by

MQHELE E. H. DLODLO
,
B.S.E.E., Geneva College, 1980 Beaver Falls, PA, U. S. A.

A MASTER'S THESIS
submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Electrical and Computer Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas
1989

Approved by:

TABLE OF CONTENTS

LIST OF FIGURES i
LIST OF TABLES ii
ACKNOWLEDGMENTS iii
Chapter Page
I. INTRODUCTION 1
1.1 The Work Done up to Now 1

1. 2 Current Focus 3
1.3 Theoretical Basis 4
II. EXPERIMENTAL TECHNIQUES 7
2.1 Measuring Resistivity by th Van der Pauw Method 7
2.2 The Hall Effect Measurement of the Hall Coefficient and Sheet Carrier Concentration 10
2.3 Determining Activation Energy and Capture Cross Section Using PITS 12
A. Effects of the He-Ne laser beam on the sample 12
B. High-intensity illumination 15
C. The PITS Workstation 17
He-Ne Laser Operation 18
The 162 Boxcar Averager 22
The Preamplifier 28
The 100 MHz HP Oscilloscope 29
The X-Y Recorder 29
The Fluke Programmable DVM 30
The Refrigeration System 30
The Comressor Unit 30
The Model 22 Coldhead Assembly 31
The Temperature Controller 31
The HP 86 Control System 34
Overall Summary 34
III. ANALYSIS OF RESULTS 37
3.1 Van der Pauw and Hall Effect Measurements 37
3.2 Correlation between Trap Energy and Capture Cross Section 41
IV. CONCLUSIONS 53
V. REFERENCES 56
APPENDIX A Scan Data A. 1
APPENDIX B Boxcar Settings B. 1
APPENDIX C Linear Correlation, Trendy Data and Moving Averages C. 1
APPENDIX D Programs D. 1

LIST OF FIGURES

Figure No. Description Page
2.1.12.1 .22.1 .32.3.12.3.22.3.32.3 .42.3 .5
2.3 .62.3.72.3 .8
2.3 .93.1
The clover-leaf pattern on a sample of arbitrary shape 5
Correction factor for computing specific resistivity 7
Block diagram for the Van der Pauw measurement apparatus 7
The laser light source system 17
The sample circuit 19
Front Panel of a Series 16X Gated Integrator 22
Key Boxcar Operational Parameters 24
Determining the trigger period 25
Basic schematic of the ITHACO 1201 preamplifier 26
The cooling system 30
Temperature response curve of sensor 31
The PITS System Block Diagram 34
Mobility as a function of laser intensity 38
Resistivity as a function of laser intensity 39
Sheet carrier concentration versus laser intensity 39
Dose dependence of electrical character- istics 41
Correlation of capture cross section vs activation energy 52
Table No. Description Page
2.3.1 He-Ne laser output power measurements 17
2.3.2 Repetition Rates for the PITS experiment 21
$3.1 a$ Dependence of electrical characteristicson laser intensity38
3.1b Dependence of electrical characteristics on dose 41
3.2 Thermodynamic properties of traps inSi:GaAs44
3.33.43.5
Peak grouping by correlation - main data45
Peak grouping by correlation - control data 49
Peak grouping by correlation - sample identification 50

ACKNOWLEDGEMENTS

First and foremost I thank my major professor, Dr. Andrzej Rys, without whose motivation and advice this research would have been more difficult. My committee members, Professors Donald Hummels and Willard Parker also actively supported this work through periodic reviews and discussions.

My gratitude also goes to the Electrical and Computer Engineering for their unfailing support during my graduate program.

I am also grateful to the people in Honeywell and Motorola who freely supplied the ion implanted GaAs samples.

The opportunity to study here at all would have been only a pipe dream without the sacrificial support of my wife, Flora and my daughters Thandeko and Dumisa who had to stay behind in Zimbabwe.

CHAPTER I

INHRODUCTION

In this work, the author stands in the shadow of a succession of efforts to determine the viability of pulsed laser annealing (PLA) on GaAs as an alternative to furnace annealing. Among its other attractions, PLA not only minimizes the out-diffusion of arsenic at high temperatures but is fast and uses compact equipment.

1.1 The Work Done up to Now

The initial effort to anneal GaAs substrates was inaugurated by Drs. Andrzej Rys and Alvin Compaan from the respective departments of Electrical and Computer Engineering, and Physics. Their trailblazing graduate students, Arkady Horak, Huade Yao and Ajit Bhat successfully put together the first PLA system using the rare halide eximer laser but still met insurmountable hardware problems. This was 1986. They were soon joined by Timothy Chin who, together with Ajit Bhat finally got the system working. As a result, several wafers implanted with, in some cases, silicon and, in others, selenium ions were annealed thus spewing the spate of probings that have culminated in the present work.

Timothy Chin's study used Hall Effect and Van
der Pauw techniques to establish that carrier activation
in PLA samples tends to be high. The apparent cause of this has invariably been suspected as the silicon nitride cap on the samples. An unpleasant side-effect of additional impurities, incidentally, was a drastic lowering of electron mobility in PLA samples. Follow-up efforts by Yanan Shieh involved unsuccessful efforts to make Schottky diodes for deep level transient spectroscopy (DLTS) studies of the traps that evidently kept mobility low in spite of high activation. At this point your author had joined the team and had been tasked with optimizing the DLTS workstation while Yanan Shieh continued developing Schottky diodes. Difficulties with good junctions soon led us to set up for testing the samples as they were rather than turning them into devices. This is where the photo-induced current transient spectroscopy (PICTS or PITS) technique came in handy. My main contribution to the development of the PITS workstation was the research into viable systems in use elsewhere (Lang, 1974; Day et al, 1979; Kremer et al, 1987; Yoshie \& Kamihara, 1985; Maracas, 1982; Hurtes, 1978) and the drafting of the schematic of the system adopted here. The draft was predecessor to that shown in Figure 2.3.1 which has been modified to incorporate a supervisory controller. The control computer was added by Yanan Shieh and Akhter Ahmed, a PhD student in both

Electrical and Chemical Engineering. Once the initial bugs had been worked out of the system, I then studied ways of extending the rate window to as long a time regime as possible. In the 10 ms range used by Yanan Shieh we were having problems resolving peaks that occurred within a few tens of degrees of each other. The problem was partially due to the signal to noise improvement ratio of the boxcar averager. Additional sidelights emanated from these studies. The main one was the determination of an optimal balance among the chopper frequency, integrator and processing time constants, the rate window as well as laser power. The rest will be treated in Section 2.3.

1.2 Current Focus

This thesis, however, zeroes in on correlations among various phenomena. First we examine the correlation between the intensity of the eximer laser used in PLA and the electrical characteristics such as electron mobility, sheet resistivity and sheet carrier concentration. Samples with the same dose were selected for this study. Then through an appropriate selection of samples we next look at the variation of the characteristics with dose for a fixed laser intensity. Finally, the thermodynamic properties, activation energy and capture cross section, are subjected to the same analysis. For the wide-ranging
data pool, the author is indebted to both Timothy Chin and Yanan Shieh. Their studies provided information on high dose, high laser intensity silicon doped samples, while the author's samples were mainly of low dose and low intensity.

The experimental set-up is the subject of Chapter II. Also covered there, wherever appropriate, is the theory behind some of the empirical decisions made. Chapter III discusses the results of the author's, Yanan Shieh's and Timothy Chin's experiments in terms of the various correlations mentioned above. Then key observations are crystallized in Chapter IV. Supportive but less critical material is relegated to the appendices. An attempt has been made to give proper credit to original sources where possible yet inevitably, some information is now so widespread that its origin may inadvertently be misconstrued.

1.3 Theoretical Basis

Suppose the temperature of a GaAs sample in a vacuum is lowered to, say, 60 K and then slowly ramped up to, say, 400 K.

It can be seen on Figure 1.1 that the light-pulse-induced current transient decays slowly at low temperatures. The rate of emission increases with

TEMPERATURE

Figure 1.1 Translation of a PITS signal into a spectrum.
temperature. At point a the difference between the current at t_{1} and the current at t_{2} approaches zero because of the extremely slow emission rate. On the other hand, the rate is so fast at point c that by the time the transient reaches t_{1} it will be almost at steady state. Consequently, the change in current within the window is small. Between these extremes lies a point of maximum change in current which appears as a peak on the spectrum shown on the right of Figure 1.1 (Lang, 1974).

Section 2.3 illustrates the mathematical derivations pertaining to the use of rate windows in thermal scans.

CHAPTER II

EXPERTMENTAL TECHNIQUES

2.1 Measuring Resistivity by the Van der Pauw Method

The Van der Pauw technique is a variation of the four point probe method and is used here because of the size of the samples relative to the probe spacings. For the samples under study, only surface resistivity will be determined since the thickness is unknown.

Fig. 2.1.1 The clover-leaf pattern on a sample of arbitrary shape

Consider a thin slice (or lamella) of semiinsulating (SI) GaAs on which an n-type layer has been implanted. A clover-leaf pattern has been pulse-laser annealed on the implant (Fig. 2.1.1). The implanted surface must look smooth and uniform under a microscope if uniformly annealed. We found that non-uniform surfaces were more difficult to make good indium contacts on. The four small contacts should be confined to the tips of the clover-leaf pattern. Their small size prevents contact resistance from appreciably distorting sample resistance.

If a constant current $I_{M N}$ is now applied between M and N in that order, the resultant potential difference, $\mathrm{V}_{\mathrm{PO}}=$ $V_{P}-V_{O}$ (Fig. 2.1.1), is measurable and from it one can define the resistance

$$
\mathrm{R}_{\mathrm{MNPO}}=\left(\mathrm{V}_{\mathrm{PO}} / I_{\mathrm{MN}}\right)
$$

Since uniformity cannot be guaranteed, the current and voltage take-off points are customarily rotated through a quarter turn and the measurement repeated. Then,

$$
\mathrm{R}_{\mathrm{MPNO}}=\left(\mathrm{V}_{\mathrm{MP}} / \mathrm{I}_{\mathrm{NO}}\right)
$$

If t is the lamella's thickness and the resitivity of GaAs, then the equation (Van der Pauw, 1958)

$$
\begin{equation*}
\exp \left[-(\pi t / \rho) \mathrm{R}_{\text {MNPO }}\right]+\exp \left[-(\pi t / \rho) \mathrm{R}_{\mathrm{MPNO}}\right]=1 \tag{2.1.1}
\end{equation*}
$$

holds. Hence a graphical solution can be found for

$$
\begin{equation*}
R_{S}=\rho_{S} / t=(\pi /(2 \ln 2))\left(R_{\text {MNPO }}+R_{M P N O}\right) f \tag{2.1.2}
\end{equation*}
$$

where the correction factor

$$
f=f\left(R_{\text {MNPO }}, R_{\text {MPNO }}\right)
$$

is plotted in Fig. 2.1.2. L. J. Van der Pauw (1958) demonstrated that the theory represented by Eqs.(2.1.1) and (2.1.2) holds for arbitrary shapes as well if the four contacts are placed along the circumference of the sample (L. J. Van der Pauw, PTR 20, 1958). In the Solid State laboratory at Kansas State University, the prepared samples were tested in the configuration shown in Fig. 2.1.3.

Fig. 2.1.2 Correction factor for computing specific resistivity. (Ghandhi, 1983).

Fig. 2.1.3 Block diagram for the Van der Pauw measurement apparatus

The idea here is to take an arbitrary number of readings per current setting at $1-s e c$. intervals and average them to obtain the Van der Pauw voltage. This process is repeated for reverse currents. All samples were tested using the current settings:

$$
I=\{1,3,10,30,100,300,1000\} \text { microamperes. }
$$

All readings were remotely controlled by the program AUTO
(Shieh, 1989) which then calculated $R_{S}, R_{H}, u_{H}, n_{s}$ after all the Van der Pauw and Hall effect measurements had been effected on a sample. It may be worth mentioning here that the Van der Pauw-type clover-leaf implant pattern along with the high resistivity of the SI GaAs substrate (10^{7} _ 10^{8} ohm-cm) confine the current streamlines to the implanted layer.

2.2 The Hall Effect Measurement of the Hall Coefficient and the Sheet Carrier Concentration

With reference to Fig. 2.1.1, the electrical connections are now switched so that voltage and current paths are perpendicular to each other. In this experiment current was injected into N and tapped off at P, i.e. ($I_{N P}$) and voltage was measured in the M to orientation as $\mathrm{V}_{\mathrm{MO}, \mathrm{NP}}$. The measurements were then carried out as before to determine $R_{\text {MO, NP. This }}$ time, however, we wanted to compute the change in $\mathrm{R}_{\mathrm{MO}, \mathrm{NP}}$ when the surface was placed in a magnetic field B such that the current and the field were at right angles. Let $R_{H s}$ represent the surface Hall coefficient. Then

$$
\begin{equation*}
R_{\mathrm{Hs}}=\left(\mathrm{R}_{\mathrm{MO}, \mathrm{NP}}(0)-\mathrm{R}_{\mathrm{MO}, \mathrm{NP}}(\mathrm{~B})\right) / \mathrm{B} \tag{2.2.1}
\end{equation*}
$$

For this formula to work for arbitrary shapes, the contacts need to be small and on the border of the lamella while the lamella itself should be of uniform thickness
and geometrically hole-free according to Van der Pauw. The magnetic field B induces a Lorentz force $F=q^{*} V^{*} B$ on the charge carriers, where v is the carrier velocity. This force acts perpendicular to both the current streamlines and the magnetic induction. In terms of electric field effects, v can be derived approximately from F as

$$
\begin{equation*}
\mathrm{E}_{\mathrm{HS}}=\mathrm{tF} / \mathrm{q}=(\mathrm{tJ} / \mathrm{nq}) \mathrm{B}=\mathrm{R}_{\mathrm{HS}} \mathrm{BJ} \tag{2.2.2}
\end{equation*}
$$

where the surface Hall coefficient is

$$
\begin{equation*}
\mathrm{R}_{\mathrm{HS}}=1 / \text { nqt }=1 / \mathrm{N}_{\mathrm{s}} q \tag{2.2.3}
\end{equation*}
$$

From Eq. (2.2.3) we can compute, N_{S}, the surface concentration of the charge carriers as

$$
N_{S}=1 / R_{\mathrm{HS}} q
$$

Because of the stationarity of the current streamlines under a B field, the current-generated electric field now acquires a component lying transverse to the streamlines but equal and opposite to the apparent Hall electric field. If we then integrate the transverse field E_{t} from M at right angles to each streamline to an arbitrary point along the far side perimeter, O_{t} (since the locations of $0, \mathrm{M}, \mathrm{P}$ and N were arbitrary in the first place) we obtain the change in potential difference (L. J. Van der Pauw, 1958)

$$
\Delta\left(v_{M}-v_{O}\right)=\int_{M}^{O_{t}} E_{H} d s
$$

$$
\begin{align*}
& =R_{H} B \int_{M}^{O_{t}} J d s \\
& =R_{H} B\left(i_{P N} / t\right) \tag{2.2.5}
\end{align*}
$$

which is another way of developing (2.2.1). Eq. (2.2.5) is based on the assumed validity of $\operatorname{div} \mathrm{J}=0$
and

$$
\text { curl } J=0
$$

as argued above, so that the peripheral streamlines completely determine our boundary conditions. The voltage in (2.2.5) also leads to the Hall mobility since it can be defined as

$$
\begin{equation*}
\Delta \mathrm{V}_{\mathrm{MO}}=\Delta\left(\mathrm{V}_{\mathrm{M}}-\mathrm{V}_{\mathrm{O}}\right)=\left(\mu_{\mathrm{H}} \mathrm{~B} J \rho\right) / \mathrm{t} \tag{2.2.6}
\end{equation*}
$$

If we solve for u_{H}, then

$$
\begin{equation*}
\mu_{\mathrm{H}}=(\mathrm{t} / \mathrm{B}) \quad\left(\Delta \mathrm{R}_{\mathrm{MO}, \mathrm{PN}} / \rho\right) \quad \mathrm{cm}^{2} / \mathrm{V}-\mathrm{s} \tag{2.2.7}
\end{equation*}
$$

2.3 Determining Activation Energy and Capture Cross Section Using PITS

A. Effects of the He-Ne laser beam on the sample

We shall regard the sample as an n-type photoconductor. In this extrinsic case then incident light generates electron-hole pairs through gap level impurities in contrast to the band-to-band phenomena of the intrinsic case. The dark conductivity equation

$$
\begin{equation*}
\sigma=q\left(\mu_{n} n+\mu_{p} p\right) \tag{2.3.1}
\end{equation*}
$$

reduces to

$$
\begin{equation*}
\sigma=q \mu_{n} n \quad \text { since } n \gg p \tag{2.3.2}
\end{equation*}
$$

The depth of the energy level in the gap determines the long-wave cut-off point in the response of the crystal to irradiation. In (2.3.1) the definitions are
$q=$ electron charge
$\mu_{n, p}=$ electron or hole mobility
$\mathrm{n}=$ number of electrons per unit volume
p = number of holes per unit volume
Under illumination, the additional definitions include

$$
\begin{aligned}
n_{\text {opt }}= & \text { number of carriers generated in a unit volume by a } \\
& \text { given photon flux, at } t=0 \text {, where } t=0 \\
& \text { represents the start of the falling edge } \\
& \text { of the light pulse at an arbitrary time }
\end{aligned}
$$

$n(t)=\underset{t>0}{ } \underset{t}{ }$ number of carriers in the same volume after
T = carrier lifetime,
η = quantum efficiency,
1/a = light penetration depth,
a = absorption coefficient
Popt $=$ incident optical power,
G $=$ generation rate at steady state,
$\mathrm{R}=$ recombination rate .
Then, the carrier concentration t seconds after removal of the laser pulse is

$$
\begin{equation*}
\mathrm{n}=\mathrm{n}_{\text {opt }} \exp (-\mathrm{t} / \tau) \tag{2.3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{R}=1 / \tau \tag{2.3.4}
\end{equation*}
$$

states that carrier lifetime determines the recombination rate. Let us say area, $A=W L$, and volume $=W L t$. In the case of laser annealed samples, $t \ll 1 / a$ so that the optically active volume is WLD. The total number of photons striking the surface per unit time is $\mathrm{P}_{\text {opt }} / \mathrm{hv}$. Consequently, the total generation rate can be expressed as a function of the photo flux, i.e.

$$
\begin{equation*}
\mathrm{G}=\mathrm{n} / \tau=\eta\left(\mathrm{P}_{\mathrm{opt}} / \mathrm{hv}\right) /(\text { WLD }) \tag{2.3.5}
\end{equation*}
$$

Instead of computing $n_{\text {opt }}$ in (2.3.3), we can re-arrange (2.3.5) to find

$$
\left.\mathrm{n}=(\eta \tau / \text { WLD })\left(\mathrm{P}_{\text {opt }} / \mathrm{hv}\right) \quad \text { (electrons } / \mathrm{cm}^{3}\right)
$$

where

$$
\mathrm{hv}=\mathrm{hc} / \lambda=1.24 / \lambda_{\mathrm{He}-\mathrm{Ne}} \quad \text { (eV) in this experiment. }
$$

and

$$
\eta=\left(I_{p} / q\right) \quad\left(h v / P_{o p t}\right)
$$

The generated photo-current is

$$
\begin{gather*}
I_{p}=(\sigma \xi) W D \quad, \text { where } \sigma=q \mu_{n} n \\
=\left(q \mu_{n} n \xi\right) W D \tag{2.3.7}
\end{gather*}
$$

If we substitute for n from (2.3.6),

$$
\begin{equation*}
I_{p}=q\left[\eta\left(P_{o p t} / h v\right)\right]\left[\mu_{\mathrm{n}} \tau \varepsilon / L\right] \tag{2.3.8}
\end{equation*}
$$

where the photocurrent clearly varies directly with the electron mobility, electron lifetime and the electric field, even though it is primarily generated by the
photons. To emphasize the point, one may define the primary (or unmodified) photo-current as

$$
\begin{equation*}
I_{p h}=q\left[\eta\left(P_{o p t} / h v\right)\right] \tag{2.3.9}
\end{equation*}
$$

so that

$$
I_{p}=I_{\dot{p} h}\left[\mu_{n} \tau \varepsilon / L\right]
$$

B. High-Intensity Illumination

From the point of view of the traps, however, it will now be demonstrated that assuming saturation always occurs, the transient current can be independent of electron flux. As a case in point, our PITS set-up will be analyzed. [Ch. Hurtes, et. al., 1978]

Returning to the beginning of the transient, with no external electrical injection, the occupancy of a trap is

$$
N_{T}{ }^{\circ}(0)=N_{T} /\left[1+\left(e_{n}+\sigma_{p} v_{p} \delta_{p}\right) /\left(e_{p}+\sigma_{n} v_{n} \delta_{n}\right)\right](2.3 .10)
$$

where (Hurtes, 1978)

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{T}}=\text { density of traps } \\
& \mathrm{e}_{\mathrm{n}}, \mathrm{e}_{\mathrm{p}}=\text { sums of optical and thermal emission rates } \\
& \text { for electrons and holes respectively. }
\end{aligned}
$$

$\sigma_{n}, \sigma_{p}=$ corresponding capture cross sections
$\mathrm{v}_{\mathrm{n}}, \mathrm{v}_{\mathrm{p}}=$ corresponding thermal velocities
$\delta_{n}, \delta_{p}=$ densities of photo-generated carriers, assumed much larger than dark current equivalents.

Long after $t=0$, at steady-state, the dark equilibrium occupancy is

$$
\begin{equation*}
\mathrm{N}_{\mathrm{T}}{ }^{\circ}(\infty)=\mathrm{N}_{\mathrm{T}} /\left(1+e_{\mathrm{n}} / e_{\mathrm{p}}\right) \tag{2.3.11}
\end{equation*}
$$

where the high resistivity of the substrate is assumed to reduce the free carrier densities to insignificance (Hurtes, 1978). The trap-generated current at time t becomes

$$
i(t)=q W(L D / 2)\left[e_{n} N_{T}{ }^{\circ}(t)+e_{p}\left(N_{T}-N_{T}{ }^{\circ}(t)\right)\right], 0=<t=<\infty
$$

in which we can let

$$
M=q W(L D / 2)
$$

and then develop the transient current as

$$
\begin{aligned}
\Delta i(t) & =[i(t=0)-i(t=\infty)] \exp (-t / \tau) \\
& =M\left(e_{n}-e_{p}\right)\left[N_{T}^{\circ}(0)-N_{T}^{\circ}(\infty)\right] \exp (-t / \tau) \quad(2.3 .12)
\end{aligned}
$$

based on (2.3.10), (2.3.11) and $i(t)$. Further substitution, assuming high excitation, yields

$$
\begin{align*}
\Delta i(t)= & \operatorname{Me}_{n} N_{T}\left[1 /\left(1+\left(\sigma_{p} v_{p} / \sigma_{n} v_{n}\right)\right)\right. \\
& \left.-\left(1 / 1+\left(e_{n} / e_{p}\right)\right)\right] \exp \left(-e_{n} t\right) \tag{2.3.13}
\end{align*}
$$

What (2.3.13) simply demonstrates is that under high excitation conditions, $i(t)$ is independent of photon flux. In our case, use of $25 \% \mathrm{~T}, 50 \% \mathrm{~T}$ as well as no filter produced saturation. In the case of our n-type samples, $\sigma_{n} / \sigma_{p} \gg 1$ and $e_{n} \gg e_{p}$, so that (2.3.13) becomes

$$
\begin{equation*}
\Delta i(t)=\mathbb{N N}_{T} e_{n} \exp \left(-e_{n} t\right) \tag{2.3.14}
\end{equation*}
$$

For the two-gate experiment with $t_{2} \gg t_{1}$,

$$
\begin{aligned}
\Delta i(t) & =i\left(t_{1}\right)-i\left(t_{2}\right) \\
& =i(t=0)-i(t=\infty)
\end{aligned}
$$

implying $1 / \tau \quad 1 / t_{1}$ such that

$$
\begin{align*}
1 / t_{1} & =e_{n} \\
& =\sigma_{n} v_{n} N_{C} \exp \left(-E_{T} / k T_{\max }\right) \tag{2.3.15}
\end{align*}
$$

is the peak equation. For (2.3.15), one runs several scans per sample with different sampling delays t_{1} and a constant ratio t_{1} / t_{2} and records the peaks. Then an Arrhenius plot of $t_{1} T^{2}\left(K^{2} s\right)$ versus $1 / T\left(K^{-1}\right)$ graphically yields E_{t} and σ_{n} as the slope and intercept respectively. On linear-log paper we plot the points ($1000 / \mathrm{T}, \mathrm{t}_{1} \mathrm{~T}^{2}$) while as on linear-linear paper the points are (1000/T, $\ln \left(t_{1} \mathrm{~T}^{2}\right)$). As demonstrated in Appendix C ,

$$
\begin{aligned}
E_{t}= & \text { slope*1000*k } \\
& =0.0862 * \text { slope }
\end{aligned}
$$

and

$$
\begin{aligned}
\rho_{\mathrm{n}}= & \text { intercept } / \gamma_{\mathrm{n}} \\
& =\text { intercept } /\left(1.9 \times 10^{20}\right) \quad \mathrm{cm}^{2} .
\end{aligned}
$$

C. The PITS Workstation

A block-by-block description of the PITS system used in this experiment now follows. The laser system provides coherent light of appropriate intensity. The dark current level is due to the 6 V battery and the series circuit shown in Fig. 2.3.2. At the heart of it all is the measuring instrumentation together with the temperature control and vacuum systems. Next is the computer network.

MODEL 124B/255 Serial 3220/3081 HELIUM-NEON LASER Operation:

This laser is rated at 15 mW output power at the 632.8 nm wavelength. A plasma tube contains a 90% helium, and 10% neon gas mixture at 250 to $400 \mathrm{~N} / \mathrm{m}^{2}$. The optical windows at the ends of the tube are positioned at Brewster's angle (53 32' for quartz with $\lambda=1.45)$. The tube has a tungsten anode and an aluminum cathode. Brewster's angle surfaces minimize reflection loss . The resonant cavity comprises a flat mirror and a concave mirror specifically designed to reject the 3.39 um emission and collimate the output beam for minimum divergence (0.75 mrad). In addition, ceramic magnets along the plasma tube also suppress the gain at 3.39 um while enhancing the 632.8 nm power.

We made measurements using a Scientific
Calorimeter Model 36001 with a conversion factor of 101 mV / W and an ambient off-set of 0.6 mV at the time of measuring. Table 2.3 .1 shows the readings taken at approximately 2.69 m from the exit hole. It may be worthy of note that the purchase date for this laser is $11 / 10 / 84$.

Value Read (mV) Power (mW) Constraints

1.1	10.89	between points B and C, no filter.
0.9	8.9	next to shroud, no filter.
0.5	4.95	. 3 density, $50 \% \mathrm{~T}$ filter, 64 Hz Model 50273 Ser. \# 345 Oriel.
0.23	2.28	.6 density, $25 \% \mathrm{~F}$ filter, 64 Hz Model 50276 Ser. \# 163 Oriel.

Table 2.3.1 He-Ne laser output power measurements.

The laser is already installed under the optical table. To operate, just turn the ON/OFF key to $O N$. If the emission indicator flicks on, then the beam should emerge within a few seconds. We used a 45 prism and 2 front surface mirrors to direct the beam to the sample in the cryogenic refrigerator. The $50 \% \mathrm{~T}$ filter was an Oriel Corp. Model \#50273 serial 345 with nominal density .3, while the $25 \% \mathrm{~T}$ filter was model \#50276 serial 163 with . 6 density.

Fig. 2.3.1 The laser light source system

The Stanford Research System Model SR540 Optical Chopper
converts the CW output of the $\mathrm{He}-\mathrm{Ne}$ laser into a pulse train of user-selected frequency. It also serves as an external trigger for both the Boxcar averager and the oscilloscope. Chopper rates can be varied from 4 Hz to 4 kHz while synchronizing signals can be used in the following modes:
single or dual beam sum and difference frequency
and synthesized chopping to 20 kHz .
Low frequency operation below 100 Hz degrades phase jitter and background noise, while extended periods of operation above 2 kHz will greatly reduce motor lifetime. Line frequency and its harmonics along with any known noise sources need to be avoided. The bottom 10% of the frequency control dial exhibits a degraded phase jitter of the reference output and should be avoided as well.

For our single beam experiment, we used the outer row of the chopper blades. Since long enough pulses for our purposes occurred at 64 Hz for the 10 ms aperture delay, 32 Hz for the 20 ms and about 15 Hz for the 50 ms delay, we found it expedient to design and fabricate a slot blocker with 2 outer slots modeled after the $6 / 5$ slot blade. By varying the slot aperture from 0.42" to 0.84," we could vary the frequency between 64 and 32 Hz without significantly slowing down the chopper wheel. A blocker
with only one slot enabled us to realize frequencies as low as 15 Hz without significant degradation in phase

Fig. 2.3.2 The Sample Circuit
jitter. For fine alignment, we placed the chopper on an adjustable height platform secured to the optical table.

The current I_{s} is a sum of the current generated by the battery, I_{B}, and the photo-current i_{p} by the superposition principle. Since it flows through a voltage divider, R_{S} and R_{L} it generates a voltage across R_{L}

$$
v_{L}=V_{B}\left(R_{L} /\left(R_{S}+R_{L}\right)\right)
$$

which is tapped off and amplified prior to processing. R_{L} is in fact used as a transfer function to linearly map I_{s} into the voltage which the boxcar can process:

$$
I_{S}=V_{L} / R_{L}=V_{B} /\left(R_{S}+R_{L}\right)
$$

The mapping is best when $R_{S} \gg R_{L}$ so that R_{L} can be ignored in the computation of I_{S} :

$$
I_{S} \doteq V_{B} / R_{S} .
$$

Still, the need for R_{L} is obvious from the power relationship

$$
P_{L}=I_{S}{ }^{2} R_{L}=I_{S} V_{L}
$$

in which V_{L} would be zero if R_{L} were zero. We tried to keep $\mathrm{R}_{\mathrm{L}}<=\mathrm{R}_{\mathrm{S}} / 10$ in these scans, but empirically we also had to raise the PITS signal significantly above the everpresent broadband white noise.

MODEL 162 BOXCAR AVERAGER with TWO MODEL 166 GATED INTEGRATORS:

The boxcar averager samples and averages the amplified PITS signal from the ITHACO 120 preamplifier. Both integrators receive the same signal but sample it at different points in time as set by \%Initial A and \%Initial B aperture delay settings and selected Aperture Delay Range time base. For optimal operation, the gates can be set anywhere between 5% and 100% according to the operating manual. In our case, due to the pulse duration of the chopper output signal (trigger) the upper limit was about 88\%, for falling edge triggering. (50 ms coincides with our selected aperture duration, $A D$). Depending on the sample's impedance we used sensitivity settings of 500 , 250 or 100 mV , with the 10 k ohm input impedance selected. We selected exponential averaging which assures a Signal-to-Noise Improvement Ratio of $\operatorname{sqrt}(2 \mathrm{~N})$ where $\mathrm{N}=$ number of repetitions required to reach 0.63 of steady state output. At least $5 * N$ repetitions are necessary to assure
us of this SNIR. With an averaging time constant of 10 ms our $N_{\text {max }}=[450,3600]$ as shown on Table 2.3.2, where t_{1} / t_{2} is (\%Initial A)/(\%Initial B). While a longer averaging time constant would be expected to force broadband white noise to zero in the long run, the SNIR analysis shows that there is a point beyond which N becomes low enough to contribute to signal degradation. The 10 k ohm input impedance setting was selected to make the boxcar a high input impedance for the preamplifier whose output is 600 ohms. On the other hand the 50 ohm selection would have required a series resistance of 550 ohms for proper impedance matching, since $R_{\text {series }}=$ $Z_{\text {source }}$ - 50 ohms. DC coupling was selected to enable us to measure at arbitrarily low frequencies. With ac coupling, the -3 dB frequency response occurs at 16 Hz and would possibly attenuate PITS information.

t1/t2	Repetition Rate at:				SNIR at:	
	10 ms	20 ms	50 ms	10 ms	20 ms	50 ms
$.05 / .5$	450	900	2250	30	42	67
$.06 / .6$	540	1080	2700	33	46	73
$.07 / .7$	630	1260	3150	35	50	79
$.08 / .8$	720	1440	3600	38	54	85
$.1 / 1.0$	900	1800	---	42	60	--

Table 2.3.2 Repetition rates for the PITS experiment.

Re-stated, the repetition rate is the number of samples of the signal picked off by the integrator between t_{1} and t_{2}.

Fig. 2.3.3 Front panel of a series 16 X gated integrator

In summary, these are the key parameters in boxcar averager setting:

1) Aperture Delay Range (ADR)

A short ADR minimizes aperture-delay jitter, labelled in Fig. 2.3.4 as E, which can be up to 0.05% of $A D R$. An excessively long $A D R$ will make the $A D R$ ramp and its overhang (F) overlap the following trigger. In PITS both extremes are important considerations. Since we want to monitor only emission rates or capture rates but not both simultaneously, our ADR needs to be selective.

2) Aperture Duration

The aperture duration ($A D$) is used to optimally balance resolution, SNIR, and measurement time. Best results require a shorter $A D$ (giving a higher resolution) even though this lengthens the time taken to complete a measurement.

3) Time Constant

Since the time constant $T C$, affects both the SNIR, as already shown, and the measurement.time, an optimal setting can be found by using the main-frame Signal Processing TC (SPTC), to boost the SNIR while shortening the measurement time with the averaging TC.

Fig. 2.3.4 Key boxcar operational parameters (Source: Operating and Service Manual,1983)

Fig. 2.3.5 Determining the trigger period.
(Source:
Operating and service
Manual,1983)
SONOJ3S ${ }^{\prime} x^{x+W} d$

4) Trigger Period ($P_{\max }$)

Use Fig. 2.3.5 to determine the upper limit on this.
5) Scan Time

The best way to select an optimal scan time is to use the formula
$\mathrm{T}_{\text {Smin }}=5\left[(\mathrm{SPTC})^{2}+(O T C)^{2}\right]^{1 / 2} \mathrm{ADR} / \mathrm{AD}$,
where OTC is the observed time constant:
OTC = TC/duty factor
and
duty factor $=A D /$ trigger period.
Our decisions regarding these 5 parameters are discussed in detail in appendix B.

The ITHACO 1201 Low Noise Preamplifier:

This instrument amplifies the low level PITS signal as shown in Fig. 2.3.6. We set the high pass filter to ground and the low pass filter to either 10 kHz or 3 kHz depending on the noise level. Any setting below 3 kHz affected the actual shape of the PITS signal while above 10 kHz , white noise output significantly escalated. Most samples required a gain of 200 but a few gave good signals at 100 or even at 50 .

Fig. 2.3.6 $\begin{gathered}\text { Basic } \begin{array}{c}\text { schematic of the ITHACO } \\ \text { prearmplifier. }\end{array} \\ 1201\end{gathered}$

The HP1742A 100 MHz Oscilloscope:

The oscilloscope was mainly used to display the amplified PITS signal, the location of the gates relative to the decaying exponential edge. The alignment between the trigger signal provided by the chopper and the sample's response (the PITS signal) is also checked with the scope. It also came in handy for quick system shooting trouble and noise-level estimation when necessary.

The HP7045B X-Y Recorder

This X-Y recorder accepts floating dc or ac inputs to a 200 V peak. It has a constant high input impedance of one mega-ohm. Our unit is calibrated to within $+/-1 \mathrm{~mm}$ for the x and y axes. The typical accuracy rating is $+/-0.2 \%$ of full scale. It was used in the local control mode even though it has a remote control option.

In order to plot PITS signals (y) against temperature (x) we used the $x-y$ mode. For the majority of the scans, the x and y settings of $0.1 \mathrm{~V} / \mathrm{cm}$ and $0.25 \mathrm{~V} / \mathrm{cm}$ respectively provided ample magnification at various settings of boxcar sensitivity and preamplifier gain. To maintain calibration, we ensured that the zero controls always actuated a response when turned.

If precautions in the Operating and Servicing Manual are followed, the $X-Y$ recorder is rather straight forward to operate.

The Fluke 8520A Programmable Digital Multimeter:

The DMM was used mainly by the computer to read the DC voltage of the boxcar output at different points along the temperature scan.

The Cryosystems LTS Closed Cycle Refrigerator System:

This system was used to control temperature for measurements between 30 K and 360 K without the use of external supplies of liquid nitrogen and helium. Some comments on individual components follow:

Model SC 8032224 compressor unit:

The main thing to watch for here is the gas pressure indicator which read about 260 psi before power
up. Turn on/off should always be in the sequence COMPRESSOR ON-PUMP ON then PUMP OFF-COMPRESSOR OFF. Cooling without temperature control is fairly rapid in that from room temperature we could reach 30 K in less than 30 minutes.

Model 22 Cold Head/Vacuum Shroud Assembly:

As Fig. 2.3.7 illustrates this has provision for rough pumping to evacuate ambient gases from the vacuum shroud before turning on the compressor. For best results we kept the rough pump running throughout the scan to forestall possible leakage. Leakage at low pressure would cause moisture to condense on the inside surfaces of the cold head and drastically hamper the cooling process. This is because convection heat conduction greatly adds to the heat load of the cold finger. Whenever this happened, we regenerated the vacuum in the shroud for 30 minutes or so at high temperature, i.e. above room temperature, before continuing.

Model DRC-81C Temperature Controller

The controller balances the cooling effect of the refrigerator by supplying heat through a DC resistance temperature control heater. The heating coil is wrapped around the cold finger just below the cold head, i.e. the

Fig. 2.3.7 The refrigeration system.

Fig. 2.3.8 Silicon diode sensor response curve
platform onto which the sample is fixed. We used a Lakeshore DT-470-SD-12 silicon diode sensor. Its tolerance is specified in 3 ranges as follows:

$$
\begin{array}{ccc}
0 \mathrm{~K}-100 \mathrm{~K} & 100 \mathrm{~K}-305 \mathrm{~K} & 305 \mathrm{~K}-475 \mathrm{~K} \\
+/-0.5 \mathrm{~K} & +/-1.0 \mathrm{~K} & +/-2.0 \mathrm{~K}
\end{array}
$$

For each range we had to modify the RAMPING program to automatically alter the GAIN, RATE and RESET values for a smooth temperature response. An example is shown in App-
endix F [SUPRAMED, 1989]. The resident PROM (MB81C.OBJ) is calibrated specifically for the DT-470-SD-12 sensor response curve (Fig. 2.3.8). The most difficult task is the manual setting of these values on the front panel, but the beauty of software control is that once set in code they remain till the sensor is changed.

The HP 86B Computer Control System

We used this for both the Hall effect/Van der Pauw measurements and PITS scans. In PITS measurements we ran scans at 1 or $2 \mathrm{~K} / \mathrm{min}$ depending on the quality of the sample and the contacts. Programs in Appendix D were written in BASIC and adapted for this application by various graduate students.

SUPRAMED is a modification of the ramping program in the DRC-81C Manual. PITS scans of SIGNAL vs. TEMP were plotted using LINPLOT (Doerfler,1984), while ARRPLOT (Dlodio, Doerfler, 1989) gave us Arrhenius plots. LINFITMD (Dlodlo, Eckhoff, 1989) computes activation energy and capture cross section based on the Arrhenius data points.

Overall System Summary

Basically, the idea is to energize the sample enough to populate whatever traps might be in the GaAs
bandgap of the annealed layer and then monitor the traps over a temperature range as they undergo depopulation. The procedure for this is to turn on the instrumentation panel and the computer. Next, turn on the rough pump and let it create a vacuum in the shroud for a few minutes. The compressor and coldhead along with the battery circuit may be next followed by the laser.

Figure 2.3.9 illustrates how the various components already discussed separately fit together. One of the limitations of the HP-86 computer is that once scanning is underway no user interaction is possible so that data analysis comes to a halt.
Spectra Physics

Balzers
Roughing
Pump

Cryogenics
SC
Compressor

Laser Exciter

Laser 7 sample

Fig. 2.3.9 The PITS system block diagram.

CHAPTER III

RESULTS AND DISCUSSION

3.0 Introduction.

As already noted in chapter 1 , the focus here is on the laser annealed samples so far studied in this laboratory. First, correlations between electrical characteristics and laser intensity are discussed. Then the influence of dose on the characteristics is analyzed in the same light. Finally, the thermodynamic properties are surveyed for both laser and furnace annealed samples.

3.1 Van der Pauw and Hall Effect Measurements.

With reference to Table 3.1 a we note that for pulsed-laser annealed samples, mobility and sheet resistivity are each linearly correlated with laser intensity at the various orders of dose magnitude. The linear relationship is illustrated by Figures 3.1 and 3.2. Patently, an increase of mobility with laser intensity was observed, along with the corresponding decline in resistivity. The inverse relationship between mobility and resistivity that was developed in equation (2.2.7) is confirmed here. On the other hand, no linear correlation could be established between sheet carrier concentration and laser intensity (Fig. 3.3).

Table 3.1a : Dependence of electrical characteristics on laser intensity. Dose $=2.0 \times 10^{13} \mathrm{~cm}^{-2}$

Laser
Intensity
Mobility Sheet carrier Sheet concentration resistivity
($\mathrm{J} / \mathrm{cm}^{2}$) ($\left.\mathrm{cm}^{2} / \mathrm{V}-\mathrm{s}\right)\left(\mathrm{cm}^{-2}\right)$ (ohm/sheet)

0.26	229	6.2×10^{13}	443
0.305	271	6.2×10^{13}	376
0.32	279	1.0×10^{14}	214

Correlation coefficients: 0.9957 0.6934 -0.8697

MOBILITY vs LASER INTENSITY

Fig. 3.1 Mobility as a function of laser intensity. Dose $=2.0 \times 10^{13} \mathrm{~cm}^{-2}$

Fig. 3.2 Resistivity as a function of laser intensity. Dose $=2.0 \times 10^{13} \mathrm{~cm}^{-2}$

Fig. 3.3 Sheet carrier concentration versus laser intensity. Dose $=2.0 \times 10^{13} \mathrm{~cm}^{-2}$

Tests by Tim Chin (1987) tended to suggest a quadratic or parabolic fit for both mobility and sheet carrier concentration. Comparing the results, it can be seen that fairly similar data points were obtained for the 2×10^{13} cm^{-2} samples. Up to around $0.32 \mathrm{~J} \mathrm{~cm}^{-2}$, mobility improves with increasing laser intensity, yet, evidently, thereafter it deteriorates. Again, it has been found previously (Rys, et al, 1987; Emerson, et al, 1980) that an optimum anneal energy may exist. Rys et al (1987) further pointed out that beyond a certain optimum temperature, arsenic out-diffuses during pulsed laser annealing, an occurrence that would alter the material's properties. More importantly, since PLA does introduce traps into the crystal, the trade-off between the capacity to restore order and the capacity to add to the disorder must reach a balance somewhere, at the optimum laser intensity.

The influence of dose is illustrated in Table 3.1b and Figure 3.4. Evidently, The sheet carrier concentration has a linear correlation (coefficient, $r=$ - 0.76) with dose. On the other hand, the correlation coefficient is significantly low for mobility and sheet resistivity.

Table 3.1b Dependence of electrical characteristics on dose. $I=0.32 \mathrm{~J} / \mathrm{cm}^{2}$

	Mobility	Sheet carrier concentration	Sheet resistivity
cm^{-2}	$\left(\mathrm{~cm}^{2} / \mathrm{V}-\mathrm{s}\right)$	$\left(\mathrm{cm}^{-2}\right)$	(ohm/sheet)
4.0×10^{12}	249	1.2×10^{14}	218
2.0×10^{13}	298	1.0×10^{14}	205
1.0×10^{14}	232	1.0×10^{14}	264
6.0×10^{14}	282	1.0×10^{14}	214
Correlation coefficients: 0.1523 -0.7632 0.2104			

Fig. 3.4 a) Dose dependence of electron mobility.
Intensity, $I=0.32 \mathrm{~J} \mathrm{~cm}^{-2}$.
(Data : Courtesy, Yanan Shieh, 1989)

Fig. 3.4 Dose dependence of b) sheet carrier concentration
c) sheet resistivity.

Intensity, $I=0.32 \mathrm{~J} \mathrm{~cm}^{-2}$.
(Data : Courtesy, Yanan Shieh, 1989)

3.2 Correlation between Trap Energy and Capture Cross Section

Table 3.2 summarizes the processed data from the PITS measurements. The peaks are grouped according to increasing temperature and then numbered in groups of 1 to 5. Each realization of a peak within a group is further identified by a small letter (a through f). The sample identification numbers on the right are arbitrary mnemonics where " L " means the sample is pulsed laser annealed, "A" or "B" refers to the parent wafer as specified in the wafer documentation and the number that follows is the dose code, e.g. "4012" means the dose is $4.0 \times 10^{12} \mathrm{~cm}^{-2}$. The suffixed letters "A" to "D" are the samples' locations on the respective wafers. Each line of data represents the mean of several scans of the sample using different rate windows.

For this analysis, the peaks in Table 3.2 were re-ordered according to increasing energy instead of temperature and then labelled as in Table 3.3. Initially, attempts were made to keep the temperature groups arbitrarily intact but the capture cross sections appeared to reveal finer underlying patterns within these groups. Regression analysis was performed on the groups indicated in Table 3.3. Due to the re-grouping by capture cross section, prefixes "A" to "F" have been added to the peak

Table 3.2. Thermodynamic properties of traps in Si:GaAs.

Peak \# Mean $T_{m}(K) \quad E_{t}(e V) \quad \sigma_{n}\left(\mathrm{~cm}^{2}\right) \quad$ Sample \# ::: :				
1. a.	$35.0+/-0.73$	0.019	$1.2 \mathrm{e}-18$	LA4012B
b.	$36.9+/-2.28$	0.016	3.4 e-19	LA2013D
c.	$41.9+/-1.95$	0.014	7.7 e-20	LA4012A
d.	$43.2+/-0.96$	0.008	1.3 e-20	LA2013B
2. a. b. c.	$52.9+/-1.18$	0.022	1.7 e-19	LB6014A
	$56.2+/-1.76$	0.068	1.0 e-15	LA2013A
	$56.6+/-0.88$	0.089	5.3 e-14	LA2013B
3. a. b. c. d. e. f.	$78.5+/-1.66$	0.056	1.6 e-18	LA4012B
	$80.8+/-1.63$	0.091	2.1 e-16	LA2013B
	$81.3+/-2.35$	0.103	9.7 e-16	LA2013A
	$82.86+/-.96$	0.138	9.8 e-14	LA4012A
	88.1 +/-1.32	0.064	2.3 e-18	LB6014A
	$96.6+/-1.68$	0.176	3.3 e-13	LA2013D
4. a. b. c. d. e. f.	152.4 +/-2.17	0.184	$1.2 \mathrm{e}-16$	LA4012B
	153.9 +/-	0.56	1.1 e-19	LA2013A
	$154.4+/-1.53$	0.52	1.0 e-19	LA2013D
	$160.6+/-2.31$	0.144	2.8 e-18	LA4012A
	166.0 +/-1.27	0.23	1.3 e-20	LA2013B
	$169.5+/-2.73$	0.129	9.9 e-19	LB6014A
5. a. b. c. d.	319.8 +/-3.14	0.69	2.0 e-12	LA4012A
	322.8 +/-1.76	0.71	3.5 e-17	LA2013B
	325.8 +/-3.15	0.57	1.5 e-14	LA4012B
	$327.4+/-3.42$	0.34	7.4 e-18	LB6014A

Table 3.3 Peak grouping by correlation.

Peak	Temp.	E_{t}	σ_{n}		Least
Group	(K)	(eV)	$\left(\mathrm{x} 10^{-20} \mathrm{~cm}^{2}\right)$	Squares Number	

A1.d	43.2	0.008	1.3	Exponential 0.98
A1.c	41.9	0.014	7.7	
A1.b	36.9	0.016	34.0	
A1.a	35.0	0.019	120.0	

B2.a	52.9	0.022	17.0	Exponential 1.00
B2.b	56.2	0.068	100,000.0	
B2.C	56.6	0.089	5,300,000.0	
C3.a	78.5	0.056	160.0	Insufficient data
C3.e	88.1	0.064	230.0	
D3.b	80.8	0.091	21,000.0	Either
D3.c	81.3	0.103	97,000.0	Exponential 0.96
D3. ${ }^{\text {d }}$	82.86	0.138	9,800,000.0	or
D3.f	96.6	0.176	33,000,000.0	Power 0.98
				Either
E4.f	169.5	0.129	99.0	Exponential 1.00
E4.d	160.6	0.144	280.0	or
E4.a	152.4	0.184	12,000.0	Power 1.00

			Either		
F4.e	166.0	0.23	1.3	Exponential	1.00
F4.C	154.4	0.52	10.0	or	
F4.b	153.9	0.56	11.0	Power	1.00

numbers used in Table 3.2. In the new scheme, note that groups A and B are still the original groups 1 and 2 in Table 3.2. C and D split up group 3 peaks while E and F subdivide group 4 into two respective subgroups based on the thermally referenced behavior of the cross sections. The carrier cross sections were found to change exponentially within these subgroups and this behavior of the capture cross section led to the use of the prefixes to aid in the subdivision. The Table 3.2 identities of the peak groups have been preserved through the numbers 1 to 5 following the prefixes.

The energies were treated as the independent variable while the cross sections were made dependent. The objective was to find out if there was any correlation between the magnitude of a trap energy and its corresponding cross section. In each group, a strong correlation was observed with a correlation coefficient in the range $0.96<=r<=1.0$. Cross sections tend to increase exponentially with activation energy, which suggests a definite pattern throughout. From group D on to the deeper traps, a power relationship emerges as a better model than the exponential, at least in terms of the correlation coefficient. Group G actually gives a perfect fit to a quadratic curve.

These observations intuitively suggest that
peaks are distinguishable not only by their energies but by the group they fall into. The group encompasses peaks with identical temperature response as evidenced by the change in capture cross sections with both temperature and energy. In groups A, E, F and G cross sections and energies decrease with increasing temperature unlike groups B, C and D whose energies and cross sections increase with temperature. This manner of viewing the peaks offers a potential tool for making finer distinctions among traps that might otherwise appear identical. Different thermal behavior suggests differences in material characteristics that may not be revealed by trap energy alone.

In addition, we may be able to distinguish peaks having the same activation energy by both peak temperature range and cross section either collectively or separately. Examples include peaks G5.c and F4.b which occur in the respective temperature ranges 319.8 - 327.4 K and 152.4169.5 K and yet have the same activation energy, 0.56 eV $+/-1.8 \%$.

Also observed was an invariable increase of the cross section with trap energy within each group. The pattern of changes in cross section has some periodicity from group to group. Apparently, there is need for caution in classifying peaks using the cross sections due to this
behavior. See peaks A1.d and F4.e. Before peaks can be identified as being the same, their activation energy, capture cross section and peak temperature should match within the bounds of a system error.

It has been asserted (Blakemore and Rahimi, 1984) that the multiphonon emission (MPE) theory may explain the behavior of cross sections in a way that reveals complicated thermal dilational characteristics. According to this theory (Blakemore and Rahimi, 1984), the capture cross section is the thermal average

$$
\operatorname{MPE}=\left[A /\left(2 k T^{*} \operatorname{Shw}\right)\right] \exp \left(-E_{B} / k T^{*}\right)
$$

where

```
S is the Huang-Rhys factor for a single equivalent phonon energy, hw.
T
    \approx{ll}\begin{array}{l}{T,kT>hw/2=34 meV for GaAs (Lang, 1980)}\\{hw/4 k at low temperatures where zero-point}
                                    lattice vibrations are independent of
                                    temperature.
```

$A \approx 10^{-14} \mathrm{~cm}^{2} \mathrm{eV}$, a parameter.

In order to test the applicability of the MPE theory to the above intuitive observations, it was tried on previously collected data (Yanan, 1989). The data was also arranged in the manner of Table 3.3 and the result is displayed in Table 3.4. Peak identification labels P1 to P5 before the colon are in line with Yanan's identific-

Table 3.4 Peak grouping by correlation. (Source: Yanan, 1989)

Peak Group Number	Temp. (K)	$\begin{aligned} & \mathrm{E}_{\mathrm{t}} \\ & (\mathrm{ev}) \end{aligned}$	$\left.\stackrel{n}{(x 10} 10^{-19} \mathrm{~cm}^{2}\right)$	Least Squares Fit	Correl. Coeff. r
P1:1	57	0.02	2.0	Either	
2	62	0.03	3.8	Exponential	0.92
3	60	0.05	320.0	or Power	0.90
4	70	0.06	1000.0		
5	48	0.06	100000.0		
6	58	0.07	27000.0		
P2:1	107	0.05	4.3	Either	
2	83	0.08	1500.0	Exponential	0.90
3	86	0.09	2300.0	or Power	0.96
4	83	0.09	8900.0		
5	86	0.10	12000.0		
6	94	0.11	15000.0		
7	108	0.15	100000.0		
P3:1	175	0.23	1.9	Either	
2	180	0.25	45000.0	Exponential	0.88
3	175	0.27	500000.0	or Power	0.89
4	180	0.32	4600000.0		
5	173	0.33	31000000.0		
P4:1	269	0.30	1400.0	Either	
2	246	0.32	9700.0	Exponential	1.00
3	273	0.56	49000000.0	or	
4	279	0.60	140000000.0	Power	1.00
P5:1	357	0.79	170000000.0	Insufficient	data
2	346	0.80	700000000.0		

Table 3.5 Peak grouping by correlation - sample identification. (Source: Yanan, 1989)

P1:1	57	0.02	2.0	F4012	
2	62	0.03	3.8	L2212	Se
3	60	0.05	320.0	L2013	
4	70	0.06	1000.0	F2212	Se
5	48	0.06	100000.0	L6014	
6	58	0.07	27000.0	L6014	
P2:1	107	0.05	4.3	F4012	
2	83	0.08	1500.0	L1014	
3	86	0.09	2300.0	L4012	
4	83	0.09	8900.0	L2013	
5	86	0.10	12000.0	L6014	
6	94	0.11	15000.0	F6014	
7	108	0.15	100000.0	F2212	Se ${ }^{\text {- }}$
P3:1	175	0.23	1.9	L6014	
2	180	0.25	45000.0	L4012	
3	175	0.27	500000.0	L1014	
4	180	0.32	4600000.0	L2013	
5	173	0.33	31000000.0	L2212	Se
P4:1	269	0.30	1400.0	F6014	
2	246	0.32	9700.0	F2212	Se
3	273	0.56	49000000.0	F4012	
4	279	0.60	140000000.0	F4012	
P3:1	357	0.79	170000000.0	F6014	
2	346	0.80	700000000.0	L1014	

ation scheme while the subdivisions comply with the scheme developed for Table 3.3.

As already depicted by the MPE theory, there is no simple correlation between the peak temperature and the capture cross section. On the contrary, activation energy gives an exponential fit with $0.875<=r<=0.996$ or a power fit with $0.893<=r<=0.998$. The reader should note that in Table 3.3 we were dealing with PLA silicon doped samples exclusively. By contrast, Table 3.4 is a mixed group including selenium and silicon implanted PLA as well as furnace annealed (FA) samples. Table 3.5 indicates the source sample's identity number according to Shieh (1989). Comparing Tables 3.3 and 3.4 , one may infer that the MPE theory holds in this case and supports the hypothesis of an approximately exponential relationship between the activation energy and the capture cross section. However, the relationship between the latter and temperature change is not as straightforward. Fig. 3.5 is a scatter diagram of the logarithm of the cross section as a function of activation energy and peak temperature. The data is from Table 3.3 and is used here to graphically illustrate the validity of the indicated least squares approximations. The curves were inserted by hand to show the sequences.

Fig. 3.5
CORRELATION of $\sigma \bar{n}$ vs Et

CHAPTER IV

CONCLUSIONS

Hall Effect and Van der Pauw measurements were made on PLA silicon and selenium doped GaAs samples. Comparisons were made with previous results from this laboratory. Correlation studies on the data indicate that electron mobility improves with increasing PLA light intensity only up to a point between 0.32 and $0.33 \mathrm{~J} \mathrm{~cm}^{-2}$. Beyond that it declines significantly. It appears as though higher intensities dislodge inordinate amounts of ions from the silicon nitride cap. In turn this intensifies the influence of impurity scattering in the annealed layer. Higher intensity also triggers the possible outdiffusion of arsenic by elevating the temperature. This may make the annealed sample less conductive. Intensities lower than $0.3 \mathrm{~J} \mathrm{~cm}^{-2}$ produce low mobilities as well but for different reasons. This time inadequate re-ordering of the implant damaged crystal is the cause.

Unlike mobility, sheet carrier concentration is more directly correlated with dose than with laser intensity. Higher dose samples produced lower concentrations than low dose ones, relative to their respective doses. In both cases, nevertheless, activation is still
high, yet, in spite of this, impurity-induced scattering and possibly elemental out-diffusion during annealing manage to keep mobility low.

Results of PITS scans carried out by Yanan Shieh were also reviewed and compared with the author's. For both sets of data, correlations between trap activation energy and capture cross section were investigated. It was found that relations between these characteristics tend to be exponential within particular temperature ranges. Inter-range behavior of the cross section is periodic while that of the activation energy monotonically increases with temperature. The periodic behavior seems to indicate an orderly crystalline response to temperature change. There is a chance that if we can isolate these patterns for various impurities in GaAs we may be able to identify the sources of certain peaks without being tied down to a specific temperature.

The importance of this is that realizations at specific temperatures are so far not always reproducible. May we note, parenthetically, that some of the peaks are due to residual crystal damage from ion implantation, rather than impurities. Notwithstanding this point, the value of taking into account the activation energy, the capture cross section as well as the temperature range of the trap is that collectively these characteristics
constitute a more precise distinction among the peaks. Consequently, unraveling a definite pattern of relationships among them becomes important.

REFERENCES

N.J. Barrett and J.D. Grang, "Annealing of seleniumimplanted GaAs", J. Appl. Phys. 56(12), Dec. 1984.
U. Narayan Bhat, Elements of Applied Stochastic Processes, 2/e; John Wiley \& Sons, 1984.
J. S. Blakemore and S. Rahimi, "Models for Mid-gap Centers in GaAs" in Semiconductors and Semimetals. Vol. 20, 1984 p. 233 ff.

Timothy W. H. Chin, "A Study of Hall-Effect Measurement Techniques on Pulsed Laser Annealed Gallium Arsenide", A Master's Thesis Kansas State University 1988.
D. S. Day et al, "Deep-level-transient spectroscopy: System effects and data analysis", J. Appl. Phys. 50(8), August 1979.

Sunanda Dhar et al, "Nature and distribution of electrically active defects in Si-implanted and lamp-annealed GaAs", J. Appl. Phys. 58(11), 1 Dec. 1985.

Robert D. Fairman et al, "Growth of High-Purity SemiInsulating Bulk GaAs for Integrated-Circuit Applications", IEEE Transactions on electron devices, vol. ED-28, No. 2, Feb. 1981.

David K. Ferry, Editor-in-Chief; Gallium Arsenide Technology, Howard W. Sams \& Co, 1985.

Sorab K. Ghandhi, VLSI Fabrication Principles, Si and GaAs, Wiley Interscince, 1983.

Sukhdev S. Gill and B.J. Sealy, "Review of Rapid Thermal Annealing of Ion Implanted GaAs", J. Electrochem. Soc. Dec. 1986.

Ch. Hurtes et al, "Deep-level spectroscopy in highresistive materials", Appl. Phys. Lett. $32(12), 15$ June 1978.
T. Itoh and H. Yanai, "Experimental Investigation of Interface Traps in GaAs Planar Devices by DLTS and PITS Methods." Inst. Phys. Conf. Ser. No.56: Chapter 8.
R. E. Kremer et al, "Transient photoconductivity measurements in semi-insulating GaAs.", J. Appl. Phys. 62 (6), 15 Sep. 1987.
D.V. Lang, "Deep-level transient spectroscopy: A new method to characterize traps in semiconductors", J. Appl. Phys., Vol.45, No. 7, July 1974.
D. V. Lang (1980) J. Phys. Soc. Jpn. 49, Supl. A., p. 215

Shinya Lida and Kazuhiro Ito, "Selective Etching of Gallium Arsenide Crystals in $\mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{H}_{2} \mathrm{O}_{2}-\mathrm{H}_{2} \mathrm{O}$ System", J. Electrochem. Soc. May 1971.

Otfried Madelung; Physics of III-V Compounds; John Wiley \& Sons, 1964.
G. N. Maracas,"DLTS analysis of GaAs MESFETS and effects of deep levels on devices proformance", A doctoral dissertation Cornell University 1982.
G. M. Martin et al, "Electron Traps in Bulk and Epitaxial GaAs Crystals" Electronics Letters 13, 666668 (1977).
J. W. Mayer et al, "ION IMPLANTATION OF SILICON" Canadian Journal of Physics. Volume 45 (1967).
J. W. Mayer, Lennart Eriksson and John A. Davies; Ion Implantation in Semiconductors:Silicon and Germanium; Academic Press, 1970. Chap. 5.

Shunji Nojima, "Laser annealing effects in ionimplantation GaAs", J. Appl. Phys. 53(7), July, 1982.

Ahmed H. Oraby,* Yoshihiko Yuba, Mikio Takai, Kenji Gamo and Susumu Namba, "Pulsed Laser Annealing Effects in Si-Implanted GaAs", J. Appl. Phys. 1983 pp. 326.
J. L. Van der Pauw, "A METHOD OF MEASURING THE RESISTIVITY AND HAL工 COEFFICIENT ON LAMELLAE OF ARBITRARY

SHAPE", PHILIPS TECHNICAL REVIEW, VOL. 20, Feb. 1958.
S. J. Pearton et al, "Deep traping Centers in n-GaAs Surface Barrier Diodes for Nuclear Radiation Detection", Electronics Letters Vol. 16 No. 12, 5th June 1980.
A. Rys, et al, "Very heavily doped n-type GaAs obtained with pulsed laser annealing", Proceedings of SPIE-T International Society for Optical Engineering: Advanced Processing of Semiconductor Devices II, Vol. 945, p. 41, 1988.
C. T. Sah et al, "Thermal and optical emmision and capture rates and cross sections of electrons and holes at imperrfection centers in semiconductors from photo and dark junction current and capacitance experiments", Solid-State Electronics Pergamon Press 1970. Vol. 13, pp. 759-788.

Yanan F.Shieh, "Pulsed Laser Annealing and Characterization of GaAs Substrates", Master's Thesis, 1989.

Murray R. Spiegel;Probability abd StatisticsischaUM's Outline Series in Mathematics, Mc Graw-Hill, 1975.
S. M. Sze; SEMICONDUCTOR DEVICES: Physics and Technology; John Wiley \& Sons, 1985.

Thomas H. and Ronald J. Wonnacott; REGRESSION: A Second Course in Statistics; John Wiley \& Sons, 1981. Chaps. 5 and 6.

Osamu Yoshie and Mitsuo Kamihara, "Photo-Induced Current Transient Spectroscopy in High-Resistivity Bulk Material. III. Scanning-PICTS System for Imaging Spatial Distributions of Deep Traps in Semi-Insulating GaAs Wafer", Jpn. J. Appl. Phys. 24(431), 1985.
R. T. Young, J. Narayan, W.H. Christie, G.A. van der Leeden, J.I. Levatter, L.J. Cheng, "Semiconductor Processing with Excimer Laser", Solid State Technology, Nov. 1983
Y. Yuba, et al, "Deep levels in implanted and laser annealed GaAs studied by current and capacitance-transient measurements", Inst. Phys. Conf. Ser. No. 63: Chapter 5, 1981.

APPENDIX A
 TABLES OF SCAN DATA BY SAMPLE

These are the tables of data as collected for each sample. PITS scans are listed first followed by the electrical scans, viz. Van der Pauw and Hall Effect.

Peak location numbers are included as a crossreference to Table 3.2. PITS scan numbers are indices denoting the sequence in which the scans were taken. They cross-reference the actual readings on the $X-Y$ charts.

LA4012A
SOURCE
Si:GaAs
Dose
Anneal
Laser Intensity: $0.29 \mathrm{~J} \mathrm{~cm}^{-2}$

PITS Scan \#	(ms)	$\left.\stackrel{T}{\mathrm{O}}_{\mathrm{K}}\right)$	$\begin{aligned} & \mathrm{X} \\ & (1000 / \mathrm{T}) \end{aligned}$	$\left(\ln \left(* T^{2}\right)\right.$	Peak Location \#
5	3.0	39.0	25.64	1.5180	1.a
4	2.5	40.5	24.69	1.4111	1.b
1	2.0	42.3	23.64	1.2750	1.c
2	1.6	43.9	22.78	1.1261	1.d
3	1.4	44.0	22.73	0.9971	1.e
5	3.0	81.9	12.21	3.0019	2.a
4	2.5	81.5	12.27	2.8097	2.b
1	2.0	83.5	11.98	2.6351	2.c
2	1.6	83.7	11.95	2.4167	2.d
3	1.4	83.9	11.93	2.2856	2.e
					-
5	3.0	157.6	6.35	4.3110	3.a
4	2.5	161.4	6.20	4.1763	$3 . b$
1	2.0	164.5	6.19	3.9544	3.c
5	3.0	316.0	3.16	5.7023	4.a
1	2.0	319.7	3.13	5.3189	4.c
2	1.6	323.7	3.09	5.1219	4.d

LA4012A (cont.)
HALJ EFFECT and VAN DER PAUW READINGS

I_{NP} (mA)	$\mathrm{V}_{\text {static }}$ (mV)	V_{B} (mV)	$\mathrm{V}_{\mathrm{VDP}}$ (mV)	$\mathrm{V}_{\mathrm{VDP2}}$ (mV)
0.001	0.0001	0.0002	0.0002	0.0001
0.003	0.0002	0.0002	0.0005	0.0003
0.01	0.0007	0.0007	0.0016	0.0009
0.03	0.0021	0.0021	0.0047	0.0028
0.1	0.0067	0.0069	0.0159	0.0093
0.3	0.0167	0.0177	0.0476	0.0278
1.0	0.0353	0.0397	0.1573	0.1016

LA4012B
SOURCE
Si:GaAs
Dose
: Motorola 4264A wafer.

Anneal
Laser Intensity: $0.29 \mathrm{~J} \mathrm{~cm}^{-2}$

PITS Scan \#	(ms)	$\left({ }^{\mathrm{T}} \mathrm{O}_{\mathrm{K}}\right)$	$\begin{aligned} & \mathrm{X} \\ & (1000 / \mathrm{T}) \end{aligned}$	$\stackrel{Y}{\left(\ln \left({ }_{T}\right)^{2}\right)}$	Peak Location \#
1	3.0				
2	2.5	34.3	29.15	1.0788	1
3	2.0	34.7	28.82	0.8789	1
4	1.6	36.0	27.78	0.7293	1
1	3.0	75.8	13.19	2.8471	3
2	2.5	78.7	12.71	2.7393	3
3	2.0	79.4	12.59	2.5344	3
4	1.6	80.2	12.47	2.3313	3
1	3.0	149.0	6.71	4.1987	4
2	2.5	152.3	6.57	4.0602	4
3	2.0	153.6	6.51	3.8541	4
4	1.6	154.8	6.46	3.6465	4
1	3.0	322.6	3.10	5.7437	5
2	2.5	323.7	3.09	5.5682	5
3	2.0	325.9	3.07	5.3586	5
4	1.6	330.8	3.02	5.1653	5

LA4012B (cont.)
HALL EFFECT and VAN DER PAUW READINGS

I_{NP} (mA)	$\mathrm{V}_{\text {static }}$ (mV)	V_{B} (mV)	$\mathrm{V}_{\mathrm{VDP1}}$ (mV)	$\mathrm{V}_{\mathrm{VDP} 2}$ (mV)
0.001	0.0089	0.0092	0.0001	0.0001
0.003	0.0003	0.0003	0.0004	0.0002
0.01	0.0009	0.0009	0.0014	0.0005
0.03	0.0027	0.0028	0.0043	0.0016
0.1	0.0089	0.0092	0.0143	0.0054
0.3	0.0267	0.0275	0.0430	0.0163
1.0	0.0888	0.0916	0.1432	0.0544

LA2013A
SOURCE : Motorola 4264A wafer.
Si:GaAs
Dose

$$
: 2.0 \times 10^{13} \mathrm{~cm}^{-2}
$$

Anneal
Laser Intensity: $0.32 \mathrm{~J} \mathrm{~cm}^{-2}$

PITS Scan \#	(ms)	$\left.{ }^{\mathrm{T}}{ }_{\mathrm{O}}^{\mathrm{K}}\right)$	$\stackrel{X}{(1000 / T)}$	$\stackrel{Y}{\left(\ln \left(* T^{2}\right)\right.}$	Peak Location \#
4	4.0	53.5	18.69	2.4380	2
3	2.5	56.3	17.76	2.0694	2
1	1.5	56.5	17.70	1.5662	2
2	2.0	56.7	17.64	1.8610	2
0	1.0	58.4	17.12	1.2267	2
4	4.0	78.7	12.71	3.2096	3
3	2.5	80.6	12.41	2.7875	3
2	2.0	80.6	12.41	2.5642	3
1	1.5	82.9	12.06	2.3330	3
0	1.0	85.1	11.75	1.9796	3
4	4.0	152.6	6.55	4.5342	4
2	2.0	153.7	6.51	3.8555	4
1	1.5	154.3	6.48	3.5754	4
3	2.5	154.8	6.46	4.0928	4

HALL EFFECT and VAN DER PAUW READINGS

$I_{N P}$ (mA)	$\begin{gathered} \mathrm{V}_{\text {static }} \\ (\mathrm{mV}) \end{gathered}$	V_{B} (mV)	$\mathrm{V}_{\text {VDP1 }}$ (mV)	$\mathrm{V}_{\mathrm{VDP} 2}$ (mV)
0.001	0.1189	0.1142	0.0849	0.0402
0.003	0.3549	0.3426	0.4690	0.1213
0.01	1.1821	1.1438	1.5630	0.4050
0.03	3.5509	3.4321	4.6944	1.2175
0.1	11.8078	11.4158	15.6410	4.0570
0.3	35.1534	34.0058	46.9547	12.1760
1.0	114.9534	111.37	156.4490	40.5349

LA2013B					
SOURCE : Motorola 4264A wafer.					
Si:GaAs					
Dose $\quad: 2.0 \times 10^{13} \mathrm{~cm}^{-2}$					
Anneal Laser Intensity: $0.305 \mathrm{~J} \mathrm{~cm}^{-2}$					
PITS	(ms)	T			Peak
$\begin{aligned} & \text { Scan } \\ & \# \end{aligned}$		(${ }_{\text {K }}$	(1000/T)	(ln (*T ${ }^{2}$)	Location
7	2.0	41.9	23.87	1.2560	1
3	1.0	43.7	22.88	1.3401	1
4	1.5	44.1	22.68	1.0706	1
7	2.0	55.8	17.92	1.8289	2
6	1.8	56.1	17.83	1.7343	2
5	1.0	57.8	17.3	1.2062	2
2	2.5	78.9	12.67	2.7449	3
7	2.0	80.3	12.45	2.5569	3
4	1.5	80.7	12.20	2.3111	3
5	1.0	83.4	11.90	1.9395	3
2	2.5	162.9	6.14	4.1948	4
7	2.0	164.9	6.06	3.9961	4
5	1.0	166.1	6.02	3.3174	4
11	2.0	320.7	3.12	5.3264	5
10	2.0	322.6	3.10	5.3382	5
9	2.5	325.0	3.08	5.5762	5

LA2013B (cont.)
HALL EFFECT and VAN DER PAUW READINGS

$I_{N P}$ (mA)	$\begin{gathered} V_{\text {static }} \\ (\mathrm{mV}) \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{B}} \\ & \quad(\mathrm{mV}) \end{aligned}$	$V_{\text {VDP1 }}$ (mV)	$\mathrm{V}_{\mathrm{VDP}}$ 2 (mV)
0.001	0.0814	0.0800	0.1253	0.0425
0.003	0.2461	0.2385	0.3759	0.1280
0.01	0.8251	0.7972	1.2573	0.4296
0.03	2.4789	2.3949	3.7768	1.2897
0.1	8.2595	7.9825	12.5838	4.2908
0.3	24.7340	23.9495	37.7807	12.8725
1.0	82.2821	79.7677	125.8708	43.0000

LA2013C
SOURCE : Motorola 4264A wafer.
Si:GaAs
Dose
$: 2.0 \times 10^{13} \mathrm{~cm}^{-2}$
Anneal
Laser Intensity: $0.26 \mathrm{~J} \mathrm{~cm}^{-2}$

PITS Scan $\#$ $(\mathrm{~ms})$ $\left(\mathrm{O}_{\mathrm{K})}\right.$	X $(1000 / \mathrm{T})$	Y $\left(\ln \left(* \mathrm{~T}^{2}\right)\right.$	Peak Location $\#$		
2	2.2	76.6	13.05	2.5579	3
1	2.0	78.2	12.23 3	1.2	78.5

HALL EFFECT and VAN DER PAUW READINGS

$I_{N P}$ (mA)	$\begin{gathered} \mathrm{V}_{\text {Static }} \\ (\mathrm{mv}) \end{gathered}$	$\begin{aligned} & V_{B} \\ & \quad(\mathrm{mV}) \end{aligned}$	$\mathrm{V}_{\text {VDP1 }}$ (mV)	$\mathrm{V}_{\mathrm{VDP} 2}$ (mV)
0.001	0.0120	0.0139	0.1100	0.1183
0.003	0.0867		0.3309	0.3536
0.01	0.0833	0.0509	1.1035	1.1778
0.03	0.2498	0.1519	3.3128	3.5360
0.1	0.8311	0.5049	11.0393	11.7838
0.3	2.4888	1.5184	33.1223	35.3616
1.0	8.2391	5.0202	110.3910	117.8200

HALL EFFECT and VAN DER PAUW READINGS

I_{NP} (mA)	$\begin{gathered} \mathrm{V}_{\text {static }} \\ \text { (mV) } \end{gathered}$	$\begin{aligned} & V_{B} \\ & \quad(m V) \end{aligned}$	$\mathrm{V}_{\mathrm{VDP} 1}$ (mV)	$\begin{aligned} & \mathrm{V}_{\mathrm{VDP} 2} \\ & (\mathrm{mV}) \end{aligned}$
0.001	0.0046	0.0228	0.1100	0.5358
0.003	0.0584	0.0702	0.3296	0.2745
0.01	0.1944	0.2332	1.1077	0.9155
0.03	0.5825	0.7010	3.3040	2.7507
0.1	1.9412	2.3350	11.0068	9.1647
0.3	5.7797	6.9576	33.0509	27.5286
1.0	18.5008	22.3809	110.1167	91.9459

LB6014A
SOURCE : Motorola 4264 B wafer.
Si:GaAs
Dose

$$
=6.0 \times 10^{14} \mathrm{~cm}^{-2}
$$

Anneal
Laser Intensity: $0.29 \mathrm{~J} \mathrm{~cm}^{-2}$

PITS Scan \#	(ms)	$\left(\stackrel{T}{\mathrm{o}}_{\mathrm{K}}\right)$	$\begin{aligned} & \mathrm{X} \\ & (1000 / \mathrm{T}) \end{aligned}$	$\stackrel{Y}{\left(\ln \left(* T^{2}\right)\right.}$	Peak Location \#
4	1.6	52.1	19.19	1.4686	2
3	1.4	52.1	19.19	1.3350	2
2	1.2	52.4	19.08	1.1924	2
1	1.0	54.9	18.21	1.1033	2
4	1.6	87.0	11.49	2.4941	3
3	1.4	87.3	11.45	2.3674	3
2	1.2	87.6	11.42	2.2201	3
1	1.0	90.3	11.07	2.0985	3
4	1.6	166.0	6.02	3.7862	4
3	1.4	168.4	5.94	3.6814	4
2	1.2	170.0	5.88	3.5462	4
1	1.0	173.5	5.76	3.4046	4
4	1.6	325.25	3.075	5.1314	5
3	1.4	325.3	3.074	4.9982	5
2	1.2	325.7	3.070	4.8465	5
1	1.0	333.3	3.000	4.7103	5

HALL EFFECT and VAN DER PAUW READINGS

I_{NP} (mA) $\mathrm{V}_{\text {Static }}$ (mV) V_{B} (mV) $\mathrm{V}_{\text {VDP1 }}$ (mV) 0.001 0.0000 0.0000 $V_{\text {VDP2 }}$ (mV) 0.003 0.0001 0.0002 0.0001				
0.01	0.0003	0.0006	0.0002	0.0001
0.03	0.0008	0.0017	0.0017	0.0002
0.1	0.0026	0.0055	0.0056	0.0016
0.3	0.0079	0.0166	0.0168	0.0053
1.0	0.0280	0.0569	0.0560	0.0160

LE2212A
SOURCE : Honeywell 21 and 23 LEC SI
Se:GaAs
Dose
$: 2.2 \times 10^{12} \mathrm{~cm}^{-2}$
Anneal
Laser Intensity: $0.234 \mathrm{~J} \mathrm{~cm}^{-2}$

PITS Scan \#	(ms)	${\left.\stackrel{T}{\mathrm{O}_{K}}\right)}^{\text {(}}$	$\begin{aligned} & \mathrm{X} \\ & (1000 / \mathrm{T}) \end{aligned}$	$\stackrel{Y}{\left(\ln \left(* T^{2}\right)\right.}$	Peak Location \#
1	3.0	57.0	17.54	2.2770	2
4	2.5	57.7	17.33	2.1190	2
3	2.0	58.6	17.06	1.9269	2
2	1.6	59.1	16.92	1.7207	2
8	4.0	90.8	11.01	3.4959	3
1	3.0	92.2	10.85	3.2389	3
4	2.5	92.5	10.81	2.2789	3
9	1.6	98.1	10.19	2.7342	3
6	4.0	151.5	6.60	4.5197	4
5	3.5	151.8	6.59	4.3901	4
1	3.0	156.8	6.38	4.3008	4

HALL EFFECT and VAN DER PAUW READINGS

$\begin{aligned} & I_{N P} \\ & (m A) \end{aligned}$	$\begin{gathered} V_{\text {static }} \\ (\mathrm{mV}) \end{gathered}$	v_{B} (mV)	$V_{\text {VDP1 }}$ (mV)	$\mathrm{V}_{\mathrm{VDP} 2}$ (mV)
0.001	0.1496	0.1469	0.0849	0.0402
0.003	0.7724	0.3218	0.4690	0.1213
0.01	2.5739	1.0752	1.5630	0.4050
0.03	7.7289	3.2297	4.6944	1. 2175
0.1	25.7559	10.7624	15.6410	4.0570

APPENDIX B

RATE WINDOW SELECTION

The rate window specifications set out below are results of different attempts to get as sharp a set of peaks as possible. Initially, there was a general agreement that 10 ms was low enough for the apperture duration range at 64 Hz chopper frequency. The 64 Hz frequency was later changed to 32 and then 20 Hz . A low frequency was desirable in order for the pulse to last long enough to populate the traps. Chapter II already covered the manner in which we avoided phase jitter. Virtually all the PITS scans listed in Appendix A were made in the 20 and 50 ms $A D R$ settings in the manner detailed here.

A t_{1} / t_{2} ratio of 10 was used. Anything greater than 8 would have sufficed (Itoh and Yanai, Conf. Ser.). Generally, as t_{1} gets smaller, the low peaks become shoulders but at the upper end, $t_{2 m a x}$ is also limited to 43 ms or 86% of ADR in the 50 ms range. There is no similar upper limit in the 20 ms range yet for all ranges there is an absolute minimum t_{1}. This is the point at which $t_{1}=t_{0}$, i.e. the beginning of the decaying exponent. In other words, t_{0} separates the trap-filling and the trap-emptying phases of the PITS transient. Fig. B. 1 illustrates the constraints while Table B. 1 lists the selection of settings used.

Table B. 1 Rate window selection array.

	ADR :	50 ms
$\mathrm{t}_{1} / \mathrm{t}_{2}$		20 ms
$(\% \mathrm{~A}) /(\% \mathrm{~B})$	ms	
		ms
$10 / 100$		2.0
$9 / 90$		1.8
$8 / 80$	4.0	1.6
$7.5 / 75$		1.5
$7 / 70$	3.5	1.4
$6 / 60$	2.5	1.2
$5 / 50$		1.0

Fig. B. 1 a) The 20 Hz chopper-controlled laser pulse train which fills the traps with electrons.
b) The PITS signal showing the exponential trap filling (rising edge) and emptying (falling edge). Note that t_{0} marks the beginning of trap emptyinng.
C) Times t_{1} and t_{2} mark the interval over which the integrators sample the PITS signal and give the spectrum in Fig. B. 2.

Fig. B. 2 The jagged waveform is the noisy spectrum before smoothing. Using a 3-point moving average produced the smoothed spectrum. Several such scans are used in developing Arrhenius plot data.

Fig. B. 3 The Arrhenius plot for LB6014A showing excellent low temperature behavior of peaks.

CORRELATION AND TIME SERIES ANALYSIS

C. 1 Statistical solution for E_{t} and σ_{n} and the linear correlation coefficient, r.

Regression coefficients a and b, which are constants, are used to estimate the intercept and the slope coefficients for each pair of peak data points (x_{i}, y_{i}). The least squares line approximating the n pairs of data points has the equation (Freund and Walpole, 1980)

$$
\begin{equation*}
y=a+b x \tag{C.1}
\end{equation*}
$$

To determine the constants a and b the normal equations of the least squares line

$$
\begin{align*}
& \Sigma_{i} y=a n+b \Sigma_{i} x \\
& \Sigma x y=a \sum x=b \sum x^{2} \tag{C.2}
\end{align*}
$$

must be solved. (Subscripts are assumed for x and y .). The solutions yield

$$
\begin{align*}
& a=\frac{\left(\sum y\right)\left(\sum x^{2}\right)-\left(\sum x\right)\left(\sum x y\right)}{n \sum x^{2}-\left(\sum x\right)^{2}} \\
& b=\frac{n \sum x y-\left(\sum x\right)\left(\sum y\right)}{n \sum x^{2}-\left(\sum x\right)^{2}}
\end{align*}
$$

Here, a, which determines the intercept, depends on the origin while the slope coefficient b is invariant under a translation of axes. In solving

$$
\begin{equation*}
\ln \left(T T^{2}\right)=-\ln \left(\gamma_{\mathrm{n}} \sigma_{\mathrm{n}}\right)+\mathrm{E}_{\mathrm{t}} / \mathrm{kT} \tag{C.4}
\end{equation*}
$$

for trap energy and cross section, let

$$
\begin{align*}
\mathrm{E}_{\mathrm{t}} & =\text { slope } * 1000 * \mathrm{k} \\
& =0.0862 * \mathrm{~b} \tag{C.5}
\end{align*}
$$

and let

$$
\begin{align*}
\sigma_{\mathrm{n}} & =\left(1 / \gamma_{\mathrm{n}}\right) * \exp (\mathrm{abs}(\text { intercept })) \\
& =(5.2632 \mathrm{e}-21) * \exp (-\mathrm{a}) \tag{C.6}
\end{align*}
$$

where

$$
\begin{align*}
\text { slope } & =b \\
& =(T / 1000)\left[\ln \left(T^{2}\right)+\ln \left(\gamma_{n} \sigma_{n}\right)\right] \tag{C.7}
\end{align*}
$$

and the relation of (C.1) to (C.4) is rather obvious. These equations, save (C.4), constitute the key algorithm of the program LINFITMD modified by the author from LINFIT (N.Dean Eckhoff, 1986).

The linear coefficient, r, can be formed from the standard error of estimate $S_{y . x}$ of $\ln \left(\tau T^{2}\right)$ on $(1000 / T)$ or, in general, y on x. The standard error of estimate measures the scatter of the data points y about the regression curve (Spiegel(SCHAUM), 1975):

$$
\begin{align*}
s^{2} y \cdot x & =\left[\left(\sum y^{2}-a \sum y-b \sum x y\right) /(n-2)\right] \\
& =s^{2}\left(1-r^{2}\right), r^{2}<=1 \tag{C.8}
\end{align*}
$$

where

$$
\begin{equation*}
r^{2}=1-\Sigma\left(y-y_{\text {est }}\right)^{2} / \Sigma(y-E(y))^{2} \tag{C.9}
\end{equation*}
$$

and

$$
\begin{aligned}
& \Sigma(Y-E(Y))^{2}=\Sigma\left(y-y_{\text {est }}\right)^{2}+\Sigma\left(y_{\text {est }}-E(y)\right)^{2} \ldots(C 10) \\
& \text { In words equation }(C .10) \text { states that }
\end{aligned}
$$

```
Total variation \(=\) Unexplained variation + Explained
variation
```

in that order. Hence combining (C.9) and (C.10)

$$
\begin{align*}
r^{2} & =\sum\left(y_{e s t}-E(y)\right)^{2} / \Sigma(y-E(y))^{2} \\
& =\text { Explained variation/Total variation } \\
& =\text { Coefficient of determination. } \tag{C.11}
\end{align*}
$$

Under conditions of perfect linear correlation, implying also perfect linear regression, $r^{2}=1$ or $r=+/-1$. On the other hand total variation is all unexplained if $r=0$.
While (C.8) through (C.11) explain the
importance of r, a more practical computational approch is

$$
r=\frac{n \Sigma x y-\left(\sum x\right)(\Sigma y)}{\operatorname{sqrt}\left[\left(n \sum x^{2}-\left(\sum x\right)^{2}\right)\left(n \sum y^{2}-(\Sigma y)^{2}\right)\right]}
$$

which is used in LINFITMD. Table C. 1 summarizes the linear correlation coefficient values for all the peaks in Table 3.2 .

$$
\text { Another significance of } r \text { is in relation to }
$$ the population correlation coefficient,p. If the parent population is assumed to be bivariate normal, inferences

about their coefficient of determination can be made based on the 95% confidence interval (Wonnacott, 1981). These inferences are shown on Table C.1. The asterisked rows show that the number of samples balanced with the linear correlation of the data points determines the confidence level at which inference can be made regarding the linear population parameters. This only helps in evaluating the linear regression model of the population but does not affect other non-linear estimates of correlation.

Table C.1: Linear correlation coefficients: Sample estimates (r) of

Sample\#	Peak\#	$\begin{aligned} & \text { n } \\ & \text { (sample } \\ & \text { scans) } \end{aligned}$	$E_{t}(\mathrm{eV})$	r	$\rho_{\text {min }}{ }^{\rho}$	ge $\rho_{\max }$
LA4012A	1.c	5	0.014	0.96	$+.4$	+1.0
	$3 . d$	5	0.138	0.88	+0.04	+0.98
	$4 . d$	3	0.144	0.82	-0.85	+1.0
	$5 . \mathrm{a}$	3	0.69	0.96	-0.6	+1.0
LA4012B	$1 . \mathrm{a}$	3	0.019	0.93	-0.5	+1.0
	$3 . a$	4	0.056	0.88	-0.32	+1.0
	4.a	4	0.184	0.94	-0.1	+1.0
	5.c	4	0.56	0.95	0.0	+1.0
LA2013A	2.b	4	0.068	0.95	0.0	+1.0
	$3 . c$	4	0.103	0.97	+0.1	+1.0
	4.b	4	0.56	0.61	-0.5	+0.98
LA2013B	1.d	3	0.008	0.42	-0.93	+0.97
	$2 . c$	3	0.089	0.99998	+1.0	+1.0
	3.6	4	0.091	0.997	>+0.8	+1.0
	4.e	4	0.23	0.887	-0.06	+1.0
	5.b	3	0.71	-0.88	-1.0	+0.75
LA2013D	1.b	4	0.016	0.68	-0.64	0.98
	$3 . f$	3	0.176	0.99999	+1.0	+1.0
	4.6	3	0.52	0.97	+1.0	+1.0
LB6014A	$2 . a$	4	0.022	0.78	-0.53	+0.99
	$3 . e$	4	0.064	0.85	-0.4	+1.0
	$4 . f$	4	0.129	0.99	+1.0	+1.0
	5.d	4	0.34	0.81	-0.5	+1.0

C. 2 Time Series Analysis and Trend Removal (U. Narayan Bhat, 1984)

A time series is defined as a set of observations generated sequentially in time. Variations in these observ-ations occur due to both deterministic and random factors. A good mathematical model to represent a time series is therefore a stochastic process, and the series of observations may then be regarded as a sample function or realization of the process.

In this experiment, a series of signal amplitude versus temperature scans were conducted over time. Sample readings were taken at temperature increments of 2 degrees per minute. A time series representation of each scan would be the curve representing the deviation of the signal from the expected value over time.

The sensitivity setting of the boxcar had to be such as to respond to even low peak realizations. This proved difficult to achieve without admitting some noise into the signal processing filter. Using a moving average filter subroutine called SMOOTH this white noise was removed from the PITS data before plotting.

An illustration of how the moving average works is shown in Table C.2.

Table C. 2a. Moving Average of a PITS signal over a Peak Temp (${ }^{\circ} \mathrm{K}$) Unadjusted signal A $\begin{aligned} & \text { Three-point } \\ & \text { moving } \\ & \text { average }\end{aligned}$

51	4.1229	
53	4.1293	4.1396
55	4.1665	4.1676
57	4.207	4.1991
59	4.2237	4.1939
61	4.1511	4.1522
63	4.0818	

It is noteworthy that averaging over every k points, i.e. $(1 / k)\left[a_{1}+a_{2}+\ldots+a_{k-1}+a_{k}\right)=b_{k}$ wastes (k-1) observations at the endpoints, such that the expectation array is that much smaller than the observation array. Generally scans performed in this laboratory allow at least $15 \circ^{\circ}$ at both ends of the temperature axis, which effectively takes care of this problem for $k<(15 / s c a n$ rate).

A more serious problem with a moving average is that, as in Table $C .2 b$, it may eliminate a peak from the data. this is particularly evident in low peaks close to a dominant one. A partial remedy is to keep k small, e.g. $\mathrm{k}=2,3$. In addition, as in weighted least squares fitting, different weights may be assigned according to the magnitude of the deviation. The weights would be inverses
of the deviations which would in turn ensure that the worst deviations have the least influence over the resulting signal.

Table C. 2 b Moving average of a PITS signal over a peak with an oblitarating effect.

Temp(${ }^{\circ} \mathrm{K}$) unadjusted signal A Three-point moving average

53	4.234	
55	4.2644	4.2646
57	4.2995	4.3008
59	4.3425	4.3189
61	4.3188	4.338
63	4.3036	
65	4.3917	

APPENDIX D

PROGRAMS

LINFIT2M is an adaptation of LINFIT in which the main results are the the correlation coefficient and the least squares line data points. These are used in analyzing Hall Effect, Van der Pauw and PITS data for linear correlation.

Somewhat related to LINFIT2M is LINFITMD whose special output routines are created for PITS data analysis for determining activation energy and capture cross sections (lines 2132 - 2138). The algorithm is expalined in Appendix C.

The main modifications to Doug Doerfler's LINPLOT include a friendlier user interface and a smoothing option in case of noisy data. Previously, one had to quit LINPLOT load a smoothing function, use it and then go back to LINPLOT. The subroutine Smooth can be incorporated in any other plotting program, be it linearlog, $\log -\log$ or $\log -l i n e a r$.

ARRPLOT produces Arrhenius plots by simply changing the LABEL from a PLOT line to any user-selected character.


```
Frooram Title: SUFRAMED
Programmer : Mahele Dlodlo
Date : 12 Jan. }198
Version : 2.0
Program Description : SUFRAMED, adapted from the DRC-81 Instruction
        manual, controls the Temperature Controller making it ramp
        upwards or downwards at the user's prerogative. It also reads
        the output voltages of the Temperature Controller's thermo-
        couple via the Keithley DVM and the boxcar. The thermocouple
        indicates Temperature in degrees Celcius and the boxcar's
        output is the PITS spectrum. A hard copy is issued and if
        requested a diskette file is created with a backup copy.
    OPTION BASE 1
ClEAR
DIM F车[15].K゙事[50]
REAL TEMPR(500.2),TEMPV (500,2)
! HEATER FOWER,GAIN,RATE ARE RESET ARE SET MANUALLY BY THE
    USER. THE INITIAL SETPOINT TEMFERATURE IS. ENTERED VIA THE
    KEYBOARD. THE TIME IN SECONDS AND DESIRED FINAL TEMPERATURE
    ARE REQUESTED. THE 81C WILL RAMP THE SET POINT TO THE FINAL
    TEMFERATURE LINEARLY WITH A QUANTIZED TEMPERATURE INCREMENT
DIM A:[50] ! Dimension array for reading the DRC 81C
T_WAIT=20 ! Sampling rate in seconds
K_EQB=.9 : Incremental change in control T which implies equilibrium
CLEAR! Clear the display
        REQUEST THE INITIAL SETPOINT TEMFERATURE.
DISP "INITIAL TEMPERATURE:":@ INPUT K_INITIAL
EEGIN: DISF "SELECT A HEATER FOWER,GAIN,RATE AND RESET MANUALLY"
        DISP "ON THE DRC-BIC TO OBTIAN THE DESIRED INITIAL TEMPERATUFE."
        DISF
        DISF "TEMPERATURE TO RAMP TO":@ INPUT K_FINAL
        DISF "TIME TO REACH ";K_FINAL;" K";" IN SECONDS":@ INPUT T_FINAL
        DISP "INCREMENT OF TEMPERATURE TD TAKE DATA."@ INPUT K_INC
        ADJUST THE DRC BIC TO OBTIAN EQUILIGRIUM AT THE INITIAL SETPOINT.
        OUTFUT 712 :"S";VAL* (K_INITIAL)
        K=K_INITIAL
        WAIT1: WAIT 1000*T_WAIT ! WAIT T_WAIT SECONDS
            KO=K
            OUTPUT 712 :"WC" @ ENTER 712 ; A$ ! READ CONTROL TEMFERATURE.
            K=VAL (A*[1,6])
            IF ABS (K-KO)>K_EQB OR ABS (K-K_INITIAL)>1 THEN WAITI
        OUTPUT 712 :"W1" @ENTER 712; A:$ READ W1
        DISP "W1 =":A *
    POSITION=VAL (AS[1])
    DISPLAY_ID: =A = [J,5]
    CONTROL_ID*=A $[7,9]
    GAIN=VAL (A*[11,12])
    RATE=VAL (A&[14,15])
    RESET1=VAL (AF[17,18])
    HEATER_RANGE=VAL (A$[20])
    PRINTER IS }70
    FRINT "REMOTE SENSOR FOSITION=";POSITION
    FRINT "DISFLLAY SENSOR ID=":DISFLAY_IDF
    FRINT "CONTROL SENSOR ID=";CONTROL_ID车
    FRINT "GAIN=":GAIN, "RATE=";RATE,"RESET=";RESET1
    PRINT "HEATER POWER RANGE=";HEATER_RANGE:"WATTS"
    P=1
    T=0
```

```
680 K__SF&NC=.1 ! NOFMAL INCREMENT OF SETPOINT
690 SETPOINT=K_INITIAL
700 SLOFE=(K__FINAL_K_INITIAL)/T_FINAL ! COMFUTER RAMP SLOPE(K゙/SEC.)
7 1 0 ~ D I S F ~ " R A M P ~ = ~ " : 6 0 \% * S L O P E : " K E L U I N ~ P E R ~ M I N U T E " : S L O F E : ~ " K E L V I N ~ P E R ~ S E C O N D " ~
720 T_INC=k,_SPINC/AES (SLOFE) ! TIME TO INCREMENT SETFOINT IN SECOND
70 IF T_INE`<.9 THEN K_SPINC=.2 @ T_INC=2*T_INC
740 IF T_INC<1 AND K_SFINC=.2 THEN T_INC=2.5*T_INC E K_SFINC=.S
7SO ON TIMER# 1.1000*T_INC GOTO GO ! TIMEOUT T_INC SECONDS - RESTART TIMER
760 FROCEED: GOTO PROCEED ! YES THIS STATEMENT IS CORRECT
770 GD: OUTPUT 712:"WC" E ENTER 712; A; ! 80 MS READ TIME.
780 IF FP (ABS (SETPOINT-K__INITIAL)/K_INC) >O THEN SKIP
790 DISP T:" SECONDS : ":"SETPOINT = ";SETPOINT;" K"
800 DISP "CONTRDL TEMFERATURE =";A家! ALL DISP TAKE . 2S SECONDS
310 IF SETPOINT=94 THEN 1460
820 IF SETFDINT=114 THEN 1490
8.30 IF SETPOINT=138 THEN 1520
840 IF SETPOINT }=162 THEN 1550
850 IF SETPOINT =186 THEN 1580
860 IF SETPOINT=208 THEN 1610
870 IF SETPOINT=232 THEN 1640
880 IF SETPOINT =256 THEN 1670
890 IF SETPOINT=280 THEN 1700
700 IF SETPOINT=504 THEN 1730
710 IF SETPOINT=328 THEN 1760
92O PRINT "SET";SETPDINT,"CONL.";A总
9.30 TEMPR(P,1)=VAL (A立)
40 TEMFR(P,2)=T
        TEMPV (P,1)=SETPOINT
    ! READS FLUKE DVM
        OUTPUT 707 :"VR7DST1?" @ ENTER 707 : F$
        MANTISSAF:*=F $[1,8] @ EXPONENTF $=F $[10,12]
        TEMPV(P,2)=VAL \MANTISSAF*)*10^VAL (EXPONENTF方)
1000 FRINT "PITS=".TEMPV(P.2)
1000 FRRINT "PITS=".TEMPV(P.2)
1020 IMAGE "READING NUMEER",2X,DDD,4X,"THERMAL CDUPLE TEMF.",2X,DDDD.DDD,2X,"V
OLTAGE", 2X,DDDD.DDDDD
1030 P}=F+
1040 SKIP: T=T+T_INC ! ADD TIME FOR K_SSPINC
1050 IF T>T_FINAL THEN COMPLETE ! IS RAMP TIME FERIOD COMFLETE?
1060 SETPOINT=SETFQINT+K SPINC*SGN (SLOPE) ! INCFEMENT THE SETFOINT
1070 OUTPUT 712 :"S":VAL产 (SETPOINT)
1080 GOTD FROCEED
1090 COMPLETE: DISP "RAMPING COMPLETE." @ OFF TIMEF* 1
1100 K_INITIAL=K_FINAL
1110 FOR J=10 TO 160 STEP 50 @ EEEP J,500 @ NEXT J
1120 ON ERROR GOTO 1240
1130 ! Store_data:
1140 DISP "ENTER THE PITS FILE NAME!" @ INPUT fiIe_namet
1150 DISP "NUMBER OF READINGS =";P-1
1160 CREATE fiIe_namess":D700",400,20
1170 ASSIGN# 1 TO file_name$$":D700"
1180 FOR N=1 TO P-1
1190 PRINT# 1 : TEMPV(N,1),TEMPV(N,2)
1200 NEXT N
1210 ASSIGN# 1 TO *
1220 DISF' "DATA STORAGE COMPLETED"
1230 GOTO 1290
1240 OFF ERROR
1250 REEP 50.500
1260 DISP "Disk write ERROR. Hit PAUSE. Correct problem. Hit CONT. Re-enter."
1270 WAIT 4000
1280 GOTO 1130
1290 DISF "NEED TO STORE RAMPING DATA?" @ INPUT ANS:
1SOO IF ANS$="N" THEN 1790
1310 DISP "RAMPING NUMBER=":P-1
1320 ON ERROR GOTO 1400
```

```
1330 DISF "ENTER EACK-UP DATA FILE NAME" @ INFUT ramp_name%
1340 CREATE ramp_name*&":D700",400,20
1350 ASSIGN# 2 TO ramp_names&":D700"
1.360 FOR M=1 TO P-1
1370 PFINT# 2 : TEMPR(M,2),TEMPR(M,1)
1380 NEXT M
1390 ASSIGN# 2 TO *
1395 GOTO 1440
1400 OFF ERROR @ BEEP 50,500
1410 DISP "FILE NAME ERROR. TRY DIFFERENT FILE NAME!"
1420 WAIT 4000
1430 GOTO 1330
1440 DISP "READING COMFLETE!"
1450 GOTO 1790
1460 OUTPUT 712 :"F";96;"W1" @ ENTER 712 ; K*
1470 DISP K: @ PRINT K$
1480 GOTO 920
1490 OUTPUT 712 ;"P":90;"W1" @ ENTER 712 ; K*
1500 DISP K$ @ PRINT K
1510 GOTO 920
1520 QUTPUT 712 "F":85:"w1" ENTER 712 ; K4
1530 DISP K* @ FRINT K*
1540 GOTO }92
1550 OUTPUT 712 :"P":81:"W1" @ ENTER 712; K%
1500 DISP K* @ PRINT K*
1570 GOTO }92
1580 OUTPUT 712 ;"P";75;"W1" @ ENTER 712 ; K$
1590 DISP K$ @ PRINT K$
1600 GOTO 920
1610 OUTPUT 712 "F":81;"W1" @ ENTER 712 ; K*
1620 DISP K @ PRINT K$
1630 GOTO 920
1640 OUTPUT 712;"P":85:"W1" @ ENTER 712 ; K$
1650 DISP K* G PRINT K$
1660 GOTO 920
1670 OUTPUT 712 :"P";91:"W1" @ ENTER 712; K*
1680 DISP K @ PRINT K*
1690 GOTO 920
1700 QUTPUT 712 ;"P":95;"W1" @ ENTER 712 ; K$
1710 DISP K$ PRINT K$
1720 GOTO 920
1730 QUTPUT 712 ;"P":97:"W1" @ ENTER 712; K$
1740 DISP K* & PRINT K*
1750 GOTO 920
1760 QUTPUT 712 :"P":98;"W1" @ ENTER 712 ; K$
1770 DISP K* @ PRINT K*
1780 GOTO }92
1790 END
117235
```

```
10
12
6!
18!
20
22
26
30
34
38
42
44
46 !
5
54
60
62
64
68:
00
1 1 0
120
130
140
140
150
160
170
130
190
300
400
400
GOB OUTPT
500 DISP
1000 RDATA:
1010 DISP "Enter mode of least squares ... U(unwelghted), D(weighted w/"
1020 DISP " data pts), or V(weighted w/data variances)"
1030 INPUT MODE事
1040 IF MODE束="U" THEN GOTO 1054
1042 IF MODEs="u" THEN GOTO 1054
1044 IF MODE$="D" THEN GOTO 1054
1046 IF MODEs="d" THEN GOTO 1054
1048 IF MODEz="V" THEN GOTO 1054
1050 IF MODE泣="V" THEN GOTO 1054
1052 DISF "Mode not correct, re_enter!" @ GOTO 1010
1054 READ NPTS@ DISP ". X "." Y "
1056 FOR I=1 TO NPTS
1060 READ X(I).Y(I)
1070 DISP X(I),Y(I)
1080 NEXT I
1090 IF MODEs="U" THEN GOTO 1130
1002 IF MODE$="u" THEN GOTO 1130
1094 IF MODEF="D" THEN GOTO 1130
1096 IF MODEF="d" THEN GOTO 1130
```

```
1100 FOF I=1 TQ NFTS
1110 FEAD STDEV(I)
    NEXT I
    Data wiII aIways be: lst statement is NPTS (onlv)
                2nd statement & more (as needed) contalns X,Y pairs
                Ird (if needed) contains STDEV
    DATA 4
    DATA 17.12.1.22671,17.64,1.86097,17.76,2.06939
    DATA 18.69.2.43799
    DATA 11.75.1.97962,12.41,2.56418,12.41,2.78748
    ! DATA 12.71,3.20963
    DATA 6.46,4.09284,6.48,3.57543,6.51,3.85545,6.55,4.5.421
    ! DATA
RETURN
NORMEQN: ! Form normaI equations
    SUM=0 @ SUMX=0 @ SUMY=0 @ SUMXX=0 @ SUMXY=0 @ SUMYY=0
    FOR I=1 TO NPTS
            WT=1
            IF MODE$="U" THEN GOTO 1700
            IF MODEs="ц" THEN GOTO 1700
                IF MODE$="V" THEN GOTO 1650
                    IF MODEF="v" THEN GOTO 1650
                    ! Weight with data pts
                    IF Y(I)=0 THEN GOTO 1700
                    WT=1/Y(I)
                    IF WT<O THEN WT=-WT
                    GOTO 1700
            ! Weight with variances
            WT=1/ {STDEV (I)*STDEV (I))
            SUM=SUM+WT
            SUMX=SUMX+WT*X (I)
            SUMXX=SUMXX+WT*X(I)*X(I)
            SUMY=SUMY+WT*Y (I)
            SUMYY=SUMYY+WT*Y (I)*Y(I)
            SUMXY=SUMXY+WT*X(I)*Y(I)
        NEXT I
    RETURN
    EST: ! CaIcuIate the intercept, sIope, and st. dev.
        DET=SUM*SUMXX-SUMX*SUMX
        A= (SUMXX*SUMY-SUMX*SUMXY)/DET
        E={SUMXY*SUM-SUMX*SUMY) /DET
        VARNCE=1
        IF MODE䒠="U" THEN GOTO 2000
        IF MODEF="u" THEN GOTO 2000
        IF MODE㓞"D" THEN GOTO 2000
        IF MODE$="d" THEN GOTO 2000
            C=NFTS-2
            \ARNCE= (SUMYY+A*A*SUM+B*R*SUMXX-2* (A*SUMY +E*SUMXY A A E*SLIMX))/C
        SIGMA=SQR (VARNCE*SUMXX/DET)
        SIGME=SQR (VARNCE*SUM/DET)
        R=(SUM*SUMXY-SUMX*SUMY)/SQR (DET* (SUM*SUMYY-SUMY*SUMY))
    RETURN
    QUTFT: ! Quput the intercept, sIope, st. dev., and correlation ceeff
    FRINT "SIGNATURE DATA for ";
        DISP "Intercept = ";A;" +/- ";SIGMA @ FRINT "INTERCEPT= ":A
        DISP "Slope = ";B;" +/- ";SIGMB @ PRINT "SLOPE= ":B
        DISP "Corr Coef = ";R @ PRINT "Corr. Coef. = ";R
    PRINT
    Et=8.62*B*10^-2@ DISP "Et= ";Et
    PRINT "Et = ";Et
    CS=EXF (-A)*10^-20/1.9 @ PRINT "CFOSS SECTION= ":CS
    DISP "Crass Section = ":CS @ PRINT
    FOR I=1 TO NPTS
        Y(I) =A+B*X(I)
        Y(I)=EXP (Y(I))
```

2160 FRINT "X=":X(I): "Y=":Y(I)
2170 NEXT I
2130 RETURN

```
10
30
50
60
80
70
100
1.30
30
160
170
180
O0
200
210
220
230
240
-250
260
270
290
300
310
320
340
340
350
360
$80
390
400
410
4 2 0
430
440
450
460
470
480
X(800) ,Y(800)
490 REAL Aspect.Fract,Sca_le,Xmax,Xmin,Xrange, Xpower,Xinter
500 REAL Ymax, Ymin, Yrange, Ypower, Yinter
5 1 0 ~ I N T E G E R ~ N p t s , P l o t t e r , T y p e
520 DIM Xtitle*[b0],Ytitle:[60],Title*[b0],Name*[60],Da_te:[b0]
530 DIM Dummy$[60],File_name$[b0]
5 4 0 ~ C L E A R ~
550 DISP
560 DISP @ EEEP
570 DISP TAB (5):"THE DATA FILE IS ASSUMED TO EE IN LEFT DFIVE"
580 WAIT 2000
590 CLEAR
600 DISP
610 DISP
620 DISP TAE (5):"HORIZONTAL AXIS TITLE (60 CHARACTER LIMIT)":
6.30 INPUT Xtitle:
G4O DISF TAR (5):"VERTICAL AXIS TITLE (6O CHARACTER LIMIT)":
6 5 0 ~ I N F U T ~ Y t i t l e : * ~
660 DISP TAB (5):"THE FLOT TITLE IS (60 CHARACTER LJMIT)":
```

```
b70 INFUT Tit1e#
S80 DISP TAB (E):"USERS NAMES (60 CHAFACTER LIMIT)":
600 INPUT Name:$
7 0 0 ~ D I S P ~ T A E ~ ( S ) : " W H A T ~ I S ~ T H E ~ D A T E " :
70 INPUT Da_te本
7 2 0 \text { DISP TAB (5):"HOW MANY OBSERVED VALUES ARE BEING FLOTTED":}
730 INFUT Nats
740 !
750 points=Npts
760) Tyoe=1
765 DISP "INPUT FILE NAME!" @ INPUT file name:
770 ASSIGN# 1 TO file_name***":D700"
780!
700 FOR K=0 TO Nots-1
BOO FEAD# 1 ; X(K),Y(K)
8 1 0 ~ N E X T ~ K
820 !
830
840
850 ASSIGN# 1 TO *
360 !
870
880 ! Initializing the arrays refers to finding maximum and minimum values. the
890 ! range of the values, and normalizing the data by dividing bv the
00
910:
920 DISP "Initializing the arrays for plotting"
gON ON TVDE GOSUB Initializel , Initializez
94O EEEF
950!
960 ! Determine what plotter the user wishes to use and make declarations
\0 ! accordinalv.
70
900 DISF "Which plotter is to be used (1-CRT, 2-7470A)":
1000 INPUT Flotter
1010 IF Flotter=2 THEN GOTO 1080
1020 DISP "END LINE will allow you to exit graphics mode after olotting."
10J0 WAIT S000
1040 PLOTTEF IS 1
1050 GCLEAR
1060 GRAFHALL
1070 GOTO 1150
1080 PLOTTER IS 705
1090 OUTPUT 705 :"VS8"
1100 DISP "Set up plotter and press END LINE";
1110 INPUT Dummy:
1120 !
1130 ; Output the data to the specified plotter
1140 !
1150 GOSUB Axes_l abel
1160 ON Type GOSUB Plot_1,Plot_2
1170 BEEP
1180 IF Plotter=1 THEN INPUT Dummy:
1190 ALFHA
1200 DISF "Would vou like to change the plotter or the axes limits iv/n)":
1210 INPUT Dummv:
1220 IF Dumunv*="N" OR Dummy:$="n" THEN GOTO 1460
1230 DISP "Would vou like to change the 1imits of the vertical asis (y/n)":
1240 INPUT Dummy:$
1250 IF Dummv:t="N" OR Dummy:s="n" THEN GQTO 1340
1255 DISF Ymax."is the old normalized maximum."
1260 DISP "What is the new normilized maximum value":
1270 INPUT Ymax
1275 DISF Ymin,"is the old normalized minimum."
1280 DISP "What is the new normalized minimum value":
1290 INFUT Ymin
```

```
1300 IF Ymax>Ymin THEN 1350
1310 DISF "ERROR, Ymax must be greater than Ymin"
1320 GOTO 1260
13ड0 Yranqe=Ymax-Ymin
1340 DISP "Would you like to change the limits of the horizontal axis (v/n)":
1350 INPUT Dummy*
1360 IF Dummy*="N" QR Dummy来="n" THEN GOTD 1450
1365 DISP Xmax,"is the old normalized maximum."
1370 DISP "What is the new normalized maximum value";
1380 INPUT Xmax
1385 DISP Xmin,"is the old normalized minimum."
1390 DISP "What is the new normalized minimum value";
1400 INPUT Xmin
1410 IF Xmas>Xmin THEN 1440
1420 DISP "EFFOR, Xmax must be greater than Xmin"
14.30 GOTO 1370
1440 Xranoe=Xmax-Xmin
1450 GOTO 990
1460 CLEAR @ DISP a DISP
1470 DISP TAB (5):"Enter:"
148O DISP TAB (11);"1 to rerun ARRPLOT"
1490 !
1500 DISP TAB (11):"2 to quit"
1510 INPUT A
1520 !
1530 IF A=1 THEN }44
1540 DISP @ DISP TAB (5):"This progaram has ended."
1550 END
1560 !
1570 Initialize1: !
1580 !
1590 Sca_le=10 ! Divide the axis into ten intervals
1600 Xmax=-9.99999999999E499 ! Set initial min. and max.
1610 Xmin=9.999999999999E499
1620 Ymax=-9.99999999999E499
1630 Ymin=9.999999999999E499
1640 FOR I=0 TO Nots-1 ! Search data for the min and max values
1650 IF X(I)>Xmax THEN X Xax =X(I)
1660 IF Y(I)>Ymax THEN Ymax =Y(I)
1670 IF X(I)<Xmin THEN Xmin=X(I)
680 IF Y(I)< Ymin THEN Ymin=Y(I)
1690 NEXT I
1700 Xoower=INT (LGT ((Xmax-Xmin)/10)) ! Base 10 power of the ranoe
1710 Xmin=xmin/10^ Xpower
720 Xmax=Xmax/10^Xpower
1730 Xranoe=xmas-xmin
1740 Yoower=INT (LGT (<Ymax-Ymin)/10\rangle)
1750 Ymin=Ymin/10^Ypower
1760 Ymax=Ymax/10^Ypower
1770 IF Ymin<<> O THEN Ymin=INT (Ymin-(Ymax-Ymin)*.1)/10
1780 Ymax=INT (Ymax+(Ymax-Ymin)*.1)/10
1790 Yranoe=Ymax-Ymin
1800 Ypower=Ypower+1
1810 RETURN
1820 !
1830 Initialize2: !
1840 !
1850 Sca le=8 ! Divide the X-axis into 8 intervals
1860 FOR I=0 TO Npts-1 ! Assign values to the X-axis array X(*)
1870 X(I)=I +1
1880 NEXT I
1890 Xmax=Npts ! Declare the min and max values of the X-axls array
1900 Xmin=0
1910 Fract=Xmax/B-IP (Xmax/B) ! Determine the min and max values for the Y-axis
1920 IF Fract<> O THEN Xmax=8*IP (Xmax/8+1)
1930 Xranqe=Xmax-Xmin ! Determine the range
```

```
1940 Ymax=-9.99999999999E499
1950 Ymin=9.99999990999E499
1960 FOR I=0 TO Npts-1
1970 IF Y(I) >Ymax THEN Ymax=Y(I)
1980 IF Y(I)<Ymin THEN Ymin=Y(I)
990 NEXT
2000 Yoower=INT (LGT ((Ymax-Ymin)/10)) ! Determine the base 10 power of Yrange
2010 Ymin=Ymin/10"Yoower
2020 Ymax=Ymax/10^Yoower
20SO IF Ymin<>0 THEN Ymin=INT (Ymin-(Ymax-Ymin)*. 1)/10
2040 Ymax=INT (Ymax+(Ymax-Ymin)*.1)/10
2050 Yranoe=Ymax-Ymin
20s0 Ypower=Ypower +1
207! RETUFN
2080 !
2090 A*es_l abel: !
2100 !
210 Aspect=RATID ! Determines relative size of the }X\mathrm{ and }Y\mathrm{ dimensions
2120 DEG
2130 LORG 7
2140 CSIZE 2.5
2150 MOVE 77*Aspect,91
2160 LABEL Names : Plot the users name
2 1 7 0 ~ M O V E ~ 8 5 * A s p e c t , 9 1
2180 LABEL Da_tet ! Plot the date
2190 LOFGG }
2200 CSIZE 4,.6,10
2210 MOVE 55*Aspect.10
2220 LABEL Title; ! Plot the title
2230 CSIZE 3.5
2240 MOVE 55*Aspect,20
2250 LAEEL xtitles ! Plot the x-axis title
2260 IF Type=2 THEN GOTO 2300
2270 CSIZE 2.5
2230 MOVE 55*Aspect.17
2290 LAEEL LSING "9A.K": "Scale: 1E",Xpower ! Plot the x-axis base 10 power
2300 CSIZE 3.5
2310 LDIR 90
2320 LORG 4
23.30 MDVE 10*Aspect,55
2340 LABEL Ytitle:S ! Plot the Y-axis title
2こ50 CSIZE 2.5
2360 MOVE 12*Aspect.55
2JTO LABEL USING "9A,K": "Scale: 1E:",Ypower ! Plot the Y-axis base 10 power
2380
390 Draw the axes
2400 !
2410 LOCATE 20*Aspect,85*Aspect,25,90 ! Define the plotting area
2420 FRAME
24.30 SCALE Xmin, Xmax,Ymin, Ymax ! Scale the plotting area
2440 Xinter=Xmin ! Declare the axes intercept
2450 Yinter=Ymin
246 IF TVpe=1 THEN AXES Xrange/100,Yrange/100,Xinter , Yinter,10,10,3
470 IF Type=2 THEN AXES Xrange/8,Yrange/100,Xinter, Yinter,1,10, 3
2480
2490 ! Label the Y-axis
3500
2510 CSIZE 2.5
2520 LDIR 0
253O LORG }
2540 I=0
2550 IF Yinter+I*Yrance/10>Ymax THEN 2600
2560 MOVE Xinter-Xrange/100,Yinter+I*Yrange/10
2570 LAEEL USING "3D.2D" ; Yinter+I*Yrange/10
2580 I=I +1
2590 GOTO 2550
```

```
2600
2610 ! Label the X-axis
2620!
2630 LDRG 9
2640 I=1
2650 IF Xinter+I*Xrange/Sca_le>Xmax THEN 2710
2660 MOVE Xinter+I*Xrange/Sca_le,Yinter-Yrange/50
2670 IF Type=1 THEN LABEL USING "3D.2D" ; Xinter+I*Xranqe/Sca_le
2680 IF Type=2 THEN LABEL USING "SD.OD" ; Xinter+I*Xrange/Sca_le
2690 I=I +1
2700 GOTO 2650
2710 RETUFN
2720!
2730 Flot_1: !
2740 !
2750
2760 '
2 7 7 0 \text { PEN 1}
2780 MOVE X(0)/10^Xpower,Y(0)/10^Ypower
2790 FOR I=0 TO Npts-1
2800 MOVE X(I)/10^Xpower,Y(I)/10^Ypower
2805 LABEL "x"
2810 NEXT I
220 FEN O
2830
2840
2850
2860
2870
2880
2890
2900 !
2910 RETURN
2920
2930 Plot_2: !
2940 !
2950 MOVE X(0),Y(0)/10^Ypower
2960 FOR I=0 TO Npts-1
2970 PLOT X(I),Y(I)/10^Ypower,-1
2980 NEXT I
2990 FEN O
3000 RETURN
    114404
```

```
Fevised for ease of use bv Mqhele E. Dlodlo
Grad. E. E. at Kansas State University
Also added was a smoothing routine
Revision date : 18 Februarv 1989
**)
Froaram Title: LINPLOT2
Froorammer: Doug Doerfler
            Graduate Student, kansas State University
Date: 06-02-84
    Version 2.0 by Mqhele E. Dlodlo
    Frogram Description: LINFLOT is a plot routine developed to provide
                a general purpose plot routine for linear-linear plots.
                Type 1 plots divide the horizorital axis into 10 intervals.
                Type 2 plots divide the horizontal axis into g intervals and
                uses the point numbers to label the X-axis. LINFLOT2 is
                customized for curve plotting.
    Farameters that are supplied to LINFLOT2
        X(*) - X-axis data arrav: (real)
        Y(*) - Y-anis data array: (real)
        Npts - Number of points in X(*) and Y(*): (integer)
        Tvpe - Type of numbering for the X-axis: (integer)
                1 - Use values in X(*) to label the X-anis: 10 intervals
                2 - Use the point number to label the X-axis:, 8 intervals
        Xtitlet - Title for the X-axis
        Ytitle专 - Title for the Y-axis
        Tikle: - Title of the plot
        Nauta⿱亠⿻三丨口巾 - Users name
        Date= - Date the plot was generated
    Subroutines within L.INFLDT2
        lnitializel - Initializes the data for a Type=1 plot
        Initialize2 - Initializes the data for a Type=2 plot
        Axes label - Draws and labels the ames; Labels the plot
        Plot_1 - Plots data points for a Tvpe=1 plot
        Plot_2 - Plots data points for a Type=2 plot
        Smooth - Moving average trend remover
    Data - Data needs to be stored in a file as two columns. The
        left column is the x-anis data and the right column is
        the y-axis data.
    ***************************************************************************
OPTION BASE O
    Declarations
REAL X(800) , Y(800)
FEAL Aspect, Fract,Sca_le,Xmas,Xmin, Xrange, Xpower,Xinter
REmL Yma%,Ymin, Yrange,Ypower, Yinter
INTEGER Mpts,Flotter,Type
DIM Xtitle:[60],Ytitle%[60],Titleq[60],Name:[60],Da_te本[60]
DIM Dummy丰[60],File_name$[60]
CLEAR
!
!
!
ClEAFi
D1SF
DISP
```

```
E20 DISP TAB (5): "HORIZONTAL AXIS TITLE (60 CHARACTER LIMIT)":
GO INPUT XtitIE:
6 4 0 ~ D I S P ~ T A E ~ ( 5 ) ; " V E R T I C A L ~ A X I S ~ T I T L E ~ ( 6 0 ~ C H A R A C T E R ~ L I M I T ) " : ~
SEO INPUT Ytit1e:
GóO DISP TAB (5); "THE PLOT TITLE IS (60 CHARACTER LIMIT)":
6 7 0 \text { INFUT Titles}
680 DISF TAB (5):"USERS NAMES (60 CHARACTER LIMIT)":
690 INFUT Name:
700 DISP TAE (5);"WHAT IS THE DATE";
710 INPUT Da_te:
7 2 0 ~ D I S P ~ T A B ~ ( 5 ) : ~ " H O W ~ M A N Y ~ O B S E R V E D ~ V A L U E S ~ A R E ~ B E I N G ~ P L O T T E D " ; ~
70 INPUT Npts
740 DISP TAE (5): "HOW MANY EXPECTED VALUES ARE BEING PLOTTED":
750 INPUT points
755 points=Npts+points
760 Type=1
770 X(0) =30
FOR K=1 TO Npts-1
        X(K) =K+30
        Y(K)=1.519-.0005405*(X(K)*X(K))/(X(K)+204)
    NEXT K
        Y(0)=1.519-.0005405*(x(0)*X(0))/(X(0)+204)
    FOP: K=Npts TO points-1
        x(K)=X(K-Npts)
        Y(K)=1.519-.0005405*(x(K)*x(K))/(x(K)+204)
    NEXT K
!
    Initializing the arrays refers to finding maximum and minimum values. the
        range of the values, and normalizing the data bv dividing bv the
        base 10 power of the range.
    !
    DISP "Initializing the arrays for plotting"
    ON Type GOSUB Initializei, Initialize?
    BEEP
```



```
    Determine what plotter the user wishes to use and make deciarations
        accordingly.
DISP "Which plotter is to be used (1-CRT, 2-7470A)";
INPUT Piotter
IF P1otter=2 THEN GOTO 108O
OISP "END LINE will allow you to exit graphics mode after plotting."
WAIT SOOO
PLOTTER IS 1
GCLEAR
GRAFHALL
GOTO 1150
FLOTTER IS 705
OUTPUT 705 :"VS8"
DISP "Set up plotter and press END LINE":
    INPUT Dummy*
    !
    Output the data to the specified plotter
140
1150 GOSUB Axes 1 abe1
1160 ON TVoe GOSUB PIot_1 ! P1ot_2
1170 EEEP
1180 IF Flotter=1. THEN INPUT Dummv:
1 1 9 0 ~ A L P H A
119S DISP "Would vou 1ike to smooth the data " @ INPUT Smoothe
1195 IF Smooth*="Y" OR Smooth真="y" THEN GOSUB Smooth
1200 DISP "Would you like to change the plotter or the axes 1imsts (y/n)":
1210 INPUT Dummy$
1220 IF Dummy*="N" OR Dummy*="n" THEN GOTO 1460
1230 DISP "Would you like to change the limits of the vertical axis (y/n)":
```

```
1240 INFUT Dummy*
1 2 5 0 ~ I F ~ D u m m y : s = " N " ~ O R ~ D u m m y " \$ = " ת " ~ T H E N ~ G O T O ~ 1 3 4 0
1255 DISP Ymax;" is the old normalized maximum value"
1260 DISP "What is the new normilized maximum value":
1270 INPUT Ymax
1275 DISP Yming" is the old minimum value"
1280 DISF "What is the new normalized minimum value";
1290 INPUT Ymin
13OO IF Ymax>Ymin THEN 13SO
1310 DISP "ERFOR. Ymax must be greater than Ymin"
1320 GOTO 126
13डO Yranqe=Ymax-Ymin
1340 DISF "Would vou like to change the limits of the horizontal amis (v/n)":
13EO INFUT DUmmv*
1560 IF Dummv*="N" OR Dummv$="n" THEN GOTO 1450
1365 DISP Xmas:" is the old normalised maximum value"
1370 DISP "What is the new normalized maximum value";
13B0 INFUT Xmas:
1385 DISP Xmin!" is the old minimum value"
1390 DISP "What is the new normalized minimum value";
1400 INFUT Xmin
1410 IF Xmax>xmin THEN 1440
1420 DISF "ERROR, Xmax must be greater than Xmin"
1430 GOTO 1370
1440 Xrange=Xmax-Xmin
1450 GOT0 990
1460 CLEAR & DISP a DISP
1470 DISF TAB (5):"Enter:"
1480 DISP TAB (11);"1 to return to ADC TEST"
1490 DISP TAB (11);"2 to rerun LINPLOT"
1500 DISP TAB (11);"3 to quit"
1510 INFUT A
1520 IF A=1 THEN CHAIN "ADC TEST"
1530 IF A=2 THEN 440
1540 DISF D DISF TAB (5);"This progaram has ended."
1550 GOTO 99999
1560 ! ****************
1570 Initialize1: !
1580 ! ****************
1590 Sca_1e=10 ! Divide the axis into ten intervals
1600 Xmax=-9.99999999999E499 ! Set initial min. and max.
1610 Xinin=9.99999999999E499
1620 Ymax=-9.99999999999E499
1630 Ymın=9.99999999999E499
1640 FOF' I=O TO points-Npts-1 ! Search data for the min and max values
1550 IF X(I) >Xmax THEN Xmax=X (I)
1600 IF Y(I)>Ymax THEN Ymax=Y(I)
1670 IF X(I)<Xmin THEN Xmin=X(I)
16B0 IF Y(I)<Ymin THEN Ymin=Y(I)
1690 NEXT I
1700 Xpower=INT (LGT ((Xmax-Xmin)/10)) ! Base 10 power of the ranoe
1710 Xmın=Xmin/10^Xpower
1720 Xmax=Xmax/10^Xpower
1730 Xrange=Xmax-Xmin
1740 Ypower=INT (LGT ((Ymax-Ymin)/10))
1750 Ymin=Ymin/10^Ypower
1760 Ymax=Ymax/10^Ypower
1770 IF Ymin<>> 0 THEN Ymin=INT (Ymin-(Ymax-Ymin)*.1)/10
1780 Ymas=INT (Ymax+(Ymax-Ymin)*.1)/10
1790 Yrange=Ymax-Ymin
1800 Ypower=Ypower+1
1810 RETURN
1320! !****************
1330 Initiali=e2:
1840 ! ****************
1850 Sca_1e=8 ! Divide the X-axis into 8 intervals
```

```
1860 FOR I=0 TO Nots-1 ! Assign vaIues to the X-axis arrav X(*)
1870 X(I) = I +1
1880 NEXT I
1890 Xmax=Npts ! DecIare the min and max values of the X-axis arrav
1900 Xmin=0
1910 Fract=Xmax/8-IP (Xmax/8) ! Determine the min and max values for the Y-axi\subseteq
1920 IF Fract<> 0 THEN Xmax=8*IP (Xmax/8+1)
1930 Xrange=Xmax-Xmin ! Determime the range
1940 Ymax=-9.99999999999E499
1950 Ymin=9.99999999999E499
1960 FOR I=0 TO Nots-1
970 IF Y (I)>Ymax THEN Ymax=Y (I)
1980 IF Y(I)<Ymin THEN Ymin=Y(I)
990 NEXT I
2000 Ypower=INT (LGT ((Ymax-Ymin)/10)) ! Determine the base 10 power of Yrange
2010 Ymin=Ymin/10^Ypower
2020 Ymax=Ymax/10^Ypower
2030 IF Ymin<< 0 THEN Ymin=INT (Ymin-(Ymax-Ymim)*.1)/10
2040 Ymax=INT (Ymax+(Ymax-Ymin)*.1)/10
2050 Yrange=Ymax-Ymin
2060 Ypower=Yoower+1
2070 RETURN
2080 ! ****************
2090 Axes_l abeI: !
2100 ! ***************
2110 Aspect=RATIO ! Determines relative size of the }X\mathrm{ and }Y\mathrm{ dimensions
2120 DEG
2130 LORG 7
2140 CSIZE 2.5
2150 MOVE 77*Aspect,91
2160 LABEL Name事 ! PIot the users name
2170 MOVE 85*Aspect,91
2180 LABEL Da_te$ ! PIot the date
2190 LOPG 6
2200 CSIZE 4,.6,10
2210 MOVE 55*Aspect,10
2220 LABEL TitIe* ! FIot the titIe
2230 CSIZE 3.5
2240 MOVE 55*Aspect,20
2250 LAEEL XtitIes ! PIot the X-axis title
2260 IF Type=2 THEN GOTO 2300
2270 CSIZE 2.5
2280 MOVE 55*Aspect,17
2 2 9 0 ~ L A B E L ~ U S I N G ~ " 9 A , K " ~ ; ~ " S c a I e : ~ 1 E " , X o o w e r ~ ! ~ P I o t ~ t h e ~ X - a x i s ~ b a s e ~ 1 0 ~ p o w e r ~
23OO CSIZE 3.S
2310 LDIR 90
2320 LORG 4
2330 MOVE 10*Aspect,55
2340 LABEL YtitIe* P PI ot the Y-axis titIe
2350 CSIZE 2.5
2360 MOVE 12*Aspect,55
2370 LAEEL USING "9A,K" ; "Scale: 1E:",Ypower ! PIot the Y-axis base 10 power
2380 !
2390 ! Draw the axes
2400 !
2410 LOCATE 20*Aspect.85*Aspect.25,90 ! Define the pIotting area
242O FFIAME
2430 SCALE Xmin.Xmax,Ymin,Ymax ! Scale the plotting area
2440 kinter=xmin ! DecIare the axes intercept
2450 Yinter=Ymin
2460 IF TYpe=1 THEN AXES Xrange/100,Yrange/100,Xinter,Yinter.10,10,3
2470 IF Type=2 THEN AXES Xrange/8,Yrange/100,Xinter,Yinter,1,10. J
2480
2490 ! Label the Y-axis
2500 !
2510 CSIZE 2.5
```

```
2520 LDIR O
2530 LORG }
2540 I=0
2550 IF Yinter+I*Yrange/10>Ymax THEN 2600
2560 MaVE Xinter-Xrange/100,Yinter+I*Yrange/10
2570 LABEL USING "3D.2D" ; Yinter+I*Yrange/10
2580 I= I + 1
2590 GOTO 2550
2600 !
2610 : Label the X-axis
2620 !
26.30 LORG 9
2640 I=1
2650 IF Xinter+I*Xrange/Sca_le>Xmax THEN 2710
26b0 MOVE Xinter +I*Xrange/Sca_le,Yinter-Yrange/50
2670 IF TVpe=1 THEN LABEL USING "SD.2D" ; Xinter+I*Xrange/Sca_le
2680 IF Type=2 THEN LABEL USING "SD.OD" ; Xinter+I*Xrange/Sca_le
2690 I=I +1
2700 GOTO 2550
2710 RETURN
2720 ! ************
2730 Plot_1: !
2740 ! ************
2750 FOR L2=1 TO 2
2760 IF L2=1 THEN 2770 ELSE 2840
2 7 7 0 \text { FEN } 1
2790 MOVE X (0)/10^Xpower,Y(0)/10^Ypower
2790 FOR I=1 TO Npts-1
2800 PLOT X(I)/10^Xpower,Y(I)/10^Ypower,-1
2810 NEXT I
2820 PEN O
2830 GOTD 2910
2940 GOTO 2910
2850 MOVE X(Npts)/10^Xpower,Y(Npts)/10^Ypower
2360 FOR I=Npts+1 TO Npts+points-1
2870 PLOT X(I)/10^Xpower,Y(I)/10^Ypower,-1
2980 NEXT I
2990 FEN O
2 9 0 0 ~ N E X T ~ L 2 ~
910 RETURN
2920! ************
2930 Plot_2: ! Curve 2 on the same axes
2940 ! ************
2950 MOVE X(0),Y(0)/10^Ypower
2960 FOR I=1 TO Npts-1
2970 FLOT X(I),Y(I)/10^Ypower,-1
2990 NEXT I
2990 PEN O
3000 RETURN
3010 GOTO 99999
3990! !*****************************************
4 0 0 0 ~ S m o o t h : ~ ! ~
4010! *****************************************
4 0 2 0 ~ D I S P ~ " E n t e r ~ t h e ~ n o . ~ o f ~ p o i n t s ~ p e r ~ a v e r a g e " ~ @ ~ I N P U T ~ N a v g
4030 EST=15
404O FOF: I=Npts TO Npts-1+Navg-1
4050
4 0 6 0 ~ N E X T ~ I ~ I
4070 FOR J=15 TO Npts-1
4080 AVE=0
4090 FOR K=EST TO EST+Navg-1
4100 AVE=AVE+Y(K.)
4110 NEXT K
4120 AVE=AVE/Navg
4130 Y(EST) = AVE
4140 EST=EST+1
```

```
4150 NEXT J
41क0 DISP "Enter the smocth data filename " e INFUT FAYILI$
4170 CREATE FAYILI$*":D700",409.50
4180 ASSIGN# 1 TO FAYILI:&":D700"
4190 FOR I=0 TD Npts-1
4200 FRINT# 1: X(I),Y(I)
4 2 1 0 ~ N E X T ~ I ~
4220 ASSIGN# 1 TO *
4230 RETURN
9 0 9 9 9 ~ E N D ~
    112563
```

```
Revised for ease of use bv Mahele E. Dl odlo
Grad. E. E. at Kansas State Universitv
Also added was a smoothing routine
Revision date : 18 Februarv 1989
```



```
    Frogram Title: LINPLOTMD
    Frogrammer: Doug Doerfler
        Graduate Student, Kansas State University
    Date: 06-02-84
    Version 1.0
    Frogram Description: LINPLOT is a plot routine developed to provide
                a general purpose plot routine for linear-linear plots.
                Type 1 plots divide the horizontal axis into lo intervals.
                Type 2 plots divide the horizontal axis into 星 intervals and
                uses the point numbers to label the x-axis.
    Farameters that are supplied to LINPLOT
        X(*) - X-axis data array: (real)
        Y(*) - Y-axis data arrav: (real)
        Npts - Number of points in X(*) and Y(*): (integer)
        Tvpe - Type of numbering for the X-axis: (integer)
                1 - Use values in X(*) to label the X-axis: lo intervals
                - Use the point number to label the X-amis: 8 intervalj
            Xtitle: - Title for the X-axis
            Ytitle= - Title for the Y-axis
            Title: - Title of the plot
            Name: - Users name
            Date:* - Date the plot was generated
    Subroutines within LINPLOT
        Initializel - Initializes the data for a Type=1 plot
        Initializez - Initializes the data for a Type=z plot
        Axes_label - Draws and labels the anes: Labels the plot
        Plot_1 - Plots data points for a Type=1 plot
        Plot_2 - Plots data points for a Type=2 plot
        Gmooth - Moving average trend remover
    Data - Data needs to be stored in a file as two columns. The
        left column is the x-axis data and the right column is
        the y-axis data.
```



```
    GPTION BASE O
    Declarations
FEAL X(800).Y(800)
REAL Aspect.Fract.Sca_le,Xmax,Xmin,Xrange,Xpower,Xinter
REML Ymax.Ymin,Yrange,Ypower,Yinter
INTEGER Npts,Plotter,Type
DIM xtitles[60],Ytitles[60],Title⿻肀二[60],Names[60],Da_tes[60]
DIM Dummy*[60],File_names[60]
CLEAR
DISP
DISP
DISP TAB (5): "THE DATA FILE IS ASSUMED TO BE IN LEFT DRIVE"
WAIT 3000
CLEAR
DISP
10 DISP
```

```
620 DISP TAE (5):"HORIZONTAL AXIS TITLE (60 CHARACTER LIMIT)":
6SO INPUT Xtitle%
640 DISP TAG (5):"VERTICAL AXIS TITLE (60 CHARACTER LIMIT)";
650 INPUT Ytitle:
O6O DISP TAB (5);"THE PLOT TITLE IS (60 CHARACTER LIMIT)":
670 INPUT Title$
60 DISP TAB (5);"USERS NAMES (60 CHARACTER LIMIT)":
490 INPUT Name:
700 DISP TAE (5):"WHAT IS THE DATE":
70 INPUT Da_te= 
720 DISP TAB (5);"HOW MANY OBSERVED VALUES ARE BEING FLOTTED":
730 INPUT Nots
740 DISP TAB (5): "HOW MANY EXPECTED VALUES ARE BEING FLOTTED":
75% INFUT DOInts
7&0 Tvpe=1
765 DISF "INPUT FILE NAME!" @ INPUT file_name:
70 ASSIGN# 1 TO file_name*s":D700"
780 ASSIGN# 2 TO file_name标":D700"
700 FOR K=0 TO Nots-1
300 READ# 1: }1:(K),Y(K
810 NEXT K
820 FOR I=0 TO points-1
BSO READ# 2 ; X(I +Npts),Y(I+Npts)
340 NEXT I
850 ASSIGN# 1 TO *
BGÖ ASSIGN# 2 TO *
870 !
880 ! Initializing the arrays refers to finding maximum and minimum values, the
890 ! range of the values, and normalizing the data by dividing bv the
900 ! base 10 power of the range.
910 !
9 2 0 ~ D I S P ~ " I n i t i a l i z i n g ~ t h e ~ a r r a y s ~ f o r ~ p l o t t i n g " ~
930 ON Type GOSUS Initializel , Initialize2
90 EEEP
750 !
960 i Determine what plotter the user wishes to use and make declarations
70) ! accordinglv.
980
990 DISF "Which olotter is to be used (1-CRT, 2-7470A)":
1000 INPUT Plotter
1010 IF Flotter=2 THEN GOTO 1080
1 0 2 0 ~ D I S P ~ " E N D ~ L I N E ~ w i l l ~ a l l o w ~ v o u ~ t o ~ e x i t ~ g r a p h i c s ~ m o d e ~ a f t e r ~ p l o t t i n g . " ~
103O WAIT 3000
1040 FLOTTER IS 1
1050 GCLEAR
1060 GR:APHALL
1070 GOTO 1150
1080 FLOTTER IS 705
1090 OUTPUT 705 :"VS8"
1100 DISF "Set up plotter and press END LINE":
1110 INPUT Dummy:
1120 !
1130 ! Output the data to the specified plotter
1140 !
1150 GOSUB Axes label
1160 ON Type GOSUB Plot_1 ! Plot_2
1170 EEEP
1180 IF Plotter=1 THEN INPUT Dummy:
1190 ALPHA
1193 DISP "Would you like to smooth the data " @ INFUT Smooth:
1195 IF Smooth$="Y" OR Smootht="y" THEN GOSUB Smooth
1200 DISP "Would you like to change the plotter or the axes limits (y/n)":
1210 INPUT Dummy$
```



```
1230 DISF "Would you like to change the limits of the vertical axis (y/n)";
1240 INPUT Dummv:
```

```
1250 IF Dummv宗="N" QR Dummv定="n" THEN GOTO 1340
1255 DISF Ymax:" is the old normalized maximum value"
12s0 DISF "What is the new normilized maximum value":
1270 INFUT Ymax
1275 DISF Ymin:" is the old minimum value"
12g0 DISF "What is the new normalized minimum value";
1290 INFUT Ymin
1300 IF Ymax >Ymin THEN 1.3.30
1J19 DISP "ERROR. Ymax must be greater than Ymin"
132O GOTO 1260
13.30 Yrange=Yma:-Ymin
1340 DISP "Would you like to change the limits of the horizontal axis (v/n)":
1350 INFUT Dummy:$
1360' IF Dummys="N" OR Dummy*= "n" THEN GOTO 1450
1365 DISP Xmax:" is the old normalized maximum value"
370 DISF "What is the new normalized maximum value":
1380 INPUT Xmax
1385 DISF Xmin:" is the old minimum value"
1.390 DISP "What is the new normalized minimum value":
1400 INFUT Xmin
1410 IF Xmax>xmin THEN 1440
1420 DISP "ERFOR, xmax must be greater than xmin"
1430 GOTO 1370
1440 Xranqe=xmax-xmin
1450 GOTO 990
1460 CLEAR G DISP @ DISP
1470 DISP TAB (5):"Enter:"
1430 DIEF TAB (11):"1 to return to ADC TEST"
1490 DISP TAB (11):"2 to rerun LINFLOT"
1500 DISP TAB (11):"S to quit"
1510 INFUT A
1520 IF A=1 THEN CHAIN "ADC TEST"
1530 IF A=2 THEN 440
1541) DISF @ DISP TAB (5):"This progaram has ended."
1550 GOTO 99999
1560! *****************
1570 Initializel: !
1580 ! *****************
1590 Sca_le=10 ! Divide the axis into ten intervals
1600 xmax= -9.99999999999E499 ! Set initial min. and max.
1610 xmin=9.99999999999E499
1620 %max =-9.99999999999E499
1630 Ymin=9.99999999999E499
1640 FロF I=0 TO Npts+points-1 ! Search data for the min and max values
1s50 IF X (I) >Xmax THEN Xmax =X (I)
1660 IF Y(I)>Ymax THEN Ymax =Y (I)
1670 IF X(I)<<⿱mmin THEN Xmin=X(I)
1680 IF Y(I)<Ymin THEN Ymin=Y(I)
1690 NEXT I
1 7 0 0 ~ x p o w e r = \ N T ~ ( L E T ~ ( ( X m a x - x m i n ) / 1 0 ) ) ~ ! ~ B a s e ~ 1 0 ~ p o w e r ~ o f ~ t h e ~ r a n g e ~
1710 Xmin=xmin/10^xpower
1720 xmax=xmas/10*xpower
1730 xrange=xmax-xmin
1740 Ypower=INT (LGT ((Ymax-Ymin)/10))
1750 Ymin=Ymin/10^Ypower
1760 Ymax=Ymax/10^Ypower
1770 IF Ymin<> 0 THEN Ymin=INT (Ymin-(Ymax-Ymin)*.1)/10
1780 Ymax=INT (Ymax+(Ymax-Ymin)*.1)/10
1790 Yranoe=Ymax-Ymin
1800 Yoower=Ypower+1
1810 RETUFN
1820 ! *****************
1830 Initialize2: !
1840! ****************
1850 Sca_le=8 ! Divide the x-axis into 8 intervals
186O FOR I=O TO Npts-1 ! Assign values to the X-axis array }X(*
```

```
1870
1880 NEXT I
1890 Xmax=Npts ! Declare the min and max values of the X-axis arrav
1900 Xmin=0
1910 Fract=Xmax/8-IF (Xmax/8) ! Determine the min and max values for the Y-a*15
1920 IF Fract<> 0 THEN Xmax=8*IP (Xmax/8+1)
1930 Xrange=Xmax-Xmin ! Determine the range
1940 Ymax=-9.99999999999E499
1950 Ymin=9.99999999999E499
1960 FOR I=0 TD Npts-1
1970 IF Y(I)>Ymax THEN Ymax=Y(I)
1980 IF Y(I)<Ymin THEN Ymin=Y(I)
1990 NEXT I
2000 Ypower=INT (LGT ((Ymax-Ymin)/10)) ! Determine the base 10 Dower of Yrange
2010 Ymin=Ymin/10^Ypower
2020 Ymax=Ymax/10^Ypower
2030 IF Ymin<< 0 THEN Ymin=INT (Ymin-(Ymax-Ymin)*.1)/10
2040 Ymax=INT (Ymax+(Ymax-Ymin)*.1)/10
2050 Yranoe=Ymax-Ymin
2060 Ypower = Ypower +1
2070 RETURN
2080! ***************
2090 Axes l abel: !
2100 ! ***************
2110 Aspect=RATIO ! Determines relative size of the }X\mathrm{ and }Y\mathrm{ dimensions
2120 DEG
2130 LORG 7
2140 CSIZE 2.5
2150 MOVE 77*Aspect.91
2160 LABEL Namet ! Plot the users name
2170 MDVE 85*Aspect,91
2180 LABEL Da_te$ ! Plot the date
2190 LORG 6
2200 CSIZE 4,.b,10
2210 MOVE 55*Aspect,10
2 2 2 0 ~ L A B E L ~ T i t l e t ~ ! ~ P l o t ~ t h e ~ t i t l e ~
2230 CSIZE 3.5
2240 MDVE 55*Aspect. 20
2250 LABEL Xtitlet ! Plot the X-axis title
2260 IF Tvpe=2 THEN GOTO 2S00
2270 CSIZE 2.5
2280 MOVE 55*Aspect,17
2290 LABEL USING "9A.K": "Scale: 1E".Xpower ! Plot the X-axis base 10 power
2300 CSIZE 3.5
2310 LDIR 90
232O LORG 4
2350 MOVE 10*Aspect,55
2340 LABEL Ytitles ! Plot the Y-axis title
2#50 CSIZE 2.5
2360 MOVE 12*Aspect.55
2370 LABEL USING "9A,K" : "Scale: 1E:",Ypower ! Plot the Y-axis base 10 power
2380!
2390 ! Draw the axes
2400 !
2410 LOCATE 20*Aspect,85*Aspect,25,00 ! Define the plotting area
2420 FRAME
2430 SCALE Xmin,Xmax,Ymin,Ymax ! Scale the plotting area
2440 Xinter=Xmin ! Declare the axes intercept
2450 Yinter=Ymin
2460 IF TYpe=1 THEN AXES Xrange/100,Yrange/100,Xinter,Yinter,10,10,3
2470 IF Type=2 THEN AXES Xrange/8,Yrange/100,Xinter.Yinter,1,10,3
2480 !
2490 ! Label the Y-axis
2500 !
2510 CSIZE 2.5
2520 LDIR O
```

```
2530 LOFG 8
2549 I=0
2550 IF Yinter+I*Yranqe/10>Ymax THEN Z600
2560 MOVE Xinter-Xrange/100,Yinter+I*Yrange/10
2570 LABEL USING "3D.2D" : Yinter+I*Yrange/10
2590 I=I + 1
2550 GOTO 2550
2600!
2610 ! Label the x-axis
2520 !
2530 LOFGG }
2640 I=1
2bSO IF Xinter+I*Xranoe/Sca_le>Xmax THEN 2710
2660 MOVE Xinter+I*Xrange/Sca_le.Yinter-Yrange/SO
2670 IF TYpe=1 THEN LABEL USING "SD.2D" * Xinter+I*Xrange/Sca_le
2690 IF Type=2 THEN LABEL USING "SD.OD" : Xinter+l*Xrange/Sca_ie
2690 I =I+1
2700 GOTO 2650
2710 FETURN
2720 ! ************
2730 Flot 1:
2740 ! ************
2750 FDR L2=1 TO 2
2760 IF L2=1 THEN 2770 ELSE 2g40
2770 FEN }
2780 MDVE X(0)/10^Xpower, Y(0)/10^Ypower
2790 FOR I=1 TO Npts-1
2300 FLOT X(I)/10^xpower. Y(I)/10^Ypower . - 1
2810 NEXT I
2820 FEN O
28.30 GOTO 2900
2G40 FEN 2
2850 MOVE X(Npts)/10^Xpower,Y(Npts)/10^Ypower
28.) FOR I=Nots+1 TO N口ts+points-1
2870 FLDT X(I)/10~xpower.Y(I)/10^Ypower, -1
2880 NEXT I
2 8 9 0 ~ F E N ~ 9 ~
2 9 0 0 ~ N E X T ~ L 2 ~
2910 RETURN
2920 ! ************
2930 Flot_2: ! Curve 2 on the same axes
2940 ! *************
2950 MOVE X(0),Y(0)/10^Ypower
2960 FOR I=1 TD Npts-1
2970 FLOT X(I),Y(I)/10^Ypower,-1
2 9 8 0 ~ N E X T ~ I ~
2 9 9 0 ~ P E N ~ O ~
SOOD RETURN
3010 GOTO 99999
3990 ! *******************************************
4000 Smooth: !
4 0 1 0 \text { ! ******************************************}
4020 DISP "Enter the no. of points per average"@ INPUT Navg
4030 EST=15
4040 FOR I=Npts TO Npts-1+Navg-1
4050
4 0 6 0 \text { NEXT I}
4070 FOF J=15 TO Npts-1
4080 AVE=0
4099 FOR K=EST TO EST+Navg-1
4100 AVE=AVE+Y(K)
4110 NEXT K
4120 AVE=AVE/Navg
4130 }\quadY(EST)=AV
4140 EST=EST+1
4150 NEXT J
```

4160 DISP "Enter the smooth data filename" @ INPUT FAYILI象
4170 CREATE FAYILI* " 4700 ", 409.50
4180 ASSIGN\# 1 TC FAYILIs\&":D700"
4190 FOR I=0 TO Nots-1
4200 PRINT\# 1 : $X(I) . Y(I)$
4210 NEXT I
4220 ASSIGN\# 1 TO *
4230 RETURN
99999 END
112635

CORRELATION STUDIES OF PITS, HALL EFFECT AND VAN DER PAUW CHARACTERIZATIONS OF GaAs SUBSTRATES

by

MQHELE E. H. DLODLO

B.S.E.E., Geneva College, 1980 Beaver Falls, PA, U. S. A.

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the requirements for the degree

 MASTER OF SCIENCEDepartment of Electrical and Computer Engineering

KANSAS STATE UNIVERSITY Manhattan, Kansas

ABSTRACT

In the fabrication of integrated circuits, defects often appear to affect carrier activation. Two problems arising from this are currently under study at Kansas State University. Either donors do not move into substitutional locations in the substrate after annealing or substitution and activation do take place, but the electrons are trapped at a nearby defect. If these defects can be characterized and properly identified, then eventually they can possibly be eliminated, so that radiative recombination efficiency and therefore device reliability of GaAs can be enhanced.

This thesis discusses correlation studies on the data so far gathered on the deep level crystal defects in pulsed-laser annealed samples of GaAs implanted with Si and S to a dose ranging from 2.2×10^{12} to 6.0×10^{14} cm^{-2}. A pulsed XeCl eximer laser ($=308 \mathrm{~nm}$) was used to anneal these samples at energy densities ranging from 0.2 to $0.32 \mathrm{~J} / \mathrm{cm}^{2}$.

Photo-induced current transient spectroscopy (PITS) was the means of investigation of the residual defects in the PLA samples. Emission coefficient behavior related to deep level trap emptying on the falling edge of
an incident light pulse was observed.
These observations revealed three dominant and two trace peaks in the PITS spectra between 40 K and 400 K over the 0.5 ms and 4 ms rate window range. The corresponding activation energies fell between 0.008 eV and 0.8 eV . Hall and Van der Pauw measurements were used in the study of sheet carrier concentration and electron mobility. The correlations between laser energy density (J. cm^{-2}), the dose (cm^{-2}), and the electrical characteristics, as well as the linear correlation of Arrhenius data points used in the determination of trap energies are presented and discussed.

