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INTRODUCTION

The regulation of cell proliferation is a complex process involving a network of

interactions between positive and negative regulatory substances. These substances

include nutrients, growth hormones, growth factors and growth inhibitory molecules.

However, the exact nature and importance of these molecules in cellular development,

differentiation, tumorigenesis, and other biological processes is presently not clear.

Therefore, one of the basic challenges in the study of growth regulation is the

determination of the biochemical nature and site of action of these molecules, which

can shift cells from a proliferative stage to a non-proliferative stage or vica-versa.

Two of these subgroups, growth factors and growth inhibitors, are of particular

interest in the study of cell growth regulation. Growth factors are those factors which

contribute to the stimulation of macromolecular synthesis and subsequent cell

division. These factors are small polypeptides released by cellsand, therefore, their

isolation and purification has not created problems for investigators. Because of the

convenience of their isolation, the mechanism of action of a multitude of growth fac-

tors such as epidermal growth factor (EGF), nerve growth factor (NGF), fibroblast

growth factor (FGF), platelet derived growth factor (PDGF) etc., has been extensively

studied.

Growth inhibitors are the second group of factors that are significantly

important in the study of cell growth regulation. However, due to the complexities

involved in their isolation and purification, the study of their mechanism of action has

been quite limited. Despite the obstacles involved in the purification of these

molecules, growth inhibitors from both mouse and bovine cerebral cortex cell surfaces

have been isolated and purified to homogeneity by members of our laboratory. This

dissertation involves study of the effect of a sialoglycopeptide inhibitor, obtained from

bovine cerebral cortex cells, on cellular DNA synthesis and cell division. In addition,
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the host range for this inhibitory molecule, the exact point in the cell cycle where the

inhibitor exerts it's biological activity, and it's effect on the expression of genes known

to be involved in cell growth regulation are presented.
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CHAPTER I.

HISTORICAL REVIEW.
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OVERVIEW

A number of investigators have reported the role of cell surface components in

inhibiting cell division. The first experimental results suggesting the existence of cell

growth inhibitors were provided by the studies on epidermal cell culture wound

healing. In these experiments, Dulbecco and Stocker (1970) demonstrated two

findings: 1) the re-initiation of DNA synthesis in "spent" media mainly near the edge

of the culture wound and 2) the inhibition of cell division upon confluency. These

findings suggested that cell surface components have a possible role in inhibiting cell

division. Furthermore, Wittenburger and Glaser (1977) demonstrated that the addition

of isolated plasma membranes from growth arrested 3T3 cells to sparse 3T3 cells re-

versibly inhibited DNA synthesis. This provided further evidence that cell-cell contact

is important in growth regulation.

On the other hand, Dulbecco (1970) observed that the initiation of DNA

synthesis was also dependent upon the serum level used in the culture medium. This

suggested that there were factors in the serum that were also important in cell growth

regulation. However, Stocker (1973) demonstrated that "spent" medium was capable

of supporting the growth of subconfluence cultures to saturation densities. Stacker's

findings implied that the culture medium was not totally depleted of essential

nutrients. These results proposed that the cessation of cell proliferation was mediated

by either soluble growth inhibitors or through cell-cell contact.

Even though the existence of inhibitors was evident, investigators were faced

with a major predicament when experimentally studying growth inhibitors. This

difficulty was due to the complexity of membrane component isolation and

purification. If not released by cells, these growth inhibitory molecules are resident cell

membrane molecules and, therefore, hydrophobic in nature. Due to the hy-

drophobicity of these molecules, detergents must be utilized for their proper
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solubilization. Once these molecules are in detergent, the study of their biological

activity and their introduction to living cells was a difficult barrier.

Despite the obstacles involved in the purification of these molecules, there have

been numerous reports concerning the presence of growth inhibitors. For example,

Bullogh (1965) reported a class of growth inhibitory molecules termed "chalone".

Chalones were defined as growth inhibitory molecules which were tissue specific,

species non-specific and their action was reversible. Chalones were later found in a

variety of tissues including erythrocytes, arterial smooth muscle, liver, kidney, and lung

(Bullough 1975). Nonetheless, no chalones have been purified to homogeneity, thus

limiting studies concerning such molecules.

Several other investigators have reported on chalone-like molecules isolated

from different cells and tissues. A low molecular weight cell growth inhibitor

produced by 3T3 cells was briefly reported by Yeh and Fischer (1969). Lipkin and

Knecht (1974) reported the isolation of a 160 kD molecular weight melanocyte contact

inhibitory factor (MCIF) from the conditioned media of hamster melanocytes. MCIF

was capable of restoring contact inhibition to highly malignant melanocytes as well as

inhibiting DNA synthesis and cell division in a variety of cell types in vitro . Another

inhibitor, isolated from media conditioned by BSC-1 (African Green Monkey kidney

epithelial-like) cells (Holley et al., 1978), has been partially purified and termed Growth

Inhibitor (GI). The partially purified material contained a 25 kD molecular weight

inhibitory protein consisting of two 12.5 kD subunits. This factor was capable of

inhibiting DNA synthesis in BSC-1 cells by 85% and reversibly inhibited the actual

proliferation of BSC-1 cells. The inhibitory effects of the GI were counteracted by the

addition of EGF and calf serum (Holley et al., 1980). GI has inhibitory effects on

mouse mammary epithelial, secondary rat lung, and human carcinoma cells in yjyo,

but had no inhibitory activity against fibroblast cells (Holley et al., 1980; Walsh-Reiz et
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al., 1984). Hepatic proliferation inhibitor (HPI) was another inhibitor isolated from

liver tissue and was partially purified (McMahon et al., 1982). Upon purification, HPI

had a molecular weight of 26 kD and a pi of 4.6, and reversibly inhibited colony

formation by non-malignant hepatic cells. Even though work on HPI was quite

promising, no further information was released from the laboratories investigating this

inhibitor. There also are several reports on the antiproliferative activity of interferons.

Mice inoculated with tumor cells showed a slower rate of tumor growth and increased

survival if they were simultaneously given mouse interferon (Gresser, 1972; Gresser

and Tovey, 1978; Balkwill, 1979; Taylor-Papadimitriou, 1980). Furthermore, tumor

necrosis factor (TNF) a monocyte/macrophage-derived protein was found to be

cytotoxic to many tumor cells in vitro (Fransen et al., 1986). Most of the reports

concerning inhibitory substances only refer to indirect observations or to factors that

neither have been structurally identified nor studied with regard to their molecular

mechanism(s) of biological activity.

In order to understand cell growth regulation, however, it is of extreme

importance to purify growth inhibitors and study their action at a molecular level. To

our knowledge, only five genuine growth inhibitors have been isolated and purified to

apparent homogeneity, and to a certain degree, characterized. These inhibitors

include: a growth inhibitor isolated from mammary glands designated as mammary

drived growth inhibitor (MDGI) reported by Bohmer et al. (1984); fibroblast growth

regulator-secreted (FGR-s), isolated from density-inhibited 3T3 cultures by Steck et al.

(1982); Type-/? transforming growth factor (TGF-£) which is structurally similar to GI,

isolated from virally transformed cells in culture (Tucker et al., 1984, James and

Bradshaw, 1984); and lastly, the glycopeptide inhibitors isolated from intact mouse and

bovine brain cerebral cortex cells, described by the members of our laboratory (Kinders

et al., 1979; Kinders and Johnson 1982; Sharifi et al., 1986). As more is known about
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these molecules, has become clear that some may be related to others. For example, it

has been reported that MDGI is functionally and structurally similar to FGR-s and that

TGF-/? and GI also are very similar. It is possible that inhibitory substances, which at

this time seem unrelated, may be combined in the future. The remainder of this

literature review focused on the properties of these five inhibitors.
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FIBROBLAST GROWTH REGULATOR

Fibroblast growth regulator secreted (FGR-s) is a growth inhibitory molecule

which reversibly inhibits DNA synthesis of subconfluent mouse 3T3 cultures and is

also capable of reducing the number of 3T3 cells per colony by about 70% (Steck et al.

1982). FGR-s was first isolated by Steck et al. (1979) from media conditioned by dense

cultures of 3T3 cells. Although the mechanisms involved in this phenomenon are still

not completely clear, Wang and Steck (1982) suggested that inhibitory factors

released into the medium by the 3T3 cells themselves may be responsible for at least

part of the inhibition of cell division.

When partially purified, FGR-s consisted of two polypeptide chains with

molecular weights of 10 kD and 13kD. These molecules were shown to bind to about

3-4 x 105 receptors per cell on 3T3 cells surfaces (Steck et al., 1979, 1982). Voss et al.

(1982) suggested that this binding was important for biological activity of FGR-s. Their

suggestion was based on the fact that binding of FGR-s to 3T3 cells is reduced when

the inhibitory action of FGR-s is blocked by serum. Further analysis of the specific

binding of FGR-s to target 3T3 cells revealed that the greatest binding is achieved after

only 3 h of incubation at 37C (Steck et al., 1982).

Due to the lack of a purified preparation, it was unclear whether one or both

polypeptides observed in the FGR-s fraction were responsible for the growth inhibitory

activity. One approach to the resolution of this problem was to raise monoclonal

antibodies that would bind and/or neutralize the growth inhibitory activity. A rat

monoclonal antibody, designated 2A4, was generated which was specific for the 13 kD

subunit of the FGR-s. The biological activity of FGR-s was depleted when the total

material was passed through an affinity column coated with the 2A4 antibody. It was

also shown that antibody 2A4 was capable of neutralizing the growth inhibitory effect

of the 13 kD subunit of the FGR-s in a concentration-dependent fashion (Hsu et al.,
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1984). Furthermore, when antibody 2A4 was added to cultures of 3T3 cells in the

absence of any exogenous 13 kD subunit, there was an enhancement of DNA synthesis

in 3T3 cells, suggesting that antibody 2A4 can neutralize this subunit's activity as well

as reverse the effect of density-dependent growth inhibition. It was not determined,

however, whether the 13 kD subunit of the FGR-s was active independent of the

presence of other polypeptides (Hsu et al., 1984).

Surprisingly, even though the monoclonal antibody successfully depleted the

activity of FGR-s, the investigators did not utilize antibody chromatography as a

purification system for the FGR-s. In order to further investigate which peptide was

responsible for the biological activity, additional purification of the FGR-s was

necessary. Based on isoelectric focusing analysis of the FGR-s, it was found that the

13 kD subunit had a pi of approximately 10.0 and the 10 kD subunit had a approximate

pi of 7.5. The high pi of the 13 kD subunit suggested ion-exchange chromatography

as a preparative purification procedure. DEAE-cellulose chromatography of [^S]

methionine-labeled preparation of FGR-s resulted in the separation of several

components. When the fractions eluting from the ion-exchange column were assayed

for growth inhibitory activity, only one component exhibited measurable activity. The

sum of the growth activity in this component accounted for 80% of the total activity

applied to the column. Hsu et al. (1984) found that this purification procedure results

in a six-fold enrichment in terms of specific activity. Poly-acrylamide gel

electrophoresis (PAGE) analysis of the inhibitory component revealed that this

component was a single polypeptide, migrating at a position corresponding to a

molecular weight of 13 kD. The migration of the molecule remained unchanged under

reducing conditions (Hsu et al., 1984).

Despite purification to apparent homogeneity, further information concerning

the nature of FGR-s is lacking. For instance, it is of greatimportance to learn if a
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growth inhibitor produced by 3T3 cells would also inhibit the growth of other cell

types, especially transformed cells. Furthermore, the monoclonal antibody could have

been utilized as a powerful tool to determine whether or not other cells or tissues

produce growth inhibitors with similar epitopes. Interestingly, Wells and Mallucci

(1983), introduced a growth inhibitory molecule released into the medium by

secondary cultures of mouse embryo fibroblasts. The composition and biophysical

behavior of this polypeptide closely paralleled those of the FGR-s. Unfortunately, there

was no collaborative work between the two groups and it is not known whether or not

the monoclonal antibody against the FGR-s reacted with the inhibitory molecule

isolated by Wells and Mallucci (1983). Since further investigation on FGR-s apparently

has been discontinued, studies concerning the mechanism of the action of this in-

hibitor also are not available. For example, it is not clear what effects, if any, the FGR-s

has on the events concerning cell growth regulation, effects such as changes in

cytoplasmic pH, ion fluxes and or changes in the expression of growth related genes.
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MAMMARY DRIVED GROWTH INHIBITOR (MDGI):

Lehman et al. (1983) isolated MDGI, a growth inhibitory molecule, from normal

lactating bovine mammary glands. The MDGI was subsequently purified and

characterized. Upon purification, the MDGI was shown to have a molecular weight of

13 kD. Based on the isoelectric focusing analysis, it was determined that the inhibitor

had a pi of approximately 5.0 (Lehman et al., 1983).

MDGI was shown to inhibit the resumption of stationary Ehlrich ascites

mammary carcinoma (EAC) cells in vitro, however, EAC cells from the exponential

phase of growth were not inhibited (Lehman et al., 1983). Whether or not other cell

types are inhibited by MDGI has not yet been determined. However, mouse antisera

was raised against the 13 kD protein in order to determine if the 13kD peptide was

actually responsible for total inhibitory activity. The antisera was utilized in a

neutralization assay which demonstrated that the inhibitory activity of MDGI was in

fact removed by the specific antiserum (Bohmer et al., 1985).

Tissue distribution of MDGI was analyzed by the use of an enzyme linked

immunosorbent assay (ELISA). Among tissue supernatants from bovine mammary

gland in different functional states, only lactating glands showed a positive reaction

with the antiserum. However, samples from glands of a pregnant animal, newborn

calves, calves and fetuses did not reveal the presence of reactive MDGI (Bohmer et al.,

1985). Lung tissue supernatants have also shown a positive reaction on ELISA assay

performed using anti-MDGI antisera (Bohmer et al., 1985). Even though these studies

outlined the tissue distribution of MDGI, there is no explanation for the presence of the

molecule in some tissues and not in others.

Further investigations revealed that both EGF and insulin are able to abolish

the inhibitory effect of the MDGI. Likewise, the inhibitory activity is abolished when

cells are preincubated for 4 h with serum before addition of the inhibitor. This
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strongly suggested that the inhibition is exerted by a specific interaction of the

inhibitory protein with the cells, however, data on specific binding of the protein to the

target cells are lacking.

It stands to reason that growth inhibitors may also have modulated expression

of certain genes since mitogens and growth factors modulate the expression of growth

related genes. In order to determine whether or not modulation of gene expression is a

pathway by which MDGI exerts its inhibitory activity, the effect of the MDGI on three

of the oncogenes which are thought to be involved in growth regulation was studied

by Lehman et al. (1987). In these studies, serum-induced expression of c-fos, c-myc,

and c-ras in stationary cells was shown to be inhibited by the MDGI. However, in

rapidly proliferating cells, MDGI did not affect oncogene induction. This provided

evidence that, in a limited manner the MDGI may utilize growth inhibitory pathways

which involve the modulation of expression of certain genes .

MDGI, similar to FGR-s, does not seem to have a wide host range, and whether

or not its action is reversible is not known. Similarly, other studies concerning

mechanism(s) of action of MDGI, such as receptor binding kinetics, tissue distribution

and modulation of the expression of other oncogenes, are still incomplete.

Interestingly, Bohmer et al. (1987) discovered that antibodies prepared against MDGI

cross-reacts with FGR-s. This suggested that FGR-s and MDGI either have similar

epitopes with which the antibody reacts or perhaps they are actually the same

molecule.
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TRANSFORMING GROWTH FACTORS (TGF-0)

Another growth inhibitor which is extremely interesting yet ambiguous with

regards to its biological action is TGF-/S. TGF-/3 is associated with a group of growth

factors isolated from murine-sarcoma virus transformed 3T3 cells, designated

transforming growth factors (TGFs). TGFs are hormonally active polypeptides

functionally described as polypeptides that stimulate anchorage-dependent cells to

grow in soft agar and have been detected in neoplastic and non-neoplastic cells in

culture, as well as in tissues in vivo (Roberts et al., 1983). The two distinct TGFs

which have been purified to apparent homogeneity are TGF-« and TGF-/S. TGF-« is a

powerful mitogen (Tadaro et al., 1978; Marquardt et al., 1983, 1984). While TGF-/3 is

multifunctional, it has either stimulatory or inhibitory effects on proliferation,

depending on which target cells are used (Roberts et al., 1985).

TGF-oc is a 5.6 kD, single-chain, acidic and heat stable molecule that has

significant homology with epidermal growth factor (EGF) (Marquardt et al., 1984).

This molecule mediates its biological activity through binding to the EGF receptor

(Todaro et al., 1978; Marquardt et al., 1983, 1984). However, several experiments have

indicated quantitative differences between TGF-« and EGF (Derynck, 1986).

On the other hand, TGF-/3 is a completely different molecule. It has a

molecular weight of 25 kD and is an acid stable molecule composed of two apparently

identical polypeptide chains linked by disulfide bonds (Derynck et al., 1985). TGF-/3

was originally isolated from transformed cells (Moses et al., 1981, Roberts et al., 1981)

however, it has become evident that it is distributed in a wide variety of tissues

(Goustin et al., 1986). Platelets, which are the source of TGF-/3 found in serum, were

found to be a rich source for purification of TCF-/3. TGF-/3 is released by cells in an

inactive form and the mechanism by which the molecule becomes activated in yjyo is

not clear (Lawrence et al., 1985, Lyons et al., 1988).
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As mentioned previously, TGF-yS has been defined as a multifunctional regulator

of cell growth and differentiation (Roberts, 1985). It was originally identified by its

capacity to reversibly induce anchorage independent growth of fibroblast cell lines

(Childs et al. 1982). Later the growth inhibitory effects of TGF-/S were described by its

similarities to the structure and activity of BSC-1 growth inhibitor (GI), (Tucker et al.

1984). Heine et al. (1987) have further reported the involvement of TGF-/3 in wound

healing. The biological activity of TGF-/3 is highly, variable depending on the cell line

and/or the culture conditions (Moses et al., 1985). The opposing biological activity of

TGF-/3, however, has not been fully explained and the resolution of its biphasic

potential may reveal important information related to both the positive and negative

regulation of cell growth.

TGF-/5 has since been shown to be a potent inhibitor of a wide range of cells, in

particular the epithelial cells and cells of the immune system (Spom et al., 1986).

Although anchorage-dependent proliferation of many normal epithelial cells is inhibited

by TGF-/3, many cells of fibroblast nature or transformed epithelial cells are resistant to

its inhibitory effect (Masui et al., 1986; Shipley et al., 1986; McMahon et al., 1986;

Knabbe et al., 1987). Even though many reports provide firm experimental data

concerning the different cell types inhibited by

TGF-b, there are numerous controversies between different groups studying this

peptide. For example, while some (Masui et al., 1986; Shipley et al., 1986; McMahon et

al., 1986) have reported the resistance of transformed cells to the action of TGF-/3,

Goustin et al.(1986) reported the inhibition of a variety of transformed epithelial cell

proliferation by this peptide.

It is quite disconcerting, however, that despite numerous studies concerning

TGF-/3, only one laboratory has reported on the reversibility of the inhibitory action of

this peptide. Coffey et al. (1988a) used only one cell line, BALB/MK mouse
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keratinocytes, as a model in order to show this reversible nature of TGF-/S growth

inhibitor.

There are specific cell surface receptors for TGF-/S. These receptors are present

on the surface of almost all cells tested including most normal and transformed

fibroblasts, as well as epithelial and lymphoid cells of human, rat, or mouse origin

(Tucker et al., 1984; Massague and Like 1985). However, there are three structurally

different types of TGF-/S receptors, and depending on the cell type and origin, only one

of the three types of receptors may be present on the surface of any one cell type.

Surprisingly, a large number of biologically active molecules have shown

homology with TGF-yS. James and Bradshaw (1984) have previously categorized TGF-/3

with EGF due to structural similarities . However, TGF-/S binds to specific cell surface

receptors which are distinct from the EGF receptor (Associan et al, 1983; Frolik et al,

1983, 1984; Roberts et al, 1983; and Tucker et al, 1984). Interestingly, Tucker et al.

(1984) demonstrated that TGF-yS is similar to the BSC-1 growth inhibitor (GI)

described by Holley et al. (1978). These two inhibitors, TGF-/3 (now referred to as

TGF-^1) and GI (recently referred to as TGF-/32 [Hanks et al. 1988]), seem to have

identical structure and biological activities. The native TGF-/32 molecule, similar to

TGF-^1, is a peptide of 25 kD molecular weight. Both TGF-^1 and TGF-yS2 stimulate

the growth of AKR-2B, BSC-1 and CCL-64 (mink lung) cells and they bind to the same

cell surface receptor. Furthermore, Bascom et al. (1988) reported as unpublished data

that there is generally no qualitative difference in tissue, cell strain, or cell line

distribution between TGF-/31 and TGF-/32. However, some opposing reports (Ohta et

al., 1987; and Rosa et al., 1988) describe striking differences in the differential effects of

TGF-/31 and TGF-^2. Experiments by Ohta et al. (1987) showed that TGF-/S1, but not

TGF-/32, is a potent inhibitor of hematopoietic progenitor cells. Furthermore,

mesondermal induction studies by Rosa et al., (1988) on Xenopus laevis embryos
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showed that TGF-^2, but not TGF-/31, was active in a-actin induction. TGF-/S3 is

another molecule with sequence homology to TGF-/71. Its structure and precursor has

been deduced from cDNAs isolated from porcine and human cDNA libraries (Derynck et

al. 1988). Further information on this peptide is lacking. Many other molecules have

shown structural and sequence homology to TGF-/3 including: Inhibins (Mason et al.,

1985), Mullerian inhibiting substance (Cate et al., 1986) and Drosophila

decapentaplegic gene complex (Padgett et al., 1987) etc. It seems that TGF-ySs are a

family of closely related molecules and their structure and function may depend on the

species, tissues and/or cells from which they are isolated.

Coffey et al. (1988a) have reported that neither total RNA nor total protein

synthesis is affected by TGf-/3. This report further suggested that selective changes

occur in BALB/MK cells following TGF-/S treatment, and that these changes result in

the inhibition of DNA synthesis and subsequent cell division. In another report, Coffey

et al. (1988b) have shown that TGF-/3 selectively inhibits the EGF induced expression

of c-myc and KC genes in BALB/MK cells. In contrast, the EGF induced expression of

c-fos mRNA was shown to be unaffected while /S-actin mRNA was slightly increased.

The modulation of gene expression due to the addition of TGF-/? seems to follow the

same general pattern as the other processes involved with the molecule. The in-

hibition and/or stimulation of the expression of different genes depends upon the type

of cell and the culture condition. For instance, Takehara et al. (1987) reported that

EGF induced expression of c-myc, KC and JE in endothelial cells was decreased by the

addition of TGF-/3. In the same system, however, there was no effect on the EGF

induced expression of c-fos. In contrast Chambard and Pouyssegur (1988) reported

that « -thrombin induced expression of c-myc and c-fos in Chinese hamster fibroblasts

was reported to be further induced by the addition of TGF-yS.
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In addition Coffey et al. (1988b) reported that TGF-/S markedly decreased c-myc and

KC gene expression in rapidly growing BALB/MK cells and reduced the EGF induction

of these genes in a quiescent population of cells. TGF-/3 in this same system had no

effect on the expression of c-fos.
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GLYCOPEPTIDE INHIBITORS

In our laboratory, we have isolated and purified inhibitory glycopeptides from

mouse and bovine cerebral cortex intact cells unique from any other inhibitor purified

to this date. Kinders et al. (1979) described the first glycopeptide inhibitor from mouse

cerebral cortex cells which was isolated by the mild protease treatment of intact cells.

This brain cell surface glycopeptide (BCSG), had a molecular weight of about 25-30kD.

It bound to Ulex europaeus agglutinin suggesting the presence of fucose (Kinders et

al., 1980). Furthermore, Kinders et al. (1979) have shown the inhibition of protein

synthesis and subsequent cell division of BHK-21 (baby hamster kidney) cells by the

BCSG. Inhibition assays were carried out in order to assess whether or not BCSG

exhibited any specificity with regard to cell lines. While most cells appeared to be

sensitive to the inhibitor, the degree of sensitivity varied among cell lines and some

transformed cells appeared to be highly refractory (Kinders et al., 1979). Since

interferons are glycoproteins with inhibitory activity, the possible relationship between

mouse interferon and BCSG was studied by Johnson et al. (1981). Several lines of evi-

dence from these experiments suggested that BCSG, although able to inhibit cell

protein synthesis, was not related to mouse cell interferon (Johnson et al., 1981).

The first bovine glycopeptide was isolated by Kinders and Johnson (1982). This

glycopeptide was somewhat similar to the mouse inhibitor in that it bound to Ulex

europaeus agglutinin, had a molecular weight of about 18 kD and a pi of 8.1. It also

elicited inhibitory activity for BHK-21 cells in vitro, however, polyoma-virus-

transformed BHK-21 cells were completely insensitive to the inhibitor (Kinders and

Johnson, 1982). Furthermore, studies by Charp et al., (1983) showed that this

glycopeptide arrested baby hamster kidney (BHK-21) cells and Chinese hamster ovary

(CHO) cells in the G2 phase of the cell cycle.
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Sharifi et al. (1986a) have purified another glycopeptide from bovine brain

cerebral cortex intact cells by mild protease treatment. This glycopeptide has a

molecular weight of approximately 18 kD and a pi of 3.0. It bound to Limulus

polyhemus agglutinin suggesting the presence of sialic acid. This sialoglycopeptide

(SGP) was shown to be a potent inhibitor of protein, DNA and RNA synthesis in 3T3

cells.

Bascom et al. (1986) showed that there are specific cell surface receptors for the

SGP on the surface of 3T3 cells and that binding of the SGP to the receptor was cor-

related with its biological inhibitory activity. This observation was compatible with a

study that showed that SGP need not enter the target cell in order to elicit its action

(Sharifi et al., 1986b).

We have recently purified the parent to the SGP from mouse and bovine brain

whole cell homogenates. This parent molecule, which reacts with a polyclonal

antibody preparation made against the 18 kD peptide, has a molecular weight of 70 kD.

We have utilized the polyclonal antibody in Western blot assays in order to determine

the tissue distribution of this glycoprotein. To date, every mouse tissue tested has

shown reaction with the antibody, suggesting that at least one or more of the epitopes

of the SGP is ubiquitous (Toole-Simms et al., unpublished data).

The SGP inhibitor also was shown to be capable of antagonizing the action of

several growth factors and mitogens such as, EGF (Bascom et al., 1987), tumor

promoter TPA (12-0-tetradecanoylphorbol-13-acetate)(Chou et al., 1987) and bombesin

(Johnson and Sharifi, 1989).

Several other parameters that are associated with cell proliferation recently

have been examined. These include changes in intracellular pH and Ca+ +

concentration that are altered in response to mitogens binding to their respective cell

receptors. Since mitogens stimulate this cascade it stands to reason that growth
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inhibitors may block events associated with these metabolic processes. In order to

dissect the point in the cell cycle where the inhibitor may exert its activity, changes in

intracellular pH and Ca++ were measured after treatment of cells with the SGP. The

SGP alone caused a slight acidification of the cytoplasm and blocked the rise in pH

induced by TPA or serum. In addition the SGP blocked the rise in intracellular Ca+ +

caused by mitogen stimulation (Toole-Simms and Johnson, unpublished data).
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CHAPTER II.

INHIBITION OF DNA SYNTHESIS AND CELL DIVISION BY
A CELL SURFACE SIALOGLYCOPEPTIDE
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ABSTRACT

We have isolated and purified a cell surface sialoglycopeptide (SGP) from bovine

cerebral cortex cells that previously was shown to be a potent inhibitor of cellular

protein synthesis. The following studies were carried out to characterize the potential

ability of the SGP to inhibit DNA synthesis and to arrest cell division. Treatment of

exponentially proliferating Swiss 3T3 cells with the SGP inhibitor resulted in a marked

inhibition of thymidine incorporation within 24 h. When the SGP was removed from

inhibited cultures, a sharp rise in ^H-thymidine incorporation followed within 3 to 4 h

that peaked well above that measured in exponentially growing cultures, suggesting

that the inhibitory action of the SGP was reversible, and that a significant proportion of

the arrested cells was synchronized in the mitotic cycle. In addition to DNA synthesis,

the inhibitory action of the SGP was monitored by direct measurement of cell number.

Consistent with the thymidine incorporation data, the SGP completely inhibited 3T3

cell division 20 h after its addition to exponentially growing cultures. Upon reversal

there was a delay of 15 h before cell division resumed, when the arrested cells quickly

doubled. Most, if not all, of the growth-arrested cells appeared to have been

synchronized by the SGP. The SGP inhibited DNA synthesis in a surprisingly wide

variety of target cells, and the relative degree of their sensitivity to the inhibitor was

remarkably similar. Cells sensitive to the SGP ranged from vertebrate to invertebrate

cells, fibroblast and epithelial-like cells, primary cells and established cell cultures, as

well as a wide range of transformed cell lines.
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INTRODUCTION

The regulation of mammalian cell proliferation involves a complex series of

interactions that includes both growth stimulatory and growth inhibitory molecules.

Inhibitors of cell proliferation have been identified from mouse and bovine brain

(Kinders et aj., 1980; Kinders and Johnson, 1982; Charp et aj., 1983), liver (McMahon

et ah, 1982), platelets (Brown and Clemens, 1986), mammary gland (Bohmer et aj.,

1984; 1985), and from cell culture media (Holley et ah, 1980, Hsu and Wang, 1986).

The site and mechanism of action for most of these inhibitory molecules, however,

often is unclear since most have not been purified to homogeneity.

Although growth factors have been extensively studied, information concerning

the physical/chemical nature of growth inhibitors has been limited. Unlike growth

factors, growth inhibitors, particularly those with significant hydrophobic domains that

reside as cell surface molecules, have presented numerous problems regarding their

purification and characterization. Furthermore, the necessity of detergents to maintain

these hydrophobic components in solution or suspension has complicated the

presentation of the putative regulatory molecules, in a physiologically relevant manner,

to target cells. This has severely limited the measurement of their biological activity.

The isolation and purification to homogeneity of our SGP inhibitor obtained

from intact bovine cerebral cortex cells, have been described previously (Sharifi et ah,

1986a; Bascom et aj., 1986). The SGP, which is a hydrophilic fragment of a larger gly-

coprotein (Sharifi et aj., 1985), has a molecular weight of 18,000, a pi of 3.0, and the

biological activity appears to reside in the polypeptide sequence of the molecule (Sharifi

et ah, 1986b). There are specific, high affinity receptors on the surface of 3T3 cells for

the SGP, and the inhibition of protein synthesis is correlated with the occupancy of the

receptor (Bascom et aJL, 1986).
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In this report, we demonstrate that the SGP is a potent inhibitor of DNA

synthesis and cell division, and that the inhibition is totally reversible. In addition, we

demonstrate that the biological activity is equally effective against a wide variety of

cells, both nontransformed and tumorigenic.
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MATERIALS AND METHODS

Isolation and purification of the bovine SGP : The bovine SGP was purified as

described previously (Sharifi et a]., 1986a). Briefly, the SGP was released from intact

bovine cerebral cortex cells by mild proteolysis, ethanol precipitated and extracted with

chloroform/methanol (2:1, v/v). Following overnight dialysis against water, the SGP

was lyophilized, and purified by DEAE ion-exchange chromatography, wheat germ

agglutinin affinity chromatography and HPLC with a TSK 3000 column (Phenomenex,

Rancho Palos Verdes, CA).

Serial dilutions of each preparation of the SGP inhibitor, contained in 40 /zl of

PBS buffer (10 mM Hepes, 120 mM KC1, 5 mM MgCl2, pH 7.1), were tested for protein

synthesis inhibition with 2 x 105 Swiss 3T3 cells in 100 /x\ of medium incubated with

35S-methionine as described by Sharifi et aj. (1986a). One unit of biological activity of

the inhibitor was designated as the amount that provided a 25% reduction of protein

synthesis.

Cell cultures : With the exception of HL-60 and PI-5.4 insect cells, established

and primary cells were grown as monolayer cultures in a humidified incubator with 5%

CO2: 95% air atmosphere. All cells were plated (in 48 well plates from Costar,

Cambridge, MA) and allowed to adhere to the cell culture vessel surface for 24 h prior

to the addition of the SGP.

Human foreskin fibroblast cells (HSBP) and PC-12 cells (from Dr. Paul Sharp,

Oakridge National Laboratories, TN.); Balb/c 3T3, Swiss 3T3 and NRK-52E cells

(American Type Culture Collection, Rockville, MD); and, mouse fibrosarcoma cell lines

1316, 2337 and 2247 (from Dr. George W. Fortner, Kansas State University, Manhattan,

KS) were grown in Dulbecco's modified Eagle's medium (DMEM) (Gibco Laboratories,

Grand Island, NY) containing 10% calf serum. MD-BK cells (from Dr. Harish C.

Minocha, Kansas State University, Manhattan KS) were grown in Ham's F-10 medium
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(KC Biological, Lenexa, KS) plus 10% calf serum. BSC-1 (American Type Culture

Collection, Rockville MD) were grown in Eagle's Minimum Essential Medium (MEM)

(Flow Laboratories, McLean VA) plus 10% fetal calf serum.

The Plodia interpunctella insect cell line PI-5.4 (from Dr. Richard A. Consigli,

Kansas State University, Manhattan, KS) was grown in suspension in Grace's Insect

Media (Gibco Laboratories, Grand Island, NY)) plus 10% fetal calf serum. These insect

cells were grown at room temperature and did not require incubation with CO2. Chick

embryo cells (CE) (from Dr. Richard A. Consigli, Kansas State University, Manhattan,

KS) were grown in DMEM plus 10% calf serum. Primary mouse embryo and baby

mouse kidney cells, (from Dr. Richard A. Consigli, Kansas State University, Manhattan

KS) were grown in DMEM plus 10% fetal calf serum. HL-60 cells (from Dr. Melvin S.

Center, Kansas State University, Manhattan KS) were grown in suspension in RPMI

medium 1640 (Hazelton, Denver, CA) plus 10% fetal calf serum.

Measurement of DNA synthesis : DNA synthesis was measured by 3H-thymidine

incorporation essentially as described by Chou et aj. (1986). Cells were seeded in 48-

well tissue culture plates. The SGP was dissolved in PBS, added to the appropriate

medium, filter-sterilized, and added to exponentially proliferating cultures. In all cases

the final volume of medium added to cell cultures was 0.5 ml. Control cultures were

incubated with the same medium, under the same conditions, but without the SGP

inhibitor. After incubation for 20 h, 2.0 fiC'i of
3H-thymidine (ICN Radiochemicals,

Irvine, CA) was added to each well. Following a 2 h incubation period the cellular DNA

was precipitated with ice-cold 10% trichloroacetic acid (TCA), the precipitates were

washed three times with ice-cold TCA and then dissolved with a solution of 0.1N

NaOH, 2% NaCC>3 and 1% SDS. The radioactivity in each sample was determined with

a scintillation system.
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HL60 transformed cells, which grow in suspension, were treated with the SGP

as described above. However, after incubation of the cells with ^H-thymidine for 2 h,

the cells were transferred to glass tubes, precipitated with 10% ice-cold TCA and

centrifuged at 1000 x g for 3 min. The precipitates were then washed 3 times with ice-

cold TCA and finally dissolved in IN NaOH.

In each case where the sensitivity of cells to the SGP was tested, Swiss 3T3 cells

were incubated with and without the SGP as a relative control to compare cellular

sensitivity to the inhibitor.

Determination of Cell Number : Swiss 3T3 cells were seeded in 48-well plates at

4.0 x 10° cells/well. After a 4 h incubation period, the cells were fed with either 0.5 ml

of complete medium alone, or with complete medium containing various concen-

trations of the SGP inhibitor. Cell numbers were determined after every generation

time (20 h). Cells were detached from wells by trypsin and diluted 1:20 in Isoton II

(Coulter Electronics Inc., Hialeah, FL.). The cell number was determined with a Coul-

ter counter, model Zf, (Coulter Electronics Inc, Hialeah, FL.).
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RESULTS:

Inhibition of Swiss 3T3 Cell DNA Synthesis

The potential influence of the SGP inhibitor on DNA synthesis was assessed

with nonconfluent cultures of mouse Swiss 3T3 cells. The cells were incubated with

either 0, 1, 2 or 4 units of the SGP for 20 h, and then 2.0 fid of 3H-thymidine added,

and the cultures were incubated for another 2 h. Compared to control cultures (no

SGP), DNA synthesis was significantly inhibited and the inhibition was shown to be

dose dependent (Fig. 1). The dose response of DNA synthesis was similar to that prev-

iously measured with 3T3 cell protein synthesis inhibition in that two units of protein

synthesis inhibitory activity provided a 60% reduction of thymidine incorporation. In

comparable protein synthesis inhibition assays with 3T3 cells and 35S-methionine one

unit of SGP provided 25% inhibition (Sharifi et a]., 1986a; 1986b).

In order to determine if the inhibition of thymidine incorporation was reversible

Swiss 3T3 cells were plated at a density of 2 x 104 cells/cm
2 and one unit of SGP was

then added. After 22 h of incubation the media on all cultures were replaced with

either complete medium containing 2.5% calf serum or with the same medium and

serum that contained one unit of SGP. While DNA synthesis in cultures that received

medium with SGP continued to be inhibited, a sharp increase in
3
H-thymidine

incorporation was measured with cultures that received medium without the SGP (Fig.

2). The increase in DNA synthesis was initiated 3 to 4 h following the removal of the

SGP, and the peak of
3H-thymidine incorporation 10 to 12 h later even surpassed that

measured in exponentially growing cultures (Fig. 2). The magnitude and kinetics of

Swiss 3T3 cell recovery clearly indicated that the inhibitory affects of the SGP were

reversible, and suggested that a significant fraction of the cell population was

synchronized by the inhibitor.
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Cell Growth Inhibition

Although the above data suggested that the SGP inhibited Swiss 3T3 cell DNA

synthesis in a reversible manner, we reasoned that a more direct measurement of the

growth inhibitory activity of the SGP would involve a direct assessment of its influence

on cell division. In comparison to exponentially growing control cultures of Swiss 3T3

cells, cultures that received 4 units of SGP were markedly reduced in cell number, and

by 20 h after the addition of the inhibitor cell division ceased (Fig. 3). Upon removal of

the SGP from the cultures and after 12 to 15 h of constant cell number, however, the

cells rapidly doubled (Fig. 3). The kinetics of reversal indicated that the action of the

SGP was totally reversible and synchronized in the cell cycle.

Taking into account the 3 to 4 h delay in DNA synthesis following removal of

the inhibitor, and the 12 to 15 h lag period prior to mitosis, the arrest point mediated

by the SGP most likely was associated with the Gl phase of the cell cycle.

Target Cell Range of the SGP

A wide range of cell cultures were assayed with the SGP in order to investigate

the potential range of target cell sensitivity to the inhibitor. Exponentially growing

cultures were tested with various concentrations of the SGP as described in Fig. 1, and

in each case the SGP was assayed in parallel with Swiss 3T3 cells as a comparative

control. Surprisingly, a dose dependent inhibition of DNA synthesis was observed and

all cell cultures tested were as sensitive to the inhibitor as the Swiss 3T3 cells. We

discovered that DNA synthesis of cells obtained from a wide range of vertebrate species,

including, human, mouse, and chicken, and even an established line of invertebrate

cells were inhibited by the SGP inhibitor (Table 1). Furthermore, the SGP inhibitor

was equally effective with epithelial and fibroblast cultures (Table 1).

Since all cell lines tested in Table 1, with the exception of primary chicken

embryo cells, were established cell lines, we considered it important to extend our
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studies to newly-established or primary cell cultures, from various origins, and trans-

formed cell lines that generally are not sensitive to density-dependent growth

inhibition. In each case the SGP was titrated and exponentially growing cultures were

treated. The SGP was tested with 3T3 cells in parallel as a comparative control. DNA

synthesis in a wide variety of primary and transformed cell cultures was found to be

sensitive to the SGP. The sensitivity of the various cultures, as measured with

increasing concentrations of SGP, was comparable to that measured with Swiss 3T3

cells (Table 2).
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DISCUSSION:

In previous studies we have shown that the bovine SGP is a potent inhibitor of

protein synthesis (Sharifi et ah, 1986a), that the inhibitor does not have to be

internalized to mediate its biological activity (Sharifi et aj., 1986c) and that the SGP

binds in a saturable manner to a specific cell surface receptor (Bascom et aj., 1986).

The surface receptor on Swiss 3T3 cells has been shown to be distinct from those

mediating the binding of epidermal growth factor (Bascom et aj., 1987), the tumor-

promoting phorbol ester TPA (Chou et al., 1987), and the mitogen bombesin (Sharifi

and Johnson, in preparation).

In the present study we have shown that the SGP also is a potent inhibitor of

cellular DNA synthesis and that the inhibition is dose dependent (Fig. 1). An interest-

ing feature of the biological action of the SGP is its totally reversible inhibitory activity

on Swiss 3T3 target cells. By directly comparing cell numbers in exponentially dividing

Swiss 3T3 cultures and populations treated with the SGP, we were able to show that

the inhibitor arrested cells in the mitotic cycle and that the cell population was

subsequently synchronized. Unlike another cell surface glycopeptide inhibitor that

previously was shown to arrest cells in G2 (Charp et a], 1983), the SGP kinetics of cell

recovery, as measured by thymidine incorporation and cell division (Figs. 2 and 3),

illustrated that the glycopeptide most likely inhibits the Swiss 3T3 cell cycle in or near

Gi. Although several inhibitors of cell division have been under intense investigation,

in most cases the site(s) of cell cycle arrest is not known. Lin et aj., (1987) and Cham-

bard et aj., (1988) have shown that^-TGF arrests cells in two different phases of the

cell cycle, the Go/early Gi and the Gj/S border while no single stage of the cell cycle

appears to be uniquely sensitive to interferon action (Clemens and McNurlan, 1985).

The kinetics of cell recovery following the removal of the SGP revealed that the

cell population was synchronized in the cell cycle (Fig. 3). The use of the SGP in
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studies of cell cycling may have a valuable application since equivocal results often are

obtained with other methods used by investigators to synchronize cell populations, i.e.

ionizing and non-ionizing radiation, serum and nutrient depletion, and chemical

agents like thymidine and hydroxyurea (Hohmann et aj., 1975; Harrington et aj.,

1980). These and other agents frequently lead to poorly synchronized cell populations,

altered cell metabolism and structure, and/or the death of a significant portion of the

cells (Natruj and Datta, 1978; Pardee et aj., 1978; Maurer-Schulitz et ah, 1988).

A vast array of cells were sensitive to the inhibitory effects of the bovine SGP.

Unlike a glycopeptide we previously isolated and purified from mouse brain cortex

(Kinders et aj., 1980) and a fucosylated glycopeptide obtained from bovine cerebral

cortex (Kinders and Johnson, 1982), the SGP equally inhibited DNA synthesis in a wide

variety of both nontransformed and transformed cells (Tables 1 and 2). In fact,

sensitive cells included epithelial-like cells and fibroblast cells from a broad spectrum of

vertebrate and invertebrate species. Of particular note was the sensitivity of the HL-60

and the PI-5.4 insect cells that grow in suspension rather than by firmly adhering to

the culture vessel surface. Similar to protein synthesis inhibition by the SGP (Sharifi

et ah, 1986a; 1986b), decreased thymidine incorporation, mediated by the inhibitor,

was independent of cellular attachment.

Although the target cell range of most naturally occurring inhibitors has not

been reported, such a wide range of sensitive cells is quite unusual. Cell membranes

prepared from senescent human diploid fibroblasts inhibit entry of replicating fibrob-

lasts into the S phase of the cell cycle, although these membranes were unable to

inhibit DNA synthesis in simian virus 40-transformed fibroblasts (Stein and Atkins,

1986). /3-TGF seems to be a more effective inhibitor of epithelial cells while fibroblasts

appear to be relatively refractory to its inhibitory action (Lin et ah, 1987; Jetten et ah,

1986; Baird and Durkin, 1986; Nakamura et ah, 1985). However, Roberts et aj. (1985)
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reported that/5-TGF inhibits the anchorage-dependent growth of NRK-49F cells as

monolayers and also inhibits anchorage-independent growth of many, but not all,

tumor cell lines tested. Interferons can inhibit the proliferative activity of at least some

fibroblast and epithelial cells (Balkwill et aj., 1978), and a number of studies have

attempted to determine the relative sensitivity of normal versus tumor cells to the

antiproliferative effects of interferons. Cultured human B cells and T cells proved

resistant to high concentrations of human interferon, while DNA synthesis of myeloma

cell lines, Burkitt's lymphoma and leukemic T cells were sensitive (Attallah et a].,

1980).

The sensitivity of such a wide range of nontransformed and transformed cells to

the bovine SGP inhibitor suggests that a functional receptor for the SGP is a common

characteristic. However, the ability of transformed or tumorigenic cells to circumvent

density-dependent growth inhibition may be based on their possessing little, if any,

inhibitor of the SGP class, or that they release growth factors in sufficient quantity to

maintain stimulated growth.
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Figure 1. Inhibition of DNA synthesis by the bovine sialoglycopeptide (SGP). Swiss

3T3 cells were plated as described in Materials and Methods. After a 24 h attachment

period cells were treated with various concentrations of the SGP for 20 h. Cells then

received 2.0 /xCi of ^H-thymidine per well, and were incubated for an additional 2 h.

Following this incubation period, cellular DNA was precipitated and dissolved with 0.1N

NaOH as described in the Materials and Methods section. The radioactivity was then

measured by scintillation counting. The data were plotted as percent of thymidine

incorporation in the presence of various concentration of SGP compared to control

cultures that did not receive inhibitor. The data represent the mean ± SD of eight

determinations.
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Figure 2. Reversal of the inhibitory effect of the sialoglycopeptide (SGP). Cells were

treated as in Fig. 1 except following the 22 h incubation with 1 unit of the SGP

(indicated by the arrow), one set of cultures received fresh medium without the SGP

(open circles) while a second set received fresh medium containing 1 unit of SGP

(closed circles). The broken line denotes the
3H-thymidine incorporation in expo-

nentially growing control cultures. The data represent the mean ± SD of triplicate

determinations.
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Figure 3. Inhibition of cell number by a sialoglycopeptide (SGP) and the reversal of its

inhibitory effect on cell number. Cells were plated at a low seeding density (1.2 x 10^),

as described in the Materials and Methods section. Cells were allowed a 4 h

attachment period and then one set was treated with 4 units of the SGP (first arrow).

After a 20 h incubation period media were removed from all cultures and replaced with

fresh medium without SGP (second arrow). Control cultures not treated with the SGP

(closed circles), SGP inhibited and reversed cultures (open circles).
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Table 1. Target Cell Range of the Bovine SGP.

Cell Culture Species Cell-Tvpe

HSBP human fibroblast

MD-BK bovine epithelial-like

Balb/c 3T3 mouse fibroblast

Swiss 3T3 mouse fibroblast

NRK-52E rat epithelial-like

BSC-1 monkey epithelial-like

CE chicken fibroblast

PI-5.4 insect (Indian meal
moth, embryo)

Exponentially growing cultures were treated with various concentrations of SGP as
described in Fig. 1 and thymidine incorporation was measured as described in Materials
and Methods. Swiss 3T3 cells, with and without SGP in their medium, always servrd
as comparative controls. All of the cells listed above were as sensitive to the SGP as
the control Swiss 3T3 cells.
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Table 2. Inhibition of Primary and Transformed Cell DNA Synthesis

Culture Species Cell-TvDe

kidney mouse primary

embryo mouse primary

HL-60 human transformed

(leukemia)

PC-12 rat transformed

(pheochromocytoma)

N-18 mouse transformed

(neuroblastoma)

IMR-32 human transformed

(neuroblastoma)

N2a mouse transformed

(neuroblastoma)

1316 mouse transformed

(fibrosarcoma)

2247 mouse transformed

(fibrosarcoma)

2337 mouse transformed

(fibrosarcoma)

Swiss 3T3, primary and transformed cells were plated and treated with the
sialoglycopeptide (SGPV as described in Materials and Methods. After 20 h incubation
with the SGP, percent ^H-thymidine incorporation in all cell lines was compared to
that of the Swiss 3T3 cell which served as controls. The inhibition of

3
H-thymidine

incorporation in all cell cultures listed above was equal to the inhibition measured with
the Swiss 3T3 cells.
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CHAPTER III.

MODULATION OF GROWTH-RELATED GENE EXPRESSION AND CELL
CYCLE

SYNCHRONIZATION BY A SIALOGLYCOPEPTIDE INHIBITOR
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ABSTRACT

When a cell surface sialoglycopeptide (SGP), isolated from intact bovine cerebral

cortex cells, was incubated with exponentially growing Swiss 3T3 cells, cell proliferation

was efficiently arrested. The inhibition was totally reversible since after removal of the

SGP the arrested cells resumed their progress in the cell cycle in a synchronized

manner for at least two divisions. Readdition of the SGP 4 h after reversal of the

inhibition did not, however, affect the commitment of the cells to advance through

metaphase, although progress through the cell cycle was once again inhibited after the

cells re-entered the G\ phase. The efficient nature of the SGP-mediated cell cycle

arrest in G\ provided us with a basis to examine potential changes in the expression of

several genes that have been implicated in the early events associated with cell cycle

progression. Upon serum stimulation of quiescent Swiss 3T3 cells, the induction of c-

myc and c-fos expression were not influenced by the SGP at concentrations highly

inhibitory to cell cycling. Expression of JE also was induced by serum, and the pres-

ence of the SGP had little effect on the expression of this growth related gene. KC

expression was not appreciably stimulated by serum although, surprisingly, the

addition of the SGP resulted in a significant increase in expression.
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INTRODUCTION

The mechanism (s) responsible for the regulation of cell division is of central

importance to numerous areas of cell biology ranging from developmental biology to

immunology and to tumorigenesis. There is little question that proliferation of normal

and tumorigenic cells is a result of interactions between both positive signals (growth

factors) and negative signals (growth inhibitors). Although a considerable amount of

information is available concerning the structure and biological action of growth

stimulators, there remains little information on the interaction of naturally occurring

growth inhibitors with regard to early events essential to the transition of cells from

the Gq/Gi phase of the cell cycle (Lau and Nathans, 1985).

The interaction of growth factors and tumor promoters with their specific cell

surface receptors initiates a cascade of intracellular events that includes a transient

increase in cytosolic pH, mobilization of Ca2+
, phosphoinositide metabolism, and

protein phosphorylation (Epel and Dube, 1987; Hesketh et al., 1987). A coordinate

induction of the expression of genes associated with cell proliferation accompanies

these metabolic events, and it is thought that the products of these genes play a

central role in the initiation and/or maintenance of the proliferative state.

In some cases, the expression of these growth-related genes has been altered by

the presence of growth inhibitory levels of transforming growth factor and tumor

necrosis factor (Kronke et al., 1987; Fernandez-Pol et al., 1987; Takehara et al., 1987;

Coffey et al., 1987). Whether these observations can be generalized to other cell lines

and growth inhibitors isn't known. We previously have described an 18 kD cell surface

sialoglycopeptide (SGP) inhibitor that was isolated from bovine cerebral cortex intact

cells (Sharifi et al., 1986). This SGP has been purified to homogeneity, and is a potent

inhibitor of cellular DNA synthesis and cell division (Fattaey et al., 1989). Its inhibitory

action is reversible and nontoxic, cell cycle arrest occurs in Go/Gi, and the biological
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activity is directed against a wide array of eukaryotic cell species and types (Fattaey et

al., 1989). The ability of the SGP to inhibit cell proliferation provided us with a

rationale to investigate the potential influence of the inhibitor on serum-induced gene

expression.
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MATERIALS AND METHODS

Purification of the bovine SGP .

The bovine SGP was purified as described previously (Sharifi et al., 1986a).

Briefly, the SGP was released from intact bovine cerebral cortex cells by mild proteol-

ysis, concentrated by ethanol precipitation, and extracted with chloroform/methanol

(2:1, v/v). Following overnight dialysis against water, the SGP was lyophilized,

resuspended in 0.05 M sodium acetate (pH 5.5), and bound to a DEAE ion-exchange

column. The unbound material was discarded and the bound proteins were eluted

with 0.4 M NaCl in 0.05 M sodium acetate (pH 5.5). The eluted material was then

concentrated, resuspended in PBS, and further purified by wheat germ agglutinin affin-

ity chromatography. The unbound fraction was vacuum dried, resuspended in 0.1 M

sodium phosphate buffer (pH 6.8), and purified by HPLC with a TSK 3000 SW size-

exclusion column (Phenomenex, Rancho Palos Verdes, CA). The final preparation was

dialyzed against dilute PBS, vacuum dried, and stored at -100C.

DNA synthesis inhibition was tested with purified SGP inhibitor resuspended in

Dulbecco's Modified Eagle's Medium (DMEM) containing 10% calf serum, sterilized

through a 0.22 n filter, and serially diluted in culture medium. 250 /zl were incubated

with exponentially growing Swiss 3T3 cell cultures for 20 h. DNA synthesis then was

measured by incubating each culture with 2.0 /xCi/ml of
[

3H] thymidine for 1 h and

then precipitating the cellular DNA with ice-cold trichloroacetic acid as described by

Fattaey et al. (1989). One unit of biological activity of the inhibitor was designated as

the amount that provided a 25% reduction of DNA synthesis ( ~ 3 x 10"8 M).

Cell culture .

All Swiss 3T3 cells were grown as monolayer cultures in a humidified incubator

with 5% CO2: 95% air atmosphere. Cells were maintained in 250 fi\ of DMEM contain-
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ing 10% calf serum and used during exponential growth for DNA synthesis and cell

cycle arrest, and as confluent and quiescent cultures for serum stimulation.

Inhibition of Swiss 3T3 cell division .

Swiss 3T3 cells were seeded in 48-well plates at 4.0 X 103 cells/well. After a 4

or 10 h incubation period, the medium was removed and replaced with either 250 /xl of

complete medium alone, or with complete medium containing 2 units of the SGP

inhibitor. After every generation time (20 h) the cell number was determined by

detaching the cells from culture wells with trypsin and diluting (1:20) in Isoton II

(Coulter Electronics Inc., Hialeah, FL). Cell numbers were measured with a Coulter

Counter, model ZM, (Coulter Electronics Inc, Hialeah, FL.). After two generation

times, the medium was removed from all cultures, the cells were washed two times

with medium, fresh medium was added and the cell number was determined as

described in specific experiments.

Cell culture for polv (A)
+ RNA isolation .

Swiss 3T3 cells were cultured in 75 cm2 Costar flasks (Costar, Cambridge, MA),

as described above, and grown for 5 days to quiescence. The culture medium was then

removed and the cells were washed with 10 ml of serum-free DMEM. Serum-free

DMEM media was then added and the cultures were reincubated for 48 h. Following

this 48 h incubation, serum-free media was removed from the cells and replaced with

DMEM containing 10% calf serum and various concentrations of the SGP. Several

types of control cultures were used in these experiments. Control cultures, used to

measure gene expression in quiescent cultures, either received conditioned DMEM

medium that previously had been incubated with confluent Swiss 3T3 cell monolayers

for 4 to 5 days or serum-free DMEM. To measure serum-induced expression, another

set of cultures received fresh DMEM with 10% serum, while at the same time exper-
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imental cultures received fresh DMEM with 10% serum and various concentrations of

the SGP.

RNA analysis by Northern hybridization .

Northern hybridization was carried out with RNA that was extracted from all cell

cultures using the method of Schwab et al. (1983) after 30 and 60 minutes incubation

with 10% calf serum, with or without the presence of the sialoglycopeptide. Poly(A)
+

RNA was purified by oligo(dT) chromatography, and the mRNA was separated by elec-

trophoresis in a 1.2% agarose-formaldehyde gel. Northern blotting was performed as

previously described (Thomas, 1980). Purified cDNA inserts of c-myc (4.7 kb Bam Hl-

Xbal insert), c-fos (1.1 kb Pst 1 insert), KC (0.82 kb Pst 1 insert), JE (0.75 kb Pst 1

insert), and B15 (0.68 kb Bam Hl-Xba 1 insert), were labeled by random primer

extension (Taylor et al., 1976). Following hybridization, the blots were washed in 0.1 X

SSC, 0.1% SDS at 42C and exposed to Kodak XAR-5 film using an intensifying screen.

For all of the Northern blot analysis, hybridization with a control 1B15 probe

demonstrated equal loading of RNA in each lane.
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RESULTS

Synchronization of mouse Swiss 3T3 cell division by the SGP .

The ability of the SGP inhibitor to synchronize cell populations was assessed

with nonconfluent and exponentially dividing monolayer cultures of mouse Swiss 3T3

cells. The cells were incubated in 250 /a1 of medium with 2.0 inhibitory units (8.0

units/ml) of the SGP for a period of 40 h, and the cell number was determined at least

every generation time (20 h). Compared to control cultures which were fed with

complete medium without the SGP experimental cultures, treated with the SGP were

inhibited from dividing within 20 h (Fig. 1).

After a 40 h incubation period, the medium on all cultures was replaced with

complete medium containing 10% calf serum. There was no significant change in the

rate of proliferation of control cultures which continued exponential growth, while the

number of cells in the previously SGP-treated cultures doubled abruptly within 10 h

after removal of the inhibitor (Fig. 1). Following this doubling, the cell number

remained essentially constant for a period of 12-15 h, after which the number of cells,

again, in a synchronous fashion completely doubled. The kinetics of recovery clearly

indicated that the SGP-mediated cell cycle arrest was totally reversible, and that a

single exposure of Swiss 3T3 cells to the SGP inhibitor synchronized the cell popula-

tions for at least two divisions.

The kinetics of inhibition and the synchronized recovery of the Swiss 3T3 cell

populations, as shown in Fig. 1, suggested that a single arrest point was associated

with the inhibitory action of the SGP. To determine if there was a single arrest point

or multiple points in the cell cycle where the SGP might act, the inhibitor was used to

synchronize Swiss 3T3 cell populations, and the inhibition again was reversed by

feeding the cultures with complete medium without the SGP. In this series of

experiments, 4 h after the SGP was removed, one set of the previously SGP-treated
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cells received medium with 2.0 units of SGP while a second set received fresh medium

without the inhibitor. Cells retreated with the SGP continued to traverse the cell cycle

and divided, but again they were inhibited after the mitotic phase (Fig. 2). This

illustrated that there was not a second arrest point between 4 hr after reversal and

mitosis, and that the inhibition again occurred in the Gl phase of the cell cycle.

The efficient cell cycle arrest that was mediated by the SGP, and the

synchronous nature of cell division following reversal of the inhibition, provided a basis

to assess the relationship between gene expression and cell cycling. To determine the

potential influence of the SGP on the expression of c-myc and c-fos, monolayers of

Swiss 3T3 cells were grown for 5 days to confluence and the quiescent cultures were

then fed with serum-free DMEM and reincubated for 48 hr.

The SGP does not inhibit serum induced expression of c-myc and c-fos .

The potential influence of SGP inhibitor on serum induced expression of c-myc

and c-fos was assessed with confluent cultures of mouse Swiss 3T3 cells. After the 48

hr incubation period in serum-free medium, the medium was removed and replaced

with either conditioned medium, serum-free medium, or complete DMEM containing

10% calf serum and various concentrations of the SGP inhibitor. Poly(A)
+ RNA was

extracted 30 and 60 min after the various treatments and analyzed by Northern blot for

both

c-myc and c-fos expression. Results of Northern blot analysis showed that c-fos

expression was measurably induced by serum stimulation after 30 min and by 60 min

the expression was significantly reduced. Even though highly inhibitory to cell divi-

sion, the presence of 4 to 12 inhibitory units/ml of the SGP had little, if any, influence

on c-fos expression (Fig. 3). Although slight, it appeared as if the expression of c-fos

was stimulated at 60 min in the presence of 12 units/ml of the SGP. Unlike c-fos, the

expression of c-myc was only minimal at 30 min with an approximately 30-fold
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induction at 1 h after the addition of DMEM and 10% calf serum. The expression of c-

myc, however, was not measurably affected, at 30 min or 60 min, by any of the

concentrations of the SGP (Fig. 4).

Dose dependent induction of KC expression by the SGP .

The KC gene is a platelet-derived growth factor (PDGF) inducible gene that

commonly is measured in cell growth regulation studies. To examine the influence of

the SGP on the induced expression of KC, confluent and quiescent Swiss 3T3 cell

cultures were incubated in serum-free DMEM for 48 hr, the medium was removed and

then the cultures were fed with either conditioned medium, serum-free medium, or

complete DMEM containing 10% calf serum and to 12 units of the SGP inhibitor.

Northern blot analysis of poly (A)
+ RNA, isolated 30 min after serum stimulation,

showed only minimal KC expression under all experimental conditions. Surprisingly,

an increase in KC gene expression was observed after 60 min incubation with the SGP

(Fig. 5). In addition, the SGP-induced induction observed at 60 min was shown to be

SGP dose dependent in that there was a measureable increase in KC expression with

concentrations of the SGP from 4 to 12 units/ml.

Increased expression of JE in the presence of the SGP .

Expression of the PDGF inducible gene JE, which also has been correlated with

cell cycling, was stimulated by the replacement of serum-free medium with DMEM

containing calf serum. JE expression was measureable within 30 min of the addition

of medium containing calf serum although the expression was significantly increased

at 60 min. After 30 min of incubation with serum-containing DMEM, the presence of

4 and 12 units/ml of the SGP appeared to increase expression although there was a

marked reduction with highest concentration of the inhibitor used, 12 units/ml.

However, upon 60 min of incubation, when JE expression was markedly increased, the

SGP enhanced the induction to levels above that measured with serum alone (Fig. 6).
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DISCUSSION

The relationship between protooncogene expression and the commitment of

quiescent cell populations to enter the cell cycle has been an intensive topic of study.

In the absence of purified naturally occurring cell growth inhibitors, however, the

important links between inhibitory signals and mitogenic cues (growth factors and

tumor promoters), have been difficult to establish. To this end, we have isolated and

purified a cell surface SGP that is a potent inhibitor of cellular protein synthesis, DNA

synthesis, and cell division (Sharifi et al., 1986; Fattaey et al., 1989). The SGP is an

effective inhibitor of the mitogenic action of 12-0-tetradecanoylphorbol-13-acetate

(TPA) (Chou et al., 1987), epidermal growth factor (Bascom et al., 1987), and

bombesin (Johnson and Sharifi, 1989). Unlike other reported inhibitors, the SGP has

an unusually broad range of sensitive target cells including vertebrate and invertebrate

cells, both nontransformed and transformed cells, and fibroblast and epithelial-like cells

(Fattaey et al., 1989). Kinetic studies have shown that Swiss 3T3 cells, the subject of

the present study, are arrested by the SGP in the Go/Gi phase of the mitotic cycle.

The inhibitory action of the SGP is nontoxic and totally reversible as shown by

the doubling of the cell population several hours after the removal of medium con-

taining the inhibitor (Fig. 1). Furthermore, the kinetics of reversal and the continued

cell division showed that the cell population remained synchronized through at least

two subsequent divisions (Fig. 1). Readdition of the SGP to Swiss 3T3 cell cultures 4 h

after the reversal of cell cycle arrest did not abrogate their continuing through mitosis

(Fig. 2). This illustrated that there was not a second arrest point, that was mediated by

the SGP, between the original Gq/Gi block and cell division.

The efficient and nontoxic nature of the SGP inhibition of Swiss 3T3 cycling

offered an opportunity to access its ability to modulate expression of several genes that

have been associated with early events leading to cell proliferation. When quiescent
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Swiss 3T3 cell monolayer cultures were serum-stimulated, there was a marked

induction of c-fos expression. C-fos is one of the earliest genes to be stimulated after

the addition of growth factors (Kruijer et al., 1984; Prywes and Roeder, 1986), and the

measured induction of c-fos expression within 30 min and the relatively short half-life

of the transcripts (Fig. 3), were consistent with earlier reports by others (Kruijer et al.,

1984; Denhardt et al., 1986; Morike et al., 1988). The presence of the SGP at concen-

trations more than adequate to maintain cell cycle arrest (Fig. 1), did not diminish the

measured levels of c-fos mRNA in the stimulated cells (Fig. 3). In addition, there was

little influence by the SGP on the half-life of c-fos transcripts with the exception of a

slight, but perceptible, sparing in the presence of 12 units/ml of the inhibitor.

Upon growth factor stimulation of confluent cell cultures the induction of c-

myc follows c-fos (Greenberg and Ziff, 1984; Muller et al., 1984; Blanchard et al., 1985;

Denhardt et al., 1986). Northern analyses in our experiments showed only a slight

stimulation of c-myc expression at 30 min and a significant accumulation of c-myc

transcripts at 60 min following the addition of serum (Fig. 4). Similar to the

observations with the induced expression of c-fos, however, the presence of 4 to 12

units/ml of the SGP had no measured effect on the induction of c-myc expression.

Unlike c-fos and c-myc, expression of the KC gene, which has been shown to

be activated in Swiss 3T3 cells within 60 min after the addition of PDGF (Cochran et

al., 1983), was only slightly stimulated by the addition of serum to quiescent Swiss 3T3

cell monolayers. Interestingly, the expression of KC was stimulated 60 min after the

addition of the SGP, and the relative increase of KC transcripts appeared to be

dependent on the concentration of the inhibitor (Fig. 5). The expression of JE, another

PDGF dependent gene associated with entry of the Swiss 3T3 cells into the mitotic

cycle (Cochran et al., 1983), was induced by the addition of serum. Like the expres-

sion of KC, JE mRNA synthesis appeared to be stimulated by the presence of the SGP
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inhibitor (Fig. 6). However, the relative amount of JE mRNA did not seem to be sig-

nificantly increased by incremental concentrations of the SGP.

We considered the possibility that the SGP did not increase the transcription of

the KC and JE genes but rather mediated a diminished rate of protein synthesis that

decreased the levels of nuclease. An inhibition of nuclease activity could increase the

half-lives of the transcripts thereby providing what would appear to be an increased

synthesis of mRNA as measured by Northern analyses. A superinduction of c-fos has

been reported with Swiss 3T3 cells treated with a combination of PDGF and cyclohex-

imide (Cochran et al., 1984). It already is known that the protein synthesis inhibitory

activity of the SGP can be measured within minutes of its addition to target cells

(Sharifi et al., 1986; Bascom et al., 1986). This explanation does not seem plausible,

however, since decreased nuclease activity would be expected to also have a sparing

influence on c-fos and c-myc transcripts. It is clear that the typical transient

appearance of c-fos transcripts was not affected by the presence of the SGP (Fig. 1),

and the relative amount of c-myc transcripts appeared similar between cells incubated

with calf serum alone and those cultures also incubated with 4 to 12 units/ml of the

SGP (Fig. 2). Why KC and JE expression were stimulated by the presence of growth

inhibitory levels of the SGP, and if this unusual observation is related in any fashion to

cell growth control, remain to be resolved.

We conclude that the presence of the SGP clearly does not inhibit the

expression, or diminish the number of transcripts, of these four genes that have been

associated with a commitment of quiescent Swiss 3T3 cells to enter the cell cycle.

Although previous observations have shown that the inhibitory action of the SGP is

rapidly mediated when abolishing the action of growth factors and a phorbol ester

tumor promoter (Chou et al., 1987; Bascom et al., 1987; Johnson and Sharifi, 1989),

the inhibitory activity does not seem to be associated with a transcriptional block.
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Since it is, however, the translation of these mRNA transcripts that actually leads to

cell proliferation (Moelling, 1986; Rozengurt, 1986; Palmiter and Brinster, 1986), it is

possible that the polypeptide products associated with these early inducible genes are

not synthesized in the growth arrested cells. Alternatively, these data may disclose that

the SGP-induced Gq/G\ cell cycle arrest point (Fattaey et al., 1989) may be in mid- or

late-Gi where the inhibitor would not be expected to block the expression of immed-

iate or early gene expression.
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Figure 1. Synchronization of Swiss 3T3 cells by the bovine sialoglycopeptide (SGP)

inhibitor. Swiss 3T3 cells were plated and allowed to attach to the culture wells for 10

h, and then 2 units of inhibitor were added to cells (first arrow). After two generation

times, the medium with the inhibitor was removed and fresh medium was added to all

cultures (second arrow). The data represent the mean ± S.D. of triplicate cultures.

Control cultures not treated with the SGP (closed circles); SGP inhibited and reversed

cultures (open circles).
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Figure 2. Readdition of the SGP after reversal of the inhibition of cell cycling. Swiss

3T3 cells were plated and allowed to attach to culture plate for 10 h, 2 inhibitory units

of SGP were then added (first closed arrow). After two generation times, the media

from all cultures was removed and fresh media, without the SGP, was added (open

arrow). 4 h following the removal of the SGP the cells previously inhibited by the SGP

again received 2 units of the SGP (second closed arrow). The data represent the mean

± S.D. of triplicate cultures. Control cultures not treated with the SGP (closed circles);

SGP inhibited, reversed, and reinhibited cultures (open circles).
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Figure 3. Effect of the bovine sialoglycopeptide (SGP) on the expression of c-myc in

serum-stimulated quiescent Swiss 3T3 cells. Swiss 3T3 cells were grown to quiescence

and incubated with DMEM with 10% calf serum as described in the Materials and

Methods. After 30 and 60 min, poly(A)
+ RNA was isolated and analyzed by Northern

blots as described. Each lane contained 1.0 jug of poly(A)
+ RNA that was hybridized to

a
32

P-labelled cDNA probe as described in the Materials and Methods.
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Figure 4. Effect of bovine sialoglycopeptide on expression of c-fos in serum-stimulated

quiescent Swiss 3T3 cells. The experiment was carried out as described in Fig. 3.

Each lane contained 1.0 jug of poly(A)
+ RNA that was hybridized to a "^P-labelled

cDNA probe as described in the Materials and Methods.
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Figure 5. Effect of bovine sialoglycopeptide (SGP) inhibitor on the expression of KC in

serum-stimulated quiescent Swiss 3T3 cells. The experiment was carried out as

described in Fig. 3. Each lane contained 1.0 /ig of poly (A)
+ RNA that was hybridized

to a ^P-labelled CDNA probe as described in the Materials and Methods.
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Figure 6. Effect of bovine sialoglycopeptide (SGP) inhibitor on the expression of JE in

serum-stimulated quiescent Swiss 3T3 cells. The experiment was carried out as

described in Fig. 3. Each lane contained 1.0 /zg of poly(A)
+ RNA that was hybridized

to a °^P-labelled cDNA probe as described in the Materials and Methods.
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SUMMARY

Cellular growth and homeostasis clearly are under tight restriction. This

control is provided by the two major classes of substances, growth stimulatory

molecules and growth inhibitory molecules. A loss of growth control, then, is

prerogative to a deviation from the delicate equilibrium maintained by these molecules.

The analysis of this regulatory balance is dependent upon the understanding of these

contributing elements, growth factors and growth inhibitors. Many growth stimulatory

molecules have been isolated, purified and studied extensively. On the other hand,

only a limited number of growth inhibitors have been recognized. However due to the

difficulties involved in the purification of these few inhibitors, their mechanism of

action is still unknown.

Despite all obstacles involved in the purification of these molecules, we have

isolated inhibitory glycopeptides from mouse and bovine brain cerebral cortex intact

cells. Kinders et al. (1979) described a glycopeptide inhibitor from mouse brain

isolated by mild protease treatment of intact cells. A similar molecule was later isolated

from bovine brain cerebral cortex cells by Kinders et al. (1982). This inhibitor had a

molecular weight of 18 kD, a pi of 8.1 and was shown to reversibly inhibit protein syn-

thesis and division of a variety of normal cell types. However, transformed cells were

either slightly sensitive or completely refractory to the inhibitors action. This

glycopeptide was shown to inhibit baby hamster kidney (BHK-21) cells in the G2 phase

of the cell cycle (Charp, et al., 1983).

Another growth inhibitor was isolated from bovine brain cerebral cortex intact

cells by Sharifi et al. (1986a). This was a sialidated peptide with a molecular weight of

18 kD, a pi of 3.0 and was designated sialoglycopeptide (SGP). The SGP was shown to

inhibit protein and DNA synthesis in mouse 3T3 fibroblast cells (Sharifi, et al., 1986a;

Chou, et al., 1986). There are specific high affinity receptors for the SGP on the
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surface of 3T3 cells and binding of the molecule to cells is correlated with the

inhibition of cellular protein synthesis (Bascom et al., 1986).

The purpose of the present work was to further characterize the mechanism of

action of the SGP. In order to determine the potential range of target sensitivity to the

inhibitor, a wide range of exponentially growing cell cultures were assayed with the

SGP. In each case the SGP was assayed in parallel with Swiss 3T3 cells as a

comparative control. Surprisingly, all cell cultures tested were as sensitive to the

inhibitor as the Swiss 3T3 cells. We discovered that DNA synthesis of cells obtained

from a wide range of vertebrate and non vertebrate species, epithelial and fibroblast

cultures was inhibited by the SGP. In addition, a number of transformed cells DNA

synthesis was also inhibited by the SGP. Furthermore, we discovered that actual cell

division in Swiss 3T3 cells was blocked by the SGP and that the inhibitory action of the

this molecule on Swiss 3T3 cells DNA synthesis and cell division was totally reversible,

therefore non toxic to cells. We have shown the ability of the SGP to synchronize cell

populations in non-confluent and exponentially dividing mouse Swiss 3T3 cells. A

single exposure of cells to the SGP mediated synchronization of cell population for at

least two divisions. The kinetics of inhibition and the synchronized recovery of the

Swiss 3T3 cell populations suggested that the entire cell population was arrested in th

Gj phase of the cell cycle. We also described experiments that lead us to believe that

there is a single arrest point in the cell cycle. Furthermore, to discover the early events

that may be modulated by the SGP, we examined the effect of the SGP on the

expression of several growth related genes. We have shown that the growth inhibition

mediated by the SGP is not related to an inhibition of c-myc, c-fos, JE or KC gene ex-

pression. In fact, serum induced expression of KC and JE, two genes associated with

cell division, appeared to be enhanced by the addition of the SGP. The expression of c-

myc seemed not to be affected by the addition of the SGP while c-fos expression was
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slightly enhanced with high concentration of the inhibitor after 60 minutes of

treatment.
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ABSTRACT

We have isolated and purified, to apparent homogeneity, a sialoglycopeptide

(SGP) from bovine brain cerebral cortex cell surfaces. This glycopeptide has been

shown to be a potent inhibitor of cellular protein synthesis. The studies we present in

this dissertation were carried out to characterize the potential ability of the

sialoglycopeptide to modulate several cell growth-related processes. Initially treatment

of exponentially proliferating Swiss 3T3 cells with the SGP inhibitor resulted in a

marked inhibition of thymidine incorporation within 24 h. When the SGP was

removed from inhibited cultures, a sharp rise in
3H-thymidine incorporation followed

within 3-4 h, and peaked well above that measured in exponentially growing cultures.

This suggested that the inhibitory action of the SGP was reversible and that a

significant proportion of the arrested cells was synchronized in the mitotic cycle.

In addition to DNA synthesis, the inhibitory action of the SGP was monitored

by direct measurement of cell number. Consistent with the data on thymidine

incorporation, the SGP completely inhibited Swiss 3T3 cell division 20 h after its

addition to exponentially growing cultures. Upon reversal there was a delay of 15 h

before cell division resumed, when the arrested cells quickly doubled. Most, if not all,

of the growth-arrested cells appeared to have been synchronized by the SGP.

The SGP inhibited DNA synthesis in a surprisingly wide variety of target cells,

and the relative degree of their sensitivity to the inhibitor was remarkably similar. Cells

sensitive to the SGP ranged from vertebrate to invertebrate cells, as well as a wide

range of transformed cell lines. In another series of experiments the SGP was

incubated with exponentially growing Swiss 3T3 cells and cell proliferation was totally

stopped. The inhibition was again totally reversible since after removal of the SGP, the

arrested cells resumed their progress in the cell cycle in a synchronized manner for at

least two divisions. Readdition of the SGP 4 h after reversal of the inhibition did not,



however, affect the commitment of the cells to advance through mitosis, although

progress through the cell cycle was once again inhibited after the cells entered G\.

The efficient nature of the SGP-mediated cell cycle arrest in G\. provided us

with a basis to examine potential changes in the expression of several genes that have

been implicated in the early events associated with cell division. Upon serum

stimulation of quiescent Swiss 3T3 cells, the induction of c-myc and c-fos expression

were not influenced by the SGP at concentrations highly inhibitory to cell cycling.

Expression of JE also was induced by serum, and the presence of the SGP had little

effect on the expression of this growth related gene. KC expression was not

appreciably stimulated by serum although, surprisingly, the addition of the SGP

resulted in a significant increase in expression.
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