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Abstract 

The hydrogenation of furfural to furfuryl alcohol on Pd(111), Cu(111) and Pt(111) is 

studied with both standard Density Functional Theory (DFT)-GGA functionals and with 

van der Waals-corrected density functionals. VdW-DF functionals, including optPBE, 

optB88, and optB86b, and Grimme’s method, are used to optimize the adsorption 

configurations of furfural, furfuryl alcohol, and related intermediates resulting from 

hydrogenation of furfural, and the results are compared to corresponding values 

determined with GGA functionals, including PW91 and PBE. On Pd(111) and Pt(111), 

the adsorption geometries of the intermediates are not noticeably different between the 

two classes of functionals, while on Cu(111), modest changes are seen in both the 

perpendicular distance and the orientation of the aromatic ring with respect to the planar 

surface.  In general, the binding energies increase substantially in magnitude as a result of 

van der Waals contributions on all metals.  In contrast, however, dispersion effects on the 

kinetics of hydrogenation are relatively small.  It is found that activation barriers are not 

significantly affected by the inclusion of dispersion effects, and a Brønsted-Evans-

Polanyi relationship developed solely from PW91 calculations on Pd(111) is capable of 

describing corresponding results on Cu(111) and Pt(111), even when the dispersion 

effects are included. Finally, the reaction energies and barriers derived from the 

dispersion-corrected and pure GGA calculations are used to plot simple potential energy 

profiles for furfural hydrogenation to furfuryl alcohol on the three considered metals, and 

an approximately constant downshift of the energetics due to the dispersion corrections is 

observed. 
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1. Introduction 

Furfural is central to a variety of catalytic processes associated with biomass 

chemistry.  It can be directly derived from biomass sources and can be further converted 

to useful chemicals and fuels via hydrogenation and hydrodeoxygenation (HDO).  In this 

context, a model reaction that has received significant attention is the hydrogenation of 

furfural to furfuryl alcohol [1-8]. In spite of a substantial amount of study, however, 

furfural hydrogenation catalysts, most of which are based on transition metals or metal 

alloys, are still incompletely understood, and the hydrogenation process remains the 

subject of a significant amount research [2, 7, 9-11].  As is the case for numerous other 

hydrogenation chemistries, such as the selective hydrogenation of acetylene [12], the key 

catalytic imperative is to maintain a balanced reaction activity and selectivity. This task is 

particularly challenging in the case of furfural, however, given the presence of multiple 

conjugated bonds and oxygen-containing functional groups.  

Density Functional Theory (DFT) calculations have, in recent years, become standard 

tools to explore heterogeneous catalytic reaction pathways and related thermodynamic 

and kinetic properties [13-15]. In particular, when coupled with correlations such as 

Brønsted-Evans-Polanyi (BEP) relationships and scaling relationships, DFT calculations 

are extremely powerful for screening, evaluating, and predicting the catalytic properties 

of a wide range of systems [16-18]. Nevertheless, DFT calculations using the standard 

Generalized Gradient Approximation (GGA) may be insufficient to accurately describe 

the weak dispersion effects associated with van der Waals interactions [19], and this 

problem is especially apparent in the adsorption of highly conjugated organic compounds 

on precious metals. For example, the adsorption energy of pyridine on Au(111) is 

underestimated using PW91 or PBE functionals although these functionals provide 

reasonable descriptions of adsorbate configurations [20]. An additional example is 

provided by the work of Bilić et al, who showed, using DFT and CASSCF calculations, 

that on copper, silver and gold surfaces, the magnitudes of the binding energies of 

benzene adsorption are significantly underestimated when dispersion effects are 

neglected [21].  

Recent theoretical developments have provided means to partially address the above 

problems by correcting the total energies from GGA calculations through addition of 

contributions from non-local density functionals [22-25]. Using DFT calculations and 

semiempirical corrections based on a QM/MM approach, Tonigold et al were able to 

determine adsorption energies of benzene and pyridine in good agreement with 

experiments on Au(111) [26]. Calculations using the PBE-D3 method of dispersion 

correction have also been extended recently to mechanistic studies of furfural conversion 

on Pd [27]. In spite of these advances, however, trends-based analyses that focus on how 

dispersion forces impact the thermochemistry and kinetics of surface reactions are still 

relatively rare, and this contribution seeks to provide such trends for the specific case of 

furfural hydrogenation.  
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We report on periodic DFT calculations of adsorption energies, adsorbate geometries, 

and hydrogenation barriers associated with furfural hydrogenation using several vdW-DF 

functionals, including optPBE, optB88, optB86b, as well as Grimme’s method. Results 

are given for Pd(111), Pt(111), and Cu(111) surfaces, and the impact of the dispersion 

corrections, as compared to GGA (PW91 and PBE) results, on the energetics and 

geometries is described. A simple correlation to permit more rapid estimation of furfural 

adsorption energetics in these and related systems is presented, and finally, a unified 

Brønsted-Evans-Polanyi relationship for the PW91 and optB86b functionals is developed.  

2. Computational methods 

Periodic DFT calculations are performed using the Vienna Ab initio Simulation 

Package (VASP 5.2) [28, 29], where the ionic cores are described by the projector 

augmented wave (PAW) method [30, 31]. The Kohn-Sham valence states are expanded 

in the plane wave basis sets up to 340 eV. The self-consistent iteration is converged up to 

1 × 10
-6

. The ionic step is converged when the force on each atom is less than 0.02 eV/Å. 

The Methfessel-Paxton smearing scheme is used [32], with a Fermi population of the 

Kohn-Sham states at kBT = 0.2 eV. The total energies are then extrapolated to 0 K.  

Several functionals in the vdW-DF family are used in this study, including vdW-DF 

functionals, such as optPBE, optB88 [23], and optB86b [33], developed by Klimes et al, 

where the dispersion correlations depend on the density functional in the form of non-

local correlation terms. We have also performed some tests using Grimme’s PBE-D2/D3 

method [25], which relies on predetermined C6 coefficients, on Pd and Cu surfaces. The 

PBE-D2 method is used to optimize bulk lattice constants and structures of adsorbed 

configurations of furfural and furfuryl alcohol, while single point calculations with the 

PBE-D3 method are used to calculate the binding energies based on both these 

geometries and geometries optimized with the PBE-GGA [35] functional (bulk cohesive 

energies are evaluated with PBE-D2 only). In addition to PBE, the standard GGA-PW91 

[34] functional is also employed. The reaction barriers for BEP relationship development 

are calculated using PW91, and optB86b functionals, which we take to be generally 

representative of the non-dispersion and dispersion correction cases, respectively.  

A three-layer, p(4 × 4) slab, which is sufficiently large to minimize the lateral 

interactions of adsorbates and their periodic images, is used as the surface model. 

Adsorption is allowed on only one side of the slab, corresponding to a surface coverage 

of 1/16 ML. The top layer of the slab is allowed to relax, while the bottom layers are 

fixed at the appropriate bulk lattice constant. A vacuum spacing equivalent to five metal 

layers is used between any successive metal slabs. For Pd, Cu and Pt bulk relaxations, a 

16 × 16 × 16 Monkhorst-Pack k-point mesh is employed [36]. The surface Brillouin zone 

is sampled with a 2 × 2 × 1 k-point mesh for Pd and Pt, and a 4 × 4 × 1 k-point mesh for 

Cu. Based on these parameters, we estimate that the binding energies used in this paper 

have converged to within 50 meV. The total energies of relevant gas phase species are 

calculated using the same functionals in a box with dimensions of 25 × 26 × 27 Å; the 

gamma-point is used for these calculations, with a Gaussian smearing parameter is 0.01 
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eV. Spin polarization is used for all gas phase calculations and for surface-adsorbed 

species with unpaired electrons. Dipole corrections are included in all calculations. 

Energy barriers are calculated using the Climbing Image Nudged Elastic Band 

(CINEB) [37, 38] method on three-layer slabs (top layer relaxed) [39, 40]. The dimer 

method is then used to further refine the TS obtained from the CINEB calculations.  Each 

transition state has been confirmed to have only one imaginary (negative) vibrational 

mode.  

3. Results and discussion 

3.1 Bulk properties of Pd, Cu, and Pt   

Bulk lattice constants have been optimized for each DFT functional in a four-atom 

fcc cell; the resulting values are listed in Table 1. The PW91 and PBE functionals 

overestimate the lattice parameters for both Pd and Pt. The lattice parameters are 

generally slightly smaller with vdW-DF functionals, giving better agreement with 

experimental values [41]. Overall, optB88 and optB86b perform modestly better than the 

other functionals.  We note that the calculated lattice parameters using vdW-DF 

functionals in this study are in good agreement with the theoretical values reported by 

Klimes et al. [33] The bulk lattice constants (for Pd and Cu) optimized with the PBE-D2 

method are also in good agreement with the experimental value compared with the GGA 

functionals. 

 

Table 1 Lattice parameters (in Å) and cohesive energies (in eV) of bulk Pd, Pt, and Cu 

from PW91, PBE, optPBE, optB88, optB86b, and PBE-D2 functionals.  

 

GGA 

 functionals 

lattice constant cohesive energy 

Pd Pt Cu Pd Pt Cu 

PW91 3.95 3.99 3.64 3.76 6.87 3.54 

PBE 3.95 3.98 3.60 3.74 6.61 3.49 

vdW-DF 

functionals 

 

optPBE 3.97 3.97 3.65 3.78 5.58 3.44 

optB88 3.94 3.96 3.62 4.03 5.83 3.60 

optB86b 3.91 3.93 3.60 4.24 6.14 3.79 

PBE-D2 3.91 -- 3.57 4.37 -- 3.92 

Expt.[41] 3.89 3.92 3.61 3.89 5.84 3.49 
 

 

The cohesive energies are calculated as  Ecoh = Eatom – Ebulk/4. For Pd, the PW91 and 

PBE functionals are able to predict the cohesive energies to within 0.2 eV of the 

experimental values. The agreement with experiment is generally good for optPBE, 

optB88, and optB86b. The cohesive energies predicted by the PBE-D2 method are larger 

than the experimental values by approximately 0.5 eV for Pd and Cu. 
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3.2 Thermochemistry of hydrogenation intermediates 

We begin by describing the calculated geometries of furfural and furfuryl alcohol in 

the gas phase and on Pd(111), Pt(111), and Cu(111).  We then briefly summarize 

corresponding results for adsorption of other intermediates resulting from furfural 

hydrogenation.  Finally, we present a simple, bond order-based scaling relationship that 

provides a useful framework for interpreting and extrapolating the calculated adsorption 

energies of furfural hydrogenation intermediates.   

3.2.1 Geometries of gas phase furfural and furfuryl alcohol 

Figure 1 illustrates the calculated gas phase geometries of furfural and furfuryl 

alcohol, including both cis and trans configurations. The optimized structures, obtained 

with all of the DFT functionals, are given in the Supporting Information, where it is seen 

that the trans configuration is, in all cases, more energetically favored by approximately 

0.03~0.05 eV. This result is consistent with the fact that the trans configuration has been 

observed in IR and Raman spectroscopy studies [42].  

 

 

Fig. 1. Gas phase furfural and furfuryl alcohol in cis and trans configurations. Grey, 

white, and red spheres represent C, H, and O atoms, respectively. The same labels are 

used throughout the text to identify different atomic sites in furfural, furfuryl alcohol, and 

their intermediates. Black dashed lines represent covalent C-C or C-O bonds, and purple 

dashed lines represent hydrogen bonds between atom 1 (O) and the hydrogen in the 

hydroxyl group. 

 

For furfuryl alcohol, the cis configuration is more stable by 0.04 ~ 0.05 eV than the 

trans configuration; this result may be due to the existence of a weak intramolecular 

hydrogen bond between the hydroxyl group and the O1 atom in the ring in the cis 

geometry.  The detailed energy differences between the cis and trans configurations for 

furfural and furfuryl alcohol are given in the Supporting Information.  

3.2.2 Furfural and furfuryl alcohol adsorption 

Adsorption configurations and site preferences can, in general, profoundly affect 

reaction selectivities [43, 44], and these configurations may, in turn, be sensitive to the 

choice of density functional.  To probe these effects, we have optimized the structures of 

furfural and furfuryl alcohol on Pd(111), Cu(111) and Pt(111) using both dispersion-
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corrected and GGA functionals; the lowest energy configurations for furfural and furfuryl 

alcohol are shown in Fig. 2 and Fig. 3, respectively. For all metals, the preferred furfural 

configuration is trans, while for furfuryl alcohol, the cis configuration is preferred on 

Cu(111). 

 

 
Fig. 2. Adsorption geometries of furfural on Pd(111), Cu(111) and Pt(111), as determined 

using PW91, PBE, optPBE, optB88, optB86b, and PBE-D2 functionals. Grey, white, and 

red spheres represent C, H, and O atoms, respectively. On Pd(111), the perpendicular 

distances of furan ring to the surface are shown.  On Cu(111), the distances between O7 

in the aldehyde group and the nearest Cu atom are given. On Pt(111), the perpendicular 

distances of furan ring to the surface are depicted. 

 

On Pd(111), little variation is seen among the adsorption geometries of furfural 

obtained from the different functionals. The adsorbed furfural is parallel to the surface, 
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indicating that both the aldehyde group and the five-membered aromatic ring bind to the 

surface through unsaturated C=C and C=O bonds. The C=O bond in the aldehyde group 

binds on the off-bridge site.  The aromatic ring is centered at the three-fold fcc site [45] 

so that conjugated C=C bonds can bind to either the bridge site or to the Pd top site.  On 

Pd(111), similar furfural adsorption geometries have been recently reported by 

Vorontnikov et al using the PBE-D3 functional [27]. We further observe that, although 

the adsorption geometries do not change significantly due to dispersion effects, the 

binding energies, defined as BE = Eads* − E* − Eads(g) (Table 2), are strongly affected. 

Indeed, an increase in binding strength of more than 1 eV is seen for optB86b compared 

to the GGA functionals.   

On Cu(111), the adsorbed furfural (trans configuration) is in a tilted position (η
1
). 

The aldehyde group is in contact with the top site, and the aromatic ring of furfural points 

away from the surface, as shown in Fig. 2.  For different vdW-DF functionals, the angle 

between the ring and Cu(111) surface varies, with the configuration optimized with the 

PBE-D2 functional found to be most closely parallel to the surface. In previous studies, it 

has been pointed out that the tilted configuration may facilitate preferential 

hydrogenation of the aldehyde group, thus providing a simple geometrical argument for 

the known selectivity of furfural hydrogenation to furfuryl alcohol on Cu-based catalysts 

[43]. 

The furfural binding energies on Cu(111) are, in general, significantly weaker than 

those on Pd(111) (Table 2). Thus, the relative contribution from dispersion effects is 

more significant than is the corresponding contribution on Pd(111). Indeed, the binding 

energies on Cu(111) are effectively zero with the GGA functionals, but dispersion-

corrected functionals, such as optB86b functional, have binding energies with magnitudes 

as high as ~0.90eV.  

On Pt(111), furfural (cis configuration) adsorbs primarily via its aromatic ring on 

three-fold sites. Interestingly, the aldehyde group is tilted away from the surface, 

suggesting that the largest contribution to the binding energy may come from the 

interaction of the unsaturated C=C bonds in the ring with the Pt(111) surface. This trend 

is consistent across all of the functionals. We note that trends in calculated binding 

energies are similar to those observed for furfural adsorption on Pd(111), but the binding 

on Pt(111) is generally about ~0.2 eV stronger than the corresponding binding on 

Pd(111).  
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Table 2 Binding energies (in eV) of furfural and furfuryl alcohol on Pd(111), Cu(111) 

and Pt(111) using PW91, PBE, optPBE, optB88, optB86b, and PBE-D2/D3 functionals. 

 

GGA 

functional 

furfural furfuryl alcohol 

Pd Cu Pt Pd Cu Pt 

PW91 -0.90 -0.14 -1.14 -1.00 -0.21 -1.40 

PBE -0.93 -0.07 -1.06 -0.99 -0.15 -1.31 

vdW-DF 

functionals 

 

optPBE -1.49 -0.66 -1.69 -1.62 -0.78 -1.96 

optB88 -1.69 -0.66 -1.86 -1.84 -0.74 -2.16 

optB86b -2.09 -0.75 -2.20 -2.15 -0.90 -2.51 

PBE-D2 -2.38 -0.90 ---- -2.46 -1.10 ---- 

PBE-D3/PBE
a
 -1.97 -0.74 ---- -2.06 -0.85 ---- 

PBE-D3/PBE-D2
b
 -1.99 -1.04 ---- -2.11 -1.24 ---- 

 

PBE-D3 energy at PBE geometry  
b
PBE-D3 energy at PBE-D2 geometry 

 

Adsorption configurations of furfuryl alcohol on Pd(111), Cu(111), and Pt(111), 

optimized with different functionals, are shown in Fig. 3. On Pd(111), the trans 

configuration is energetically more stable than similar cis configuration by approximately 

0.04 eV, and the adsorption occurs primarily through the C=C bonds in the aromatic ring 

at the bridge and top sites. These geometric trends are essentially independent of the 

particular choice of functional. However, as with furfural, the effect of dispersion 

corrections on binding energies is generally substantial, with optPBE, optB88 and 

optB86b giving changes in binding energies of ~0.6 eV compared to the GGA 

functionals. 
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Fig. 3. Adsorption geometries for furfuryl alcohol on Pd(111), Cu(111) and Pt(111) using 

PW91, PBE, optPBE, optB88, optB86b, and PBE-D2 functionals. Grey, white, and red 

spheres represent C, H, and O atoms, respectively. On Pd(111), perpendicular distances 

of furan ring to the surface are shown. On Cu(111), the distances between the O atom in 

the –CH2OH group and the nearest Cu atom are given. On Pt(111), perpendicular 

distances of the furan ring to the surface are depicted. 

 

On Cu(111), furfuryl alcohol adsorbs at the top site via the hydroxyl group in a cis 

configuration, which is consistent with its gas phase structure.  Similar to the case of 

furfural adsorption, the perpendicular distances and the tilting angle of the ring vary with 

the choice of functional, where the furan ring is almost parallel to the Cu(111) surface as 

shown in Fig. 3. The binding energy increases for all the vdW-DF functionals compared 

to the GGA functionals, with the greatest increase observed for optB86b. 

Finally, we see that the adsorption geometries for furfuryl alcohol on Pt(111) are 

similar to the corresponding geometries on Pd(111).  The trends in binding energies are 
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very similar to the corresponding trends on Pd(111), with furfuryl alcohol generally 

showing stronger binding on Pt(111) compared to Pd(111).  

In summary, dispersion contributions have very small effects on the geometries of 

furfural and furfuryl alcohol adsorption on Pd(111) and Pt(111), with slightly larger 

effects observed on Cu(111).  Corresponding changes in binding energies are much more 

significant, with increases of 1 eV being typical of many of the dispersion functionals as 

compared to the GGA functionals. 

A number of selected furfural hydrogenation intermediates, including mono-

hydrogenation intermediates, and higher hydrogenation intermediates, have also been 

studied with explicit DFT calculations using both GGA (PW91, PBE) and vdW-DF 

(optB86b) functionals. Their most stable adsorption geometries, and the corresponding 

binding energies, are reported in the Supporting Information.    

 

3.3 Scaling relationship for binding energies  

The furfural hydrogenation reaction network contains a large number of 

hydrogenation intermediates, and explicit DFT investigations of all possible 

intermediates on multiple surfaces are computationally intensive. A bond-order based 

scaling correlation, with parameters determined by comparison to the results of selected 

DFT calculations, has been developed in a separate study for the estimation of the 

binding energies of glycerol dehydrogenation intermediates on transition metals, and this 

strategy has been successfully used to efficiently analyze a comparably large reaction 

network [14, 46-49]. To facilitate future studies of furfural reaction networks on 

transition metal surfaces, we briefly present a similar correlation based on the results of 

the calculated binding energies described in the previous section and in the Supporting 

Information.  

Using gas phase H2, furfural, and the clean surface as reference states, BEC5HxO2
 is 

defined in Eqn. (1), where x represents the number of H atoms in the hydrogenation 

intermediate. EC5HxO2
, E*

, EC5H4O2 (g)

 
, and EH2 (g)

, in turn, represent the total energy of 

adsorbed C5HxO2, the total energy of clean surface, the total energy of gas phase furfural, 

and the total energy of gas phase H2, respectively. 
 

BEC5HxO2
= EC5HxO2

-E* -EC5H4O2 (g) -
(x- 4)

2
EH2 (g)

 
(1) 

vi =
nHmax -nbond

nHmax  
(2) 

 

The fundamental assumption of this scaling relationship is that the binding energies 

for the unsaturated C and O atoms in the molecule are proportional to their respective 

valences (vi), which are defined by Eqn. (2), where      
 is the maximum number of H 
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atoms for C (     
 = 4) and O (     

 = 2), and       is the number of non-surface 

bonds for the C and O atoms in the given intermediate. The binding energy, BEC5HxO2
, is 

given by Eqn. (3): 

BEC5HxO2
= pC1vCi
i=2,5

å + pC2vCi
i=3,4,6

å + pOvO7 + pCOvC6vO7 + pCCvCivCj
i, j=2-6

å + po

 
(3) 

    represents a constant parameter that includes the binding energy of furfural on 

Pd(111) (c.f. Table 2).      and      are first-order parameters for the C2/C5 atoms (see 

Fig. 1 for index assignment) and the C3/C4/C6 atoms, respectively.    is the first-order 

parameter for the O7 atom,     is a second-order correlation parameter for C6-O7 pair in 

the aldehyde group, and     is a second-order correlation parameter for all C-C pairs.  

The groupings of C2/C5 and C3/C4/C6 for the first-order parameters are largely 

motivated by physical considerations; C2/C5 and C3/C4 are symmetrically distinct 

species, with the C2/C5 atoms both being directly bonded to the etheric oxygen and the 

C3/C4 atoms bonded only to other carbon atoms. Although similar physical 

considerations might argue that C6 should be fit with a separate first-order parameter, we 

found that this approach did not improve the quality of the fit, and to limit the total 

number of parameters, we used the same parameter for C6 as for C3/C4 (lumping C6 

with C2/C5 gave very similar results).  The six parameters are determined by fitting to 

the binding energies of 18 total species (furfural, furfuryl alcohol, and sixteen 

intermediates) based on DFT calculations. The binding energies of the remaining 16 

intermediates are listed in Table S3. The parameters values are:     = 2.05,      = 2.56, 

  =1.55,     = -3.12,    = -3.30, and   = -4.00.  We note that this correlation is quite 

similar to the correlation introduced previously for linear polyols although some 

differences are needed to account for the ring-like nature of the furfural derivatives. 
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Fig. 4. Comparison of the binding energies from DFT calculations (PW91 functional) and 

the binding energies predicted with Eqn. (3) for furfural and selected furfural 

hydrogenation intermediates on Pd(111). The parity line is included as a guide to the eye.  

The standard error for the fit is 0.09 eV. 

 

Fig. 4 compares the binding energies from DFT calculations using the PW91 

functional and the binding energies predicted with Eqn. (3) for furfural and its 

hydrogenation intermediates on Pd(111). A reasonable level of agreement has been 

achieved between the bond-order scaling relationship, i.e., Eqn. (3), and the DFT 

calculations, with a standard error of 0.09 eV over the entire data range.  

In addition to correlations for multiple intermediates on a given metal surface, it is 

possible to develop additional linear scaling relationships to relate the binding energies of 

hydrocarbon [50] and oxygenated hydrocarbon [47] species across different transition 

metals with reasonable accuracy: 

BEM = BEPd + vCi(BEC-M -BEC-Pd )
i

å + vOi(BEO-M -BEO-Pd )
i

å  (4) 

        

In Eqn. (4), the binding energy of a given intermediate, BEM, on metal M (Pd, Cu, Pt) 

is scaled against the corresponding values, BEPd, using the binding energy values of 

atomic C, O on the respective surfaces (BEC-Pd, BEC-M, BEO-Pd, and BEO-M). These values 

are listed in Table 3. We note that the preferred binding sites are hcp, fcc, fcc for C and 

fcc, fcc, fcc for O on Pd(111), Cu(111) and  Pt(111), respectively. 
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Table 3 Binding energies (in eV) of atomic C and O on Pd(111), Cu(111), and Pt(111) 

using PW91, PBE, optPBE, optB88, and optB86b functionals. 

 

GGA 

functionals 

C O 

Pd Cu Pt Pd Cu Pt 

PW91 -6.93 -4.90 -7.42 -4.49 -4.86 -4.59 

PBE -7.03 -4.95 -7.47 -4.39 -4.65 -4.40 

vdW-DF 

functionals 

 
     

optPBE -6.83 -4.82 -7.18 -4.47 -4.80 -4.42 

optB88 -6.89 -4.92 -7.25 -4.84 -5.19 -4.80 

optB86b -7.10 -5.12 -7.43 -4.71 -5.00 -4.66 
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Fig. 5. (a) Binding energies of furfural, mono-hydrogenated intermediates of furfural, and 

furfuryl alcohol on Pd(111), Cu(111), and Pt(111) surfaces for the PW91, PBE, and 

optB86b functionals, predicted using Eqn. (4) and the PW91 binding energies on 

Pd(111), (b) binding energies on the Pd(111) surface using PBE and optB86b functionals 

predicted using Eqn. (4) and the Pd(111)-PW91 binding energies (dashed line shows the 

average deviation, 1.24 eV, for optB86b), (c) binding energies on Pt(111) for the PBE 

and optB86b functionals predicted with Eqn. (4) and the Pt(111)-PW91 binding energies 

(dashed line shows the average deviation, 1.07 eV, for optB86b), (d) binding energies on 

the Cu(111) surface for the PBE and optB86b functionals predicted using Eqn. (4) and 

the Cu(111)-PW91 binding energies (dashed line shows the average deviation, 0.47 eV, 

for optB86b).  Parity lines are included as guides to the eye.  The shifts of the VdW 

functionals from the parity lines are averaged over all calculated data points. 
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Using the C and O binding energies tabulated in Table 3 and the binding energies of 

the furfural hydrogenation intermediates calculated for the Pd(111) surface with PW91 

(reported in the Supporting Information), the binding energies of the same intermediates 

on the Pt(111) and Cu(111) surfaces, with the PW91, PBE and optB86b functionals, can 

also be estimated using Eqn. (4).   

Fig. 5a shows the predicted binding energies of furfural, its mono-hydrogenated 

intermediates, and furfuryl alcohol on Pd(111), Cu(111), and Pt(111) surfaces for the 

PW91, PBE and optB86b functionals, based on Eqn. (4) and the corresponding PW91 

binding energies on Pd(111). The standard errors for Pt-PBE, Pt-optB86b, Pt-PW91, Cu-

PW91, Cu-PBE, Cu-optB86b, Pd-PBE, and Pd-optB86b are 0.16 eV, 0.16 eV, 0.13 eV, 

0.43 eV, 0.39 eV, 0.43 eV, 0.10 eV and 0.08 eV, respectively. It can be seen that good 

agreement between the predicted binding energies and the actual DFT calculations has 

been achieved for the Pd-PBE, Pt-PW91 and Pt-PBE calculations. This result strongly 

suggests that, in addition to its well-known use in extrapolating binding energies for a 

given functional between different metals, Eqn. (4) is also useful for extrapolating 

binding energies between different GGA functionals. However, we note that there is a 

constant shift for the predicted binding energies for the optB86b functional on Pd(111) 

and Pt(111) surfaces. The dashed line shows the combined average deviations between 

DFT calculations and scaling predictions (same for Fig. 5c and Fig. 5d), which is 1.09 

eV. This deviation indicates that Eqn. (4) cannot be directly used to extrapolate from 

standard GGA functionals to dispersion-corrected functionals; there remains an 

approximately constant, nonlocal contribution to the dispersion-corrected binding 

energies that cannot be fully described as the sum of the individual atomic contributions 

alone.  Finally, we note that Fig. 5a clearly indicates that the scaling relationship based on 

Eqn. (4) completely fails for Cu(111). Due to the weak interactions between the various 

furfural derivatives and the Cu(111) surface, the underlying valency rule is not rigorously 

satisfied.  

Fig. 5b-d show separate scaling plots for the different metals, where the predicted 

binding energies are based on the atomic C and O binding energies (PW91) calculated 

separately on the respective Pd(111), Pt(111) and Cu(111) surfaces. These plots further 

confirm that, while excellent extrapolations can be made between the GGA functionals, 

constant offsets due to nonlocal contributions exist for the dispersion-corrected 

functionals. The respective shifts are 1.24 eV for Pd, 1.07 eV for Pt, and 0.47 eV for Cu, 

respectively, with standard errors being 0.08 eV and 0.10 for Pd-PBE and Pd-optB86b; 

0.03 eV and 0.06 eV for Pt-PBE and Pt-optB86b; and 0.04 eV and 0.14 eV for Cu-PBE 

and Cu-optB86b, in panels b-d respectively. 
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3.4 Brønsted-Evans-Polanyi relationship for furfural hydrogenation  

Brønsted-Evans-Polanyi (BEP) relationships provide an efficient means of 

approximating elementary reaction energy barriers without explicit transition state 

searches in heterogeneous catalysis [16]. They have been widely used to quickly estimate 

reaction kinetics in detailed mechanistic studies [51] and in trends-based analyses [47]. In 

this spirit, a BEP relationship can be developed for hydrogenation reactions associated 

with the intermediates discussed in the previous sections.  

Table 4 gives the elementary reactions selected for the development of the BEP 

relationship, which is in turn shown in Fig. 6. The energy barriers of all the 13 

elementary steps have been explicitly calculated using the CINEB and dimer methods 

with the PW91 and optB86b functionals on Pd(111). For Cu(111) and Pt(111), however, 

only the reactions relevant to furfural alcohol formation are reported. Transition state 

geometries can be found in the Supporting Information. Relevant gas phase species used 

as references states of the elementary steps were calculated within the same 

computational framework and respective functionals (i.e., PW91 or optB86b). 

 

Table 4. Energy barriers (in eV) for selected hydrogenation reactions. FA* represents 

adsorbed furfuryl alcohol. mhn* (n = 2, 3, 4, 5, 6, 7) represents mono-hydrogenated 

intermediates, and n represents the site index defined in Fig. 1. 

 
 

Reactions 
Pd(111) Cu(111) Pt(111) 

PW91 optB86b PW91 optB86b PW91 optB86b 

1 furfural* + H*  mh2* 1.05 1.12 --- --- --- --- 

2 furfural* + H*  mh3* 1.02 0.94 --- --- --- --- 

3 furfural* + H*  mh4* 1.04 0.95 --- --- --- --- 

4 furfural* + H*  mh5* 0.96 0.92 --- --- --- --- 

5 furfural* + H*  mh6* 0.96 0.83 0.56 0.46 0.52 0.38 

6 furfural* + H*  mh7* 0.71 0.64 0.74 0.71 0.48 0.40 

7 furfural*  C5H3O2* +H* 0.99 0.95 --- --- --- --- 

8 mh6* + H*  FA* 0.59 0.51 1.15 1.11 0.61 0.65 

9 mh7* + H*  FA* 0.91 0.88 0.24 0.39 1.12 1.12 

10 FA* + H*  th267* 0.93 0.91 --- --- --- --- 

11 FA* + H*  th367* 1.16 1.01 --- --- --- --- 

12 FA* + H*  th467* 1.17 1.09 --- --- --- --- 

13 FA* + H*  th567* 0.97 0.83 --- --- --- --- 
 

 

Most of the energy barriers calculated from the optB86b functional in Table 6 are 

very similar to the corresponding barriers calculated with the PW91 functional.  

Calculations using both functionals show that the hydrogenation of O7 (Rxns. 6 and 8) is 

kinetically more facile than C6 (Rxns. 5 and 9) on Pd(111) and Pt(111), which is in turn 

opposite to the trend on Cu(111).   
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Fig. 6 shows the corresponding BEP relationship established between the transition 

states and final states. EFS represents the final state energy for an elementary step written 

in the exothermic direction, using the gas phase reactants as the reference. ETS represents 

the corresponding transition state energy. The square symbols represent PW91 

calculations, and the diamond symbols represent optB86b calculations. The straight line 

is the least squares fit using only the Pd(111)-PW91 data, where the slope and the 

intercept are 1.01 (dimensionless) and 1.01 (eV), respectively. The standard error 

obtained from the least squares fit is 0.13 eV. Clearly, this BEP line describes the other 

metals and the dispersion-corrected functionals quite well, strongly implying that the 

BEP relationship developed for standard GGA functionals (PW91 or PBE) is equally 

capable of describing reaction energetics for dispersion-corrected functionals. 

 

 
Fig. 6. The BEP relationship developed for Pd(111), Pt(111) and Cu(111) using 

PW91 and optB86b functionals. EFS represents the final state energy for an 

elementary step written in the exothermic direction, using the gas phase reactants 

as the reference. ETS represents the corresponding transition state energy. The 

square symbols represent PW91 calculations and the diamond symbols represent 

optB86b calculations. The straight line is obtained from the least-square fit to 

Pd(111)-PW91 only. The slope and intercept of the least-square fit are 1.01 

(dimensionless) and 1.01 (eV), respectively. The standard error of the fit is 0.13 

eV. 
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3.5 Hydrogenation of furfural on Pd(111), Cu(111) and Pt(111) 

 The thermodynamic and kinetic information described in the previous sections 

allows us to obtain some very simple insights into the influence of dispersion effects on 

hydrogenation reactions. Fig. 7 presents the potential energy surface for furfural 

hydrogenation to furfuryl alcohol on Pd(111), Cu(111), and Pt(111) using gas phase 

furfural, the clean metal surface, and adsorbed H as references.  

On Pd(111) and Pt(111), the adsorption structures are not substantially affected by the 

dispersion interactions, while on Cu(111), some geometric changes are observed. 

However, due to the contributions from van der Waals interactions, the binding energies 

become stronger on all metal surfaces. In effect, as is shown in Fig. 7, dispersion effects 

shift the potential energy surfaces for hydrogenation by an approximately constant 

amount, while relative energetics and reaction barriers between competing hydrogenation 

pathways are much less significantly affected.  Although we cannot exclude the 

possibility that more substantial changes in barriers might be found for other reaction 

networks, it appears that, at least for these specific pathways, the impact of dispersion 

effects may thus be limited primarily to changes in surface coverages from corresponding 

binding energy changes in adsorption/desorption equilibria, while surface rate constants 

are largely unchanged.  These considerations, in turn, imply that trends in reactivity 

across transition metals are not substantially altered when dispersion interactions are 

included, but quantitative predictions of rates may well be impacted. 

 
Fig. 7. Potential energy surface for lowest energy furfural hydrogenation pathways 

to furfuryl alcohol on Pd(111), Cu(111) and Pt(111) surfaces using PW91 and 

optB86b functionals. The favored reaction pathway and hydrogenation intermediate 
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for each metal are labeled and represented by bold lines.  

 

4. Conclusions 

The hydrogenation of furfural to furfuryl alcohol was used as a case study to elucidate 

some of the effects of dispersion in Density Functional Theory calculations involving 

unsaturated organic hydrocarbon species on transition metal surfaces. A number of 

common functionals from the vdW-DF family, including, optPBE, optB88, optB86b, as 

well as Grimme’s DFT-D2/D3 method, were employed within a planewave, periodic 

DFT framework. The adsorption of furfural, partially hydrogenated furfural 

intermediates, and furfuryl alcohol on Pd(111), Cu(111), Pt(111) was analyzed with these 

functionals.  The geometric features of furfural and furfuryl alcohol adsorption did not 

change significantly on Pd(111) and Pt(111), while modest geometric changes were 

observed on Cu(111).  In contrast, increases in the magnitudes of binding energies (up to 

~1 eV) were seen on all surfaces. It was further determined that standard scaling 

relationships, similar to those developed by Nørskov and coworkers [50], can accurately 

describe the GGA results on all of the metal surfaces.  However, when comparing GGA 

and dispersion-corrected binding energies on these surfaces, it was found that there exists 

a constant shift in the scaling relationships that arises from the non-local effects of the 

dispersion corrections.  Although the effect of dispersion corrections on adsorption 

thermochemistry can be significant, it was determined that dispersion effects do not 

significantly affect the hydrogenation barriers, and Brønsted-Evans-Polanyi (BEP) 

relationships developed for standard GGA functionals are fully capable of describing the 

corresponding kinetics of dispersion-corrected functionals.  The combined 

thermodynamic and kinetic data therefore suggest that dispersion corrections lead to 

approximately solid downshifts in potential energy surfaces for furfural hydrogenation. 
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