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Abstract  

Escherichia coli O26 is second only to O157 in causing foodborne, Shiga toxin-producing E. coli  

(STEC) infections.  Our objectives were to determine fecal prevalence and characteristics of E. 

coli O26 in commercial feedlot cattle (17,148) that were enrolled in a study to evaluate an E. coli  

O157:H7 siderophore receptor and porin (SRP®) vaccine (VAC) and a direct-fed microbial  

(DFM; 106 CFU/animal/day of Lactobacillus acidophilus and 109 CFU/animal/day of  

Propionibacterium freudenreichii).  Cattle were randomly allocated to 40 pens within 10  

complete blocks; pens were randomly assigned to control, VAC, DFM, or VAC+DFM  

treatments.  Vaccine was administered on days 0 and 21, and DFM was fed throughout the study.   

Pen floor fecal samples (30/pen) were collected weekly for the last four study weeks.  Samples  

were enriched in E. coli broth and subjected to a multiplex PCR designed to detect O26-specific  

wzx gene and four major virulence genes (stx1, stx2, eae, and ehxA) and to a culture-based  

procedure that involved immunomagnetic separation and plating on MacConkey agar.  Ten  

presumptive E. coli colonies were randomly picked, pooled and tested by the multiplex PCR.   

Pooled colonies positive for O26 serogroup were streaked on sorbose MacConkey agar and 10  

randomly picked colonies per sample were tested individually by the multiplex PCR.  The  

overall prevalence E. coli O26 was higher (P < 0.001) by the culture-based method compared to  

the PCR assay (22.7 vs.10.5%).  The interventions (VAC and or DFM) had no impact on fecal  

shedding of O26.  Serogroup O26 was recovered in pure culture from 23.9% (260 out of 1,089)  

of O26 PCR-positive pooled colonies.  Only seven of the 260 isolates were positive for stx gene 

and 90.1% of the isolates possessed an eaeβ gene that codes for intimin subtype β, but not the  

bfpA gene, which codes for bundle-forming pilus.  Therefore, the majority of the O26 recovered  

from feedlot cattle feces was atypical enteropathogenic E. coli, and not STEC.    
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Introduction  

Shiga toxin-producing E. coli (STEC) are major foodborne pathogens that cause illnesses in  

humans with symptoms ranging from diarrhea, with or without blood, to hemolytic uremic  

syndrome, and even death (Tarr et al., 2005).  Among STEC, the serotype O157:H7 has caused a  

greater number of foodborne outbreaks than any other serotype (Rangel et al., 2005).  Recent  

epidemiological data have shown that non-O157 STEC represent a larger portion of foodborne 

STEC infections than O157 (Scallan et al., 2011).  Ruminants, particularly cattle, are considered  

to be major reservoirs of non-O157 STEC (Karmali et al., 2010).  Of the non-O157 STEC, the  

serogroup O26 accounts for the largest proportion of infections (Brooks et al., 2005; Stigi et al.,  

2012; Gould et al., 2013).  However, not much is known about fecal prevalence and factors  

affecting fecal shedding of O26 in cattle, mainly because a selective medium that can  

phenotypically distinguish O26 from other serogroups has not been optimized (Jenkins et al.,  

2008).    

Preharvest intervention strategies that include the use of direct-fed microbials and vaccines  

have been shown to reduce the fecal shedding of E. coli O157:H7 in cattle.  An E. coli O157:H7  

siderophore receptor and porin protein-based (SRP®) vaccine was shown to reduce the overall  

fecal shedding of E. coli O157:H7 (Thomson et al., 2009; Thornton et al., 2009; Cull et al.,  

2012).  Direct-fed microbials (DFM), particularly Lactobacillus acidophilus-based products, also  

have been shown to reduce fecal shedding of E. coli O157:H7 (Loneragan and Brashears, 2005;  

Jacob and Nagaraja, 2012).  The effects of SRP vaccine or DFM on fecal shedding of non-O157  

STEC in feedlot cattle have not been evaluated; but it is conceivable that the mechanisms  

responsible for E. coli O157:H7 reduction also may reduce other serogroups.  Our objective was 

to determine fecal prevalence of serogroup O26 in cattle feces by culture- and PCR-based  
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methods, evaluate selective isolation procedures, characterize virulence genes of the isolates, and  

determine if vaccine (SRP®) and/or a L. acidophilus-based DFM product intended to reduce the  

prevalence of E. coli O157:H7 in feedlot cattle have effects on fecal shedding of E. coli O26.  

 

Materials and Methods  

Animals and study design  

The animals, study location and study design have been previously described by Cull et al.,  

(2012).  The study involving 17,148 cattle housed in 40 pens was a randomized complete bloc 

design with a 2 x 2 factorial treatment structure of vaccine (VAC), DFM, and VAC plus DFM  

and control (CON; neither DFM nor VAC).  The DFM was Bovamine® (Nutrition Physiology  

Corp., Guymon, OK) was mixed into the cattle diets to provide 106 CFU/animal/day of L.   

acidophilus and 109 CFU/animal/day of Propionibacterium freudenreichii throughout the study  

for the DFM and VAC + DFM groups.  Cattle in the VAC and VAC + DFM groups received a 2  

ml subcutaneous dose of the vaccine (E. coli SRP® vaccine, Zoetis Animal Health, New York,  

NY) on the day cattle were allocated to the study and 21 days later.  During the 4 weeks prior to  

the end of the study date for each respective block, fresh pen floor fecal samples  

(n=30/pen/week) were collected.  Samples were assigned sequential numbers, thus blinding  

laboratory personal to treatment assignments.    

  

Culture-based detection of E. coli O26  

 Fecal samples were processed within 24 h after collection.  Samples were enriched in E. coli  

broth (EC; Difco™, Becton Dickinson Co., Sparks, MD; Paddock et al., 2012) and 1.0 ml of the  

enriched fecal suspension was subjected to immunomagnetic separation (IMS) with Dynabeads®  
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VTEC/STEC O26 (Invitrogen, Carlsbad, CA) and the rest of the sample was stored at -80° C for  

subsequent PCR assay.  Bead suspensions (20 µl) were pipetted onto MacConkey agar (BD  

Biosciences, Franklin Lakes, NJ) and streaked with an inoculating loop to obtain isolated  

colonies.  Plates were incubated at 37° C for 24 h and up to ten lactose-fermenting colonies were  

randomly picked and suspended in 1 ml of peptone broth.  A 100 µl aliquot of the pooled colon 

mixture was boiled for 10 min and subjected to an 11-plex PCR (mPCR; Bai et al., 2012) to  

detect the seven STEC serogroups (O26, O45, O103, O111, O121, O145, O157) and four major  

virulence genes (stx1, stx2, eae and ehxA).  The remaining colony mixture was preserved with  

glycerol (15% final concentration) and stored at -80° C.  Pooled colony mixtures that were PCR- 

positive for serogroup O26 were then used to isolate E. coli O26 in pure culture.    

  

PCR detection of E. coli O26  

 The frozen enriched fecal suspension was thawed and a 1.0 ml sample was boiled for 10 min  

and centrifuged (9,300 x g for 5 min).  DNA was extracted and purified with a GeneClean Turbo  

kit (MP Biomedicals, Solon, OH) and subjected to the 11-plex PCR (Bai et al., 2012).  

  

Evaluation of culture media and isolation of E. coli O26 from PCR-positive pooled colony  

mixtures  

 A lactose-free MacConkey agar base (BD Biosciences, Sparks, MD) with sorbose (10 g/l;  

SorboseMAC) as the sole sugar source (Possé et al., 2007; Hiramatsu et al., 2002) was evaluated  

for the isolation of serogroup O26.  The sorboseMAC medium was evaluated with  

supplementation of no additives, novobiocin (8.0 mg/l; Sigma-Aldrich, St. Louis, MO),  

potassium tellurite (2.5 mg/l; Sigma-Aldrich), or novobiocin and potassium tellurite.  The  
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evaluation of the selectivity and ability to differentiate O26 serogroup from others were done  

with pure cultures of O26 (n = 36) and non-O26 (n = 116) STEC.  The strains were streaked onto  

each medium to determine growth and sorbose fermentation after 24 h incubation at 37° C.   

Based on the initial evaluation of culture media, sorboseMAC agar was chosen to isolate E. coli  

O26 from PCR-positive pooled colony mixtures.  The frozen pooled colony mixtures were  

thawed and 10 µl of the mixture was streaked, with a calibrated loop, onto each medium.   

Following 24 h incubation at 37° C, sorbose-fermenting (pink colored) colonies (up to 10) were  

selected and individually tested by the mPCR.  Isolates that were confirmed as O26 were stored  

on CryoCare beads at -80° C.    

  

Characterization of E. coli O26 isolates  

Isolates were further characterized with individual PCR assays for additional genes; bfpA  

(bundle forming pilus; Gunzburg et al., 1995), eaeβ1 (intimin; Blanco et al., 2003), espP  

(secreted effector protein; Cookson et al., 2006), fliCH11 (flagellar gene for H11; Durso et al.,  

2005), and tir (translocated intimin receptor; Bardiau et al., 2011).  Two strains, TW01597, a  

STEC O26 (Thomas Whittam E. coli Reference Laboratory at Michigan State University) and  

EDL933 (ATCC 700927; American Type Culture Collection, Manassas, VA), a STEC O157:H7  

were used as positive controls.  Strains and isolates were grown on blood agar, DNA was  

extracted from 1 or 2 colonies by mixing with 1.0 ml of ddH20, boiling for 10 min and  

centrifugation at 9,300 x g for 5 min.  

  

Statistical analysis  



7 

Data on whether samples were positive or negative for each serogroup or virulence gene, were  

analyzed as pen-level proportions in generalized linear mixed models (GLMM; Proc Glimmix;  

SAS Version 9.2, SAS Institute Inc., Cary, NC) assuming a binomial distribution and utilizing a  

logit link function as described by Cull et al. (2012).  Treatment, sampling week and treatment × 

sampling week interaction were evaluated as predictors.  Block and sampling pens over time  

with blocks were included as random effects to account for the study design and lack of  

independence between the four sample periods within each pen.  Model-adjusted prevalence  

means, and corresponding standard errors and confidence intervals, were generated.  For all  

analyses, P values < 0.05 were considered statistically significant.  To determine if an individual  

fecal sample was more likely to be O26 positive by direct PCR feces compared to culture method  

(IMS separation, plating on MacConkey and testing of pooled colonies), data were analyzed by  

GLMM where the outcome was considered binary for each sample for each detection method.   

Block was included as a random effect.  As before, pen over time was included as a repeated  

effect in all models accounting the lack of independence between the four samples from each  

pen.    

  

Results  

 Based on the culture method (IMS followed by plating on MacConkey agar), the apparent  

prevalence of serogroup O26 in cattle feces collected weekly ranged from 2.5 to 36.7% of the  

samples (Fig 1A).  The prevalence of serogroup O26 by week, based on the mPCR assay, ranged  

from 0.4 to 41.5% (Fig 1B).  Overall, 10.5% (502/4,800) of the fecal samples were positive for  

the O26 serogroup, based on the mPCR assay, and the prevalence of the four virulence genes, 

stx1, stx2, eae, and ehxA, were 12.4% (597/4,800), 24.0% (1,151/4,800), 45.4% (2,179/4,800),  
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and 84.7% (4,066/4,800), respectively (Table 1).  Vaccine, DFM, or both had no significant  

effects on the fecal prevalence of the serogroup O26 or the four virulence genes in cattle feces  

(Table 1).    

 When a mixture of 10 randomly picked colonies, obtained from plating O26 IMS beads on  

MacConkey agar, were tested by the mPCR, the O26 serogroup was detected in 22.7 % (1,089  

out of 4,800) of the fecal samples (Table 2).  Although O26 IMS beads were intended to retrieve  

O26 from the enriched sample, the pooled colonies also contained one or more of the six other  

STEC serogroups that were part of the mPCR assay.  The other serogroups, in the order of  

predominance, were 9.8 % O103 (470/4,800), 5.7 % O111 (273/4,800), 0.8 % O145 (37/4,800),  

0.8% O157 (38/4,800), 0.4 % O121 (21/4,800) and 0.4 % O45 (18/4,800).  The prevalence of  

virulence genes in the pooled colonies were 2.4% of stx1 (117/4,800), 10.8% of stx2 (519/4,800),  

7.9% of eae (378/4,800) and 16.2% of ehxA (776/4,800).  Of the 1,089 samples that were O26  

positive based on testing of the pooled colonies, 561 (51.5%) were negative for all four virulence  

genes and the remaining (528/1,089; 48.5%) contained at least one of the four virulence genes  

(Table 2).  Among the O26-postive pooled colonies, 45 (4.1%), 216 (19.8%), 179 (16.4%) and  

311 (28.6%) were positive for stx1, stx2, eae and ehxA, respectively (Table 2).  Only a small  

proportion (10.4%) of O26 positive pooled colonies contained a combination of stx1 or stx2 and  

eae.  Among the other six serogroups detected in the pooled colonies, only O103 and O111 were  

in high numbers (Table 2).  The proportions of pooled colonies positive for O103 and O111 that  

contained stx1 or stx2 and eae were 6.6 and 10.0%, respectively.  Of the 1,089 O26-positive  

pooled colonies, only a few (4 to 13) contained O45, O121, O145 or O157 (Table 2).  The  

prevalence estimates of O26 based on IMS, plating on MacConkey agar and testing 10 pooled  
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colonies picked randomly were not significantly associated with treatment group and no  

treatment by sampling week interaction was observed.    

 In order to obtain pure culture of O26 from pooled colonies from samples that were PCR  

positive for O26 (n=1,089), sorbose sugar in lactose-free MacConkey agar was chosen because 

the sugar is fermented by all strains of E. coli O26 and only a limited number of other E. coli  

serogroups (Posse et al., 2007).  Initially, growth and fermentation of sorbose by pure cultures of  

O26 strains (n=36) and non-O26 STEC strains (O45, O103, O111, O121, O145, and O157; 

n=116) on media without or with potassium tellurite (2.5 µg/ml) and or novobiocin (8 µg/ml)  

were tested.  All O26 strains fermented sorbose (pink-colored colonies), while sorbose  

fermentation was highly variable among the other six serogroups (Table 3).  Only few strains of  

O45, O103, O111, O121, and O145 and none of the O157 strains (n=20) fermented sorbose.  

Inclusion of potassium tellurite (2.5 µg/ml) inhibited the growth of 4 of 36 strains of O26, 2 of 2  

O45, 9 of 40 O103, 0 of 29 O111, 6 of 9 O121, 2 of 16 O145, and none of the 20 O157 strains.   

Novobiocin (8 µg/ml) inclusion in the medium had no effect on the growth of O26 or other 

STEC strains, except one strain of O111 was inhibited (Table 3).  Based on this data, sorbose  

MacConkey agar without potassium tellurite or novobiocin was used to isolate O26 from all the  

PCR positive pooled colonies.  Of the1,089 samples of pooled colonies, O26 was obtained in 

pure cultures from 260 samples, representing a recovery rate of 23.9%.   

 Of the 260 isolates of O26 obtained, only seven isolates carried stx genes, with six carrying 

stx1 and one carrying stx2 (Table 4).  Of the seven O26 STEC, six different virulence gene 

profiles were observed.  All seven O26 STEC were positive for the eaeβ1 and tir.  Six of the 7  

O26 STEC were O26:H11.  Only two isolates were ehxA positive and three isolates were espP 

positive.  Interestingly, 59 additional isolates were recovered that contained one or both stx genes  
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but did not belong to the seven serogroups detectable by the mPCR assay.  Majority of the  

isolates (n=253) that were negative for stx carried the eaeβ1gene (n=236) and the H11 flagellar  

gene (n=197), suggesting they may be enteropathogenic E. coli.  None of the isolates was  

positive for the bfpA, a gene characteristic of the typical enteropathogenic E. coli (EPEC),  

suggesting the strains belong to atypical EPEC (aEPEC).  The majority of O26 aEPEC (234 out  

of 236) was positive for tir, which is commonly found on the locus of enterocyte effacement  

(LEE) with eaeβ1, and the presence of fliCH11 identifies that these isolates were O26:H11  

aEPEC.  Fewer of the aEPEC isolates (37 out of 236) carried the tir and eaeβ1 but not the  

fliCH11.  The O26 aEPEC possessed a variety of virulence gene profiles (Table 4).  A small  

number of isolates of aEPEC O26 (7 out of 236) was positive for tir, fliCH11 and ehxA.  Only  

three O26 aEPEC isolates were positive for tir and fliCH11, as well as espP which are commonly  

observed in STEC strains.  Seventeen of the 260 O26 isolates carried none of the five additional  

genes, eaeβ1, bfpA, tir, fliCH11 and espP.  One of the 17 isolates was positive for the H11 gene.    

  

Discussion  

 The study focused on the serogroup O26 because, according to the CDC, it is the most  

frequent serogroup involved in human non-O157 STEC infections in the US (Brooks et al., 2005;  

Gould et al., 2013).  The cattle fecal samples used in the present study to detect O26 were part of  

a study that was designed to evaluate the effects of a E. coli O157 vaccine and a L. acidophilus-  

based DFM on fecal shedding of E. coli O157:H7 (Cull et al., 2012).  That study demonstrated  

that a two-dose vaccination significantly reduced fecal shedding of E. coli O157:H7 and DFM  

had no effect on fecal shedding of E. coli O157:H7 (Cull et al., 2012).  The vaccine is based on  

siderophore receptor and porin proteins of E. coli O157:H7 and the efficacy in reducing fecal  
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shedding is attributed to induced immunity that blocks bacterial uptake of iron (Thornton et al.,  

2009).  Because E. coli O26 may have surface proteins that are antigenically similar to that of  

O157, it was of interest to test whether the vaccine has an effect on fecal shedding of O26.  The  

effects of E. coli O157:H7 vaccine and the DFM on fecal shedding of O26 or any other non- 

O157 STEC have not been reported.  Neither vaccine nor DFM had any effect on fecal O26  

strains estimated by either culture-based method or mPCR assay.  The lack of vaccine effect may 

be because the surface proteins of O26 strains that are involved in iron uptake are antigenically  

different from those of E. coli O157:H7.  The lack of DFM effect on O26 was not unexpected  

because the product also had no effect on fecal shedding of E. coli O157:H7 (Cull et al., 2012).    

Based on PCR assay targeting the O26 serogroup-specific gene (wzxO26), fecal prevalence 

estimates of 6.5 % (Lynch et al., 2012), 23.0% (Hofer et al., 2012), 80.0 % (Renter et al., 2004)  

and 82.5 % (Paddock et al., 2012) have been reported.  However, the subsequent recovery rate of

E. coli O26 isolates from positive samples has been low (4.3 to 35.7% of PCR-positive fecal  

samples) presumably because of lack of selective isolation procedures (Hofer et al., 2012; Lynch  

et al., 2012; Paddock et al., 2012).  In the present study, two methods (PCR- and culture-based)  

were used to obtain fecal prevalence estimates of the serogroup O26.  Regardless of the  

treatment group, fecal prevalence estimates differed between the two methods of detection.  The 

overall prevalence was higher by the culture-based detection method compared to the detection  

by mPCR assay (22.7 vs. 10.5%), in spite of plating the O26 specific-IMS beads on MacConkey 

agar, a relatively nondifferential medium, for detection and isolation.  Jenkins et al. (2003) have  

reported that IMS beads were 2.5 times more sensitive than a procedure that used PCR to detect 

stx and then plating the positive samples on MacConkey to detect by colony hybridization with  

stx probes.  The difference in sensitivity may be because of the volume of sample used in the  
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detection procedure.  In the PCR assay, the volume of sample was 1 µl, which requires the  

sample to contain a minimum of 1,000 cells per ml to assure that the sample volume in the PCR  

reaction contains DNA from at least one cell.  The detection limits for enrichment, IMS, and  

plating for O157 or non-O157 serogroups have been reported to be 20-90 CFU/25 g of feces  

(Verstraete et al., 2010).  Although commercial IMS beads were coated with O26-specific  

antibodies, and therefore, intended to selectively retrieve O26 from cattle feces, the use of  

relatively non-differential MacConkey agar and mPCR assay allowed us to identify the other six  

serogroups contained in the pooled colonies.  Of the six serogroups, O103 and O111 were  

identified more frequently than the other four serogroups (O45, O121, O145, and O157).  The  

higher frequency of detection of O103 and O111 suggests nonspecific binding or perhaps some  

cross reactivity of the O26 antibodies with O-antigens of O103 and O111.   

 Only a few studies have been reported on the detection and or prevalence of O26 serogroup  

in cattle or sheep feces (Barlow and Mellor, 2010; Brandal et al., 2012; Cobbold et al., 2004;  

Hall et al., 2006; Jenkins et al., 2003; Monaghan et al., 2011; Pearce et al., 2004; Pradel et al.,  

2000; Renter et al., 2005, 2007; Sasaki et al., 2011; Wells et al., 1991).  The majority of cattle or  

sheep shedding O26 are healthy; however, the serogroup has been isolated from calves and  

lambs with diarrhea (Blanko et al., 2003; Caprioli et al., 2005; Cid et al., 2001; De et al., 2002).  

The limitation of culture-based methodology to detect or isolate O26 serogroup is lack of a  

selective medium, similar to sorbitol MacConkey agar for O157, for presumptive identification  

based on phenotypic characteristic (colony color).  Possé et al. (2008) have described a selective  

(enteric Gram negative bacteria) and differential MacConkey agar base medium supplemented 

with a mixture of sugars (sucrose, sorbose, rhamnose) with inhibitory components (potassium  

tellurite and novobiocin) and a chromogenic compound to signal β-galactosidase activity that  
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allowed color-based identification of O26 and other non-O157 E. coli (O103, O111, and O145).   

Based on sugar fermentation characteristics of non-O157 STEC described by Possé et al. (2008),  

sorbose fermentation was used for phenotypic identification of O26 cultured on a lactose-free  

MacConkey agar.  The use of sorbose MacConkey agar allowed isolation of O26 in pure culture 

from 23.9% (260/1,089) samples of pooled colonies that were PCR positive for the serogroup  

O26.  The poor recovery may be reflective of the lack of selectivity of the medium and the  

logistical limitation of finding a positive O26 from a mixture of 10 colonies that were pooled  

together.  Fukushima and Seki, (2004) enriched and performed IMS on 605 fecal samples and 

streaked the resulting beads onto Chromocult agar, a commercial chromogenic medium.  A  

colony sweep from Chromocult agar was screened with a PCR to detect stx genes and  

subsequently recovered stx-positive pure cultures from only 50% of the stx positive colony  

sweeps.    

 Escherichia coli O26 serogroup is broadly classified into STEC and enteropathogenic  

(EPEC) based on virulence factors, although both are capable of causing attaching and effacing  

lesions (Kaper et al., 2004).  The genetic determinants for the production of A/E lesions are  

located on the LEE, a pathogenicity island that contains genes encoding the intimin, a type III  

protein secretion system, a number of secreted (Esp) proteins and the translocated intimin  

receptor (Tir) (McDaniel et al., 1995).  Intimin is the outer membrane protein responsible for the  

intimate attachment between E. coli and enterocytes and the 280-amino acid residues at the C- 

terminus has antigenic variation that allows classification of distinct subtypes among STEC and  

EPEC strains (Adu-Bobie et al., 1998).  Strains of EPEC produce a characteristic adherence,  

called local adherence, in which bacterial cells form microcolonies or clusters.  This type of  

adherence is associated with the presence of a plasmid, called EAF (EPEC adherence factor)  
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plasmid, which also has a cluster of genes that encode bundle-forming pili (BFP; Nataro and  

Kaper, 1998).  Strains of EPEC carrying bfpA gene are called typical EPEC.  In contrast to  

typical EPEC, certain strains that carry eae gene, but do not have the EAF plasmid encoding  

bfpA, are called atypical EPEC (aEPEC; Chen and Frankel, 2005).  A total of 260 strains of O26  

were obtained in the study and seven were STEC, with 6 possessing stx1and one strain had stx2.   

Generally, STEC strains of bovine origin, including O26, are more likely to carry stx1 than stx2  

(Pearce et al., 2004, 2006; Aktan et al., 2007).  The majority of the O26 isolates (236/260;  

90.8%) obtained in the study contained eaeβ1, but none was positive for bfpA, suggesting they  

belonged to atypical EPEC.  Sekse et al., (2011) and Kobayashi et al., (2001) screened O26  

isolated from ruminant feces (n = 142 and 9, respectively) and also reported that none of them  

carried the bfpA.    

 In conclusion, serogroup O26 was detected in in 10.5% (502/4,800) and 22.7% (1,089/4,800)  

of fecal samples collected from feedlot cattle based on PCR- and culture-based methods,  

respectively.  The interventions (vaccine and or DFM) had no impact on fecal shedding of O26.  

Only 260 of the 1,089 culture positive samples yielded pure cultures of O26.  Only seven of the 

260 strains of O26 were STEC and majority of the strains was aEPEC. 
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 464 

Figure 1.  Prevalence of Escherichia coli serogroup O26, based on culture method (A; 465 

immunomagnetic separation and plating on MacConkey agar) or multiplex PCR assay (B), in 466 

feces of feedlot cattle (n=4,800).  The day of sampling and the number of samples collected are 467 

indicated in the Y axis. 468 

 469 

 470 
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TABLE 1. PREVALENCE OF ESCHERICHIA COLI O26 SEROGROUP AND MAJOR VIRULENCE GENES, 
BASED ON MULTIPLEX PCR, IN ESCHERICHIA COLI BROTH-ENRICHED FECAL SAMPLES OF FEEDLOT 

CATTLE THAT RECEIVED NO TREATMENT (CONTROL), VACCINE (SIDEROPHORE RECEPTOR AND 
PROTEINS-BASED), DIRECT-FED MICROBIALS (LACTOBACILLUS ACIDOPHILUS AND 

PROPIONIBACTERIUM FREUDENREICHII) OR BOTH.   

Serogroup and 
virulence genes 

Total 
(n=4,800) 

Number of samples (n=1,200) positive (%) 

Control Vaccine Direct-fed 
microbials 

Vaccine + 
Direct-fed 
microbials 

 

O26 502 (10.5) 110 (9.2) 87 (7.3) 179 (14.9) 126 (10.5)  

stx1 597 (12.4) 118 (9.8) 130 (10.8) 226 (18.8) 123 (10.3)  

stx2 1,151 (24.0) 263 (21.9) 251 (20.9) 341 (28.4) 296 (24.7)  

eae 2,179 (45.4) 537 (44.8) 546 (45.5) 629 (52.4) 467 (38.9)  

ehxA 4,066 (84.7) 1,047 (87.3) 967 (80.6) 1,068 (89.0) 984 (82.0)  

There were no significant differences among treatment groups (P values > 0.05). 

.
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TABLE 2. PREVALENCE OF THE SIX SEROGROUPS OF ESCHERICHIA COLI AND FOUR MAJOR VIRULENCE GENES IN POOLED COLONIES (N=10) 
FROM MACCONKEY AGAR PLATED WITH FECAL SAMPLES (N=4,800) THAT WERE ENRICHED IN ESCHERICHIA COLI BROTH AND SUBJECTED TO 

O26 IMMUNOMAGNETIC BEADS SEPARATION AND IDENTIFIED AS PCR-POSITIVE (N=1,089) FOR THE SEROGROUP O26 
 

Serogroups 

PCR 
positive 

Number of samples positive for virulence genes (%) 
None stx1 stx2 eae ehxA stx1 + 

eae 
stx2 + eae stx1 and/or stx2 

+ eae 
O26 1,089 561 (51.5) 45 (4.1) 216 (19.8) 179 (16.4) 311 (28.6) 7 (0.64) 52 (4.8) 55 (5.1) 

O45 4 2 1 2 0 1    

O103 168 75 (44.6) 12 (7.1) 44 (26.2) 29 (17.3) 54 (32.1) 1 (0.6) 8 (4.8) 11 (6.6) 

O111 259 112 (43.2) 6 (2.3) 50 (19.3) 104 (40.2) 57 (22.0) 1 (0.4) 23 (8.9) 26 (10.0) 

O121 13 4 0 4 6 3    

O145 12 2 1 2 6 7    

O157 10 10 2 5 7 7    
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TABLE 3. GROWTH AND FERMENTATION OF SORBOSE IN LACTOSE-FREE MACCONKEY AGAR WITH OR WITHOUT POTASSIUM TELLURITE 
AND OR NOVOBIOCIN OF PURE CULTURES OF THE SEVEN SHIGA TOXIN-PRODUCING ESCHERICHIA COLI 

 Number of strains fermenting sorbose/Number of strains that grew on the medium 

Culture medium O26 
(n=36) 

O45 
(n=2) 

O103 
(n=40) 

O111 
(n=29) 

O121 
(n=9) 

O145 
(n=16) 

O157 
(n=20) 

Lactose-free MacConkey agar base 
with:        

Sorbose (10 g/l) 36/36 1/2 14/40 2/29 3/9 4/16 0/20 
 
Sorbose (10 g/l) and potassium 
tellurite (2.5 mg/l) 

32/32 0/0 13/31 2/29 3/3 3/14 0/20 

 
Sorbose (10 g/l) and novobiocin 
(8 mg/l) 

36/36 0/0 14/40 2/28 3/9 3/16 0/20 

 
Sorbose (10 g/l) + potassium 
tellurite (2.5 mg/l) + novobiocin 
(8 mg/l) 

32/32 0/0 13/31 2/28 3/3 3/14 0/20 
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TABLE 4. PATHOTYPES AND VIRULENCE GENE PROFILES OF ESCHERICHIA COLI O26 (N=260) 
ISOLATED FROM CATTLE FECES. 

Pathogroup 
No. of 
isolates 

Virulence genes 
stx1 stx2 eaeβ1 ehxA bfpA tir fliCH11 espP 

Shiga toxin- 
Producing E. coli O26 

7 6 1 7 3 0 7 6 3 

Profile 1 2 + - + + - + + + 
Profile 2 1 + - + - - + + + 
Profile 3 1 + - + - - + + - 
Profile 4 1 + - + + - + + - 
Profile 5 1 + - + - - + - - 
Profile 6 1 - + + - - + + - 
          

Atypical enteropatho-
genic1 E. coli O26 

236 0 0 236 7 0 234 197 3 

Profile 1 187 - - + - - + + - 
Profile 2 37 - - + - - + - - 
Profile 3 7 - - + + - + + - 
Profile 4 3 - - + - - + + + 
Profile 5 2 - - + - - - - - 

 
Avirulent E. coli O26 17 0 0 0 0 0 0 1 0 

Profile 1 16 - - - - - - - - 
Profile 2 1 - - - - - - + - 

1Atypical enteropathogenic classification is based on the presence of eae and absence of bfpA 
and stx genes. 
 




