate,

epitaxial deposition and ion implantation. Moreover,

further research has gone beyond the processing techniques



has been in the area of semiconductor material testing

which characterizes deep level defects and electrical

properties of processed semiconductors. The methods used

successfully to characterize deep levels include the

capacitance transient spectroscopy and the current

transient spectroscopy for both conductive and high

resistivity substrates.

Research work involved in the pulsed laser annealing

and characterization of GaAs has been conducted during the

past few years by the solid state group in the Department

of Electrical and Computer Engineering, Kansas State

University. An n-type ion-implanted GaAs was studied after

a pulsed laser annealing process. Development of the

pulsed laser annealing system with an XeCl excimer laser

( X= 308 nm) in the laser laboratory at KSU was described

qelsewhere^

.

The contribution of this study towards the long term

research project at KSU was in the area of

characterization of n-type ion-implanted GaAs. It dealt

with deep levels measurements, and depth profiling of

electron density and mobility on pulsed laser and

conventional furnace annealed samples. Van der Pauw and

Hall techniques were introduced to achieve carrier

activation and electron mobility. In addition, with the

patient help of Mr. Ahkter Ahmed, a pho t o-

i

nduced



transient spectroscopy (PITS) system was developed for

deep levels measurements on the n-type GaAs with a semi-

insulating substrate.

In this thesis, the main discussions will focus on

the characterization of ion-implanted GaAs substrate with

different dopant impurities, doses and annealing processes

1.1 A Description of Gallium Arsenide (GaAs)

Gallium arsenide (GaAs) is a compound semiconductor

material. The element gallium (Ga) is from group III,

while arsenic (As) is located in group V in the periodic

table. By making an alloy of the two above elements at

high temperature, a GaAs single crystal can be grown by

various techniques. However, the crystal structure of GaAs

presents its own feature uniquely, according to the solid

state physics theory.

Fig. 1.1 exhibits the crystal structures of GaAs and

Si for indicating the differences between compound and

element semiconductors. GaAs has a zincblend lattice which

contains two different interpenetrating face-center-cubic

(fee) sublattices displaced by one quarter of the distance

along a diagonal of the cube. Then each ion, gallium or

arsenic, is symmetrically surrounded by four ions of the

other element, each lies at a regular tetrahedral. Si,

in contrast to GaAs, has two identical interpenetrating



(a) Zincblende Lattice

(b) Diamond Structure

Fig. 1.1 Crystal structures of gallium arsenide and
silicon.
From S.M.Sze, Semiconductor Devices



face-center-cubic (fee) sublattices to form a diamond

lattice. Therefore, each atom is surrounded by the four

nearest silicon atoms in the same fashion. From the

lattice configuration of GaAs, it turns out that not only

GaAs has covalent bonds but also has weak ionic bonds

between Ga+ and As" ions. This structural character leads

GaAs to become thermally sensitive and structurally

imperfect, which results in a creation of gallium and

arsenic vacancies in GaAs lattice. So far, several GaAs

crystal growth techniques have been introduced to minimize

the decomposition of GaAs and crystal imperfection, such

as Magnetic Liquid-Encapsulated Czochralski (MLEC) with

radiation shielding or vertical heating method . In

addition, with advanced epitaxy technology , the high

quality GaAs layers suitable for applications of
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Fig. 1.2 Energy band structures of Si and GaAs
From S.M.Sze, Semiconductor Devices



integrated circuits have been achieved on a semi-

insulator .

With reference to Fig. 1.2, which shows energy bands

for both Si and GaAs, three main differences between Si

and GaAs have been observed:

a) The parabola of conduction band in GaAs is sharper

than the one in Si.

b) The energy band gap of GaAs is 1.32 eV, which is

wider than the energy bandgap of Si. (1.12 eV)

c) GaAs has a direct bandgap structure, i.e. the top

of the valence band and bottom of the conduction

band are located at the same crystal momentum,

while Si has an indirect bandgap structure.

Due to such an energy band structure, GaAs has

several attractive advantages which Si does not have. To

illustrate these, the following equations of the electron

mass and intrinsic density must be introduced

mn = (d 2Ec/dp
2 )" 1 (1.2.1)

n
L
2 = (Nc Nv ) exp[-E

g
/2kT] (1.2.2)

where Nc = 2(2mnkT)
3

' , is effective density of states in

conduction band, Ny = 2(2mnkT)
3

' , is effective density of

states in valence band, and mn , m_ are electron and hole

effective masses, and p is a crystal momentum. Eq. 1.2.1

illustrates that the electron mass is a function of Ec and



p. Thus, the sharper the parabola, the smaller the mn will

be. This results in high electron mobility and peak

velocity because they are inversely proportional to the

mn . The Eq. 1.2.2 shows that the intrinsic carrier density

decays exponentially with bandgap E
q

. Therefore, the

intrinsic carrier density of GaAs is lower than that of Si

because of bigger E
q

in GaAs. Based on the third

observation, it can be noticed that when a transition

occurs, an electron jumps from the valence band to the

conduction band which requires energy change to overcome

the energy gap E
q

and also some changes in the crystal

momentum for silicon. However, the direct band structure

of GaAs, which does not require change of momentum for

carrier transition, provides radiative transitions in GaAs

material. This property of GaAs has been used for

semiconductor laser.

1.2 Annealing Characteristics of Semiconductors

The annealing process is directly related to ion

implantation damage, resulting in an amorhpous

semiconductor material. Fig. 1.3 illustrates ion

implantation damage (also called disorder) formed by a

light ion and a heavy ion. Atoms are displaced from their

lattice positions due to nuclear collisions of implanted

ions. Thus, it will cause a degradation of material



parameters such as carrier mobility and minority carrier

life time in semiconductor substrate. Annealing, by means

of an appropriate combination of time and temperature,

relaxes implanted ions to substitutional sites and

replaces atoms into original lattice positions to recover

the semiconductor properties.

Annealing characteristics are different with

different semiconductor materials. Typically, for a low

dose (ion implanted dose <= 5 x 10 J cm *) ion implanted

Si substrate, annealing temperature is 800 - 900 C for

full recorvery of electrical parameters (n, u etc.) . In

contrast to low dose samples, for a full recovery of high

dose (ion implanted dose > 5 x 10 J cm *) ion implanted

samples, the annealing temperature increases to 1000°-

1100° C . In the case of GaAs annealing, this becomes more

complicated because of certain differences of crystal
SEMICONDUCTOR SURFACE

(Q)

DAMAGED
REGION

(b)

Fig. 1.3 Implantation disorder due to (a) light ions and
(b) heavy ions.
From S.M.Sze, Semiconductor Devices



structures between GaAs and Si. Without self-annealing

implantation (implantation at elevated temperature),

annealing temperature rises to 900°C with 20% recovery for

low-dose implantation because it causes movement of two

different host species into their appropriate sites 3
.

Normally, the annealing temperature stays between 800 -

1100°C for GaAs. Therefore, the decomposition of GaAs

surface and arsenic out-diffusion problems are caused by

such a high temperature. To minimize these problems, a

capping layer like SiG^ or Si3N 4 is commonly deposited on

the top of the GaAs wafer before ion implantation-1

. But

this method adds one extra process to GaAs technology.

The development of annealing technique is related to

characteristics of semiconductor materials and

applications of semiconductor devices. Furnace annealing,

which is simple and easy to perform, is widely used for

electron devices processing as a conventional annealing

technique. However, with elevated temperature and a time

duration, furnace annealing expands impurity depth of ion

implantation, which can affect some device paramters.

Later, a rapid thermal annealing (RTA), laser annealing

and pulsed laser annealing were introduced to overcome the

disadvantages of furnace annealing. Rapid thermal

annealing provides shorter time (1 - 100 s) and higher

temperature than conventional furnace annealing, but it is



still not very suitable for GaAs since decomposition takes

place if annealing temperature is above 600 C for any

length of time period. The most promising annealing

technique in recent years is pulsed laser annealing for

device processing of GaAs or other compound

semiconductors. It is believed that PLA may allow a

cappless annealing which is an important simplification,

and may lead to a development of non-alloyed ohmic

contacts. A very short time duration when the sample

surface is melted by a laser pulse may result in a reduced

thermally induced decomposition. Solid state lasers such

as Ruby and YAG crystal have been applied in pulsed laser

annealing as heating sources . The results indicated

several limitations of this technique. The lack of

activation in low dosed implanted samples was demonstrated

by Shunji Nojima and a residual implantation damage was

quoted as the main reason for it. At the same time R. T.

Young 5 and her research group examined surface conditions

and electrical properties in pulsed Ruby laser annealed

samples. A homogeneously annealed surface and an order of

magnitude decrease in defect density were observed in Si

where an excimer laser light source was used. The

attention is focused on annealing n-type ion-implanted

GaAs sample with pulsed excimer laser since it causes less

defects on the semiconductor substrate. A pulsed laser

10



annealing (PLA) system with rare gas halide (XeCl) laser

was constructed by using a Questek Laser. The goal of this

experiment is to examine the effectiveness of pulsed

excimer laser annealing in n-GaAs substrate.

1.3 Characterization of Deep Levels in Semi-insulating
GaAs

As mentioned earlier, the great potential of semi-

insulating GaAs material for high speed devices is

recognized. The applications of GaAs devices have gone

much further than that of Si devices. However, the

fabrication of high speed devices using GaAs has been

limited by the material itself. A number of defects

present in GaAs material after the crystal growth or the

processes used in the fabrication of devices is larger

than in Si. Therefore, there has been great effort made to

characterize those defects for many years. The earliest

work on characterizing deep levels was done by D. V. Lang.

The technique introduced by Lang is called Deep Level

Transient Spectroscopy (DLTS) X
. It allows a reliable

characterization of deep-level defects. The conventional

DLTS technique requires a depletion region or a Shottky

barrier in a sample (next to a p-n junction or barrier

contact) in which traps are temporarily disturbed as an

electrical or optical pulse is applied. By monitoring the

11



capacitance recovery transient within a depletion layer,

capacitance transient spectrum with changing temperature

can be recorded. However, it is no longer suitable for

semi-insulating (SI) materials since the Debye length

(xE.okT/q 2 n )

1/ 2 is larger than (several mm for SI GaAs at

1 Q
300 K) dimension of the sample . This means that there

is no possibility to form a useful Shottky barrier in the

high-resistivity substrate. In 1978, Ch. Hurtes J and his

team introduced a simple method to characterize deep

levels in a high-resistivity GaAs substrate, which was

called optical current transient spectroscopy. The sample

was irradiated by a laser beam for generating photo-

carriers; the transient current was monitored between two

contacts on a sample surface. The group concluded that

the method gives the same results as conventional DLTS on

a conducting layer. The main limitation of the

technique is that there is no easy way to obtain

the trap concentration.

Due to the difficulty of making the Shottky diode on

the laser annealed samples, the conventional DLTS

technique failed to work for the samples in this research.

Therefore, Photo-induced Transient Spectroscopy (PITS)

system was developed by using He-Ne laser pulse instead of

an electrical pulse. Fig. 1.4 shows the PITS set-up for

the experiment. The other details will be addressed in

12



section 2.5.

Fig. 1.4 PITS system for characterization of deep-level
defects
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II. EXPERIMENTAL

2.1 Annealing Performance on Ion Implanted n-type GaAs

A. A General Description of Pulsed Laser Annealing (PLA)

The pulsed laser annealing was accomplished by using

a Questek series 2000 excimer laser ( \ = 308 nm) along

with several external optical equipment to form a uniform

excimer laser beam output. The placement of optics

involved in this experiment was placed based on an optical

system set-up for PLA developed previously (refer to

reference 9). Fig. 2.1 shows a block diagram of PLA and

its optical set-up along with the names of optics and

their relative positions. The purpose of these optical

elements explained in reference 9. Six main steps are

summarized for this experiment:

[1] Read the Questek Operating Manual to be familiar
with the excimer laser. Check XeCl gas pressure
and turn on the excimer laser properly.

[2] Set up the optics according to the arrangement
in Fig. 2.1 and mount the sample on the sample
holder. A paraseal wax is ideal for sample
mounting since the sample can be removed from
the holder by heating wax at low temperature
without damage.

[3] Check output laser beam uniformity across the
aperture by placing an exposed photographic
paper close to the aperture, and send a single
pulse of laser beam. A uniform laser beam
should provide a full clover leaf pattern on a
photographic paper.

14
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Fig. 2.1 A block diagram of pulsed laser annealing
(a) outlined set-up (b) optics set-up
From T. W. Chin 9
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[4] Check laser intensity across an aperture by
ir

s

eqi

using Kiethley 155 null Detector Microvoltmeter
A conversion factor 9 is used for t_hi

measurement, i.e. 1 mV is equal to 0.069 Jem .

[5] Insert optical filters to reduce laser intensity
if it is necessary.

[6] Open the laser beam latch to let one pulse of
laser beam shoot the sample, and close the latch
before the next pulse.

B. Furnace Annealing Process

Furnace annealing of ion implanted GaAs samples is

less complicated than PLA. The equipment involved in the

process are listed as follows:

[a] Furnace: provides a high heating system for

annealing process.

[b] Voltmeter: displays voltage which comes from

the thermocouple.

[c] Thermocouple: measures the temperature inside the

furnace and gives a voltage

output

.

[d] Quartz Boat: drives the sample into the furnace.

The temperature and the time of the FA were

approximately 850° C and 20 minutes with 85%N
2

and 15%H
2

(by volume) gas flow. Since FA is a well developed

process, it is considered as a reference annealing

process. A HP86 computer was connected to the voltmeter to

record the annealing temperature during the process. The

16
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annealing temperature versus reading number is shown in

Fig. 2.2. The set-temperature was 845 C and the maximum

temperature was over shooting to 853.8 C. The procedures

of FA are simply surmmrized as follows:

[1] Turn on the furnace, 85%N
2

and 15%H
2

by volume,
and set annealing temperature. Thereafter,
connect HP86 computer, voltmeter and
thermocouple. A conversion between temperature
and voltage is found in Temperature Measurement
Handbook and ENCYCLOPEDIA OMEGA 1985.

[2] Slice two samples of identical size, rinse them
with deionized water and dry them using nitrogen
gas gun.

[3] Place two annealing samples with face to face,
and cover them using two pieces of bulk GaAs,
one stays on the top, the other on the bottom,
to prevent the out-diffusion of arsenic.

[4] Use quartz tube to push the quartz boat into the
furnace. The push-in and pull-out time are about
3 to 5 minutes.

2.2 Measurements of the Electrical Characteristics on
n-type GaAs

A. Hall Measurements on a sample with arbitrary shape

Hall measurements are very effective to quantify the

number of free carriers. So far, they have been widely

used to determine the carrier concentration in doped

semiconductor substrates. Hall measurements rely on two

external fields, electrical and magnetic. They are applied

perpendicularly on a semiconductor sample (see Fig. 2.3).

18



Then a Lorentz force is generated by the two perpendicular

fields. The free electrons will drift toward a direction

to balance the Lorentz force (see Fig. 2.3). Eventually an

internal electric field called the Hall field is

established along the direction of the Lorentz force. In

the Hall theory, the Hall effect is represented by

measuring a symmetrical semiconductor bar with a known

thickness. Under that case, the Hall voltage can be

measured directly since there is no net current in the

steady state (ablcd). However, the Hall voltage cannot be

measured directly if a, b, c, and d are at arbitrary

locations. Thus, the static measurements (without nagnetic

field) must be taken before a magnetic field is applied.

Alternatively, the Hall voltage is expressed as:

^
-**I

VH = V(B) - V(0) (2.2.1)

c

I

Dl

L.I Vk

Fig. 2.3 The Hall effect on a
symmetrical semiconductor

Fig. 2.4 A flat sample
of arbitrary shape.
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Fig. 2.5 Hall measurements
on a FA sample.

Fig. 2.6 Hall measurement
on a PLA sample.

There is only one way to apply the electric and the

magnetic fields on the sample (see Figs. 2.5 and 2.6)

since the active layer only occupies a part of the

substrate. The remaining portion of the substrate is not

conductive. Due to a very thin active layer, indium

contacts cannot be placed on the side of the sample.

Alternatively, the contacts were placed on the surface of

the sample. Figs 2.5 and 2.6 show that Hall measurements

were carried out for the furnace annealed and laser

annealed sample. Once the Hall voltage is known, the

carrier concentration can be calculated through the

equation derived from the Hall effect , i.e.

n =
B.z

q VH d
(2.2.3)

20



where

n = electron carrier concentration in n-type

I = current applied on sample during Hall and van der
Pauw measurements

B z
= magnetic field applied in the sample

VH = Hall voltage

q = charge of electron

d = thickness of sample

In case the thickness of the sample is unknown, the

Eq. 2.2.2 is reformed as:

n d = Ns = (I-Bz )/(q-VH ) (2.2.3)

where Ns = average sheet carrier concentration (cm ^).

B. Van der Pauw Method

Carrier mobility is another electrical parameter that

was studied for n-type GaAs. It is expressed as follows:

/in = l/fq.n.^) (2.2.4)

where ^ - resistivity of the sample.

The derivation of the Eq. 2.2.4 is shown in reference

2. The carrier concentration n and resistivity P both

determine the electron mobility/*' in the expression above.

Thus, resistivity measurements were conducted in addition

to Hall measurements. There are several ways to perform

resistivity measurements; however, van der Pauw method is

21



preferred since it has two advantages:

1. There is no sample size limitation as long as

contacts are placed peripherally.

2. No surface damage occurs during the measurement.

Four indium contacts M, N, and P were sintered on

the sample. During van der Pauw measurements, one takes

two voltage readings between the points M, N and points N,

P while a current source is applied to the points 0, P and

points 0, M, respectively. Those two pairs of readings

provide two resistances of the sample, RMN 0p and RNp 0M ,

respectively. There is a sample relation between them :

exp(-<na/pRmi0I>) + exp(-7Td//7 RNPf0M)
= 1 (2.2.5)

where d = thickness of the active layer.

By solving the Eq. 2.2.5 , the resistivity can be

written in the form:

P =
~r7~r~ (RMN,0P + RNP,0M) * f c (2.2.6)
2 ln2

where fc (a correction factor) is a function only of the

ratio r = RMN op/RNP OM* T^e relation between f c and r is

evaluated by means of the complex function derivation 10 .

The chart in Fig. 2.7 is a plot of the factor f c versus

ratio r for user's convenience. Alternating the Eq. 2.26,

expression of the sheet resistance is obtained as follow:

22



R = (R
2 ln2

MN,OP + RNP,Om) fc (2.2.7)

where Rs = sheet resistance.

n r —

I.U

0.8

^|l 1 ll| llll| 1 |
1 1 1 llj 1 lll| 1

|
1 1 1 11 1 II M

0.6 — —

0.4 — —

0.2
—

"
1 1

1 1 1 III 1 1 III 1 1 1 1 1 III 1 Mil 1 1 i i III l l II

10 10 2 10 3

cMN,OP

KNP,OM

Fig. 2.7 A correction factor for determining specific
resistivity.
From Ghandhi, VLSI Fabrication Principles, Si
and GaAs

Due to unknown sample thickness, the result turns out

to be a sheet resistance in the derivation. Fortunately,

the equation for mobility results in proper units ( cm /V-s)

since the sheet carrier concentration in (cm ) is used

Ns = d n; (2.2.8)

and

Re; /°/d; (2.2.9)

then,
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N
s"

Rs
= /^ n; (2.2.10)

The alternative expression of un can be re-written:

un = l/(Ns«Rs-q) (2.2.11)

2.3 Depth Profiling of Carriers by a Multiple Etching
Technique

To observe carrier distribution and variation of

carrier mobility of the ion-implanted GaAs after the

annealing process, a wet chemical etching method was used

successfully to remove a thin layer (~40 nm) at each time

on the furnace annealed samples. In this experiment, the

selective etchant was a mixture solution of 98% (by

weight) sulfuric acid, 30% hydrogen peroxide and deionized

water, which is the most commonly used etchant for GaAs. A

ternary diagram shows various etching rates of GaAs with

different volume ratios of 98%H
2 S0 4

and 30%H
2
O 2

and Re-

solution at 0°C (see Fig. 2.8). There are four etching

surface states (A, B, C, and D) on the diagram. The

etching surface becomes cloudy in regions A and B, and

mirror-like in regions C and D.

The selected etching rate for depth profiling process

was 0.5 um/min since the active layer of the sample was

thin. The volume ratios of the etchant used were H
2
S0 4 :

H
2 2

: 8H
2

for low dose GaAs and 17H
2
S0

4
: 3H

2 2
: H

2 by
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volume for high dose GaAs . An ice bath was used during

etching process to maintain the zero degree etching

temperature. Silicone glue was on the top of the indium

contacts to protect them from being etched by the etchant.

The depth profile mentioned in this thesis determines

the carrier concentration and the mobility variation as a

function of the depth. Since van der Pauw and Hall

H,0,

H,0 H,S0 4

Fig. 2.8 Isoetch curves for GaAs (H2S04 : H2 2 : H20)
system. From Ghandhi 3

measurements provide sheet resistance and sheet Hall

coefficient, the effective mobility can be determined from

the following relation:

^eff " Hs/Rs (2.3.1)

where Hs is a sheet Hall coefficient, and
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Ns (
R
s <I^eff)

X (2.3.2)

Both M e ff an<^ N
s

are weighted averages since the

carrier concentration and carrier mobility are depth

dependent in an implanted layer. From this point, the Hall

coefficient H can be constructed as a summation of the

average values of carrier concentration n^ and mobility Uj_

in i-th layers of the thickness d^ 1
.

Z

i

n
i Pi

2
di

H = — -— (2.3.3)

By making the assumption that the Hall mobility is

equal to conductivity mobility/ the conductivity will be

cr= (q/d)^i *i Pi *i (2.3.4)

in i-th layer since /U = l/(q Ns Rs ) in each layer. Then,

Rs = (Td)" 1 = l/q^i n
i Mi di (2.3.5)

where d =^d^.

From Eqs. 2.3.3 and 2.3.5, it can be observed that

the effective Hall coefficient and sheet resistance are

contributed by the carrier concentration and the mobility

in each layer. Contrarily, the carrier concentration and

the mobility of each layer certainly can be expressed by

the two different Hall coefficients and sheet resistances.

They are obtained respectively before and after each
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layer is removed. Mayer [1967] reported one method to

determine jd^ and n^ from the combination of stripping

techniques and Hall measurements. Following Mayer's idea,

the carrier concentration by volume in the i-th layer and

its mobility are found

(Hs )i/(Rs )i - (Hs ) i+1/(Rs ) i+1 = q n± p L
d
L (2.3.6)

and

(Rs ) i
- (R

s ) i+1 = q n L p L d
L (2.3.7)

Combining these two equations,

p L
= A (Hs/Rs

2 )/(1/Rs ) i (2.3.8)

n
L

= & (l/RgJi/tq d
i p L ) (2.3.9)

2.4 Instrumentation and Implantation for Profiling Process

Equipment used to provide the Hall and van der Pauw

data on a GaAs sample is listed below:

[1] Half-inch gap Electro-magnetic System

generates a magnetic field B; its value is

adjusted by varying output voltage on a variac

transformer.

[2] Bell 601 Gaussmeter:

measures B field within half-inch gap through an

equipped external aluminum enclosure probe.

[3] Current Source Model 110 , Lakeshore Cryotronics

provides a constant electric field on the sample
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for both Hall and van der Pauw measurements.

[4] Multiprobe Model ssl2, Solid State Lab KSO

is constructed specially for the profiling

process since the sample needs to be mounted on

the probe during the entire profiling process.

[5] Programmable Digital Multimeter, Fluke 8520A

takes each potential reading automatically from

the sample as the current is varied. It is

controlled through the interface by a program

written on HP86 computer.

[6] Hewlett Packard 86 Computer

loads a program called "AUTO" to operate DVM and

to collect data.

The connections among the equipment during the

measurements are shown in Fig. 2.9. The multiprobe was

taken away from the magnetic field, while only the current

was applied to one side of the sample and the voltage was

measured on the other side in parallel for van der Pauw

measurements.

Depth profiling requires multi-measurement to provide

carrier density and mobility within a thin active layer.

It would be very time consuming to record the data

manually at each time and to evaluate the carrier

concentration and mobility of each layer through the Eqs

.

2.3.8 and 2.3.9.
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For these reasons, a routine "AUTO" was generated to

simplify the entire depth profiling process (see Appnedix

E) . Essentially, rountine "AUTO" consists of three parts:

[1] Data Measurement (see AUTO" line 530 to line 600)

performs five voltage readings for a measured

data on the DVM and records the average value of

those readings on the HP86 computer (see Appendix

E).

[2] Parameters Evaluation

provides the calculations of an average sheet

carrier concentration and a carrier mobility; and

a carrier concentration and a mobility of the i-

th layer based on Eqs. 2.2.3, 2.2.11, 2.3.8, and

2.3.9.

[3] Carrier Distribution and Mobility Variation Plot

retrieves n^(x) and ^(x) from data array and

plots them on linear-log plot respectively.

Electro-
magnetic

Multiprobe

ZZZZZZ2ZZZZZZZZZ

ZZSZZZZZZ2Z22

VARIAC

Current

Source

IEEE
Vs. /inn HP86

Programmable

DVM / /

Fig. 2.9 A block diagram of instrumentation for depth
profiling measurements
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2.5 Photo-Induced Transient Spectroscopy on n-type
Ion-Implanted GaAs

A. Derivation of Parameters in Photo-induced Transient
Spectroscopy

The parameters which are applied to characterize deep

levels in the band gap of a semiconductor are the

activation energy, E
t

(the energy required to activate the

trapped electrons or holes on the deep levels) and the

capture cross section 0~
n r which relates to the

effectiveness of a defect level to capture an electron'6
.

In addition, the emission rate will be determined for this

scanning-PITS technique.

To facilitate this determination, the energy band

diagram of a deep level and its related thermal and

optical transient processes are shown in Fig. 2.10 where

the superscripts t and o stand for the thermal and optical

processes; and c n , cD are electron and hole capture

coefficients. Note that the arrows indicate the electron

transitions. The rate equations for the population of the

two trapped carriers in a defect level due to thermal and

optical processes are written below:

(dn/dt) T = cn
t npT - en

t nT + cn°npT - e n°nT (2.5.1)

(dp/dt) T = c
p
tpnT - eptpT + c

p
°pnT - e

p
°pT (2.5.2)

where (dn/dt) T is the rate of change of electron
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Fig. 2.10 The energy band diagram with the thermal and
optical transition processes on a defect level

concentration of the defect center due to all possible

electron transitions between trap levels and conduction

band. It is equal to the rate of change of electron

density in the conduction band. Similar definition which

applies to the transitions of holes between the trap and

valence band is denoted by (dp/dt) T . The term (dnT/dt)

denotes the rate of change of total trapped electron

concentrationn due to all processes indicated in Fig.

2.10. Then the total change of the trapped electrons as a

function of the time on the trap level is

(dnT/dt) = (dn/dt) T - (dp/dt) T

= cn
fcnpT - en

fc nT + cn
c

- c
p

fcpnT + e
p
t
pT - c

p
°pnT + e

p
°pT (2.5.3)

= cn
fcnpT - en

t nT + cn°npT - en°nT

By combining the capture and the emission rates of
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the thermal and optical processes (e n = e n
t + e n

°, c n
=

cn
fc + cn

° , etc.) and letting NT = nT + pT , which is the

total trap density. The Eq. 2.5.3 can be written

(dnT/dt) = - (cnn + en + c
p p + e

p
)nT

+ (cn n + e
p
)NT (2.5.4)

The general solution of this differential Eq. 2.5.4 is

nT (t) = NT (cnn + e
p
)/(cnn + en + c

pp
+ e

p )

+ C exp[-(en + e
p

+ cnn + c
p
p)t] (2.5.5)

The constant value "C" can be obtained by applying

the boundary conditions at t = and t = CO to Eq. 2.5.5.

nT (0) = NT (cnn + e
p
)/(cnn + en + c

pp
+ e

p
)+C (2.5.6)

nT (oo) = NT (cnn + e
p
)/(cnn + en + c

pp
+ e

p ) (2.5.7)

So,

C = nT (0) - nT (cO) (2.5.8)

then the nT (t) can be expressed in terms of nT (0) and

nT (oo)

nT (t) = nT (oO) + [nT (0) - nT (oO)]e_t/T (2.5.9)

where

T= l/(en + e
p

+ cnn + c
pp)

(2.5.10)

The expression above is a general case which includes

all possible transitions between electrons and holes. It
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is fairly complicated. Based on the experimental

observation, the expression above can be simplified for

the case of an electron (majority carrier) trap. Fig. 2.11

(b) illustrates typical waveforms of PITS measurements

observed on the oscilloscope. The entire transient has two

parts, rising and decaying transients, which correspond to

laser light being on and off, respectively. During the

"light-on" period, there is a large number of excess

electrons and holes generated in the conduction and

valence bands, respectively. The capture process of

electrons at the trap level is dominating because of a

large concentration of non-equilibrium carriers in the

conduction band (the term c n n is large). The most

interesting to us in the PITS experiment is the part of

the photo current transient after the light pulse has been

turned off. Now, if the direct recombination of electrons

between conduction and valence bands is neglected because

this process is very fast (in the order of nsec), the

electron emission from the trap would be a dominating

process. The capture processes are negligible now, and the

expression for T can be simplified to

T= l/en (2.5.12)

where T is the emission coefficient. With these
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a)

S3

b)

c)

Time

Fig. 2.11 Waveforms for a PITS scan.
a)laser pulse b) PITS transient
c) sampling gates

assumptions, the photo-conductive current generated by

electron emission of the traps is 22

i(t) = Gen nT (t) =

= Gen {nT (oo) + [nT (0) - nT (00) ]e _e71
1
] (2.5.13)

and the current difference between the two sampling gates

is

i(t-L - t
2 ) = i(t

x )
- i(t

2 )

= GenNTT (e" ent| - e"ent2 ) (2.5.14)

where G is associated with electron charge, sample area

and penetration depth of the light , and NTT is net trap

density which participates in the capture and emission
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processes for t >= 0. By applying the condition of the

maximum i(t) which is dift-L - t
2 )/den = 0, the relation

between and t±, t 2 at the temperature Tm in which PITS

peak appears can be derived as follows:

di(t x
- t 2

)/den = GNTT [e~
ent

' - txen e^n* 1

- e
-e nt2 + ent2 e

"ent2
] =

Since en = 1/tj , then

•"tj/t (tx/T-D = e~t2A (t2/T-l)

(t
2 -T) = (tx -T) e< t2 " t'VT (2.5.15)

The Eq. 2.5.15 can be solved by a graphical technique 27 .

Fig. 2.12 shows the dependence of T/t-^ versus t 2/t 1 . It

can be seen that the value of T/tj will approach to 1

when t 2
>= 8^. In this experiment, the ratio of the t

2 /t-L

was kept at 8 which justified the approximation of 7L -s^ti.

10

09

- 0.8

07

06

5

0.4

>v\

/
/
/

01 23*56789 10

t,M,

Fig. 2.12 T/tx versus t 2/t1 - From T Itob and H Yanai 27
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With respect to the temperature, the recombination

process of the electron traps forms the following

relation:

'

en
= 1/t =rn0-nTm

2 e
"Et /kT- (2.5.16)

Tm
2 = CfvV-n)'

1
+ E

t
/kTm (2.5.17)

By taking natural logarithm to both side of Eq. 2.5.17, it

can be re-written

ln(<TTm
2

)
= -lntfncr*) + E t/kTm (2.5.18)

where /£ is a material constant, it is 1.9 x 10 cm K

s . Finally the values of E
t

and o~n can be obtained from

the slope and intercept of Eq. 2.5.18.

B. Instrumentation and Implementation for Scanning-PITS

A block diagram of scanning-PITS system used for deep

level study is shown in Fig. 2.13. This alternative set up

in based on earlier capacitance DLTS system. Instead of

applying an electrical pulse on the testing sample, PITS

introduces an optical pulse to irradiate the sample

surface. The optical pulse was obtained by using a 10 mW

He-Ne laser ( \.= 632 nm along with a motor-driven rotary

light-chopper. A 25% optical filter was placed between the

laser source and the chopper to cut the beam intensity

down to 2.28 mW. The sample was mounted using vacuum
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grease on a copper block of the second-stage of the

closed-cycle helium refrigerator CRYO-TORR 7 cold head 23 .

Two thin copper wires for output signal usage were

soldered to two indium contacts which were sintered on the

sample. A DC bias voltage (6 V) was applied to the sample

with a load resistor in series. The transient current was

detected as a voltage drop across the load resistor. The

temperature was ramped from 40 K up to 380 K during the

measurements.

With reference to Fig. 2.13, the applications of the

supporting equipment for PITS system are as follows:

[1] Closed-Cycle Helium Refrigerator

Model 22 CTI-CRYOGENICS

is connected with cooling system to maintain a

low temperature enviroment of the sample.

[2] Chopper Controller

Moldel SR540 Stanford Research System, INC.

controls rotating speed of the chopper.

[3] LOw Noise Pre-amplifier Model 1201 ITHACO

amplifiers the PITS signal.

[ 4 ] Mechanical Pump

generates a high vacuum for the enviroment of

sample.

[ 5 ] Boxcar Average

Model 162 EG&G PRINCETON APPLIED RESEARCH
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generates sampling gates at the time t-j_ and t2»

samples the transient current and takes the

difference of two discrete currents as a PITS

signal.

[6] x_y Recorder Model 7045B Hewlett Packard

is used to record the PITS spectrum.

[ 7 ] Temperature Controller

Model DRC 81C lake Shore Cryotronics

maintains a set-temperature which is selected by

user. For instance, as the temperature falls

below the set-temperature, the heater will turn

on, otherwise it remains off. It also can be

remote-controlled through the interface to ramp

temperature up and down gradually.

[8] Ocsilloscope Hewlett Parckard

is used to observe the PITS current transient

which is shown in Fig. 2.11.

[9] DVM Model 8520A Fluke

is remote-controlled to measure PITS signal in

volts.

[10] HP86 Computer

is used to perform the automatic measurements.

Scanning-PITS measurements were controlled partially

by a program called "RAMPING." Therefore, preparations

need to be made manually to ensure the accurate PITS
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measurements

.

1) Adjust the position of the laser spot on the
chopper blade until the laser pulse waveform is
aligned with the current transient waveform.

2) Align the laser spot with the center of the clover
leaf pattern of the sample until the largest PITS
signal is observed.

3) Set the position of gate one (t 1 ) and gate two
(t2) on the boxcar and set-temperature on the
temperature controller.

4) Set the "gain" knob of the temperature controller
to maximum, and "rate" and "reset" to zero.

5) Once the temperature reaches set-temperature, PITS
measurement is ready, then run the "RAMPING".

The implementation of the PITS measurements deals

with two things. First, it manages the temperature

controller to heat the system with 1-2 K/min heating rate.

At the same time it changes the control variables of the

heater such as "gain," "rate" and "reset" with an

increasing temperature to avoid the temperature

oscillation. Secondly, it stores the PITS signal for each

set-temperature for plotting the PITS spectrum.

The ramp function is supplied in the temperature

controller manual. It ramped the temperature, but did not

make a linear temperature ramping. The temperature

oscillated in a small range of about 2-3 K or more

depending on the power of the refrigerator. As mentioned

in the paragraph above, the "RAMPING" (see Appendix E)

changes the control variables ("gain," "rate" and "reset")
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to minimize the oscillation during a PITS scan. The

temperature controller was calibrated manually for each 20

- 30 K to obtain the optimal values of the "gain." ("rate"

and "reset" were held at zero. Therefore, the calibrated

"gain" values were assigned to the program by means of

"if... then" statements. Fig. 2.13 shows the optimized

ramping temperature as a function of the time.
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III. RESULTS AND DISCUSSION

3.1 Electrical Characteristics in Pulsed Laser Annealed
GaAs

A. Resistance, carrier activation and electron mobility

Two sets of samples, one of Se implanted GaAs (2.2 x

10 x * cm ) annealed with various laser intensities from

0.23 to 0.32 Jem" 2 (see Table 3.1a), and the other set of

Si implanted GaAs with different doses (from 4 x 10 12 to 6

x 10 cm
-2

) but annealed at a constant laser intensity of

0.32 Jem (Table 3.1b) were characterized to reveal their

electrical properties, such as resistance, carrier

concentration and carrier mobility. From the data

presented in Table 3.1a, the following observations can be

made

a) The sheet carrier concentration, as measured by a

Hall effect, exceeds the dose of implanted

impurities. This difference is most pronounced in

the lightly doped samples. It is believed that the

additional impurity was driven into the substrate

from Si3N 4 by the laser beam since the samples

were coated by the nitride cap during the PLA

during the PLA process.

b) Electron mobility and sheet carrier concentration

increase with the laser intensity. The light
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intensity of about 0.32 Jem * is the optimum for

excimer laser as determined by Raman spectroscopy

on a large number of samples .

c) It had been observed under the microscope that the

_ 2annealed surface of the sample with 0.30 Jem

laser intensity was inhomogeneous and cloudy. Its

mobility and sheet carrier concentration were the

lowest, which indicates that the surface

morphology can affect greatly the electrical

properties of semiconductors.

A few of the Si-GaAs samples were annealed with the

excimer laser over a narrow energy range (0.32 Jem *)

which the previous measurements indicated might be

optimum for the highest carrier activation and which had a

good mirror-like surface. Table 3.1b lists the results of

— 2the PLA Si-GaAs with 0.32 Jem * laser intensity.

From Table 3.1b, it is seen that carrier activation

exceeds the doping density in low dose samples. In

contrast to low dose samples, carrier activation is quite

reasonable in high dose samples, especially in 1.0 x 10

cm * sample where 83% of implanted impurities are

electrically active. The sheet carrier concentration, as

determined by Hall effect measurements, is approximately

the same for all samples studied at light intensity of

_ 20.32 Jem . The change in electron mobility is not
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Table 3.1a Electrical properties of PLA Se-GaAs (2.2 el2
cm-2) with various laser energy.

Laser Sheet Sheet Carrier Electron
Intensity Resistance Concentration Mobility

(Jcm~ 2
)

(ohm) (Jcm~ 2
) "(cm" 2/V-s)

* 0.23 580 7.1 x 10 13 140

* 0.29 320 7.6 x 10 13 255

0.30 660 7.1 x 10 13 130

* 0.32 254 9.1 x 10 13 270

* Sample used in profiling experiment.

Table 3.1b Electrical properties of PLA (0.32 Jem 2
)

Si-GaAs with different doses.

Sample
Dose

Sheet
Resistance

Sheet Carrier
Concentration

Electron
Mobility

(cm" 2
) (ohm) (Jem" 2

) (cm" 2/V-s)

4.0 x 10 12 218 1.1 x 10 14 250

2.0 x 10 13 205 1.0 x 10 13 280

1.0 x 10 14 265 8.3 x 10 13 280

6.0 x 10 14 210 1.0 x 10 14 290

significant, either. This is an indication that the most

of the electrically active donors are Si atoms which were

diffused in the semiconductor from the Si
3
N 4 layer during

the pulsed laser annealing. Nojima et. al. reported that
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1 5 —7
the sample (Si ion-implanted GaAs with 1 x 10 J cm *)

annealed by pulsed Ruby laser at 0.79 Jem ' without

nitride cap had an average mobility of 450 cm /V-s, and

carrier concentration was high ( 3 x 10 cm ) in the

vicinity of the sample surface (0.4 ^im) . Referring to the

depth profiling performed on Se-GaAs (2.2 x 10 cm , see

Fig. 3.1) with a laser light intensity of 0.29 Jem in

section 3.2, can be noticed that the carrier concentration

exceeds 1 x 10 * cm J near the surface ( 40 nm) which

results in a lower mobility of about 250 cm'/V-s. As

discussed discussed earlier, the PLA introduced some

amount of impurities into low dose samples from the

nitride cap which caused the sheet electron concentration

to exceed the implanted fluence of donors, but this did

not happen in high dose Si-GaAs samples. This does not

eliminate the possibility that impurities are introduced

from the Si3N4 cap into high doped samples, but the

amount is small compared with implanted impurity dose. The

diffusion flux of Si atoms during a molten phase of GaAs

is smaller in this case because of a large concentration

of Si atoms in the substrate, which causes the gradient to

be small. It is assumed that the temperature and time are

comparable in low and high dose samples for the same laser

energy intensity, which would make the diffusivity of Si a

constant in both cases.
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B. Depth Profiling in PLA Se-GaAs.

Since samples studied in the course of the depth

profiling experiment were Se implanted at 320 keV doped to

a fluence of 4s = 2.2 x 10 12 cm
-2

Se during processing, a

standard carrier distribution (LSS profile with dash

lines) can be obtained from calculations of the projected

range (Rp ) and standard deviation (£Rp ). These two

parameters can be found once the implanted energy and dose

are known. Thus, the carrier density as a function of

distance (x) can be expressed

N(x) = A
4~2* • AR

exp
1

x - R

The samples used in the depth profiling expriment

were marked in Table 3.1a with an asterisk *. The sample

annealed under 0.23 Jem ^light intensity failed completely

in this study since there was no activation measured after

one etching step (20 nm layer removed). Therefore, no

carrier distribution can be obtained by the etching

process because the increments ^H
s

and 4 Rs (Eqs. 2.3.8 and

2.3.9) could not be calculated. The active layer was

extremely thin ( < 20 nm) which resulted in a low mobility

probably due to high rate of surface scattering. The

carrier distributions of the other two PLA Se-GaAs samples

at 0.29 and 0.32 Jem" 2 laser intensities are shown in Fig.
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3.1. The active layers of these samples were 20 nm and 40

nm, respectively, which were much shallower than the

projected range (

R

p ) . It can be seen that the carrier

concentration exceeds the impurity density of the

theoretical LSS profile in Fig. 3.1.
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Fig. 3.1 Carrier distributions of PLA Se-GaAs
(2.2 el2 cm-2). The LSS theoretical
impurity distribution is shown by a
dashed line.

3.2 Defect Levels and PITS Spectra on n-type GaAs

A. Discussion of defects in PLA and FA GaAs

Before discussing the results of PITS measurements, the

names of the tested samples listed in Table 3.2 must be
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defined

L2212 = PLA Se-GaAs 2.2 x 10 12 cm" 2

F2212 = FA Se-GaAs 2.2 x 10 12 cm" 2

L4012 = PLA Si-GaAs 4.0 x 10 12 cm" 2

F4012 = FA Si-GaAs 4.0 x 10 12 cm" 2

L2013 = PLA Si-GaAs 2.0 x 10 13 cm" 2

L1014 = PLA Si-GaAs 1.0 x 10 14 cm" 2

L6014 = PLA Si-GaAs 6.0 x 10 14 cm" 2

F6014 = FA Si-GaAs 6.0 x 10 14 cm" 2

The eight samples listed above were characterized and

their trap levels were revealed by means of photo-induced

transient spectroscopy technique. Table 3.2 contains the

activation energy (Et ), capture cross section ( <r^) , and

the peak temperature (

T

m ) for each trap of all the

samples. The labels P 1 through P5 correspond to the peaks

recorded on PITS spectra for all the samples. Fig. 3.2

through Fig. 3.5 show PITS spectra of the eight samples

listed above. There are three distinct peaks P-j_, P
2 / and

P3 present in the laser annealed samples, and three peaks

Pi 1 P2 and P 4 in the furnace annealed samples. They

correspond to the defects with the activation energy of

"0.05 eV, 0.1 eV, 0.3 eV and 0.56 eV, respectively. The

spectra for highly doped samples (1 x 10 and 6 x 10

cm *
) , both laser and furnace annealed indicate the

presence of an additional peak "P
5
" above the room
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Table 3.2 Results of defect characterization

Peak Tm (K) E
t
(eV) n-

n
(cm 2

) Identity Sample

48 0.06 1.6 x 10"1 4 — L6014

57 0.02 2.0 x 10"1 9 — F4012

58 0.07 2.7 x 10"1 5 — L1014

60 0.05 3.2 x 10"1 7 — L2013

62 0.03 3.8 x 10"1 9 — L2212

70 0.06 1.0 x 10"1 6 — F2212

83 0.08 1.5 X 10" 16 ~ L1014

•

83 0.09 8.9 X io-i 6 — L2013

P
2

86 0.09 2.3 X 10-1 6 — L4012

86 0.10 1.2 X 10-1 5 — L6014

87 imprecise 3.5 x" 10-20 — L2212

94 0.11 1.5 X 10-15 — F6014

107 0.05 4.3 X 10-1 9 — F4012

108 0.15 1.0 X 10-1 4 — F2212

173 0.33 3.1 X IO-I 2 EL6 L2212

175 0.27 5.0 X 10-1 4 EL8 L1014

P
3

175 0.23 1.9 X 10-1 9 "EL6 L6014

180 0.25 4.5 X 10-15 "EL6 L4012

180 0.32 4.6 X IO-I 3 "EL6 L2013

246 0.32 9.7 x 10 16 "EL6 F2212

269 0.30 1.4 x 10"1 6 "EL7 F6014
P
4 -12

273 0.56 4.9 x 10 lz implanted F4012
damage "

279 0.60 1.4 x 10"H EL3 F4012

346 0.80 7.0 x 10
-11 heavily L1014

Pc implanted
357 0.79 1.7 x 10"! 1 damage F6014

the level is close to well defined seep level.

— is not defined.

* T range: (1.5 x 10
_4

, 1.25 x 10 3
),

and all E
t

inaccuracy: (+/-8% — +/-10%)
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temperature. Due to the weak signal and broad shape of

peak "P
5
," it was difficult to resolve it accurately (see

Appendix C). The activation energy of deep level

corresponding to this peak is at approximately 0.80 ev

with a capture cross section of about 10 cm" . This

defect level was probably induced by pulsed laser

annealing 16
, or it may be related to the EL2 defect

observed in semi-insulating GaAs substrates grown by LEC

(Liquid Encapsulated Czochralski) method without chromium

compensation. The EL2 level is generally observed at the

temperature of about 390 K.

The next major peak, P 4 , appears in the temperature

range of 250 - 280 K on PITS spectra of furnace annealed

(FA) samples (see Fig. 3.2b, Fig. 3.3b and Fig. 3.4b). For

the F4012 sample (Fig. 3.2b), the P 4 is broad and is a

result of two seperate but closely spaced defects with

activation energies of 0.56 eV and 0.60 eV. The trap at

0.56 eV was found in a Si doped SI GaAs substrate after FA

or RTA process and was defined as an ion implantation

damage14 . The trap at 0.60 eV resembles the level called

EL3 by G. M. Martin et. al. 18 PITS spectra for the other

two FA samples showed a very broad peak within 250 - 280 K

range, which was difficult to resolve. The estimate of the

activation energies corresponding to this P 4 gave a value

of about 0.3 eV for both F6014 and F2212 samples (see
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Table 3.2). The origins of these defects are unknown. The

peak marked P3 present in PLA samples at temperature of

170 - 180 K was also observed by Y. Yuba, and level 0.23

eV was obtained by R. E. Kremer, respectively, for a

similar peak. The corresponding activation energy varied

from 0.23 eV to 0.34 eV which resembles the property

of an EL6 level. The values of E
t
corresponding to peak P3

for the samples varied between 0.23 and 0.34 eV (see Table

3.2). It is possible that the characteristics of crystal

defects are affected by certain parameters of ion

implantation and annealing processes.

The last two peaks P
2 * and P^ appear at very low

temperature which correspond to deep level defects with a

small activation energy (E
t

< 0.1 eV) . Similar defects

have been observed before. For instance, level 0.15 eV at

108 K in F2212 was reported by R. D. Fairman 20 at 117 K

in FA Se doped SI GaAs substrate. Some other levels such

as 0.08 eV, 0.09 eV and 0.06 eV listed in Table 3.2 are

close to some levels with small activation energy reported

previously '
' in Shottky-barrier diodes fabricated on

LPE (Liquid Phase Epitaxy) and bulk GaAs materials. The

origin of these defects is unknown.
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B. The Effectiveness of Dose Dependence and Emission Rate
on the PITS Spectra of PLA Samples

As mentioned earlier, five peaks were observed in the

PITS spectrum for high dose samples while the peak (P
5

at

350 K) disappeared in low dose samples at t± = 0.3 ms

and t2 = 2.4 ms . Therefore, the dose dependence is

observed in the PITS spectra. By making another PITS scan

with a small emission rate (800 s" 1
), the peak (P

5 ) that

disappeared before shows up at 325 K (see Fig. 3.6) this

time. But the peak (P-^) that is shown at 60 K in a PITS

scan with a 3000 s emission rate turns out to be a

shoulder. Thus, the shape of the PITS spectrum is

o
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S? i
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PITS spectra of PLA (1=0.30 Jcm-2) Se-GaAs
(2.2 x 1012 cm 2

)

a) emission rate = 3000 1/s
b) emission rate = 800 1/s
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dependent on the emission rate. The shallower level shows

up with a big emission rate since it is close to the

conduction band and the trapped carriers get emitted

quickly. And oppositely, the deeper level is far away from

the Ec and the trapped carriers get emitted slowly. This

makes the deep level sensitive to a small emission rate.

To ensure a proper characterization of all traps located

in the semiconductor materials, the best way is to choose

a proper emission rate for each PITS scan. Hopefully, this

will lead to the accurate PITS measurement.

3.3 Comparison Between Pulsed Laser Annealing and Furnace
Annealing on n-type GaAs

Three furnace annealed samples, F4012, F6014 and

F2212, were compared with three PLA samples with the same

implanted dose. Table 3.3 list all the results of the Hall

effect and PITS experiments for these two sets of samples.

The trap density has been described in relative units

because it was not possible to obtain a quantitative

answer. The penetration depth of laser light, the quantum

efficiency of photons, and the actual area of samples were

not precisely known. The fraction of traps totally filled

with electrons by applied laser pulse was difficult to

determine. The area of FA samples was approximately twice

as large as of the PLA samples. The amplitude of the peak
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on PITS spectrum is proportional to the fraction of trap

density NTT which contributes to the emission process and

is inversely proportional to sample area. The comparisons

are conducted as follows:

1. Carrier activation and electron mobility

From the Hall data listed in Table 3.3, it can be

noticed that the PLA samples have high sheet carrier

concentration, which exceeds the implanted dose for the

low dose PLA samples. The mobility of FA samples is 10 J

cm^/V-s which is a few times larger than that of PLA

samples.

2. The carrier distribution

Fig. 3.7 and Fig. 3.8 show the carrier and mobility

distribution of sample F2212 and F6014. The profile of

sample F2212 follows closely the theoretical LSS profile

for the ion implantation process, and the profile of

sample F6014 indicates that a significant out-diffusion

has occurred. The active layer has a thickness of 300 nm -

400 nm which is several times deeper than for the PLA

sample. The mobility of the FA sample is quite high.

3. The correlations between defects and electrical
properties.

The activation energy of deep levels and their

origins in both PLA and FA samples were discussed in

section 3.2A. In this section the trap density and the

correlation between defects and electrical properties are
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discussed.

It can be seen in Table 3.3 that the trap density of

PLA samples are slightly higher than that of FA samples

except for the level o.56 eV, in which there was only a

trace peak in PLA samples. There is zero trap density for

the level at 0.8 eV for low dose FA samples. This level is

related to heavy implanted damage (see section 3.2 ). The

low dose furnace annealed samples did not have this

damage, which lead to a high electron mobility (see Table

3.3). The high dose furnace annealed sample had a very

small amount of this damage, which resulted in lower

activation and lower mobility. Since high dose PLA sample

had a medium density of this defect, it had low mobility

and low activation. Over all comparison of furnace and

pulsed laser annealed samples showed that the defect

density in the PLA samples was higher, which gave lower

electron mobility.
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IV. SUMMARY AND CONCLUSION

A study of carrier activation and deep level defects

was performed in n-type GaAs implanted with Se (at 320

keV) to a dose of 2.2 x 10 12 and with doses of Si (at 140

keV) from 4 x 10 12 to 6 x 10 14 cm
-2

through a silicon

nitride cap. The samples were annealed using a pulsed XeCl

excimer laser (X= 308 nm) with a pulse duration of 12 ns

and light intensity from 0.23 to 0.32 Jem *. The electron

concentration and mobility were studied by means of Hall

effect and van der Pauw measurements. Despite a success in

carrier activation, the over-all electron mobility

increased with higher laser light intensity. The surface

morphology of pulsed-laser-annealed samples affected their

electrical properties and the mobility, in particular.

The PLA process introduced additional impurities from the

passivation layer.

Four different doses (4 x 10 12 - 6 x 10 14 cm" 2
) of Si

implanted GaAs were analyzed after PLA process at 0.32

Jem laser energy by the photo- l nduced transient

spectroscopy (PITS) measurements as well as by Hall and

van der Pauw techniques to determine the correlations

between electrical properties and defect levels. Some

furnace annealed samples were characterized as a

reference. A high carrier activation was achieved in both
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low dose and high dose PLA samples; however, the high

carrier density, high trap density and heavy implant

damage resulted in a low electron mobility of the samples.

Contrarily, a fairly high activation and high electron

mobility were reported in low dose FA samples. These FA

samples had smaller defect density. In high dose samples,

the furnace annealing process was not very effective.

Three deep levels, 0.30 eV, 0.56 eV and 0.80 eV, were

characterized in both pulsed laser and furnace annealed

samples. In addition, two shallower defect levels were

detected in each of the tested samples. Even though PITS

is a relatively new technique for characterization of

defect levels and is less sensitive to deep levels

compared with capacitance DLTS 1
, it is still a very

useful technique for characterization of deep levels on

semiconductor substrates where the fabrication of

rectifying junction is difficult.

This study shows that pulsed laser annealing can

produce doping from a capping layer by the laser melting

process without the need for an ion-implantation step.

However, it appears that significant numbers of defects

are introduced by a silicon nitride layer. Other capping

layers might yield better results. In general, the

residual implanted damage which remains either in capped

PLA samples or capless PLA samples causes low mobility of
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n-type GaAs . But the capped pulsed laser annealing process

which results in a very high doping density, as determined

by Raman spectroscopy on small (spot laser annealed)

samples by A. Rys and A. Compaan et. al. , could prove to

be a very useful technique for nonalloyed ohmic contacts.
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APPENDIX A

Remarks on the Measurements

The experiment for this course of study mainly deals

with GaAs sample measurements. Therefore, the comments

will focus on GaAs samples and the measurements.

GaAs SAMPLES

* The nitride cap lost its original thickness after

undergoing pulsed laser annealing process. The etching

time of silicon nitride cap coated on the sample should

be shortened.

* The surface of laser annealed sample should be shiny and

a full clover leaf pattern should be visible on the

sample.

* Due to sensitive surface of annealed sample, using

silicone adhesive to protect the indium contacts from

the etchant affects the results of Hall measurements.

MEASUREMENTS

* Due to a permanent magnetic field remaining in the half-

inch gap of the electro-magnet, the static Hall voltage

readings must be taken outside of the gap.

* To etch off the Si-GaAs, the proper volume ratio of the

etchant (see section 2.3)should be chosen.
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* Due to a 156 °C melting temperature of indium, the

temperature of PITS cannot go further than 400 K

which is 127°C.

* There were two noise sources in PITS measurements, one

was from bad contacts formed and the other was due to

the system vibrations. To prevent these noise, the

indium contacts should be well sintered and the copper

must be soldered properly with the indium contacts.
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APPENDIX B

Calculation for Activation Energy and

Capture cross Section

As described in section 2.5, the E
t

and crn can be

obtained by knowing the slope and intercept of the Eq.

2.5.18. To draw a line based on the Eq. 2.5.18 from the

PITS measurements, four PITS-scan with different sampling

gate settings were run for each tested sample. The

emission coefficient and maximum peak temperature were

recorded for each PITS-scan and each sample, respectively.

A set of peak temperatures and the corresponding emission

coefficients for every tested sample are listed in the

next few pages. A program called "LINFIT" was applied to

perform a linear fit according to a set of emission

coefficients and peak temperatures since the data points

from the experiment were not accurate enough to form a

linear line. Finally, the slope and intercept of the

linear line were obtained from the "LINFIT". The E
t

and T-n

are expressed as follows:

Et = slope * 1000 * k

<rn
= exp (intercept ion )/fn

where k = 8.86xl0" 5 eV and crn
= 1.9xl0" 20 cm" 2 k" 2 s~ 1

.
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Sample number: L4012
Sample type : Pulsed laser annealed Si-GaAs
Ion implantation dose: 4.0 el2 cm-2
Laser intensity: 0.32 Jcm-2

T(ms) Tm( R ) 1000/Tm (K"
1

) Tm^r(K
2 s" 1

) ln ( TiA
0.7 64 15.55 2.89 1.06

0.5 64 15.43 2.10 0.74

0.3 64 15.50 1.25 0.22

0.15 66 15.10 0.65 0.42

0.7 83 11.93 4.92 1.59

0.5 84 11.81 3.59 1.28

0.3 86 11.59 2.23 0.80

*0.15 94 10.73 1.30 0.26

0.7 173 5.77 20.99 3.04

0.5 172 5.78 14.94 2.70

0.3 180 5.57 9.66 2.27
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Sample number: L2013
Sample type : Pulsed laser annealed Si-GaAs
Ion implantation dose: 2.0 el3 cm-2
Laser intensity: 0.32 Jcm-2

^7(ms) Tm (K) lOOO/T^K-1 ) TmV(K
2
s
_1

) ln(Tm
2T )

0.6 55 18.02 1.84 0.61

0.5 57 17.30 1.67 0.51

0.3 60 16.69 1.07 0.54

0.15 60 15.58 0.54 -0.60

0.6 78 12.80 3.66 1.29

0.5 81 12.30 3.28 1.19

0.3 83 12.03 2.07 0.38

0.15 86 11.66 1.10 0.10

0.6 173 5.77 21.05 3.05

0.5 176 5.67 15.45 2.74

0.3 180 5.56 9.70 2.27
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Sample number: L1014
Sample type : Pulsed laser annealed Si-GaAs
Ion implantation dose: 1.0 el4 cm-2
Laser intensity: 0.32 Jcm-2

T(ms) Tm (K) lOOO/T^K-1 ) Tm
2
-r(K

2
s 1

) ln(Tm
2T )

0.7 55 18.00 2.15 0.77

0.5 57 17.42 1.65 0.49

0.3 58 17.09 1.03 0.03

0.5 79 12.59 3.15 1.15

0.3 83 12.05 2.07 0.73

0.15 87 11.47 1.14 0.13

0.5 170 5.89 14.38 2.66

0.3 175 5.71 9.18 2.22

0.15 180 5.54 4.87 1.54

0.5 340 2.94 57.80 4.05

0.3 346 2.89 35.95 3.58

0.15 355 2.82 18.90 2.94
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Sample number: L6014
Sample type : Pulsed laser annealed Si-GaAs
Ion implantation dose: 6.0 el4 cm-2
Laser intensity: 0.32 Jcm-2

T( ms ) Tm (K) lOOO/T^K-1
)

t^kV 1
) ln(Tm2r)

0.7 46 21.74 1.48 0.39

0.5 48 20.70 1.17 0.15

0.15 50 19.88 -0.38 -0.97

0.7 82 12.25 4.66 1.54

0.5 84 11.89 3.54 1.26

0.3 86 11.61 2.22 0.79

0.7 169 5.91 20.01 2.99

0.5 172 5.82 14.74 2.69

0.3 174 5.72 9.15 2.21

0.15 185 5.41 5.12 1.63
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Sample number: L2212
Sample type : Pulsed laser annealed Se-GaAs
Ion implantation dose: 2.2 el2 cm-2
Laser intensity: 0.304

T( ms ) Tm (K) lOOO/T^K-1 ) Tm
2
/T(K

2s" 1
) ln(Tm

2
/r)

1.25 53 18.62 3.60 1.28

1.0 56 17.82 3.14 1.14

0.7 58 17.24 2.35 0.85

0.3 62 16.13 1.15 0.14

1.25 73 13.70 6.66 1.89

1.0 78 12.82 6.08 1.81

0.7 80 12.50 4.48 1.49

0.3 86 11.53 2.25 0.81

1.25 162 6.15 33.09 3.49

1.0 165 6.06 27.22 3.30

0.7 166 6.01 19.40 2.96

0.3 173 5.78 8.96 2.19
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Sample number: F4012
Sample type : Furnace annealed Si-GaAs
Ion implantation dose: 4.0 el2 cm-2
Laser intensity: none

X(ms) Tm (K) lOOO/T^K" 1
) TmV(K

2
s

1
) ln(TmV)

0.5 53 18.62 1.44 0.36

0.3 57 17.45 0.98 -0.01

0.15 66 15.08 0.65 -0.41

0.5 102 9.18 5.19 1.64

0.3 107 9.33 3.45 1.24

0.15 119 8.39 2.13 0.76

0.5 265 3.76 35.25 3.56

0.3 273 3.66 22.41 3.11

0.15 277 3.60 11.56 2.45

0.5 273 3.66 37.24 3.62

0.3 279 3.57 23.42 3.15

0.15 285 3.50 12.22 2.50
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Sample number: F6014
Sample type : Furnace annealed Si-GaAs
Ion implantation dose: 6.0 el4 cm-2
Laser intensity: none

T(ms) Tm (K) lOOO/T^K" 1
) TmV(K

2
s

1
) ln(TmV)

0.7 88 11.33 5.46 1.70

0.5 91 10.95 4.17 1.43

0.3 94 10.62 2.67 0.98

0.15 97 10.26 1.43 0.35

0.7 252 3.96 44.59 3.79

0.5 260 3.83 34.03 3.53

0.3 268 3.72 21.69 3.08

0.15 280 3.58 11.73 2.46

0.7 355 2.81 88.46 4.48

0.5 349 2.86 60.97 4.11

0.3 343 2.91 35.38 3.57
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Sample number: F2212
Sample type : Furnace annealed Se-GaAs
Ion implantation dose: 2.2 el2 cm-2
Laser intensity: none

^(ms) Tm (K) lOOO/T^K" 1
) Tm

2/r(K
2 s- 1

) ln(TmV)

0.7 66 15.15 3.05 1.11

0.5 67 14.81 2.28 0.82

0.3 70 14.16 1.49 0.40

0.15 74 13.40 0.83 -0.18

0.7 103 9.67 7.48 2.01

0.5 105 9.48 5.57 1.72

0.3 108 9.25 3.51 1.25

0.15 112 8.86 1.91 0.64

0.7 233 4.28 38.26 3.64

0.5 237 4.21 28.20 3.34

0.3 246 4.06 18.21 2.90

0.15 254 3.92 9.74 2.28
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APPENDIX C

Error Estimation of Activation Energy and Capture Cross
Section in PITS Measurements

The error sources considered in PITS measurements for

E
t
and ^n error estimation are based on Eq. 2.5.17 i.e.

Tm
2 = (Ifo)"

1 + E
t
/kTm

Obviously, the inaccurate E
t

and Q7\ values are either

from erroneous temperature readings or t-^ readings. It has

been found that temperature sensor is one of the error

sources. In addition, the broad peak error also need to be

included in inaccuracy of Tm . The broader the peak, the

bigger the error will be. The error related to t-L is from

the boxcar. Then the specifications for above error

sources are listed as follows:

1. temperature sensor^ J

+-1K at 2 K - 100 K

+-1% K at 100 - 400 K

2. peak temperature readings

+-1 K T < 120 K

+-2 K 120 K < T < 200 K

+-3 K 200 K <= T < 300 K

+-4 K 300 K <= T < 380 K

3. aperture delay range

+-2%
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Making a sample calculation of P 1 on sample L1014,

T' = T +-1 +-1 = T +-2, T < 100 K

MAX.

t (^ } TV K > 1000/TV^)__Vt'(^^) ln(Tm V^)

2.36 0.86

1.79 0.59

1.12 0.11

0.714 57 17.39

0.510 59 16.83

0.306 60 16.53

MIN.

_Ti!!!?!_
TV K ) iooo/t^cit1 ) v^ck2*"1

) in(Tm'^

0.686 53 18.69 1.96 0.67

0.490 55 18.05 1.50 0.41

0.294 56 17.70 0.94 -0.06

Run "LINFIT" to find E
t
(max) / (^ (max) and E

t
(min),

C^(min), then

E
t

= 0.07 +/- 0.0058 eV

ffrx = 2.68 +h l.llxlO"15 cm 2
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10
IS
20
30
40
50
60
70
80
90
100
1 10
120
130
MO
150
160
170
iao
190
2O0
210
220
230
2 '10

250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
110
420
430
440
450
460
4 70
400
490
500
510
520
530
540
550
560
570
580
590
600
610
620

Program Titlei AUTO

Programmer: Yanan Shi eh

Date: 03-23-1988

Versi on ,
i.i

Description: This program controls Fluke BH20A Diuilal Mill I i mid r*r hi
r t'c:or d volhuic from CiaA'i r.timii 1 1» .iiihiin.il li •IIy.i il< nl d i><

I hose r t-cor ed dal n lisinn fciihp etii.tftt i on 1? o( m/lid < lidi;

field based on Van Der Fauw.Hal I ef fecf -mil uli hinn
techniques: and plots the Depth Profile.

Main Variable Description:

CURREN r (

)

F
Mo() .UiiO
Ns()
Ps (

)

Rod. Rb <>

RIibO
VOL I (

)

VOLO

ftrrav of input current from cur r nil '.'.jui u.'.

Correction factor for - Van Dei Pauw iii<s->sur ements.
Arr av of electron mobility for n- l.vpf Astia.
Arrav of sheet carriers concentration.
or rav of sheet resistivity.
Resistance arravs for Kail Effect measut omen I .

ftrrav of shpet hall coefficient.
nrrav of voltage read out from sample b\ DVII ea«:li

trigger time.
Array of average voltage for one direction current

#*#-»**#»»««**«K*«»#««»l(IHI»MM#*««««*»M»»MMHI|li(»«»l(|lM|lli<l(|ll|iM»M<«ir»>
DIBP "PLEASE ANSWER ALL QUESTIONS BY PRESSING Y UK N!"
OPTION BASE
PRINTER IS 701
i

! Declarations
i

REAL R(10) .VOL (2) ,Rmnop (10) ,CHR(10) ,Ps(10>
REAL Romnp(lO) ,Ro(10> ,Rb(10) .CURRENT (10) .Ns( 10) .M0( 10) .Plis< !")

REAL CURRENT 1 (10) .Psl (10) .Rhsl (10) .Uni ( 1<».20) .Ni ( 10 . 2o> .'.'01 I C.5)

REAL Xmin , Xina>: , Ymi n . Ym-\:: . F
DIM YT I TLE4 C 60 T . T I TLET f bO 1

LET LAYER=0 ! Etch inn I aver is zero.
DISP "DO YOU MEED A NEW ETCHING PROCESS?"
INPUT PROCESS

r

DISP "ENTER NUMBER OF CURRENT FOR YUUR MEASUREMEN 1 S !

"

INPUT NUMBER ! Number of inout current.
IF PRCCESS*="N" OR PROCESS**"n M THEN 17lO
FOR 1=1 TO NUMBER

DISP "ENTER CURRENT VALUE IN THIS TIME!"
INPUT CURRENT (I)

IF CURRENT ( I ) =0 THEN 3250
FOR C=»l TO 2

FOR 1 ..0UP=1 TO 5
CLEAR 70/
OUTPUT 707 : "VR7T1S1 1?"

TRIGGER 707
WAIT 1 000
P=SP0LL (707)
IF P=6H THEN 600
GOTO 540
ENTER 707 : VOLT (LOOP)

NEXT LOOP
V0L(C)=(V0LT(1)+V0LT(2)+V0LT(3)+VULT(4)+VULT (5) ) /5
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630 . UISP VOL (C)

^. 1 «
> IF C=2 THEN GUfU 72U

630 HI.-.LI
1

660 DISP "CHANGE CUKKLNI SOURCE POLARITY" ! Lnrrcnl Buur r»> Ii£ih Ilia ilir.cli

oils.
670 INPUT CUTREAD*
680 NEXT C
690 !

700 ! A veraae resistance of two directions input current.
7 1 !

720 RU)=ADS <VUL<1 > -VOl (3) > /<2«CURT<ENT (I) )

730 IF RdK.OOOl THEN 1=1-1

740 MP XT I

730 BEEP
760 UISP "WHICH NEASUREMENI IH1S IS?(VUP1. VDP2. HhLLC>. U.4>>"
770 INPUT MEASURE*
7BU IF MEASURE*="VBP1" THEN 79U ELSE 830
790 FOR J=l TO NUMBER
800 Rinnop (J) =R (J)

810 NEXT ,]

820 GOTO 980
830 IF MEASURE*" "VDP2" I HEN 84U ELSE 880
040 FOR J=l TO NUMBER
B50 Romnp (J > =K(J)
H60 NEXT J

G/0 80 1(1 980
I'OU BISP "B«?"
R90 INPUl" FIELB
900 IF FIELB»0 THEN 92U
910 GOTO 930
920 FOR J==l TO NUMBER
930 Ro(J)=R(J)
9 '10 NEXT J
930 FOR J=l TU NUMBER
960 Rb(J)=R(J)
970 NEXT J

980 DISP "DO YOO NEED AMY OTHER MEASUREMENT?"
990 INPUT ANSWER*
1000 IF ANSWER*=*"Y" OR ANSWER*="v" THEN 470
1010 !

1020 ! Print result if Van Der F'auw measurement.
1030 !

1040 PRINT "VAN DCR PAUW MEASUREMENT"
1030 PRINT "

1060 PRINT "Current <A) "
. "Rinnop (Ohm) "

. "ROmnp (Ohm) "
. "Ps (Otim/Sqiwr f )

"

1080 FOR K=l TO NUMBER
1090 IF Rinnop (K)< Romnp (K) THEN G0 10 1120
1 100 F

r r--Rmnop (K) /Romnp (K)
1110 GOTO 1130
1 120 FF=Romnp (K) /Rinnop (K)
1130 DISP "FF=".T-F
1140 UISP "ENTER FACTOR VALUE?"
1 ISO INPUT F
1160 Ps<K)=4.53*F/2» (Rninou (K) •Romnp (K) )

1170 PRINT "

1100 PRINT CURRENT (K) .Rmnop(K) .Romnp (K) .FsO)
1190 NEXT K
1 200 !

1210 ! Print result of Hall Measurement on the printer.
1 220 !

1230 DISP "NEXT PAGE PLEASE!"
1240 INPUT ANSWER*
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.".U CKINI "HALL lll.nbUKL.lll Nl "

260 PRINT " "

270 PRINT "Current (A) "."Delta R <UHN> "
. "Rhs"

200 PRINT " "," "." "

290 FDR K-l 10 NUMBER
300 DISP "HALL HEASORENLNT 113 NORMAL?"
310 INPUT ANSWER*
320 IF ANSWERt="Y" UR ANGWLRf="v" THEN 1 350
330 CHR < K ) =ABS ( Ro ( K ) +Rb (K)

)

340 GOTO 1360
350 CHR ( K ) =ABS ( Ro ( \ > -Rta ( K ) )

360 Rhs<K)«CHR<K) /FlELD*lOO«X»
3 70 PRINT " "

3B0 PR I N I CORREN T < K ) . CHR <K> , Rh s < K

)

390 NEXT K
400 DISP "WOULD YOU LIKE 10 PRINT OUT THE RESULT?"
4 10 PR INI
420 INPUT ANSWER)
430 IF ANSWKR*»"N" UR ANSWERS "n" THEN 15/U
440 PR' INT "RESULT"
450 PRINT "

160 PRINT "Cur rent (A) " . "Ps (Uhm/Suunro >
"

. "N«5<cm-2) "
. "Lin U.m.Vv •••.)

"

170 PRINT " "," "," "."— • — -"

'100 FUR K=l TIT NUMBER
490 Ns(K) = l/ (Rhs(K> * 1 .6) »10 19 ! Calculate r.ln»rt cotirpntr .ili on.
500 MOO -:)-lO 17/ (1.6*Ns<K)#Ps<ia ) ! Calculate mobi 1 i I.

v

r.io PICl ITT
"

520 PR I N T CUI {REN I ( I :: ) . Ps <K > , Ns ( I . ) . HI I ( K

)

530 NEXT K
'540 !

550 ! Create Data File.
560 !

570 DISP "DATA FILE NAME?"
500 INPUT UNAME*
590 CREATE DNAME*?<" : D700" . 12 ,50
600 ASSIGN** 1 TG DNAME*.V : D700"
610 FOR K=l TG NUMBER
620 PRINHT 1 ? CURRENT (K) ,Ps(T.) ,Rhs(K)
630 NEXT K
640 ASS I GNU 1 TO *

650 DISP "ETCHING PROCESS?"
660 INPUT ETCHING I

670 IF ETCHING*" "Y" OR ElCHING*^"v" THEN G01 440
600 !

690 ! Output Hie Data File-.

700 !

710 DISP "RE1RIEVED DA I A FILE NAME?"
'/20 INPUT DNAME*
730 ASSIGNtt 1 TO DNANE4.V : D700"
710 FOR I=---t 10 MUMMER
750 READ« 1 : CURRENT ( I ) . Ps ( I ) . Rhs ( I

)

760 D I SP CURREN T ( I ) . Ps ( I > . Rhs ( I

)

770 NEXT I

7HO ASSIGN II 1 HI «

790 DISP "DO YOU HANI TU RE I RIVE DATA AGAIN?"
800 INPUT RETRIEVE

t

010 IF RETRIEVE*="Y" UR RE TRIEVCT =" v" 1 HEN 1030
020 GOTO 1900
030 FOR 1=1 10 NUMBER
Q40 LET CURREN T 1 ( I ) ^CURRENT ( I

)

050 LET Pa 1(1) -Ps ( I

)

060 LET Rhsl <I)=RhsU)
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1P70 DISP CURRENT MI) .Ps(I) .Rhsl (I)

1G00 NEXT I

IIWO GOTO 1710
19<">0 LAYERS. AYER+1
1910 lur.r i aypk
191'') DISP "Enter each etching layer thickness please!"
1930 INPUT DEPIH
1940 LET A=. 00000001 »I)EPTH
1950 PUIs1 J=l TO HUNKER
1960 !

19/0 ! Dupth Profile Calculation.
1 900 !

1990 Uoi (J .1 AYER) = APS ( <Rhs< J) /Ps <J) A2-Rtisl <J) /Ps 1 < ,7 > 7) / ( J /f ••• (J) -1/PsJ (J ) )

)

2000 Ni (J .LAYER) --"AGS < ( 1 /Ps ( J ) - 1 /Psl (J) > / (

1

.6*< 10 (-19) ) »A»IJni (.1 .LAYER) ) )

2010 NEXT J

2020 OISP "APE YOU DONE?"
2O30 INPIII DONPr
2040 IP l)UNEf="Y" UP l)UNEf="y" THLN 2< >6<

»

2050 GOIU 171<">

2i.»60 DISP "Ploter is quing to come!"
2070 FOR 1=1 TU NUMBER
2OB0 PRINT "CURRENT I S" , CURREN I ( I >

,
" (

A)

"

2090 PRINT "

210«.» PRINT "LAYER","MOBILITY (CM2/S-V) ", "CARRIER CUNCENIRAI lllll (III-:)"

2120 FUR J=l TO LAYER
7130 PRINT J.Uni ( I ,J) ,Ni ( I .J)

2140 NEXT J

2150 PRINT "

2160 NEXT 1

217'.' UISP "WUULD YOU LIKE 1 U PLUT HIE DATA ?"

21 GO INPUT ANSWER*
2190 IF ANSWER f-"N" UR ANSWER* --"n " THEN 3250
2200 DISP "SCREEN(l) UR FLUTTER (2) ?"

2210 INPUT ANSWER
2220 IF ANSWER=2 THEN 2340
2230 !

2240 ! Graph Un The Screen
2250 !

7260 PLOTTER IS 1

22/0 GCLEAR
7200 GRAPHALL
2290 ALPHA
2300 GGTU 2380
2310 !

2320 ! Graph Un Thy Plotter.
23 30 !

2340 PLOTTER IS 705
23150 (JUT PUT 705 : "VSU"
2360 DISP "SET UP FLU TIER AND TRESS END LINE"
2370 INPUT PRESS*
23G0 DISP "INPUT Xmi n , Xma:: .LXmax , GXma:: , Ymi n , Ymax VALUES'"
2390 INPUT Xmin , Xina>: ,LXma;: .GXinax , Ymin, Ynia::

2400 Ynun=10"IMT (LGT (Ymin))
2'I10 IF Yma::-U>- INT (1(51 (YmaxMO THEN Yma:: = 10 ( 1 N I (I.PI < mi, ,::>>' J >

2420 ! Draw X-a::i?s and Y-a::is
71 30 LOCATE 20 . 1 20 . 1 5 , 05
2440 SCALE Xmin ,GXmax .LGT (Ymin). LGT (Yma::>
2450 AXES GXma:: /in. LGT (Yma::)-LGI (Ymin) . Xinin, LG1 ( Ymi n ) . 1 . 1 . 7. '.'

2460 r
: UR I=o TCI LGT ( Ymax ) -LGT (Ymin)

2470 MOVE Xmi n. LGT (Ymin)+I
24G0 DRAW Xmin+(UXma::-Xmin) /70.LGT (Ymin) + I
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2190 FUR J ---2 IU 7

2500 MOVE Xmin.LOl (Ymin»J»10 l>

2510 ' DRAW Xmin+(GXma::-Xmin) /120.LGT (Ymin*J*10 I)

2520 ! Label X-a::is
2530 NEXT J
2540 NEXT I

2550 CSIZE 2.5
2560 LDIR
2570 LORG 6
2580 1=0
2590 IF GXma::/10« I: GXma:: THEN 2650 J

2600 MOVE GXmax/lO*I,LGT (Ymin)-(LGr < Yma:: ) -LG t ( Ymin ) ) / K>0
2610 LABEL BXmax / 1 0*

I

2620 1=1+1
2630 GOTO 2590
2640 ! Label Y-axis
2650 LDIR
2660 LORG 8
2670 FOR 1=0 TO LB I (Ym«::)-LGT (Ymin)
2680 MOVE -<GXinax/250> .LGT (Ymin*10' I)

2670 LABEL 10 (1.8 1 (Ymin) + I)

27O0 NEXT I

2/10 DISP "WHICH CURRENT VALUE YUU WANT I (J FLUI FUR PROF ILE^"
2720 DISP "GIVE INTEGE NUMBER (1 TO CURRENT NUMBER)"
2730 INPUT I

2740 LET D=0
2750 DISP "WHICH FLUTTER DO YUU WANT? (PRESS M OR C)

"

2/60 INPUT ANSWER

T

2770 DISP "PLOTTER TITLE?"
2780 INPUT "II I LET
2/70 IF ANSWER-l- "C" OR ANSWER*"*"c " THEN 2080
2800 FUR J = l TO X hia >: /DEPTH
2810 LET D=DEPTH+D
2820 MOVE D.LGT (Uni(I.J))
2830 LABEL "*"

2840 NEXT J

2850 YTITLET="Mobility (cm2/v-s)

"

2860 ! Carrier concentration plotter.
2870 GOTO 3060
2880 FOR J=l TO Xmax/DEPTH
2870 LET D-D-iDEPIH
2900 MOVE D . LG f ( N i ( I , ,J ) >

2710 LABEL "*"

2720 NEX T J

2730 DISP "PROJECTED RANGE, DEVIATION, DOSE? (CM)"
2740 INPUT Rp,De,Oo
2750 LET A=0
2760 LET B=Qo/<6.2B".5*De)*EXP (- ( . 5* (Rp/De) 2)

>

2765 PRINT B
2*?/0 MOVE A. Ei

2780 WHERE A.B
2770 FUR J=0 IU LXmax S I EP 10
3000 LET Nj:=Oo/ (6.28a . 5*De> *EXP (-<.5M <J*.O0OO0<X»l- Up) /Do) .') )

3010 IE N:: Ymin THEN DRAW J.LGT (Ymin)
3020 DRAW J.LGT (N::)

3030 NEXT J

3040 YTITLE-f="Carr ier Concentration (CM-3) "

3050 ! Label plotter title!
3060 LORG 6
3070 CSIZE 4,. 6. 10
3000 MOVE <GXmax-Xmin>/2,LGT (Yma:: ) -MLG1 ( Yma:: > -LGI (Ymin))/l0
3070 LABEL TITLE*
31U0 ! Label X-a::is title!
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3200 LABEL YTI1LE*
3210 WAIT 20000
3220 DISP "DO YUU WANT TO PLOT AGAIN?"
3230 INPUT ANSWER*
3240 IF ANSWEK*="Y" THEN 2170
3250 ENU

98



10

'III

*X**#**»XX*-XX-*##*»**X-#**«*»*#*###**#»*##»**#######«**»»*X»*XX»«*»*»#XXX

Proqram Title: RAMPING

Programmer : Yanan Shi eh

Date : 12-1 1-B8

Vursion : l.u

60
70
to
'/i i

I'M.) !

110 ! Description : This proqram controls temperature controller to ramp
120 ! temperature either upwards or downwards in temperature:
130 ! it also controls keithley and fluke DVMS to record
140 ! two voltages, one is -from thermocoupl e (keitlilev
13«J ! readi no) which is converted to temperature in Celsius.
iuO ! other is from output voltaue of host car witch is PI IS
I
.'"

! si uiicil .

1
'•

l< i
!

1

V

1 .'
!

2'»ii ! *>*#»#xx*##x**#**##***-x-»*#**»»*» *•*»#*•« x **#-h **•#** x * x*»x ** x x ¥ »>: x-x**»***#
2 tO OPT I (IN BASE 1

220 CI PAR
2*0 DIM PIL16J.I If C50 J

2«10 REAL TEMPR<500.21 . TEMPO (500 , 2)
2'.J0 REM HEAIER POWER . OA I N . RA T E ARK RESE1 ARE SET MANUALLY MY THE
26'» REM USER. HIE IMIT1AI BEfPOIWI TEMPERATURE IS INURED VIA Mil

2/n Kl- 1-1 KEYBOARD. 1 1 IE riME IN SECUNDS AND DESIRED l-IMAL IFNI 'ERA I URL
21 li > REM ARE RETRIES I ED. I HE QIC WILL RAMI'- 1 1 IE' SI I I 111 M I III HIE I 11 101.

270 REM TEMPERA HIRE LINEARLY Willi A QUANTIZED TEMPERA I URE INCREMENT
300 REM O.IK EUR NORMAL RAMP SPEEDS.
310 DIM AST.50 J ! Dimuntion array for reading the DRC 81C
320 T_WAI T=2U ! Sampling rate in seconds
330 K_EQB!S .9 ! Incremental change in control T which implies equilibrium
310 CLEAR ! Clear the display
350 REM REQUEST THE INITIAL SETPOINT TEMPERA 1 1 IRE.

f.f.0 DISP "INITIAL 1 1 Ml ERA I URI : "
; <s! INPUT K_1NIT1AL

3/0 bEUIN: DlSf ; ' "SELELI A MEA1ER PUWER , UAIN.RA1 E AMD RESET MANUALLY"
3Ui» DISP "UN HIE DRC-U1C TU UBTIAN THE DESIRED 1NII1AL I L Ml ERA 1 1 IRE .

"

370 DISP
400 DISP "TEMPERATURE TU RAMP T0":@ INPUT K .FINAL
410 DISP "TIME 1U REACH ":K_FINAL:" K":" IN SECONDS" :« IIIPUI T.T1NAL
420 DISP "INCREMENT OF TEMPERATURE TO TAKE DATA." C« IIIPUI K...IIIC

4 3<i REM ADJUST I HE DRC H1C TO ODTIAN EQUILIBRIUM AT HIE INITIAL SETPOINT.
140 UUT III I 712 ;"S":VALI (K. INITIAL)
4!iO I = I. INI TIAL
-I.vp WAJI1: WAI I lUOOM WAIT ! WIAI I_WA1I SECONDS
4/0 io-=i:

4UO OUTPUT 712 : "WC" © ENTER 712 : At ! READ CUMIRUL II. ITPERA1 URE.
470 K-VAI.. (A IT 1.6 1)

S'»i> IF ABS (K-KO) >K_.Ef1B OR ABS (K-K_ INITIAL) >1 THEN WAIT1
51A OUTPUT 712 :"W1" & ENTER 712 ; AT ! READ Wl
520 DISP "Wl ^":AT
5 50 POS I T I ON=VAL ( A f C 1 1

)

540 DISPLAY IDT=AJ I. I-.'J.l

5' iO CON I ROE...I D f=Af T. 7 , 7 1

! ('} GA 1 N-VAL < AT I 1 1 , 1 2 J >

57U RATE=VAL <AtC14,15J)
5S0 RESET 1=VAL <A*C17,1B]>
570 HEATER _RANSE=VAL ( A-T C 20 J)

6O0 PRINTER IS 701
61«t PRINT "REMOTE SENSOR PUS I T IUM=" : PUS I T ION
6-"<> PR1III "DISPLAY SENSOR I D = "

; DI SPLAY..I D4
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INI>2» 1.. INC
„II*>2.B« 1 .. I hi; « i r.inio
i timeout r iwc si; CUIIDS -

630 PRINT "CONTROL SENSOR 1 D=" : CON! ROL_ I D t

640 PRINT "GAIN--" ; GA I N , "Rfl 1 E = "
: RA I E , "RESE I

="
: RESE 1*1

650 PRINT "HEATER PUWER RANGE=" ; HEATER_RANGE: " WAT I

S"

660 P=t
670 T=0
680 K_SPINC=. 1 ! NORMAL INCREMENT OF SE1F0INT
690 SETPOINT=K. INITIAL
700 SLOPE" <K FINAL-K INITIAD/T PINAL ! 0UMPU1FR RAMP RLIII 'F (K/RTi:. >

710 DISP "RAMP - ":60*SL0PE: "KELVIN PFR Ml MIJ1 V " : "I II V1N [VJi 'IILlllin"

720 T INC=K SPINC/ADS (SLOPE) ! TIME TO INCRFMLNI SEIFUINf IN SECOND
7 :•<"> IF T_INC<.9 I HEN K SPINC=».2 9 t\„

7<K> IF T INC1 AND L !iPINL'«.2 THEH T

750 ON TINERW 1,1000*T_INC (SOTO GO ! TIMEOUT T_1NC SECONDS - RES I ART I I HER
760 PROCEED: GOHI PROCEED ! YES THIS S1ATEMEHI IS C0RREC1
7/0 GO: GOlPlir 712 : "WC" @ ENTER 7 12 : At ! BO MS READ TIME.
7F10 IF FP (ADS < SET POINT -K_ I NI T 1 AL) /L_ J NO >0 THEN SKIP
770 DISP T:" SECONDS : ":"SETPOINT = ": SE1 POINT: " I"
000 DISP "CONIROL TEMPERATURE =":Ar ! ALL DISP I Al E . 23SEC0NDS
8 1<J ! Select a temp, range to optimize the gain.
820 IF SETP0INT=94 THEN 1490
830 IF SETP0INT=114 THEN 1520
840 IF SETP0INT=138 THEN 1550
850 IF SETPOINT-162 THI :.N 15GO
860 IF SET POINT =186 THEN 1610
8/0 IF SETPOINT-20B THEN 1640
BOO IF SETPOINT-232 THEN 1670
870 IF SETPOINT-256 THEN 1700
7i»0 IF SEIP0JNI=2W'» INEN 1/30
7lo IF SET PO IN 1=304 1HEN 1 /60
720 IF SETPO IN 1=320 THEM 1790
930 PRINT "SET";r;FTPUINIV'CONL. ":A*
940 TEMPR < P , 1 > -VAL (M )

950 TEMPR(P,2)=T
*60 1EMPV(P, 1 )=SETPUINT
9/0 ! READS FLUKE DVM
980 OUTPUT 707 :"VR7D8T1?" @ ENTER 707 : Ft
990 MANTISSAF*=F*Cl,8] EXPONENTF t=FtC 10. 1 21
1000 TEMPV(P.2)-VAL (MANT ISSAF*) *10~VAL (EXPONENTF*)
1010 PRINT "PI IS--" , IEMPV(P.2)
1020 DISP USING 1030 : P . TEMPR (P , 1 ), T EMPV <P . 2)

1030 IMAGE "READING NUMBER" ,2X ,DDD,4X. "THERMAL COUPLE IEHP. " ,2X ,DDDD. ODD, JX . "V
01. I AGE" .2X.DDDD.DDDDD
1040 P=P+1
1U50 SLIP: T=T+T INC ! ADD TIME FOR K.SPINC
1060 IF T>T FINAL THEN COMPLETE ! IS RAMP TIME PERIOD COUPLE IE?
1070 SETPOINT«SETPOINT+K_SPINC*SGN (SLOPE) ! 1NCREMENI HIE SK 1 1 M 1 1 1

1

1000 OUTPOI 712 :"S":VALi (SE IPO INT)
1090 GOTO PROCEED
1100 COMPLETE: DISP "RAMP INS COMPLETE." <a OIF I IMERtt 1

1110 K_ 1 N I T I AL=K_F I HAL
1120 FOR J-"=lO TO 16U STEP 50 (2 BEEP J,50o @ HEX I J

1130 ON ERROR GOTO 1250
1140 ! Store, data:
1150 DISP "ENTER 1 1 IE PITS TILE NAME!" <H INPIJ1 t i 1 cjiaimI
1160 DISP "NUMBER OF READINGS =":P-1
1170 CREATE -f i 1 e _nanieiV : D700" , 400 ,20
1180 ASSIGNS 1 TO f i le_naine*.V : D700"
1 190 FOR N=l TO P-l
1200 PRINT* 1 : TENTV (N, 1

> , TENPV(N t 2>

1210 NEXT N
1220 ASSIGNI) 1 TO *

1 230 D I SP "READ I NG COUPLE IE!"
1240 GOTO 1300
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1 250 OFF ERROR
i ::60 BEEP 50.50O
1270 D1SP "FILE NAME ERRUR.1RY A DIFI- EREN1
1 2tfO WA1 T 4 <><»<:»

1 290 SUIT) 114o
1 300 DISP "NEED rtl STORE RAMPING DA IP,:••• (j I

1 3 1 if ans*=>"N h rHEN ia:20
1 320 DISP "RAMP I NIS NUMBER«"sP-1
1 330 ON ERROR GOTO 1420
1340 DISP "ENTER RAMPING DATA FILE NAME" S
1350 CREATE ramp namely":: D700" i 400, 20
1 360 ASSIGN* 2 TO ramp_name*?e":D700"
1370 FOR M=l 10 P-l
J 380 PRINTtt 2 ? TEMPR(M,2) ,TEMPR(M,1)
1 390 GOTO 1460
1400 ASS I GNU 2 TO *

1110 NEXT M
1 420 OFF ERROR © BEEP 50 . 500
1 A 30 DISP "FILE NAME ERROR. TRY DIFFERENT
10 10 WAIT 4000
L450 GOTO 1340
I '160 D I SP " READ I NO COI IPLb. 1 1 . !

"

I 'I/O GOTO 1820
1 -180 ! Change 1 he; aain.
1 470 fit II hill 712 :"P":V3: "Wl" <?. 1 NIER 71 2 :

1 ''DO DISP Kf @ PRINT |:'t

1510 GOTO 930
1 520 OUTPUT 712 : "P" ;90: "Wl" & ENIER 712 ;

1 530 DISP Kf & PRINT K*
1 540 GOTO 930
1 550 00 r POT 712 : "P":TI4: "Wl" @ ENIER 712 ;

1 560 DISP K* @ PR INI' Kf
1 570 00 (0 930
J 500 OUTPUT 712 :"P":R<T;' "Wl" @ ENTER 712 ;

1 590 DISP Kf & PRINI K*
1600 GO TO 930
1610 OUTPUT 712 ; "P":76: "Wl" & ENTER 712 :

1620 DISP K* @ PRINI K*
1 630 GOTO 930
1640 OUTPUT 712 : "T";lln; "Wl" ENIER 712 :

1 650 DISP K* <•'. PRINT Kt
1 660 GOTO 930
1670 OUTPUT 712 : "P";84; "Wl" <§ ENIER 712 :

J 6BO DISP 1 f @ PRINI Kl
1 690 GOTO 930
1 700 GUI PUT 712 : "P": Vuj "Wl" & ENIER 712 :

1710 DISP Kf Q PRINT It
1 720 GOTO 930
1750 OUTPUT 712 : "P":74: "Wl" @ ENTER 712 :

1740 DISP Kf & PRINT [it

J 750 GOTO 930
! ,60 OUIFIJI 712 : "P":96: "Wl" @ ENIER 712 :

J ,'70 DISP K-f @ PRINI Kf
1 /1 10 ROTO 930
J '.'90 OIUPOI /I2 :"P":9R: "Wl" e ENIER 712 :

I GOO DISP K* «•» PRINT 1,-f

HI 10 GO 10 930

FILE NAME!

I NT 01 ATIS J

INPUT ramp name?

1S20 END

FILE NAME!

K r

KT

Kf

Ki

KT

Kf

Kf

Kf

K-f

Kf

If
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ABSTRACT

Pulsed laser annealing using, a rare halide excimer

laser ( \ = 308 nm) with 12 nsec pulse duration and with

energy densities from 0.2 to 0.32 J/cm , was performed on

commercial semi-insulating gallium arsenide substrates

which were ion implanted with Se or Si ion doses ranging

from 2xl0 12 to 6xl0 14 cm" 2
. The residual defects in

annealed GaAs samples were investigated by means of photo-

induced transient spectroscopy (PITS) which is based on an

observation of the emission coefficient behavior

associated with deep level traps following an incident

trap-filling light pulse. The PITS system includes a 10 mW

He-Ne laser, an optical chopper, a boxcar integrator, and

a close-cycle helium refrigerator.

Three dominant and one trace peaks were observed in

the PITS spectra (from 40K to 380K) which correspond to

the activation energies of deep levels from 0.02 eV to

0.8 eV. The effectiveness of pulsed laser annealing for

restoring the electrical properties such as charge carrier

activation and the electron mobility was examined by using

the Hall effect and van der Pauw measurements. Although

the layer recrystallization was good (as inferred from the

Raman spectra) and the sheet carrier concentration was

high, the electron mobility was low. An attempt to



correlate the concentration of implanted impurities with

the charge carrier and deep level defect densities was

made. Extensive comparisons of over all characteristics of

pulsed laser annealed samples with conventional furnace

annealed samples were also presented.
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