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Abstract 

 The humoral innate immune response consists of multiple components, including the 

naturally occurring antibodies (NAb), pentraxins and the complement and contact cascades. As 

soluble, plasma components, these innate proteins provide key elements in the prevention and 

control of disease. However, pathogens and cells with altered self proteins utilize multiple 

humoral components to evade destruction and promote pathogy. Many studies have examined 

the relationship between humoral immunity and autoimmune disorders. This review focuses on 

the interactions between the humoral components and their role in promoting the pathogenesis 

of bacterial and viral infections and chronic diseases such as atherosclerosis and cancer. 

Understanding the beneficial and detrimental aspects of the individual components and the 

interactions between proteins which regulate the innate and adaptive response  will provide 

therapeutic targets for subsequent studies. 
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1. Introduction 

As the first line of defense, the innate immune response consists of both cellular and 

humoral components. The cellular component encompasses multiple cell types that use pattern 

recognition molecules to recognize and remove pathogens and cellular debris. The interactions 

of pattern recognition molecules within the cellular component have received significant 

attention in the last two decades. In contrast, less is known about the interactions between the 

humoral components. The humoral innate immune response consists of the serine protease 

cascades of the complement and contact systems as well as naturally occurring antibodies 

(NAb) and pentraxins. Recent data indicate that each component may be beneficial or 

detrimental during infection or chronic disease depending on concentration and interactions with 

other components. This review will focus on the interactions and roles of humoral components 

in bacterial and viral infections as well as the chronic diseases, atherosclerosis and cancer.  

 

2. Humoral innate immune components 

2.1 Complement 

Complement activation occurs by one of three initiation pathways, the classical, 

alternative, or mannose binding lectin (MBL) pathway. Each pathway contains a C3 convertase 

that cleaves C3 producing C3b and subsequently a C5 convertase. Cleavage of C5 by the C5 

convertase results in C5b deposition and initiates the common terminal pathway. The terminal 

pathway forms the membrane attack complex (MAC), a pore in the cellular membrane, and lysis 

of the host or pathogenic cell. The action of the C3 and C5 convertases also produces potent 

anaphylatoxins, C3a and C5. Although not specifically part of the humoral immune response, 

complement receptor 3 (CR3) found on neutrophils and macrophages enhances the innate 

immune response by recognizing C3b opsonized pathogens. Recent evidence indicates that 

complement plays a significant role in directing the adaptive immune response as well as in 

tissue regeneration [1, 2]. Specifically, as part of the B cell receptor complex, CR2 recognition of 
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cleavage products iC3b, C3dg, and C3d  significantly increases Ab production [3].  Thus, 

maintaining homeostasis requires tight regulation of the cascade. Regulation of this potentially 

damaging cascade occurs at multiple levels with soluble and membrane bound inhibitors 

including C1 inhibitor (C1INH), CD55, CD59, CD46,  Factor H and related proteins.  

2.2 Contact Cascade 

The plasma also contains components of a second proteolytic cascade, the contact 

system. Factor XII (FXII; Hageman factor) of the contact system is proteolytically cleaved to 

FXIIa by negatively charged surfaces of damaged cells.  FXIIa initiates the coagulation cascade 

leading to clot formation and cleaves pre-kallikrein to kallikrein for subsequent release of 

bradykinin. Through an endothelial G-coupled receptor (bradykinin receptor 1; BKR1), 

bradykinin induces vasodilation, neutrophil chemotaxis and vascular permeability [4]. 

Furthermore, the bradykinin degradation product, des-arg9-bradykinin regulates the adaptive 

response and alters the blood-brain barrier through a second receptor, bradykinin receptor 2 

(BKR2) [5]. Importantly, both FXIIa and kallikrein activate the complement cascade independent 

of known complement initiators [6]. Several components of the activated contact system 

including, FXa, FXIa and plasmin, cleave C5 and C3 producing C5a and C3a [7]. The 

complement inhibitor, C1INH, also inhibits FXIIa indicating multiple interactions between the two 

pathways [6]. These data suggest crosstalk between two cascades of humoral innate immune 

response. 

2.3 Naturally occurring antibodies 

 Produced primarily by B1 B lymphocytes, NAb are germline-encoded Ab with restricted 

epitope specificities and are produced in the absence of external antigen stimulations. NAb are 

usually of the IgM isotype but may include IgG and IgA isotypes as well [8]. Natural IgM Abs 

mediate clearance of cellular debris, aging or apoptotic cells by oponization and recruitment of 

complement components [9]. As part of the innate immune response, NAb recognize a wide 

range of pathogens, albeit with low affinity and modulate the adaptive immune response by 
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interacting with B, T and dendritic cells [10]. Finally, NAb are potent initiators of the complement 

cascade suggesting additional interactions between components of the innate humoral 

response. 

 2.4 Pentraxins 

As a family of evolutionarily conserved multimeric pattern recognition proteins, 

pentraxins are acute phase proteins which are rapidly synthesized and serve as markers of 

infection, inflammation, and tissue damage [11]. Each pentraxin contains a common domain in 

the C terminus. The presence or absence of additional domains divides the family into long or 

short pentraxins, respectively. The short pentraxins include C-reactive protein (CRP) and serum 

amyloid P protein (SAP), both of which are produced by the liver [11]. Produced by a multitude 

of cell types, pentraxin 3 (PTX3) is the primary long pentraxin active in humoral innate immunity. 

Similar to NAb, pentraxins recognize and bind multiple pathogens as well as intrinsic ligands, 

including apoptotic cells and extracellular matrix components [12-14]. Macrophages and other 

innate immune cells recognize pentraxins, CRP, SAP and PTX3, via Fcγ receptors [15-17]. 

Binding of pentraxins to a target facilitates clearance of pathogens and cell debris by 

complement activation indicating additional interactions between components of the innate 

immune response [12]. Overall, pentraxins are multifunctional and nonredundant components of 

the humoral innate immune response. Therefore, pentraxins play a critical role in human 

disease by interacting with multiple components of the humoral response. 

Together the interactions of the components of the humoral arm of the innate immune 

response are critical in protecting the host from invading pathogens, interacting with the cellular 

component and instructing the adaptive immune response. However, inappropriate activation of 

any one of the humoral components may be detrimental to the host. This review focuses on how 

infectious organisms evade these devastating circulating proteins and how chronic disease may 

be enhanced by the interactions of NAb, pentraxins and the complement and contact cascades. 
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3.0 Humoral innate immunity and infection 

3.1 Humoral innate immune component interactions with bacteria 

A coordinated attack by multiple components of the humoral innate immune system is 

crucial in protecting the host from bacterial infections. A compromised humoral innate immune 

system increases susceptibility to bacteria [3, 18]. Successful development of therapeutics that 

decrease bacterial infections requires understanding of the interactions between the 

complement and contact cascades as well as NAb and pentraxins.  

Complement contributes to the humoral innate immune response directly by the MAC 

complex forming pores and lysing the bacteria as well as indirectly by activating other 

components of the immune system that combat the bacteria. Invading bacteria induce 

complement activation by all three initiation pathways [19-21]. NAb recognize invading bacteria 

and activate the classical and MBL complement pathways. The MBL pathway also recognizes 

sugar moieties on the bacterial surfaces. In addition, the presence of bacterial carbohydrates , 

lipids and proteins trigger the alternative complement pathway [19]. Activation of all three 

pathways results in C3 cleavage to C3b. C3b coats the bacterial surface, and enhances 

recognition by neutrophils and macrophages by opsonization. C3b coated bacteria also bind 

CR2 to enhance Ab production. Initiation by each of the above pathways may also result in 

bacterial lysis by MAC.  

 Although the activation of the complement cascade is essential for immune protection, 

bacteria have evolved several strategies to evade the immune response. Evasion strategies of 

bacteria can be broadly classified into four types: a) recruitment or mimicking of complement 

regulators; b) inhibition or modulation of complement proteins; c) enzymatic degradation of 

complement proteins; and d) blockage of MAC penetration [22]. For example, Enterococcus 

faecalis and Streptococcus pyogenes, as Gram positive bacteria,  are endowed with a thick 

6 
 



polysaccharide capsule that prevents complete penetration of the capsule and cell wall by the 

MAC and subsequent bacterial lysis [23].  

Many bacteria evade complement by recruiting complement regulatory proteins to the 

bacterial surface to prevent lysis. Specific examples are provided in Table 1. Several important 

pathogens including S. pyogenes, Streptococcus pneumonia, Neisseria gonorroheae and 

Borrelia burgdorferi produce proteins which recruit Factor H of the alternative pathway and/or 

C4bBP of the classical and lectin pathways [24-27]. Other bacteria produce proteins that directly 

interact and inhibit central complement components. For example, the S. pneumoniae protein, 

PspA, inhibits C3b deposition on the pneumococcal surface [28]. Similarly, other bacterial 

proteins directly inhibit C3 convertase [29, 30] or MAC formation [31]. Additional bacterial 

enzymes degrade critical complement components including the anaphylatoxins, C3a and C5a. 

This prevents chemotaxis of phagocytic cells towards the site of infection. E. faecalis, a leading 

nosocomial pathogen, produces gelatinase, an enzyme that directly cleaves C5a, preventing 

neutrophil recruitment to the site of infection [32]. Due to incomplete complement activation, 

each of the above mechanisms frequently allows bacterial proliferation and deleterious effects 

on the host. A better understanding of the bacterial proteins that inhibit complement activation 

may lead to therapeutics that also curb excessive complement activation. 

Although the contact cascade may activate complement for bacterial lysis, contact 

activation directly on the surface of bacteria also eliminates invading bacteria in a complement 

independent manner. Bacterial activation of the contact system releases kinin which in turn 

leads to the production of potent anti-microbial peptides and recruits other immune components 

to the site of infection [33, 34]. Despite activation of the immune response, kinin release and 

subsequent vasodilation may favor the bacteria due to an influx of plasma nutrients to the site of 

infection and increasing microcirculation of bacteria [34]. A massive activation of the contact 

system also causes excessive consumption of thrombin which results in hypovolemic shock and 

sepsis-induced coagulation [35]. Bacteria initiate the contact cascade and induce kinin release 
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by a) producing proteases to degrade kininogens; b) activating FXII; or c) using structural 

elements and surface proteins that activate the contact cascade [36-38]. Several pathogens, 

including Porphyromonas gingivalis [39], Staphylococcus aureus [5] and S. pyogenes [40], 

produce proteins that degrade kininogens to kinins, with or without the release of bradykinin. As 

expected, the excess kinin release results in an array of pathological complications for the host.   

Other bacteria produce proteases which activate FXII to produce kinin. For example, 

alkaline proteinase and elastase produced by Pseudomonas spp, Vibrio proteinase produced by 

Vibrio vulnificus, and V8 proteinase produced by S. aureus all activate FXII [41]. Many structural 

elements on bacterial surfaces including lipopolysaccharide of Gram negative bacteria and 

lipoteichoic of Gram positive bacteria activate the contact system [38]. Surface proteins of 

pathogens such as M protein of S. pyogenes and curli fibers of Escherichia coli and Salmonella 

typhii also bind to contact system components and initiate the release of bradykinin. Recent 

evidence suggests that patients with severe sepsis have abnormally high levels of kinins [42] 

which increase expression of bradykinin receptors BKR1 and BKR2 [43]. Binding of bradykinin 

to these receptors causes a massive pro-inflammatory response which is often detrimental to 

the host. 

As key participants in the humoral innate immune response, NAb specific for pathogenic 

bacteria exist in the sera of uninfected individuals and play a critical role in the early clearance 

of invading bacteria by activating complement. Saliva contains secretory-IgA which recognizes 

and clears S. pyogenes [44]. Others demonstrated that NAb titers increase with bacterial load 

during Pseudomonas spp. infections, correlating with bacterial elimination [45]. N. gonorrhoeae 

induces NAb (IgM, IgG and IgA isotypes) which recognize the heat-stable but not the heat-labile 

bacterial antigens [46]. In contrast, after immunization, Ab recognize both heat-stable and heat-

labile antigens.   

Many NAb recognize commensals including the enterics, E. coli and Salmonella 

typhosai. The presence of NAb prevent the overgrowth of enterics and the gut microbiota [47]. 
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Similarly, NAb mediate protection against the respiratory pathogen, S. pneumonia. As early 

respiratory tract colonizers of infants, pneumococcal antigens may stimulate the production of 

these Ab [48]. NAb not only keep commensals in check but also play a crucial role in preventing 

dissemination of intracellular bacteria. For example, NAb enhance antigen-trapping of Listeria 

monocytogenes in secondary lymphoid organs [10]. 

Although NAb are extremely effective in initiating an early response against invading 

bacteria, reports as early as 1972 indicated that NAb concentrations decrease with severity of 

bacterial sepsis [49]. Late in sepsis, when the bacterial burden surpasses a specific threshold, 

the plasma NAb concentrations plummet due to the large number of antigen-Ab complexes [49]. 

Together, the complexes and bacterial endotoxin increase the permeability of the capillaries, 

allowing the reticuloendothelial system to rapidly clear the Ab complexes. 

As clinical biomarkers of infection, the concentration of CRP, PTX3 and other pentraxins 

increase within 6-12 hrs post infection [50]. The increased levels appear to be produced by 

human monocytes, macrophages and dendritic cells in response to whole bacteria or bacterial 

cell wall components. For example, Pseudomonas aeruginosa and Mycobacterium bovis Bacille 

Calmette-Guerin stimulate production of PTX3 [51, 52]. In addition, mycobacterial cell wall 

component lipoarabinomannan and lipopolysaccharide stimulate PTX3 expression in human 

peripheral mononuclear cells [52, 53]. In contrast, CRP, produced in response to Neisseria 

meningitides, opsonizes the bacteria for enhanced phagocytosis by macrophages [54].  Recent 

studies demonstrate that C1q recognizes pentraxins bound to pathogen surfaces and target the 

bacteria for destruction [55, 56]. Other pentraxin-bacterial interactions may also exist. Thus, 

additional studies examining the complex interactions between bacteria and pentraxins will 

enhance our understanding of host-bacteria interactions. 

Together the components of the humoral innate immune system play an indispensible 

role in the removal of bacteria from a host. NAb, the contact system and pentraxins aid in 

eliminating bacteria and activate the complement system which lyses additional bacteria. 
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However, bacteria have evolved several escape mechanisms which may be used against the 

host. In addition, bacterial complement inhibitors may be used for treatment of diseases 

involving excessive complement activation. Understanding this complex interaction between the 

bacteria and humoral innate immune response is crucial in designing effective therapeutic 

interventions against bacterial infections.  

3.2 Humoral innate immune component interactions with viruses 

As a component of humoral immunity and a mediator between the innate and adaptive 

immune response, complement can directly neutralize viruses and modulate pathogen 

elimination (Fig. 1). MBL directly binds multiple viral glycoproteins including those of HIV, SARS 

coronavirus, and Marburg virus [57-59]. Additionally, C3-coated glycoproteins bind CR1 and 

enhance the humoral immune response [60, 61]. In a similar fashion, CR2 recognizes C3 

cleavage products iC3b, C3dg and C3d to lower the threshold of B cell activation [62]. 

Importantly, C1q, C3, C4 and CR1 and CR2 contribute to the normal anti-viral IgM or IgG 

responses and modulate humoral immunity indicating a crucial role for complement activation in 

the immune response to viruses [10, 63]. 

Viruses use different mechanisms to counter and disrupt the carefully regulated 

complement cascade of enzymes, protein complexes and receptors. Viruses evade the host 

immune response by a) modifying C1q or C3; b) entering host cells; or c) using host or virally 

produced complement inhibitors to prevent cell lysis. Viral proteins directly interact with the 

components of the complement cascade to disrupt complement-mediated destruction. C1q and 

C3 are frequent targets of the viral proteins. For example, the coat protein of human astrovirus 

type 1 binds C1q, displaces the C1r/C1s tetramer and inhibits the activation of the classical 

complement pathway [64]. Similarly, the matrix (M1) protein of influenza A virus binds C1q but 

this viral protein blocks the interaction between C1q and IgG [65]. Many other viruses modulate 

C3 as a central component of the complement cascade. West Nile virus synthesizes two 

isoforms of NS1 protein to regulate C3. Soluble NS1 increases Factor I-mediated cleavage of 
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C3b to iC3b while the cell surface-bound NS1 decreases deposition of C3b and MAC [66]. 

Herpes virus synthesizes trans-membrane glycoprotein gC1 and gC2, which bind C3b and 

specifically accelerate the decay of the alternative C3 convertase and inhibit the interaction of 

C3b with C5 and properdin [67, 68]. Together these studies indicate that viruses interact with 

multiple complement components to prevent complement-mediated host cell death.  

Viruses also modulate the regulators of complement activation by encoding viral proteins 

with structural and functional homology to host proteins or by recruiting host complement 

regulatory proteins to the virion. For example, gamma-herpes virus 68 induces expression of a 

complement inhibitory protein on the cell surface which may be detected in supernatants of 

infected cells. In vitro studies demonstrated that the viral inhibitory proteins block C3 deposition 

by both the classical and alternative activation pathways [69]. Kaposi's sarcoma-associated 

herpes virus, herpes virus saimiri, variola virus, vaccinia virus, monkeypox virus and ectromelia 

virus also encode regulators of the complement cascade which bind C3b or C4b and block 

activity [70-77]. Other viruses recruit host complement regulatory proteins to virions to evade 

complement-mediated destruction. Human immunodeficiency virus-1 (HIV-1), human T-

lymphotropic virus-1 (HTLV-1) and human cytomegalovirus (HCMV) incorporate the 

complement control proteins CD55 and CD59 into their virions to circumvent the complement 

response [78, 79]. Thus, complement inhibitors, either from the host or virally synthesized, 

protect the infected cell from lysis and allow virus proliferation. 

 Viruses induce complement activity for their own benefit. HIV enters human CD4+ T 

cells through complement receptors. HIV gp41 and gp120 proteins activate complement through 

the classical and lectin pathways, respectively. At the same time, the above two proteins inhibit 

MAC formation by recruiting Factor H and CD59 to the surface of the virally-infected host cell to 

abolish complement-mediated lysis [80]. Therefore, complement aids in viral entry but the virus 

prevents cell lysis by inhibiting the remainder of the complement cascade.  
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Complement activation during viral infection frequently causes endothelial cell damage 

and activation of the contact cascade. Recent studies show that herpes simplex virus (HSV), 

HCMV, and Hanta virus enhance thrombin formation and fibrinolysis [81, 82]. The HSV 

glycoprotein binds Factor X to induce the generation of thrombin [83]. HSV infection also 

decreases endothelial heparin sulfate proteoglycan (HSPG) that recruits and binds anti-

thrombin III [84]. Other viruses, including Dengue virus and HIV, are also associated with 

decreased thrombin generation [85]. Dengue virus produces the nonstructural protein, NS1, that 

binds and inhibits prothrombin activation [86].  

Viruses are able to modulate cytokine expression to induce a pro-coagulant state. 

Mediated by IL-1, TNFα, and IL-6, Marburg virus, Ebola virus and Hanta virus induce tissue 

factor expression on the endothelial surface [87, 88]. Viruses also take advantage of 

coagulation factors to enhance viral binding and replication. Human species A adenovirus-18 

(HAdV-18) and 31(HAdV-31) bind coagulation Factor IX to facilitate virus entry and infection. 

HAdV-5 and other human adenoviruses utilize coagulation Factor X for the infection of host cells 

[89]. Sindbis viruses up-regulate the expression of BKR2 receptors on endothelial cells, and 

subsequently enhance viral replication by reducing Sindbis virus-induced apoptosis in a BKR2 

dependent manner [90]. Thus, viruses also modulate the contact cascade and thrombin activity 

to promote viral infection. 

The broad reactivity of individual NAb allows rapid recognition and protection from 

pathogens never encountered before. By bridging the innate and adaptive immune response, 

NAb facilitate antigen uptake, processing and presentation by B cells. For example, sera from 

naïve mice contain IgM NAb specific for lymphocytic choriomeningitis virus, vaccinia virus and 

two Vesicular stomatitis virus serotypes,VSV-New Jersey and VSV-Indiana [91]. In addition, 

NAb bind viruses at an early stage of infection to prevent viral dissemination to vital target 

organs. Moreover, NAb present in IVIg bind CCR5 to inhibit CCR5-tropic HIV infection in 

macrophages and lymphocytes. 

12 
 



The relatively low levels and limited specificity of NAb is not sufficient to provide 

complete immune protection. They also show limited neutralization, opsonization and 

complement binding ability compared to specific Ab of the adaptive response. Early in influenza 

virus infection, NAb bind to the hemagglutinin molecules of influenza A and B, neutralize the 

viruses and provide initial protection before the emergence of antigen-induced Ab produced by 

the adaptive response [92-94]. High titers of influenza virus occur in the lungs of mice which do 

not secrete IgM, and in the absence of soluble IgM NAb, the survival rate decreases 

significantly compare to wildtype mice [95]. The broad spectrum of NAb reactivity allows pre-

infection sera to bind at least 12 influenza A and B strains. However, the level of influenza 

specific NAb does not increase as the disease progresses. These data demonstrate that NAb 

are distinct from antigen-induced Ab. NAb also inhibit CCR5-tropic HIV infection. IVIg contains 

anti-CCR5 Ab which inhibits HIV-1 infection of human macrophages and CD4+ T cells by CCR5-

tropic but not CXCR4-tropic HIV-1. IVIg also contains NAb directed against multiple other cell 

surface molecules, including CD4, CD5, adhesion motif and CD95 [96]. These data indicate that 

NAb are an important part of the innate humoral immune response to viruses. 

Pentraxins are a superfamily of multimeric proteins that responds to a variety of 

inflammatory stimuli to activate complement and prevent infection. As described earlier, the 

classic short pentraxins, CRP and SAP, are generally accepted as indicators of infection. But 

similar to bacteria, the prototypic long pentraxin PTX3 rapidly increases in response to viral 

infections.  As a better protein marker of dengue virus infection than CRP [97], PTX3 also 

demonstrates antiviral functions in human or murine cytomegalovirus (HCMV or MCMV) and 

influenza virus. In these studies, PTX3 binds viruses and inhibits viral-cell fusion and 

internalization [98]. In influenza infection, sialylated ligands on PTX3 mimic the structure of the 

cellular receptors and bind the viral hemagglutinin glycoprotein and block the receptor-binding 

site of hemagglutinin [99]. Thus, pentraxins recognize and bind viral antigens to initiate the 
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humoral innate immune response. However, the specific role of pentraxins in viral infection has 

not been well studied. 

As part of humoral innate immunity, complement, contact system, NAb and pentraxins 

work together to develop elaborate networks of cascades in response to viral infections. These 

networks crosstalk with each other to recognize and eliminate invading viruses. However, 

viruses use numerous strategies to evade the immune response by compromising multiple 

proteins of the innate response simultaneously. Further efforts should examine the signaling 

pathways that modulate each component. Due to the complex interactions between 

components of the humoral response, future studies may need to examine the virus/host 

interactions together and not as individual components. Comprehensive research on antiviral 

mechanisms of the host and viral evasion mechanisms will provide insight into pathogenesis 

and novel treatment options. 

 

4.0 Humoral innate immunity in chronic disease 

4.1 Humoral innate immunity in atherosclerosis 

Although the humoral innate immune response is critical in preventing bacterial and viral 

infections, the same components are frequently pathogenic in chronic disease. For example, 

complement plays a key role in the pathogenesis of atherosclerosis. Compared to non-

atherosclerotic arteries, fibrous plaques upregulate transcripts of the classical complement 

cascade proteins [100]. Additionally, deposition of classical complement proteins, including C1q, 

C3, C4 and MAC occurs in atherosclerosis [101]. The alternative complement pathway is also 

implicated in plaque development or atherogenesis. For example, plasma from mice with high-

fat diet-induced atherosclerotic lesions contained elevated C3, properdin and factor D levels 

[102]. Endotoxin- and diet-induced atherosclerosis in LDL receptor-deficient mice also requires 

the alternative pathway, factor B [103]. Importantly, C6 deficiency protects against diet-induced 
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atherosclerosis, indicating that the terminal complement pathway is required in progression of 

atherosclerotic lesions [104]. Indeed, MAC deposition correlates with the severity of arterial 

damage in human aortic fibrous plaque [105] and in mice, MAC deposition promotes endothelial 

damage [106].  Endothelial MAC deposition also preceded monocyte infiltration and foam cell 

formation in a rabbit model of atherosclerosis [104]. Together, the data indicate that multiple 

complement pathways of activation increase the risk of atherosclerosis. 

Complement regulatory proteins such as CD59 maintain the balance of complement 

activation and inhibition. Lewis et al. [107] found that MAC contributed to atherogenesis in 

apolipoprotein E-/-  mice and CD59 deficiency exacerbated the disease. Similarly, Wu et al. 

demonstrated that the loss of CD59 accelerated atherosclerosis while endothelial CD59 

overexpression attenuated endothelial damage. Finally, CD59 deficiency accelerated lesion 

development and increased plaque vascular smooth muscle cell composition in an 

atherosclerotic mouse model [108]. Thus, CD59 and possibly other complement inhibitors 

maintain homeostasis.  

Although NAb activate complement, these Ab also aid in the clearance of pro-atherogenic 

debris (Fig. 2). NAb recognize pro-inflammatory, oxidation-specific epitopes associated with 

oxidative stress, apoptosis and atherosclerosis [109]. Recently, Chang et al. [110] reported that 

the oxidized phospholipid specific, NAb clone, T15/E06 attenuated endothelial activation and 

subsequent atherogenesis. Other in vitro studies indicated that IgM NAb recognized 

malondialdehyde, malondialdehyde low density lipoprotein (LDL) and oxidized LDL. The 

recognition of oxidized LDL prevented macrophage uptake, inhibited foam cell formation and 

atherogenesis [109, 111, 112]. However, under other conditions such as myocardial infarction, 

NAb are pathological. Compared to wildtype mice, Ab deficient mice experience significantly 

less tissue damage in response to myocardial infarction. Importantly, administering a single NAb 

clone restores tissue damage and inflammation to the Ab deficient mice [113, 114]. In addition, 
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peptide inhibition of the NAb binding attenuates myocardial infarction induced injury in wildtype 

mice [113]. NAb play a key role in the modulation of atherosclerosis by clearing apoptotic cells 

and oxidized structures; however, excessive complement activation in response to NAb binding 

may be detrimental and cause pathology.  

Complement has an intimate relationship with the contact system, suggesting that many 

coagulation factors also play key roles in the development of atherosclerosis [6]. Increased 

cardiovascular disease risk and atherosclerotic vascular damage are associated with elevated 

levels of Factor XII, prekallikrein, high molecular weight kininogen and Factor XI [115, 116]. In 

addition, Factor XII-/- mice are protected from arterial thrombosis and stroke indicating an 

activation of the contact system [117]. However, the specific crosstalk between the contact and 

complement systems in atherosclerosis is still poorly understood and should be addressed in 

future investigations. 

It is well established that pentraxins activate the complement cascade in atherosclerosis 

[118].  Recent research demonstrates pentraxins may have a direct role in inducing 

atherosclerosis (Fig. 2). Pentraxins deposit in the atherosclerotic plaques where they interact 

with enzymatically modified or oxidized lipoproteins, promote foam cell formation, induce 

endothelial cell dysfunction and exacerbate atherosclerosis [12].  

Although controversial, CRP appears to play a role in atherosclerosis. Detectable in the 

arterial wall in the early stages of atherogenesis, CRP continues to accumulate with disease 

progression [100]. By inhibiting endothelial production of nitric oxide, CRP impairs vasodilation 

and angiogenesis [119] and facilitates endothelial cell apoptosis, leading to atherosclerotic 

lesion formation. In addition, by increasing the expression and activity of endothelial cell 

plasminogen activator inhibitor-1 (PAI-1), a fibrinolysis inhibitor, CRP potentially contributes to 

plaque instability and atherothrombosis [120]. CRP also enhances endothelial cell adhesion 
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molecules [121], superoxide production [122] and promotes monocyte recruitment into the 

plaque [12], all of which may contribute to atherogenesis. CRP also binds to enzymatically 

modified or oxidized LDL; however, the beneficial nature of this binding remains controversial in 

the clinical setting [123, 124].  A meta-analysis of a large multi-nation statin trial found that 

increased CRP levels identified only a limited population at risk with no clinical outcomes [125]. 

Thus, additional clinical studies are required prior to increased CRP screening of the population.   

Similar to NAb, CRP has also been implicated in myocardial infarction in a complement-

dependent manner. Early studies indicated that CRP activates C1q of the classical complement 

pathway and that monomeric CRP binds the alternative complement pathway inhibitor, factor H 

(reviewed in [Mold, 1999 #775]). Additional studies found CRP colocalized with C1q and C3 

within the ischemic tissue following myocardial infarction [Distelmaier, 2009 #776]. Recent 

studies indicate that monomeric CRP on necrotic cell surfaces binds both C1q and the classical 

pathway inhibitor C4bp to regulate the removal of injured cells in the absence of significant 

inflammation [Mihlan, 2011 #777]. Thus, CRP appears to enhance opsonization without the 

subsequent inflammatory response.  

Additional pentraxins also play a role in atherosclerosis. SAP was also detected in human 

atherosclerotic lesions [126]. By binding amyloid-β (Aβ) and serum amyloid component A 

(SAA), SAP mediates the inflammatory response to amyloid fibrils in atherosclerosis [127]. In 

contrast, SAP binds and prevents the uptake of oxLDL by macrophages, possibly reducing foam 

cell formation [128]. Similar to CRP and SAP, elevated expression of PTX3 precedes 

atherosclerotic lesion development [129] and correlates with acute myocardial infarction [130].  

PTX3 increases tissue factor expression in endothelial cells, potentially inducing 

atherothrombosis [131]. Together, these results indicate a causal role of pentraxins in 

atherogenesis, suggesting that they may be effective therapeutic targets for atherosclerosis. 
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In conclusion, the pathology of atherosclerosis is a complex, multi-factorial process 

involving lipid deposition, vessel wall dysfunction, inflammation and autoimmunity. The humoral 

innate immune components play a pivotal role in the progression of this chronic disease. 

Activation of each component may drive atherogenesis; whereas NAb may also protect against 

atherosclerosis by binding to oxidation-specific epitopes. It should be noted that these 

components do not act independently but interact with each other, collectively modulating the 

disease progression. Further research is warranted to examine the integrated role of these 

humoral innate immune components in atherosclerosis. Such insights may yield a new 

understanding of the mechanisms underlying this disease and lead to novel therapeutic 

approaches to attenuate the progression of atherosclerosis. 

4.2  Cancer and humoral innate immune response 

Complement products such as C1q, C3, C3a, C4, C5 and the MAC are detectable in the 

tumor microenvironment [132]. These activated complement proteins have three mechanisms 

for complement-mediated destruction of tumor cells: a) complement-dependent cytotoxicity 

(CDC) [133], b) indirect Ab-dependent, cell-mediated cytotoxicity [134], which can be 

complement receptor-dependent and c) CR3-dependent cellular cytotoxicity (CR3-DCC) [135], 

which is relatively rare with tumors. Complement components are deposited in various tumor 

types, indicating that activation of complement may contribute to immunosurveillance of 

malignant cells. Complement proteins C5b-9 are deposited on the cellular surface of breast 

cancer cells and papillary thyroid carcinoma cells [136, 137] . Complement activation products, 

such as C1q and C3 cleavage products are detectable in ovarian carcinoma patients [138]. 

Complement is activated and deposited in neoplastic tissue, but the functional implications are 

unclear.  

Tumor cells are resistant to complement mediated attack [139]. Tumor cells have natural 

mechanisms for self-protection against the complement system, specifically MAC and the 
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cytotoxic activation of CR3. Extracellular protectors such as membrane and soluble complement 

inhibitors are released by tumor cells into the microenvironment and interfere with complement 

cascade activation and limit the quantity of complement deposition [140, 141].  Membrane 

complement inhibitors, including CD35 (CR1), CD46 (MCP) and CD55 (DAF) control the 

activation of complement at the level of C3. These serve as an important mechanism of self-

protection, making the cells insensitive to the action of complement. 

 
Although the complement system regulates inflammation and the innate immune 

response, complement proteins also aid in tumor growth and immunosuppression. For example, 

C3-/- or C4-/- mice display a significant decrease in tumor proliferation compared to wildtype mice 

[142]. These results may be linked to the anaphylatoxins, C3a and C5a, which participate in 

several signal transduction pathways linked to tumorigenesis (Fig. 3). The binding of C3a and 

C5a to their receptors increases IL-6, which induces transcriptional changes in cell cycle 

progression and inhibits apoptosis [143, 144]. Specifically, C3a receptor (C3aR) and C5a 

receptor (C5aR) activate MAPK, ERK, phosphatidylinosityol 3-kinase and Akt [145, 146]. Each 

of these signal transduction pathways may mediate oncogenic transformation and progression. 

Similar pathways may also be activated by the MAC to induce cellular proliferation [136, 147, 

148]. Thus, complement proteins promote tumor growth through the upregulation of signaling 

molecules for cellular proliferation and by preventing apoptosis of neoplastic cells.  

Complement anaphylatoxins may alter cellular differentiation resulting in immune 

suppression. In healthy individuals, myeloid-derived suppressor (MDS) cells differentiate to 

macrophages, dendritic cells and neutrophils [149, 150]. However, when trapped in the 

intermediate stage of differentiation, MDS cells may mediate tumor-induced immune 

suppression [149, 150]. Tumor secreted factors induce pro-inflammatory mediators such as 

C5a, which recruit C5aR+ MDS to the tumor cells and disrupt normal differentiation of MDS cells 

(Fig. 3) [142]. Binding of C5a to C5aR on MDS increases reactive oxygen and nitrogen species 
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that contribute to cell-mediated immunosuppression [142]. These complement stimulated MDS 

cells also prevent the activation of CD4+ and CD8+ T cells, inhibit Natural Killer cell cytotoxicity, 

stimulate cytokine production for tumorigenesis and increase angiogenesis [151, 152]. The 

complement system proteins such as C5a provide inflammatory protection in the tumor 

microenvironment. 

Tumor-associated antigens are known to modulate transmembrane signaling that is 

required for proliferation, invasion and metastasis of tumor cells. The presence of NAb against 

tumor-associated antigens, such as gangliosides of melanoma cells, correlate with increased 

patient survival [153]. Tumor-reactive Ab exist in healthy wildtype animal blood samples (IgM) 

and peripheral blood concentrations of NAb increase shortly after initial tumor development and 

prior to detection of circulating antigens [154-156]. NAb may have a direct cytotoxic effect on 

tumor cells, while also inducing a bystander effect during a humoral anti-tumor response. Thus, 

NAb recognize tumor-modified cell surfaces that develop during tumorigenesis and activate 

complement to destroy nascently transformed cells.  

Tumor cells are able to utilize NAb to escape immunosurveillance. Neoplastic 

transformation alters the expression of a variety of cell surface glycoproteins. An example of this 

is the Thomsen-Friedenreich antigen (CD176), a disaccharide (Gal beta 1-3 GalNAc alpha) with 

truncated glycosylations that is expressed at elevated levels on the surface of cancer cells 

[157]. An abnormal anti-CD176 titer correlates with primary carcinomas [158]. B1a cells produce 

NAb against CD176, as a form of immunosurveillance against CD176+ cancer cells [159]. Anti-

CD176 NAb induce apoptosis in surface CD176+ cells [159]. Tumor cells escape Ab-dependent 

cytotoxicity by releasing soluble CD176 to bind NAb  andNAb and protect the tumor cell from 

apoptosis [158, 160]. Although expression of CD176 is important for recognition of cancer cells, 

soluble CD176, secreted by tumor cells, prevents Ab dependent elimination. Tumor cells use 

the innate immune system and NAb to avoid immunosurveillance and elimination.  
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NAb are important for the recognition and elimination of precancerous and cancerous 

cells [161-165]. Such tumor-reactive NAb are expressed in multiple tumor types, including 

melanoma [166], lung [167], breast [168], head and neck [169] and ovarian cancers [170, 171]. 

As an example, the human monoclonal IgM Ab SAM-6, which was isolated from a gastric 

cancer patient, reacted with malignant tissue and induced the accumulation of intracellular 

lipids, cholesteryl ester and triglycerides [172, 173]. The humoral innate immune response and 

NAb specifically have an important role in the recognition and elimination of neoplastic cells.  

NAb can be generated from tumor surface antigens. The auto-Ab produced by a 

patient’s body in response to cancer cell formation can be utilized to detect the presence of 

cancer and to differentiate benign and malignant tumors [174]. Cell surface glycans that are 

secreted into the serum by malignant cells provide a mechanism to track tumor burden. Many 

malignant cells, but not normal cells, overexpress CD20, ECFR and HER2 allowing these 

proteins to be commonly used as diagnostic markers. These antigens also provide therapeutic 

targets for production of tumor antigen-specific monoclonal Ab.  

Human cancers are known to produce extracellular proteolytic enzymes required for 

invasion and dissemination. Tumors that release these proteolytic enzymes breakdown the 

basement membrane and extracellular matrix (ECM) to facilitate cancer-cell invasion into the 

surrounding normal tissue [175, 176]. By regulating production of ECM proteases, plasminogen 

activator (PA) is suggested to play a role in this process [175, 177]. The primary PA studied in 

relation to cancer metastasis is the urokinase-type (u-PA) which generates plasmin for the 

degradation of ECM [178]. Compared to the normal or benign tissue, malignant tumors produce 

elevated levels of u-PA [179]. U-PA and/or the receptor, U-PAR are  prognostic markers in 

human malignancies, including breast cancer [180], lung cancer [Oka, 1991 #545;Pedersen, 

1994 #548], bladder cancer [183], bone marrow [184] stomach cancer [185], colorectal [186]  

and cervical cancer [187]. The binding of u-PA to its receptor u-PAR appears to be necessary 

for cancer metastasis [188, 189].  As a component of the contact system, u-PA and u-PAR 
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levels correlate with poor prognosis and both are required for successful invasion and 

metastasis.  

 The u-PA/plasmin system is also involved in other cellular processes in tumorigenesis, 

including the release of growth factors. As an example, the binding of u-PA to u-PAR generates 

plasmin for the activation of the latent form of TGF-β, which regulates other cellular functions, 

including PAI-1 [190, 191]. The migration and invasion of cancer cells requires changes in  

cadherin and integrin expression and binding which leads to alterations in the expression of u-

PA, u-PAR and PAI-1 [192]. For example, cancer cell detachment requires a down-regulation of 

E-cadherin expression [193], which increases expression of u-PA and invasiveness in vitro 

[194].  

Plasminogen activators ultimately activate prekallikrein and kallikrein to generate 

bradykinin. Bradykinin and hydroxypropyl-(Hyp) bradykinin are elevated in the blood plasma, 

peritoneal and pleural fluids of cancer patients [195, 196]. Bradykinin is the most potent 

permeability factor and pain inducer produced in the tumor microvasculature. The elevation in 

bradykinin mediates the enhanced vascular permeability which allows cell invasion in cancer 

patients [197, 198]. BKR2 is also upregulated in human and rodent cancer tissue [90]. The 

kallikrein cascade is also implicated in tumor formation. Matsumura et al. [199] showed that the 

continual generation of kinins stimulated proliferation of tumor cells through mitogenic actions 

and promoted diapedesis to enhance tumor cell metastasis [199]. Together, these data indicate 

that the contact system supports cell migration and invasion through multiple interactions with u-

PA, u-PAR, PAI-1, kallikrein, kinins, ECM proteins, integrins, receptors, and growth factors that 

allow reorganization of the tumor microenvironment. 

As a short pentraxin family member, CRP is synthesized by the liver in response to 

stimulation by IL-6 and IL-1 [200, 201]. Increased levels of CRP are observed in cancer patients 

[202-204]. As an example, CRP was reported to be elevated in 87% of metastatic breast cancer 

patients [205]. Many cancer patients also have elevated IL-1 and IL-6 levels [206-208], which 
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stimulates CRP production. PTX3 is a serum biomarker of multiple human carcinomas due to its 

overexpression in cancerous tissue, including soft tissue liposarcomas and lung carcinoma 

[209, 210]. Breast cancer cell lines that overexpress PTX3 have activated anti-fibroblast growth 

factor 2 and a reduction in angiogenesis in vitro and in vivo [211].  

Experimental and clinical data suggest that the humoral innate immune responses 

initiate significant pro-tumor effects on the developing neoplasia. Humoral innate immune 

responses exacerbate recruitment and activate immune cells in the tumor microenvironment. 

They regulate tissue remodeling, pro-angiogenic and pro-survival pathways that potentiate 

cancer formation. Thus, the innate immune system is an important regulator of cancer 

development.  

 
5.0 Conclusions 
 
 The humoral immune system plays a role in the initiation and regulation of the 

inflammatory response and elimination of pathogens. Derived from many small plasma proteins, 

components of the innate humoral immune response disrupt the target cell's plasma membrane 

and induce cytolysis. Together, the humoral and cellular immune responses control bacterial 

and viral replication  and eliminate infected and altered cells. However, pathogens have evolved 

strategies to counter and evade the immune response. In addition, the humoral innate response 

may be exploited by uncontrolled proliferative cancer cells and atherosclerotic lesions resulting 

in continued expansion despite the humoral immune response. Recognizing the strategies used 

by pathogens and altered cells allows a better understanding of the pathological interactions 

between cell (infected or altered) and the host.   

 A wide spectrum of humoral components actively play a role in disease and we present 

conclusive evidence that the humoral immune system modifies the course of disease to 

enhance pathogenesis. Understanding the relationship between pathogenesis and humoral 

immune components will enhance the probability of targeted therapeutic treatments and patient 
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survival. Further research is needed to determine the mechanisms of action and interactions of 

multiple components of humoral immunity, as well as their role in the pathogenesis of infection, 

neoplasia, and atherosclerosis.  
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Figure Legends 
 
Figure 1. Schematic representation of the interaction between the three pathways of the 
complement cascade and viruses. Complement removes virions and initiates the adaptive 
response to remove virally-infected cells. Viruses also inhibit complement at C1q and C3.  
 
Figure 2: Role of humoral innate immunity in atherosclerosis. Pentraxins interact with 
oxidized LDL (oxLDL) or enzymatically modified LDL (eLDL) facilitating foam cell formation. 
Complement facilitates macrophage extravasation and foam cell formation that release 
proinflammatory factors and enhance atherosclerosis. NAb may recognize and prevent foam 
cell formation. Taken together, the humoral innate immune response modulates atherosclerosis. 

Figure 3. Neoplastic cells exploit the humoral immune system by several mechanisms. 
The schematic diagram shows a variety of mechanisms tumor cells utilize to evade humoral 
immunity, regulate antibody effector mechanisms, and modulating leukocyte function in the 
microenvironment.  TF, CD176; MDSC, myeloid-derived suppressor cell; MФ, macrophage 
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Table 1: Complement evasion proteins recruited by different bacterial species to prevent 
complement mediated lysis.  

BACTERIA Complement Evasion 
Protein(CEP) 

Target Action of CEP Reference 

Borrelia spp. 1) CRASP: 
Complement regulator-
acquiring surface 
proteins. 

Factor H, FHL-
1, CFHR-1, 
C4BP 

Regulator Acquisition (24),(199), 
(200) 
 

2) Erp: OspE/F-related 
proteins. 

Factor H Regulator Acquisition (201),(202) 

3) CD59 like protein. C8 and C9 Prevention of MAC 
formation 

(203) 

Enterococcus 
faecalis 

1) Capsular 
polysaccharide 

C3b 
 

Renders bound C3b 
Inaccessible to anti-
bodies 

(204) 
 

2) GelE: Gelatinase C3a, C3b, C5a Inhibits C3 activity, 
Cleaves C5a 
proteolytically 

(205),(29) 

Escherichia 
spp. 

1) OmpA: Outer 
membrane protein A 

C4BP Regulator Acquisition (206) 

2) TraT: TraT outer 
membrane protein 

C1-INH C1-INH  Acquisition (207) 

3) StcE: Secreted 
protease of C1 
esterase inhibitor 

C5B6 Prevention of MAC 
formation 

(208) 

Haemophilus 
influenzae 

1) Unknown factor C4BP, Factor 
H, FHL-1 

Regulator Acquisition (209), 
(210) 

2) HSF: Haemophilus 
surface fibril 

Vitronectin Prevention of MAC 
formation 

(211) 

Neisseria spp. 1) GNA1870: Genome-
derived neisserial 
antigen 1870. 

Factor H, FHL-1 Regulator Acquisition (23) 

2) LOS: 
Lipooligosaccharide 

Factor H, FHL-1 Regulator Acquisition (212) 

3) Por: Outer 
membrane porins 

C4BP, Factor 
H, FHL-1 

Regulator Acquisition (213) 

4) Type IV pili Membrane Co-
factor protein 

Attachment to 
Epithelial cells 

(214) 

5) OpaA- Heparin 
binding outer membrane 
protein 

Vitronectin Regulator Acquisition (215) 

Pseudomonas 
spp. 

1) PaE: Pseudomonas 
elastase 

C1q, C3 Degradation of C1q 
and C3 

(216) 

2) PaAP: Pseudomonas 
alkaline protease 

C1q, C3 Degradation of C1q 
and C3 

(216) 

3) Tuf: Elongation 
Factor 

Factor H, FHL-1 Regulator Acquisition (217) 

Table1



Staphylococcus 
spp. 

1) CHIPS: Chemotaxis 
inhibitory protein of S. 
aureus. 

C5Ar Antagonizes C5a (218) 

2) Efb: Extracellular 
fibrinogen-binding 
protein 

C3, C3b and        
C3d 

Inhibition of C3 and 
C3b containing 
convertases 

(26), (27), 
(219) 

3) SAK: Staphylokinase C3b, IgG Degradation of IgG, 
Removes C3b from 
surface 

(220) 

4) Sbi: S. aureus IgG-
binding protein 

IgG Inhibits IgG interaction 
with C1q 

(221) 

5) SCIN: Staphylococcal 
complement inhibitor 

C3 convertase Prevents cleavage of 
C3 into C3a and C3b 

(219), 
(220) 

6) SpA: S. aureus 
protein A 

IgG, C1q Inhibits IgG interaction 
withC1q 

(222) 

7) SSL-7: 
Staphylococcal 
superantigen-like 
protein 7 

C5 Inhibits C5 clevage (223) 

Streptococcus 
spp. 

1) Bac Protein IgA, Factor H Regulator Acquisition (224) 

2) Fba: Fibronectin-
binding protein 

Factor H, FHL-1 Regulator Acquisition (225) 

3) Hic b: Factor H-
binding inhibitor of 
complement 

Factor H Regulator Acquisition (21) 

4) M protein:  Surface 
proteins M family (Arp, 
Sir, etc.) 

Factor H, FHL-
1, C4BP 

Regulator Acquisition (22) 

5) PLY: Pneumolysin IgG, C1q Complement 
activation and 
depletion 

(226), 
(227) 

6) PspA: 
Pneumococcal surface 
protein A 

Unknown Impairing complement 
receptors 

(25) 

7) PspC: 
Pneumococcal surface 
protein C 

Factor H, C3 Regulator Acquisition, 
Degradation of C3 

(228), 
(229) 

8) scpA/B: 
Streptococcal C5a 
peptidase 

C5a Degradation of C5a (230) 

9) SIC: Streptococcal 
inhibitor of complement 

C5b-7, C5b-8 MAC formation 
prevention 

(28), (231) 

10) SPE B: 
Streptococcal pyrogenic 
exotoxin B 

Properdin, Ig's Degrades Properdin (232) 

11) SpG: Streptococcus 
protein G 

IgG Inhibits IgG interaction 
with C1q 

(233) 

Yersinia spp. YadA- Yersinia Adhesin Factor H Regulator Acquisition (234) 
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