This is the author's final, peer-reviewed manuscript as accepted for publication. The publisher-formatted version may be available through the publisher's web site or your institution's library.

Sequence organization and evolutionary dynamics of Brachypodium-specific centromere retrotransposons

L. L. Qi, J. J. Wu, B. Friebe, C. Qian, Y. Q. Gu, D. L. Fu, and B. S. Gill

How to cite this manuscript

If you make reference to this version of the manuscript, use the following information:
Qi, L. L., Wu, J. J., Friebe, B., Qian, C., Gu, Y. Q., Fu, D. L., \& Gill, B. S. (2013).
Sequence organization and evolutionary dynamics of Brachypodium-specific centromere retrotransposons. Retrieved from http://krex.ksu.edu

Published Version Information

Citation: Qi, L. L., Wu, J. J., Friebe, B., Qian, C., Gu, Y. Q., Fu, D. L., \& Gill, B. S. (2013). Sequence organization and evolutionary dynamics of Brachypodium-specific centromere retrotransposons. Chromosome Research, 21(5), 507-521.

Copyright: © Springer Science+Business Media Dordrecht (Outside the USA) 2013

Digital Object Identifier (DOI): doi:10.1007/s10577-013-9378-4

Publisher's Link: http://link.springer.com/article/10.1007/s10577-013-9378-4

1 Sequence organization and evolutionary dynamics of Brachypodium-specific centromere retrotransposons

L.L. Qi ${ }^{1^{*+}}$, J.J Wu ${ }^{2 *}$, B. Friebe ${ }^{3}$, C. Qian ${ }^{3}$, Y.Q. Gu 4, D.L. Fu ${ }^{2}$, and B.S. Gill ${ }^{3}$
${ }^{1}$ USDA-ARS, Northern Crop Science Laboratory, 1605 Albrecht Blvd N, Fargo, ND 58102-2765 USA
${ }^{2}$ State Key laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, 61 Daizong Street, Taian, Shandong, 271018, P. R. China
${ }^{3}$ Wheat Genetic Resources Center, Department of Plant Pathology, Kansas State
University, Manhattan, KS 66506-5502, USA
${ }^{4}$ USDA-ARS, Genomics and Gene Discovery Research Unit, Western Regional Research
Center, 800 Buchanan Street, Albany, CA, 94710 USA
*These authors contributed equally to this work
${ }^{\dagger}$ For correspondence (phone +1 701239 1351; fax +1 701239 1346; email lili.qi@ars.usda.gov)

Abstract

Brachypodium distachyon is a wild annual grass belonging to the Pooideae, more closely related to wheat, barley, and forage grasses than rice and maize. As an experimental model, the completed genome sequence of B. distachyon provides a unique opportunity to study centromere evolution during the speciation of grasses. Centromeric satellite sequences have been identified in B. distachyon, but little is known about centromeric retrotransposons in this species. In the present study, BAC-fluorescence in situ hybridization was conducted in maize, rice, barley, wheat, and rye using B. distachyon (Bd) centromere-specific BAC clones. Eight Bd centromeric BAC clones gave no detectable FISH signals on the chromosomes of rice and maize, and three of them also did not yield any FISH signals in barley, wheat, and rye. In addition, four of five Triticeae centromeric BAC clones did not hybridize to the B. distachyon centromeres, implying certain unique features of Brachypodium centromeres. Analysis of Brachypodium centromeric BAC sequences identified a long terminal repeat (LTR)centromere retrotransposon of B. distachyon (CRBd1). This element was found in high copy number accounting for 1.6% of the B. distachyon genome, and is enriched in Brachypodium centromeric regions. CRBd1 accumulated in active centromeres, but was lost from inactive ones. The LTR of CRBd1 appears to be specific to B. distachyon centromeres. These results reveal different evolutionary events of this retrotransposon family across grass species.

Introduction

As chromosome landmarks, centromeres are responsible for kinetochore assembly that links chromosome to microtubule spindle, and thereby enabling the faithful segregation of sister chromatids during cell division. Extensive tracts of tandem repeats (centromeric satellites) interrupted by various retrotransposons are common structural features of centromeres (Copenhaver et al. 1999; Kumekawa et al. 1999, 2001;Jiang et al. 2003; Zhang Y et al. 2004; Lamb et al. 2008). Satellite DNA and centromeric retrotransposons (CR) are the most abundant DNA elements found in plant centromeres and are associated with CENH3, a centromere-specific histone H 3 present in nucleosomes of active centromeres (Jiang et al. 1996; Miller et al. 1998; Presting et al. 1998; Cheng et al. 2002; Zhong et al. 2002; Nagaki et al. 2003b, 2004).

Centromeric satellite DNA sequences have been isolated from several plant species, including Arabidopsis (Round et al. 1997), maize (Ananiev et al. 1998), sorghum (Miller et al. 1998), rice (Cheng et al. 2002; Zhang Y et al. 2004; Lee et al. 2005), Medicago truncatual (Kulikova et al. 2004), Brassica (Lim et al. 2007), Brachypodium (2010), and soybean (Tek et al. 2010). Although the repeat length, ranging in size from 155 bp (rice) to 180 bp (Arabidopsis), is similar between taxa, their sequences are largely speciesspecific and highly divergent even between closely related species (Lee et al. 2005). In contrast to the centromeres of most plant species where functional centromeres are mainly composed of large arrays of centromere satellite repeats and CR elements (Jiang et al. 2003), wheat centromeres lack tandem satellite repeats of megabase size and are dominated by centromeric retrotransposons (Liu et al. 2008; Li et al. 2013).

Unlike centromeric satellites, the $C R$ family in grass species is highly conserved. Two highly conserved $C R$ sequences, CCS1 and pSau3A9, which are parts of Ty3/gypsy-type retrotransposons, were first found to localize at the centromeres of most cereal species that have been investigated (Aragon-Alcaide et al.1996; Jiang et al 1996, Miller et al. 1998; Presting et al. 1998). $C R R$ (CR of rice) and $C R M$ ($C R$ of maize) are the most intensively studied CR elements among plant species (Dong et al. 1998; Presting et al. 1998; Cheng et al. 2002; Zhong et al. 2002; Nagaki et al. 2003a, 2005). Rice CRR1 is homologous to maize CRM3, CRR2 to CRM2, CRR3 to CRM1, and CRR4 to CRM4, which pre-date the divergence of maize and rice (Sharma and Presting 2008). Two putative $C R$ families of soybean were also grouped to $C R R$ and $C R M$ lineage (Du et al. 2010) and the CR elements, Beetle1and Beetle 2, found in beet are highly similar to the CRs of rice, maize, and Barley (Weber and Schmidt 2009). The CR elements isolated from barley and wheat showed cross hybridization among cereal species (Hudakova et al. 2001; Zhang P et al. 2004). As few exceptions to the general CR conservation of grasses, species-specific CR element was reported in rye (Francki 2001) and wild rice (Gao et al. 2009). A rye-specific CR, Bilby that is a Ty1-copia retrotransposon-like element, is highly divergent from other known cereal $C R$ elements, and a lineage-specific $C R$ element was identified in Oryza brachyantha.

Brachypodium distachyon (hereafter referred to as Brachypodium) is a wild annual grass belonging to the Pooideae, more closely related to wheat, barley, and forage grasses than rice and maize. As an experimental model, the completed genome sequence of Brachypodium provides an important reference for grass biology and centromere studies
(The International Brachypodium Initiative, 2010). A 156 bp Brachypodium centromeric repeat (Bd_CENT) was identified and is present on all the Brachypodium centromeres (The International Brachypodium Initiative, 2010). The only completely assembled centromere is 45 kb long on chromosome Bd 5 and is composed of two Bd_CENT arrays occasionally interspersed with large blocks of unknown LTR retrotransposons (The International Brachypodium Initiative, 2010). Previous studies indicated that the gene sequences in the centromeric and pericetromeric regions from rice and wheat were conserved with those in the centromeric/pericentromeric regions of Brachypodium, indicating that these genes pre-existed in the centromere regions before the divergence of the grass species that occurred 50-70 MYA (Bolot et al. 2009; Qi et al. 2010). However, 54 genes found within 300 kb of all five Brachypodium centromeres were non-collinear with rice and sorghum, indicating some unique features of Brachypodium centromeres after it diverged from rice and wheat (The International Brachypodium Initiative, 2010). In order to study the evolution of Brachypodium centromeres, we conducted BACfluorescence in situ hybridization in maize, rice, barley, wheat and rye using 19 Brachypodium centromere-specific BAC clones, and annotated in detail four of these BAC clones. The results demonstrate that Brachypodium CR elements are highly divergent from those of other grass species.

Materials and Methods

Materials

Seeds of B. distachyon, an inbred, diploid line Bd21, were obtained from USDA-ARS, Pacific West Area, Western Regional Research Center, Genomics and Gene Discovery, Albany, CA, USA. Chinese Spring (CS) wheat (Triticum aestivum L.), Imperial rye (Secale cerale L.), Betzes barley (Hordeum vulgare L.) were provided by the Wheat Genetic Resources Center at Kansas State University, KS, USA. Nipponbare rice (Oryza sativa L.), and B73 maize (Zea mays L.) were provided by Drs. Frank White and Harold Trick at the Plant Pathology Department, Kansas State University, KS, USA.

Methods

Selection of Brachypodium putative centromeric BAC

Three centromere-specific clones, Hi10, pRCS1, and pAet6-09, were used in the present study. Both Hi10 and pRCS1 are cereal-specific centromeric DNA sequences; Hi10 was isolated from B. sylvaticum (Abbo et al. 1995), and pRCS1 was derived from rice (O. sativa ssp. Indica cv. IR-BB21) (Dong et al. 1998). The clone pAet6-09 was isolated from Ae. tauschii bacterial artificial chromosome (BAC) library and hybridized to the centromeres of wheat, barley, rye, and maize, but not to rice (Zhang P et al. 2004). Hi10 and pRCS1 were used to screen one high-density filter containing 18,432 clones from Brachypodium BAC library ($4.5 \times$ coverage) (Huo et al. 2006). The BAC clones with unambiguous positive hybridization signals were selected, digested with HindIII, and hybridized again to the three clones, Hi10, pRCS1, and pAet6-09. The putative centromeric BAC clones were selected as probes for further BAC-fluorescence in situ
hybridization (FISH) experiments (Table 1). Five additional Brachypodium BAC clones, which previously gave BAC-FISH signals at the centromeres of Brachypodium chromosomes were also used in the present study (Table 1, Qi et al. 2010). These BAC clones were anchored by wheat pericentromeric ESTs from homoeologous chromosome groups 3,4 , and 6 . The procedure for colony filter hybridization and southern hybridization was described by Qi et al. (2009).

Selection of the centromeric BAC clones from wheat 3B, Aegilops speltoides, and Aegilops tauschii BAC libraries

Two wheat centromeric BAC clones, 3B-100-L17 and 3B-40-L07, were obtained by screening a wheat 3B BAC library (Šafář et al. 2004) using the pAet6-09 sequence as probe (Qi et al. unpublished data, Table 1). These two clones are located on the ordered BACs of contig 796 (Feuillet, personal communication). Later, 3B-100-L17 as a single BAC was placed in the 3B centromere along with 12 sequenced contigs in 3 B chromosome (Choulet et al. 2010). Both clones exclusively hybridized to the centromeres of wheat chromosomes (Fig. 1a). Two Ae. speltoides centromeric BAC clones, 21E12 and 256 K19, and one Ae. tauschii centromeric BAC clone HD008H01 were identified previously by Qi et al. (2009) (Table 1).

BAC-fluorescence in situ hybridization (BAC-FISH)

Mitotic chromosome spreads for BAC-FISH were prepared from the root tips of Brachypodium Bd21, CS wheat, Imperial rye, Betzes barley, Nipponbare rice, and B73 maize as described by Qi et al. (2010). BAC DNA was isolated using a Qiagen Plasmid Midi Kit following the manufacture's instruction (Qiagen Valencia. Calif.). One microgram of BAC DNA was labeled with fluorescein-12-dUTP (Enzo Life Science Inc, Farmingdale, NY) using nick translation. The BAC-FISH was performed on metaphase chromosomes as previously described (Qi et al. 2010). Slides were analyzed with an epifluorescence Zeiss Axioplan 2 microscope. Images were captured using a SPOT 2.1 CCD (charge-coupled device) camera (Diagnostic Instruments) and processed with Photoshop v5.5 (Adobe Systems).

BAC sequence annotation

Four BAC clones, DB069J23, DB088O14, DB042E22 and DH017G05, were end sequenced and then were anchored onto the Brachypodium chromosomes. A 300-kb continuous stretch of sequence extending from one BAC-end was used for annotation analysis. Self alignment of each BAC was performed using NCBI bl2seq BLAST tool to generate a first glance of its repetitive nature. The RepeatScout (Price et al. 2005) was also used to identify de novo repeats. To find common sequences among these BACs, they were also aligned with each other. Transposable elements were identified by a combination of BLAST searches against the GenBank nonredundant database and the Triticeae Repeat Sequence Database (TREP, http://wheat.pw.usda.gov/ITMI/Repeats/). LTR-FINDER (Zhao and Wang, 2007) was used to predict full-length LTR
retrotransposons with tRNA database of Brachypodium. The insertion time of retrotransposons was calculated according to Ma and Bennetzen (2004). The frequency and distribution of the repeat elements along the chromosomes was analyzed by searching the Brachypodium genome assembly (http://www.brachypodium.org/) with NCBI local BLAST tool kit version 2.2.11, and the e-value cut-off was set to $1 \mathrm{e}-10$. The NCBI database, PlantGDB, CerealsDB, barley (webblast.ipk-gatersleben.de/barley/) and rice (http://rice.plantbiology.msu.edu/) whole genome sequences were BLASTN searched to identify conserved sequences of Brachypodium repeats.

Results

Identification of Brachypodium-specific centromeric BACs

The B. distachyon BAC library ($-4.5 \times$ coverage) was probed with Hi10 and pRCS1clones. Of the 38 unambiguous positive BAC clones, 13 were selected by probe Hi10 and 25 by pRCS1 (Table S1). The BAC clones were digested with restriction enzyme HindIII and hybridized to the three centromeric DNA sequences, Hi10, pRCS1, and pAet6-09. Positive Southern hybridization signals and ladder patterns were detected. Average numbers of BAC fragments hybridizing to three clones were 6.7 (range from 0 to 15) for Hi10, 7.0 (1 to 16) for pAet6-09, and 2.0 (0 to 4) for pRCS1 (Table S1). Fourteen BAC clones that gave intense hybridization signals were selected for further BAC-FISH with chromosome complements of Brachypodium and rye (Table S1).

FISH results of the selected BAC clones to Brachypodium chromosomes indicated that 14 BAC clones exclusively hybridized to the centromeric regions of all Brachypodium chromosomes with very strong FISH signals (Table 2, Fig. 2d). Subsequently, these BAC clones along with other five Brachypodium BAC clones, DH017G05, DH039C01, DB069J23, DB042E22, and DB088O14, which previously showed FISH signals on the centromeric regions of all the five Brachypodium chromosomes (Qi et al. 2010), were FISH mapped on rye chromosomes. The FISH on rye chromosomes showed variable signal intensities exclusively at the primary constructions (Table 2, Figs. 2 b and 3c). Based on signal intensity, these 19 BACs were divided into four groups: group I with three BACs showed strong signals (Fig. 2b), group II with six BACs gave faint signals (Fig. 3c), group III with seven BACs showed the very weak signals on the rye centromeres when image was exposed longer than usually required for detecting the corresponding signals on Brachypodium centromeres, and group IV with three BACs showed no FISH signals (Fig. 1d). To identify Brachypodium-specific centromeric BAC clones, eight BAC clones were selected, all of which except DH007B23, gave very strong signals on Brachypodium centromeric regions, but yielded variable signal intensities on those of rye (Table 2), and were used to hybridize to chromosome complements of wheat, barley, rice, and maize.

Surprisingly, no detectable FISH signal of eight selected BAC clones was observed on the chromosomes of rice and maize, indicating that canonical sequences of Brachypodium CR elements appear to have disappeared in these two species (Figs. 2e, 2f, 3d, and 3f). Out of eight BAC clones, three: DH017G05, DB042E22, and DB088O14,
with a similar result on rye, also did not hybridize to the chromosomes of wheat and barley, indicating that the centromere-specific sequences present in these BACs are sufficiently conserved only in Brachypodium (Table 2, Fig. 1c and d). The remaining five BAC clones showed variation in the intensity of the FISH signals in wheat, rye, and barley. BAC DH021M4 had very strong FISH signals on the centromeres of Brachypodium chromosomes, as well as in rye, wheat and barley. The FISH signal intensity of BAC clones: DH010C12 and DH029E4, was similar in rye and wheat, but lower in barley (Fig. 2a-c). BAC clones, DH008A23 and DH007B23, gave a weak centromeric FISH signals in rye and wheat, but no signals in barley (Fig. 3a-c). BAC-FISH of Triticeae centromeric BAC clones to Brachypodium chromosomes

Five centromeric BAC clones from wheat, Ae. speltoides, and Ae. tauschii were analyzed for their hybridization to the chromosomes of Brachypodium. Only the BAC clone, 3B-40-L07 derived from the wheat 3B BAC library, showed FISH signals on the centromeres of Brachypodium chromosomes. Another 3B BAC clone, 3B-100-L17 residing at the centromere of 3B chromosome, did not give any FISH signals on the Brachypodium chromosomes (Fig. 1b, Table 3). Neither the two BAC clones from Ae. speltoides nor the one from Ae. tauschii produced any FISH signals in Brachypodium, indicating that the centromeric repeats in Triticeae have diverged from those in Brachypodium

Sequence organization of Brachypodium-specific centromeric BAC clones

Common repeats in the four Brachypodium BACs

Sequence annotation was performed in four Brachypodium BAC clones, DH017G05, DB069J23, DB042E22, and DB088O14. Because these BACs produced strong signals only on Brachypodium centromeres in FISH experiments, they were all tested for the presence of the 156 bp centromeric satellite repeat Bd_CENT (The International Brachypodium Initiative, 2010) and found to be negative. The self alignments revealed that DB069J23 was highly repetitive, and multiple copies of repeats were scattered in a 225 kb region (Fig. S1). Further comparison indicated that this repetitive region in DB069J23 was also present in the other three BACs with variable copies. Using RepeatScout program, a total of 26 repeat elements (>4 copies) were identified in DB069J23, and nine of them were repeated more than 10 times. The most abundant repeats could be assembled into two contigs with $>80 \%$ sequence similarity, indicating they belong to two repeat elements. Based on the Blastn searches against DB069J23 and the Brachypodium whole genome sequence, these two repetitive contigs were represented by two fragments in DB069J23, designated as RM-1 (DB069J23:107658-109770; 2113 bp) and RM-2 (DB069J23:271259-271757; 499 bp). In DB069J23, RM-1 fragment had 46 copies with a total accumulative length of 49.3 kb and RM-2 had 24 copies with an accumulative length of 9.6 kb (e-value $<1 \mathrm{e}-10$). The conserved sequences of RM-1 in DB088O14, DB042E22 and DH017G05 were 12.8, 2.4 and 9.8 kb , respectively. As for RM-2, that was $3.7,1.5$ and 2.4 kb , respectively.

Detailed analysis of the Brachypodium genomic regions containing RM-1 and RM-2 revealed that these two repeats were parts of the LTR of one Gypsy retrotransposon found in BAC DB088O14, designated as CRBd1 (Centromeric Retrotransposon of B. distachyon, GeneBank \# KF040483) (Fig. 4a). RM-1 and RM-2 were located immediately at the 3 ' and 5^{\prime} end of the LTR, respectively. The complete LTR was about 3.3 kb in length, and between the RM-1 and RM-2 was a region with high GC content ($\sim 70 \%$). Eight full length copies of CRBd1 were identified in the Brachypodium genome, with size ranging from 12.5 kb to 12.8 kb (Supplementary file 1), and five of them were located less than 3 Mb from the centromeres or chromosome fusion points (Fig. 5, Table S2). The insertion time of the eight full length CRBd1 was estimated to be in the range of 0.01 to 1.34 million years ago (Mya). Target site duplications (TSD) were found in 7 of them. In the internal region $(\sim 6.2 \mathrm{~kb})$ between two LTRs, there were one Zinc knuckle domain (pfam: zf-CCHC) and one chromatin organization modifier domain (pfam: Chromo), besides feature proteins present in a typical LTR retrotransposable element such as retrotransposase (Fig. 4a). Using the chromodomain identified in CRBd1as query sequence, a total of 420 copies (e-value $<1 \mathrm{e}-5$) were identified in whole Brachypodium genome. The distribution patterns of chromodomain are well consistent with that of CRBd1 which is enriched in centromere regions (Fig. 5).

No full length element of CRBd1was identified in the four Brachypodium BACs. In BAC DB088O14, two truncated and one fragmented elements, and one partial LTR and one solo LTR were clustered in a 65.7 kb region in a different retrotransposon (Fig. 4b). The CRBd1 homologous sequences occupied a total of 44.6 kb (67.9\%) of this region. In
comparison, CRBd1 element was more abundant in DB069J23 than in DB088O14 (Table 5), and the total length of homologous region was 101.2 kb . More copies of the LTR than the internal region of CRBd1 were present in DB069J23 (Fig. 4c), and 6 solo LTRs with TSD were identified.

By searching the Brachypodium genome assembly with e-value of 1e-10, CRBd1 totally occupied 4.41 Mb in length and constituted 1.6% of the whole genome. Consistent with the distribution pattern in DB069J23 (Fig.4c), the LTR of the CRBd1 was much more abundant than the internal region, and many solo LTRs could be identified in the Brachypodium genome (data not shown). The LTR of CRBd1 was obviously enriched in the centromeric regions or Bd_CENT containing regions (Fig. 5). The top three most abundant regions included the centromere of Bd chromosome 1 , and two chromosome fusion points (The International Brachypodium Initiative, 2010) on the long arm of Bd chromosome 2 and the short arm of Bd chromosome 3. The total length of the sequences homologous to the LTR is 2.76 Mb in the Brachypodium genome.

Based on the sequence comparison to other grass species, the LTR of CRBd1 was specific to Brachypodium. Only few sequences were found in wheat and barley with limited conservation to small sections of the LTR. Given the genome coverage of the current Triticeae datasets, the copy number of the homologous sequence should be very low in wheat or barley. No conserved LTR sequence was found in rice, maize, sorghum and rye. However, in these species, retrotransposons could be found that had about 70\% DNA sequence identity to the internal region of CRBd1, and the retrotransposons also
had the conserved zf-CCHC and Chromo domains. Furthermore, the boundary sequences (10-15bp) of the LTRs were conserved among the cereal species (Fig. 6). Other retrotransposons in the four Brachypodium BACs

Besides CRBd1, another four retrotransposons were identified in at least one BAC (Table 4). CRBd2 (GeneBank \# KF040484, Fig. 4b) was identified in DB088O14 as a full length Gypsy retrotransposon that showed 73% DNA sequence similarity to the rice centromeric retrotransposon CRR3 (GenBank \# DQ458292). One full length CRBd2 and one solo LTR were found in DB069J23 and DH017G05, respectively. The distribution of CRBd2 was also associated with centromeric regions or Bd_CENT containing regions (data not shown). Its low content in the Brachypodium genome (263.7kb, 0.097\%) indicates that CRBd2 was not highly repetitive (Table 4). Other three common retrotransposons which we term 'retrotransposon element of B. distachyon' (REBd) including two Gypsy retrotransposons, REBd1 (GeneBank \# KF0404850) and REBd2 (GeneBank \# KF040486), and one Copia element REBd3 (GeneBank \# KF040487), were found in DB088O14, DB069J23, and DH017G05, respectively (Table 4). These retrotransposons were randomly distributed along the chromosomes without any obvious association with centromeric regions.

In DB088014, we observed the amplification of CRBd1 in the internal region of REBd1 element (Fig. 4b). After at least two rounds of insertion and deletion, one CRBd1 cluster formed contained three truncated CRBd1 and two solo LTRs. Based on a substitution rate of 1.3×10^{-8} per site per year, the REBd1 containing the CRBd1cluster was originally
inserted in between the genes Bradi3g44470 and Bradi3g44480 about 2.71 million years ago (MYA). Another REBd1 retrotransposon at the 3'end of BAC DB088O14 was inserted 3.27 MYA. In comparison, the REBd3 was a young retrotransposon inserted 0.23 MYA and another homolog REBd3 in DB042E22 was inserted 0.03 MYA with only one nucleotide substitution between the two LTRs (1328 bp).

Discussion

Brachypodium centromeres, similar to cereal centromeres (rice, maize, and sorghum), mainly consist of centromeric satellite sequences and retrotransposons (The International Brachypodium Initiative 2010; Wen et al. 2012). Centromeric satellite sequences have evolved and diverged rapidly and are largely species-specific, whereas centromere retrotransposons (CR) appear to evolve more slowly (Round et al. 1997; Ananiev et al. 1998; Copenhaver et al. 1999; Henikoff et al. 2001; Cheng et al. 2002; Jin et al. 2004, 2005; Hall et al. 2003; Lee et al. 2005; Tek et al 2010). In the cereal species, CRRs in rice, CRMs in maize, CRWs and Quinta in wheat, and Cereba in barley are highly conserved across related genomes and over long evolutionary periods (Dong et al. 1998; Miller et al. 1998; Presting et al. 1998; Hudakova et al. 2001; Zhang P et al. 2004; Liu et al. 2008; Sharma and Presting 2008; Li et al. 2013). However, it was surprising to observe that eight selected Brachypodium centromeric-BAC clones did not hybridize to any centromeres of rice and maize. In addition, three of them also did not hybridize to the centromeres of rye, wheat, and barley (Table 2).

Sequence annotation of the four BACs revealed that two repetitive elements, RM-1 and RM-2, were abundant in the Brachypodium genome, and belong to parts of the LTR of a truncated gypsy retrotransposon, CRBd1, derived from BAC DB088O14 (Fig. 4). CRBd1 element was represented in all four BACs, and accounted for $4.4 \mathrm{Mb}(1.6 \%)$ of the B. distachyon genome (Table 4). The LTR of CRBd1 harboring the RM-1 and RM-2 is enriched in Brachypodium centromeric regions (Fig. 5), and is appeared to be a Brachypodium specific sequence. Although LTRs usually diverge faster than the other parts of the retrotransposons, highly conserved DNA motifs were found in the LTRs of the $C R$ elements from rice, maize, and barley (Nagaki et al. 2003a). However, our results indicate that the 3 'end LTR of CRBd1 is significantly diverged in the other grass genomes tested and had undergone rapid amplification in the regions of the currently active centromeres during evolution of B. distachyon centromeres.

Comparative sequence analysis between Brachypodium, wheat, rice, and sorghum revealed nested insertions of entire chromosomes into centromeric regions during the evolution of five Brachypodium chromosomes from a 12-chromosome ancestor of all grasses (The International Brachypodium Initiative 2010; Qi et al. 2010). Three of four BACs analyzed, DH017G05, DB042E22, and DB088O14, were located at inactive centromeres of Bd chromosomes 2 and 3, and both DH017G05 and DB042E22 are in the fusion points of these chromosomes, indicating that these BAC clones were originally located at the centromeric regions of ancestral chromosomes (Fig. 5). However, all these BAC clones do not contain Brachypodium centromere satellite repeat, Bd_CENT. FISH results showed that they landed to the active centromeres of Brachypodium, and none
yielded FISH signals at their original positions. These results imply that the accumulation of the $C R$ elements originally present in these BACs have preferentially occurred in the regions of the currently active centromeres. It is also evident that the $C R$ element of CRBd1 is more abundant in BAC DB069J23, which is located at the active centromere region of Bd chromosome 4 (Fig. 5). The conserved sequence of CRBd1 were 101.2 kb in length in DB069J23 compared to 44.6 kb in DB088O14, 20.8 kb in DH017G05, and 7.5 kb in DB042E22 (Table 4). These results support the hypothesis that redundant centromeres in Brachypodium chromosomes became inactive by the loss of centromeric retrotransposons and rapid turnover of centromere-specific satellites (Qi et al. 2010). In other words, the Brachypodium active centromeres maintain centromere satellite repeats and accumulate $C R$ elements as a result of centromere drive (Ma et al. 2007; Wu et al. 2009). Only eight full length retrotransposons of CRBd1 were found in the Brachypodium genome, and many solo-LTR of CRBd1 are present in the four BACs analyzed and in the Brachypodium genome, revealing that CRBd1 is an ancient centromeric retrotransposon.

Rice and Brachypodium diverged approximately 40-54 MYA, while Brachypodium and wheat diverged approximately 30 MYA (The International Brachypodium Initiative 2010). Although their genomes vary in size and basic chromosome numbers, gene content and gene order has been largely conserved. The conserved genes were also reported to be present in the centromere regions of rice, wheat, and Brachypodium, which share the syntenic blocks among several sets of homologous centromeres (Qi et al. 2010). However, the Brachypodium CR elements appear to be highly divergent from other grass species, especially from rice and maize. Except three BAC clones mentioned above, five
other Brachypodium centromeric BAC clones also did not yield any FISH signals in rice and maize. These BAC clones were obtained by screening Brachypodium BAC library using Hi10 as probe (Table 2). Hi10 was isolated from B. sylvaticum, a species diverged from B. distachyon approximately 1.7-2.0 MYA (Buchmann et al. 2012), and contains CCS1 sequence belonging to a cereal centromeric retrotransposon (Abbo et al. 1995; Aragon-Alcaide et al. 1996). Wen et al. (2012) also reported that CCS1 failed to label B. distachyon centromeres and its homologous sequences are comparatively less abundant in the B. distachyon genome. In addition, all five Triticeae centromeric BAC clones used in the present study, except one, 3B-40-L07, did not yield any FISH signals in the Brachypodium centromeres (Table 3) (Qi et al. 2009, 2010). Among them, the 3B BAC clone, 3B-100-L17, is a known 3B centromeric BAC placed in the centromere of 3B chromosome by megabase sequencing analysis, which is highly collinear to the centromere of rice chromosome 1 (Choulet et al. 2010). An extensive comparison of centromeric sequences and distribution of $C R$ elements among rice, maize, wheat, and Brachypodium might be needed for a complete understanding of the molecular and evolutionary mechanisms underlying the conserved function of centromeres in cereal species.

Acknowledgments

We thank Drs Zhao Liu and Gerald Seiler for critical review of the manuscript. This research was supported by a special USDA-NIFA grant to the Wheat Genetic Resources Center, Kansas State University, USA, and fund for excellent young scholar of Shandong

1 Province of China (BS2011SW027).

References

Abbo S, Dunford RP, Foote T, Reader SM, Flavell RB, Moore G (1995) Organization of retroelement and stem-loop repeat families in the genomes and nuclei of cereals. Chromosome Res 3:5-15

Ananiev EV, Phillips RL, Rines HW (1998) Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. Proc Natl Acad Sci USA 95:13073-13078

Aragón-Alcaide L, Miller T, Schwatzacher T, Reader S, Moore G (1996) A cereal centromeric sequence. Chromosoma 105:261-268

Bolot S, Abrouk M, Masood-Quraishi U, Stein N, Messing J, Feuillet C, Salse J (2009) The 'inner circle' of the cereal genomes. Curr Opin Plant Bio 12:119-125
Buchmann JP, Matsumoto T, Stein N, Keller B, Wicker T (2012) Inter-species sequence comparison of Brachypodium reveals how transposon activity corrodes genome colinearity. Plant J 71:550-56
Cheng Z, Dong F, Langdon T, Ouyang S, Buell CR Gu MH, Blattner FR, Jiang J (2002) Functional rice centromeres are marked by a satellite repeat and a centromerespecific retrotransposon. Plant Cell 14:1691-1704

Choulet F, Wicker T, Rustenholz C et al (2010) Megabase level sequencing reveals contrasted organization and evolution patterns of the wheat gene and transposable element spaces. Plant Cell 22:1686-1701
Copenhaver GP, Nickel K, Kuromori T, Benito MI, Kaul S et al (1999) Genetic definition and sequence analysis of Arabidopsis centromeres. Science 286:2468-2474.

Dong F, Miller T, Jacson SA, Wang GL, Ronald PC, Jinag J (1998) Rice (Oryza sativa) centromeric regions consist of complex DNA. Proc Natl Acad Sci USA 95:8135-8140

Du J, Z Tian Z, Hans CS, Laten HM, Cannon SB, Jackson SA, RC Shoemaker RC, Ma J (2010) Evolutionary conservation, diversity and specificity of LTRretrotransposons in flowering plants: insights from genome-wide analysis and multi-specific comparison. Plant J 63:584-598

Francki, MG (2001) Identification of Bilby, a diverged centromeric Ty1-copia retrotransposon family from cereal rye (Secale cereale L.). Genome 44:266-274

Gao D, Gill N, Kim HR, Walling JG, Zhang W, Fan C, Yu Y, Ma J, SanMigue P, Jiang N , et al (2009) A lineage-specific centromere retrotransposon in Oryza brachyantha. Plant J 60:820-831

Hall SE, Kettler G, Preuss D (2003) Centromere satellites from Arabidopsis populations: Maintenance of conserved and variable domains. Genome Res. 13:195-205

Henikoff S, Ahmad K, Malik HS (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 203:1098-1102

Hudakova S, Michalek W, Presting GG, Ten Hoopen R, Dos Santos K, Jasencakova Z, Schubert I (2001) Sequence organization of barley centromeres. Nucleic Acids Res 29:5029-5035

Huo N, Gu YQ, Lazo GR, Vogel JP, Coleman-Derr D, Luo MC, Thilmony R, Garvin DF, Anderson OD (2006) Construction and characterization of two BAC libraries from Brachypodium distachyon, a new model for grass genomics. Genome 49:1099-1108

Jiang J, Nasuda S, Dong F, Scherrer CW, Woo SS, Wing RA, Gill BS, Ward DC (1996) A conserved repetitive DNA element located in the centromeres of cereal chromosomes. Proc Natl Acad Sci USA 93:14210-14213

Jiang J, Birchler JA, Parrott WA, Dawe RK (2003) A molecular view of plant centromeres. Trends Plant Sci 8:570-575

Jin WW, Lamb JC, Vega JM, Dawe RK, Birchler JA, Jiang J (2005) Molecular and functional dissection of the maize B chromosome centromere. Plant Cell 17:1412-1423

Jin WW, Melo JR, Nagaki K, Talbert PB, Henikoff S, Dawe RK, Jiang J (2004) Maize centromeres: organization and functional adaptation in the genetic background of oat. Plant Cell 16:571-581
Kulikova O, Geurts R, Lamine M et al (2004) Satellite repeats in the functional centromere and pericentromeric heterochromatin of Medicago truncatula. Chromosoma 113:276-283

Kumekawa N, Ohtsubo E, Ohtsubo H (1999) Identification and phylogenetic
analysis of gypsy-type retrotransposons in the plant kingdom. Genes Genet Syst 74:299-307

Kumekawa N, Ohmido N, Fukui K, Ohtsubo E, Ohtsubo H (2001) A new gypsy-type retrotransposon, RIRE7: preferential insertion into the tandem repeat sequence TrsD in pericentromeric heterochromatin regions of rice chromosomes. Mol Genet Genomics 265:480-488

Lamb JC, Yu W, Han F, Birchler JA (2008) Plant centromeres. Genome Dyn 4:95-107
Lee HR, Zhang W, Langdon T, Jin WW, Yan H, Cheng Z, Jiang J (2005) Chromatin immunoprecipitation cloning reveals rapid evolutionary patterns of centromeric DNA in Oryza species. Proc Natl Acad Sci USA 102:11793-11798

Lim K-B, Yang T-J, Hwang Y-J et al (2007) Characterization of the centromere and pericentromere retrotransposons in Brassica rapa and their distribution in related Brassica species. Plant J 49:173-183

Li B, Choulet F, Heng Y et al (2013) Wheat centromeric retrotransposons: the new ones take a major role in centromeric structure. Plant J 73:952-965

Liu Z, Yue W, Li D et al (2008) Structure and dynamics of retrotransposons at wheat centromeres and pericentromeres. Chromosoma 117:445-456

Ma J, Bennetzen JL (2004) Rapid recent growth and divergence of rice nuclear genomes. Proc Natl Acad Sci USA 101:12404-12410

Ma J, Wing R, Bennetzen JL, Jackson SA (2007) Evolutionary history and positional shift of a rice centromere. Genetics 177:1217-1220

Miller JT, Dong F, Jackson SA, Song J, Jiang J (1998) Retrotransposon-related DNA sequences in the centromeres of grass chromosomes. Genetics 150:1615-1623

Nagaki K, Song J, Stupar RM et al (2003a) Molecular and cytological analyses of large tracks of centromeric DNA reveal the structure and evolutionary dynamics of maize centromeres. Genetics 163:759-770

Nagaki K, Talbert PB, Zhong CX, Dawe RK, Henikoff S, Jiang J (2003b) Chromatin immunoprecipitation reveals that the $180-\mathrm{bp}$ satellite repeat is the key functional DNA element of Arabidopsis thaliana centromeres. Genetics 163:1221-1225

Nagaki K, Cheng Z, Ouyang S, Talbert PB, Kim M, Jones KM, Henikoff S, Buell CR, Jiang J (2004) Sequencing of a rice centromere uncovers active genes. Nature Genet 36:138-145

Nagaki K, Neumann P, Zhang D, Ouyang S, Buell CR, Cheng Z, Jiang J (2005) Structure, divergence, and distribution of the CRR centromeric retrotransposon family in rice. Mol Biol Evol 22:845-855
Price AL, Jones NC, Pevzner PA. (2005) De novo identification of repeat families in large genomes. Bioinformatics 21 Suppl 1:i351-358
Presting GG, Malysheva L, Fuchs J, Schubert I (1998) A Ty3-gypsy retrotransposon-like sequence localizes to the centromeric regions of cereal chromosomes. Plant J 16:721-728

Qi LL, Friebe B, Zhang P, Gill BS (2009) A molecular-cytogenetic method for locating genes to pericentromeric regions facilitates a genome-wide comparison of synteny between the centromeric regions of wheat and rice. Genetics 183:1235-1247

Qi LL, Friebe B, Wu J, Gu Y, Qian C, Gill BS (2010) The compact Brachypodium genome conserves centromeric regions of a common ancestor with wheat and rice. Funct Integr Genomics 10:477-492

Round EK, Flowers SK, Richards EJ (1997) Arabidopsis thaliana centromere regions: genetic map positions and repetitive DNA structure. Genome Res 91:1007-1019

Šafář J, Bartoš J, Janda J, et al (2004) Dissecting large and complex genomes: flow sorting and BAC cloning of individual chromosomes from bread wheat. Plant J 39:960-968

Sharma A, Presting GG (2008) Centromeric retrotransposon lineages predate the maize/rice divergence and differ in abundance and activity. Mol Genet Genomics 279:133-147

Tek AL, Kashihara K, Murata M, Nagaki K (2010) Functional centromeres in soybean include two distinct tandem repeats and a retrotransposon. Chromosome Res 18:337-347

The International Brachypodium Initiative (2010) Genome sequencing and analysis of
the model grass Brachypodium distachyon. Nuture 463:763-768
Weber B, Schmidt T (2009) Nested Ty3-gypsy retrotransposons of a single Betaprocumbens centromere contain a putative chromodomain. Chromsome Res 17:379-396

Wen R, Moore G, Shaw PJ (2012) Centromeres cluster de novo at the beginning of meiosis in Brachypodium distachyon. PLoS One 7:e44681

Wu J, Fujisawa M, Tian Z et al (2009) Comparative analysis of complete orthologous centromeres from two subspecies of rice reveals rapid variation of centromere organization and structure. Plant J 60:805-819
Zhang P, Li WL, Fellers J, Friebe B, Gill BS (2004) BAC-FISH in wheat identifies chromosome landmarks consisting of different types of transposable elements. Chromosoma 112:288-299

Zhang Y, Huang Y, Zhang L et al (2004) Structural features of the rice chromosome 4 centromere. Nucleic Acids Res. 32:2023-2030

Zhao X, Wang H (2007) LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res 35 (Web Server issue): W265-W268

Zhong CX, Marshall JB, Topp C et al (2002) Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell 14:2825-2836

Table 1 List of BAC clones selected for BAC-FISH

Probed by	BAC clones	Contigs or chromosome	Classification	Reference
Hil0	DH007B23	Ctg 118	Brachypodium BAC	This research
Hi10	DH021M4	Ctg271	Brachypodium BAC	This research
Hil0	DH008A23	Ctg290	Brachypodium BAC	This research
Hil0	DH010C12	Ctg 42	Brachypodium BAC	This research
Hil0	DH029E4	Ctg 42	Brachypodium BAC	This research
Hi10	DH010J10	Singleton	Brachypodium BAC	This research
Hil0	DH010O24	Singleton	Brachypodium BAC	This research
Hi10	DH017123	Singleton	Brachypodium BAC	This research
pRCS1	DH054L6	Singleton	Brachypodium BAC	This research
pRCS1	DH064P10	Singleton	Brachypodium BAC	This research
pRCS1	DH070K6	Singleton	Brachypodium BAC	This research
pRCS1	DH078K1	Singleton	Brachypodium BAC	This research
pRCS1	DH085J19	Singleton	Brachypodium BAC	This research
pRCS1	DH086J9	Singleton	Brachypodium BAC	This research
BG313557-3L ${ }^{\dagger}$	DH017G05	Bd 2	Brachypodium BAC	Qi et al. 2010
	DH039C01	Bd 2	Brachypodium BAC	Qi et al. 2010
BE637507-4L ${ }^{\dagger}$	DB069J23	Bd 4	Brachypodium BAC	Qi et al. 2010
BE405809-6S ${ }^{\dagger}$	DB042E22	Bd 3	Brachypodium BAC	Qi et al. 2010
BE405195-6S ${ }^{\dagger}$	DB088014	Bd 3	Brachypodium BAC	Qi et al. 2010
pAet6-09	3B-100-L17	Ctg796	Wheat 3B BAC	Qi unpublished data
	3B-40-L07	Ctg796	Wheat 3B BAC	Qi unpublished data
BF202706-4DL	21 E 12	NA	Ae. speltoides BAC	Qi et al. 2009
	256K19	NA	Ae. speltoides BAC	Qi et al. 2009
BE497309-4DS	HD008H01	Singleton	Ae. tauschii BAC	Qi et al. 2009

${ }^{\dagger}$ wheat pericentromeric EST. Brachypodium BAC clone was selected based on the sequence similarity to the wheat EST.

Table 2 The results of BAC-fluorescence in situ hybridization (FISH) of Brachypodium BAC clones on the mitotic chromosome complements of Brachypodium, rye, wheat, barley, rice, and maize.

	BAC clones	B.d21	Rye	wheat	Barley	Rice	Maize
Probed by		++++	+++	+++	+++	-	-
Hi10	DH029E4	++++	+++	+++	++	-	-
Hi10	DH010C12	++++	+++	++	+	-	-
Hi10	DH007B23	+++	++	+	-	-	-
Hi10	DH008A23	++++	++	+	-	-	-
Hi10	DH017123	+++	++	NA	NA	NA	NA
pRCS1	DH054L6	+++	++	NA	NA	NA	NA
pRCS1	DH085J19	++++	++	NA	NA	NA	NA
pRCS1	DH086J9	++++	++	NA	NA	NA	NA
Hi10	DH010J10	+++	+	NA	NA	NA	NA
Hi10	DH010O24	+++	+	NA	NA	NA	NA
pRCS1	DH064P10	++++	+	NA	NA	NA	NA
pRCS1	DH070K6	++++	+	NA	NA	NA	NA
pRCS1	DH078K1	++++	+	NA	NA	NA	NA
BG313557-3L							
BE637507-4L							
	DH039C01	++++	+	NA	NA	NA	NA
BG313557-3L ${ }^{\dagger}$	DH069J23	++++	+	NA	NA	NA	NA
BE405809-6S ${ }^{\dagger}$	DB042E22	++++	-	-	-	-	-
BE405195-6S ${ }^{\dagger}$	DB088O14	++++	-	-	-	-	-

- and + represent, respectively, the absence and presence of hybridization signals: +++++, very strong signal; +++ , strong signal; ++ , weak signal; + , very weak signal.
\dagger wheat pericentromeric EST. Brachypodium BAC clone was selected based on the sequence similarity to the wheat EST.
2 NA: not apply.
3

2 Table 3 The results of BAC-fluorescence in situ hybridization (FISH) of Triticeae BAC clones on the mitotic chromosome complement of wheat Chinese Spring (CS) and B. distachyon (B.d21)

	BAC-FISH signal	
BAC clones	CS	B.d21
3B-40-L07	+++	++
3B-100-L17	+++	-
21E12	+++	-
256K19	+++	-
HD008H01	+++	-

4 - and + represent, respectively, the absence and presence of hybridization signals: +++, 5 strong signal; ++, weak signal.

Table 4 Common LTR retrotransposons identified in the four Brachypodium BACs

								Total length of conserved sequence (kb)

2 Table S1 Hybridization results of positive Brachypodium BACs with centromeric-specific clones, Hi10, pAet6-09, and pRCS1

Probed by	Associated BAC	No. fragments of BAC hybridizing to:		
		Hi10	pAet6-09	pRCS1
Hi10	DH002F21	8	8	2
	DH007B23 ${ }^{\dagger}$	2	2	0
	DH007C24	7	7	1
	DH008A23 ${ }^{\dagger}$	8	8	3
	DH010C12 ${ }^{\dagger}$	6	7	1
	DH010J10 ${ }^{\dagger}$	10	10	1
	DH010O24 ${ }^{\dagger}$	14	16	3
	DH026L22	4	2	2
	DH014I5	2	4	2
	DH017I23 ${ }^{\dagger}$	7	7	2
	DH021M4 ${ }^{\dagger}$	2	3	1
	DH024H22	9	11	1
	DH029E4 ${ }^{\dagger}$	5	5	1
pRCS1	DH003K1	3	5	1
	DH011N9	5	6	2
	DH014I7	7	9	2
	DH017C21	7	6	4
	DH027C19	0	1	2
	DH028M13	9	9	3
	DH030F13	4	2	2
	DH031H5	3	3	3
	DH032L2	3	3	2
	DH032J23	1	1	2
	DH039M8	9	9	3
	DH042I3	5	5	3
	DH054L6 ${ }^{\dagger}$	10	9	3
	DH056C10	5	5	2
	DH060A1	5	8	1
	DH062J15	6	7	2
	DH064P10 ${ }^{\dagger}$	11	12	2
	DH070K6 ${ }^{\dagger}$	10	10	2
	DH078K1 ${ }^{\dagger}$	12	12	4
	DH085J19 ${ }^{\dagger}$	15	13	2
	DH086J9 ${ }^{\dagger}$	14	13	4
	DH087M5	3	4	1
	DH089N24	9	9	1
	DH090B7	5	6	1
	DH090F5	8	8	3

[^0]2 Table S2 Distribution of the full-length CRBd1 in B. distachyon genome

Chromosome No.	Position of Bd_CENT repeats in centromere regions	Position of Bd_CNET repeats in chromosome fusion points	Position of Bd_CNET repeats outside of the centromeres	Position of full length CRBd1 (Insertion time)
1	$37.379-38.177 \mathrm{Mb}(1294)^{\dagger}$	$24.696-24.700 \mathrm{Mb}$ (27)	$23.017-23.020 \mathrm{Mb}$ (13),	$39.080-39.093 \mathrm{Mb}$ (0.14 Myr)
		$50.742-50.744 \mathrm{Mb}$ (13)	30.402 Mb (2)	$70.916-70.929 \mathrm{Mb}$ (0.01 Myr)
			$36.856-36.866 \mathrm{Mb}$ (47)	
			40.922 Mb (3)	
2	$28.989-29.716 \mathrm{Mb}$ (340)	$12.733-12.735 \mathrm{Mb}$ (13)		$26.344-26.357 \mathrm{Mb}$ (0.06Myr)
		$40.087-40.088 \mathrm{Mb}$ (12)		
3	$25.158-25.675 \mathrm{Mb}$ (1607)	11.136-11.153 Mb (28)	$24.365-24.388 \mathrm{Mb}$ (53)	
4	$20.641-21.023 \mathrm{Mb}$ (1264)	$24.724-24.734 \mathrm{Mb}$ (61)		8.206-8.219 Mb (0.02Myr)
				$22.075-22.088 \mathrm{Mb}(1.34 \mathrm{Myr})$
				$26.875-26.888 \mathrm{Mb}$ (0.01 Myr)
5	7.608-7.731 Mb (194)		7.293-7.314 Mb (14)	$1.524-1.537 \mathrm{Mb}$ (0.12Myr)
			8.103 Mb (1)	9.032-9.045 Mb (0.14Myr)

${ }^{\dagger}$ The numbers in parentheses represent the copy numbers of Bd_CENT

Fig. 1 Wheat 3B BAC clone 3B-100-L17 hybridized to mitotic chromosomes of wheat
(a) and Brachypodium (b). No FISH signal was observed in Brachypodium chromosomes
(b). Brachypodium BAC clone DB088O14 hybridized to mitotic chromosomes of Brachypodium (c) and rye (d). No FISH signal was observed in rye chromosomes (d), as well as in wheat, barley, maize, and rice (data not shown). Scale bar is $5 \mu \mathrm{~m}$.

Figure 2

Fig. 2 Brachypodium BAC clone DH029E4 hybridized to mitotic chromosomes of wheat (a), rye (b), barley (c), Brachypodium (d), Maize (e), and rice (f). No FISH signal was observed in maize (e) and rice (f) chromosomes. Scale bar is $5 \mu \mathrm{~m}$.

Figure 3
 observed in the chromosomes of barley (b), maize (d), and rice (f). Scale bar is $5 \mu \mathrm{~m}$.

Fig. 4 The structure and distribution of the retrotransposon CRBd1. a) The full length element of CRBd1 retrotransposon in Brachypodium was $12.5-12.8 \mathrm{~kb}$ in length with LTRs of 3.1-3.3kb. The deduced coding sequence contains typical domains of retrotransposon: gag protein (Retrotrans_gag), pol protein (RVP_2), reverse transcriptase (RVT_1), RNase H1 and integrase (rev), as well as other two domains, the Zinc knuckle domain (zf-CCHC) and Chromatin Organization Modifer domain (Chromo). The Brachypodium specific repeats, RM-1 and RM-2 identified in DB069J23, were fragments of the LTR region of CRBd1. b) Distribution of the retrotransposons in the BAC

DB088O14. The green boxes represent the 11 gene models in the 200kb-region of chromosome 3:46336326..46536325. Black lines flanked by two boxes indicate retrotransposons, under which the names were labeled. Retrotransposons were inserted into other retrotransposons or intergenic region. A CRBd1 cluster was noticed in this BAC, including the truncated elements and solo-LTRs. The insertion time of full length retrotransposons were calculated and labeled under the elements. c) The dot matrix view of the alignment between BAC DB069J23 (Bd4: 22540676..22840675) and the retrotransposon CRBd1(DB088O14:25723..35498), indicating the distribution of the sequences with similarity to CRBd1 in this BAC. For simplicity, only the internal region and the 3 'LTR of CRBd1 were used for comparison.

Fig. 5

Fig. 5 The distribution histograms of the LTR of CRBd1 on the Brachypodium chromosomes. The total sequence length (kb) of alignments in 1 Mb window was plotted along the chromosomes. The positions of centromeres, chromosome fusion points, and Bd_CENT containing regions outside of the centromeres were marked. The arrows point the positions of the four Brachypodium BACs, and the gray bars represent the positions of the eight full-length CRBd1.

Fig. 6

Fig. 6 Sequence alignment of the LTRs from different species. Full length retrotransposons were identified in species of Brachypodium (Bd, chr1_ 70915934..70928501), wheat (Ta, FN564426_562537..573702), barley (Hv, AC250228_46960..58979), rice (Os, AP008246_54271..66260), maize (Zm, AF448416_48249..61044) and sorghum (Sb, chr9_9757379..9770073) respectively. The boundaries (30 bp from the 5^{\prime} and 3^{\prime} end, respectively) of the LTRs were used for alignment. The numbers on right indicate the length of 5^{\prime} and 3^{\prime} LTR for each retrotransposon.

1 Figure S1

Fig. S1

Fig. S1 The dot matrix view of self alignment of the BAC DB069J23.

[^0]: \dagger selected for BAC-FISH

