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Abstract 

One of the main challenges when a biochemical conversion technique is employed to produce 

cellulosic ethanol is the low concentration of ethanol in the fermentation broth, which increases 

the energy demand for recovering and purifying ethanol to fuel grade. In this study, two design 

cases implementing salt extractive distillation – with salt recovery enabled by a novel scheme of 

electrodialysis and spray drying – along with heat integrated distillation techniques of double-

effect distillation and direct vapor recompression are investigated through process simulation 

with Aspen Plus® 2006.5 for reducing the thermal energy demand. Conventional distillation 

along with molecular sieve based dehydration is considered as the base case. Salt extractive 

distillation along with direct vapor recompression is found to be the most economical ethanol 

recovery approach for cellulosic ethanol with a thermal energy demand of 7.1 MJ/L (natural gas 

energy equivalents, higher heating value), which corresponds to a thermal energy savings of 23% 

and cost savings of 12% relative to the base case separation train thermal energy demand and 

total annual cost. 
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Introduction 

Currently, corn-ethanol is the most widely produced biofuel in the U.S (1). The expanded 

Renewable Fuel Standard (RFS2), established under the Energy Independence and Security Act 

(EISA) of 2007, mandates the production of 136.3 GL/year of renewable fuels in 2022: 56.8 

GL/year of corn-ethanol, 60.6 GL/year of second generation biofuels such as cellulosic ethanol, 

and 18.9 GL/year of advanced biofuels such as biomass-based diesel. To meet the specific 

renewable fuel production volume and green house gas emission reduction requirements of 

RFS2, transitioning of the feedstock from corn to cellulosic sources for future production of 

bioethanol is considered essential. Cellulosic ethanol can be produced through biochemical and 

thermochemical conversion processes (2-21). In a biochemical conversion process, the cellulosic 

feedstock is chemically and/or enzymatically hydrolyzed to sugars to enable microbial 

fermentation to ethanol. In a thermochemical process, the cellulosic feedstock is gasified to 

produce syngas which is converted into ethanol through microbial fermentation and/or catalytic 

reactions. The principal advantages of the biochemical conversion process include relatively low 

capital costs, less dependence on economy of scale for profitability, and high selectivity and 

conversion efficiencies (15, 22-24). However, there are several key challenges in various areas of 

the biochemical conversion process that need to be addressed (3, 8, 9, 11, 25). In the product 

recovery area, the main disadvantage is the dilute nature of the fermentation broth with ethanol 

concentration varying from about 3 to 6 wt%, (2, 9, 10, 14, 26-29) compared to about 10 to 15 

wt% for corn-ethanol (30-34). Recovering ethanol from fermentation broth and purifying to fuel 

grade is difficult and energy intensive because of the dilute nature of the fermentation broth and 
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the challenging water-ethanol vapor liquid equilibrium (VLE) with an azeotrope at about 96 wt% 

ethanol and tangential approach of the water-ethanol equilibrium curve to the 45° line at high 

ethanol concentrations in the familiar y-x VLE diagram representation. Simple distillation cannot 

be used to distill ethanol above the azeotropic composition. The state of the art technique used in 

the corn-ethanol industry to produce fuel ethanol is distillation close to the azeotropic 

composition followed by dehydration in a molecular sieve based adsorption unit (31, 32, 35, 36). 

This approach can be used for recovering and purifying ethanol from the fermentation broth 

obtained from cellulosic feedstock. However, there is a drastic increase in the distillation energy 

demand as the ethanol concentration in the fermentation broth from cellulosic sources is 

relatively low (30, 37-39). 

Heat integrated distillation operations such as multi-effect distillation and vapor recompression 

can reduce distillation energy demand. These energy saving techniques have been shown to 

significantly reduce the distillation energy demand for the water-ethanol system (40-51); for 

instance, distillation energy demand reduction on the order of 42% has been reported for double-

effect distillation with split feed compared to conventional distillation with a single column for 

distilling 93 wt% ethanol from a feed containing 7 wt% ethanol (43). Conversely, the VLE of the 

water-ethanol system can be improved towards ethanol separation by dissolving a salt in the 

liquid phase to raise the equilibrium vapor ethanol content (52-55). Since salt remains as a 

nonvolatile component, the VLE of the water-ethanol-salt system can be studied and depicted as 

a pseudo binary system considering the equilibrium liquid composition on a salt free basis as is 

commonly done in literature (54, 56-60).  In addition to “salting out” ethanol this may also break 

the azeotrope (52, 54, 57). For example, starting with 70 wt% ethanol in water, 99.6 wt % 

ethanol was distilled using potassium acetate as the salt requiring only a quarter of the energy 
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needed to obtain an inferior 93 wt% ethanol by conventional distillation (61). Efficient recovery 

and reuse of the salt used as the separating agent is, however, crucial. Potassium acetate (40, 57, 

60-66) and calcium chloride (56, 58, 62, 66, 67) have been reported for water-ethanol separation 

utilizing the “salting out” effect. The use of the salt separating agent in a process with tightly 

closed water cycles such as the cellulosic bioethanol plant requires that traces of the salt not 

impact other processing areas negatively. In this study, calcium chloride was selected for the 

following reasons: low cost, large “salting out” effect (62, 66) and compatibility with 

fermentation.  

In a salt extractive distillation column, the salt is usually dissolved in the reflux stream and 

introduced at the top of the column. Unlike the liquid extractive agents such as ethylene glycol, 

salt is non volatile and always remains in the liquid phase; thereby, enabling the production of a 

high purity distillate free of salt. The salt moves downward in the column and is recovered and 

purified from the distillation column bottoms for re-use in the top of the column. Hence, there 

are two distinct steps involved: salt extractive distillation and salt recovery/purification. 

Corrosion due to aqueous ethanolic salt solutions requires consideration in regards to materials 

of construction (56, 68). Other issues are related to solids handling, feeding and dissolving salt in 

the reflux stream, potential decrease in plate efficiency, and foaming inside the column (52, 54, 

57). In the study presented here, the possible benefit in terms of energy demand is established, 

demonstrating that the concept may be attractive enough to deal with the possible complications.  

There are many experimental and theoretical studies (40, 56-58, 60-67) on producing fuel 

ethanol by utilizing the “salting out” effect, but most of them focus only on the salt extractive 

distillation step. Moreover, the studies (40, 52, 54, 56, 60, 63-65) which include both steps of salt 

extractive distillation and salt recovery do not generally consider techniques other than 
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evaporation and drying for salt recovery. Evaporative salt concentration/crystallization and solids 

drying techniques are energy intensive. Reducing the energy demand for the salt recovery step 

becomes essential to reap the benefit of salt-induced VLE improvement. In this study, a 

combination of electrodialysis and spray drying is investigated. The salt extractive column 

bottoms stream is pre-concentrated by electrodialysis and assumed to be dried to an anhydrous 

state by spray drying. In electrodialysis, the dilute salt solution is concentrated by selectively 

separating the salt ions from the solution (69, 70) rather than evaporating water; therefore, 

requiring less energy than that of an evaporative process. Moreover, electrodialysis is rugged and 

can be operated at high ionic strengths (71). Final recovery of dry salt is achieved through spray 

drying, which is a widely used unit operation to convert a liquid feed containing salt into dry 

solid particles in a single step (72, 73). 

The main goal of this study is to combine the relative advantages of heat-integrated distillation 

and salt extractive distillation towards reducing the overall energy demand for recovering and 

purifying ethanol from the fermentation broth of a cellulosic ethanol facility. Two different 

design cases implementing the heat integrated distillation techniques of double-effect distillation 

with split feed and direct vapor recompression for stripping ethanol from the fermentation broth, 

and salt extractive distillation for rectifying the stripped ethanol vapors to fuel grade are 

considered. Conventional distillation and molecular sieve based adsorption for recovering and 

purifying ethanol from fermentation broth is considered as the base case with basis process 

design parameters taken from the National Renewable Energy Laboratory (NREL) process 

design for cellulosic ethanol production (2). The design cases are investigated for energy demand 

reduction and economic viability through process simulation and economic analysis with Aspen 

Plus® 2006.5 and Aspen Icarus Process Evaluator® 2006.5 respectively. 
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Design Cases 

Base case, conventional distillation with molecular sieve based dehydration: Case I 

The target fuel ethanol production rate was set at 270 ML (2.1 *105 tonne) per year with an 

ethanol concentration of 99.5 wt%. Recovery of ethanol from the fermentation broth and further 

purification to fuel grade is achieved by two distillation columns (beer column and rectifier) and 

final water removal by molecular sieve based adsorption as shown in Figure 1. Fermentation 

broth from the beer well with an ethanol concentration of about 5.5 wt% is preheated and fed to 

the beer column operated as a stripper to remove the dissolved carbon dioxide and to produce a 

vapor distillate with an ethanol concentration of about 44 wt% and a bottom aqueous stream 

(stillage), consisting of water, dissolved matter, unfermented solids, proteins, and trace amounts 

of ethanol. The stripped carbon dioxide stream from the beer column is treated along with the 

fermenter offgas in a scrubber for recovering and recycling the residual ethanol to the beer well. 

The vapor distillate from the beer column is fed to the rectifier, producing an enriched overhead 

product of about 92 wt% ethanol and a bottoms aqueous product with trace amounts of ethanol, 

which is recycled to the process. In the adsorption cycle of the molecular sieve unit, superheated 

moist ethanol vapor from the rectifier overhead is dehydrated to fuel grade ethanol by the 

selective adsorption of water, while in the desorption cycle, the molecular sieve adsorber bed is 

depressurized and purged with dry product ethanol vapors for regeneration. The regeneration 

stream from the adsorbers is recycled to the rectifier. 

Salt extractive process with double-effect beer columns: Case II 

 The efficient recovery and re-use of salt in salt extractive distillation is of paramount 

importance in regard to the energy demand, capital cost, and process requirements. Since 
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separation and recovery of salt from the highly complex beer column bottoms stream would be a 

formidable challenge, no salt should be added to the beer column. The rectifier deals with a 

relatively clean feed stream (the beer column distillate) without solids which facilitates salt 

recovery from the rectifier bottoms stream. In addition, the VLE of the ethanol-water system is 

very favorable at the dilute feed conditions. Due to the above reasons, we opted to first strip the 

fermentation broth, producing a distillate free of solids for subsequent purification in a salt 

extractive rectifier to fuel grade ethanol. This eliminates the molecular sieve unit. Double-effect 

distillation with split feed is used to reduce the significant energy demand for stripping ethanol 

from the fermentation broth. Salt extractive distillation for final purification to fuel grade ethanol 

is then considered (Figure 2). After initial preheating, fermentation broth from the beer well is 

treated in a degasser and condenser arrangement to remove the dissolved carbon dioxide, which 

is sent to the scrubber to recover and recycle the residual ethanol to the beer well. After carbon 

dioxide removal, the liquid stream from the degasser is split into two streams and fed to two beer 

columns (BC1 and BC2) operating in parallel. Overhead vapor distillate from BC1 is condensed 

to provide the reboiling duty of BC2. The operating pressures of BC1 and BC2, and the feed split 

ratio between them has to be adjusted, respectively, to provide sufficient temperature driving 

force (weighted logarithmic mean temperature difference, WLMTD = 10 K) in the reboiler-

condenser and to balance the reboiling duty of BC2 with the condensing duty of BC1. Then, the 

overhead streams from BC1 and BC2 are purified in the salt extractive rectifier directly to fuel 

grade ethanol. The salt extractive rectifier bottoms stream is divided into diluate and concentrate 

for the electrodialysis process. After receiving the salt from the diluate, the salt enriched in the 

concentrate stream is recovered by evaporating the remaining water with hot natural gas 
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combustion gases in a co-current spray dryer before recycling to the salt extractive rectifier 

reflux.  

Salt extractive process with direct vapor recompression for beer column, Case III 

In Case III (Figure 3), direct vapor recompression reduces the energy demand for stripping the 

fermentation broth. After removal of carbon dioxide and preheating to essentially saturated 

liquid conditions, fermentation broth is fed to the beer column. The overhead vapor distillate 

from the beer column is compressed and then condensed in the reboiler-condenser at the bottom 

of the beer column; thereby, providing the reboiling duty. Sufficient temperature driving force 

(WLMTD = 10 K) in the reboiler–condenser is maintained by adjusting the compressor outlet 

pressure. Afterwards, the beer column distillate is purified to the fuel grade level in the salt 

extractive rectifier as in Case II. 

Summary of energy demand comparison approach 

Comparing energy demands for different processing schemes is complex. Heat integration 

interconnects unit operations, and different qualities of energy (2nd law of thermodynamics based 

balance, for example, thermal vs. electrical) besides the simple quantity of energy (1st law of 

thermodynamics based balance) impact both economics and environmental issues such as green 

house gas emissions. 

The input data and specified parameters for Case I (base case, Figure 1), Case II (salt 

extractive process with double-effect beer columns, Figure 2) and Case III (salt extractive 

process with direct vapor recompression for beer column, Figure 3) are given, respectively, in 

Table 1, Table 2, and Table 3. Input in all design cases is an identical stream of 412 tonne/h 

(fermentation broth). Identical streams of fuel ethanol are produced in all of the design cases. 
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The liquid water output streams from the design cases are not identical since some water vapor is 

lost in the spray dryer with the moist air stream in Cases II and III. 

The comparison of the energy demand is based on converting all steam and electrical energy to 

natural gas energy equivalents (higher heating value, HHV) using 80% boiler efficiency to raise 

steam and 33% efficiency for natural gas to electricity. The thermal energy demand of the spray 

dryer is directly calculated from the natural gas consumption. 

Methods 

Process simulation and economic analysis (see Appendix) for the design cases are carried out, 

respectively, with Aspen Plus® 2006.5 and Aspen Icarus Process Evaluator® 2006.5. The 

thermodynamic property method used in modeling the VLE included the Non-Random Two 

Liquid model (NRTL) (74) for the liquid phase without electrolytes, the Electrolyte Non-

Random Two Liquid model (ENRTL) (75-77) for the liquid phase with electrolytes, the Redlich-

Kwong (R-K) equation of state for the vapor phase (78), and the Henry’s law for the dissolved 

gases. The default property parameters in Aspen Properties® 2006.5 are used for all the 

thermodynamic models except for the ENRTL model. In case of the ENRTL model, the 

molecule-electrolyte pair parameters and other property parameters are taken from a previous 

study by the authors (79). The distillation columns are rigorously simulated with the RadFrac 

module of Aspen Plus® 2006.5 using the Newton algorithm. Optimum feed stages for the 

distillation columns are determined by sensitivity analyses. For modeling the compressor, the 

Comp block, assuming a centrifugal compressor with a polytropic efficiency of 72 %, is used.  

For the salt extractive rectifier in Case II and Case III, the important parameters are the total 

number of stages and the CaCl2 concentration profile. To optimize these parameters, initially the 

total number of stages is fixed, and then the calcium chloride concentration is optimized. 
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Increasing the CaCl2 concentration in the salt extractive rectifier can decrease the reboiler duty 

because of the improvement in the VLE, but can lead to an increase in salt recovery energy 

demand because of the increased CaCl2 mass flow. Hence, the CaCl2 concentration in the salt 

extractive rectifier has to be optimized to achieve a minimum of the sum of the energy 

requirements for the system. The mass and energy balance calculations for the electrodialyzer, 

and the spray dryer are separately performed using Microsoft Excel® 2003 and Mathcad® 13. The 

results are later incorporated in the overall simulation using the User Model feature of Aspen 

Plus® 2006.5. After optimizing the calcium chloride concentration in the salt extractive rectifier 

for different total number of stages, an economic analysis is carried out to determine the optimal 

total number of stages. 

Results and Discussion 

The distillate and bottoms composition for the salt extractive rectifier (Case II, Table 2) has 

been fixed. Therefore, the main parameters for the salt extractive rectifier are the total number of 

stages, the reflux (mass flow) and the concentration of salt in this reflux stream. 

Initially, the total number of stages is fixed to optimize the reflux rate and concentration of salt 

in the reflux. The following discussion is for a total stage number of 35. It is necessary to at least 

eliminate the azeotrope so that fuel grade ethanol can be produced at all in a single salt extractive 

rectifier. This already occurs at about 2.9 wt% of CaCl2 in the reflux. Above this concentration, 

the thermal energy demand of the salt extractive rectifier steeply declines with increasing CaCl2 

concentration in the reflux but this benefit levels out above about 9 wt% (Figure 4). The reason is 

that the distillation pinch point, the point of contact between the operating line and the VLE 

curve in a McCabe-Thiele diagram, shifts from the location at high ethanol content (tangent 

pinch) to the feed stage (feed pinch) due to improvement in the VLE curve with increasing CaCl2 
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concentration. This shift yields the principal benefit of the salt extractive approach above and 

beyond eliminating the azeotrope. Further increase in the CaCl2 concentration in the reflux 

causes an increase in CaCl2 mass flow (Figure 5) along with increasing energy demand for salt 

recovery (Figure 6) without significant added benefit. The overall combined energy demand, 

therefore, shows a minimum at about 9.3 wt% CaCl2 in the reflux due to the competition 

between energy savings due to facilitated distillation, and energy demand for salt recovery 

(Figure 7). The above mentioned procedure to optimize the concentration of CaCl2 in the reflux 

is repeated for different total number of stages. When the total number of stages is increased, 

initially, there is a significant reduction in the overall combined energy demand due to the 

reduction in the reflux rate and concentration of CaCl2 in the reflux, but this effect levels out 

above 50 stages (Figure 8). A preliminary economic analysis indicated only marginal annual cost 

reduction above 50 stages. Hence, 50 stages are considered as economical, and the corresponding 

optimal concentration of CaCl2 in the reflux is 8.5 wt%. Similar procedure is repeated for the salt 

extractive rectifier in Case III to find the optimum concentration of CaCl2 in the reflux (Figures 

9–12) and the economical total stage number in the salt extractive rectifier (Figure 13),  yielding 

an economical total stage number of 40, with an optimal calcium chloride concentration of 9.9 

wt% in the reflux. 

The results comparing the overall thermal energy demand and process economics for the 

design cases are shown in Table 4. Recovering ethanol from the fermentation broth and purifying 

to fuel grade is only considered here for reducing the energy demand, not the overall biomass-to-

fuel ethanol process. The energy demand for the part of the process considered here is, however, 

a very significant portion of the energy demand for the overall biomass-to-fuel ethanol process. 

Both alternative design cases show a substantial thermal energy demand reduction when 
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compared to the base case. Case III – salt extractive process with direct vapor recompression for 

beer column (Figure 14), provides an overall process thermal energy demand reduction of 

23.1%, while Case II – salt extractive process with double-effect beer columns (Figure 15), 

provides an overall process thermal energy demand reduction of 12.8%. Case III shows higher 

thermal energy demand reduction mainly due to the substantial thermal energy demand reduction 

for the beer column through heat recovery by vapor recompression. Based on the overall process 

economics, Case III is the most economical process alternative with a total annual cost reduction 

on the order of MM$2.4, when compared to the base case. 

Conclusions and Outlook 

In this study, two process designs implementing salt extractive distillation together with heat 

integrated distillation techniques of double-effect distillation and direct vapor recompression are 

investigated as possible alternatives to a base case comprising conventional distillation and 

molecular sieve based adsorption for recovering and purifying ethanol from the fermentation 

broth of a cellulosic fuel ethanol facility. Further, a systematic process simulation procedure is 

used to optimize the process conditions for salt extractive distillation, with salt recovery enabled 

by a novel scheme of electrodialysis and spray drying. While, both the design alternatives, Case 

II – salt extractive process with double-effect beer columns, and Case III – salt extractive process 

with direct vapor recompression for beer column, show significant thermal energy demand 

reduction and total annual cost savings, Case III is found to be the best economical alternative. A 

thermal energy savings potential of 5.7*1014 J (as natural gas HHV) per year with a total annual 

cost savings potential on the order of MM$2.4 per year can be estimated for producing 270 ML 

of fuel ethanol (99. 5 wt%) per year. An overall maximum energy savings potential of 1.3*1017 J 

or about 0.13 Quad (as natural gas HHV) per year could be realized for the targeted 60.6 GL of 



13  

cellulosic biofuel to be produced in the U.S in 2022, if fermentation based cellulosic ethanol is 

used to achieve this target and the advanced ethanol separation process considered here is 

implemented. 
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Appendix 

Aspen Icarus Process Evaluator® 2006.5 is used to estimate all process equipment cost except 

for molecular sieve units and the electrodialyzer. In this study, the costs (US$ basis) are updated 

using CEPCI – Chemical Engineering Plant Cost Index, and are reported on 2011 first quarter 

basis. Molecular sieve equipment cost is estimated using the scaling and installation factors taken 

from Aden et al. (2) while the electrodialyzer equipment cost is estimated using the following 

equations: 

CEDZ = CP + CS (A1)

CP = 1.5 x CS (A2)

CS = 1.5 x (2MA) x CM (A3)

cd

s
A i

ZFn
M


  (A4)

where CEDZ is the electrodialyzer installed equipment cost, CP and CS are the peripheral and 

stack costs, respectively, MA is the overall membrane area required for each ion exchange 

membrane type (m2), Z is the ion valence (equivalent/mol), F is the Faraday constant (96485 

A.s/equivalent), ns is the salt removal rate (mol/s), η is the electrical current efficiency and icd is 

the operating current density (A/m2). The following values are used: 

CM = $100/m2 

 η = 0.9 

icd = 300 A/m2 

To calculate the annual operating costs (CO), a plant operation time of 8400 h/year, and the 

following utility costs are used: steam – $17.08/ton, cooling water – $0.07/ton, process water – 

$0.53/ton, electricity – $0.07/kW.h, and natural gas – $5.7/GJ ($6/MM Btu).  

The total annualized cost (TAC) is calculated using the following equations: 
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TAC = CO + ACCR x TIC (A5)
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where ACCR is the annual capital charge ratio, TIC is the total installed equipment cost, i is the 

interest rate, and n is the plant life (years). The following values are used: 

i = 0.1 

n = 10 years (general plant life) 

n = 5 years (for membrane replacement cost) 

Finally, the total annual cost savings (TACS) is calculated using the following equation: 

TACS = TACCase-I – TACCase-II/III (A7)
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Table 1. Input data and specified parameters for Case I – base case, conventional 

distillation with molecular sieve based dehydration 

Input Data and Specified Parameters Base Case 
Beer Column 
Number of Stages   16 

Operating Pressure (kPa) 193.5 

Bottoms Ethanol Concentration (wt%)     0.05 
Rectifier 
Number of Stages   36 
Operating Pressure (kPa) 172.3 
Distillate Ethanol Concentration (wt%)   92.5 
Bottoms Ethanol Concentration (wt%)   0.05 
Molecular Sieve Unit a 
Operating Temperature (K) 389.15 
Purge Stream Ethanol Concentration (wt%)   72.3 
Fuel Ethanol Concentration(wt%)   99.5 
a Data taken from Aden et al.(2). 
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Table 2. Input data and specified parameters for Case II – salt extractive process with 

double-effect beer columns 

Input Data and Specified Parameters Case II 

Beer Column 1 (BC1) 
Number of Stages   15 
Operating Pressure (kPa) 294.4 

Bottoms Ethanol Concentration (wt%)     0.05 

Feed Split     0.63 

Beer Column 2 (BC2) 

Number of Stages   15 
Operating Pressure (kPa) 121.6 

Bottoms Ethanol Concentration (wt%)     0.05 

Feed Split      0.37 
Reboiler-Condenser 
Weighted LMTD (K) 10 

Salt extractive rectifier 
Number of Stages 20 - 60 
Operating Pressure (kPa) 101.3 
Distillate Ethanol Concentration (wt%)   99.5 
Bottoms Ethanol Concentration (wt%)     0.05 
Electrodialysis 
Operating Temperature (K) 313.15 

Concentration of CaCl2 in Concentrate (wt%)   40 

Current Efficiency (%)   90 
Spray Dryer 
Hot Gas Temperature (K) 923.15 
Moist Gas Temperature (K) 473.15 
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Table 3. Input data and specified parameters for Case III – salt extractive process with 

direct vapor recompression for beer column 

Input Data and Specified Parameters Case III 
Beer Column 
Number of Stages   15 
Operating Pressure (kPa) 101.3 
Bottoms Ethanol Concentration (wt%)     0.05 
Compressor 
Outlet Pressure (kPa) 229.1 

Reboiler-Condenser 
Weighted LMTD (K) 10 
Salt extractive rectifier 

Number of Stages 20 - 50 
Operating Pressure (kPa) 101.3 
Distillate Ethanol Concentration (wt%)   99.5 
Bottoms Ethanol Concentration (wt%)     0.05 
Electrodialysis 
Operating Temperature (K) 313.15 
Concentration of CaCl2 in Concentrate (wt%)    40 

Current Efficiency (%)    90 

Spray Dryer 
Hot Gas Temperature (K) 923.15 
Moist Gas Temperature (K) 473.15 
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Table 4. Comparison of thermal energy demand and total annual cost savings for the 

design cases 

Design 
Varianta 

Thermal 
Energy 
 
Demand  
(MJ/L) 

Total Installed 
Equipment 
Cost 
(MM$) 

Thermal Energy 
Demand 
Reduction 
(%) 

Total 
Annual  
Cost 
Savings  
(MM$/year) 

Total Annual 
Cost Savings  
(%) 

Case I 9.2   9.6  --  --  -- 
Case II 8.1 11.8 12.8 1.6    8.1 
Case III 7.1 17.3 23.1 2.4 12.4 

a Case I: Base case, conventional distillation with molecular 
sieve based dehydration; Case II: Salt extractive process with 
double-effect beer columns; Case III: Salt extractive process 
with direct vapor recompression for beer column. 
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