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Abstract 1 

 2 

Brachypodium distachyon is a wild annual grass belonging to the Pooideae, more closely 3 

related to wheat, barley, and forage grasses than rice and maize. As an experimental 4 

model, the completed genome sequence of B. distachyon provides a unique opportunity 5 

to study centromere evolution during the speciation of grasses. Centromeric satellite 6 

sequences have been identified in B. distachyon, but little is known about centromeric 7 

retrotransposons in this species. In the present study, BAC-fluorescence in situ 8 

hybridization was conducted in maize, rice, barley, wheat, and rye using B. distachyon 9 

(Bd) centromere-specific BAC clones. Eight Bd centromeric BAC clones gave no 10 

detectable FISH signals on the chromosomes of rice and maize, and three of them also 11 

did not yield any FISH signals in barley, wheat, and rye. In addition, four of five 12 

Triticeae centromeric BAC clones did not hybridize to the B. distachyon centromeres, 13 

implying certain unique features of Brachypodium centromeres. Analysis of 14 

Brachypodium centromeric BAC sequences identified a long terminal repeat (LTR)-15 

centromere retrotransposon of B. distachyon (CRBd1). This element was found in high 16 

copy number accounting for 1.6% of the B. distachyon genome, and is enriched in 17 

Brachypodium centromeric regions. CRBd1 accumulated in active centromeres, but was 18 

lost from inactive ones. The LTR of CRBd1 appears to be specific to B. distachyon 19 

centromeres. These results reveal different evolutionary events of this retrotransposon 20 

family across grass species.  21 

 22 

Introduction 23 
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As chromosome landmarks, centromeres are responsible for kinetochore assembly that 1 

links chromosome to microtubule spindle, and thereby enabling the faithful segregation 2 

of sister chromatids during cell division. Extensive tracts of tandem repeats (centromeric 3 

satellites) interrupted by various retrotransposons are common structural features of 4 

centromeres (Copenhaver et al. 1999; Kumekawa et al. 1999, 2001;Jiang et al. 2003; 5 

Zhang Y et al. 2004; Lamb et al. 2008). Satellite DNA and centromeric retrotransposons 6 

(CR) are the most abundant DNA elements found in plant centromeres and are associated 7 

with CENH3, a centromere-specific histone H3 present in nucleosomes of active 8 

centromeres (Jiang et al. 1996; Miller et al. 1998; Presting et al. 1998; Cheng et al. 2002; 9 

Zhong et al. 2002; Nagaki et al. 2003b, 2004).  10 

 11 

Centromeric satellite DNA sequences have been isolated from several plant species, 12 

including Arabidopsis (Round et al. 1997), maize (Ananiev et al. 1998), sorghum (Miller 13 

et al. 1998), rice (Cheng et al. 2002; Zhang Y et al. 2004; Lee et al. 2005), Medicago 14 

truncatual (Kulikova et al. 2004), Brassica (Lim et al. 2007), Brachypodium (2010), and 15 

soybean (Tek et al. 2010). Although the repeat length, ranging in size from 155 bp (rice) 16 

to 180 bp (Arabidopsis), is similar between taxa, their sequences are largely species-17 

specific and highly divergent even between closely related species (Lee et al. 2005). In 18 

contrast to the centromeres of most plant species where functional centromeres are 19 

mainly composed of large arrays of centromere satellite repeats and  CR elements (Jiang 20 

et al. 2003), wheat centromeres lack tandem satellite repeats of megabase size and are 21 

dominated by centromeric retrotransposons (Liu et al. 2008; Li et al. 2013). 22 
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Unlike centromeric satellites, the CR family in grass species is highly conserved. Two 1 

highly conserved CR sequences, CCS1 and pSau3A9, which are parts of Ty3/gypsy-type 2 

retrotransposons, were first found to localize at the centromeres of most cereal species 3 

that have been investigated (Aragon-Alcaide et al.1996; Jiang et al 1996, Miller et al. 4 

1998; Presting et al. 1998). CRR (CR of rice) and CRM (CR of maize) are the most 5 

intensively studied CR elements among plant species (Dong et al. 1998; Presting et al. 6 

1998; Cheng et al. 2002; Zhong et al. 2002; Nagaki et al. 2003a, 2005). Rice CRR1 is 7 

homologous to maize CRM3, CRR2 to CRM2, CRR3 to CRM1, and CRR4 to CRM4, 8 

which pre-date the divergence of maize and rice (Sharma and Presting 2008). Two 9 

putative CR families of soybean were also grouped to CRR and CRM lineage (Du et al. 10 

2010) and the CR elements, Beetle1and Beetle 2, found in beet are highly similar to the 11 

CRs of rice, maize, and Barley (Weber and Schmidt 2009). The CR elements isolated 12 

from barley and wheat showed cross hybridization among cereal species (Hudakova et al. 13 

2001; Zhang P et al. 2004). As few exceptions to the general CR conservation of grasses, 14 

species-specific CR element was reported in rye (Francki 2001) and wild rice (Gao et al. 15 

2009). A rye-specific CR, Bilby that is a Ty1-copia retrotransposon-like element, is 16 

highly divergent from other known cereal CR elements, and a lineage-specific CR 17 

element was identified in Oryza brachyantha. 18 

 19 

Brachypodium distachyon (hereafter referred to as Brachypodium) is a wild annual grass 20 

belonging to the Pooideae, more closely related to wheat, barley, and forage grasses than 21 

rice and maize. As an experimental model, the completed genome sequence of 22 

Brachypodium provides an important reference for grass biology and centromere studies 23 
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(The International Brachypodium Initiative, 2010). A 156 bp Brachypodium centromeric 1 

repeat (Bd_CENT) was identified and is present on all the Brachypodium centromeres 2 

(The International Brachypodium Initiative, 2010). The only completely assembled 3 

centromere is 45 kb long on chromosome Bd5 and is composed of two Bd_CENT arrays 4 

occasionally interspersed with large blocks of unknown LTR retrotransposons (The 5 

International Brachypodium Initiative, 2010). Previous studies indicated that the gene 6 

sequences in the centromeric and pericetromeric regions from rice and wheat were 7 

conserved with those in the centromeric/pericentromeric regions of Brachypodium, 8 

indicating that these genes pre-existed in the centromere regions before the divergence of 9 

the grass species that occurred 50-70 MYA (Bolot et al. 2009; Qi et al. 2010). However, 10 

54 genes found within 300 kb of all five Brachypodium centromeres were non-collinear 11 

with rice and sorghum, indicating some unique features of Brachypodium centromeres 12 

after it diverged from rice and wheat (The International Brachypodium Initiative, 2010). 13 

In order to study the evolution of Brachypodium centromeres, we conducted BAC-14 

fluorescence in situ hybridization in maize, rice, barley, wheat and rye using 19 15 

Brachypodium centromere-specific BAC clones, and annotated in detail four of these 16 

BAC clones. The results demonstrate that Brachypodium CR elements are highly 17 

divergent from those of other grass species.     18 

 19 

Materials and Methods 20 

 21 

Materials 22 

 23 
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Seeds of B. distachyon, an inbred, diploid line Bd21, were obtained from USDA-ARS, 1 

Pacific West Area, Western Regional Research Center, Genomics and Gene Discovery, 2 

Albany, CA, USA. Chinese Spring (CS) wheat (Triticum aestivum L.), Imperial rye 3 

(Secale cerale L.), Betzes barley (Hordeum vulgare L.) were provided by the Wheat 4 

Genetic Resources Center at Kansas State University, KS, USA. Nipponbare rice (Oryza 5 

sativa L.), and B73 maize (Zea mays L.) were provided by Drs. Frank White and Harold 6 

Trick at the Plant Pathology Department, Kansas State University, KS, USA. 7 

 8 

Methods 9 

 10 

Selection of Brachypodium putative centromeric BAC 11 

 12 

Three centromere-specific clones, Hi10, pRCS1, and pAet6-09, were used in the present 13 

study. Both Hi10 and pRCS1 are cereal-specific centromeric DNA sequences; Hi10 was 14 

isolated from B. sylvaticum (Abbo et al. 1995), and pRCS1 was derived from rice (O. 15 

sativa ssp. Indica cv. IR-BB21) (Dong et al. 1998). The clone pAet6-09 was isolated 16 

from Ae. tauschii bacterial artificial chromosome (BAC) library and hybridized to the 17 

centromeres of wheat, barley, rye, and maize, but not to rice (Zhang P et al. 2004). Hi10 18 

and pRCS1 were used to screen one high-density filter containing 18,432 clones from 19 

Brachypodium BAC library ( ̴ 4.5 × coverage) (Huo et al. 2006). The BAC clones with 20 

unambiguous positive hybridization signals were selected, digested with HindIII, and 21 

hybridized again to the three clones, Hi10, pRCS1, and pAet6-09. The putative 22 

centromeric BAC clones were selected as probes for further BAC-fluorescence in situ 23 
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hybridization (FISH) experiments (Table 1). Five additional Brachypodium BAC clones, 1 

which previously gave BAC-FISH signals at the centromeres of Brachypodium 2 

chromosomes were also used in the present study (Table 1, Qi et al. 2010). These BAC 3 

clones were anchored by wheat pericentromeric ESTs from homoeologous chromosome 4 

groups 3, 4, and 6. The procedure for colony filter hybridization and southern 5 

hybridization was described by Qi et al. (2009).  6 

 7 

Selection of the centromeric BAC clones from wheat 3B, Aegilops speltoides, and 8 

Aegilops tauschii BAC libraries 9 

 10 

Two wheat centromeric BAC clones, 3B-100-L17 and 3B-40-L07, were obtained by 11 

screening a wheat 3B BAC library (Šafář et al. 2004) using the pAet6-09 sequence as 12 

probe (Qi et al. unpublished data, Table 1). These two clones are located on the ordered 13 

BACs of contig 796 (Feuillet, personal communication). Later, 3B-100-L17 as a single 14 

BAC was placed in the 3B centromere along with 12 sequenced contigs in 3B 15 

chromosome (Choulet et al. 2010). Both clones exclusively hybridized to the centromeres 16 

of wheat chromosomes (Fig. 1a). Two Ae. speltoides centromeric BAC clones, 21E12 17 

and 256 K19, and one Ae. tauschii centromeric BAC clone HD008H01 were identified 18 

previously by Qi et al. (2009) (Table 1). 19 

 20 

BAC-fluorescence in situ hybridization (BAC-FISH) 21 

 22 
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Mitotic chromosome spreads for BAC-FISH were prepared from the root tips of 1 

Brachypodium Bd21, CS wheat, Imperial rye, Betzes barley, Nipponbare rice, and B73 2 

maize as described by Qi et al. (2010). BAC DNA was isolated using a Qiagen Plasmid 3 

Midi Kit following the manufacture’s instruction (Qiagen Valencia. Calif.). One 4 

microgram of BAC DNA was labeled with fluorescein-12-dUTP (Enzo Life Science Inc, 5 

Farmingdale, NY) using nick translation. The BAC-FISH was performed on metaphase 6 

chromosomes as previously described (Qi et al. 2010). Slides were analyzed with an 7 

epifluorescence Zeiss Axioplan 2 microscope. Images were captured using a SPOT 2.1 8 

CCD (charge-coupled device) camera (Diagnostic Instruments) and processed with 9 

Photoshop v5.5 (Adobe Systems). 10 

 11 

BAC sequence annotation 12 

 13 

Four BAC clones, DB069J23, DB088O14, DB042E22 and DH017G05, were end 14 

sequenced and then were anchored onto the Brachypodium chromosomes. A 300-kb 15 

continuous stretch of sequence extending from one BAC-end was used for annotation 16 

analysis. Self alignment of each BAC was performed using NCBI bl2seq BLAST tool to 17 

generate a first glance of its repetitive nature. The RepeatScout (Price et al. 2005) was 18 

also used to identify de novo repeats. To find common sequences among these BACs, 19 

they were also aligned with each other. Transposable elements were identified by a 20 

combination of BLAST searches against the GenBank nonredundant database and the 21 

Triticeae Repeat Sequence Database (TREP, http://wheat.pw.usda.gov/ITMI/Repeats/). 22 

LTR-FINDER (Zhao and Wang, 2007) was used to predict full-length LTR 23 
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retrotransposons with tRNA database of Brachypodium. The insertion time of 1 

retrotransposons was calculated according to Ma and Bennetzen (2004). The frequency 2 

and distribution of the repeat elements along the chromosomes was analyzed by 3 

searching the Brachypodium genome assembly (http://www.brachypodium.org/) with 4 

NCBI local BLAST tool kit version 2.2.11, and the e-value cut-off was set to 1e-10. The 5 

NCBI database, PlantGDB, CerealsDB, barley (webblast.ipk-gatersleben.de/barley/) and 6 

rice (http://rice.plantbiology.msu.edu/) whole genome sequences were BLASTN searched 7 

to identify conserved sequences of Brachypodium repeats.  8 

 9 

Results  10 

 11 

Identification of Brachypodium–specific centromeric BACs 12 

 13 

The B. distachyon BAC library ( ̴ 4.5 × coverage) was probed with Hi10 and 14 

pRCS1clones. Of the 38 unambiguous positive BAC clones, 13 were selected by probe 15 

Hi10 and 25 by pRCS1 (Table S1). The BAC clones were digested with restriction 16 

enzyme HindIII and hybridized to the three centromeric DNA sequences, Hi10, pRCS1, 17 

and pAet6-09. Positive Southern hybridization signals and ladder patterns were detected. 18 

Average numbers of BAC fragments hybridizing to three clones were 6.7 (range from 0 19 

to 15) for Hi10, 7.0 (1 to 16) for pAet6-09, and 2.0 (0 to 4) for pRCS1 (Table S1). 20 

Fourteen BAC clones that gave intense hybridization signals were selected for further 21 

BAC-FISH with chromosome complements of Brachypodium and rye (Table S1).  22 

 23 
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FISH results of the selected BAC clones to Brachypodium chromosomes indicated that 1 

14 BAC clones exclusively hybridized to the centromeric regions of all Brachypodium 2 

chromosomes with very strong FISH signals (Table 2, Fig. 2d). Subsequently, these BAC 3 

clones along with other five Brachypodium BAC clones, DH017G05, DH039C01, 4 

DB069J23, DB042E22, and DB088O14, which previously showed FISH signals on the 5 

centromeric regions of all the five Brachypodium chromosomes  (Qi et al. 2010), were 6 

FISH mapped on rye chromosomes. The FISH on rye chromosomes showed variable 7 

signal intensities exclusively at the primary constructions (Table 2, Figs. 2b and 3c). 8 

Based on signal intensity, these 19 BACs were divided into four groups: group I with 9 

three BACs showed strong signals (Fig. 2b), group II with six BACs gave faint signals 10 

(Fig. 3c), group III with seven BACs showed the very weak signals on the rye 11 

centromeres when image was exposed longer than usually required for detecting the 12 

corresponding signals on Brachypodium centromeres, and group IV with three BACs 13 

showed no FISH signals (Fig. 1d). To identify Brachypodium-specific centromeric BAC 14 

clones, eight BAC clones were selected, all of which except DH007B23, gave very strong 15 

signals on Brachypodium centromeric regions, but yielded variable signal intensities on 16 

those of rye (Table 2), and were used to hybridize to chromosome complements of wheat, 17 

barley, rice, and maize.  18 

 19 

Surprisingly, no detectable FISH signal of eight selected BAC clones was observed on 20 

the chromosomes of rice and maize, indicating that canonical sequences of 21 

Brachypodium CR elements appear to have disappeared in these two species (Figs. 2e, 2f, 22 

3d, and 3f). Out of eight BAC clones, three: DH017G05, DB042E22, and DB088O14, 23 
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with a similar result on rye, also did not hybridize to the chromosomes of wheat and 1 

barley, indicating that the centromere-specific sequences present in these BACs are 2 

sufficiently conserved only in Brachypodium (Table 2, Fig. 1c and d). The remaining five 3 

BAC clones showed variation in the intensity of the FISH signals in wheat, rye, and 4 

barley. BAC DH021M4 had very strong FISH signals on the centromeres of 5 

Brachypodium chromosomes, as well as in rye, wheat and barley. The FISH signal 6 

intensity of BAC clones: DH010C12 and DH029E4, was similar in rye and wheat, but 7 

lower in barley (Fig. 2a-c). BAC clones, DH008A23 and DH007B23, gave a weak 8 

centromeric FISH signals in rye and wheat, but no signals in barley (Fig. 3a-c).  9 

BAC-FISH of Triticeae centromeric BAC clones to Brachypodium chromosomes 10 

 11 

Five centromeric BAC clones from wheat, Ae. speltoides, and Ae. tauschii were analyzed 12 

for their hybridization to the chromosomes of Brachypodium. Only the BAC clone, 3B-13 

40-L07 derived from the wheat 3B BAC library, showed FISH signals on the centromeres 14 

of Brachypodium chromosomes. Another 3B BAC clone, 3B-100-L17 residing at the 15 

centromere of 3B chromosome, did not give any FISH signals on the Brachypodium 16 

chromosomes (Fig. 1b, Table 3). Neither the two BAC clones from Ae. speltoides nor the 17 

one from Ae. tauschii produced any FISH signals in Brachypodium, indicating that the 18 

centromeric repeats in Triticeae have diverged from those in Brachypodium 19 

 20 

Sequence organization of Brachypodium–specific centromeric BAC clones 21 

 22 

Common repeats in the four Brachypodium BACs 23 
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 1 

Sequence annotation was performed in four Brachypodium BAC clones, DH017G05, 2 

DB069J23, DB042E22, and DB088O14. Because these BACs produced strong signals 3 

only on Brachypodium centromeres in FISH experiments, they were all tested for the 4 

presence of the 156 bp centromeric satellite repeat Bd_CENT (The International 5 

Brachypodium Initiative, 2010) and found to be negative. The self alignments revealed 6 

that DB069J23 was highly repetitive, and multiple copies of repeats were scattered in a 7 

225 kb region (Fig. S1). Further comparison indicated that this repetitive region in 8 

DB069J23 was also present in the other three BACs with variable copies. Using 9 

RepeatScout program, a total of 26 repeat elements (>4 copies) were identified in 10 

DB069J23, and nine of them were repeated more than 10 times. The most abundant 11 

repeats could be assembled into two contigs with >80% sequence similarity, indicating 12 

they belong to two repeat elements. Based on the Blastn searches against DB069J23 and 13 

the Brachypodium whole genome sequence, these two repetitive contigs were represented 14 

by two fragments in DB069J23, designated as RM-1 (DB069J23:107658-109770; 2113 15 

bp) and RM-2 (DB069J23:271259-271757; 499 bp). In DB069J23, RM-1 fragment had 16 

46 copies with a total accumulative length of 49.3 kb and RM-2 had 24 copies with an 17 

accumulative length of 9.6 kb (e-value < 1e-10). The conserved sequences of RM-1 in 18 

DB088O14, DB042E22 and DH017G05 were 12.8, 2.4 and 9.8 kb, respectively. As for 19 

RM-2, that was 3.7, 1.5 and 2.4 kb, respectively.  20 

 21 

RM-1 and RM-2 are a part of a single LTR specific to Brachypodium 22 
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Detailed analysis of the Brachypodium genomic regions containing RM-1 and RM-2 1 

revealed that these two repeats were parts of the LTR of one Gypsy retrotransposon found 2 

in BAC DB088O14, designated as  CRBd1 (Centromeric Retrotransposon of B. 3 

distachyon, GeneBank # KF040483)  (Fig. 4a). RM-1 and RM-2 were located 4 

immediately at the 3’ and 5’ end of the LTR, respectively. The complete LTR was about 5 

3.3 kb in length, and between the RM-1 and RM-2 was a region with high GC content 6 

(~70%).  Eight full length copies of CRBd1 were identified in the Brachypodium genome, 7 

with size ranging from 12. 5 kb to 12.8 kb (Supplementary file 1), and five of them were 8 

located less than 3 Mb from the centromeres or chromosome fusion points (Fig. 5, Table 9 

S2). The insertion time of the eight full length CRBd1 was estimated to be in the range of 10 

0.01 to 1.34 million years ago (Mya). Target site duplications (TSD) were found in 7 of 11 

them. In the internal region (~6.2 kb) between two LTRs, there were one Zinc knuckle 12 

domain (pfam: zf-CCHC) and one chromatin organization modifier domain (pfam: 13 

Chromo), besides feature proteins present in a typical LTR retrotransposable element 14 

such as retrotransposase (Fig. 4a). Using the chromodomain identified in CRBd1as query 15 

sequence, a total of 420 copies (e-value < 1e-5) were identified in whole Brachypodium 16 

genome. The distribution patterns of chromodomain are well consistent with that of 17 

CRBd1 which is enriched in centromere regions (Fig. 5). 18 

 19 

No full length element of CRBd1was identified in the four Brachypodium BACs. In BAC 20 

DB088O14, two truncated and one fragmented elements, and one partial LTR and one 21 

solo LTR were clustered in a 65.7 kb region in a different retrotransposon (Fig. 4b). The 22 

CRBd1 homologous sequences occupied a total of 44.6 kb (67.9%) of this region. In 23 



 14

comparison, CRBd1 element was more abundant in DB069J23 than in DB088O14 (Table 1 

5), and the total length of homologous region was 101.2 kb. More copies of the LTR than 2 

the internal region of CRBd1 were present in DB069J23 (Fig. 4c), and 6 solo LTRs with 3 

TSD were identified.   4 

 5 

By searching the Brachypodium genome assembly with e-value of 1e-10, CRBd1 totally 6 

occupied 4.41 Mb in length and constituted 1.6% of the whole genome. Consistent with 7 

the distribution pattern in DB069J23 (Fig.4c), the LTR of the CRBd1 was much more 8 

abundant than the internal region, and many solo LTRs could be identified in the 9 

Brachypodium genome (data not shown). The LTR of CRBd1 was obviously enriched in 10 

the centromeric regions or Bd_CENT containing regions (Fig. 5). The top three most 11 

abundant regions included the centromere of Bd chromosome 1, and two chromosome 12 

fusion points (The International Brachypodium Initiative, 2010) on the long arm of Bd 13 

chromosome 2 and the short arm of Bd chromosome 3. The total length of the sequences 14 

homologous to the LTR is 2.76 Mb in the Brachypodium genome.  15 

 16 

Based on the sequence comparison to other grass species, the LTR of CRBd1 was 17 

specific to Brachypodium. Only few sequences were found in wheat and barley with 18 

limited conservation to small sections of the LTR. Given the genome coverage of the 19 

current Triticeae datasets, the copy number of the homologous sequence should be very 20 

low in wheat or barley. No conserved LTR sequence was found in rice, maize, sorghum 21 

and rye. However, in these species, retrotransposons could be found that had about 70% 22 

DNA sequence identity to the internal region of CRBd1, and the retrotransposons also 23 
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had the conserved zf-CCHC and Chromo domains. Furthermore, the boundary sequences 1 

(10-15bp) of the LTRs were conserved among the cereal species (Fig. 6).   2 

Other retrotransposons in the four Brachypodium BACs 3 

 4 

Besides CRBd1, another four retrotransposons were identified in at least one BAC (Table 5 

4). CRBd2 (GeneBank # KF040484, Fig. 4b) was identified in DB088O14 as a full length 6 

Gypsy retrotransposon that showed 73% DNA sequence similarity to the rice centromeric 7 

retrotransposon CRR3 (GenBank # DQ458292). One full length CRBd2 and one solo 8 

LTR were found in DB069J23 and DH017G05, respectively. The distribution of CRBd2 9 

was also associated with centromeric regions or Bd_CENT containing regions (data not 10 

shown). Its low content in the Brachypodium genome (263.7kb, 0.097%) indicates that 11 

CRBd2 was not highly repetitive (Table 4). Other three common retrotransposons which 12 

we term ‘retrotransposon element of B. distachyon’ (REBd) including two Gypsy 13 

retrotransposons, REBd1 (GeneBank # KF0404850) and REBd2 (GeneBank # 14 

KF040486), and one Copia element REBd3 (GeneBank # KF040487), were found in 15 

DB088O14, DB069J23, and DH017G05, respectively (Table 4). These retrotransposons 16 

were randomly distributed along the chromosomes without any obvious association with 17 

centromeric regions.  18 

 19 

In DB088O14, we observed the amplification of CRBd1 in the internal region of REBd1 20 

element (Fig. 4b). After at least two rounds of insertion and deletion, one CRBd1 cluster 21 

formed contained three truncated CRBd1 and two solo LTRs. Based on a substitution rate 22 

of 1.3×10-8 per site per year, the REBd1 containing the CRBd1cluster was originally 23 



 16

inserted in between the genes Bradi3g44470 and Bradi3g44480 about 2.71 million years 1 

ago (MYA). Another REBd1 retrotransposon at the 3’end of BAC DB088O14 was 2 

inserted 3.27 MYA. In comparison, the REBd3 was a young retrotransposon inserted 0.23 3 

MYA and another homolog REBd3 in DB042E22 was inserted 0.03 MYA with only one 4 

nucleotide substitution between the two LTRs (1328 bp). 5 

  6 

Discussion   7 

 8 

Brachypodium centromeres, similar to cereal centromeres (rice, maize, and sorghum), 9 

mainly consist of centromeric satellite sequences and retrotransposons (The International 10 

Brachypodium Initiative 2010; Wen et al. 2012). Centromeric satellite sequences have 11 

evolved and diverged rapidly and are largely species-specific, whereas centromere 12 

retrotransposons (CR) appear to evolve more slowly (Round et al. 1997; Ananiev et al. 13 

1998; Copenhaver et al. 1999; Henikoff et al. 2001; Cheng et al. 2002; Jin et al. 2004, 14 

2005; Hall et al. 2003; Lee et al. 2005; Tek et al 2010). In the cereal species, CRRs in 15 

rice, CRMs in maize, CRWs and Quinta in wheat, and Cereba in barley are highly 16 

conserved across related genomes and over long evolutionary periods (Dong et al. 1998; 17 

Miller et al. 1998; Presting et al. 1998; Hudakova et al. 2001; Zhang P et al. 2004; Liu et 18 

al. 2008; Sharma and Presting 2008; Li et al. 2013). However, it was surprising to 19 

observe that eight selected Brachypodium centromeric-BAC clones did not hybridize to 20 

any centromeres of rice and maize. In addition, three of them also did not hybridize to the 21 

centromeres of rye, wheat, and barley (Table 2).  22 

 23 



 17

Sequence annotation of the four BACs revealed that two repetitive elements, RM-1 and 1 

RM-2 , were abundant in the Brachypodium genome, and belong to parts of the LTR of a 2 

truncated gypsy retrotransposon, CRBd1, derived from BAC DB088O14 (Fig. 4). CRBd1 3 

element was represented in all four BACs, and accounted for 4.4 Mb (1.6%) of the B. 4 

distachyon genome (Table 4). The LTR of CRBd1 harboring the RM-1 and RM-2 is 5 

enriched in Brachypodium centromeric regions (Fig. 5), and is appeared to be a 6 

Brachypodium specific sequence. Although LTRs usually diverge faster than the other 7 

parts of the retrotransposons, highly conserved DNA motifs were found in the LTRs of 8 

the CR elements from rice, maize, and barley (Nagaki et al. 2003a). However, our results 9 

indicate that the 3’end LTR of CRBd1 is significantly diverged in the other grass 10 

genomes tested and had undergone rapid amplification in the regions of the currently 11 

active centromeres during evolution of B. distachyon centromeres. 12 

 13 

Comparative sequence analysis between Brachypodium, wheat, rice, and sorghum 14 

revealed nested insertions of entire chromosomes into centromeric regions during the 15 

evolution of five Brachypodium chromosomes from a 12-chromosome ancestor of all 16 

grasses (The International Brachypodium Initiative 2010; Qi et al. 2010). Three of four 17 

BACs analyzed, DH017G05, DB042E22, and DB088O14, were located at inactive 18 

centromeres of Bd chromosomes 2 and 3, and both DH017G05 and DB042E22 are in the 19 

fusion points of these chromosomes, indicating that these BAC clones were originally 20 

located at the centromeric regions of ancestral chromosomes (Fig. 5). However, all these 21 

BAC clones do not contain Brachypodium centromere satellite repeat, Bd_CENT. FISH 22 

results showed that they landed to the active centromeres of Brachypodium, and none 23 
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yielded FISH signals at their original positions. These results imply that the accumulation 1 

of the CR elements originally present in these BACs have preferentially occurred in the 2 

regions of the currently active centromeres. It is also evident that the CR element of 3 

CRBd1 is more abundant in BAC DB069J23, which is located at the active centromere 4 

region of Bd chromosome 4 (Fig. 5). The conserved sequence of CRBd1 were 101.2 kb in 5 

length in DB069J23 compared to 44.6 kb in DB088O14, 20.8 kb in DH017G05, and 7.5 6 

kb in DB042E22 (Table 4). These results support the hypothesis that redundant 7 

centromeres in Brachypodium chromosomes became inactive by the loss of centromeric 8 

retrotransposons and rapid turnover of centromere-specific satellites (Qi et al. 2010). In 9 

other words, the Brachypodium active centromeres maintain centromere satellite repeats 10 

and accumulate CR elements as a result of centromere drive (Ma et al. 2007; Wu et al. 11 

2009). Only eight full length retrotransposons of CRBd1 were found in the Brachypodium 12 

genome, and many solo-LTR of CRBd1 are present in the four BACs analyzed and in the 13 

Brachypodium genome, revealing that CRBd1 is an ancient centromeric retrotransposon. 14 

 15 

Rice and Brachypodium diverged approximately 40-54 MYA, while Brachypodium and 16 

wheat diverged approximately 30 MYA (The International Brachypodium Initiative 17 

2010). Although their genomes vary in size and basic chromosome numbers, gene 18 

content and gene order has been largely conserved. The conserved genes were also 19 

reported to be present in the centromere regions of rice, wheat, and Brachypodium, which 20 

share the syntenic blocks among several sets of homologous centromeres (Qi et al. 2010). 21 

However, the Brachypodium CR elements appear to be highly divergent from other grass 22 

species, especially from rice and maize. Except three BAC clones mentioned above, five 23 
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other Brachypodium centromeric BAC clones also did not yield any FISH signals in rice 1 

and maize. These BAC clones were obtained by screening Brachypodium BAC library 2 

using Hi10 as probe (Table 2). Hi10 was isolated from B. sylvaticum, a species diverged 3 

from B. distachyon approximately 1.7-2.0 MYA (Buchmann et al. 2012), and contains 4 

CCS1 sequence belonging to a cereal centromeric retrotransposon (Abbo et al. 1995; 5 

Aragon-Alcaide et al. 1996). Wen et al. (2012) also reported that CCS1 failed to label B. 6 

distachyon centromeres and its homologous sequences are comparatively less abundant in 7 

the B. distachyon genome. In addition, all five Triticeae centromeric BAC clones used in 8 

the present study, except one, 3B-40-L07, did not yield any FISH signals in the 9 

Brachypodium centromeres (Table 3) (Qi et al. 2009, 2010). Among them,  the 3B BAC 10 

clone, 3B-100-L17, is a known 3B centromeric BAC placed in the centromere of 3B 11 

chromosome by megabase sequencing analysis, which is highly collinear to the 12 

centromere of rice chromosome 1 (Choulet et al. 2010). An extensive comparison of 13 

centromeric sequences and distribution of CR elements among rice, maize, wheat, and 14 

Brachypodium might be needed for a complete understanding of the molecular and 15 

evolutionary mechanisms underlying the conserved function of centromeres in cereal 16 

species. 17 
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 1 

Table 1 List of BAC clones selected for BAC-FISH    

Probed by BAC clones 
Contigs or 
chromosome Classification Reference 

Hi10 DH007B23 Ctg118 Brachypodium BAC This research 
Hi10 DH021M4 Ctg271 Brachypodium BAC This research 
Hi10 DH008A23 Ctg290 Brachypodium BAC This research 
Hi10 DH010C12 Ctg42 Brachypodium BAC This research 
Hi10 DH029E4 Ctg42 Brachypodium BAC This research 
Hi10 DH010J10 Singleton Brachypodium BAC This research 
Hi10 DH010O24 Singleton Brachypodium BAC This research 
Hi10 DH017I23 Singleton Brachypodium BAC This research 
pRCS1 DH054L6 Singleton Brachypodium BAC This research 
pRCS1 DH064P10 Singleton Brachypodium BAC This research 
pRCS1 DH070K6 Singleton Brachypodium BAC This research 
pRCS1 DH078K1 Singleton Brachypodium BAC This research 
pRCS1 DH085J19 Singleton Brachypodium BAC This research 
pRCS1 DH086J9 Singleton Brachypodium BAC This research 
BG313557-3L† DH017G05 Bd 2 Brachypodium BAC Qi et al. 2010 
 DH039C01 Bd 2 Brachypodium BAC Qi et al. 2010 
BE637507-4L† DB069J23 Bd 4 Brachypodium BAC Qi et al. 2010 
BE405809-6S† DB042E22 Bd 3 Brachypodium BAC Qi et al. 2010 
BE405195-6S† DB088O14 Bd 3 Brachypodium BAC Qi et al. 2010 
pAet6-09 3B-100-L17 Ctg796 Wheat 3B BAC Qi unpublished data 
 3B-40-L07 Ctg796 Wheat 3B BAC Qi unpublished data 
BF202706-4DL 21E12 NA Ae. speltoides BAC Qi et al. 2009 
 256K19 NA Ae. speltoides BAC Qi et al. 2009 
BE497309-4DS HD008H01 Singleton Ae. tauschii BAC Qi et al. 2009 
† wheat pericentromeric EST. Brachypodium BAC clone was selected based on the sequence  

similarity to the wheat EST.    
 2 

3 
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 1 
Table 2 The results of BAC-fluorescence in situ hybridization (FISH) of Brachypodium BAC clones  
 on the mitotic chromosome complements of Brachypodium, rye, wheat, barley, rice, and maize.   

Probed by 
 BAC 
clones  

BAC-FISH signal 

B.d21 Rye wheat Barley Rice Maize 

Hi10 DH021M4 ++++ +++ +++ +++ - - 

Hi10 DH029E4 ++++ +++ +++ ++ - - 

Hi10 DH010C12 ++++ +++ ++ + - - 

Hi10 DH007B23 +++ ++ + - - - 

Hi10 DH008A23 ++++ ++ + - - - 

Hi10 DH017I23 +++ ++ NA NA NA NA 

pRCS1 DH054L6 +++ ++ NA NA NA NA 

pRCS1 DH085J19 ++++ ++ NA NA NA NA 

pRCS1 DH086J9 ++++ ++ NA NA NA NA 

Hi10 DH010J10 +++ + NA NA NA NA 

Hi10 DH010O24 +++ + NA NA NA NA 

pRCS1 DH064P10 ++++ + NA NA NA NA 

pRCS1 DH070K6 ++++ + NA NA NA NA 

pRCS1 DH078K1 ++++ + NA NA NA NA 

BG313557-3L† DH039C01 ++++ + NA NA NA NA 

BE637507-4L† DB069J23 ++++ + NA NA NA NA 

BG313557-3L† DH017G05 ++++ - - - - - 

BE405809-6S† DB042E22 ++++ - - - - - 

BE405195-6S† DB088O14 ++++ - - - - - 
 - and + represent, respectively, the absence and presence of hybridization signals: ++++, very strong 
signal; +++,  strong signal; ++, weak signal; +, very weak signal.   
†wheat pericentromeric EST. Brachypodium BAC clone was selected based on the sequence   
similarity to the wheat EST.     

NA: not apply. 2 
3 
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 1 
Table 3 The results of BAC-fluorescence in situ hybridization (FISH) of Triticeae BAC clones on  2 
the mitotic chromosome complement of wheat Chinese Spring (CS) and B. distachyon (B.d21) 3 

BAC clones 
BAC-FISH signal 

CS B.d21 

3B-40-L07 +++ ++ 
3B-100-L17 +++ - 
21E12 +++ - 
256K19 +++ - 
HD008H01 +++ - 

- and + represent, respectively, the absence and presence of hybridization signals: +++,   4 
strong signal; ++, weak signal. 5 
 6 
Table 4 Common LTR retrotransposons identified in the four Brachypodium BACs 7 

No. Name Family Structure 

Total length of conserved sequence (kb) 

DB069J23 DB088O14 DB042E22 DH017G05 
whole 

genome 

1 
 CRBd1 

(9.76 kb) 
Gypsy truncated 101.2 44.6 7.5 20.8 4,410.6

†
 

2 
 CRBd2 

(7.23 kb) 
Gypsy 

Full length, 

similar to rice 

CRR3 

7.6 

(Full 

length) 

7.2 

(Full 

length) 

0.3 
0.9 

(solo LTR) 
263.7 

3 
 REBd1 

(11.64kb) 
Gypsy Full length 2.2 22.2 11.3 

0.9 

(solo LTR) 
2,011.1 

4 

 

 REBd2  

(7.29 kb) 

Gypsy 
Internal 

coding region 
15.1 0 12.4 11.9 4264.0 

5 

 

REBd3  

(8.03 kb) 

Copia Full length 0 0 

8.0 

(Full 

length) 

8.0 

(Full 

length) 

913.5 

†
 Of them, the total length of sequences conserved to the LTR region of CRBd1 was 2758.7 kb. 8 

9 
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 1 
Table S1 Hybridization results of positive Brachypodium BACs with centromeric-specific  2 
clones, Hi10, pAet6-09, and pRCS1 3 

Probed by Associated BAC  
No. fragments of BAC hybridizing to: 
Hi10 pAet6-09 pRCS1 

Hi10 DH002F21 8 8 2 
 DH007B23† 2 2 0 
 DH007C24 7 7 1 
 DH008A23† 8 8 3 
 DH010C12† 6 7 1 
 DH010J10† 10 10 1 
 DH010O24† 14 16 3 
 DH026L22 4 2 2 
 DH014I5 2 4 2 
 DH017I23† 7 7 2 
 DH021M4† 2 3 1 
 DH024H22 9 11 1 
 DH029E4† 5 5 1 
pRCS1 DH003K1 3 5 1 
 DH011N9 5 6 2 
 DH014I7 7 9 2 
 DH017C21 7 6 4 
 DH027C19 0 1 2 
 DH028M13 9 9 3 
 DH030F13 4 2 2 
 DH031H5 3 3 3 
 DH032L2 3 3 2 
 DH032J23 1 1 2 
 DH039M8 9 9 3 
 DH042I3 5 5 3 
 DH054L6† 10 9 3 
 DH056C10 5 5 2 
 DH060A1 5 8 1 
 DH062J15 6 7 2 
 DH064P10† 11 12 2 
 DH070K6† 10 10 2 
 DH078K1† 12 12 4 
 DH085J19† 15 13 2 
 DH086J9† 14 13 4 
 DH087M5 3 4 1 
 DH089N24 9 9 1 
 DH090B7 5 6 1 
  DH090F5 8 8 3 
† selected for BAC-FISH    

 4 
5 
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 1 
Table S2 Distribution of the full-length CRBd1 in B. distachyon genome  2 

Chromosome 
No. 

Position of Bd_CENT repeats 
in centromere regions 

Position of Bd_CNET repeats 
in chromosome fusion points 

Position of Bd_CNET repeats 
outside of the centromeres 

Position of full length CRBd1
(Insertion time) 

1 37.379-38.177 Mb (1294)
 †

 24.696-24.700 Mb (27)  23.017-23.020 Mb (13), 39.080-39.093 Mb  (0.14Myr) 

  50.742-50.744 Mb (13) 30.402 Mb (2) 70.916-70.929 Mb  (0.01Myr) 

   36.856-36.866 Mb (47)   

   40.922 Mb (3)  

2 28.989-29.716 Mb (340) 12.733-12.735 Mb (13)  26.344-26.357 Mb (0.06Myr) 

  40.087-40.088 Mb (12)   

3 25.158-25.675 Mb (1607) 11.136-11.153 Mb (28) 24.365-24.388 Mb (53)  

4 20.641-21.023 Mb (1264) 24.724-24.734 Mb (61)  8.206-8.219 Mb (0.02Myr) 

    22.075-22.088 Mb (1.34Myr) 

    26.875-26.888 Mb (0.01Myr) 

5 7.608-7.731 Mb (194)  7.293-7.314 Mb (14) 1.524-1.537 Mb (0.12Myr) 

      8.103 Mb (1) 9.032-9.045 Mb (0.14Myr) 

†The numbers in parentheses represent the copy numbers of Bd_CENT  
 3 
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Figure legends  1 
Figure 1 2 

 3 

Fig. 1 Wheat 3B BAC clone 3B-100-L17 hybridized to mitotic chromosomes of wheat 4 

(a) and Brachypodium (b). No FISH signal was observed in Brachypodium chromosomes 5 

(b). Brachypodium BAC clone DB088O14 hybridized to mitotic chromosomes of 6 

Brachypodium (c) and rye (d). No FISH signal was observed in rye chromosomes (d), as 7 

well as in wheat, barley, maize, and rice (data not shown). Scale bar is 5 µm. 8 

 9 
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Figure 2 1 

 2 

Fig. 2 Brachypodium BAC clone DH029E4 hybridized to mitotic chromosomes of wheat 3 

(a), rye (b), barley (c), Brachypodium  (d), Maize (e), and rice (f). No FISH signal was 4 

observed in maize (e) and rice (f) chromosomes. Scale bar is 5 µm. 5 

6 
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Figure 3 1 

 2 

Fig. 3 Brachypodium BAC clone DH007B23 hybridized to mitotic chromosomes of 3 

wheat (a), barley (b), rye (c), maize (d), Bd21 (e), and rice (f). No FISH signal was 4 

observed in the chromosomes of barley (b), maize (d), and rice (f). Scale bar is 5 µm. 5 

 6 
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Figure 4 1 

2 
 3 

Fig. 4 The structure and distribution of the retrotransposon CRBd1. a) The full length 4 

element of CRBd1 retrotransposon in Brachypodium was 12.5-12.8 kb in length with 5 

LTRs of 3.1-3.3kb. The deduced coding sequence contains typical domains of 6 

retrotransposon: gag protein (Retrotrans_gag), pol protein (RVP_2), reverse transcriptase 7 

(RVT_1), RNase H1 and integrase (rev), as well as other two domains, the Zinc knuckle 8 

domain (zf-CCHC) and Chromatin Organization Modifer domain (Chromo). The 9 

Brachypodium specific repeats, RM-1 and RM-2 identified in DB069J23, were fragments 10 

of the LTR region of CRBd1. b) Distribution of the retrotransposons in the BAC 11 
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DB088O14. The green boxes represent the 11 gene models in the 200kb-region of 1 

chromosome 3:46336326..46536325. Black lines flanked by two boxes indicate 2 

retrotransposons, under which the names were labeled. Retrotransposons were inserted 3 

into other retrotransposons or intergenic region. A CRBd1 cluster was noticed in this 4 

BAC, including the truncated elements and solo-LTRs. The insertion time of full length 5 

retrotransposons were calculated and labeled under the elements. c) The dot matrix view 6 

of the alignment between BAC DB069J23 (Bd4: 22540676..22840675) and the 7 

retrotransposon CRBd1(DB088O14:25723..35498), indicating the distribution of the 8 

sequences with similarity to CRBd1 in this BAC. For simplicity, only the internal region 9 

and the 3’LTR of CRBd1 were used for comparison.  10 

11 
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Figure 5 1 
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 3 

Fig. 5 The distribution histograms of the LTR of CRBd1 on the Brachypodium 4 

chromosomes. The total sequence length (kb) of alignments in 1Mb window was plotted 5 

along the chromosomes. The positions of centromeres, chromosome fusion points, and 6 

Bd_CENT containing regions outside of the centromeres were marked. The arrows point 7 

the positions of the four Brachypodium BACs, and the gray bars represent the positions 8 

of the eight full-length CRBd1.  9 

10 
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Figure 6 1 
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Fig. 6 Sequence alignment of the LTRs from different species. Full length 4 

retrotransposons were identified in species of Brachypodium (Bd, chr1_ 5 

70915934..70928501), wheat (Ta, FN564426_562537..573702), barley (Hv, 6 

AC250228_46960..58979), rice (Os, AP008246_54271..66260), maize (Zm, 7 

AF448416_48249..61044) and sorghum (Sb, chr9_9757379..9770073) respectively. The 8 

boundaries (30 bp from the 5’ and 3’ end, respectively) of the LTRs were used for 9 

alignment. The numbers on right indicate the length of 5’ and 3’ LTR for each 10 

retrotransposon. 11 

 12 
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Figure S1 1 

2 
Fig. S1 The dot matrix view of self alignment of the BAC DB069J23. 3 
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