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Abstract 

Timing and prediction error learning have historically been treated as independent 

processes, but growing evidence has indicated that they are not orthogonal. Timing 

emerges at the earliest time point when conditioned responses are observed, and 

temporal variables modulate prediction error learning in both simple conditioning and 

cue competition paradigms. In addition, prediction errors, through changes in reward 

magnitude or value alter timing of behavior. Thus, there appears to be a bi-directional 

interaction between timing and prediction error learning. Modern theories have 

attempted to integrate the two processes with mixed success. A neurocomputational 

approach to theory development is espoused, which draws on neurobiological 

evidence to guide and constrain computational model development. Heuristics for 

future model development are presented with the goal of sparking new approaches to 

theory development in the timing and prediction error fields. 
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 Traditionally, the study of timing and associative learning has proceeded 

largely independently, but more recent research has suggested areas of connection 

between the two disciplines. Theories of timing and associative learning have also 

traditionally focused on one or the other process, but the last three decades have seen 

the emergence of hybrid theories, again reflecting overlap between the two processes 

(see, for example, Church and Kirkpatrick 2001; Kirkpatrick and Church 1998). The 

present paper discusses recent developments, both empirical and theoretical, in the 

fields of timing and associative learning that argue for the further development of 

theories that couple the two processes together, as well as further research to assess 

the nature of interactions between the two processes. Both behavioral and 

neurobiological evidence are brought to bear in an attempt to understand the 

functioning of timing and associative learning systems.  

1. Historical foundations 

 1.1. Prediction error learning. Prediction error learning is driven by 

expectancies of the occurrence or non-occurrence of events, and has been proposed to 

serve as the basic process that underlies associative learning in classical and 

instrumental conditioning procedures. Prediction error learning has historically been 

viewed as the process of learning to anticipate events in relation to the occurrence of 

other events. As a simple example, an individual might experience a tone that lasts for 

10 s and is followed by food delivery, a procedure known as delay conditioning. 

Prediction error learning in this case would lead to an expectation of food delivery 

during the tone stimulus. Prediction errors play an important role during the learning 

process as early in learning there is no expectancy of food, but this develops over the 
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course of repeated experiences. Prediction errors could also play an important role if 

the circumstances were to change by, for example, changing the properties of the 

tone, by changing the amount or type of food delivery, or by ceasing food deliveries 

altogether. Prediction error learning also plays an important role in learning 

connections between multiple different events, such as connections between two or 

more conditioned stimuli (CSs) and relationships between responses and outcomes.  

 1.2. Conditioning and timing. The study of classical conditioning initially 

proceeded largely independently of the study of timing processes, even though the 

procedures used to study both processes are highly similar. For example, a common 

procedure used in classical conditioning research is the delay conditioning procedure, 

described previously, in which a CS (e.g., a tone or light) is turned on for a fixed 

duration and then is followed by a US (e.g., food). An intertrial interval (ITI) 

intervenes between successive signal presentations. Although responses have no 

consequence in this procedure, considerable responding can be observed if the CS 

duration is relatively short (depending on the relevant behavioral system), if the CS 

precedes the US, and if there is little or no gap between CS offset and US delivery. 

All of these phenomena indicate that conditioning is dependent on temporal aspects of 

the procedure. These facets of conditioning are well established and are foundational 

knowledge in basic learning textbooks. In addition, conditioned responses (CRs) are 

not distributed evenly across the CS duration, but instead increase in frequency and/or 

strength as the expectancy of the US increases. Measurement of CR timing in 

classical conditioning has been overlooked in the majority of research reports, even 

though CR timing is a robust phenomenon. The fact that CRs are timed in accordance 
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with US expectancy indicates that conditioning is resulting in learning of whether and 

when the US will occur. And yet, both empirical research and theoretical 

developments have proceeded largely independently until more recently. 

 1.3. Reward processing and timing. Prediction error learning plays an 

important role in learning to anticipate reward occurrence and the specific features of 

rewarding stimuli. Changes in reward magnitude or other aspects of reward lead to 

prediction errors and this in turn can lead to timing changes (Section 2.2). Early 

research examining reward effects on timing suggested that timing of responding was 

relatively immune to the effects of reward variables, and that reward effects were 

restricted to the rate of responding rather than the timing of responding. For example, 

Roberts (1981) reported several experiments where different aspects of a peak 

procedure were manipulated. A peak procedure is a variation on a fixed interval (FI) 

schedule of reinforcement. FI and peak trials are both cued by the same signal (e.g., a 

tone or light). On FI trials, food is primed at a particular time after signal onset, for 

example, 30 s. The first response after the prime results in food delivery and signal 

termination. Peak trials are cued in the same fashion and usually last 3-4 times the FI 

duration. There are no food deliveries on peak trials and responses have no 

consequence, but are recorded. The average response rate on peak trials typically 

increases as a function of time since signal onset until around the expected time of 

food delivery and then decreases thereafter. 

 Roberts (1981) reported that differences in the FI duration resulted in 

differences in the time of occurrence of the peak time of responding, whereas 

differences in the probably of reinforcement resulted in differences in the peak rate of 
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responding. As a result, Roberts developed a simple model in which the timing of 

reinforcement was proposed to affect clock processes which would result in effects on 

the timing of responding whereas other factors such as probability or amount of 

reinforcement or the motivational state of the individual would affect the rate of 

responding but should have no effect on the timing of responding. As a result of this 

and other early studies, little attention was paid to any possible intersection of reward 

processes and timing processes. However, more recent research, outlined in the next 

section, has indicated that reward processing and timing are not entirely independent.   

2. Challenges: prediction error learning and timing are not independent 

 In the last three decades, there has been a growth of interest (both empirical 

and theoretical) in examining connections between prediction error learning and 

timing. This section will consider the major empirical developments that have 

stimulated the growth of hybrid theories, which are discussed in the following section. 

 2.1. Timing variables and prediction error learning.  One important 

discovery linking prediction error learning and timing is that CRs appear to be timed 

appropriately at their earliest point of occurrence. This has been demonstrated in 

appetitive conditioning in rats (Kirkpatrick and Church 2000), aversive conditioning 

in goldfish (Drew et al. 2005), eyeblink conditioning in rabbits (Ohyama and Mauk 

2001), autoshaping in birds (Balsam, Drew, and Yang 2002), and fear conditioning in 

rats (Davis, Schlesinger, and Sorenson 1989). The observation of CR timing at the 

start of associative learning indicates that learning to anticipate whether and when the 

US will occur (in relation to the CS) are most likely emerging in parallel and at a 
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similar point in conditioning. This will be discussed further in relation to the neural 

substrates of timing and conditioning in Section 4.  

 Another important factor to consider is that interval durations directly affect 

the strength and/or probability of CR occurrence in simple conditioning procedures 

(Holland 2000; Kirkpatrick and Church 2000; Lattal 1999; Kirkpatrick 2002; 

Kirkpatrick and Church 2003). This relationship appears to take the form of a power 

function with a slope near -1.0 in a goal-tracking procedure in rats, as shown in Figure 

1. In addition, this relationship is observed regardless of the events that cue the onset 

of the interval. To demonstrate this principle, the data in Figure 1 are taken from 

delay conditioning procedures with tone and light CSs and display the relationship 

between response rate and interval duration during the CS and ITI and for both noise 

and light CSs and ITIs of different durations (Jennings, Bonardi, and Kirkpatrick 

2007; Kirkpatrick 2002). These data indicate that CS and ITI durations produce 

orderly effects on CR intensity (measured by head entry response rate), lending 

further support to the important role of temporal variables in conditioning. In addition, 

the similarity of response rates in the CS and ITI indicate that prior food delivery and 

CS onset both serve as timing cues for anticipating upcoming food deliveries, and 

may potentially rely on the same underlying mechanism (see also Kirkpatrick and 

Church 2000, 2003, 2004). 

 While the mean interval duration appears to primarily affect response rate, 

variability in interval durations affects the pattern of responding in simple 

conditioning procedures. For example, variable intervals lead to generally constant 

rates of responding, whereas fixed intervals lead to increasing rates of responding 
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over the course of the CS-US interval (Kirkpatrick and Church 2000, 2003, 2004, 

1998; Church, Lacourse, and Crystal 1998). 

 While it is clear that the duration and variability of intervals has an effect on 

the rate and distribution of responses, respectively, these effects could be occurring in 

parallel with prediction error learning with little or no contact between the two 

phenomena. Cue competition paradigms can provide a means to assess the interaction 

of temporal variables with conditioning, by pitting cues with different temporal 

information against one another. Here, it is clear that there may be an interaction of 

temporal variables and conditioning, but the nature of the interaction is not well 

understood and the literature has revealed an inconsistent picture. One simple cue 

competition procedure is overshadowing (Pavlov 1927), where two CSs of different 

properties are both associated with the US. Here, the more salient CS usually results 

in more robust conditioning. With regard to temporal properties, it appears that 

variability of the CS may affect overshadowing, with weaker overshadowing by 

variable than by fixed CSs (Jennings et al. 2011). In addition, overshadowing has 

been reported to be more robust with shorter CSs than with longer CSs (Kehoe 1983; 

but see Jennings et al. 2007; McMillan and Roberts 2010; Hancock 1982; Fairhurst, 

Gallistel, and Gibbon 2003), consistent with the idea that both shorter and less 

variable CSs may be more salient due to their higher information value in predicting 

the US (Balsam, Drew, and Gallistel 2010).  

In addition, interval duration has been shown to affect cue competition in a 

blocking paradigm (Kamin 1968; Kamin 1969). Blocking involves pre-training with a 

CS1US followed by later CS1+CS2US pairings. One question of interest in 
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terms of temporal variables has been the maintenance of CS1 durations between the 

pre-training and blocking phases. Shifts in CS1 duration can result in an attenuation of 

blocking in some cases (Barnet, Grahame, and Miller 1993; Schreurs and Westbrook 

1982), but this effect has not consistently been observed (Kohler and Ayres 1979, 

1982; Maleske and Frey 1979). A few investigations have also examined the 

importance of the relative duration of CS1 and CS2 in blocking, and here again the 

picture is mixed. Several studies have reported that a longer CS1 can block a shorter 

CS2 (Kehoe, Schreurs, and Amodei 1981; Gaioni 1982), but not vice versa (Jennings 

and Kirkpatrick 2006), but other studies have reported little or no asymmetry in 

blocking (Kehoe, Schreurs, and Graham 1987; Barnet, Grahame, and Miller 1993), or 

the opposite result with stronger blocking by a shorter CS1 (Fairhurst, Gallistel, and 

Gibbon 2003; McMillan and Roberts 2010). The issue of the variability in CS 

duration has not been as widely studied in blocking as interval duration effects, but 

one study reported temporal uncertainty (through variability in CS duration) did not 

undermine the ability of a CS1 to block a CS2 (Kohler and Ayres 1979). Further 

research is necessary to determine whether this result would hold across a range of 

different procedural variations. 

In both overshadowing and blocking, the differences in the nature of effects of 

duration and variability may be due to various factors such as the modality of the two 

CSs, which has been shown to affect timing (e.g., Meck 1984), the paradigm 

employed (aversive or appetitive), the nature of the response, the species of animal 

tested, and whether the two stimuli are presented in an overlapping or serial 

compound. While disentangling these possibilities is an important goal, the most 
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important aspect for the present purposes is that it does appear that temporal variables 

interact directly with prediction error learning. This indicates the need to consider that 

interaction in the development of future theories, as discussed below (Section 6). 

 3.2. Prediction error effects on timing.  It is clear that temporal variables 

affect prediction error learning, and it also appears that prediction errors can lead to 

alterations in timing. Growing evidence indicates the importance of reward prediction 

and prediction error learning in the timing process (Doughty and Richards 2002; 

Galtress and Kirkpatrick 2009, 2010a, 2010b; Grace and Nevin 2000; Kacelnik and 

Brunner 2002; Ludvig, Balci, and Spetch 2011; Roberts 1981; Ludvig, Conover, and 

Shizgal 2007).  

One factor that has been demonstrated to affect timing is the magnitude of the 

reward, as seen in Figure 2 (top panel), which is adapted from Galtress and 

Kirkpatrick (2009). In this study, rats were trained on a peak procedure where 

reinforcement was normally available for the first lever press 60 s after trial onset. On 

occasional peak trials, the trial signal remained on for 180 s and food was omitted. 

Rats were given initial training with 1 or 4 food pellet(s) as the usual reward and then 

the reward magnitude was increased to 4 pellets (in group 1-4-1) or decreased to 1 

pellet (in group 4-1-4). The mean start time of responding during peak trials is shown 

in the figure for the initial (BASE 1) and final baseline (BASE 2) phases and the 

reward magnitude phase (MAG). When the magnitude was shifted from 1 to 4 pellets, 

there was a leftward shift in start times, indicating an effect of reward magnitude 

contrast on timing, and the reverse pattern was seen when shifting from 4 to 1 pellets. 

Upon return to the baseline reward condition, both groups showed a shift back to their 
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original start times. Similar results have been reported in rats, pigeons and humans, 

with increasing reward magnitude shifting timing functions earlier and decreases in 

magnitude shifting timing functions later (Ludvig, Balci, and Spetch 2011; Ludvig, 

Conover, and Shizgal 2007; Balci et al. 2013; Grace and Nevin 2000). Additional 

research has indicated that changes in magnitude flatten response functions on a 

temporal discrimination task (Galtress and Kirkpatrick 2010a), suggesting that the 

effects of motivational changes on timing might operate through alterations in 

attention to time, or through changes in decision processes. 

 In addition to the effects of reward magnitude on timing, devaluation through 

satiety or through lithium chloride-induced taste aversion has also been shown to alter 

timing in both the peak and temporal discrimination procedures. Galtress and 

Kirkpatrick (2009) trained rats under normal food deprivation on a peak procedure 

and then tested them following satiety through pre-feeding or following pairing of the 

reward with lithium chloride. Both devaluation procedures produced a substantial 

reduction in response rate and shifted the peak to the right (see also Roberts 1981). 

This effect has also been reported to occur due to satiety within sessions under normal 

training procedures, where response rates decreased and peak times shifted to the 

right over the course of the session (Balci, Ludvig, and Brunner 2010). In addition, 

satiety has been reported to flatten the psychophysical function in temporal 

discrimination procedures, similar to the effect of changes in reward magnitude (Ward 

and Odum 2006). However, unlike changes in magnitude, which appear to produce 

directional selectivity in shifting peak functions, satiety effects do not appear to be 

directionally specific. Depicted in Figure 2 (bottom panel) are results from Galtress, 
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Marshall and Kirkpatrick (2012). They trained rats on a peak procedure either under 

normal deprivation (Non-Fed), or under satiety where the rats were pre-fed prior to 

each experimental session (Pre-Fed). Training under different deprivation states 

produced differences in response rates, with the pre-fed rats displaying lower rates 

(similar to the effect of training with different magnitudes), but the start times in 

responding were highly similar, as seen in the figure. In a subsequent test phase, the 

deprivation state of the rats was switched. The rats that had been trained under 

deprivation and were tested under satiety showed a rightward shift in their peak, 

consistent with previous reports (Balci, Ludvig, and Brunner 2010; Galtress and 

Kirkpatrick 2009; Roberts 1981). Surprisingly, the rats that were trained under satiety 

and tested under deprivation also displayed a rightward shift in their peak, indicating 

that the general state change produced the shift and that this shift was not directionally 

selective. This suggests that somewhat different processes may be at work in satiety 

versus reward magnitude effects on timing, which will be discussed further in Section 

5, in relation to the neural substrates of prediction error, valuation, and timing. 

3. Theories of timing and prediction error learning 

 It is clear from the preceding section that modern theories need to integrate 

timing and prediction error learning in some fashion. There has been a general trend 

towards developing integrative models, but these models have tended to have a fairly 

limited scope, or have been focused on a single process. There are three main 

categories of integrative models: (1) time-based hybrid models that have incorporated 

prediction error learning; (2) prediction error models that have incorporated timing; 

and (3) information processing models.  
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 3.1 Time-based hybrid models. The time-based hybrid models have 

developed along two lines -- those that incorporate some aspect of associative or 

prediction error properties and those that incorporate reward processing aspects. One 

example of a prediction-error type of model is the learning to time model (LeT; 

Machado 1997), which developed from behavioral theory of timing (BeT; Killeen and 

Fetterman 1988). In the LeT model, timing of durations is accomplished by a cascade 

of traces that are initiated at trial onset. Reinforcement strengthens the memory for the 

individual traces in accordance with their activity strength at the time of 

reinforcement and extinction weakens the memory for individual traces. This model 

does contain elements of prediction error models, particularly with regard to changes 

in associative strength, but it does not possess any mechanisms for cue competition or 

for dealing with the reward magnitude and satiety effects on timing discussed above.  

 Several additional hybrid models have taken a similar approach to LeT by 

assuming that reinforcement leads to the storage of a set of strengths based on the 

activation pattern of a set of perceptual functions at the time of reinforcement. The 

multiple oscillator model (MOM; Church and Broadbent 1990) proposes that the 

perception of time is accomplished by a set of oscillators with different periods. 

Memory strength is determined by an auto-association matrix, which encodes the 

strength of association of different oscillators; the memory coding in this fashion 

facilitates temporal generalization. The spectral timing theory (STT; Grossberg and 

Schmajuk 1989) proposes a perceptual representation which is a series of functions 

that increase nonlinearly at different rates (the gated spectral signal). The memory 

represents the strength of each perceptual function at the time of reinforcement 
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according to a linear operator function. Neither of these models contains elements 

necessary for cue competition effects or for dealing with reward effects on timing. 

 Yet another sub-set of timing models have incorporated motivational 

processes with the goal of explaining some reward processing effects on timing. For 

example, the behavioral economic model (BEM; Jozefowiez, Staddon, and Cerutti 

2009) proposes that reinforcer properties directly affect the decay rates for timing 

traces within the model. This model can partially account for the reward magnitude 

and value effects on timing, but the model fails to account for lack of directional 

specificity in the satiety effects on timing and also incorrectly predicts that reward 

magnitude changes should vertically shift the psychophysical function in temporal 

discrimination rather than flatten the function.  

 The multiple time scales model (MTS;Staddon and Higa 1996) was developed 

to deal with sudden changes in reward magnitude through short-term effects on timing 

traces. This model incorrectly predicts that smaller rewards should result in earlier 

responding than larger rewards, which is the opposite of the results that have been 

reported in the literature.   

 An additional set of time-adaptive drift diffusion models (TDDMs) have been 

recently developed to provide an approach for learning to time intervals (Rivest and 

Bengio 2011; Simen et al. 2011; Luzardo, Ludvig, and Rivest 2013). These models all 

assume that timing is accomplished by a ramping function, with a learning rule that 

incorporates prediction error relating to the time of occurrence of reinforcement. If the 

reinforcer arrives earlier than expected, then the accumulation rate is increased and if 

it arrives later than expected then the accumulation rate is slowed. This allows for 
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potentially rapid learning and adaptation of behavior in the face of changing temporal 

information, depending on the learning rate parameter value. These models encode 

reward rate in a manner similar to BeT (Killeen and Fetterman 1988). Luzardo et al. 

(2013) developed an alternative linear threshold version of the TDDM to account for 

rapid changes in behavior under cyclic interval schedules using a rule in which the 

decision threshold was a linear function of the accumulation rate. This model 

performed similarly to MTS in accounting for cyclic schedule responding, but with 

the added benefit that it would be able to account for at least some aspects of reward 

processing effects on timing. However, none of the TDDMs currently incorporate cue 

competition effects, so they would not be well suited to deal with the effects of 

temporal variables on prediction error learning without further modification. 

 Another theory that is based on a ramping function for time perception is 

packet theory (PT; Kirkpatrick 2002; Kirkpatrick and Church 2003), which proposes 

that a single ramping function is generated during each interval and that these are 

averaged together (with a linear operator equation) to form an expected time function. 

The rate of responding is determined by the mean expected time and the pattern of 

responding is determined by the shape of the expected time function. While packet 

theory can explain a number of facets of CR rate and timing in simple conditioning, 

such as CR timing emerging in the same time course as CR rate, and the effects of 

interval duration and variability on CR rate and pattern, respectively, this model does 

not incorporate any cue competition effects due to a lack of a prediction error rule that 

sums strengths across multiple CSs. In addition, the model is ill-equipped to deal with 

the effects of prediction error learning on timing through reward magnitude/value 
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changes. The modular theory (MOD; Guilhardi, Yi, and Church 2007) attempted to 

overcome some of these deficits by introducing separate memory stores for strength 

and pattern information. The strength memory follows a Rescorla-Wagner learning 

rule, and thus can predict a number of basic associative learning effects, and the 

pattern memory is the expected time function from the PT model. Although this 

model has a broader scope than the original PT model, it still fails to incorporate 

many the effects of temporal variables on prediction error learning and the effects of 

prediction errors on timing because the strength and pattern memory do not interact. 

 Overall, none of the time-based models fare very well in accounting for the 

effects of temporal variables on prediction error learning. Most of the models also fare 

poorly in understanding the effects of reward magnitude or value changes on timing, 

although MTS and BeM do account for some aspects of reward effects on timing. 

This indicates that a more comprehensive approach will be required in integrating 

timing and prediction error within a common framework. 

 3.2. Prediction error-based hybrid models.  The class of temporal difference 

models (TD; Sutton and Barto 1981, 1990) have arisen out of a Rescorla-Wagner 

(1972) prediction error learning rule coupled with a temporal representation to 

provide a means of predicting CR timing. The temporal representation in TD models 

is a series of discrete units within the time course of a CS, so one difference between 

TD models and other theories of timing is the nature of the perception of time 

(discrete in TD models vs. continuous in most timing models). Because TD models 

incorporate timing into a prediction error model, they perform reasonably well in 

predicting at least some aspects of CR timing (Ludvig, Sutton, and Kehoe 2012) and 
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can also predict at least some elements of the effects of temporal variables on 

conditioning (e.g., Jennings et al. 2011). Altering aspects of the stimulus 

representation can improve performance of CR timing by incorporating scalar 

variance into the temporal representation associated with the different CS components 

(Ludvig, Sutton, and Kehoe 2008). The TD models could incorporate reward 

processing aspects through prediction error changes, but these models perform better 

in explaining changes in response rate as a function of changes in reward parameters, 

rather than dealing with alterations in timing of responses.  

 In general, the asset of the TD models is that they can account for prediction 

error learning at least as well as standard associative models such as the Rescorla-

Wagner model (Rescorla 1972), but they also open the door to explaining CR timing 

and allowing for CR timing acquisition to occur along with prediction error learning 

(Kirkpatrick and Church 2000; Balsam, Drew, and Yang 2002). These models are still 

evolving and need to expand their scope to fully incorporate the effects of temporal 

variables on prediction error learning and also the effects of prediction errors 

(produced through changes in reward variables) on timing. 

 3.3. Information processing models.  Scalar expectancy theory (SET; 

Gibbon and Church 1984; Gibbon, Church, and Meck 1984) differs considerably from 

the hybrid models discussed above, most notably due to the lack of any prediction 

error or strength component in the memory store. The perception of time in SET is a 

ramping function that bears some similarity to the TDDMs and PT/MOD, but here the 

ramping function is proposed to emerge from a pacemaker that sends pulses to an 

accumulator. The memory is a collection of pulses from previously reinforced 
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intervals. The model proposes that all pulse counts are stored as individual memories, 

rather than as an integrated strength representation. Because SET is an information 

processing model that is devoid of any prediction error component, this model does 

not account for acquisition of behavior (Church and Kirkpatrick 2001), but does 

predict many steady state features of timed behavior. The model does not encompass 

prediction error learning and thus on its own cannot account for any of the interaction 

effects discussed above. 

 In an attempt to incorporate some prediction error learning aspects with SET, 

rate expectancy theory (RET; Gallistel and Gibbon 2000; Gibbon and Balsam 1981) 

proposed an information processing model for prediction error learning. In the RET 

model, the acquisition of CRs is determined by a comparison of two rates of 

reinforcement: the rate during the intertrial interval and the rate during the CS-US 

interval (note that in the earlier Gibbon and Balsam formulation the inter-US interval, 

or cycle, was the basis for background reinforcer rate determination). As evidence 

accumulates, if the CS-US interval carries a stronger reward signal (a higher 

reinforcement rate) than the background rate, then CRs will begin to emerge. 

Following conditioning, SET has been proposed to determine CR timing; this model 

assumed that CR timing would occur after conditioning of CRs had begun to emerge, 

which is at odds with multiple observations noted above (Section 2.1). The RET 

model has successfully explained the effects of interval (and relative interval) 

durations on CR occurrence and intensity (such as depicted in Figure 1) and can 

explain a number of basic prediction error learning phenomena including most simple 

cue competition effects. The model also contains a basis for prediction errors 
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surrounding changes in US magnitude, but those changes would only affect CR rate, 

and not CR timing. In addition, the model does not incorporate any of the effects of 

temporal variables on prediction error learning.  

 A newer variant on the RET model, based on Shannon’s information theory 

(Balsam, Drew, and Gallistel 2010; Balsam and Gallistel 2009), extends on the 

previous model by proposing that the information value of durations can affect CR 

occurrence. Information is encoded by an entropy formulation, and both the length 

and variability of an interval affect information value, with shorter, fixed intervals 

associated with higher information value than either longer or more variable intervals. 

This new variant on RET allows the model to incorporate many of the effects of 

temporal variables on prediction error learning, including differences in blocking and 

overshadowing based on relative length and variability (Section 2.1). This model has 

not yet been extended to deal with the prediction error effects on timing through 

reward magnitude and value manipulations, so this remains a weakness of the model.  

While RET has developed as an information processing model to compliment 

to the original SET model, an additional variant, the striatal beat frequency model 

(SBF; Matell and Meck 2004), was developed as a biologically plausible variant of 

SET. The perception of time in the SBF model is accomplished by a set of pacemaker 

neurons of different frequencies that spike for brief periods (Miall 1989). The beat 

frequency of a pair of oscillators is the frequency of co-occurrence of spikes, which 

gives a metric of the rate of coincidence of firing of the oscillators. The set of 

oscillators are initiated at stimulus onset (the beginning of the temporal duration), but 

because they are all oscillating at different frequencies will quickly become 
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desynchronized, similar to MOM. Oscillators that are spiking at the time of 

reinforcement result are strengthened via a Hebbian learning rule, similar to other 

time-based hybrid models such as STT. As a result, although SBF emerged out of the 

historical origins of information processing theories, it is fundamentally a time-based 

hybrid model more akin to STT, MOM, and LeT. Although this model does account 

for a number of timing phenomena, the current implementation of the model does not 

adequately time durations over 20 s (Matell and Meck 2004), which presents 

challenges for the breadth of application of the model to timing data. In addition, the 

model does not readily account for any of the prediction error interactions with 

timing, either the temporal duration effects on prediction error learning or the effects 

of reward properties on timing. Thus, the model will need to evolve to account for the 

results presented in Section 2 above.  

4. Neurobiological evidence 

 Computational models that are derived from purported psychological 

processes have proven effective in understanding behavioral phenomena in the timing 

and prediction error fields, but such models have been criticized for failing the neural 

plausibility test (Bhattacharjee 2006). In addition, neurophysiological evidence has 

pointed towards a more distributed system for encoding temporal durations (see 

Coull, Cheng, and Meck 2011 for a review), suggesting the need for new 

physiologically-based approaches to modeling the timing system. Furthermore, 

psychological models do not readily accommodate the effects of other variables on 

the timing system such as the prediction error effects described above, or the effects 

of temporal variables on prediction error learning. In turning to the neural circuitry of 
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the timing and prediction error learning systems, such interactions are expected to 

occur because prediction error and timing circuits are intricately interconnected. A 

consideration of the structure and function of these circuits may aid in guiding the 

development of new timing models that more readily incorporate the present results. 

 The following discussion of the reward system contains elements from studies 

involving rodents, non-human primates, and humans obtained with various 

techniques, and represents areas of convergence of the evidence from these varied 

sources where possible. The regions and pathways focus on the predominant 

structures and connections implicated in timing and prediction error learning. 

Although the timing and prediction error circuitry are discussed separately, they are 

diagrammed together in Figure 3. The brain regions and their connections that appear 

to be primarily involved in timing are represented by solid lines, whereas the regions 

and connections that appear to be more heavily involved in prediction error and 

reward valuation are represented by single dashed lines, and the regions and 

connections that may potentially be shared between the systems are represented by 

double-dashed lines. 

 4.1. Timing circuitry. The primary system for anticipatory timing in the 

seconds to minutes range that would most likely play a role in prediction error 

learning is the cortico-striatal-thalamic network (Coull et al. 2004; Coull, Nazarian, 

and Vidal 2008; Morillon, Kell, and Giraud 2009; Nenadic et al. 2003; Rao, Mayer, 

and Harrington 2001; Buhusi and Meck 2005; Matell and Meck 2004; Meck 1996). 

This system contains the nigrostriatal pathway that also features heavily in prediction 
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error learning coupled with multiple cortical and thalamic (TH) connections to the 

dorsal striatum (DS). 

 The DS has been proposed to function as a "supramodal timer" (Coull, Cheng, 

and Meck 2011) that is involved in encoding temporal durations (Meck 2006; Matell, 

Meck, and Nicolelis 2003; Coull and Nobre 2008; Meck, Penney, and Pouthas 2008), 

and may also play a role in temporal integration and coincidence detection (Matell 

and Meck 2004; Matell, Meck, and Nicolelis 2003). There are two pathways from the 

DS to the thalamus (TH) via the BG. The direct pathway to the TH sends excitatory 

information to the cortex (particularly the pre-motor cortex, PMoC), and the indirect 

pathway to the TH results in the transmission of inhibitory signals to the PMoC. The 

SNc modulates the balance of excitation and inhibition across the two pathways, 

which is important for the expression of anticipatory timing behavior (see Coull, 

Cheng, and Meck 2011 for a review). 

 The timing system interfaces to the prediction error system through the shared 

substrates of the PMoC, SNc and DS, which are involved in prediction error coding as 

well as timing. This suggests a possible strong relationship between temporal and 

reward prediction, which is not surprising given that both tend to co-occur in many 

Pavlovian and instrumental conditioning procedures and emerge at around the same 

point in acquisition (Balsam et al. 2009; Kirkpatrick and Church 2000; Davis, 

Schlesinger, and Sorenson 1989; Ohyama and Mauk 2001; Drew et al. 2005), as 

discussed in Section 2.1.  

 4.2. Prediction error circuitry. The primary components of the prediction 

error system are situated in the mid-brain dopamine system (see Figure 3), composed 
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of the mesolimbic and nigrostriatal pathways. The mesolimbic pathway is comprised 

of projections from the ventral tegmental area (VTA) to the nucleus accumbens (NA) 

and pre-frontal cortex (PFC). The nigrostriatal system initiates in the substantia nigra 

pars compacta (SNc) which sends projections to the DS. These two pathways are 

interfaced through a bilateral connection between the NA and the SNc. Prediction 

error learning and reward valuation substrates are strongly interrelated and so are 

considered together. 

 The mesolimbic projections from VTA to the NA and PFC contribute to 

reward processing and valuation. The VTA has been implicated in the valuation of 

rewards (Tobler, Fiorillo, and Schultz 2005; Schultz 1998; Roesch, Calu, and 

Schoenbaum 2007; Schultz, Dayan, and Montague 1997) and in the processing of 

prediction errors (Bayer and Glimcher 2005; Schultz 1998; Waelti, Dickinson, and 

Schultz 2001; Schultz, Dayan, and Montague 1997). The NA contributes to the 

assignment of the incentive motivational value of rewards (Galtress and Kirkpatrick 

2010b; Peters and Büchel 2011; Olausson et al. 2006; Robbins and Everitt 1996; 

Zhang, Balmadrid, and Kelley 2003). As a result, it has been proposed as a possible 

target site for the computation of overall reward value (Gregorios-Pippas, Tobler, and 

Schultz 2009; Kable and Glimcher 2007).  

 Prediction error coding has been linked to the nigrostriatal pathway, 

particularly the dopaminergic neurons in the SNc (Schultz 1998; Waelti, Dickinson, 

and Schultz 2001; Bayer and Glimcher 2005; Schultz, Dayan, and Montague 1997). 

The SNc has also been implicated in anticipatory timing of rewards (Matell and Meck 

2004; Meck 2006), indicating clear ties between timing and prediction error learning.  
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 An additional component of the reward processing system is the orbitofrontal 

cortex (OFC). The OFC connects to the NA and the basolateral amygdala (BLA), 

both of which contribute to the reward prediction and valuation system. The OFC also 

sends outputs to pre-motor cortex (PMoC), which is a part of the timing system. In 

addition to the NA, the OFC has also been linked with establishing the incentive 

motivational value of different rewards (Peters and Büchel 2010, 2011; Kable and 

Glimcher 2009; Kringlebach and Rolls 2004) and updating the value of reward in 

response to devaluation (Winstanley 2004). The OFC also contributes to the working 

memory representations for reward information (Frank and Claus 2006). The lateral 

OFC has been noted to play a role in the prediction of future rewards (Daw et al. 

2006), the reward value of predictive stimuli (Gottfried, O'Doherty, and Dolan 2003), 

and the determination of negative reward value (Frank and Claus 2006), all of which 

are linked with different aspects of prediction error learning. The medial OFC (also 

known as the ventromedial PFC) has been implicated in a variety of reward-

processing activities including the representation of reward incentive value (Peters 

and Büchel 2010, 2011), the encoding of the magnitude of obtained monetary reward 

and prediction of future rewards (Daw et al. 2006), the determination of positive 

reinforcement values (Frank and Claus 2006), the processing of immediate rewards 

(McClure et al. 2004), and the determination of cost and/or benefit information 

(Cohen, McClure, and Yu 2007; Basten et al. 2010). The right-central OFC appears to 

be involved more heavily in evaluating delayed and/or probabilistic rewards (Peters 

and Büchel 2009b), the subjective value and/or variance of rewards (O'Neill and 

Schultz 2010), and the size of reward (da Costa Araujo et al. 2010), indicative of a 
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general valuation mechanism residing in this region (Peters and Büchel 2009a). Given 

the widespread involvement in reward valuation, and its key connections to the timing 

system, the OFC is a candidate structure for integration of information across multiple 

components of the reward system and may be a key substrate in the interactions 

between timing, motivation, and prediction error computations. 

 The BLA is also an important contributor to this system, through its 

connection with the OFC. An intact BLA-OFC connection is necessary for the 

formation of reward expectancy and the usage of expectancies to guide goal-directed 

behavior (Holland and Gallagher 2004). The BLA has been demonstrated to play a 

role in representing the sensory properties of both rewarding (Blundell, Hall, and 

Killcross 2001) and aversive stimuli (see Baxter and Murray 2002). It also appears to 

be crucial for the acquisition of value representations (Frank and Claus 2006) that are 

then held within the medial OFC (Peters and Büchel 2011; Schoenbaum et al. 2003). 

The BLA also may contribute to the encoding of cost (or loss) signals (Basten et al. 

2010) and may be important for maintaining a representation of reward in its absence 

(Winstanley 2004). The BLA also sends projections to the NA and PFC. The BLA 

input into the NA mediates incentive processes for goal-directed behaviors (Shiflett 

and Balleine 2010).  

 Overall, the reward prediction and valuation system is involved in complex 

aspects of prediction error learning in classical and instrumental conditioning. This 

system is also concerned with determining the sensory features of important events 

(BLA) and sending that sensory information to the NA for use in determining the 

overall value of the reward as well as to cortical areas that are involved in integrating 
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information relating to prediction and valuation (OFC). The determination of reward 

value is then made available to the timing system through the SNc, DS, and cortical 

regions (OFC/PMoC). Timing is strongly interwoven with prediction error/reward 

learning, but there are also unique neural substrates involved in timing and prediction 

error learning.  

5. Interpretations derived from neural circuitry 

 The more recent gains in understanding the neurobiology of timing and 

prediction error learning has opened the door for the development of 

neurocomputational models that may be more biologically plausible than was 

previously possible. By examining the structure and function of the neural circuitry, it 

is possible to gain deeper insights into the interactions between prediction error 

learning and timing, and use those insights to guide future theoretical developments. 

 5.1. Prediction error learning and timing.  Section 2.1 described several 

core facets linking timing and prediction error learning: (1) CRs are timed 

appropriately from the beginning of conditioning; (2) CS-US interval duration is 

directly related to CR strength; and (3) relative CS duration and/or variability affects 

cue competition in blocking and overshadowing.  

 In terms of CR timing, the shared SNc role in prediction error learning and 

timing provides a route for simultaneous learning of both whether and when the US is 

expected relative to CS onset. The fact that the same substrates are implicated in both 

processes provides a natural explanation for why timing and conditioning emerge 

together, because they are controlled by the same pathway. However, that does imply 

that they may be one and the same process. Further research should examine the role 



Timing and prediction error learning  27 
 

of this pathway and any sub-structures in CR occurrence versus CR timing early in 

acquisition to determine whether these two aspects of CRs are locked together due to 

shared neural processing. 

 The effects of CS-US interval on CR strength could also emerge from the 

SNc-DS pathway since this pathway most likely encodes CS-US interval duration. 

However, the TH may play an additional role neurons within this structure show 

ramping activation patterns that are tuned to the CS-US interval duration (Komura et 

al. 2001). Because the TH has direct input to the DS, these ramping neurons could 

supply CS-US duration information that could modulate CR timing and CR strength 

through the DS output to the BG. Note that the BG system has bi-directional 

connections to the TH, providing a feedback loop for modulating CR timing in 

relation to CS-US interval duration (and also presumably variability in the CS-US 

interval). Further research should explore the role of this feedback loop in modulating 

CR strength and timing, and particularly in relation to the role of the SNc-DS pathway 

in affecting CR timing and strength. 

 Phasic dopamine firing in the midbrain dopamine reward system, including 

the VTA, NA, and PFC has been implicated in encoding prediction error signals that 

are critical for a variety of cue competition effects (see Hazy, Frank, and O'Reilly 

2010 for a review). Since these areas are also clearly associated with a variety of 

timing phenomena, this system is a good candidate for involvement in the effects of 

temporal variables on blocking and overshadowing. However, our understanding of 

the involvement of this system in cue competition is fairly limited, even with respect 

to simple aspects of cue competition, so a considerable expansion of research in this 
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area is needed to determine the role of these (and other) structures in the temporal 

modulation of cue competition phenomena.  

 5.2. Prediction error effects on timing.  Based on the discussion in Section 

2.2, there are a few fundamental effects of reward prediction errors on timing. With 

reward magnitude changes, there are directionally specific effects with increases in 

magnitude shifting the peak to the left and decreases shifting the peak to the right 

(Ludvig, Balci, and Spetch 2011; Ludvig, Conover, and Shizgal 2007; Balci et al. 

2013; Grace and Nevin 2000; Galtress and Kirkpatrick 2009, 2010b). Satiety (or 

lithium chloride-induced taste aversion) shifted the peak to the right, but devaluation 

procedures do not appear to be directionally selective as release from satiety also 

shifted the peak to the right (Galtress and Kirkpatrick 2009; Galtress, Marshall, and 

Kirkpatrick 2012; Balci, Ludvig, and Brunner 2010). Temporal discrimination 

procedures have been less well studied, but it appears that both reward magnitude and 

devaluation procedures flatten the psychophysical function, suggesting that these 

effects may be operating on attention, or perhaps decision processes (Ward and Odum 

2006; Galtress and Kirkpatrick 2010a). 

 The candidate areas for involvement in the prediction error effects on timing 

through changes in reward magnitude would be the NA which has been demonstrated 

to code the overall value of reward (Cardinal et al. 2001; Galtress and Kirkpatrick 

2010b; Bezzina et al. 2007; Bezzina et al. 2008; Pothuizen et al. 2005; Winstanley et 

al. 2005; Peters and Büchel 2010, 2011). The NA is clearly involved in some manner 

in the reward magnitude shift effects on timing, as lesions of this area resulted in 

deficits in the reward magnitude-timing interactions (Galtress and Kirkpatrick 2010b). 
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In addition, striatal dopamine 2 (D2) receptors and dopamine transporter (DAT) levels 

have been shown to play a key role in the motivational effects on timing, lending 

further evidence to the importance of the mid-brain dopamine system in contributing 

to the effects of reward prediction errors/motivational effects on timing (Balci et al. 

2010; Balci et al. 2013; Ward et al. 2009). In addition, the SNc projections to DS 

would be expected to contribute to generating the prediction error signal (Schultz, 

Dayan, and Montague 1997) which would presumably be an important contributor to 

the reward magnitude/value effects on timing as these effects are driven by a change 

in reward magnitude rather than the absolute magnitude of reward (Galtress and 

Kirkpatrick 2009). Through its bidirectional connections with the DS, the SNc 

provides a route for the prediction error signal to influence timing. In addition, the 

SNc modulates the excitatory/inhibitory balance between the direct and indirect 

pathways from DS to TH, which sends excitation/inhibition signals to the motor 

cortex to induce response output. Changes in reward magnitude could shift the peak 

through the SNc altering the balance of excitation and inhibition on a moment-to-

moment basis. 

 When the reward value is increased (through release from satiety) or 

decreased (through induction of satiety, or LiCl induced taste aversion), the peak has 

been reported to shift to the right in both cases (Galtress, Marshall, and Kirkpatrick 

2012). Here, the most likely pathway leads through the OFC, which has been linked 

with processing changes in the incentive motivational value of rewards under 

devaluation conditions (Gottfried, O'Doherty, and Dolan 2003). The OFC would then 

transmit the altered reward value to the NA, which would then send this information 
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to the SNc, which could then regulate the timing of responding through modulation of 

excitation/inhibition of the BG output pathways to TH.  

 The results from the temporal discrimination procedures, both with reward 

magnitude and satiety devaluation have implicated either attention or decision 

mechanisms (Galtress and Kirkpatrick 2010a; Ward and Odum 2006). One interesting 

connection is the effects of DAT knockdown (KD) on timing behavior. Mice with a 

DAT-KD manipulation have higher basal dopamine levels and also displayed 

deviations in their timing behavior with earlier start times than their wild type 

counterparts (Balci et al. 2010). Injections of the D2 antagonist raclopride normalized 

timing in the DAT KD mice, indicating that the deviations in their timing were most 

likely to due increased D2 receptor activity. Further testing with an attention-based 

task indicated that the DAT KD mice performed normally, suggesting that the 

increased DA levels may have altered the decision threshold for responding rather 

than attention to time. Further research is needed to verify this possibility and to more 

directly link these results with the prediction error manipulations.  

6. Evaluating neural plausibility of current hybrid models 

 As new models are under development, one factor that is proving increasingly 

important is neural, or biological, plausibility. Currently, there is sufficient 

information on the neural processes involved in timing and prediction error learning 

to begin to incorporate those processes into modeling efforts. As more information 

becomes available, the models can evolve further. Neurobiological evidence has 

begun to impact on model development, leading to the evolution of new model 

frameworks, but this enterprise is still in its infancy.  
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 In terms of biological plausibility, the TDDMs (Luzardo, Ludvig, and Rivest 

2013; Rivest and Bengio 2011; Simen et al. 2011) are good candidates as they rely on 

noisy ramping functions that become tuned to the experienced temporal durations. 

Noisy ramping functions have been recorded in multiple brain areas within the timing 

system including the TH and several cortical regions (Komura et al. 2001; Leon and 

Shadlen 2003; Reutimann et al. 2004; Lebedev, O'Doherty, and Nicolelis 2008). The 

STT model (Grossberg and Schmajuk 1989) also was developed based on neuronal 

firing patterns and represents a reasonable early attempt at biological plausibility, but 

considerable new evidence has accumulated since this model was created and thus 

further development is required to incorporate more recent behavioral and 

neurobiological evidence. The SBF model (Matell and Meck 2004) has also been 

developed with neural plausibility as a driving factor. This model is based on 

observations of coincidence detectors within the striatum, and the dynamics of the 

model attempt to mimic the firing dynamics of neurons within this system (Miall 

1989). However, as with the other models, the SBF model is in need of further 

development to account for a broad range of timing and prediction error learning 

phenomena. Although models such as TDDMs, STT and SBF show promise in 

integrating psychological and neurobiological evidence within the modeling 

framework, of all of the models under consideration, the TD models (Sutton and 

Barto 1981, 1990; Ludvig, Sutton, and Kehoe 2008, 2012) have fared the best in the 

test of biological plausibility. While the TD models are not without their weaknesses 

(see Section 3.2), there is considerable evidence in favor of prediction error coding 

within the midbrain dopamine system (Schultz, Dayan, and Montague 1997; 
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Montague, Dayan, and Sejnowski 1996; Schultz 2006; Ludvig, Bellamare, and 

Pearson 2011; Hazy, Frank, and O'Reilly 2010; Maia 2009; Niv 2009), and so TD 

models represent a positive step forward in modeling behavior through the neural 

plausibility route. 

7. Conclusions and looking ahead 

The timing field is one of the richest in the array of different extant models, all 

of which have interesting computational properties. There are many different ideas 

relating to the nature of the perceptual functions that underlie timing, from 

pacemaker-type processes (SET and SBF) to oscillatory processes (MOM), individual 

ramping functions (TDDMs), sets of ramping functions (STT, LeT), and decaying 

functions (TD models). There are also different ideas for memory storage including 

storage of individual items (SEM), auto-association matrices (MOM) or average 

strength-based representations (LeT, STT, TDs, TDDMs, and RET).  

Models are living organisms that evolve as new evidence becomes available. 

As a result, timing models have evolved over successive generations. The BeT model 

inspired the development of LeT, which coupled some of the timing aspects of BeT 

with some aspects of prediction error models, specifically excitation and extinction 

processes. SET eventually led to the development of RET, which was designed to 

provide a prediction error component to couple with the timing component of SET. 

And then later, RET evolved further to incorporate aspects of Shannon’s information 

processing theory. SET also sparked the creation of SBF, which incorporated neural 

plausibility and also included some prediction error components in the memory, 

which transformed into a memory strength instead of a collection of pulses. The PT 



Timing and prediction error learning  33 
 

model eventually led to the MOD theory, which expanded on PT by proposing 

separate memory structures for pattern learning (timing) and strength learning 

(prediction error). And, finally the TD models evolved out of the linear operator 

models such as the Rescorla-Wagner model, but these models incorporated timing 

aspects into a prediction error framework.  

 The speed and extent to which models are evolving is not a weakness of the 

timing field, but instead is a reflection of the richness of the phenomena to be 

explained. And, as more information on the behavioral and neurobiological aspects of 

timing and prediction error learning becomes available, this will spark further model 

development. The purpose of this special issue was to ask the question of whether 

timing and associative learning are separate processes and whether the brain 

mechanisms and computations differ. One area of importance in answering these 

questions is the effects of temporal variables on prediction error learning and the 

effects of prediction errors on timing. There still is much to learn about the nature of 

these interactions, and multiple methods incorporating quantitative behavioral 

analysis, neuroscientific investigations, and neurocomputational modeling are 

required to answer the most challenging questions. The development of biologically 

plausible models that bridge timing and prediction error learning should be one 

important focal area for the future of the field.  
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Figure Captions 

Figure 1.  Mean response rate (in responses/min) of head entry responses as a 

function of mean interval duration. Filled triangles depict data from delay 

conditioning studies with a noise CS and open squares are data from light CSs. Plus 

signs are response rates during the inter-trial interval. A single power function is fit 

through the data, and the equation and goodness of fit (R2) are provided. The data are 

combined and adapted from Jennings, Bonardi and Kirkpatrick (2007) and 

Kirkpatrick (2002). 

Figure 2.  Top: Mean (+ SEM) start times during original baseline (BASE 1), 

magnitude shift (MAG) and return to baseline (BASE 2) phases of training in Groups 

4-1-4 and 1-4-1. The data are adapted from Galtress and Kirkpatrick (2009). Bottom: 

Mean (+ SEM) start times during baseline (BASE) and test (TEST) phases in groups 

that were pre-fed in original baseline and tested under deprivation (Pre-Fed) or were 

trained in the baseline phase under deprivation and tested under satiety (Non-Fed). 

The data are adapted from Galtress, Marshall, and Kirkpatrick (2012). 

Figure 3. A diagram showing prediction error learning (dashed lines), timing (solid 

lines), and overlapping/shared (double-dashed lines) neural substrates. VTA = ventral 

tegmental area; NA = nucleus accumbens; BLA = basolateral amygdala; SNc = 

substantia nigra pars compacta; DS = dorsal striatum; C = Caudate; Pu = Putamen; 

TH = thalamus; GPe = external segment of globus pallidus; STN = subthalamic 

nucleus; SNr = substantia nigra pars reticula; GPi = internal segment of globus 

pallidus. Multiple cortical areas are represented as "Cortex" and include the pre-motor 

cortex, pre-frontal cortex, and orbitofrontal cortex. 



Timing and prediction error learning  52 
 

 

 


	KirkpatrickCoverPage2014
	Interactions Auth Vers

