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Abstract 
 
Intestinal ischemia-reperfusion (IR)-induced injury results from a complex cascade of 

inflammatory components. In the mouse model of intestinal IR, the serum protein, β2-

glycoprotein I (β2-GPI) binds to the cell surface early in the cascade. The bound β2-GPI 

undergoes a conformational change which exposes a neoantigen recognized by naturally 

occurring antibodies and initiates the complement cascade. We hypothesized that providing 

additional antigen with exogenous β2-GPI would alter IR-induced tissue injury. Administration of 

human but not mouse β2-GPI attenuated IR-induced tissue damage and prostaglandin E2 

production indicating a physiological difference between β2-GPI isolated from the two species. 

To investigate whether structural features were responsible for this physiological difference, we 

compared the chemical, physical and biochemical properties of the two proteins. Despite 

possessing 76% amino acid identity and 86% sequence homology, we found that mouse β2-

GPI differs from the human protein in size, carbohydrate chain location, heterogeneity and 

secondary structural content. These data suggest that the structural differences result in mouse 

Ab recognition of soluble human but not mouse β2-GPI and attenuated IR-induced injury. We 

conclude that caution should be exercised in interpreting results obtained by using human β2-

GPI in a mouse model. 
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1. Introduction 

 

Ischemia induces tissue damage which is exacerbated during subsequent tissue reperfusion. 

Multiple studies identified a sequence of events that lead to increased injury and inflammation. 

The sequence requires formation of a cell bound antigen/antibody complex resulting in 

excessive complement activation and prostaglandin E2 (PGE2) production (Austen et al., 1999; 

Fruchterman et al., 1998; Hill et al., 1992; Moses et al., 2009). Previous studies indicated that 

complement activation is required for intestinal injury with all three complement initiating 

pathways playing a role (Chen et al., 2009; Hart et al., 2005; Williams et al., 1999). Other 

studies indicated that PGE2 production is necessary but not sufficient for ischemia/reperfusion 

(IR)-induced intestinal damage (Moses et al., 2009; Pope et al., 2010). The requirement for 

naturally occurring antibodies (Ab) in IR-induced, complement-mediated tissue injury and PGE2 

production was previously established ( Weiser et al., 1996; Williams et al., 1999; Sparkes et al., 

2010). Together these studies present a complex pathogenic cascade of inflammatory 

components triggering IR-induced tissue damage. 

 

In contrast to the mechanisms of injury, the specific antigens recognized by the Ab are not as 

clearly defined. Naturally occurring Ab frequently bind with low affinity and cross react with 

multiple antigens (Avrameas, 1991; Martin and Kearney, 2000). Multiple antigen/antibody 

complexes have been identified as initiators of IR-induced injury, including non-muscle myosin 

and annexin IV (Kulik et al., 2009; Zhang et al., 2004). Previously, we demonstrated that 

naturally occurring anti-β2 glycoprotein I (β2-GPI) Ab are instrumental in intestinal IR-induced 

tissue damage (Fleming et al., 2004). In addition, peptides derived from the mouse β2-GPI 

sequence attenuated β2-GPI binding to cell membranes and subsequent intestinal injury in the 

mouse model of intestinal IR (Fleming et al., 2010). Together, these data suggest that natural 

Ab recognition of cell surface bound β2-GPI is critical to IR-induced tissue damage.  
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β2-GPI, also referred to as apolipoprotein H, is a heavily glycosylated, 43 kDa protein found in 

the plasma (Gries et al., 1989). Purified human β2-GPI contains multiple glycosylation sites with 

varied sialic acid content yielding 5-7 species with different isoelectric points (Gries et al., 1989). 

The 3D structure of membrane-bound human β2-GPI indicates five domains in a J-shaped 

chain (open conformation) whereas the soluble protein appears to be a condensed ring-like 

structure (closed conformation) (Agar et al., 2010; Hammel et al., 2002; Schwarzenbacher et al., 

1999). Importantly, Ab recognition of the protein requires neoantigen exposure that occurs when 

β2-GPI binds to a cell surface and takes on the J-shaped chain conformation (Fig. 1A). Domain 

5 contains three disulfide bonds, a lysine rich peptide sequence and a hydrophobic quadruplet 

(Bouma et al., 1999) which interact and bind with amphipathic anionic molecules such as 

phosphatidylserine exposed on early apoptotic cells (Balasubramanian et al., 1997; 

Balasubramanian et al., 2005).  

 

Despite the relatively high concentration of β2-GPI in the plasma (4-5µM) (Agar et al., 2011b), 

specific physiological roles for the protein are not yet well defined. However, human β2-GPI is 

clearly involved in the autoimmune diseases, anti-phospholipid syndrome and systemic lupus 

erythematosus (Cabiedes et al., 1995). Multiple activities have been ascribed to β2-GPI, such 

as binding to cellular debris with exposed negative charges, nucleic acids, apoptotic bodies and 

endothelial microvesicles (Hagihara et al., 2002; Manfredi et al., 1998). Recent studies 

demonstrated that β2-GPI scavenges lipopolysaccharide from the blood stream (Agar et al., 

2011a; Agar et al., 2011c; Fischetti et al., 2005; Laplante et al., 2011; Meroni et al., 2001; 

Tolomeo et al., 2009); moreover, β2-GPI also binds to Streptococcal protein H (Nilsson et al., 

2008) and other pathogenic derived proteins (Stefas et al., 2011).  
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As β2-GPI-derived peptides attenuate deposition of both β2-GPI and anti-β2-GPI Ab in 

response to IR, it is possible that administration of exogenous β2-GPI may alter IR-induced 

injury. As indicated in Figure 1, additional β2-GPI may be deposited on the cell surface leading 

to increased Ab binding, complement activation and subsequent injury (Fig. 1B). It is also 

possible that purification of the proteins structurally alters β2-GPI preventing Ab recognition of 

cell surface bound β2-GPI and resulting in attenuated injury (Fig. 1C). Finally, purification of β2-

GPI may change the conformation and allow formation of soluble immunocomplexes (Fig. 1D) 

which precludes Ab recognition of endogenous β2-GPI and results in attenuated IR-induced 

tissue injury.  

We initially tested the overall hypothesis that treating with β2-GPI would alter intestinal injury by 

injecting mice with purified β2-GPI prior to inducing Sham or IR-induced injury. Neither human 

β2-GPI nor the mouse protein exacerbated tissue damage. Surprisingly, human, but not mouse 

β2-GPI protein, attenuated IR-induced tissue damage and PGE2 production, suggesting that a 

structural and/or physiological difference of soluble human β2-GPI prevents IR-induced injury in 

the mouse. Despite possessing 76% amino acid identity and 86% sequence homology, we 

further demonstrate that human and mouse β2-GPI contain distinct chemical, physical and 

biochemical properties which contribute to the differences observed in IR-induced injury and 

inflammation in the mouse.  
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2. Methods 

2.1 Mice 

C57Bl/6, Balb/c, and Rag-1-/- mice were obtained from Jackson Laboratories and bred in the 

Division of Biology at Kansas State University with free access to food and water. Mice were 

maintained in a specific pathogen free environment (Helicobacter species, mouse hepatitis 

virus, minute virus of mice, mouse parvovirus, Sendai virus, murine norovirus, Mycoplasma 

pulmonis, Theiler’s murine encephalomyelitis virus, and endo- and ecto-parasites). Research 

was conducted in compliance with the Animal Welfare Act and other federal statutes and 

regulations relating to animals and experiments involving animals and was approved by the 

Institutional Animal Care and Use Committee at Kansas State University.  

2.2 Ischemia/Reperfusion 

Animals were subjected to IR similar to previously described studies (Moses et al., 2009). 

Briefly, ketamine (16 mg/kg) and xylazine (80 mg/kg) anesthetized male mice (2-4 months old) 

were administered buprenorphine (0.06 mg/kg) for pain. After laparotomy and a 30 min 

equilibration period, ischemia was induced by application of a small vascular clamp (Roboz 

Surgical Instruments, Gaithersburg, MD) to the isolated superior mesenteric artery. Ischemia 

was visually confirmed by blanching of the mid-jejunum. The bowel was covered with moistened 

surgical gauze to prevent desiccation. After 30 min of ischemia, the clamp was removed and the 

intestines reperfused for 2 h. Reperfusion was confirmed by observing a pinkish color change of 

the bowel and the return of pulsatile flow to the mesenteric artery and its branches. Some mice 

received β2-GPI (either purified or purchased from Aro Tec (Wellington, New Zealand) or 

Fitzgerald, (Acton, MA)) i.v. 30 min prior to ischemia. Sham-treated animals underwent the 

same surgical intervention without occlusion. All procedures were performed with the animals 

breathing spontaneously and body temperature maintained at 37°C using a water-circulating 

heating pad. Additional ketamine and xylazine was administered as needed and immediately 
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prior to sacrifice. After sacrifice, 2 cm sections of the small intestine, 10 cm distal to the 

gastroduodenal junction were harvested for histologic evaluation and PGE2 determination.  

2.3 Histology and Immunohistochemistry 

Small intestine specimens were promptly fixed in 10% buffered formalin phosphate and 

embedded in paraffin, sectioned transversely (8µm), and H&E stained. The mucosal injury score 

(SMI) was graded on a six-tiered scale modified from Chiu et. al. (Chiu et al., 1970). Briefly, the 

average damage score of the intestinal section (75-150 villi) was determined after grading each 

villus from 0-6. Normal villi were assigned a score of zero; villi with tip distortion were assigned a 

score of 1; a score of 2 was assigned when Guggenheims’ spaces were present; villi with 

patchy disruption of the epithelial cells were assigned a score of 3; a score of 4 was assigned to 

villi with exposed but intact lamina propria with epithelial sloughing; a score of 5 was assigned 

when the lamina propria was exuding; last, villi that displayed hemorrhage or were denuded 

were assigned a score of 6. Photomicrographs were obtained from H&E stained slides using a 

20X, 0.5 Plan Fluor objective on Nikon 80i microscope and images acquired at room 

temperature using a Nikon DS-5M camera with DS-L2 software. Additional intestinal sections 

were snap frozen in OCT freezing medium and 8µm cryosections cut for analysis of C3 

deposition as described previously (Fleming et al., 2010). Briefly, acetone fixed slides were 

blocked with 10% normal donkey sera for 30 min at 37oC prior to staining with rat anti-mouse C3 

Ab (Hycult Biotechnologies, Plymouth Meeting, PA) for 1 hr at room temperature and followed 

by a Texas-red conjugated donkey-anti-rat IgG secondary Ab (Jackson Immunoresearch, West 

Grove, PA). Each experiment contained serial sections stained with the appropriate isotype 

control Ab. All slides were mounted with ProLong Gold (Invitrogen, Grand Island, NY). A blinded 

observer obtained images at room temperature using a Nikon eclipse 80i microscope equipped 

with a CoolSnap CF camera (Photometrics, Tucson, AZ) and analyzed using Metavue software 

(Molecular Devices, Sunnyvale, CA).  
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2.4 Eicosanoid and Cytokine Determination 

The ex vivo generation of eicosanoids from small intestinal tissue was determined as described 

previously (Sjogren et al., 1994). Briefly, fresh mid-jejunum sections were minced, washed and 

resuspended in 37°C oxygenated Tyrode’s buffer (Sigma, St. Louis, MO). After incubating for 20 

min at 37°C, supernatants were collected and supernatants and tissue were stored at -80°C 

until assayed. The concentration of prostaglandin E2 (PGE2) was determined using an enzyme 

immunoassay kit (Cayman Chemical, Ann Arbor, MI). The tissue protein content was 

determined using the bicinchoninic acid assay (Pierce, Rockford, IL) adapted for use with 

microtiter plates. PGE2 production was expressed per mg protein per 20 min.  

2.5 β2-GPI Purification 

Human and mouse (C57Bl/6, Balb/c or Rag-1-/-) β2-GPI were purified using the procedure 

described and modified previously (Schultze, 1961; Wurm, 1984). Briefly, perchloric acid was 

added dropwise to ice cold mouse or human citrated plasma to a final concentration of 1.75% 

prior to centrifugation at 4,000 rpm at 4°C. The supernatant was then neutralized with saturated 

sodium carbonate and 1.0 M acetic acid prior to dialyzing overnight against 30 mM NaCl 20 mM 

Tris, pH 8.0, at 4°C with at least 2 buffer changes. The dialyzed solution was applied to a HiTrap 

Heparin HP column (ThermoFisher, USA), washed with dialysis buffer and eluted with 175-200 

mM NaCl 20mM Tris, pH 8.0. 

 

2.6 Molecular Weight Analysis of β2-GPI 

MALDI-TOF MS was performed on a Bruker Ultraflex II TOF/TOF mass spectrometer.  

Molecular weight of purified β2-GPI was analyzed in the positive mode. Sinapinic acid was used 

as a matrix. MS spectra were recorded in linear mode within a mass range from m/z 10,000 to 

m/z 70,000 and externally calibrated using a protein mass standard kit II (Bruker Daltonics, 

Billerica, MA).  
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2.7 Proteomics Analysis Using In Gel Digestion: 

Coomassie brilliant blue stained and excised gel pieces were destained by several 10 min 

incubations in 100 μL of 50% acetonitrile (ACN) at 30°C. After destaining, reduction and 

alkylation of cysteine residues was accomplished with Tris[2-carboxyethyl]phosphine (TCEP) 

and Iodoacetamide followed by the supplier protocol (#8971 in gel trypsin digestion kit, Thermo 

Scientific, USA). After washing the gels with 50% ACN, 100% ACN (50 μL) was added for 10 

min at 30oC to shrink the gel pieces. After discarding the solvent and drying by speed vacuum 

concentration, the gel plugs were rehydrated in 20 µL of sequencing grade trypsin (200 ng; 

Trypsin Gold, Promega, Madison, WI) in 20 mM ammonium bicarbonate. Upon rehydration, the 

gel plugs were incubated in an additional 20 µL of 20 mM ammonium bicarbonate with 10% 

ACN at 30°C for 17 h. Tryptic peptides were extracted from the gel plugs with 100 μL of 50% 

ACN containing 2% trifluoroacetic acid (TFA) at 30°C for 30 min. Extracted peptides were 

concentrated by speed vacuum concentration. 

 

2.8 Nano-HPLC and Electrospray Ionization Tandem Mass Spectrometry (ESI−MS/MS)  

Nano-HPLC was performed automatically using a microcolumn switching device (Switchos; LC 

Packings) coupled to an autosampler (Famos: LC Packings) and a nanogradient generator 

(UltiMate Nano HPLC; LC Packings). Peptide solution (30 μL) was loaded on a C18 reversed-

phase capillary column (75 μm ID × 15 cm, PepMap: Dionex) in conjunction with an Acclaim 

C18 PepMap trapping column (300 μm id × 10 mm, Dionex). Peptides were separated by a 

nanoflow linear ACN gradient using buffer A (0.1% formic acid, 2% ACN) and buffer B (0.1% 

formic acid, 80% ACN) starting from 5% buffer B to 70% over 55 min at a flow rate of 200 

nL/min. Then column was washed by 95% of buffer B for 5 min. The system control software, 

Hystar 3.2, was used to control the entire process. The eluted peptides were injected into an 

HCT Ultra Ion Trap Mass Spectrometer (Bruker Daltronics). The mass spectrometer was set up 
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in the data dependent MS/MS mode to alternatively acquire full scans (m/z acquisition range 

from 300 to 1,700 Da). The four most intense peaks in any full scan were selected as precursor 

ions and fragmented by collision energy. MS/MS spectra were interpreted and peak lists were 

generated by DataAnalysis 3.4 and Biotools 3.0 software (Bruker Daltronics). 

 

2.9 Bioinformatics  

Peptide masses were compared to Swiss Prot Database using MASCOT 2.2 

(http://www.matrixscience.com). Human or mouse genomes were selected for the taxonomy 

search. The following parameters were used in all searches: the maximum number of missed 

cleavages allowed was 2; the mass tolerance was 0.6 Da for MS and 0.6 Da for MS/MS. Fixed 

modification was set on cysteine with carbamidomethylation. Variable modification was based 

on methionine with oxidation. Positive protein identifications using a threshold of 0.05 were 

used. Peptides scoring <20 were automatically rejected, ensuring all protein identifications were 

based on the reliable peptide identifications.  

  

2.10 Fluorescence Spectroscopy 

Fluorescence emission scans were recorded in a Cary Eclipse fluorescence spectrophotometer 

(Varian Inc., Palo Alto, CA). To eliminate background fluorescence from tyrosine residues, 

spectra were collected by exciting the sample at 295 nm. Scans were collected at a scan rate of 

60 nm/min in a 0.3 cm path length quartz cuvette (Starna Cells, Inc., Atascadero, CA) with the 

emission slit width set to 5 nm. All scans were collected at room temperature and data plotted in 

SigmaPlot (Systat, San Jose, CA). 

 

2.11 Circular Dichroism (CD) Spectroscopy  

CD spectra were collected in a Jasco J-815 CD spectrophotometer (Jasco Analytical 

Instruments, Easton, MD) using a 0.02 cm path length circular quartz cuvette (Hellma USA, 
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Plainview, NY). Samples were scanned from 320 nm to 190 nm at room temperature. The final 

spectrum for each sample was an average of eight scans recorded at a scan rate of 50 nm/min 

with a 0.1 nm step interval and measured in mdeg. Raw scans were processed (subtracted from 

blank and smoothed) using Spectra Analysis (software provided by Jasco Inc.) and converted to 

mean residue ellipticity using the following equation:  [𝜃𝜃] =  100(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)
𝐶𝐶𝑠𝑠𝑠𝑠

 where, [𝜃𝜃] is the mean 

residue ellipticity in deg cm2 dmol-1; signal is the raw output in mdeg; 𝐶𝐶 is protein concentration 

in mM; 𝑛𝑛 is number of residues and 𝑙𝑙 is cell pathlength in cm. The final spectra were plotted in 

SigmaPlot. 

 

2.12 2D SDS-PAGE  

Purified β2-GPI (190 μg and 170 μg for the human and mouse proteins, respectively) were 

applied to an 11 cm IPG strip with a pH 3-10 gradient (Bio-Rad), for overnight passive 

rehydration at 25°C. Strips were focused at 20°C with the following program: 20 min with a 

linear ramp (0–250 V), 2.5 h with a linear ramp (250–8,000 V), 20,000 V h with a rapid ramp 

(8,000 V). Once the IEF was completed, the strips were equilibrated in Equilibration Buffer I (6 

M urea, 2% SDS, 0.375 Tris-HCl (pH 8.8), 20% glycerol, and 2% (w/v) DTT) (Bio-Rad) followed 

by another 15 min in Equilibration Buffer II (Equilibration Buffer I containing 2.5% iodoacetamide 

in place of DTT) (Bio-Rad). 1% agarose solution with 0.01% bromophenol blue was laid on the 

top of gels to protect the strip. SDS–PAGE was performed using a 10% Criterion Tris-HCl 

Precast Gel (Bio-Rad). The second dimension was run at 150 V until the bromophenol blue dye 

front completely migrated out of the bottom of the gel. The gels were stained with Bio-Safe 

Coomassie Brilliant Blue G-250 (Bio-Rad).  

2.13 Anti-β2-GPI ELISA 

Polystyrene microtiter plates were coated overnight with 8 µg/mL mouse or human β2-GPI in 

0.02M carbonate buffer, pH 9.6. Purified mouse and human Ig were applied to appropriate wells 
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at 1 mg/mL, with an anti-mouse β2-GPI monoclonal Ab (FC1) (Fleming et al., 2004) and goat 

anti-human β2-GPI Ab(Bethyl Labs, Montgomery, TX) used as positive controls, for 1 h at room 

temperature. After washing, appropriate HRP-conjugated secondary Ab (Jackson 

Immunoresearch) were then applied for 1h at room temperature and developed using TMB 1-

Component substrate (KPL, Gaithersburg, MD). 

 

2.14 Immunoprecipitation 

PureProteome Protein G magnetic beads (Millipore) were coated with antibody from C57Bl/6 

mice prior to adding 4uM purified β2-GPI and incubating overnight at 4oC. The beads were 

washed and bound β2-GPI was eluted per manufacturer’s directions. Samples were analyzed 

on 10% SDS-PAGE and Western blotted for β2-GPI using HRP-goat anti-human β2-GPI or anti-

mouse IgG antibody.  

 

2.15 Statistics 

All data were evaluated by one-way ANOVA with Newman-Keuls post hoc analysis 

(GraphPad/Instat Software) and are presented as mean ± SEM.
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3 Results 

3.1 Human but not mouse β2-GPI attenuates IR-induced intestinal injury in a dose 

dependent manner. 

Previous studies strongly support the view that β2-GPI is involved in one of the sequential 

events leading to IR-induced injury (Fleming et al., 2004). In fact, peptides derived from the β2-

GPI lipid binding domain (domain 5) inhibit IR-induced complement deposition and subsequent 

intestinal damage and inflammation (Fleming et al., 2010). Initial ELISA data confirmed the 

presence of significantly more β2-GPI-Ab complexes within tissues from IR-treated mice (748 ± 

97 relative units) than within tissues from Sham treated animals (233 ± 65 relative units). As the 

β2-GPI-Ab complexes were limited in uninjured tissue, these studies suggested that treatment 

with exogenous β2-GPI may provide additional antigen for increased Ab binding (Fig. 1B) and 

could exacerbate intestinal injury and inflammation.  

 

To understand the specific role of β2-GPI in IR-induced tissue damage, we tested the 

hypothesis by treating wildtype, C57Bl/6 mice with purified human or mouse β2-GPI 

immediately prior to subjecting the mice to Sham or IR. As expected, IR induced significant 

injury when compared to Sham treatment (Fig. 2A, B, C). However, mouse β2-GPI derived from 

either Rag1-/-, C57Bl/6 or Balb/c mice did not significantly alter IR-induced injury (Fig. 2A, E and 

data not shown). Surprisingly, human β2-GPI significantly inhibited IR-induced intestinal injury 

(Fig. 2A, F) with a mean injury score of 1.44 ± 0.16 compared to 2.33 ± 0.17 in saline-treated 

mice. Additional studies demonstrated that human β2-GPI attenuated intestinal injury in a dose 

dependent manner (Fig. 3A). Administration of either 40 or 200 µg/kg β2-GPI prior to IR 

significantly decreased injury (Fig. 3A). However, 20 µg/kg human β2-GPI did not attenuate IR-

induced intestinal injury. Two different commercial preparations of human β2-GPI showed 

similar results with IR-induced injury scores of 1.17 ± 0.22 and 0.93 ± 0.23 (Arotec, Wellington, 
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New Zealand and Fitzgerald, Acton, MA, respectively). Thus, human, but not mouse, β2-GPI 

attenuates IR-induced intestinal injury in a dose dependent manner.  

 

3.2 Human β2-GPI attenuated PGE2 and complement deposition  

To examine the mechanism of protection from injury, PGE2 production and complement 

deposition were analyzed. Similar to injury, intestinal PGE2 production was significantly elevated 

after IR in the presence or absence of mouse β2-GPI (Fig. 3B). However, only Sham levels of 

intestinal PGE2 were produced in mice treated with human β2-GPI prior to IR (Fig. 3B).  PGE2 

production also decreased in a dose dependent manner after administration of human β2-GPI 

(Fig. 3B). Administering 40 µg/kg human β2-GPI attenuated PGE2 production, and 200 µg/kg 

prior to IR produced PGE2 concentrations comparable to Sham treatment (Fig. 3B) indicating 

that 200 µg/kg optimally inhibits both injury and PGE2 production.  

 

As complement is required for IR-induced tissue damage, we examined C3 deposition. 

Complement deposition was observed in response to IR but not on intestines of Sham treated 

mice. Similar to PGE2 and injury, C3 deposition significantly decreased after treatment with 

human β2-GPI when compared to mice subjected to IR only (Fig. 4). Treatment with mouse β2-

GPI reduced complement deposition slightly but not to the same extent as treatment with 

human β2-GPI (Fig. 4). Thus, human β2-GPI attenuated IR-induced injury and inflammation as 

determined by PGE2 production and complement deposition. Together, these data suggest that 

human and mouse β2-GPI interact differently in the mouse model of IR-induced tissue damage. 

 

3.3 Human β2-GPI is recognized by mouse antibodies 

As Ab are required for complement activation in the current model of IR-induced tissue injury, it 

is possible that mouse Ab does not recognize surface-bound, human β2-GPI in the same way 
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as endogenous β2-GPI (Fig. 1C). ELISAs performed with purified human and mouse proteins 

measured the binding of native Ab with each protein. As expected, optimal Ab recognition of β2-

GPI was species specific (Fig. 5A). However, Ab purified from mouse plasma clearly recognized 

bound human β2-GPI as well (open bar).  In addition, Ab purified from human plasma 

recognized bound mouse β2-GPI (black bar). Together these data indicate that mouse Ab are 

capable of binding surface-bound, human β2-GPI (Fig 5A) and suggests that the human β2-GPI 

may compete with mouse β2-GPI for Ab recognition.   

 

As β2-GPI changes conformation when bound to a surface, it was possible that soluble human 

and mouse β2-GPI were recognized differently. To determine if soluble human or mouse β2-

GPI was bound by mouse Ab similar to bound β2-GPI, we immunoprecipitated the two β2-GPI 

preparations with mouse Ab.  As indicated in Figure 5B, soluble human β2-GPI bound to beads 

coated with antibodies from C57Bl/6 mice (Lane 4).  Surprising, no or very little soluble mouse 

β2-GPI bound to the mouse anti-β2-GPI-coated beads (Lanes 2-3). However, mouse β2-GPI 

was detectable in the supernatants (data not shown).  Equal quantities of Ab were bound to the 

beads as indicated in the lower panel. Thus, mouse Ab appear to bind soluble human but not 

mouse β2-GPI, suggesting that administration of human β2-GPI reduces the Ab available for 

binding the conformationally altered, surface-bound, mouse β2-GPI.  Together, these data 

support the hypothesis illustrated in Figure 1D.  

 

3.4 Physical and biochemical differences in human and mouse β2-GPI. 

It is possible that IR-induced injury was attenuated after treatment with human protein due to 

structural differences in the two proteins that prevented binding of human β2-GPI to the cell 

surface as suggested in Figure 1D. We examined the physical and biochemical properties of 

similarly purified mouse and human β2-GPI. In the presence of thiol reducing agents, SDS- 
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PAGE demonstrated that the two glycoproteins were more than 95% pure with an apparent 

molecular weight of 58 kDa for the mouse protein and 54 kDa for the human (Supplementary 

Fig. 1, lanes 1 and 2, respectively). Proteomics analysis confirmed the identity of the two 

purified proteins, namely mouse (APOH_MOUSE) and human (APOH_HUMAN) β2-GPI. TOF-

MS spectrometry analysis verified the molecular weight difference of the intact proteins. Figure 

6A illustrates the mass difference with a relatively broad peak centered at 48 kDa for mouse β2-

GPI (gray line) while the human protein (black line) presents a narrower peak, centered at 45 

kDa. Since the MALDI TOF-MS peak width is strictly correlated to the sample heterogeneity, we 

examined the nature of the glycosylation patterns. The mouse protein was N-glycosylated at 

Asn residues 162, 183, 193 and 253 (sequence number was followed by registered sequence at 

Swiss-plot). Human protein possessed a different pattern being N-glycosylated at Asn residues 

105, 117, 183 and 193 (Supplementary Fig. 2). PNGase F (Glycopeptidase F) treatment 

significantly decreased that molecular weights from 58 kDa to 36.5 kDa for the mouse protein 

and from 54 kDa to 38 kDa for the human, providing further evidence of glycosylation 

differences between the two species (Supplementary Fig. 1, lanes 3-6). The increased 

heterogeneity was confirmed by 2D gel electrophoresis which indicated 10 distinct spots with 

the same molecular weight spanning from pI 5.6 to 7.9 (Fig. 6B). In contrast, the human protein 

(Fig. 6C) contained only 8 spots ranging from pI 6.0 to 7.5. Thus, despite 76% amino acid 

identity and 86% sequence similarity, the two proteins possess small but significant differences 

in heterogeneity.  

 

To further examine the structural differences between mouse and human β2-GPI, we analyzed 

the samples using fluorescence spectroscopy and circular dichroism. Fluorescence 

spectroscopy at 295 nm examined the environment surrounding the tryptophans located at 

identical positions in the primary sequence. Figure 7A shows that the fluorescence emission 
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spectrum for each protein is a single peak with a maximum emission at a wavelength of 341 nm 

for the mouse β2-GPI (dashed line) and at 349 nm for the human protein (solid line). A 

significant shift towards the lower wavelengths indicates that in the mouse β2-GPI folded 

structure the tryptophan residues are significantly less solvent exposed compared to the same 

residues in the human β2-GPI. Circular dichroism confirmed that mouse and human β2-GPI 

were structurally different with human β2-GPI being less ordered in the far UV region compared 

to mouse β2-GPI (Fig. 7B). These data provide strong evidence for two distinct conformations 

for the isolated mouse and human proteins that influence IR-induced injury when administered 

to wildtype mice.  

 
4. Discussion 
 
Although the β2-GPI protein was discovered in human plasma 50 years ago, the specific 

physiological roles remain unknown. β2-GPI does appear to scavenge lipopolysaccharide and 

inhibit complement activation (Gropp et al., 2011) and thereby plays a role in the innate immune 

response (Agar et al., 2011c; Gropp et al., 2011). The structural homology is quite conserved 

among mammalian species and can reach 90-98% sequence identity in specific segments 

located at the C-terminus where the binding with anionic lipids occurs. Given the homology, 

most in vivo mouse studies for anti-phospholipid syndrome utilize commercially available human 

anti-β2-GPI Ab or human β2-GPI (Agostinis et al., 2011; Fleming et al., 2004). We purified 

human and mouse β2-GPI and compared the biological response of the two proteins in the 

mouse intestinal IR model. Biochemically, the two species of protein contain significant 

structural differences. Compared to the human protein, we demonstrated that mouse β2-GPI 

has an increased molecular weight, increased number of isoforms and differential glycosylation 

pattern. In addition, the environment surrounding the 5 tryptophan residues, one for each 

domain, is considerably less solvent accessible in the mouse versus the human protein. 

Importantly, mouse Ab bound and immunoprecipitated soluble human but not mouse β2-GPI 
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suggesting that the structural differences allow human β2-GPI to sequester mouse anti-β2-GPI 

Ab and attenuate IR-induced injury and inflammation in the mouse.  

 

Although injury and complement deposition were significantly attenuated after the addition of the 

human protein, both remained significantly higher than in Sham animals. Complement inhibitors 

demonstrated a similar degree of attenuation (Rehrig et al., 2001) and suggest that human β2-

GPI may contain complement inhibitory activity when employed in mouse models of disease. 

β2-GPI contains multiple short consensus repeats of the complement control protein family and 

recent studies demonstrated complement inhibitory effects in vitro. Human β2-GPI contains a 

C3/C3b binding site which upon binding alters the C3/C3b conformation, allows Factor H 

binding and inhibits subsequent complement activation (Gropp et al., 2011). This finding 

supports the current finding in which human β2-GPI attenuates mouse C3 deposition in the 

mouse model of intestinal IR. While a C3 binding site has not been identified in the mouse 

protein, it is plausible that the human β2-GPI may be more effective in binding to C3/C3b or that 

mouse β2-GPI binding to C3/C3b does not expose the Factor H binding site. Either possibility 

would allow the complement cascade to continue in the presence of mouse but not human β2-

GPI.  

 

In contrast to complement deposition and injury, treatment with human β2-GPI inhibited 

intestinal PGE2 secretion to background levels, suggesting that the pathway to PGE2 production 

is more sensitive to the conformational changes of β2-GPI than overall injury. The IR-induced 

production of PGE2 is dependent on both TLR4 and Ab interactions (Moses et al., 2009; Pope et 

al., 2010; Sparkes et al., 2010). An in vitro study recently demonstrated that human β2-GPI/anti-

β2-GPI Ab forms complexes with TLR4 to activate endothelial cells (Allen et al., 2011). 
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Therefore, it is possible that the complex formation of human β2-GPI with mouse Ab is not as 

efficient in activating endothelial cells to produce PGE2.  

 

It is likely that administration of human but not mouse β2-GPI attenuated IR-induced injury by 

formation of human β2-GPI/mouse Ab complexes in the serum which reduced Ab binding of 

endogenous β2-GPI and subsequent injury and PGE2 production. Although mouse Ab do not 

recognize surface-bound human β2-GPI as effectively as mouse β2-GPI, mouse Ab recognized 

soluble human β2-GPI significantly better than mouse β2-GPI. These data suggest that human 

β2-GPI/mouse Ab complexes may indeed form in the mouse. Previous studies also indicated 

that immunization of mice with human β2-GPI produced Ab which induced fetal resorption 

presumably by recognition of mouse β2-GPI (Agostinis et al., 2011). Together these data 

suggest that the human β2-GPI binding to mouse tissue may differ from mouse β2-GPI binding 

and tissue activation state may be important. 

 

Biochemical analysis of the human and mouse β2-GPI suggest a number of possibilities for the 

observed biological differences. 2D electrophoresis indicated multiple isoforms, similar to a 

previous report of commercially available human β2-GPI (Buttari et al., 2005). Although the 

amino acid composition of β2-GPI indicates that the mouse protein is more basic (theoretical pI 

= 8.62) than the human protein (theoretical pI= 8.37), 2D gel analysis shows that the average 

actual pI of the mouse protein is more acidic suggesting that the amino acid differences are 

compensated by negative charges introduced through post-translational modifications. The 

human native β2-GPI is decorated with a variable number of sialic acid residues (Kondo et al., 

2009; Schousboe, 1983). The addition of variable numbers of sialic acid residues and/or other 

carbohydrate chains would explain the multiple isoforms found on the 2D gel. Although this 

explanation is in agreement with previous human protein studies (Gries et al., 1989; Schousboe, 
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1983), our data do not exclude the possibility that the altered pI is derived from other sources 

including partial deamination of glutamine or asparagine residues.  

 

Additional biochemical measures, fluorescent spectra and circular dichroism, indicated 

differences in the folded states of the proteins. The wavelength of the fluorescence emission 

peak of the mouse protein is significantly lower than that of the human protein, suggesting the 

tryptophans residues are not exposed in the mouse β2-GPI. In addition, circular dichroism 

studies on the human protein are reminiscent of previous studies performed with the human β2-

GPI, which contain a weak negative at 195 nm (Lee et al., 1983). However, we showed that the 

mouse β2-GPI contained a significant negative peak centered around 208 nm suggesting a 

conformational change. Thus, fluorescence, circular dichroism and overall carbohydrate data 

suggest a different or dynamic structural environment with exposure of different surface 

residues which are critical to interaction with other proteins. These changes appear to influence 

the activation of the inflammatory cascade which mediates IR-induced intestinal injury.  
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Figure Legend 

Figure 1: Hypothetical models of exogenous β2-GPI-Ab interactions. Under normal conditions, 

the closed conformation of soluble β2-GPI is not recognized by anti-β2-GPI Ab (A). During IR-

induced stress, membrane lipid alterations allow Ab recognition of bound β2-GPI (mouse protein 

is dark, human protein is light) and induces injury which may be exacerbated by exogenous β2-

GPI (B). Excess β2-GPI may bind to altered lipids without Ab recognition (C) or exogenous β2-

GPI may form soluble immunocomplexes resulting in attenuated IR-induced injury (D).  

 

Figure 2: Human but not mouse β2-GPI treatment alters IR-induced injury and PGE2 production 

in C57Bl/6 mice. C57Bl/6 mice were subjected to Sham or IR treatment in the presence or 

absence of β2-GPI purified from Balb/c (Balb B2), Rag-1-/- (Rag-1-/- B2) or Human (Human B2) 

plasma. Two hours after initiation of reperfusion, mid-jejunal intestinal sections (75-150 villi per 

animal) were scored (A) and ex vivo PGE2 (D) production were assessed. Representative H&E 

stained tissue sections (200X) are provided (B, C, E, F). PGE2 values are represented as pg/mg 

of intestinal protein. Each bar represents 4-10 animals. * = p ≤ 0.05 compared to Sham + 

peptide, φ = p ≤ 0.05 compared to I/R treatment animals not receiving peptides.  

 

Figure 3: Human β2-GPI attenuates IR-induced intestinal damage and PGE2 production in a 

dose dependent manner. Mouse β2-GPI (200µg/kg) or Human β2-GPI (H) at 200, 40 or 20 

µg/kg was administered prior to subjecting C57Bl/6 mice to Sham or IR treatment. Two hours 

after initiation of reperfusion, mid-jejunal intestinal sections (75-150 villi per animal) were scored 

(A) and ex vivo PGE2 (B) production were assessed. Each bar represents 4-10 animals. * = p ≤ 

0.05 compared to Sham, φ = p ≤ 0.05 compared to I/R treatment animals not receiving β2-GPI.  

 

Figure 4: Human β2-GPI attenuates IR-induced complement deposition. C57Bl/6 mice were 
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subjected to Sham or IR treatment in the presence or absence of 200 µg/kg β2-GPI purified 

from C57Bl/6 (+B6 B2) or Human (+Human B2) plasma. Two hours after initiation of 

reperfusion, mid-jejunal intestinal sections were collected and stained for C3 deposition. 

Photomicrographs represent 3 experiments of 5-7 photos per treatment group.  

 

Figure 5: Native mouse antibodies complex with soluble and bound human β2-GPI but only with 

bound mouse β2-GPI. (A) Mouse (left) or Human (right) purified β2-GPI coated plates were 

incubated with Ab obtained from naïve C57Bl/6 mice (B6 Ab) or Human sera (human Ab) and 

developed with TMB to determine optical density. Each bar represents 4 samples and each 

graph is representative of 3 independent experiments. (B) Protein G purified C57Bl/6 Ab 

immunoprecipitation of no β2-GPI (lane 1) or 21 ng of soluble Rag-1-/- (lane 2), C57Bl/6 (lane 

3), or human (lane 4) β2-GPI was followed by western blot with anti-human β2-GPI (upper 

panel) or anti-mouse IgG (lower panel). Western blot is representative of 3 

immunoprecipitations.  

 

Figure 6:  Mouse β2-GPI is different molecular weight and contains additional isoforms of β2-

GPI compared to the similarly purified human protein. (A) Molecular weights of purified β2-GPI’s 

were analyzed by MALDI-TOF in the positive mode using sinapinic acid as a matrix. MS spectra 

were recorded in linear mode within a mass range from m/z 10,000 to m/z 70,000 .The scans 

for both purified human (black) and mouse (gray) are shown. (B, C) Purified mouse (B) or 

human (C) β2-GPI were subjected to 2D SDS-PAGE and stained with coomassie blue. Mouse 

β2-GPI contains additional isoforms of β2-GPI protein compared to the similarly purified 

human protein. Gels are representative of 2 experimental preparations.  

 

Figure 7: Fluorescence spectroscopy and circular dichroism spectroscopy indicate 
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conformational differences in human and mouse β2-GPI. Purified human (solid line) or mouse 

(dashed line) β2-GPI were subjected to fluorescence spectroscopy at excitation 295nm (A) and 

circular dichroism from 320 to 190 nm (B). Mouse β2-GPI (0.75 mg/mL) and human β2-GPI 

(0.8066 mg/mL) were normalized for comparison. 

 

Supplemental Figure 1: SDS-PAGE analysis of mouse and human β2-GPI. Purified mouse 

(lanes 1,3,4) and human (2, 5, 6) β2-GPI were treated with (lanes 4, 6) or without PNGase F 

and then analyzed on reduced 12% SDS-PAGE. The molecular mass (in kDa) of the standard 

are indicated. Representative of 2-3 gels. 

 

Supplemental Figure 2: Primary sequence alignment of human and mouse β2-GPI 

proteins. Primary sequences of human and mouse β2-GPI proteins were aligned with 

NCBI Blast software. Black underline shows the peptide sequences identified by 

proteomics analysis. Selected asparagine residues (red) were projected N-glycosylated 

sites based on an Asn-X-Ser/Thr motif (X: any amino acid except for proline). 
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MISPVLILFSSFLCHVAIAGRTCPKPDDLPFSTVVPLKTFYEPGEEITYSCKPGYVSRGG 60 
M+SPVL LFS+FLCHVAIAGR CPKPDDLPF+TVVPLKT Y+PGE+I YSCKPGYVSRGG 
MVSPVLALFSAFLCHVAIAGRICPKPDDLPFATVVPLKTSYDPGEQIVYSCKPGYVSRGG 60

MRKFICPLTGLWPINTLKCTPRVCPFAGILENGAVRYTTFEYPNTISFSCNTGFYLNGAD 120 
MR+F CPLTG+WPINTL+C PRVCPFAGILENG VRYT+FEYP  ISF+CN GF+LNG  
MRRFTCPLTGMWPINTLRCVPRVCPFAGILENGIVRYTSFEYPKNISFACNPGFFLNGTS 120

SAKCTEEGKWSPELPVCAPIICPPPSIPTFATLRVYKPSAGNNSLYRDTAVFECLPQHAM 180 
S+KCTEEGKWSP++P CA I CPPP +P FA L+ Y+PSAGNNSLY+DT VF+CLP  AM  
SSKCTEEGKWSPDIPACARITCPPPPVPKFALLKDYRPSAGNNSLYQDTVVFKCLPHFAM 180

FGNDTITCTTHGNWTKLPECREVKCPFPSRPDNGFVNYPAKPTLYYKDKATFGCHDGYSL 240 
GNDT+ CT  GNWT+LPEC EVKCPFP RP+NG+VNYPAKP L YKDKATFGCH+ Y L 

IGNDTVMCTEQGNWTRLPECLEVKCPFPPRPENGYVNYPAKPVLLYKDKATFGCHETYKL 240 

DGPEEIECTKLGNWSAMPSCKASCKVPVKKATVVYQGERVKIQEKFKNGMLHGDKVSFFC 300 
DGPEE ECTK G WS +P+C+ SCK+PVKKATV+YQG RVKIQE+FKNGM+HGDK+ F+C 
DGPEEAECTKTGTWSFLPTCRESCKLPVKKATVLYQGMRVKIQEQFKNGMMHGDKIHFYC 300 

KNKEKKCSYTEDAQCIDGTIEVPKCFKEHSSLAFWKTDASDVKPC 345 
KNKEKKCSYT +A C DGTIE+P CFKEHSSLAFWKTDAS++ PC  
KNKEKKCSYTVEAHCRDGTIEIPSCFKEHSSLAFWKTDASELTPC 345 

ESI‐MS coverage

Leader sequence

Human

Mouse

Sushi 1

Sushi 1 Sushi 2

Sushi 2 Sushi 3

Sushi 3

Sushi 4

Sushi 4

Red: N‐glycosylation site
Underline: detected at ESI‐MS/MS
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