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Abstract 11 

In shallow water table controlled environments, surface water management impacts groundwater 12 

table levels and soil water dynamics. The study goal was to simulate soil water dynamics in 13 

response to canal stage raises considering uncertainty in measured soil water content. WAVE 14 

(Water and Agrochemicals in the soil, crop and Vadose Environment) was applied to simulate 15 

unsaturated flow above a shallow aquifer. Global sensitivity analysis was performed to identify 16 

model input factors with greatest influence on predicted soil water content. Nash-Sutcliffe 17 

increased and Root Mean Square Error reduced when uncertainties in measured data were 18 

considered in goodness-of-fit calculations using measurement probability distributions and 19 

probable asymmetric error boundaries; implying that appropriate model performance evaluation 20 

should be done using uncertainty ranges instead of single values.  Although uncertainty in the 21 
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experimental measured data limited evaluation of the absolute predictions by the model, WAVE 22 

was found a useful exploratory tool for estimating temporal variation in soil water content. 23 

Visual analysis of soil water content time series under proposed changes in canal stage 24 

management indicated that sites with land surface elevation of less than 2.0 m NGVD29 were 25 

predicted to periodically experience saturated conditions in the root zone and shortening of the 26 

growing season if canal stage is raised more than 9 cm and maintained at this level. The models 27 

developed could be combined with high resolution digital elevation models in future studies to 28 

identify areas with the greatest risk of experiencing saturated root zone. The study also 29 

highlighted the need to incorporate measurement uncertainty when evaluating performance of 30 

unsaturated flow models.  31 

Key words; Soil water, measurement uncertainty, vadose zone, WAVE, root zone 32 

saturation 33 

  34 
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Introduction  35 

 In shallow water table controlled environments, regional surface water management 36 

operations impact groundwater table levels which in turn affect soil water dynamics. An example 37 

is the operational adjustments in surface water management that are occurring in south Florida as 38 

part of an effort to restore the hydrology of Everglades National Park (ENP)(USACE and 39 

SFWMD, 2011). Rises in water table due to proposed rises in canal stage could affect soil water 40 

content in agricultural fields adjacent to ENP through transient root zone saturation. Negative 41 

impacts of a saturated root zone on plants including reduced yield and physiological function are 42 

well documented in literature (Lizaso and Ritchie, 1997; Schaffer, 1998).  43 

 In addition, rises in shallow water table could increase risk of temporary groundwater 44 

flooding due to rapid water table responses to storm events. Earlier studies have observed 45 

disproportionate rises in water table elevations after intense rainfall (Kayane and Kaihotsu, 1988; 46 

Waswa et al. 2013). Germann and Levy (1986) attributed the rapid rise in water table elevation 47 

in response to precipitation to capillary fringe groundwater ridging in which a small addition of 48 

water to the capillary fringe resulted in a rapid and large rise in water table elevation that drops 49 

immediately after the storm.  50 

 One way of assessing potential impacts of surface water management decisions on soil water 51 

dynamics is through monitoring and modeling. A normally preferred approach is the use of 52 

process models. The main advantage of process-based vadose zone models over statistical or 53 

empirical models such as that used in Kisekka et al. (2013c) is they are transferable. Several 54 

vadose zone models are available, such as WAVE (Water and Agrochemicals in the soil, crop 55 

and Vadose Environment), HYDRUS, and SWAP (Soil-Water-Atmosphere-Plant). These 56 

models typically predict water, heat and solute movement in the unsaturated zone.  57 
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 To adequately characterize vadose models and enhance their proper use, model uncertainty 58 

as well as uncertainty in measured soil water data used in model parameterization and evaluation 59 

needs to be considered. There are many sources of uncertainty which make soil water content 60 

measured by indirect soil water monitoring methods (e.g., time domain reflectometer [TDR], and 61 

capacitance sensors) uncertain. Sources of uncertainty include 1) errors related to equipment 62 

installation and calibration, 2) errors associated with the measurement technique and algorithms 63 

that are used to convert surrogate measurements to soil water content, and 3) errors associated 64 

with spatial variability of soil properties (IAIA, 2008). For example, uncertainty in TDR 65 

measurements can mostly be attributed to effects of soil electrical conductivity and dielectric 66 

relaxation on the calibration equation (Lin, 2003). Errors in soil water measurements by 67 

capacitance sensors can be attributed to small scale variations in soil water content due to the 68 

small volume of soil sensed, temperature and soil bulk electrical conductivity (Evett et al. 2012). 69 

Errors may be random or systematic. Random errors maybe minimized through proper sampling 70 

and calibration but other types of errors are beyond the control of the user of the soil water 71 

monitoring equipment and these become a source of systematic uncertainty in measured soil 72 

water data (e.g., non-uniform distribution of the electromagnetic field of capacitance probes 73 

around the access tube which results in overestimation of soil water). 74 

 In many soil water prediction model performance evaluations (Whiting et al., 2004; Merdun et al., 75 

2006; Chen et al., 2012; Ritter and Muñoz-Carpena, 2013) Goodness-of-fit indicators such as Nash-76 

Sutcliffe (NSE), Willmot index (d), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE) 77 

are used. These goodness-of-fit indicators are usually based on calculating the pairwise error between 78 

observed and predicted soil water content without accounting for the uncertainty in measured data. 79 

Accurate evaluation of model performance needs to consider this source of uncertainty whenever 80 

possible in order to provide a more realistic assessment of model performance and to provide 81 
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guidance for model output interpretation (Harmel et al., 2010). Bilskie (2001) describes a simple 82 

statistical procedure to quantify uncertainty due to spatial variability in soil water content but 83 

does not cover uncertainty due to instrumentation. Harmel and Smith (2007) provide a 84 

framework for quantifying uncertainty in measured data, while Harmel et al. (2010) outlines a 85 

procedure for quantifying model uncertainty for models in which the predicted state variable can 86 

be assumed independent. The later approach may need modification for soil water simulations 87 

because soil water content cannot be assumed independent due to autocorrelation. Another 88 

approach that has been used to address measurement uncertainty in hydrologic model inputs 89 

include use of the Bayesian total error analysis methodology (Kavetski et al. 2006), but this 90 

approach tends to be computationally intensive.  91 

 The study goal was to simulate soil water dynamics in response to surface water management 92 

in the C-111 basin of Florida considering measurement uncertainty. The objectives were to: (1) 93 

apply the vadose zone model WAVE for simulating soil and limestone bedrock water content 94 

dynamics at four sites monitored, (2) evaluate model performance considering uncertainty in 95 

measured soil and limestone bedrock water content, and (3) apply the models to investigate the 96 

effect of 6, 9 and 12 cm incremental rises in canal stage on soil and limestone bedrock water 97 

dynamics at 10, 20, 30 and 40 cm monitoring depths.  98 

Material and methods 99 

Study area and experimental set up 100 

 The study was conducted in Miami-Dade County close to Homestead,  Florida, within an 101 

agricultural area approximately 17 km2 (Figure 1) immediately to the east of canal C-111. 102 

Topography is essentially flat, implying that the assumption of 1D vertical flow for the 103 

unsaturated zone is valid. Soil depth is shallow ranging between 10 and 25 cm. The limestone 104 

bedrock layer is highly porous and reached on average at 20 cm depth.   105 
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 Two multi-sensor capacitance probes (EnviroScan probes, Sentek Technologies, Ltd., 106 

Stepney, Australia) for soil water monitoring were installed at four locations (Figure 1) at 107 

distances of 500, 1000 and 2000 m from the canal. Each probe had four sensors positioned at 10, 108 

20, 30 and 40 cm from the ground surface (Figure 2). Soil water content was recorded every 15 109 

minutes and averaged daily. A detailed description of EnviroScan operation can be found in 110 

Kisekka et al. (2013c).  The top 20 cm typically represented the scarified soil layer which is used 111 

for crop production and the lower 20 cm represented the underlying limestone bedrock in which 112 

plant roots cannot penetrate.  113 

 Calibration of capacitance sensors in the field using the standard gravimetric sampling 114 

approach (Sentek Pty Ltd, 2001) was attempted but later abandoned due to several factors 115 

including: 1) difficulty obtaining soil samples adjacent to the sensor access tube without 116 

interfering with the operation of the sensors; 2) difficulty in obtaining a wide range of soil water 117 

content under field conditions to properly calibrate the sensors; and 3) presence of a shallow 118 

limestone bedrock in which it was difficult to sample. Evett et al. (2012) noted that field 119 

calibration may not resolve the issue of accuracy associated with capacitance type soil water 120 

sensors.  This was attributed to the high sensitivity of the sensors to soil bulk electrical 121 

conductivity and temperature, non-uniform distribution of the electromagnetic field around the 122 

plastic access tubes, and changes in soil structure over time and space. However, Gabriel et al. 123 

(2010) compared default and calibrated volumetric soil water content from EnviroScan sensors 124 

in a field study and concluded that although the sensors tend to over-estimate water content, the 125 

sensors were accurate in reproducing soil water dynamics.  Thus, the value of capacitance probes 126 

in the present study was their ability to respond well to dynamics of soil water content (Evett, 127 

2000). 128 
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Numerical modeling of unsaturated flow with WAVE  129 

 A vadose zone computer code called WAVE developed by Vanclooster et al. (1995) that 130 

solves the one dimensional (1D) Richards’ equation using finite difference techniques was 131 

applied. WAVE simulates the transport of water, energy, non-reactive solutes, nitrogen, and 132 

pesticides in the soil-crop continuum.   133 

 Simulated system depth varied between 200 and 220 cm to account for the variations in 134 

depth to the water table at the different locations. The soil profile was discretized into 5 cm 135 

compartments and a numerical solution was obtained at the center of each of the compartment 136 

(Figure2).  137 

The minimum and maximum time steps were set to 0.01 and 1 day, respectively. The initial 138 

condition was obtained by assuming drain to equilibrium conditions within the soil profile.  139 

 In WAVE, unsaturated flow is simulated using h-based formulation of Richards’ equation:  140 
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where C(h) is the differential moisture capacity [L-1], equal to the slope of the soil water 142 

retention curve; h is the soil water pressure head [L]; t is the time [T]; z is the vertical space 143 

coordinate; and K(h) is unsaturated hydraulic conductivity. The van Genuchten–Mualem models 144 

was used to calculate K(h) in this study (Eqs. 2 and 3; Mualem, 1976 and van Genuchten, 1980): 145 
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where r and s are residual and saturated soil water content respectively,  is inverse of the air 148 

entry value, n is pore size distribution index,  Ksat is saturated hydraulic conductivity, Se 149 
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effective saturation (normalized volumetric water content  ) and λ is pore connectivity. The 150 

parameters of the van Genuchten equation for layer 1 were estimated in the laboratory using 151 

measurements of suction and volumetric water contents collected using Tempe cells and 152 

Richards’s pressure plate and then fitted the retention curve using RETC tool (van Genuchten, 153 

1991). Soil water retention characteristics for layer 2 were not directly measured due to difficulty 154 

in obtaining undisturbed samples from the limestone bedrock and the extremely porous nature of 155 

the material. Saturated water content for the limestone bedrock was estimated when the sensors 156 

at 30 and 40 cm were below the water table. Initial literature values for the other retention curve 157 

parameters for layer 2 i.e., r  and parameters n and   were obtained from literature (Muñoz-158 

Carpena et al., 2008). Initial pore connectivity parameter (λ) values were obtained from literature 159 

(Mualem, 1976) but were assumed to vary between 0.5 and 1.5. 160 

 The sink term S(z,h) was expressed as a function of the maximum root water uptake (Smax) as 161 

proposed by Feddes et al. (1978) which is a function of z. In this study, a linear relationship was 162 

assumed for Smax and the parameters A and B in Eq. 4 were obtained by specifying Smax at 163 

different compartments to range between 0.001 and 0.012 (Vanclooster et al., 1996). A 164 

dimensionless reduction function α(h) ranged between 0 and 1 as described in Vanclooster et al., 165 

1996.  166 

 BzAhShhzS  )()(),( max   (4) 167 

 We simulated root water uptake by describing a Leaf Areas Index (LAI), root growth depth, 168 

and crop coefficient (Kc) time series for sweet corn as it represented a dominant crop grown at 169 

the study site. Crop evapotranspiration (ETcrop) was partitioned into potential soil evaporation 170 

(Ep) and potential transpiration (Tp) following Ritchie (1972): 171 
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where c is the radiation extinction coefficient was set to 0.6 (Vanclooster et al. 1995), CanStor 174 

representing the amount of water intercepted and released from the canopy (mm) was assumed 175 

negligible and considered to be zero for computational purposes, ETcrop is calculated as a product 176 

of reference evapotranspiration and a crop coefficient, other terms in Eqs. 5 and 6 are described 177 

as before. Meteorological data for calculating reference evapotranspiration were obtained from 178 

the Florida Automated Weather Network station located 10 km north of the study site. LAI for 179 

sweet corn was measured using a LI-3100C Area Meter (LI-COR, Inc, Lincoln, Nebraska USA).  180 

Kc values for sweet corn grown in south Florida were obtained from Muñoz-Carpena et al. 181 

(2008).  182 

 A groundwater table boundary condition was used as the bottom boundary as study 183 

motivation was in part to investigate the impact of the raised water table on soil water dynamics. 184 

The time series of water table depth were simulated using MODFLOW as described in Kisekka 185 

et al. (2013b). The boundary condition at the top was a flux calculated as:  186 
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where Qs is the potential flux through the soil surface (cm/day) defined positive upwards, Epot is 188 

potential soil evaporation, Rain is precipitation (cm/day), Irr is irrigation (cm/day), Pond is 189 

ponding depth at surface (cm), and Intc is storage capacity of the canopy (m). Irr, Pond, and Intc 190 

were not measured and for computational purposes were assigned values of zero. We 191 

acknowledge that having information on irrigation applications especially in the growing season 192 

(November to May) would have improved our model representation of the real physical system 193 
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but the study was conducted on commercial production farms where irrigation application were 194 

not metered.  195 

Calibration, sensitivity analysis and model validation of WAVE 196 

 To avoid over fitting the model to uncertain data, we did not use parameter estimation 197 

techniques that seek to minimize the difference between measured and predicted value. Instead 198 

calibration was completed by adjusting parameter values within ranges established through 199 

measurement or literature until the fit between simulated and measured soil water content was 200 

acceptable (within the uncertainty range of measured data). The length of soil water content time 201 

series at each site varied due to differences in the dates of installation of the capacitance probes 202 

and also due to malfunction and replacement of sensors at different sites during the study (Table 203 

1). For each site half of the data was used for model calibration and the remaining half for model 204 

validation. 205 

 Global sensitivity analysis was implemented in two stages (Saltelli et al., 2004; Muñoz-206 

Carpena et al., 2007). First the improved Morris method by Campologo et al. (2007) was applied 207 

to obtain qualitative ranking of parameters and then using a subset of critical parameters from 208 

step 1, Sobol’ analysis was performed to determine quantitative first order and total effects 209 

sensitivity indices. Parameters included in sensitivity analysis for layers 1 and 2 at different sites 210 

are given in Table 2. For all the parameters with the exception of LAI and Kc, a uniform 211 

distribution was assumed and parameters ranges were obtained from measurements or literature. 212 

To test the sensitivity of simulated volumetric soil water content to variations in LAI, a discrete 213 

uniform distribution was assumed using three values representing LAI during initial plant 214 

development stage, mid-season stage, and late season stage. LAI values are based on 215 
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measurements collected in a sweet corn field during the study (Table 3). A similar approach was 216 

used for testing sensitivity of simulated volumetric water content to variations in Kc.  217 

 Campologo et al. (2007) sensitivity analysis was implemented using Matlab algorithms 218 

(R2012a , Mathworks Inc., Natick, Massachusetts) developed by Saltelli et al. (2008) 219 

(http://sensitivityanalysis.jrc.it/software/index.htm). Matlab was used to automatically execute 220 

WAVE for each parameter set in the generated sample input file. For sample generation using 221 

Campolongo et al. (2007) method, the following settings were used: number of levels (p) was 4, 222 

size of oversampling (N) was 1000, number of trajectories (r) was 20, and number of parameters 223 

(k) was 19. This resulted in a total of 400 parameter sample sets (i.e., 400)1( kr ). The 224 

number of WAVE executions for Sobol analysis was estimated as )1(2 kn , where the sample 225 

size, n was 512 and k is the number of critical parameters identified from Campologo et al. 226 

(2007) analysis. Nash-Sutcliffe coefficient (NSE) and the Root Mean Square Error (RMSE) were 227 

calculated as the model output for each simulation.  228 

Estimating uncertainty in measured soil and bed rock water content  229 

 To account for error sources, we quantified uncertainty for each measured soil and bedrock 230 

water content value. Uncertainty in measured soil and bedrock water content data was accounted 231 

for using a correction factor based on an assumed probability distribution for each measurement 232 

(Harmel and Smith, 2007; Harmel et al., 2010). The correction factor modifies the error term 233 

(i.e., the pair-wise difference between measured and predicted values) in goodness-of-fit 234 

indicators by incorporating the distribution of the measurement uncertainty as shown: 235 

 )(
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where imeasurede )( is the modified deviation between measured and predicted soil water 237 

content for point i  considering only measurement uncertainty, imeasuredCF )( is the non-238 

dimensional correction factor (ranges between 0 and 1) for each measured soil and bedrock water 239 

content ( iO ) and predicted soil and bedrock water content ( iP ) considering measurement 240 

uncertainty, and 0.5 refers to one sided probability for ( iO ) at mean value assuming a symmetric 241 

distribution.  242 

 WAVE was calibrated by manually adjusting parameter values within the ranges in Table 2. 243 

These ranges were selected based on laboratory measurements or literature and represented the 244 

range in values for each parameter. Thus, these ranges were the best estimate of parameter 245 

distribution. Parameter values were adjusted until the simulated soil water content was within the 246 

maximum and minimum uncertainty bounds of the measured data and calculated as: 247 

Cvxx 3  (9) 248 

Cvxx 3  (10) 249 

where the uncertainty bounds  and  are the lower and upper bounds of the uniform 250 

distribution, x  is the mean of the distribution for measurement i  set at the measured value and 251 

Cv is coefficient of variation (Harmel et al., 2010). We assumed a uniform distribution for all 252 

measurements and minor (Cv=0.02) to moderate (Cv=0.08) uncertainty depending on how 253 

variable the data collected from two adjacent capacitance probes was. However, this method 254 

assumes a symmetric distribution which may deviate from the true distribution for each 255 

measurement.  256 

 Since probability distribution of measured soil water can be asymmetric, to account for 257 

asymmetry corresponding to each measurement, we used the probable error range (PER) 258 
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approach for modifying the error between observed and predicted values described by Harmel 259 

and Smith (2007). This approach does not require knowing the probability distribution of the 260 

measurements, it involves the use of PER in measurement based on professional judgment or 261 

literature. We set a probable uncertainty lower boundary length of 5% of the measured value and 262 

an upper boundary length of 2.5% of the measured value based on average deviations of 263 

measured values from long term average soil water content during the study period. In this 264 

approach the deviation between the predicted and measured values for each corresponding pair 265 

for calculating Goodness-of-fit is modified based on whether the predicted value falls within the 266 

uncertainty range of the corresponding measured value or outside the uncertainty range as shown 267 

in equations 11 and 12 (Harmel and Smith, 2007) 268 
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were )(uUOi
is the upper uncertainty boundary, )(lUOi

is the lower uncertainty boundary, 
iuPER is the 271 

upper probable error range for each measured data point, 
iuPER is the lower probable error range for each 272 

measured data point, 
iO and  

iP are described as previously.  273 

After calibration, model performance (validation) was assessed using the procedure described 274 

by Ritter and Muñoz-Carpena (2013) which determines the statistical significance of Goodness-275 

of-fit indicators. The methodology is implemented by the computer program FITEVAL.  Ritter 276 

and Muñoz-Carpena (2013) use the bootstrapping technique described by Politis and Romano 277 

(1994) to derive approximate probability distributions for the NSE and RMSE Goodness-of-fit 278 

indicators.  The derived probability distribution is then used in a hypothesis testing of the 279 

Goodness-of-fit exceeding a threshold value (NSEthreshold=0.65 is used in this study). The null 280 
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hypotheses (H0) denotes that the median NSE<NSEthreshold (model performance is not 281 

acceptable) while the alternative hypotheses (H1) denotes that the median NSENSEthreshold 282 

(model is acceptable). The null hypothesis is rejected and alternative accepted when the p-value 283 

is below the significance level α which can be 0.01, 0.05, or 0.1. The p-value represents the 284 

probability of wrongly accepting the model fit when it should have been rejected (i.e., H0 is 285 

true). The probability distribution is also used for computing the probability of the NSE being 286 

within a given range. Using FITEVAL, validation was performed in two stages: 1) without 287 

considering uncertainty in measured values and 2) accounting for uncertainty in measured values 288 

following procedures described in Harmel et al. (2010) and in Harmel and Smith (2007).  289 

Model applications 290 

 The validated models at each of the four sites were applied to simulate soil and limestone 291 

bedrock water content at different depths under 6, 9 and 12 cm incremental raises in canal stage. 292 

Effect of surface water management on water table elevation was simulated using MODFLOW 293 

as described in Kisekka et al. (2013c). The simulated water table elevation was then used as a 294 

lower boundary condition of the WAVE soil profile, which allowed us to simulate the effect of 295 

the proposed changes in surface water management on soil water dynamics in the agricultural 296 

fields.   297 
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Results and discussion  298 

Sensitivity analysis and calibration 299 

 Due to brevity, only Morris results for site 4 (the closest site to the canal; Figure 1) are 300 

presented (Table 4). Values for the other sites were within the ranges of site 4; it is also worth 301 

noting that parameter ranking at all sites was similar. The magnitudes of the Morris sensitivity 302 

measures µ* (which assesses the overall effect of the factor on model output) and σ (which 303 

indicates effects of a factor’s interactions with other factors) were greater for parameters of the 304 

van Genuchten equation, i.e., r and s ,  and n (Tables 4). This indicates that the predicted soil 305 

and limestone bedrock water contents were more sensitive to soil hydraulic properties than 306 

vegetation cover. This would be expected because soil water retention curve parameters 307 

characterize soil water retention in both soil and limestone bedrock layers (Muñoz-Carpena et 308 

al., 2008). Ksat and λ also had moderate influence on predicted soil water content. The predicted 309 

soil water content showed only slight to no-sensitivity to variations in all other parameters 310 

including variations in Kc and LAI at all sites. This implies that vegetation might not be a major 311 

driver of spatial variations in soil water.  This could be due to the fact that water uptake by plants 312 

is quickly replaced by the upward flux from the shallow water table (Barquin et al., 2011). 313 

 Again due to brevity only Sobol’ analysis results for site 4 are presented, as results from the 314 

other sites were similar (Figure 3). Sobol’ analysis confirmed Morris screening results indicating 315 

that saturated soil water content was the most important parameter explaining variations in 316 

predicted soil water content as measured by NSE and RMSE (as goodness-of-fit statistics were 317 

used as a summary measure of model output) at all sites. The fraction of the total variation in 318 

predicted soil and limestone bedrock water content explained by variation in each of the ten 319 

important parameters is represented using first order and total order Sobol sensitivity indices 320 
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along the vertical axis (Figure 3). The first bar represents first order effects, while the second 321 

represents total order effects (quantifies the overall effect of a factor on model output) and the 322 

difference between the two bars represents parameter interactions.  323 

 Results also show that soil water dynamics are influenced by the parameters differently in the 324 

soil and limestone bedrock layers. In the soil layer (top 20 cm), unsaturated flow was mainly 325 

governed by θs, θr, α and n and the effects of parameter interactions were greater than in the 326 

limestone bedrock layer. In the limestone bedrock layer, unsaturated flow was mainly governed 327 

by θs and the first order effects approached 100% indicating that WAVE behaved as an additive 328 

model within the limestone bedrock layer particularly at sites 3 and 4 where sensors at 30 and 40 329 

cm were close to saturation for the majority of the study. This is probably due to the fact that the 330 

differential capacitance term of Richards’ equation (Equation 1) approaches zero under saturated 331 

conditions (Vanclooster et al. 1995). WAVE behaving as an additive model at 30 and 40 cm 332 

depth indicated that it could be calibrated using accurately measured soil and limestone bedrock 333 

water content data with less uncertainty in estimated parameter values.  The results from 334 

sensitivity analysis indicate that future investigations of soil water dynamics within the C-111 335 

basin should focus resources on proper characterization of soil hydraulic properties in order to 336 

develop models that can be used to explore soil water response to regional water management 337 

and possibly climate variability with less uncertainty. 338 

 Estimated parameters after calibration show that the average values of hydraulic parameters 339 

were not substantially different among calibrated values at each site (Table 5) implying that if 340 

the goal is not to simulate exact values of soil water but rather general trends in soil water 341 

content responses to different driving factors, average values of estimated parameters can be 342 

used anywhere within the study area. Estimated θs were compared to saturated soil and limestone 343 
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bedrock water content when the sensors were below the water table and the values were in close 344 

agreement. For example, at site 3 θs (when the sensor were below water table) was identified as 345 

35 (m3/m3) and the manually estimated values for layers 1 and 2 were 35 and 34, respectively. It 346 

has been shown by Evett et al. (2012) that under wet conditions there tends to be less spatial 347 

variability in soil water content and that EnviroScan data are more accurate under these 348 

conditions. We attributed difficulty of achieving a perfect fit between measured and predicted 349 

soil water content at various depth at the same site and across the different four sites to the 350 

following factors: 1) uncertainty in measured data, 2) intrinsic spatial variability in soil and 351 

limestone hydraulic parameters, and 3) exclusion of irrigation water applied from the conceptual 352 

model.  353 

Soil water content prediction 354 

 Comparison between simulated and measured volumetric water content from capacitance 355 

probes at 10, 20, 30, and 40 cm depths under current canal stage operation criteria along C-111 356 

were plotted (Figs. 5 to 8). Visual inspection indicates that WAVE was able to reproduce 357 

temporal variations in soil water content as influenced by seasonal variations in rainfall, 358 

evapotranspiration, and canal stage (Fig. 4). Some substantial deviations between predicted and 359 

measured volumetric water content at some sites and monitoring depths were observed 360 

particularly during the summer of 2011 months (May to October) which also corresponded to the 361 

lowest recorded soil water content.  362 

 Although the model was able to show the wetting and drying cycles during the summer of 363 

2011(Figs. 5 to 8), these cycles substantially deviated from the measured trends probably due to 364 

the fact that the hydraulic parameters of the soil water retention curve that were estimated in the 365 

laboratory and whose ranges were used in the calibration may not have been representative of the 366 
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spatially variable soil properties in field. This highlights the need for in-situ determination of soil 367 

water retention curves. The apparent contradiction in soil water content trends during the months 368 

June and July of 2011 in which the model indicated continued wetting conditions while the 369 

measured soil water indicated drying conditions could be attributed to the unexplained drop in 370 

potential evapotranspiration during this time period as shown in (Fig. 4). We speculate that 371 

meteorological data for the months of June and July 2011obtained from the Florida Automated 372 

Weather Network Station located approximately 10 km away from the study site, which was 373 

used in this study, might not have been accurate.  Alternatively the long distance between the ET 374 

station and the study site could also have been a factor or errors in gauge adjusted NEXRAD 375 

rainfall data. Small scale heterogeneity in soil properties amplified under dry conditions cause 376 

the geometric constant of the sensor to change with each measurement depth and access tube, 377 

which results in a different resonant frequency and variable water content estimates even if mean 378 

water content around the access tube is the same (Evett et al., 2012). The increase in small scale 379 

variability in soil water content under dry conditions is compounded by the small volumes 380 

sensed by capacitance sensors. For example, EnviroScans measure an effective distance of only 381 

3-5 cm from the access tube and may be affected by non-isothermal conditions and soil bulk 382 

electrical conductivity (Evett et al., 2009).  383 

 Missing data at 10 cm depth and large deviation between predicted and measured soil water 384 

content at site 2 (Figure 5) during the first months of the study was due to poor sensor 385 

installation which was subsequently re-installed thus improving data at 20, 30 and 40 cm but re-386 

installation did not improve data 10 cm at this site. It is worth noting that transformation of 387 

measured data using the capacitance sensor calibration equation developed in the laboratory by 388 
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Al-Yahyai et al. (2006) for gravely loam soils of south Florida was tried but gave inconsistent 389 

results at various depths and sites and was abandoned. 390 

 Goodness-of-fit statistics for model validation for the different sites and monitoring depth 391 

without and with consideration of measurement uncertainty were calculated (Tables 6 and 7). Fit 392 

between measured water content and simulated water content were unsatisfactory for all sites 393 

and the model was rejected (Ritter and Munoz, 2013) at all sites and depths with the exception of 394 

30 and 40 cm depths at site 1 when uncertainty in measured soil water content was not taken into 395 

account (Table 6). This outcome is expected when performance is evaluated using measured data 396 

with high uncertainty without consideration of uncertainty boundaries in estimating the deviation 397 

between measured and predicted values. However, when uncertainty in measured soil water 398 

content data was considered by assuming a uniform probability distribution and using the 399 

procedure proposed by Harmel et al. (2010), there was an improvement in the Goodness-of-fit 400 

measures (Table 7) sometime substantially. Goodness-of-fit calculated using this approach 401 

would be more appropriate for evaluating model performance compared to simply using 402 

measured values which are inherently uncertain, despite its weakness of assuming symmetry. 403 

Future research could explore developing statistical methodologies for modifying the deviation 404 

between measured and predicted value based on asymmetric probability distributions.  405 

 Goodness-of-fit were re-evaluated at all the sites and monitoring depth and results 406 

considering asymmetric error boundaries and results presented in Table 8. There was more 407 

substantial improvements in Goodness-of-fit statistics especially at sites were the measured soil 408 

water overestimated simulated soil water. Model performance under the PER approach was 409 

acceptable at 11 out of the 16 monitoring depth compared to 7 out of 16 monitoring sites based 410 

on probability distribution approach which is more strict in terms of error modification (Harmel 411 
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et al. 2010). The enhanced goodness-of-fit using the PER approach could be attributed to the fact 412 

that this method minimizes the calculated deviation between predicted and observed and thus 413 

produces minimum estimate of the error. Similar results were obtained by Harmel and Smith 414 

(2007) when evaluating water quality models. 415 

Evaluation of Soil Water Response to Proposed Incremental Raises in Canal Stage 416 

 Soil water responses to proposed changes in canal stage management are shown in Figures 9 417 

to 11. At site 2, after the proposed raises in canal C-111 stage, model predictions indicated no 418 

substantial differences in soil water content both during the wet and dry seasons. In the top 20 419 

cm soil layer, soil water content did not reach saturation even after the maximum proposed 420 

increment in canal stage of 12 cm. This implies that farmlands with ground surface elevation 421 

similar to that at site 2 i.e., greater than 2.0 m NGVD29 are predicted to not experience root zone 422 

saturation after the proposed incremental raises in canal stage. 423 

 At site 3, changes in canal stage did result in observable changes in soil water content both 424 

during the wet season and dry season (Figure 10). Saturation was not reached within the top 10 425 

cm but water content reached saturation at 20 cm depth after increasing canal stage by more than 426 

9 cm and this condition persisted till late January of 2012 (Figure 10). This implies that growing 427 

periods for crop production would be greatly reduced.  Although saturation at 30 and 40 cm 428 

(Figure 10) is not expected to hinder aeration in the root zone since the roots of the crops grown 429 

in this area never penetrate the limestone bedrock, it might exacerbate the problem of temporary 430 

groundwater flooding due to the phenomenon of groundwater ridging. These results predict that 431 

farmlands with land surface elevation similar to that of site 3 (1.19 m NGVD29) might be 432 

impacted by increases in canal stage greater than 9 cm.  433 

 The response at site 4 was similar to that observed at site 3 probably due to similar elevation 434 

(1.2 m NGVD29) (Figure 11). However, saturated conditions were not predicted for the top 10 435 
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cm during the growing season for increases in canal stage less than 9 cm but soil water content 436 

approached saturation during the wet season. The changes in canal stage resulted in saturated 437 

conditions at 30 and 40 cm during both in wet and dry seasons (Figure 11). Based on the period 438 

(January 2012 to February 2013) investigated for potential impacts of raising canal stage on root 439 

zone soil water content, the  sites with land surface elevation greater than 2.0 m NGVD29 did 440 

not experience saturated conditions in the top 20 cm soil layer. Raising canal stage by more than 441 

9 cm is predicted (within uncertainty ranges in Tables 7 and 8) to result in saturated root zone 442 

and shortening of the growing season at sites with land surface elevation less than 2.0 m 443 

NGVD29, which is critical for continued use of the land for agricultural production.  444 

 Application of this model is limited to exploratory assessments due to the uncertainty in 445 

measured data. This uncertainty could be reduced by improving the method for obtaining soil 446 

water content data that is used in model calibration. This is a very challenging proposition for 447 

this particular study site due to the complex texture of the soil, being composed of limestone 448 

bedrock that has been rock plowed. Soil water equipment that senses a larger soil volume and are 449 

not impacted by soil texture effects, temperature and salinity should be explored for measuring 450 

soil water content at this site. Future investigations with these models would also benefit from 451 

high resolution digital elevation maps that could be linked to the vadose zone model to identify 452 

areas with potential to experience transient root zone saturation. 453 

Conclusion 454 

 Soil water dynamics in response to surface water management in the C-111 basin of Florida 455 

were simulated considering measurement uncertainty. Parameter screening using Morris method 456 

indicated that predicated soil water content was most sensitive to parameters of the van 457 

Genuchten equation. Quantitative variance based sensitivity analysis using Sobo’s identified 458 

saturated soil water content as the most important input factor. The model behavior was non-459 
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additive in the top 20 cm with various parameter interactions, and approximated an additive 460 

model in the usually saturated limestone layer. 461 

 Model performance was unsatisfactory without consideration of measurement uncertainty. 462 

However, NSE increased and RMSE decreased when uncertainty in measured data were 463 

considered during model performance evaluation. Accounting for uncertainty using probability 464 

error ranges resulted in more substantial improvements in goodness-of-fit compared to 465 

accounting for uncertainty using measurement probability distributions. As demonstrated in this 466 

study it is more appropriate to calculate deviations between measured and predicted values based 467 

on uncertainty boundaries or probability distributions of measured data than simply using a 468 

single measured value which are inherently uncertain. However, we caution that poor model 469 

performance due to inaccurate model structure, errors in boundary conditions or input data 470 

should not be judged as good model performance simply because of integrating of uncertainty in 471 

model evaluation but rather models should be judged on their ability to represent the physical 472 

processes. This suggests that parameterizing the model using the measured soil water content 473 

without consideration of measurement uncertainty would likely result in a model calibrated to 474 

the collected data rather than to the system or over calibration. 475 

 Model application to predict soil water dynamics under raised canal stage indicated that sites 476 

with land surface elevation of less than 2.0 m NGVD29 might experience transient root zone 477 

saturation and shortening of the growing season if canal stage is raised more than 9 cm.  At 478 

depths greater than 20 cm, raises in canal stage were predicted to result in prolonged saturated 479 

conditions. The saturated conditions at the 30 and 40 cm depth at low elevation sites could 480 

exacerbate the problem of temporary groundwater flooding due to groundwater ridging 481 

suggesting that water management practices would need to be modified.  482 
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 The models developed in this study could be could be combined with high resolution digital 483 

elevation models (DEM) in future studies to identify areas that should not be planted to minimize 484 

potential losses. The study also highlighted the need to develop methodologies for modifications 485 

of the error term between predicted and observed based on asymmetric measurement probability 486 

distributions.  487 
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Table 1. WAVE calibration and validation periods at the different monitoring sites for soil water 583 

content  584 

Sites Calibration Validation 

1 04/21/2011 to 12/31/2011 01/01/2012 to 02/28/2013 

2 01/21/2011 to 12/31/2011 01/01/2012 to 02/28/2013 

3 10/01/2010 to 09/30/2011 10/01/2011 to 02/28/2013 

4 01/26/2011 to 12/31/2011 01/01/2012 to 02/28/2013 

 585 

Table 2. Parameters used in WAVE for simulating soil water content at four sites within the C-586 

111 basin assuming a uniform distribution for all parameters 587 

Description Parameter Value Source 

Layer 1  

Saturated soil water content (m3 m-3) 
1s   0.20-0.46 Measuredd 

Residual soil water content (m3 m-3) 
1r  0.0-0.092 Measured 

Inverse of the air entry value (cm-3) 
1  0.003-0.093 Measured 

Curve shape parameter 
1n  1.0-1.2 Measured 

Pore connectivity parametera 
1  0.10-1.10 Literature 

Unsaturated hydraulic conductivity (cm/day) b K1 500-1551 Literature 

Maximum water uptake rate (day-1)c Smax1 0.01-0.014 Literature 

Layer 2  

Saturated soil water content (m3 m-3)d 
2s  0.20-0.46 Literature 

Residual soil water content (m3 m-3)b 

2r  0.0-0.01 Literature 

Inverse of the air entry value (cm-3)b 

2  0.009-0.15 Literature 

Curve shape parameterb 

2n  0.9-1.2 Literature 

Pore connectivity parametera 

2
 0.10-4.5 Literature 

Unsaturated hydraulic conductivity (cm/day)b  K2 5000-14000 Literature 
aObtained from Mualem (1976)  588 
bObtained from Muñoz-Carpena et al. (2008) 589 
cObtained from Vanclooster et al. (1995) 590 
dEstimated from measured data 591 

Table 3. Crop coefficient (Kc) and leaf area index (LAI) values used in a discrete uniform 592 

distribution in the sensitivity analysis of simulated soil water content 593 

Development 

stage 

Kca value Kc symbol LAIb LAI symbol 

Initial 0.6 Kc1 0.5 LAI1 

Mid-season 1.1 Kc2 2.9 LAI2 
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Late-season 0.85 Kc3 1.45 LAI3 
aCrop coefficient, value obtained from Muñoz-Carpena et al. (2008) 594 
bLeaf area index, value measured 595 

Table 4. Morris screening results for WAVE model applied at site 4  596 

Soil depth  10 cm 20 cm 30 cm 40 cm 

Parameter  μ*c σ d μ* σ μ* Σ μ* σ 

Residual water contenta (m3/m3) 4.3 5.7 2.4 2.9 0.0 0.0 0.0 0.0 

Residual water contentb (m3/m3) 0.0 0.0 0.3 0.4 1.4 1.4 2.0 2.0 

Saturated water contenta (m3/m3) 24.2 16.7 16.0 14.7 0.1 0.1 0.0 0.1 

Saturated water contentb (m3/m3) 0.0 0.1 11.8 11.4 69.4 49.9 120.1 105.3 

Inverse of air entry valuea (cm-1) 7.7 6.9 4.5 5.1 0.3 0.3 0.2 0.3 

Inverse of air entry valueb  (cm-1) 2.1 2.8 8.9 7.6 33.6 27.7 50.4 43.6 

Curve shape parametera  14.3 10.8 9.1 6.7 0.2 0.4 0.2 0.3 

Curve shape parameterb  0.9 1.3 9.7 11.9 31.8 16.0 45.7 26.0 

Saturated hydraulica (m/d) 0.2 0.5 0.1 0.2 0.2 0.3 0.1 0.2 

Saturated hydraulic conductivityb (m/d) 1.1 2.5 1.3 2.5 0.7 0.8 0.5 0.7 

Pore connectivity parametera  0.1 0.3 0.1 0.3 0.1 0.1 0.1 0.1 

Pore connectivity parameterb  0.7 1.1 1.0 1.5 1.0 1.4 0.9 1.1 

Crop coefficient initial stage  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Crop coefficient mid-season stage  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Crop coefficient late-season stage  0.4 0.7 0.2 0.4 0.1 0.2 0.1 0.1 

Leaf area index initial stage 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Leaf area index mid-season stage 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Leaf area index late-season stage 0.1 0.2 0.0 0.1 0.0 0.0 0.0 0.0 

Maximum root water uptake 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
aLayer 1 parameter (top 20 cm of soil profile) 597 
bLayer 2 parameter (bottom 20 cm of soil profile) 598 
cAbsolute values of Morris sensitivity measure which assesses the overall effect of the factor  599 
dMorris sensitivity measure which indicates effects of a factor’s interactions with other factors 600 

Table 5. WAVE parameters obtained from calibration at different sites (October 1, 2010 to 601 

December 31, 2011)  602 

Parameter 

Site  

1 

Site  

2 

Site 

3 

Site 

4 

Avg. 

Layer 1 (top 20 cm) 

Residual water content (θr) 0.09 0.08 0.10 0.10 0.09 

Saturated water content (θs) 0.30 0.32 0.34 0.30 0.31 

Curve shape parameter (n) 1.09 1.22 1.17 1.15 1.14 

Inverse of air entry value (α) 0.04 0.06 0.09 0.09 0.08 

Pore connectivity parameter (λ) 0.50 0.62 0.54 0.62 0.58 

Layer 2 (bottom 40 cm) 

Residual water content (θr) 0.09 0.06 0.09 0.09 0.08 
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Saturated water content (θs) 0.31 0.31 0.35 0.30 0.32 

Curve shape parameter (n) 1.12 1.11 1.11 1.10 1.11 

Inverse of air entry value (α) 0.08 0.10 0.10 0.09 0.10 

Pore connectivity parameter (λ) 0.50 0.62 0.54 0.62 0.58 

Sat. hydraulic conductivity (K)  8000 9307 8511 8419 8514 

 603 

Table 6. Goodness-of-fit statistics without consideration of measurement uncertainty for WAVE 604 

water content simulations by soil depth during the validation period ranging from [01/01/2012 to 605 

02/28/2013] at site 1 and [01/01/2012 to 02/28/2013] at other sites 606 

Site 1 

Depth 10 cm  20 cm 30 cm 40 cm 

NSE1 0.26(-0.32-0.66) 0.35(0.03-0.59) 0.80(0.66-0.88) 0.77(0.74-0.88) 

RMSE2  0.95(0.72-1.19) 0.62(0.52-0.73) 0.35(0.31-0.41) 0.48(0.41-0.54) 

A3 (%) 0.0 0.0 0.5 0.5 

B4 (%) 0.0 0.0 51.4 29.1 

C5 (%) 3.1 0.5 46.4 54.3 

D6 (%) 93.9 99.5 1.7 (**) 16.1 

Site 2 

NSE -2.79(-6.21—1.3) 0.57(0.28-0.76) 0.44(0.27-0.57) 0.10(-0.90-066) 

RMSE 1.16(0.94-1.37) 0.81(0.71-0.96) 0.84(0.65-1.06) 1.35(0.94-1.72) 

A (%) 0.0 0.0 0.0 0.0 

B (%) 0.0 0.6 0.0 0.0 

C (%) 0.0 67.1 0.1 0.0 

D (%) 100.0 32.3 99.1 100.0 

Site 3 

NSE 0.25(-0.24-0.50) 0.30(-0.66-0.60) -1.95(-5.5--0.17) -3.80(-6.2--0.87) 

RMSE 1.42(1.16-1.66) 0.63(0.52-0.81) 0.99(0.73-1.22) 0.89(0.55-1.28) 

A (%) 0.0 0.0 0.0 3.2 

B (%) 0.0 0.0 0.0 5.3 

C (%) 0.0 2.6 0.0 10.4 

D (%) 100.0 97.4 100.0 81.1 

Site 4 

NSE -0.35(-1.80-0.45) 0.31(-0.99-0.66) -0.63(-2.11-0.01) -12.2(-29.6--4.18) 

RMSE 0.95(0.63-1.29) 0.52(0.41-0.66) 0.63(0.43-0.80) 0.97(0.79-1.11) 

A (%) 0.0 0.0 0.0 0.0 

B (%) 0.0 0.1 0.0 0.0 

C (%) 0.2 5.2 0.0 0.5 

D (%) 99.8 94.7 100.0 99.5 
1Nash-Sutcliffe coefficient (95% confidence interval) 607 
2Root mean square error (95% confidence interval) 608 
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3A probability of fit being very good 0.9<NSE<1.0 609 
4B probability of fit being good 0.8<NSE<0.9 610 
5C probability of fit being acceptable 0.65<NSE<0.8 611 
6D p-value, p-value < α => model acceptable while p-value > α => model rejected, α could be 612 

(***)1%, (**)5% or (*)10% 613 

Table 7. Goodness-of-fit statistics considering measurement uncertainty for WAVE water 614 

content simulations by soil depth during the validation period ranging from [01/01/2012 to 615 

02/28/2013] at site 1 and [01/01/2012 to 02/28/2013] at other sites 616 

Site 1 

Depth 10 cm  20 cm 30 cm 40 cm 

NSE1 0.78(0.50-0.92) 0.87(0.75-0.93) 0.89(0.75-0.94) 0.85(0.68-0.93) 

RMSE2  0.53(0.33-0.74) 0.28(0.20-0.39) 0.26(0.20-0.40) 0.38(0.31-0.51) 

A3 (%) 7.2 23.4 47.3 15.0 

B4 (%) 31.3 70.2 51.0 58.4 

C5 (%) 42.6 5.9 1.7 26.1 

D6 (%) 18.9 0.0 (***) 0.0 (***) 0.5 (***) 

Site 2 

NSE -1.66(-5.39--0.3) 0.89(0.78-0.94) 0.88(0.79-0.93) 0.65(0.24-0.91) 

RMSE 0.70(0.70-1.30) 0.41(0.31-0.55) 0.38(0.25-0.54) 0.81(0.43-1.13) 

A (%) 0.0 41.2 37.2 4.6 

B (%) 0.0 56.2 61.1 13.6 

C (%) 0.0 2.6 1.7 33.4 

D (%) 100.0 0.0 (***) 0.0 (***) 48.4 

Site 3 

NSE 0.81(0.59-0.89) 0.76(0.02-0.94) 0.70(0.25-0.91) 0.30(-0.31-0.88) 

RMSE 0.71(0.53-0.93) 0.37(0.20-0.60) 0.32(0.21-0.42) 0.34(0.13-0.55) 

A (%) 3.3 20.5 3.4 3.2 

B (%) 54.7 23.6 19.1 5.3 

C (%) 37.7 28.6 37.9 10.4 

D (%) 4.3 (**) 27.3 39.6 81.1 

Site 4 

NSE 0.78(0.49-0.93) 0.87(0.39-0.97) 0.75(0.52-0.87) -0.20(-1.95-0.54) 

RMSE 0.39(0.22-0.54) 0.22(0.13-0.37) 0.24(0.14-0.33) 0.30(0.23-0.35) 

A (%) 8.5 40.9 1.9 0.0 

B (%) 34.6 35.0 25.6 0.0 

C (%) 43.8 17.1 59.7 0.5 

D (%) 13.1 0.7 (***) 12.8 99.5 
1Nash-Sutcliffe coefficient (95% confidence interval) 617 
2Root mean square error (95% confidence interval) 618 
3A probability of fit being very good 0.9<NSE<1.0 619 
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4B probability of fit being good 0.8<NSE<0.9 620 
5C probability of fit being acceptable 0.65<NSE<0.8 621 
6D p-value, p-value < α => model acceptable while p-value > α => model rejected, α could be 622 

(***)1%, (**)5% or (*)10% 623 

Table 8. Goodness-of-fit statistics considering asymmetric measurement uncertainty error 624 

boundaries (-5% lower error bound and +2.5% upper error bound) for WAVE water content 625 

simulations by soil depth during the validation period ranging from [01/01/2012 to 02/28/2013] 626 

at site 1 and [01/01/2012 to 02/28/2013] at other sites 627 

Site 1 

Depth 10 cm  20 cm 30 cm 40 cm 

NSE1 0.97(0.96-0.98) 0.92(0.85-0.97) 0.97 (0.96-1.00) 0.99 (0.98-1.00) 

RMSE2  0.16 (0.11-0.22) 0.21(0.14-0.30) 0.10 (0.05-0.15) 0.06 (0.04-0.09) 

A3 (%) 100.0 79.9 100.0 100.0 

B4 (%) 0.0  20.1 0.0  0.0  

C5 (%) 0.0  0.0 0.0  0.0  

D6 (%) 0.0 (***) 0.0 (***) 0.0 (***) 0.0 (***) 

Site 2 

NSE 0.26 (0.85-0.56) 0.92 (0.87-0.95) 0.85 (0.77-0.92) 0.86 (0.67-0.96) 

RMSE 2.94 (2.12-3.63) 0.34 (0.25-0.43) 0.43 (0.28-0.59) 0.50 (0.26-0.71) 

A (%) 0.0 88.0 11.3 30.3 

B (%) 0.0 12.0 80.5 48.4 

C (%) 0.7 0.0  8.2 20.5 

D (%) 99.3 0.0 (***) 0.0 (***) 0.8 (***) 

Site 3 

NSE 0.81 (0.53-0.92) 0.88 (0.51-0.98) 0.73(0.25-0.91) 0.32 (-0.31-0.89) 

RMSE 0.71 (0.51-0.96) 0.26 (0.12-0.43) 0.16 (0.10-0.32) 0.34(0.13-0.55) 

A (%) 9.5 45.1 5.7 3.2 

B (%) 46.9 35.8 49.5 5.3 

C (%) 36.2 16.6 35.9 10.4 

D (%) 7.4 (*) 3.5 (*) 8.9 (*) 81.1 

Site 4 

NSE 0.63 (0.14-0.90) 0.95 (0.69-0.99) 0.98 (0.97-1.00) -1.06 (-4.14-0.24) 

RMSE 0.49 (0.25-0.70) 0.15(0.05-0.27) 0.10 (0.01-0.20) 0.39 (0.29-0.47) 

A (%) 3.7 79.8 100.0 0.0 

B (%) 12.1 16 0.0 0.0 

C (%) 33.1 3.9 0.0 0.0 

D (%) 51.1 0.3 (***) 0.0 (***) 100.0 
1Nash-Sutcliffe coefficient (95% confidence interval) 628 
2Root mean square error (95% confidence interval) 629 
3A probability of fit being very good 0.9<NSE<1.0 630 
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4B probability of fit being good 0.8<NSE<0.9 631 
5C probability of fit being acceptable 0.65<NSE<0.8 632 
6D p-value, p-value < α => model acceptable while p-value > α => model rejected, α could be 633 

(***)1%, (**)5% or (*)10% 634 

 635 

 636 

  637 
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 638 

 639 

Figure 1. Showing soil water monitoring sites, agricultural lands adjacent to Everglades National 640 

Park, and canal network within the C-111 basin of south Miami-Dade County, Florida. 641 
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 642 

 643 

Figure 2. Depiction of the discretizing of the soil profile and location of the capacitance sensors  644 
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Figure 3. Sobol indices on the vertical axis and parameters (tr1 and tr2 are residual soil water 646 

content, ts1 and ts2 are saturated soil content, a1 and a2 are inverse of air entry value, n1 and n2 647 

are curve shape parameter, lam is pore connectivity parameter, K2 is saturated hydraulic 648 

conductivity and 1 and 2 refer to the soil and limestone layers) for the WAVE model on the 649 

horizontal axis as applied to simulate volumetric soil water content at four monitoring depth 10, 650 

20, 30 and 40 cm at site 4.  651 

 652 
Figure 4. Showing model input variables evapotranspiration, rainfall and water table elevation as well as 653 

the canal stage which drives variations in water table elevation. 654 
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 655 
Figure 5. Comparison of WAVE simulated and measured volumetric soil water content (error 656 

bars indicate measurement uncertainty) at site 1 where the vertical line separates calibration and 657 

validation data sets. 658 
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 659 
Figure 6. Comparison of WAVE simulated and measured volumetric soil water content (error 660 

bars indicate measurement uncertainty) at site 2 where the vertical line separates calibration and 661 

validation data sets. 662 
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 663 
Figure 7. Comparison of WAVE simulated and measured volumetric soil water content (error 664 

bars indicate measurement uncertainty) at site 3 where the vertical line separates calibration and 665 

validation data sets. 666 
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 667 
Figure 8. Comparison of WAVE simulated and measured volumetric soil water content (error 668 

bars indicate measurement uncertainty) at site 4 where the vertical line separates calibration and 669 

validation data sets. 670 
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  671 

Figure 9. Simulated volumetric soil water content under different C-111 canal stage management 672 

scenarios at four different depth at site 2 [caution: absolute predictions should be regarded as 673 

qualitative assessments only due to uncertainty in measured data used in developing the model].  674 
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 675 
Figure 10. Simulated volumetric soil water content under different C-111 canal stage 676 

management scenarios at four different depth at site 3[caution: absolute predictions should be 677 
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regarded as qualitative assessments only due to uncertainty in measured data used in developing 678 

the model].  679 

 680 

Site 4 10 cm

S
o
il 

w
at

er
 v

o
lu

m
et

ri
c 

(%
)

20

22

24

26

28

30

Site 4 20 cm

S
o
il 

w
at

er
 v

o
lu

m
et

ri
c 

(%
)

20

22

24

26

28

30

Site 4 30 cm

S
o
il 

w
at

er
 v

o
lu

m
et

ri
c 

(%
)

20

22

24

26

28

30

Site 4 40 cm

1/
1/

12
  

2/
1/

12
  

3/
1/

12
  

4/
1/

12
  

5/
1/

12
  

6/
1/

12
  

7/
1/

12
  

8/
1/

12
  

9/
1/

12
  

10
/1

/1
2 
 

11
/1

/1
2 
 

12
/1

/1
2 
 

1/
1/

13
  

2/
1/

13
  

S
o
il 

w
at

er
 v

o
lu

m
et

ri
c 

(%
)

20

22

24

26

28

30

Current canal stage

6 cm increase in canal stage

9 cm increase in canal stage

12 cm increase in canal stage

Saturation



For submittal to Hydrologic Processes 
 

44 
 

Figure 11. Simulated volumetric soil water content under different C-111 canal stage 681 

management scenarios at four different depth at site 4[caution: absolute predictions should be 682 

regarded as qualitative assessments only due to uncertainty in measured data used in developing 683 

the model].  684 

 685 
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